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Matching to share risk

Pierre-André Chiappori
Department of Economics, Columbia University

Philip J. Reny
Department of Economics, University of Chicago

We consider a matching model in which individuals belonging to two populations
(“males” and “females”) can match to share their exogenous income risk. Within
each population, individuals can be ranked by risk aversion in the Arrow–Pratt
sense. The model permits nontransferable utility, a context in which few general
results have previously been derived. We show that in this framework a stable
matching always exists, it is generically unique, and it is negatively assortative: for
any two matched couples, the more risk averse male is matched with the less risk
averse female.
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1. Introduction

The analysis of matching patterns when individuals can transfer utility between them,
initiated by Becker (1973) and Shapley and Shubik (1971), has recently attracted re-
newed attention.1 In general, these works rely on a transferable utility (TU) assump-
tion, which posits that under a convenient representation of utilities, the Pareto frontier
generated by any possible match is a straight line with slope −1. The TU framework has
several, interesting features. Stability, in that context, is equivalent to aggregate surplus
maximization. Not only can existence and generic uniqueness results be readily derived
from this fact, but the comparative statics tend to be significantly easier, and numeri-
cal simulations are especially simple to perform, since looking for a stable match boils
down to solving a linear programming model, a task for which fast algorithms exist.2

The TU assumption, however, has its drawbacks, which have also been pointed out.
In a static context, an implication of the TU assumption is that groups behave as single

Pierre-André Chiappori: pc2167@columbia.edu
Philip J. Reny: preny@uchicago.edu
Reny gratefully acknowledges financial support from the National Science Foundation (SES-9905599, SES-
0214421, SES-1227506). We wish to thank Andy Newman, two anonymous referees, and the editor, George
Mailath, for a number of helpful comments and suggestions.

1See for instance, Choo and Siow (2006), Iyigun and Walsh (2007), Chiappori and Oreffice (2008),
Chiappori et al. (2009), Galichon and Salanié (2010), or Dupuy and Galichon (2014).

2See Chiappori et al. (2010) or Chiappori (forthcoming) for a general presentation.

Copyright © 2016 Pierre-André Chiappori and Philip J. Reny. Licensed under the Creative Commons
Attribution-NonCommercial License 3.0. Available at http://econtheory.org.
DOI: 10.3982/TE1914

http://econtheory.org/
mailto:pc2167@columbia.edu
mailto:preny@uchicago.edu
http://creativecommons.org/licenses/by-nc/3.0/
http://econtheory.org/
http://dx.doi.org/10.3982/TE1914
http://creativecommons.org/licenses/by-nc/3.0/


228 Chiappori and Reny Theoretical Economics 11 (2016)

decision makers—a claim that has been repeatedly challenged, both from a theoreti-
cal and an empirical perspective.3 Moreover, some specific problems cannot in general
be easily cast into a TU framework. A particularly interesting example is risk sharing.
While the ability to share otherwise uninsurable risk has long been considered a ma-
jor motivation for household or group formation,4 the corresponding models typically
fail to satisfy the restrictions implied by TU. Specifically, Schulhofer-Wohl (2006) shows
that a necessary condition for a risk-sharing problem to be compatible with TU is that
individual risk aversions belong to the identical shape harmonic absolute risk-aversion
(ISHARA) class (as defined by Mazzocco 2004a).5 In particular, for individual prefer-
ences to exhibit constant relative risk aversion (CRRA) and to also be in the ISHARA
class, it must be the case that individuals have identical risk aversions—quite a restric-
tive condition indeed.

The general case in which utility can be transfered between individuals, but not nec-
essarily at a constant “exchange rate” as implied by TU, is therefore extremely interest-
ing but quite complex. Recently, Legros and Newman (2007) have provided a general
investigation of such models. In particular, these authors introduce two conditions,
generalized increasing differences (GID) and generalized decreasing differences (GDD),
which they show are sufficient for positive and negative assortative matching, respec-
tively. Moreover, if either condition holds strictly, say GID, then it is immediate that
every stable match must be positive assortative. The main difficulty when facing any
particular problem, including the present one, is to determine whether any one of these
conditions holds.

In an illustrative example, Legros and Newman consider a risk-sharing problem in
which individuals with different risk aversions (ordered by the Arrow–Pratt measure)
match in pairs to share some exogenous, uninsurable risk. In the special case in which
each couple’s joint income can be either high or low (i.e., there are just two possi-
ble states of the world), Legros and Newman establish that any stable match must be
negative assortative, i.e., among matched individuals, the kth most risk averse male is
matched with the kth least risk averse female.6

That any stable matching in this risk-sharing context must be negative assortative
with respect to risk tolerance is intuitively appealing, and one might hope that this prop-
erty holds far more generally and, in particular, for general types of income risks involv-
ing an arbitrary number of states of the world and for general risk averse preferences.
The purpose of the present paper is to show that this intuition is correct.

3See Browning et al. (2014) for a recent overview.
4See, for instance, Becker (1991).
5ISHARA requires that (i) individual utilities be of the harmonic absolute risk-aversion form (i.e., the

index of absolute risk aversion must be a harmonic function of income), and (ii) the corresponding income
coefficient must be identical across individuals.

6Legros and Newman (2007) show that the same result holds with an arbitrary number of states of the
world under the additional assumption that each individual i’s utility function takes the form

ui(x) = log(1 + ai + x)�

But note that because these utilities belong to the ISHARA family, the resulting risk-sharing problem is in
fact a TU problem for which submodularity of the surplus function is well known to be sufficient for a
negative assortative stable match.
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Specifically, we consider a setting with two populations (“males” and “females”).
Within each population, individual incomes are drawn from some joint distribution;
we assume only that each joint distribution is exchangeable (so that males have ex ante
identical incomes from any female’s viewpoint and vice versa), and that male and fe-
male incomes are independent. Any male and any female can form a group (“house-
hold”), pool their income, and share the corresponding aggregate risk efficiently. Last,
we assume that individuals within each population are expected utility maximizers and
can be ranked according to their risk aversion. That is, for any two males, one is more
risk averse than the other in the sense of Arrow–Pratt, and similarly for any two females.
No further assumptions, with the exception of an Inada-type condition at the origin, are
made on the shape of individual preferences. A result due to Kaneko (1982) ensures that
a stable matching always exists.7

Our main result (Theorem 2) establishes that any stable matching is negative assor-
tative among matched couples, i.e., for any k, the kth most risk averse matched male is
matched with the kth least risk averse matched female. In general there may be multi-
ple stable matches. However, there are two senses in which uniqueness obtains. First,
a complementary form of uniqueness always holds: across all stable matches, either an
individual’s mate is unique or his/her payoff is unique (Theorem 4). Second, “generi-
cally” in our domain of utility functions, there is a unique stable match (Theorem 5).

Interestingly, if populations are not of equal sizes, so that some individuals must re-
main unmatched, the identity of the unmatched individuals depends on the exact dis-
tribution of preferences. In particular, we provide robust examples in which the un-
matched individuals are the most risk averse, the least risk averse, or of intermediate
risk aversion.

The proof of our main result relies on establishing a strict single-crossing property
(Lemma 1). Once this property is established, the negative assortativeness of any stable
match becomes immediate (Theorem 3).

Finally, a variation of the problem is studied in the last section. There, we consider
a one-sided or “roommate” version of the problem, whereby individuals belonging to
the same population match (pairwise) to share risk. Roommate matching problems are
in general more complex than bipartite ones; for instance, stable matchings can easily
fail to exist.8 Still, we show that when the total number of individuals is even, a stable
matching exists, is unique, and is negative assortative.

The present analysis may provide a basis for other applications.9 Consider, for ex-
ample, a labor market composed of high-skill and low-skill individuals who must work
in teams, of two say, to be productive. Each team that forms must agree, ex ante, to an
incentive contract that specifies how the stochastic profits generated from their private
efforts are to be divided between them. High-skill individuals may be attracted to low-
skill individuals and vice versa not only for risk-sharing reasons, but also because spe-
cialization makes it possible to avoid counterproductive effort. As in our risk-sharing

7We thank an anonymous referee for this reference.
8See Chiappori et al. (2014a).
9We are grateful to an anonymous referee for this suggestion.
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scenario, a stable match in this labor market setting involves an endogenous choice of
teams as well as an endogenous contract choice for each team.

Beyond its theoretical appeal, our negative assortativeness conclusion has impor-
tant empirical consequences. Most empirical studies of efficient risk sharing within
social groups refer to an underlying, theoretical framework characterized by two fea-
tures: (i) households are taken to be the basic decision units and are each characterized
by some von Neumann–Morgenstern (VNM) utility (generally of the CRRA type), and
(ii) risk aversion is identical across households.10 These approaches have been criticized
on the grounds that, empirically, risk aversion appears to be very heterogeneously dis-
tributed across individuals.11 Therefore, if the determinants of household formation are
not directly linked to risk sharing, not only should different households have different
risk attitudes, but the mere notion of a VNM utility defined at the household level is ba-
sically flawed, since CRRA preferences with different levels of relative risk aversions do
not satisfy Mazzocco’s ISHARA conditions for aggregation and cannot therefore be rep-
resented by a single VNM utility.12 Our results reinforce this criticism by showing that
if, alternatively, matching is related to individual attitudes to risk, the situation is even
worse: negative assortativity implies that differences in risk aversion should on average
be larger within households (or risk-sharing groups) than across them. This suggests
that a large fraction of the empirical literature on risk sharing should be considered with
some caution.13

2. The model

Consider a one-to-one matching model in which a finite set {1� � � � �M} of males match
with a finite set {1� � � � �F} of females. Males and females are strictly risk averse, and
ui : [0�∞) → R denotes the von Neumann–Morgenstern utility function of income of
male i, and wj : [0�∞) → R denotes that of female j. For every male i, ui(·) is bounded
and continuous on its domain, u′

i(x) > 0, u′′
i (x) < 0 for all x ∈ (0�∞), ui(0) = 0, and

limx↓0 u
′
i(x) = +∞. Female utility functions satisfy the same conditions.

We assume that individuals in each population can be ranked according to their ab-
solute risk aversion in the Arrow–Pratt sense. That is, for any two males, one of them is
more risk averse than the other, and similarly for any two females. We may therefore in-
dex each set of individuals in order of increasing risk aversion, so that male i is (strictly)

10See, for instance, Altug and Miller (1990), Cochrane (1991), Hayashi et al. (1996), and Fafchamps and
Lund (2003) among many others. A notable exception is Townsend (1994), who considers heterogeneous
preferences of the constant absolute risk aversion (CARA) type.

11For estimation of the heterogeneity in risk aversion for various populations, see, for instance, Barsky
et al. (1997), Guiso and Paiella (2008), Cohen and Einav (2005), Chiappori and Paiella (2011), and Chiappori
et al. (2014b).

12See, for instance, Chiappori et al. (2014b) and Schulhofer-Wohl (2011), who argue that this misspecifi-
cation may generate spurious rejections of the efficient risk-sharing hypothesis.

13Duflo and Udry (2004) analyze risk sharing within households, and are therefore immune to the second
criticism. Still, their empirical strategy explicitly requires identical risk aversion among spouses, which
allows Pareto weights to be differenced out in the log consumption regressions. If individuals have different
risk aversion, their test is misspecified unless individuals’ Pareto weights are unrelated to the probability
distribution of their income.
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more risk averse than male j (i.e., −u′′
i (x)/u

′
i(x) > −u′′

j (x)/u
′
j(x) ∀x > 0) if and only if

i > j, and similarly for females.
The statement that individual i is more risk averse than j only means that i’s Arrow–

Pratt measure of risk aversion is strictly greater than j’s when their income realizations
are identical. Because incomes are random and the incomes received through risk shar-
ing will be endogenous, there is no reason to expect, and we do not assume, that i’s
Arrow–Pratt measure of risk aversion is greater than j’s at their respective ex post in-
comes when these are distinct.

Each individual is endowed with an exogenous nonnegative and nondegenerate ran-
dom income denoted by x̃i for male i and z̃j for female j.14 The M random variables
x̃1� � � � � x̃M are assumed to be exchangeable and independent of the F exchangeable ran-
dom variables z̃1� � � � � z̃F .15 Note that incomes within each population may be correlated
and the marginal income distributions of any two members of the same population are
identical.

Let ỹ = x̃i + z̃j be the nondegenerate random total income of any male and female.
Exchangeability guarantees that the distribution of ỹ is independent of i and j. Let Y ⊆
[0�∞) denote the support of ỹ.

Individuals who choose to remain single receive their random income. However, if
male i and female j choose to match and share risk, they can enter into a binding agree-
ment, ex ante, prior to the realization of their incomes, specifying how their income will
be shared. The “stability” condition introduced below implies that this binding agree-
ment will be ex ante Pareto efficient. Consequently, as shown by Borch (1962), and given
our assumptions, the allocation of income between male i and female j must satisfy the
mutuality principle: each individual’s income share depends only on the couple’s to-
tal income ỹ. In particular, a couple’s efficient risk-sharing agreement, or sharing rule,
can be denoted by a function, x : Y → [0�∞), of total income, where x(y) denotes the
amount of total income y given to the male and y − x(y) ≥ 0 is the amount given to
the female. Under this sharing rule, male i’s expected utility is Eui(x(ỹ)) and female j’s
expected utility is Ewj(ỹ − x(ỹ)).

Because individuals can choose to remain single, we focus on sharing rules that are
individually rational in the sense that both the male’s and the female’s ex ante payoffs
are at least as large under the agreed upon sharing rule as their respective ex ante payoffs
when single.

We wish to determine which pairs of men and women will choose to share risk and,
for those that do, we also wish to determine the sharing rules they adopt. To accomplish
this we employ a standard stability criterion.

An ordered pair (i� j) is called a couple if i is a male and j is a female. A match is a
subset of couples, C, such that for any male i there is at most one female j with (i� j) ∈ C,
and for any female j there is at most one male i with (i� j) ∈ C. Any individual appearing

14We adopt the convention that tildes denote random variables and the absence of a tilde denotes a
realization of that random variable.

15Collections of random variables are exchangeable if their joint cumulative distribution function (c.d.f.)
is a symmetric function. Note that income distributions may be discrete or continuous.
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in some couple in C is said to be matched, while any individual not appearing in any
couple in C is said to be unmatched or single.

A match C is stable if for each couple (i� j) ∈ C there is an individually rational shar-
ing rule xij(·) such that the resulting vector of sharing rules, S = (xij(·))(i�j)∈C , has the
following property. For any sharing rule x(·), there does not exist a male i and a female
j who each strictly prefer x(·) to his/her sharing rule from S if matched or to his/her in-
come distribution if unmatched. In this case, we say that the stable match C is supported
by S and we call (C�S) a stable outcome.

Thus, a stable match refers to the set of couples that form, while a stable outcome
includes also the sharing rules that matched couples employ. Consequently, there can
be a unique stable match and yet multiple stable outcomes when the stable match is
supported by more than one vector of sharing rules.

Remark 1. It is inefficient for a man and a woman to each be unmatched. Indeed, one
way they could share income is to mimic being single (i.e., male i keeps x̃i and female j

keeps z̃j). Such a sharing rule will however never be efficient, since efficiency requires
male and female income shares to rise and fall together (by the mutuality principle and
Wilson 1968, Theorem 5), while x̃i and z̃j are nondegenerate and independent. Conse-
quently, there exist sharing rules that are preferred by both individuals over being single.
It follows that at any stable match there can be single males (if and only if M >F) or sin-
gle females (if and only if M < F), but not both. In particular, stability implies that all
individuals are matched if M = F .

A modest amount of additional notation will be useful in what follows. First, let
rj = Ewj(z̃j) denote female j’s reservation utility, and let v̄j = Ewj(ỹ) denote female j’s
expected utility when she is matched with a male and receives all of the joint income ỹ

(recall that the joint income distribution is independent of the match by exchangeabil-
ity). Note that because male and female incomes are nonnegative and nondegenerate,
0 < rj < v̄j . Second, let Uij(vj) denote male i’s maximum expected utility when he is
matched with female j, where the maximum is taken over all possible sharing rules that
ensure female j an expected payoff of at least vj ∈ [0� v̄j].16

Let us first record that a stable outcome, and hence also a stable match, always exists.

Theorem 1. There is at least one stable outcome, and so there also is at least one stable
match.

Proof. The nontransferable utility game that is defined by considering the payoffs that
any individual can attain by staying single and that any couple can attain with some
sharing rule is a central assignment game in the sense of Kaneko (1982). Hence, by
Kaneko’s Theorem 1, a stable outcome exists. �

16The analyses of Borch (1962) and Wilson (1968), together with the assumptions made here, ensure
that Uij(·) is well defined and continuous on [0� v̄j]. In particular, continuity follows by the logic of Berge’s
theorem of the maximum because sharing rule solutions here are always uniformly bounded nondecreas-
ing functions, and sequences of such functions always have pointwise convergent subsequences by Helly’s
theorem.
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We now consider the most interesting part of the problem, namely the characteriza-
tion of the stable matches.

3. Stability

3.1 The main result

Our main result is the following.

Theorem 2. Any stable match has the following features:

• Either all of the men are matched or all of the women are matched.

• The matching is negative assortative in the sense that among matched individuals,
the kth most risk averse male is matched with the kth least risk averse female for
all k.

In particular, if there are equal numbers of males and females, the unique stable match is
negative assortative and all individuals are matched.

Before considering the most general case involving any number of males and fe-
males, let us consider first the case in which there are two males and two females. The-
orem 2 then reduces to the following more fundamental result.

Theorem 3. When there are precisely two males and two females, the negative assorta-
tive match, namely that in which the most risk averse male (female) is matched with the
least risk averse female (male), is the unique stable match.

The proof of Theorem 3, and also ultimately of Theorem 2, relies on the following key
lemma, which establishes a strict single-crossing property. Recall from Section 2 that v̄j
is female j’s expected payoff from matching with any male and receiving the entire joint
income. Recall also that Uij(v) denotes male i’s maximum expected payoff when he is
matched with female j, where the maximum is taken over all possible sharing rules that
ensure female j an expected payoff of at least v ∈ [0� v̄j]. Finally, recall that male (female)
2 is more risk averse than male (female) 1.

Lemma 1. For any real numbers v1 and v2 satisfying 0 ≤ v1 < v̄1 and 0 < v2 ≤ v̄2, we have

U11(v1) ≥U12(v2) �⇒ U21(v1) > U22(v2)�

Lemma 1, whose proof is given in the Appendix, says the following. If, given the
utilities that two females must receive, a male weakly prefers matching with the less risk
averse female, then any strictly more risk averse male will strictly prefer matching with
this less risk averse female. Intuitively, the more risk averse male prefers more insurance,
any amount of which is cheaper to obtain from the less risk averse female since she is
willing to bear more income risk than the more risk averse female.
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Given the compelling intuition, the proof of Lemma 1 is perhaps more subtle than
one might expect. Indeed, in a typical proof of negative assortative matching, one simply
observes that higher types are willing to pay more to match with a low type than lower
types are willing to pay. The argument here is complicated by the fact that payment
comes in the form of an endogenous sharing rule, and that the opportunity cost of that
payment depends in a complex way on the concavity of a person’s utility. This point can
be understood in reference to the transferable utility benchmark. Transferable utility
implies that, for a well chosen cardinalization of individual expected utilities, the “ex-
change rate” of the spouses’ utilities is constant and equal to −1. In our nontransferable
utility framework, on the contrary, the exchange rate is not constant, and is endogenous
to the choice of the sharing rule.

The strict single-crossing property in the statement of Lemma 1 is closely related
to, but stronger than, Legros and Newman’s (2007) generalized decreasing differences
condition. In particular, their condition replaces the strict inequality in the displayed
equation of Lemma 1 with a weak inequality. The strict inequality is important for two
reasons. First, it implies that every stable match must be negative assortative, whereas
a weak inequality implies only that every stable match is payoff equivalent to one that
is negative assortative (Proposition 1, part (ii) in Legros and Newman 2007). Second,
the strict inequality is crucial for establishing that, generically in our domain of utility
functions, there is a unique stable match (Theorem 5 below).

Given Lemma 1, let us now prove Theorem 3.

Proof of Theorem 3. We first argue that {(1�1)� (2�2)} is not stable. Suppose that it
is. Then there are individually rational and efficient sharing rules associated with this
match giving each female j utility vj , say. Individual rationality ensures that 0 < vj < v̄j
for each female j, and efficiency implies that male i’s payoff must be Uii(vi). By stability,
male 1 must be unable to strictly improve his payoff by matching with female 2 and
ensuring her a payoff of at least v2; otherwise he could also make female 2 strictly better
off by giving her slightly more income. Hence, U11(v1) ≥U12(v2). But then, according to
Lemma 1, U21(v1) > U22(v2). That is, male 2 can strictly improve his payoff by matching
with female 1 and choosing a sharing rule that leaves female 1 at least indifferent. But
then male 2 can make both himself and female 1 strictly better off by giving female 1
slightly more income. We conclude that {(1�1)� (2�2)} is not stable. Consequently, by
Theorem 1 and Remark 1, {(1�2)� (2�1)} is the unique stable match. �

The proof of Theorem 2 is now straightforward.

Proof of Theorem 2. The first part of the theorem follows from Remark 1. Consider
next the third part of the theorem in which there are equal numbers of males and fe-
males. By Theorem 1, there exists at least one stable match, and by the first part of the
theorem, every individual is matched. It therefore suffices to show that any match differ-
ent from the negative assortative one cannot be stable. For any nonnegative assortative
match, there must be two males, i and i′, and two females, j and j′, such that i is more
risk averse than i′ and j is more risk averse than j′ and such that i is matched with j and
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i′ is matched with j′. By Theorem 3, the submatch (i� j), (i′� j′) is not stable and so the
overall match is not stable either. Finally, the second part of the theorem follows from
the third. �

3.2 Uniqueness

When the number of males equals the number of females, Theorem 2 implies that there
is a unique stable match, namely the negative assortative one. Theorem 2 also implies
that, for a given set of matched individuals, the stable match is unique. The difficulty
however, comes from the fact that the set of matched individuals need not be unique.
To see why, consider the following simple example.

Example 1. There are three individuals, one male and two females with independent
and identically distributed (i.i.d.) income distributions. One of the females is nearly risk
neutral while the other is very risk averse. If the male’s utility function is identical to
the nearly risk neutral female’s, then, in the unique stable match, he will—for optimal
risk-sharing purposes—match with the very risk averse female. However, if the male’s
utility function is identical to the very risk averse female’s, then he will match with the
nearly risk neutral female. By continuity, there is a convex combination of the two fe-
males’ utility functions such that if the male’s utility function were equal to that convex
combination, then there would be two stable matches. Each of the two females is single
in one of these stable matches and all three individuals are indifferent between the two
stable matches. ♦

Simple as it may be, this example provides two interesting insights. First, if the stable
match is not unique, then the payoffs must be. More precisely, if there is more than
one stable outcome, then any individual who does not have the same mate in all stable
outcomes (e.g., all three individuals in our example) must be indifferent among all stable
outcomes. Second, nonuniqueness of the stable match is not “generic.” Indeed, in the
example there is exactly one convex combination of the two female utility functions that
leads to multiple stable matches.

The two theorems to follow show that these insights are generally valid. The first
theorem says that across all stable outcomes, either an individual’s mate is unique or the
individual’s payoff is unique. The second theorem says that for a “generic” set of utility
functions in our domain, there is a unique stable match. The proofs of both theorems
are given in the Appendix.

Theorem 4. Each individual has either a unique mate or a unique payoff across all sta-
ble outcomes. That is, if an individual does not have the same mate in every stable out-
come, then he/she receives the same payoff in every stable outcome.

To get some intuition for the proof, suppose there are two females and one male, and
that some individual has a different mate in two stable outcomes. Then there is more
than one stable match. By Remark 1, the male has a mate in every stable match. Con-
sequently, there are precisely two stable matches, with one of the two females matched
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with the male in each of them. Hence, no individual has the same mate in every stable
outcome. We will argue that all three individuals must be indifferent among all of the
stable outcomes.

When female j = 1�2 is unmatched, she receives her reservation utility rj . Let vj
denote her utility in some stable outcome in which she is matched to the male (i = 1).
Then

r1 ≤ v1� (1)

by individual rationality for female 1 when she is matched to the male.
But then we must also have

U11(v1) ≤U12(v2)� (2)

since otherwise the match between the male and female 2 when her payoff is v2 would
not be stable. Indeed, if (1) holds and (2) fails, the male would strictly prefer matching
with female 1 and giving her a payoff slightly above v1 ≥ r1 (which female 1 would strictly
prefer to being single) than matching with female 2 and giving her a payoff of v2. Hence,
(2) holds.

But then we must also have

v2 ≤ r2� (3)

since otherwise the match between the male and female 1 when her payoff is v1 would
not be stable. Indeed, if (2) holds and (3) fails, female 2 would strictly prefer to match
with the male and accept a payoff slightly less than v2 (which, by (2), the male would
strictly prefer to being matched with female 1 and giving her v1) than being single.
Hence, (3) holds.

Reversing the roles of females 1 and 2 in the argument above, we conclude that each
of the inequalities in (1)–(3) must be an equality. Therefore, all three individuals must
be indifferent between these two stable outcomes.

Since the match defined by any other stable outcome must be distinct from one of
the two matches considered above, we may repeat the argument and conclude that all
three individuals must be indifferent between this third stable outcome and one of the
two—and hence both, by transitivity—stable outcomes considered above. We conclude
that all three individuals are indifferent among all stable outcomes, as promised.

Our next result says that generically in the space of utility functions, there is a unique
stable match. In preparation for the formal statement, let U denote the set of vectors of
utility functions (u1� � � � � uM) such that (i) each ui : [0�∞) → R is bounded and continu-
ous and satisfies ui(0) = 0, limx↓0 u

′
i(x) = +∞, and u′

i(x) > 0, u′′
i (x) < 0 ∀x ∈ (0�∞), and

(ii) −u′′
i+1(x)/u

′
i+1(x) >−u′′

i (x)/u
′
i(x) ∀x ∈ (0�∞), ∀i <M .

Hence, U is the domain of vectors of utility functions for the males that we have
been considering throughout. Similarly, let W denote the domain of vectors of utility
functions for the females that we have been considering throughout.
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For any real-valued functions f1� � � � � fM , g1� � � � � gF on [0�∞), define the norm of
(f�g) = (f1� � � � � fM�g1� � � � � gF) by

‖(f�g)‖ = sup
i=1�����M

sup
x≥0

|fi(x)| + sup
j=1�����F

sup
x≥0

|gj(x)|�

Then (U ×W�‖ · ‖) is a metric space.17

Theorem 5. There is an open and dense subset G of the metric space (U ×W�‖ · ‖) such
that for every vector of utility functions (u1� � � � � uM�w1� � � � �wF) in G, there is a unique
stable match.

To get a feel for why this result holds, let us once again suppose that there are two
females and one male (with equal numbers of males and females there is a unique sta-
ble match—the negative assortative one). As we argued just above, for any two distinct
stable matches, (1)–(3) must hold. In particular,

U11(r1) =U12(r2)�

This says that the male must be indifferent between matching with either female when
the females must receive their reservation utilities.

Recall that we have indexed the individuals so that female 1 is less risk averse than fe-
male 2. If the male were to become even slightly more risk averse, then he should strictly
prefer to obtain additional insurance that can be more affordably purchased from the
less risk averse female 1. That is, a perturbation of 1’s utility function from u1 to û1 that
makes him more risk averse should (and does, in fact, by Lemma 1) result in

Û11(r1) > Û12(r2)�

But then (1)–(3), which we have seen are necessary for the existence of multiple stable
matches, can never hold. We conclude that if there are multiple stable matches, then
an arbitrarily small perturbation of the male’s utility function leads to a unique stable
match.

Alternatively, if we began in a situation in which U11(r1) �= U12(r2), then there would
be a unique stable match. Moreover, given our metric, the inequality, and therefore also
uniqueness, would hold for an open set of utility functions for the males and females.

Altogether, this explains why uniqueness holds on an open and dense set of utility
functions in our domain.

Remark 2. Theorems 4 and 5 are valid in any matching environment in which the
strict single-crossing property (or the positive assortative analogue) that is displayed in
Lemma 1 holds. Thus, these results extend beyond our efficient risk-sharing setting.

3.3 Who are the singles?

An ambiguity remains, however, regarding the identity of those who are left single. For
example, if there are more males than females, so that some males must be single, is it

17The distance between (u�w) and (û� ŵ) in U ×W is ‖(u− û�w− ŵ)‖.
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the most risk averse males? The least risk averse? Or could the single males be located
somewhere within the distribution of risk aversion? We now proceed to show, through a
simple example, that any of these situations is possible.

An example The example we consider has the following features:

• Both x̃i and z̃j are uniformly distributed over [1�2].
• Individual preferences are CARA.18 In particular, for a match between a male and

a female with respective Arrow–Pratt risk-aversion (RA) indices of μ and φ, an ef-
ficient sharing rule, x(·), is given by

x(ỹ) = φỹ

μ+φ
+ k

ỹ − x(ỹ) = μỹ

μ+φ
− k�

where k is an arbitrary constant.

We first compute the maximum level of expected utility that a female with RA φ can
obtain when matched with a male with RA μ. This corresponds to an efficient sharing
rule in which the constant k is such that the male is indifferent between being matched
with the female and being single. This implies that k must satisfy

e−μk = μφ2(e−μ − e−2μ)

(μ+φ)2(e−μφ/(μ+φ) − e−2μφ/(μ+φ))2 �

Letting W (φ�μ) denote the corresponding utility of the female, it follows that

W (φ�μ) = −
(

μ

(e−μ − e−2μ)

)φ/μ((
μ+φ

μφ

)2

(e−μφ/(μ+φ) − e−2μφ/(μ+φ))2
)(1+φ/μ)

�

In particular, W (7�μ) is not monotonic in μ, as illustrated in Figure 1, which plots
W (φ = 7�μ)× 106 as a function of μ.

Consider now a situation in which three males (with respective RA parameters μ1,
μ2, and μ3) are to be matched with two females with identical RA parameter φ. We shall
make use of the following lemma.

Lemma 2. In any stable match of the example, male i remains single only if

W (φ�μi) = min
i′

W (φ�μi′)�

18Technically, CARA functions do not satisfy our assumption that the derivative at zero should be infinite.
However, in our example individual incomes under stable sharing rules are always larger than 0�5 for the
specific parameters we consider. Hence one can replace the CARA form −exp(−σx) by the function

u(x) =
{−e−σ/2(1 + σ − σ

√
2x) if x ≤ 0�5

−exp(−σx) if x > 0�5,

without changing the conclusions. The redefined function satisfies our conditions.
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Figure 1. Section of W (φ�μ)× 106 for φ = 7.

Proof. Fix any stable match. By Remark 1, precisely one male, say male 1, is single.
Assume, by way of contradiction, that W (φ�μi) < W (φ�μ1) for some matched male i.
Male i’s mate cannot receive more than W (φ�μi). Hence, a match with 1 in which i’s
mate receives 1

2(W (φ�μi)+W (φ�μ1)) would be strictly preferred by her and by male 1.
Hence, the match is not stable. �

In particular, when φ = 7, consider any three values of μ on the horizontal axis of
Figure 1. The one giving the smallest value to the function determines the male who
remains single.19 Clearly then, all negative assortative matches are possible. Referring
to Figure 1, we see that for μ1 = 1, μ2 = 2, and μ3 = 3, the most risk averse male 3 is
single; for μ1 = 4, μ2 = 5, μ3 = 6, the least risk averse male 1 is single; finally, for μ1 = 1,
μ2 = 4, and μ3 = 7, the intermediate male 2 is single.

The intuition is as follows. When selecting a mate, a female must take into account
two conflicting considerations. On the one hand, she may prefer a less risk averse part-
ner because he is willing to accept a larger share of the income risk. On the other hand,
she may prefer a more risk averse partner because he is willing to accept a smaller
amount of joint income as long as it is not too uncertain. Depending on the context,
one aspect may dominate (in which case the partners at the other extreme are single) or
they may compensate each other (then intermediate potential partners are less attrac-
tive than the two extremes). The examples above bear this out.20

4. Extension: One-sided markets

We have so far assumed the matching market is two-sided, where individuals on one
side can match only with individuals on the other side. However, it may be even more
natural to suppose that any individual can match with any other, i.e., that the market is
one-sided.

Let us then consider a one-sided market, but maintain our assumption that risk-
sharing groups can be of size at most 2. Hence, we are in fact now considering what is
known as the roommate problem. The typical roommate problem cannot be guaranteed

19To apply Theorems 1 and 2, simply perturb one of the female’s φ slightly.
20A natural conjecture stemming from this intuition, but which we have been unable to prove, is that the

set of unmatched individuals is an interval.
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to possess a stable match. However, we can obtain an existence result here on the basis
of our previous analysis.

So, consider our model above, but without the females, and allow any two males to
match and share income. Assume further that the incomes of all of the males are jointly
independent.21 We have the following result.

Theorem 6. Consider a one-sided one-to-one matching risk-sharing model. If all in-
comes are i.i.d., if there are an even number, n, of individuals, and if all individuals can
be ranked according to their Arrow–Pratt measure of risk aversion, then a unique stable
match exists. Moreover, the stable match is negative assortative in the sense that the kth
most risk averse individual is matched with kth least risk averse individual for every k.

Proof. Create a fictitious two-sided market by adding, for each male k, a female k who
is identical to male k in terms of preferences and income distribution. From our pre-
vious analysis we know that a stable match exists in this two-sided market and that it
is negative assortative. Hence, male i is matched with female j such that i + j = n + 1.
But then, because n is even, this same matching pattern together with the sharing rules
is feasible for the males in the one-sided market. Moreover, it is also stable in the one-
sided market since any blocking opportunity, say between male i and male j in the one-
sided market, would imply the existence of an analogous blocking opportunity in the
fictitious two-sided market between male i and female j. �

5. Concluding remarks

The theoretical nature of our investigation has led us to consider a very simple model.
Nonetheless, even our simple framework has interesting consequences. In particular,
risk sharing leads to negative assortative matching. Relatively risk averse individuals
are eager to match with less risk averse partners, who can provide the coverage they
need at low cost; conversely, relatively risk neutral individuals exploit their compara-
tive advantage by matching with the risk averse, who are willing to give up a large risk
premium in exchange for coverage. To the extent that risk sharing may play a role in
marital decisions, one would expect intrahousehold differences in risk aversion to be
large—a conclusion that fits empirical evidence pretty well.22

Our findings appear to be especially relevant to the empirical literature on risk shar-
ing, as discussed in the Introduction, although a complete analysis of the impact of our
results on this literature, while surely important, is beyond the scope of the present note.
For instance, our results provide support for the “individualistic” approach of Mazzocco
(2008), who shows that Euler equations can be estimated at the individual level, even
for couples, using labor supply behavior.23 At t he very least, our results suggest that

21Note that we continue to assume that all males have the same income distribution.
22For instance, Mazzocco (2004a), using Health and Retirement Study (HRS) data, shows that even when

individuals are gathered into four wide (and potentially heterogenous) classes of risk aversion, half of mar-
ried men are found to belong to a different category than their spouse. A different investigation, using the
Consumer Expenditure Survey, leads to the same conclusion (Mazzocco 2004b).

23Mazzocco finds that traditional Euler equations, estimated at the household level, are rejected for cou-
ples but not for singles. Moreover, his “individualistic” generalization, which independently analyzes indi-
viduals within the couple, is not rejected.
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risk-aversion heterogeneity, being endogenous, should be taken seriously, which may
lead to a more extensive use of long panels.24

In practice of course, matching is not exclusively based on risk aversion; other char-
acteristics also play a key role. An interesting extension would permit the individuals
to choose their income distributions prior to matching. There could then be a trade-
off between choosing a distribution that fits one’s risk preferences and making oneself
attractive to others for the purposes of risk sharing. This direction is investigated by
Wang (2013) in a specific model in which preferences are CRRA and shocks are normally
distributed. In that case, clean conditions for assortative matching can be derived. Of
particular interest are the welfare implications of her work; for instance, a policy that
reduces aggregate risk may, through its impact on matching, worsen the situation of
some individuals and increase inequality—a point already stressed by Schulhofer-Wohl
(2008) in a different context. All in all, this body of work strongly suggests that when it
comes to risk sharing, issues related to endogenous group formation should be taken
very seriously.

Appendix

The following well known result will be helpful in proving Lemma 1.

Theorem A.1. If a differentiable real-valued function defined on an interval is nonneg-
ative at x0 and its derivative is positive whenever the function vanishes, the function is
positive at all x > x0 and can be zero at no more than one point.25

Remark. The interval, I say, need not be open and x0 need not be an interior point of I
when the derivative at x ∈ I is defined by f ′(x) = limx′→x�x′∈I(f (x′)− f (x))/(x′ − x).

Proof of Lemma 1. Fix v1 and v2 as in the statement of the lemma. If v1 = 0, then
we are done because U21(v1) = Eu2(ỹ) > U22(v2), where the second inequality follows
because v2 > 0 requires the male to strictly share the joint income with the female with
positive probability. Hence, we may assume that both v1 and v2 are strictly positive. We
may similarly assume that v1 < v̄1 and v2 < v̄2.

Let xij : Y → [0�∞) denote the sharing rule employed by male i and female j that
maximizes male i’s utility subject to female j receiving at least utility vj . By definition,
male i then receives utility Uij(vj) =Eui(xij(ỹ)).

We first extend xij(·) to all of [0�∞). As shown in Wilson (1968), there are Pareto
weights, λi�λj > 0 (strict positivity follows because 0 < vj < v̄j), such that xij(·) solves

max
x:Y→[0�∞)

λiEui(x(ỹ))+ λjEwj(ỹ − x(ỹ))

24See Chiappori et al. (2014b).
25A proof of the first part is as follows. If N = {x > x0 : f (x) ≤ 0} is nonempty, it contains a smallest

member, x̄ > x0; otherwise f (x0) = 0 and f ′(x0) ≤ 0, a contradiction. Consequently, f (x̄) = 0 and f assumes
a minimum at x̄ on the interval [x0� x̄], implying that f ′(x̄) ≤ 0, a contradiction. Hence, N is empty. The
second part follows immediately from the first.
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subject to 0 ≤ x(y) ≤ y for all y ∈ Y . Hence, xij(0) = 0 and because u′
i(0) = w′

j(0) = +∞,
xij(y) is the unique solution to

λiu
′
i(x) = λjw

′
j(y − x) (A.1)

for almost every positive y ∈ Y . Clearly, we can use (A.1) to uniquely extend xij(·) to all
of [0�∞). Moreover, x′

ij(y) exists for all y > 0 by the implicit function theorem. Con-
sider now the difference x11(y) − x12(y) as a function of y ∈ [0�∞). A first claim is the
following:

Claim 1. There exists ȳ ≥ 0, possibly infinite, such that x12(y)−x11(y) is negative for all
y in (0� ȳ) and is positive for all y in (ȳ�∞).

To prove Claim 1, suppose that x12(ȳ) = x11(ȳ) = x̄ for some ȳ > 0. Because v2 > 0
and u′

1(0) =w′
2(0) = +∞, we know that 0 < x̄ < ȳ. Consequently, (A.1) implies that

x′
1j(ȳ)= φj(ȳ − x̄)

μi(x̄)+φj(ȳ − x̄)
∈ (0�1) for j = 1�2�

where φj(z) = −w′′
j (z)/w

′
j(z) and μi(x) = −u′′

i (x)/u
′
i(x) are the female and male Arrow–

Pratt measures of risk aversion. Since φ2(ȳ − x̄) > φ1(ȳ − x̄) by assumption, we must
have x′

12(ȳ) > x′
11(ȳ). Hence, whenever x12(y)− x11(y) vanishes on (0�∞), its derivative

is positive. Claim 1 now follows from Theorem A.1.
By Claim 1, the function �(y) = u1(x11(y)) − u1(x12(y)) is positive for 0 < y < ȳ and

negative for y > ȳ. Let [0� ū1) denote the range of u1(·). Then defining f : [0� ū1) → R

so that f (u1(x)) = u2(x) for all x > 0, the fact that male 2 is strictly more risk averse
than male 1 implies that f (·) is strictly increasing and strictly concave. Because x11(y) is
strictly increasing in y and u1(·) is strictly increasing, the function g(y) = f ′[u1(x11(y))]
is positive and strictly decreasing in y. Hence, if ỹ has c.d.f. H(·),

E[g(ỹ)�(ỹ)] =
∫ ȳ

0
g(y)�(y)dH(y)+

∫ ∞

ȳ
g(y)�(y)dH(y)

>

∫ ȳ

0
g(ȳ)�(y)dH(y)+

∫ ∞

ȳ
g(ȳ)�(y)dH(y)

= g(ȳ)E
[
u1(x11(ỹ))− u1(x12(ỹ))

]
= g(ȳ)[U11(v1)−U12(v2)]
≥ 0�

where the final inequality follows by hypothesis. Hence, substituting the definition of
�(·) into the left-hand side above yields

E
[
g(ỹ)

(
u1(x11(ỹ))− u1(x12(ỹ))

)]
> 0� (A.2)

The concavity of f (·) implies that

f [u1(x11(y))] − f [u1(x12(y))] ≥ f ′[u1(x11(y))]
(
u1(x11(y))− u1(x12(y))

)
� (A.3)
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Since u2 = f ◦ u1, we may combine (A.2) and (A.3) to conclude that

E
[
u2(x11(ỹ))− u2(x12(ỹ))

]
> 0� (A.4)

For j = 1 and 2, define the value functions for 0 ≤ λ ≤ 1,

πj(λ) = max
x:Y→[0�∞)

E
[
(1 − λ)u1(x(ỹ))+ λu2(x(ỹ))

]
s.t. E

[
wj(ỹ − x(ỹ))

] ≥ vj�

and subject to 0 ≤ x(y) ≤ y for almost every y ∈ Y . A key property of the these value
functions is the following claim.

Claim 2. If λ̄ ∈ [0�1] is such that π1(λ̄) = π2(λ̄), then π ′
1(λ̄) > π ′

2(λ̄).

To prove Claim 2, assume first that λ̄ = 0 and π1(0) = π2(0). Then πj(0) =
E[u1(x1j(ỹ))] and, by the envelope theorem (see Milgrom and Segal 2002, Theorem 3),
π ′
j(0) =E[u2(x1j(ỹ))] −E[u1(x1j(ỹ))].26 Consequently,

π ′
1(0)−π ′

2(0) = (
E[u2(x11(ỹ))] −E[u1(x11(ỹ))]

) − (
E[u2(x12(ỹ))] −E[u1(x12(ỹ))]

)
= E[u2(x11(ỹ))] −E[u2(x12(ỹ))]
> 0�

where the second equality follows because π1(0) = π2(0) and the inequality follows from
(A.4).

Hence, if π1(0) = π2(0), then π ′
1(0) > π ′

2(0). Of course, this conclusion holds for all
utility functions satisfying our hypotheses. Consequently, if instead λ̄ > 0, and we define
û1 = (1 − λ̄)u1 + λ̄u2 and we define for j = 1�2 the value function π̂j(λ) as before, but
replacing the utility function u1 with û1, then, because u2 is a concavification of û1 (e.g.,
consider the Arrow–Pratt measures), we may similarly conclude that if π̂1(0) = π̂2(0),
then π̂ ′

1(0) > π̂ ′
2(0). But this is equivalent to the statement that if π1(λ̄) = π2(λ̄), then

π ′
1(λ̄) > π ′

2(λ̄). This establishes Claim 2.
In view of Theorem A.1, a direct consequence of Claim 2 is that π1(0) ≥ π2(0) implies

π1(1) > π2(1). Since πj(0) = U1j(vj) and πj(1) = U2j(vj), this completes the proof of
Lemma 1. �

Proof of Theorem 4. If F = M , then all individuals are matched negative assortatively
by Theorem 2 and so there is a unique stable match, which implies that every individual
has the same mate across all stable outcomes. So assume without loss of generality that
M <F , and suppose that there are two distinct stable matches, C and Ĉ, say.

By Remark 1, no male is single in either match. We claim that at least one female, j1
say, must be single in one match, C say, and have a mate in the other match, Ĉ say. Oth-
erwise, the set of matched individuals is the same in both matches. But then, because

26Milgrom and Segal’s (2002) Theorem 3 applies because, under our assumptions, the solution to the op-
timization problem defining πj(λ) is unique and, as λ → λ0, the corresponding sequence of such solutions
(being a sequence of nondecreasing functions) has a pointwise convergent subsequence whose limit is a
solution to the problem for λ0. See footnote 16.
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Match
C︷ ︸︸ ︷

Match
Ĉ︷ ︸︸ ︷

∅ j1 i1

i1 j2 i2

i2 j3 i3
���

iN jN ∅

Figure 2.

each match, being stable, must be negative assortative by Theorem 2, both matches
would be identical, a contradiction.

Hence, for some N ≥ 2 there must be N distinct females j1� j2� � � � � jN and N − 1 dis-
tinct males i1� i2� � � � � iN−1 such that (i) j1 is single in C, (ii) for n odd, jn is matched to in
in Ĉ, and in is matched to jn+1 in C, and (iii) jN is single in Ĉ. (The sequence can always
be chosen to end with a female who is unmatched in Ĉ by simply continuing until such
a female is reached, which finiteness guarantees will eventually occur. This is why N

is at least 2.) These males and females need not exhaust the sets of males and females
or even the sets of males and females who switch mates between the two matches. See
Figure 2.

For any female j, let vj denote her utility in some stable outcome with match C and
let v̂j denote her utility in some stable outcome with match Ĉ. Then by stability, if male
i is matched to female j in match C, male i’s utility must be Uij(vj) and similarly for
match Ĉ. In addition, stability implies that the following inequalities must hold, starting
with female j1:

(I.1) rj1 ≤ v̂j1 , else j1 blocks Ĉ

(I.2) Ui1j1(v̂j1) ≤Ui1j2(vj2), else, given (I.1), (i1� j1) blocks C

(I.3) vj2 ≤ v̂j2, else, given (I.2), (i1� j2) blocks Ĉ

(I.4) Ui2j2(v̂j2) ≤Ui2j3(vj3), else, given (I.3), (i2� j2) blocks C
���

(I.2N − 2) UiN−1jN−1(v̂jN−1) ≤UiN−1jN (vjN ),
else, given (I.2N − 3), (iN−1� jN−1) blocks C

(I.2N − 1) vjN ≤ rjN , else, given (I.2N − 2), (iN−1� jN) blocks Ĉ.

For example, (I.1) must hold because j1 can obtain utility rj1 on her own. For inequal-
ity (I.2), suppose that it fails. Then Ui1j1(v̂j1) > Ui1j2(vj2) so that male i1 strictly prefers
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matching with j1 and giving her utility v̂j1 (which is feasible for them since this is
what she receives when matched with i1 in Ĉ) than the outcome from match C. So
if male i1 matches with j1 and gives her just slightly more income than the sharing
rule from match Ĉ, then i1’s utility would still be strictly above Ui1j2(vj2) and j1’s util-
ity, given inequality (I.1), would be strictly above rj1 . Hence, (i1� j1) would block C,
contradicting the stability of C and proving (I.2). The remaining inequalities follow
analogously.

If we apply the same logic but start instead with female jN and work backward to-
ward female j1, all of the inequalities are reversed. We conclude that all of the inequal-
ities (I.1)–(I.2N − 1) are in fact equalities. Hence, all of these particular individuals who
switch mates are indifferent between the two matches.

What about the payoffs of other individuals who switch mates between the two
matches C and Ĉ? Since in the two matches, the mates of females j1� � � � � jN are either
themselves (if single) or one of the males i1� � � � � iN−1 and vice versa, we may remove
all of these males and females and repeat the argument above for the remaining indi-
viduals if any of those remaining individuals switch mates. Hence, any individual who
switches mates between C and Ĉ is indifferent between any two stable outcomes with
those matches.

Since any stable match C ′ must be distinct from either C or Ĉ, so let us say C, we
may repeat the above argument using C and C ′, and conclude that any individual who
switches mates between C and C ′ must be indifferent between any two stable outcomes
with those two matches and, hence, by transitivity, indifferent among all stable out-
comes with matches that are either C, Ĉ, or C ′. We conclude that if an individual does
not have the same mate in every stable match, then that individual has the same payoff
in every stable outcome. �

Proof of Theorem 5.
Preliminaries. In Section 2, we defined Uij(vj) to be male i’s maximum expected

utility when he is matched with female j, where the maximum is taken over all possible
sharing rules that ensure female j an expected utility of at least vj ∈ [0� v̄j]. It will be
helpful to make explicit the dependence of Uij on the utility functions ui and wj of male
i and female j, so we now write Uij(vj�ui�wj).

It is straightforward to establish that for the given metric on U × W , each value
function Uij(vj�ui�wj) is continuous, i.e., if vkj →k vj ∈ [0�∞) and (uk�wk) →k (u�w) ∈
U ×W , then Uij(v

k
j �u

k
i �w

k
j )→k Uij(vj�ui�wj).27

Next, we formalize the set of solutions to the equations that we encountered in
the proof of Theorem 4. For any (u�w) ∈ U ×W , any N ≥ 2, any N − 1 distinct males
i1� � � � � iN−1, and any N distinct females j1� � � � � jN , let V (i1� � � � � iN−1� j1� � � � � jN�u�w) de-
note the set of vectors (v1� � � � � vF � v̂1� � � � � v̂F ) ∈ (×F

j=1[0� v̄j])2 that solve the following sys-
tem of 2N − 1 equations, where v̄j = E[wj(ỹ)] is the maximum utility that female j can

27The proof follows the logic of Berge’s theorem of the maximium. See footnote 16.
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obtain in any match and rj = E[wj(z̃j)] is her reservation utility when her utility function
is wj :

(E.1) rj1 = v̂j1

(E.2) Ui1j1(v̂j1�ui1�wj1) =Ui1j2(vj2�ui1�wj2)

(E.3) vj2 = v̂j2

(E.4) Ui2j2(v̂j2�ui2�wj2) =Ui2j3(vj3�ui2�wj3)

(E.5) vj3 = v̂j3
���

(E.2N − 2) UiN−1jN−1(v̂jN−1�uiN−1�wjN−1)= UiN−1jN (vjN �uiN−1�wjN )

(E.2N − 1) vjN = rjN .

Observe that some of the variables vj and v̂j will not appear in any equation if j is
not in {j1� � � � � jN }.

Call a vector, σ , of male and female indices feasible if for some N ≥ 2, σ =
(i1� � � � � iN−1� j1� � � � � jN), where i1� � � � � iN−1 ∈ {1� � � � �M} are distinct indices for a subset
of males and j1� � � � � jN ∈ {1� � � � �F} are distinct indices for a subset of females. Let 	 de-
note the finite set of all feasible σ . Hence, for any (u�w) ∈ U ×W , each σ ∈ 	 determines
a set of equations of the form (E.1)–(E.2N − 1) with solution set V (σ�u�w).28

With these preliminaries out of the way, suppose first that F = M . Then all indi-
viduals are matched negative assortatively by Theorem 2 and so there is a unique stable
match for any (u�w) ∈ U ×W . Thus letting G= U ×W suffices and the proof is complete.

Of the two remaining possibilities, F >M and M >F , we need consider only one of
them since their proofs are analogous.

So suppose that F >M and that the vector of utility functions is (u�w) ∈ U × W . By
the proof of Theorem 4, there can be more than one stable match only if some system
of equations of the form (E.1)–(E.2N − 1) has a solution, indeed a solution in which all
female utility values vj and v̂j are nonnegative (since utility is always nonnegative) and
no greater than v̄j = E[wj(ỹ)], the maximum utility that female j can receive with utility
function wj . Consequently, there is a unique stable match if V (σ�u�w) is empty for every
σ ∈ 	.

Let

G = {(u�w) ∈ U ×W : V (σ�u�w) = ∅ ∀σ ∈ 	}�
By the conclusion of the previous paragraph, it suffices to show that G is open and dense.
We break the remainder of the proof into two parts.

28Since the Uij functions are strictly decreasing in their first argument, it is not difficult to see that the
system of equations (E.1)–(E.2N − 1) has at most one solution. Hence, V (σ�u�w) is either a singleton or the
empty set.



Theoretical Economics 11 (2016) Matching to share risk 247

Part I : G is open. Since G = ⋂
σ∈	{(u�w) ∈ U ×W : V (σ�u�w) =∅} and because 	 is

finite, it suffices to show that for any σ ∈ 	, the set

Gσ = {(u�w) ∈ U ×W : V (σ�u�w) =∅}
is open.

Fix any σ ∈ 	. To show that Gσ is open, we will show that its complement Gc
σ =

(U×W)\Gσ is closed. So suppose that (uk�wk) is a sequence of points in Gc
σ converging

to (u�w) ∈ U ×W . We must show that (u�w) ∈Gc
σ .

Consider any k and suppose that the vector of utility functions is (uk�wk). Then
male i’s value function when he is matched with female j is Uij(·�uki �wk

j ).

For any female j, let rkj = E[wk
j (z̃j)] denote her reservation utility and let v̄kj =

E[wk
j (ỹ)] denote the maximum utility that she can obtain in any match. Because

(ukwk) → (u�w), we have rkj → rj = E[wj(z̃)] and v̄kj → v̄j =E[wj(ỹ)] for each female j.

Since (uk�wk) ∈ Gc
σ , the solution set V (σ�uk�wk) is nonempty and so we may sup-

pose that (vk1 � � � � � v
k
F� v̂

k
1 � � � � � v̂

k
F) is a member. Since each vkj and v̂kj are in [0� v̄kj ] and

each v̄kj converges to v̄j , we may assume without loss of generality, by taking a subse-

quence if necessary, that each vkj converges to some vj ∈ [0� v̄j] and that each v̂kj con-
verges to some v̂j ∈ [0� v̄j].

Since (uki �w
k
j ) → (ui�wj) for every male i and female j, the continuity of Uij(·� ·� ·)

implies that Uij(v
k
j �u

k
i �w

k
j ) converges to Uij(vj�ui�wj) and Uij(v̂

k
j �u

k
i �w

k
j ) converges to

Uij(v̂j� ui�wj) for every male i and every female j. Therefore, because the continuity
of each Uij clearly implies that V (σ�u�w) is upper hemicontinuous in (u�w), we may
conclude that (v1� � � � � vF� v̂1� � � � � v̂F ) ∈ V (σ�u�w), proving that (u�w) ∈ Gc

σ , as desired.
Hence, Gc

σ is closed and so Gσ is open. But then, as already observed, G too is open. It
remains only to establish that G is a dense subset of U ×W .

Part II : G is dense. For any u ∈ U , for any λ ∈ (0�1), and for any male i, let uλi =
(1 − λ)ui + λui+1, where uM+1(x) = √

uM(x) ∀x ≥ 0. For any i < M , recall that we have
indexed the males so that male i+ 1 with utility function ui+1 is strictly more risk averse
than male i with utility function ui. If i = M , then i is the most risk averse male and
uλi = (1 − λ)uM + λ

√
uM . So for every i, uλi is strictly more risk averse than ui (simply

compare the Arrow–Pratt measures) and ((uλi �u−i)�w) ∈ U ×W since the strict ordering
of the males via risk aversion does not change when ui is replaced with uλi for λ ∈ (0�1).

We first show that for every (u�w) ∈ U ×W and for every σ ∈ 	, there is a male i such
that

V (σ� (uλi �u−i)�w) = ∅ for all λ ∈ (0�1) sufficiently small. (A.5)

Consider any (u�w) ∈ U ×W and any σ = (i1� � � � � iN−1� j1� � � � � jN) ∈ 	. There are two
cases.

Case I : V (σ�u�w) =∅. If V (σ�u�w) =∅, then (A.5) follows from our result from Part I
that Gσ is open and because, for any male i, ((uλi �u−i)�w) → (u�w) as λ → 0.

Case II : V (σ�u�w) �= ∅. If V (σ�u�w) �= ∅, then it contains some (v1� � � � � vF �

v̂1� � � � � v̂F ), say. Hence, (v1� � � � � vF � v̂1� � � � � v̂F ) solves (E.1)–(E.2N − 1).
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Since Uij(·�ui�wj) is strictly decreasing, starting from (E.2N − 1) and working back-
ward until (E.3), we see that all of the values vjN � v̂jN−1� � � � � v̂j2� vj2 are uniquely deter-
mined. In particular, the value of vj2 is uniquely determined independently of (E.2) and
so independently of the utility function ui1 of male i1 that appears in (E.2). But since
both (E.1) and (E.2) hold, we must have

Ui1j1(rj1�ui1�wj1) =Ui1j2(vj2�ui1�wj2)� (A.6)

Also, 0 < rj1 < v̄j1 = E[wj1(ỹ)] (see the paragraph following Remark 1) and 0 < vj2 <

v̄j2 = E[wj2(ỹ)].29 Therefore, since uλi1 is more risk averse than ui, Lemma 1 and (A.6)
imply that for all λ ∈ (0�1),

Ui1j1(rj1�u
λ
i1
�wj1) �=Ui1j2(vj2�ui1�wj2)� (A.7)

Since perturbing ui1 does not affect any of (E.3)–(E.2N − 1), any solution to the per-
turbed set of equations has the same value of vj2 . But then (A.7) implies that for every
λ ∈ (0�1), the perturbed system has no solution. That is,

V (σ� (uλi1�u−i1)�w) = ∅ for all λ ∈ (0�1)�

This completes the proof of (A.5) and we are now ready to show that G is dense.
Let Gc = (U × W) \ G denote the complement of G and let ε > 0 be given. Suppose

(u�w) ∈Gc . We must show that some element of G is within distance ε of (u�w).
Since 	 is a finite set, we may write it as 	 = {σ1� � � � �σK}. Let L be an upper bound

for all the male utility functions u1� � � � � uM and also for
√
uM , and choose λ̄ ∈ (0�1) such

that λ̄ < ε/(2LK). We will use (A.5) repeatedly to successively perturb u for each element
of 	.

Define the mapping T : U × (0�1)× {1� � � � �M} → U by

T(u�λ� i) = (uλi �u−i)�

Starting with σ1, by (A.5) there is a male ι(1) and λ1 ∈ (0� λ̄) such that

V (σ1�u1�w) = ∅�

where u1 = T(u�λ1� ι(1)). We next define u2� � � � � uK inductively.
Given k ∈ {2� � � � �K} and uk−1 ∈ U satisfying

V (σn�uk−1�w) = ∅ ∀n= 1� � � � �k− 1� (A.8)

define uk ∈ U as follows.
By (A.5), there is a male ι(k) such that

V (σk�T(uk−1�λ� ι(k))�w) =∅ ∀λ ∈ (0�1) sufficiently small. (A.9)

29To see the latter, observe that because each Uij(·) is strictly decreasing�Ui1j2(v̄j2) = 0 = Ui1j1(v̄j1) <

Ui1j1(rj1) < Ui1j1(0) = Eui1(ỹ) = Ui1j2(0)� So (A.6) implies Ui1j2(v̄j2) < Ui1j2(vj2) < Ui1j2(0)� which gives 0 <

vj2 < v̄j2 .
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By Part I above, Gσn is open for every n = 1� � � � �k − 1. Consequently, because
T(uk−1�λ� ι(k))→ uk−1 as λ → 0, (A.8) implies that

V (σn�T(uk−1�λ� ι(k))�w) =∅ ∀n= 1� � � � �k− 1�∀λ ∈ (0�1) sufficiently small� (A.10)

Together, (A.9) and (A.10), imply that there is λk ∈ (0� λ̄) such that,

V (σn�T(uk−1�λk� ι(k))�w) =∅ ∀n= 1� � � � �k�

Define uk = T(uk−1�λk� ι(k)). We therefore have

V (σn�uk�w) = ∅ ∀n= 1� � � � �k� (A.11)

which completes the inductive definition.
Setting k =K in (A.11), we see that uK ∈ U satisfies

V (σ�uK�w) =∅ ∀σ ∈ 	�

which implies that (uK�w) ∈ G. It remains only to show that (uK�w) is within ε of (u�w).
Let u0 = u. For each k ∈ {1� � � � �K}, each utility function that is a coordinate of uk is

bounded by L because each such coordinate function is a convex combination of the
coordinates of u, each of which (as well as uM+1) is bounded by L. Also, for any male i,
either uki = uk−1

i or uki = (1 − λ)uk−1
i + λuk−1

i+1 for some λ ∈ (0� λ̄). Consequently,

sup
i�x≥0

|uki (x)− uk−1
i (x)| ≤ 2λ̄L < ε/K�

where the strict inequality follows from the definition of λ̄. Hence,

sup
i�x≥0

|uKi (x)− ui(x)| ≤
K∑

k=1

sup
i�x≥0

|uki (x)− uk−1
i (x)| < ε�

which implies that

‖(uK�w)− (u�w)‖ = sup
i�x≥0

|uKi (x)− ui(x)| < ε�

which completes the proof. �
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