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Comparing generalized median voter schemes according to
their manipulability
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We propose a simple criterion to compare generalized median voter schemes ac-
cording to their manipulability. We identify three necessary and sufficient con-
ditions for the comparability of two generalized median voter schemes in terms
of their vulnerability to manipulation. The three conditions are stated using the
two associated families of monotonic fixed ballots and depend very much on the
power each agent has to unilaterally change the outcomes of the two general-
ized median voter schemes. We perform a specific analysis of all median voter
schemes: the anonymous subfamily of generalized median voter schemes.
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1. Introduction

Consider a set of agents who have to collectively choose an alternative. Each agent has
a preference relation on the set of alternatives. We would like the chosen alternative to
depend on the preference profile (a list of preference relations, one for each agent), but
preference relations are private information and, to be used to choose the alternative,
they have to be revealed by the agents. A social choice function collects individual pref-
erence relations and selects an alternative for each declared preference profile. Hence,
a social choice function induces a game form that generates, at every preference pro-
file, a strategic problem to each agent. An agent manipulates a social choice function
if there exist a preference profile and a different preference relation for the agent such
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that, if submitted, the social choice function selects a strictly better alternative accord-
ing to the preference relation of the agent of the original preference profile. A social
choice function is strategy-proof if no agent can manipulate it. That is, the game form
induced by a strategy-proof social choice function has the property that, at every pref-
erence profile, declaring the true preference relation is a weakly dominant strategy for
all agents. Hence, each agent has an optimal strategy (to tell the truth) that is indepen-
dent of the agent’s beliefs about the other agents’ declared preference relations. This
absence of any informational hypothesis about the others’ preference relations is one
of the main reasons why strategy-proofness is an extremely desirable property of social
choice functions.

However, the Gibbard–Satterthwaite theorem establishes that nontrivial strategy-
proof social choice functions do not exist on universal domains. Strategy-proofness is
a strong requirement since a social choice function is no longer strategy-proof as soon
as there exist a preference profile and an agent that can manipulate the social choice
function by submitting another preference relation that if submitted, causes the social
choice function to select another alternative that is strictly preferred by the agent. Nev-
ertheless, there are many social choice problems where the structure of the set of alter-
natives restricts the set of conceivable preference relations, and hence the set of strate-
gies available to agents, for instance, when the set of alternatives has a natural order in
which all agents agree. The localization of a public facility, the temperature of a room,
the platform of political parties in the left–right spectrum, or the income tax rate are all
examples of such structures that impose natural restrictions on agents’ preference rela-
tions. Black (1948) was the first to argue that in those cases agents’ preference relations
have to be single-peaked (relative to the unanimous order on the set of alternatives).
A preference relation is single-peaked if there exists a top alternative that is strictly pre-
ferred to all other alternatives and at each of the two sides of the top alternative the
preference relation is monotonic, increasing in the left, and decreasing in the right.

A social choice function operating only on a restricted domain of preference profiles
may become strategy-proof. The elimination of preference profiles restricts the nor-
mal form game induced by the social choice function, and strategies (i.e., preference
relations) that were not dominant may become dominant. Consider any social choice
problem where the set of alternatives can be identified with the interval [a�b] of real
numbers and where single-peaked preference relations are defined on [a�b]. For this
setup Moulin (1980) characterizes all strategy-proof and tops-only social choice func-
tions on the domain of single-peaked preference relations as the class of all generalized
median voter schemes.1 In addition, Moulin (1980) also characterizes the subclass of
median voter schemes as the set of all strategy-proof, tops-only, and anonymous social
choice functions on the domain of single-peaked preference relations, and this is in-
deed a large class of social choice functions. A median voter scheme can be identified
with a vector x = (x1� � � � � xn+1) of n + 1 numbers in [a�b], where n is the cardinality of
the set of agents N and x1 ≤ · · · ≤ xn+1. Then, for each preference profile, the median
voter scheme identified with x selects the alternative that is the median among the n

1A social choice function is tops-only if it only depends on the profile of top alternatives.
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top alternatives of the agents and the n + 1 fixed numbers x1� � � � � xn+1. Since 2n + 1 is
an odd number, this median always exists and belongs to [a�b]. Observe that median
voter schemes are tops-only and anonymous by definition. They are strategy-proof on
the domain of single-peaked preference relations because, given a preference profile,
each agent can only change the chosen alternative by moving his declared top away
from his true top; thus, no agent can manipulate a median voter scheme at any pref-
erence profile. A median voter scheme distributes the power to influence the outcome
among agents according to its associated vector x in an anonymous way. Generalized
median voter schemes constitute non-anonymous extensions of median voter schemes.
A generalized median voter scheme can be identified with a set of fixed ballots {pS}S⊆N

on [a�b], one for each subset of agents S. Then, for each preference profile, the gener-
alized median voter scheme identified with {pS}S⊆N selects the alternative α that is the
smallest one with the following two properties: (i) there is a subset of agents S whose
top alternatives are smaller than or equal to α and (ii) the fixed ballot pS associated to S

is also smaller than or equal to α.
Generalized median voter schemes are strategy-proof on the domain of single-

peaked preference profiles, but are manipulable on the universal domain. There are
several papers that have identified, in our or similar settings, maximal domains under
which social choice functions are strategy-proof, but as soon as the domain is enlarged
with a preference outside the domain, the social choice function becomes manipulable.
Barberà et al. (1998), Barberà et al. (1991), Berga and Serizawa (2000), Bochet and Stor-
cken (2009), Ching and Serizawa (1998), Hatsumi et al. (2014), Kalai and Müller (1977),
and Serizawa (1995) are some examples of these papers. Our contribution in this paper
builds on this literature and has the objective of giving criterion to compare generalized
median voter schemes according to their manipulability. We want to emphasize the fact
that the manipulability of a social choice function does not indicate the degree of its lack
of strategy-proofness. There may be only one instance at which the social choice func-
tion is manipulable or there may be many such instances. The mechanism design litera-
ture that has focused on strategy-proofness has not distinguished between these two sit-
uations; it has declared that both social choice functions are not strategy-proof, period!2

Our criterion to compare two social choice functions takes the point of view of in-
dividual agents. We say that an agent is able to manipulate a social choice function at
a preference relation (the true one) if there exist preference relations, one for each of
the other agents and another for the agent (the strategic one) such that if submitted, the
agent obtains a strictly better alternative according to the true preference relation. Con-
sider two generalized median voter schemes, f and g, that can operate on the universal
domain of preference profiles. Assume that for each agent the set of preference rela-
tions under which the agent is able to manipulate f is contained in the set of preference
relations under which the agent is able to manipulate g. Then, from the point of view
of all agents, g is more manipulable than f . Hence, we think that f is unambiguously
a better generalized median voter scheme than g according to the strategic incentives

2Kelly (1977), Campbell and Kelly (2009), and Pathak and Sönmez (2013) are some exceptions. We will
refer to this more recent paper later on.
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induced to the agents. Often, it may be reasonable to think that agents’ preferences are
single-peaked, but if the designer foresees that agents also may have non-single-peaked
preferences, then f may be a better choice than g if strategic incentives are relevant and
important to the designer.

Before presenting our general result in Theorem 2, we focus on median voter
schemes, the subclass of anonymous generalized median voter schemes. In Theorem 1
we provide two necessary and sufficient conditions for the comparability of two median
voter schemes in terms of their manipulability. Let f and g be two (nonconstant) me-
dian voter schemes and let x = (x1� � � � � xn+1) and y = (y1� � � � � yn+1) be their associated
vectors of fixed ballots, x to f and y to g, where x1 ≤ · · · ≤ xn+1 and y1 ≤ · · · ≤ yn+1. Then
g is at least as manipulable as f if and only if [x1�xn+1] ⊂ [y1� yn+1] and [x2�xn] ⊂ [y2� yn].
Using this characterization we are able to establish simple comparability tests for the
subclass of unanimous and efficient median voter schemes. Using the partial order “to
be equally manipulable as” obtained in Theorem 1, we show that the set of equivalence
classes of median voter schemes has a complete lattice structure with the partial order
“to be as manipulable as”; the supremum is the equivalence class containing all median
voter schemes with x1 = x2 = a and xn = xn+1 = b,3 and the infimum is the equivalence
class with all constant median voter schemes; i.e., for all k= 1� � � � � n+1, xk = α for some
α ∈ [a�b].

In Theorem 2 we provide three necessary and sufficient conditions for the compa-
rability of two generalized median voter schemes in terms of their manipulability. The
three conditions are stated using the two associated families of monotonic fixed ballots
and depend very much on the power each agent has to unilaterally change the outcome
of the two generalized median voter schemes (i.e., the intervals of alternatives where
agents are non-dummies). Obviously, Theorem 2 is more general than Theorem 1. How-
ever, our analysis can be sharper and deeper on the subclass of anonymous generalized
median voter schemes. In addition, Theorem 1 can be seen as a first step to better un-
derstand the general characterization of Theorem 2.

Before finishing this Introduction, we want to relate our comparability notion to two
notions recently used in centralized matching markets. Pathak and Sönmez (2013) pro-
posed two different notions to compare, in terms of their manipulability, specific match-
ing mechanisms in school choice problems. The two notions are related in the sense that
one is stronger than the other, and both are based on the inclusion of preference profiles
at which there exists a manipulation. In contrast, our notion is based on the inclusion
of preference relations at which an agent is able to manipulate. In applications, prefer-
ence profiles are not common knowledge while each agent knows his preference rela-
tion (and he may only know that). To use a more manipulable generalized median voter
scheme means that each agent has to worry about his potential capacity to manipulate
in a larger set. Again, using the inclusion of preference relations as a basic criterion to
compare generalized median voter schemes according to their manipulability does not
require any informational hypothesis. Thus, we find it more appealing. Moreover, we
show that if two generalized median voter schemes are comparable according to Pathak

3When n is odd, this class contains the true median voter scheme.
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and Sönmez’s weaker notion, then they are also comparable according to our notion.
Furthermore, Example 1 shows that our notion is indeed much weaker than Pathak and
Sönmez’s weaker notion (and hence, also weaker than their stronger one).

The paper is organized as follows. Section 2 contains preliminary notation and defi-
nitions. Section 3 describes the family of anonymous generalized median voter schemes
and compares them according to their manipulability. Section 4 extends the analysis to
all generalized median voter schemes. Section 5 contains a final remark about the use
of median voter schemes on the universal domain of preferences and the comparison of
Pathak and Sönmez’s criteria with ours. Two appendices collect all omitted proofs.

2. Preliminaries

Agents are the elements of a finite set N = {1� � � � � n}. The set of alternatives is the interval
of real numbers [a�b] ⊆ R. We assume that n ≥ 2 and a < b. Generic agents will be
denoted by i and j, and generic alternatives will be denoted by α and β. Subsets of
agents will be represented by S and T .

The (weak) preference of each agent i ∈ N on the set of alternatives [a�b] is a com-
plete, reflexive, and transitive binary relation (a complete pre-order) Ri on [a�b]. As
usual, let Pi and Ii denote the strict and indifference preference relations induced by Ri,
respectively; namely, for all α�β ∈ [a�b], α Pi β if and only if ¬β Ri α, and α Ii β if and
only if αRi β and βRi α. The top of Ri is the set of alternatives that are weakly preferred
to any other alternative. We will restrict our attention to preferences with a unique top,
which will be denoted by τ(Ri); i.e., τ(Ri) Pi α for all α ∈ [a�b] \ {τ(Ri)}. Let U be the
set of preferences with a unique top on [a�b]. A preference profile R = (R1� � � � �Rn) ∈ Un

is an n-tuple of preferences. To emphasize the role of agent i or subset of agents S, a
preference profile R will be represented by (Ri�R−i) or (RS�R−S), respectively.

A subset Ûn ⊆ Un of preference profiles (or the set Û itself) will be called a domain.
A social choice function is a function f : Ûn → [a�b] selecting an alternative for each
preference profile in the domain Ûn. The range of a social choice function f : Ûn → [a�b]
is denoted by rf . That is,

rf = {α ∈ [a�b] | there exists R= (R1� � � � �Rn) ∈ Ûn s.t. f (R1� � � � �Rn) = α}�
Social choice functions require each agent to report a preference on a domain Û .

A social choice function is strategy-proof on Û if it is always in the best interest of agents
to reveal their preferences truthfully. Formally, a social choice function f : Ûn → [a�b] is
strategy-proof if for all R ∈ Ûn, all i ∈N , and all R′

i ∈ Û ,

f (Ri�R−i) Ri f (R
′
i�R−i)� (1)

In the sequel we will say that a social choice function f : Ûn → [a�b] is not manipulable
by i ∈ N at Ri ∈ U if (1) holds for all (R′

i�R−i) ∈ Ûn. To compare social choice functions
according to their manipulability, our reference set of preferences will be the full set U .

The set of manipulable preferences of agent i ∈N for f : Un → [a�b] is given by

Mf
i = {Ri ∈ U | f (R′

i�R−i) Pi f (Ri�R−i) for some (R′
i�R−i) ∈ Un}�
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Obviously, a social choice function f : Un → [a�b] is strategy-proof if and only if Mf
i =∅

for all i ∈N . We say that f : Un → [a�b] is more manipulable than g : Un → [a�b] for i ∈N

if Mg
i �Mf

i .
Now, we introduce our criterion to compare social choice functions according to

their manipulability.

Definition 1. A social choice function f : Un → [a�b] is at least as manipulable as a

social function g : Un → [a�b] if Mg
i ⊆ Mf

i for all i ∈N .

Definition 2. A social choice function f : Un → [a�b] is equally manipulable as a social
function g : Un → [a�b] if f is at least as manipulable as social function g and vice versa;
i.e., Mg

i = Mf
i for all i ∈ N .

Definition 3. A social choice function f : Un → [a�b] is more manipulable than a social
function g : Un → [a�b] if f is at least as but not equally manipulable as social function

g; i.e., Mg
i ⊆ Mf

i for all i ∈N and there exists j ∈N such that Mg
j �Mf

j .

Given two social choice functions f : Un → [a�b] and g : Un → [a�b] we write (i) f � g

to denote that f is at least as manipulable as g, (ii) f ≈ g to denote that f is equally
manipulable as g, and (iii) f 
 g to denote that f is more manipulable than g. Obviously,
there are many pairs of social choice functions that cannot be compared according to
their manipulability.

Strategy-proofness is not the unique property we will look at. A social choice
function f : Ûn → [a�b] is anonymous if it is invariant with respect to the agents’
names; namely, for all one-to-one mappings σ : N → N and all R ∈ Ûn, f (R1� � � � �Rn) =
f (Rσ(1)� � � � �Rσ(n)). A social choice function f : Ûn → [a�b] is dictatorial if there ex-
ists i ∈ N such that for all R ∈ Ûn, f (R) Ri α for all α ∈ rf . A social choice function
f : Ûn → [a�b] is efficient if for all R ∈ Ûn, there is no α ∈ [a�b] such that, for all i ∈ N ,
αRi f (R) and α Pj f (R) for some j ∈ N . A social choice function f : Ûn → [a�b] is unan-
imous if for all R ∈ Ûn such that τ(Ri) = α for all i ∈ N , f (R) = α. A social choice func-
tion f : Ûn → [a�b] is onto if for all α ∈ [a�b], there is R ∈ Ûn such that f (R) = α (i.e.,
rf = [a�b]). A social choice function f : Ûn → [a�b] is tops-only if for all R�R′ ∈ Ûn such
that τ(Ri) = τ(R′

i) for all i ∈N , f (R) = f (R′).
In our setting the Gibbard–Satterthwaite theorem states that a social choice function

f : Un → [a�b], with #rf �= 2, is strategy-proof if and only if it is dictatorial (see Barberà
and Peleg 1990). An implicit assumption is that the social choice function operates on
all preference profiles on Un, because all of them are reasonable. However, for many ap-
plications, a linear order structure on the set of alternatives naturally induces a domain
restriction in which, for each preference Ri in the domain, not only does there exist a
unique top but also at each of the sides of the top of Ri the preference is monotonic.
A well known domain restriction is the set of single-peaked preferences on an interval of
real numbers.

Definition 4. A preference Ri ∈ U is single-peaked on A ⊆ [a�b] if for all α�β ∈ A such
that β≤ α< τ(Ri) or τ(Ri) < α≤ β, τ(Ri) Pi α Ri β.
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We will denote the domain of all single-peaked preferences on [a�b] by SP ⊂ U .
Moulin (1980) characterizes the family of strategy-proof and tops-only social choice
functions on the domain of single-peaked preferences. This family contains many non-
dictatorial social choice functions. All of them are extensions of the median voter. Fol-
lowing Moulin (1980), and before presenting the general result, we first compare in Sec-
tion 3, the anonymous subclass according to their manipulability on the full domain of
preferences U . In Section 4 we will give a general result to compare, according to their
manipulability, all strategy-proof and tops-only social choice functions on SPn when
they operate on the domain Un.

3. Anonymity: Comparing median voter schemes

3.1 Median voter schemes

Assume first that n is odd and let f : Un → [a�b] be the social choice function that selects,
for each preference profile R= (R1� � � � �Rn) ∈ Un, the median among the top alternatives
of the n agents; namely, f (R) = med{τ(R1)� � � � � τ(Rn)}.4 This social choice function is
anonymous, efficient, tops-only, and strategy-proof on SP . Now add to the n agents’ top
alternatives, n+ 1 fixed ballots: (n+ 1)/2 ballots at alternative a and (n+ 1)/2 ballots at
alternative b. Then the median among the n top alternatives, and the median among
the n top alternatives and the n+ 1 fixed ballots coincide since the (n+ 1)/2 ballots at a
and the (n+ 1)/2 ballots at b cancel each other; namely, for all R= (R1 � � � �Rn) ∈ Un,

f (R) = med
{
τ(R1)� � � � � τ(Rn)� a� � � � � a︸ ︷︷ ︸

(n+1)/2 times

� b� � � � � b︸ ︷︷ ︸
(n+1)/2 times

}
= med{τ(R1)� � � � � τ(Rn)}�

To proceed, and instead of adding n+ 1 fixed ballots at the extremes of the interval,
we can add, regardless of whether n is odd or even, n+ 1 fixed ballots at any of the alter-
natives in [a�b]. Then a social choice function f : Un → [a�b] is a median voter scheme if
there exist n+ 1 fixed ballots (x1� � � � � xn+1) ∈ [a�b]n+1 such that for all R ∈ Un,

f (R) = med{τ(R1)� � � � � τ(Rn)�x1� � � � � xn+1}� (2)

Hence, each median voter scheme can be identified with its vector x = (x1� � � � � xn+1) ∈
[a�b]n+1 of fixed ballots. Moulin (1980) shows that the class of all tops-only, anonymous,
and strategy-proof social choice functions on the domain of single-peaked preferences
coincides with all median voter schemes.

Proposition 1 (Moulin 1980). A social choice function f : SPn → [a�b] is strategy-proof,
tops-only, and anonymous if and only if f is a median voter scheme; namely, there exist
n+ 1 fixed ballots (x1� � � � � xn+1) ∈ [a�b]n+1 such that for all R ∈ SPn,

f (R) = med{τ(R1)� � � � � τ(Rn)�x1� � � � � xn+1}�
4Given a set of real numbers {x1� � � � � xK}, where K is odd, define its median as med{x1� � � � � xK} = y ,

where y is such that #{1 ≤ k ≤ K | xk ≤ y} ≥ K/2 and #{1 ≤ k ≤ K | xk ≥ y} ≥ K/2. Since K is odd, the
median is unique and belongs to the set {x1� � � � � xK}.
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Median voter schemes are tops-only and anonymous by definition. To see that they
are strategy-proof, let f : SPn → [a�b] be any median voter scheme and fix R ∈ SPn and
i ∈ N . If f (R) = τ(Ri), i cannot manipulate f . Assume τ(Ri) < f(R) (the other case
is symmetric). Agent i can only modify the chosen alternative by declaring a prefer-
ence R′

i ∈ SP with the property that f (R) < τ(R′
i). But then either f (R) = f (R′

i�R−i)

or f (R) < f(R′
i�R−i). Hence, τ(Ri) < f(R) ≤ f (R′

i�R−i). Since Ri is single-peaked,
f (R) Ri f (R

′
i�R−i). Thus, i cannot manipulate f . It is less immediate to see that the

set of all median voter schemes (one for each vector of n+1 fixed ballots) coincides with
the class of all tops-only, anonymous, and strategy-proof social choice functions on the
domain of single-peaked preferences. The key point in the proof is to identify, given
a tops-only, anonymous, and strategy-proof social choice function f : SPn → [a�b], the
vector x= (x1� � � � � xn+1) ∈ [a�b]n+1 of fixed ballots. To identify each xk with 1 ≤ k ≤ n+1,
consider any preference profile R ∈ SPn with the property that #{i ∈ N | τ(Ri) = a} =
n − k + 1 and #{i ∈ N | τ(Ri) = b} = k − 1, and define xk = f (R). The proof concludes
by checking that indeed f satisfies (2) with this vector x = (x1� � � � � xn+1) ∈ [a�b]n+1 of
identified fixed ballots.

To see that in the statement of Proposition 1 tops-onlyness does not follow from
strategy-proofness and anonymity, consider the social choice function f : SPn → [a�b],
where for all R ∈ SPn,

f (R) =
{
a if #{i ∈N | aRib} ≥ #{i ∈N | bPia}
b otherwise.

Notice that f is strategy-proof and anonymous but it is not tops-only. It also violates
efficiency, unanimity, and ontoness.

We finish this subsection with a useful remark stating that median voter schemes are
monotonic.

Remark 1. Let f : Un → [a�b] be a median voter scheme and let R�R′ ∈ Un be such that
τ(Ri) ≤ τ(R′

i) for all i ∈N . Then f (R) ≤ f (R′).

3.2 Main result with anonymity

Median voter schemes are strategy-proof on the domain SPn of single-peaked prefer-
ences. However, when they operate on the larger domain Un they may become manip-
ulable. Then all median voter schemes are equivalent from the classical manipulability
point of view. In this subsection we give a simple test to compare two median voter
schemes according to their manipulability. Given a vector x = (x1� � � � � xn+1) ∈ [a�b]n+1,
we will denote by f x its associated median voter scheme on Un; namely, for all R ∈ Un,

f x(R) = med{τ(R1)� � � � � τ(Rn)�x1� � � � � xn+1}�
Given x = (x1� � � � � xn+1) ∈ [a�b]n+1, we will assume that x1 ≤ · · · ≤ xn+1. This can be
done without loss of generality because the social choice function associated to any
reordering of the components of x coincides with f x. Obviously, the range of f x is
[x1�xn+1], i.e., rfx = [x1�xn+1]. Any constant social choice function, f (R) = α for all
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R ∈ Un, can be described as a median voter scheme by setting, for all 1 ≤ k ≤ n + 1,
xk = α. We denote it by fα. Trivially, any constant social choice function f α is strategy-
proof on Un. Then, for any α ∈ [a�b] and any social choice function g : Un → [a�b], we
have that g is at least as manipulable as f α (i.e., g � fα). Furthermore, all nonconstant
median voter schemes are manipulable on Un. Hence, any nonconstant median voter
scheme f x is more manipulable than f α (i.e., f x 
 fα). Theorem 1 below gives an easy
and operative way to compare nonconstant median voter schemes according to their
manipulability.

Theorem 1. Let x = (x1� � � � � xn+1) ∈ [a�b]n+1 and y = (y1� � � � � yn+1) ∈ [a�b]n+1 be two
vectors of fixed ballots such that f x and f y are not constant; i.e., x1 < xn+1 and y1 < yn+1.
Then f y is at least as manipulable as f x if and only if [x1�xn+1] ⊂ [y1� yn+1] and [x2�xn] ⊂
[y2� yn].

The formal proof of Theorem 1 is left for the next subsection, but we now give some
intuition about it. Whether or not agent i can manipulate f x at Ri roughly depends on
the set of alternatives that may be selected by f x for some subprofile R−i, given Ri (this
set is called the set of options left open by Ri). How Ri compares pairs of alternatives
that will never be selected by f x once Ri is submitted is unrelated to the ability of i to
manipulate f x. Moreover, given f x, the set of options left open by Ri depends only on
x1, x2, xn, and xn+1, and it does in a very particular way: the closer x1 and x2 are to a,
and xn and xn+1 are to b, the larger the options left open by Ri will be and, hence, i will
be able to manipulate f x easily. And finally, Ri has to be single-peaked on the set of
options left open by itself, because otherwise there would exists R−i such that i is able
to induce a preferred alternative further away from his top τ(Ri) by declaring another
preference R′

i.

3.3 Proof of Theorem 1

In the proof of Theorem 1 the following option set will play a fundamental role.

Definition 5. Let f : Un → [a�b] be a social choice function and let Ri ∈ U . The set of
options left open by Ri ∈ U is defined as

of (Ri) = {α ∈ [a�b] | f (Ri�R−i)= α for some R−i ∈ Un−1}�

If f x is a median voter scheme, we denote of
x
(Ri) by ox(Ri).

Before proving Theorem 1 we state three useful lemmata, whose proofs are given in
Appendix A.

Lemma 1. Let f x : Un → [a�b] be a median voter scheme associated with x = (x1� � � � �

xn+1) ∈ [a�b]n+1. Then f x is not manipulable by i ∈ N at Ri ∈ U if and only if Ri is single-
peaked on ox(Ri)∪ {τ(Ri)�α} for all α ∈ rfx .
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Lemma 2. Let f x : Un → [a�b] be a median voter scheme associated with x = (x1� � � � �

xn+1) ∈ [a�b]n+1. Then

ox(Ri) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[x1�xn] if a ≤ τ(Ri) < x1

[τ(Ri)�xn] if x1 ≤ τ(Ri) < x2

[x2�xn] if x2 ≤ τ(Ri) ≤ xn
[x2� τ(Ri)] if xn < τ(Ri) ≤ xn+1

[x2�xn+1] if xn+1 < τ(Ri)≤ b.

Lemma 3. Let f x : Un → [a�b] and f y : Un → [a�b] be two median voter schemes as-
sociated with x = (x1� � � � � xn+1) ∈ [a�b]n+1 and y = (y1� � � � � yn+1) ∈ [a�b]n+1 such that
[x1�xn+1] ⊂ [y1� yn+1] and [x2�xn] ⊂ [y2� yn]. Then ox(Ri) ⊂ oy(Ri) for all Ri ∈ U .

Lemma 1 plays a key role in the proof of Theorem 1. To understand it, notice that it
roughly says that whether or not agent i can manipulate f x at Ri depends on the fact that
Ri should only be single-peaked on the set of alternatives that may be selected by f x for
some subprofile R−i, given Ri. The comparison, in terms of Ri, of pairs of alternatives
that will never be selected once Ri is submitted is irrelevant in terms of agent i’s power
to manipulate f x. To illustrate that, consider the case where n = 3, x1 = a, x2 = (a+b)/3,
x3 = 2(a+ b)/3, and x4 = b. Then rfx = [a�b]. Let Ri ∈ U be any preference with τ(Ri) ∈
((a+ b)/3�2(a+ b)/3). By Lemma 2, ox(Ri)= [(a+ b)/3�2(a+ b)/3]. Lemma 1 says that
Ri should be single-peaked on this interval and that the preference away from τ(Ri)

toward the direction of (a + b)/3 has to be monotonically decreasing until alternative
(a + b)/3, and that all alternatives further away have to be worse than (a + b)/3 but
they can be freely ordered among themselves and symmetrically from τ(Ri) toward the
direction of 2(a+ b)/3. Figure 1 illustrates a preference that is single-peaked on ox(Ri)∪
{τ(Ri)�α} for all α ∈ rfx . It also shows that this set may be significantly larger than the set
of single-peaked preferences.

Proof of Theorem 1. First, we will prove that if [x1�xn+1] ⊂ [y1� yn+1] and [x2�xn] ⊂
[y2� yn], then f y is at least as manipulable as f x. Suppose that Ri ∈ Mf x

i . By Lemma 1,
there exists α∗ ∈ rfx such that Ri is not single-peaked on ox(Ri) ∪ {τ(Ri)�α

∗}. By
Lemma 3, ox(Ri) ⊂ oy(Ri). Since rfx = [x1�xn+1] ⊂ [y1� yn+1] = rf y , we have that α∗ ∈
rf y . Hence, Ri is not single-peaked on oy(Ri) ∪ {τ(Ri)�α

∗}, where α∗ ∈ Rfy . Thus, by

Lemma 1, Ri ∈ Mf y

i . Therefore, f y is at least as manipulable as f x.
To prove the other implication, assume that f y is at least as manipulable as f x.

Hence,

Mf x

i ⊂ Mf y

i for all i ∈N� (3)

To obtain a contradiction, assume that [x1�xn+1]� [y1� yn+1] or [x2�xn]� [y2� yn]. We will
divide the proof between two cases.

Case 1: [x1�xn+1] � [y1� yn+1]. In particular, suppose that x1 < y1; the proof for the
case yn+1 < xn+1 proceeds similarly and is therefore omitted. We will divide the proof
between two cases again, depending on whether x1 < x2 or x1 = x2.
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Figure 1. Single-peaked preference on the relevant set.

Case 1.1: x1 < x2. Let α�β�γ ∈ [a�b] be such that x1 < α<β< γ < min{x2� y1} and let
Ri ∈ U be such that (i) τ(Ri) = α, (ii) γ Pi β, and (iii) if ρ�δ ∈ [a�b] and y1 < ρ < δ, then
ρRi δ. Since x1 < τ(Ri) < x2 and x1 < τ(Ri) < y1, by Lemma 2,

ox(Ri) = [τ(Ri)�xn] and oy(Ri)= [y1� yn]�
Hence, and since τ(Ri)�β�γ ∈ ox(Ri) and (ii) holds, Ri is not single-peaked on ox(Pi)

and, for all α′ ∈ rf y , Ri is single-peaked on oy(Ri)∪ {τ(Ri)} ∪ {α′} because rf y = [y1� yn+1].
Thus, by Lemma 1, Ri ∈ Mf x

i \Mf y

i , which contradicts (3).
Case 1.2: x1 = x2. Since f x is not constant and x1 < y1, x1 < min{y1�xn+1}. Let

α�β�γ ∈ [a�b] be such that x1 < α < β < γ < min{y1�xn+1} and let Ri ∈ U be such that
(i) τ(Ri) = γ, (ii) α Pi β, and (iii) if ρ�δ ∈ [a�b] and y1 < ρ < δ, then ρ Pi δ. Since
x1 < τ(Ri) < y1 and x1 = x2 < τ(Ri), by Lemma 2,

ox(Ri) =
{ [x2�xn] if x2 ≤ τ(Ri)≤ xn

[x2� τ(Ri)] if xn < τ(Ri)≤ xn+1
and oy(Ri) = [y1� yn]�

Hence, and since α�β�τ(Ri) ∈ ox(Ri) and (ii) holds, Ri is not single-peaked on ox(Ri)

and, for all α′ ∈ rf y , Ri is single-peaked on oy(Ri)∪ {τ(Ri)} ∪ {α′} because rf y = [y1� yn+1].
Thus, by Lemma 1, Ri ∈ Mf x

i \Mf y

i , which contradicts (3).
Case 2: [x2�xn] � [y2� yn] and [x1�xn+1] ⊂ [y1� yn+1]. In particular, suppose that x2 <

y2; the proof for the case yn < xn proceeds similarly and therefore is omitted. Let α�β ∈
[a�b] be such that x2 < α < β < (x2 + y2)/2 < y2 and let Ri ∈ U be such that (i) τ(Ri) =
(x2 + y2)/2, (ii) α Pi β, and (iii) if γ�δ ∈ [a�b] and τ(Ri) < γ < δ, then γ Pi δ. Since y1 ≤
x1 ≤ x2 < τ(Ri) < y2, by Lemma 2,

ox(Ri)=
⎧⎨
⎩

[x2�xn] if x2 ≤ τ(Ri) ≤ xn
[x2� τ(Ri)] if xn < τ(Ri) ≤ xn+1

[x2�xn+1] if τ(Ri) > xn+1

and oy(Ri) = [τ(Ri)� yn]�
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Hence, and since α�β�τ(Ri) ∈ ox(Ri) and (ii) holds, Ri is not single-peaked on ox(Ri)

and, for all α′ ∈ rf y , Ri is single-peaked on oy(Ri) ∪ {τ(Ri)�α
′}. Thus, by Lemma 1, Ri ∈

Mf x

i \Mf y

i , which contradicts (3). �

For further reference, let MVS denote the set of all median voting schemes from Un

to [a�b]. An immediate consequence of Theorem 1 is that if median voter scheme f is
at least as manipulable as median voter scheme g, then the range of g is contained in
the range of f . The improvement in terms of the strategy-proofness of median voter
schemes necessarily requires the corresponding reduction of their ranges since smaller
ranges reduce agents’ power to manipulate. Corollary 1 below, which follows from Theo-
rem 1 and the fact that for all f x ∈ MVS, rfx = [x1�xn+1], states this observation formally.

Corollary 1. Let f�g ∈ MVS. If f � g, then rg ⊂ rf .

Consider a problem where the range of the social choice has to be fixed a priori to
be a subinterval [c�d] ⊂ [a�b]. Let MVS[c�d] be the set of all median voter schemes with
range [c�d] (i.e., f x ∈ MVS[c�d] if and only if x1 = c and xn+1 = d). Theorem 1 gives criteria
to compare the elements in MVS[c�d].

Corollary 2. Let f y� f x ∈ MVS[c�d].

(a) Then f y � f x if and only if [x2�xn] ⊂ [y2� yn].
(b) If y2 = yn, then there does not exist g ∈ MVS[c�d] such that f y 
 g.

Statement (b) identifies the median voter schemes in MVS[c�d] that do not admit a
less manipulable median voter scheme in MVS[c�d].

3.4 Unanimity

According to Proposition 1 in Moulin (1980), a median voter scheme f x : SPn → [a�b]
is efficient (on the single-peaked domain) if and only if x1 = a and xn+1 = b; namely,
f x can be described as the median of the n top alternatives submitted by the agents
and only n − 1 fixed ballots since x1 = a and xn+1 = b cancel each other in (2). But this
subclass of median voter schemes is appealing because it coincides with the class of all
unanimous median voter schemes (MVS[a�b] using the notation introduced in the pre-
vious subsection).5  Corollary 3 below shows that Theorem 1 has clear implications on
how unanimous and non-unanimous median voter schemes can be ordered according
to their manipulability. In particular, given a unanimous median voter scheme, there is
always a non-unanimous median voter scheme that is less manipulable. Moreover, if a
unanimous median voter scheme and a non-unanimous median voter scheme are com-
parable according to their manipulability, then the former is more manipulable than the
later.

5Observe that when unanimous median voter schemes operate on the full domain Un they are not any-
more efficient. In the next subsection we will provide some simple criteria to compare efficient median
voter schemes on the full domain Un according to their manipulability.
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Corollary 3. Let f y ∈ MVS be unanimous.

(a) Then, for all f x ∈ MVS, f y � f x if and only if [x2�xn] ⊂ [y2� yn].
(b) There exists a nonconstant and non-unanimous f x ∈ MVS such that f y 
 f x.

(c) Let f x ∈ MVS be non-unanimous and assume f x and f y are comparable according
to their manipulability. Then f y 
 f x.

Proof. Let f y ∈ MVS be unanimous. Hence, y1 = a and yn+1 = b.
(a) The statement follows immediately from Theorem 1.
(b) We distinguish between two cases.
Case 1: Assume y2 < yn and let α�β�γ ∈ [a�b] be such that y2 < α< β< γ < yn. Con-

sider x = (α�β� � � � �β�γ) ∈ [a�b]n+1. Then [x2�xn] = {β} ⊂ [y2� yn]. By Theorem 1, f y is at
least as manipulable as f x and since [y2� yn] � [x2�xn], f x is not at least as manipulable
as f y . Hence, f y is more manipulable than f x, and f x is neither constant nor unanimous
since a < x1 < xn+1 < b.

Case 2: Assume y2 = yn. Furthermore, suppose that a < y2; the proof when yn < b

proceeds symmetrically and therefore is omitted. Let α ∈ (a� y2) and consider x =
(α� y2� � � � � y2� b) ∈ [a�b]n+1. Then [x2�xn] = {y2}. By Theorem 1, f y is at least as manip-
ulable as f x and since [y1� yn+1] = [a�b] � [x1�xn+1], f x is not at least as manipulable as
f y . Hence, f y is more manipulable than f x. Furthermore, and since a < x1 = · · · = xn <

xn+1 = b, f x is neither constant nor unanimous.
(c) Assume f x ∈ MVS is not unanimous. Then [x1�xn+1]� [y1� yn+1] = [a�b]. By The-

orem 1, f x is not at least as manipulable as f y . Furthermore, as f x and f y are compara-
ble, f y 
 f x must hold. �

We conclude this subsection with a corollary that identifies the unanimous median
voter schemes that do not admit a less manipulable unanimous median voter scheme.
The statement also follows immediately from Theorem 1.

Corollary 4. Let f y be a unanimous median voter scheme such that y2 = yn. Then there
does not exist an unanimous median voting scheme g such that f y 
 g.

3.5 Efficiency

A median voter scheme f x : Un → [a�b] (operating on the full domain of preferences) is
efficient if and only if x1 = a, xn+1 = b, and xk ∈ {a�b} for all 2 ≤ k ≤ n.6 This is because
on the larger domain, if a median voter scheme f x has an interior fixed ballot xk ∈ (a�b),
it is always possible to find a preference profile R with f x(R) = xk such that there exists
an alternative y that is unanimously strictly preferred by all agents; namely, y Pi f

x(R)

for all i ∈N . Moreover, all efficient median voter schemes are unanimous.

6Hence, an efficient median voter scheme f x : Un → [a�b] has the property that for all (R1� � � � �Rn) ∈ Un,

f x(R1� � � � �Rn) ∈ {τ(R1)� � � � � τ(Rn)}�
Miyagawa (1998) and Heo (2013) have studied this property under the name of peak selection.
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We now present simple criteria that are useful to compare efficient median voter
schemes with other unanimous median voter schemes according to their manipulabil-
ity. But before, we need a bit of additional notation.

Let k be an integer such that 1 ≤ k ≤ n and (α1� � � � �αn) ∈ [a�b]n. Denote by
πk(α1� � � � �αn) the kth ranked number; namely, #{αi ∈ {α1� � � � �αn} | αi ≤ πk(α1� � � � �

αn)} ≤ n−k+ 1 and #{αi ∈ {α1� � � � �αn} | αi ≥ πk(α1� � � � �αn)} ≤ k. In particular, for k = 1
and k= n,

π1(α1� � � � �αn) = max{α1� � � � �αn}�
πn(α1� � � � �αn) = min{α1� � � � �αn}�

Let f x : Un → [a�b] be an efficient median voter scheme. Then x = (a� � � � � a︸ ︷︷ ︸
k

�b� � � � � b︸ ︷︷ ︸)
n+1−k

for

some 1 ≤ k≤ n and, for all R ∈ Un,

f x(R1� � � � �Rn) = πk(τ(R1)� � � � � τ(Rn))�

We denote the efficient median voter scheme f x with k fixed ballots at a by f k.

Corollary 5. Let f k : Un → [a�b] be an efficient median voter scheme such that k /∈
{1� n}. Then the following statements hold.

(a) For any f x ∈ MVS, f k � f x.

(b) If 1 < k′ < n, then f k ≈ fk
′
.

(c) We have f k 
 f 1 and fk 
 f n.

(d) If f x is non-unanimous, then f k 
 f x.

(e) There exists a non-efficient and unanimous f x ∈ MVS such that f k 
 f x.

Corollary 5 says the following. Statement (a) states that any efficient median voter
scheme f /∈ {f 1� f n} belongs to the set of the most manipulable median voter schemes.
Statement (c) states that the two efficient median voter schemes f 1 and f n are less ma-
nipulable than any other efficient median voter scheme f /∈ {f 1� f n}. Statement (d) states
that any non-unanimous median voter scheme is less manipulable than any efficient
median voter scheme f /∈ {f 1� f n}. Statement (e) states that given an efficient median
voter scheme f /∈ {f 1� f n}, there is always a (non-efficient) unanimous median voter
scheme that is less manipulable. Moreover, Corollary 5 has the following two impli-
cations when n is odd. First, for any f x ∈ MVS, f (n+1)/2 � f x, and second, for all non-
unanimous f x ∈ MVS, f (n+1)/2 
 f x.

Proof of Corollary 5. Let y be the vector of fixed ballots associated to f k. Since
k /∈ {1� n},

y1 = y2 = a and yn = yn+1 = b� (4)
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(a) It follows from (4) and Theorem 1.
(b) It follows from (a).
(c) Let z be the vector of fixed ballots associated to f 1; namely, z1 = a and z2 = · · · =

zn+1 = b. Hence, by (4) and Theorem 1, f k is more manipulable than f 1. Using a similar
argument, it also follows that f k 
 f n.

(d) Let f x be a non-unanimous median voter scheme. Then either a < x1 or xn+1 < b.
Hence, by (4) and Theorem 1, fk is more manipulable than f x.

(e) Consider any α ∈ (a�b) and define x = (a� α� � � � �α︸ ︷︷ ︸
k−1 times

� b� � � � � b). Then f x is unani-

mous but it is not efficient. By (4) and Theorem 1, fk 
 f x. �

Corollary 6. Let f ∈ MVS be efficient and such that f ∈ {f 1� f n}.

(a) Then there exists a non-efficient and nonconstant f x ∈ MVS such that f 
 f x.

(b) If f x and f are comparable and f x is non-efficient, then f 
 f x.

Corollary 6 says the following. Statement (a) states that there exists a non-efficient
and nonconstant median voter scheme that is less manipulable than f 1 (or f n). State-
ment (b) says that if the efficient median voter scheme f 1 (or f n) and a non-efficient
median voter scheme f are comparable according to their manipulability, then the for-
mer is more manipulable than the later. Corollaries 5 and 6 make clear the well known
trade-off between strategy-proofness and efficiency.

Proof of Corollary 6. Consider f 1 ∈ MVS and let y = (a�b� � � � � b) be its associated
vector of fixed ballots. The case f n ∈ MVS proceeds symmetrically.

(a) Define x = (a�α�b� � � � � b), where α ∈ (a�b). Then, by Theorem 1, f 1 
 f x and it is
clear that f x is non-efficient.

(b) Since [y2� yn] = {b}, and f x and f 1 are comparable, Theorem 1 implies that
f 1 
 f x. �

3.6 Complete lattice structure

Using Theorem 1 we can partition the set of median voter schemes MVS into equiva-
lence classes in such a way that each equivalence class contains median voter schemes
that are all equally manipulable. Denote the (quotient) set of those equivalence classes
by MVS/ ≈. Furthermore, we can extend � on MVS to the set of equivalence classes
MVS/ ≈ in a natural way. Denote this extension by [�]. In this subsection we will show
that the pair (MVS/ ≈� [�]) is a complete lattice; namely, any nonempty subset of equiv-
alence classes in MVS/ ≈ has a supremum and an infimum according to [�]. Formally,
given f x ∈ MVS, denote by [f x] the equivalence class of f x with respect to ≈; i.e.,

[f x] = {g ∈ MVS | g ≈ f x}�
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Let [c] be the class of all constant median voter schemes.7 Assume that [f x] �= [c]. By
Theorem 1, [f x] can be identified with the four-tuple (x1�x2�xn�xn+1).

Denote by MVS/ ≈ the set of all equivalence classes induced by ≈ on MVS and con-
sider the binary relation [�] on MVS/ ≈ defined as follows. For any pair [f x]� [f y ] ∈
MVS/ ≈, set

[f x] [�] [f y ] if and only if f x � f y�

Since � is a pre-order on MVS, it follows that [�] is a partial order on MVS/ ≈. Further-
more, by Theorem 1, if [f x] �= [c] and [f y ] �= [c], then

[f x] [�] [f y ] if and only if x1 ≤ y1�x2 ≤ y2�xn ≥ yn and xn+1 ≥ yn+1�

We can now state and prove the result of this subsection.

Proposition 2. The pair (MVS/≈� [�]) is a complete lattice.

Proof. Let ∅ �=Z ⊆ MVS ≈. Define

(xSZ1 �xSZ2 �xSZn �xSZn+1) =
(

inf
x1:[f x]∈Z

x1� inf
x2:[f x]∈Z

x2� sup
xn:[f x]∈Z

xn� sup
xn+1:[f x]∈Z

xn+1

)

and

(xIZ1 �xIZ2 �xIZn �xIZn+1)

=
{
(supx1:[f x]∈Z x1� supx2:[f x]∈Z x2� infxn:[f x]∈Z xn� infxn+1:[f x]∈Z xn+1) if [c] /∈Z

[c] if [c] ∈ Z.

Observe that if [f x] ∈ Z, then xk ∈ [a�b] for all k = 1�2� n�n + 1. Hence, (xSZ1 �xSZ2 �

xSZn �xSZn+1) and (xIZ1 �xIZ2 �xIZn �xIZn+1) are well defined and xSZk �xIZk ∈ [a�b] for all k =
1�2� n�n + 1. Consider the equivalence classes [f SZ] and [f IZ] associated to (xSZ1 �xSZ2 �

xSZn �xSZn+1) and (xIZ1 �xIZ2 �xIZn �xIZn+1), respectively. That is, f y ∈ [f SZ] if and only if yk =
xSZk for k = 1�2� n�n+ 1 and f y ∈ [f IZ] if and only if yk = xIZk for k = 1�2� n�n+ 1. Since

xSZk �xIZk ∈ [a�b] for all k= 1�2� n�n+ 1, we have that

[f SZ]� [f IZ] ∈ MVS/≈ � (5)

Moreover, if Z = MVS/≈, then [f SZ] = (a�a�b�b) and [f IZ] = [c].
Now we show that (MVS/ ≈� [�]) is a complete lattice. Let ∅ �= Z ⊆ MVS/ ≈. By (5),

[f SZ]� [f IZ] ∈ MVS/ ≈. By Theorem 1 and the definition of [f SZ] and [f IZ], lub Z = [f SZ]
and llb Z = [f IZ] are, respectively, the least upper bound and the largest lower bound
with respect to [�]. Hence, sup[�]Z = [f SZ] and inf[�]Z = [f IZ]. Thus, (MVS/ ≈� [�]) is
a complete lattice. �

Two immediate consequences follow from the proof of Proposition 2. First, and
since [c] is the smallest equivalence class in MVS/ ≈ according to [�], all constant me-

7Remember that all constant median voter schemes (excluded in the statement of Theorem 1) are equally
manipulable since all of them are strategy-proof on Un.
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rf = [a�b]

[f 1] [f n]

[f 2]

[c]

range ↑

rf = [a�b]
x2 = xn −→ ↑ [�]

Figure 2. Lattice structure.

dian voter schemes are less manipulable than any other nonconstant median voter
scheme (i.e., [c] = inf[�] MSV/ ≈). Second, and since the equivalence class containing
all median voter schemes identified with the four-tuple (a�a�b�b) is the largest equiva-
lence in MVS/ ≈ according to [�] (i.e., this equivalence class is the sup[�] MSV/ ≈), any
median voter scheme f x such that x1 = x2 = a and xn = xn+1 = b is more manipulable
than any other MVS outside this class. Observe that this class includes all efficient me-
dian voting schemes except f 1 and f n and it has the property that the set of options
left open by any preference is the full set [a�b] and, hence, its admissible domain is the
smallest one. As soon as the extreme fixed ballots move toward more intermediate al-
ternatives, the options sets left open by any preference become smaller and therefore
more non-single-peaked preferences are admissible in the domain of the correspond-
ing median voter scheme so as to remain non-manipulable. Thus, although somehow
disappointing, the class of unbiased median voter schemes is the most manipulable one
precisely because it is more sensible to agents’ preferences (the options that they leave
open are larger).

Finally, if n ≤ 3 and f x ∈ MVS is nonconstant, then [f x] = {f x}. Thus, the pair
(MVS��) is like a complete lattice (it is not because the equivalence class of constant
median voter schemes is not degenerated).

Figure 2 summarizes the complete lattice structure of the pair (MVS/≈� [�]) for any
n ≥ 2, whose properties have been collected among Corollaries 3, 4, 5, and 6.

4. Comparing all generalized median voter schemes

4.1 Generalized median voter schemes

Median voter schemes are anonymous. All agents have the same power to influence
the outcome of a given median voter scheme f x, although this power depends on the
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distribution of its associated fixed ballots x = (x1� � � � � xn+1). Generalized median voter
schemes admit the possibility that different agents may have different power to influence
its outcome. This power will be described by a monotonic family of fixed ballots, one for
each coalition (subset) of agents. To develop a useful intuition to understand the class of
all generalized median voter schemes, consider first the case n = 2. Given a monotonic
family of fixed ballots {p{1�2}�p{1}�p{2}�p{∅}}, one for each coalition of agents, such that
a ≤ p{1�2} ≤ p{1} ≤ p{2} ≤ p{∅} ≤ b, we define the social choice function f : U2 → [a�b] as
follows: for each R ∈ U2,

f (R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p{1�2} if τ(R1)� τ(R2)≤ p{1�2}
τ(R2) if τ(R1)≤ p{1�2} ≤ τ(R2) ≤ p{1}
p{1} if τ(R1)≤ p{1�2} ≤ p{1} ≤ τ(R2)

med{τ(R1)� τ(R2)�p{1}} if p{1�2} ≤ τ(R1)≤ p{1}
τ(R1) if p{1} ≤ τ(R1)≤ p{2}
med{τ(R1)� τ(R2)�p{2}} if p{2} ≤ τ(R1)≤ p{∅}
p{2} if p{∅} ≤ τ(R1) and τ(R2) ≤ p{2}
τ(R2) if p{2} ≤ τ(R2)≤ p{∅} ≤ τ(R1)

p{∅} if p{∅} ≤ τ(R1)� τ(R2).

Observe that rf = [p{1�2}�p{∅}]. We can interpret this function as a way to assign
to agents 1 and 2 the power to select the alternative in the subset rf = [p{1�2}�p{∅}]. For
instance, agent 1 can make sure that the outcome is at most p{1} by voting below p{1} and
at most τ(R1) by voting above p{1}, and agent 1 is a dictator on [p{1}�p{2}] (i.e., f (R) =
τ(R1) whenever τ(R1) ∈ [p{1}�p{2}]). It is easy to check that f can be rewritten as

f (R) = min
S⊆{1�2}

max
i∈S

{τ(Ri)�pS}�

To present the characterization of all strategy-proof and tops-only social choice
functions on the domain of single-peaked preferences for all n ≥ 2, we say that a col-
lection {pS}S∈2N is a monotonic family of fixed ballots if (i) pS ∈ [a�b] for all S ∈ 2N and
(ii) T ⊂Q implies pQ ≤ pT . The characterization is the following.

Proposition 3 (Moulin 1980). A social choice function f : SPn → [a�b] is strategy-proof
and tops-only if and only if there exists a monotonic family of fixed ballots {pS}S∈2N such
that for all R ∈ SPn,

f (R) = min
S∈2N

max
i∈S

{τ(Ri)�pS}�

The social choice functions identified in Proposition 3 are called generalized me-
dian voter schemes. A simple way to interpret them is as follows. Each generalized me-
dian voting scheme (and its associated monotonic family of fixed ballots) can be un-
derstood as a particular way to distribute the power among coalitions to influence the
social choice. To see that, take an arbitrary coalition S and its fixed ballot pS . Then
coalition S can make sure that, by all of its members reporting a top alternative below
pS , the social choice will be at most pS , independently of the reported top alternatives
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of the members of the complementary coalition.8 An alternative way to describe this
distribution of power among coalitions is as follows. Fix a monotonic family of fixed
ballots {pS}S∈2N (i.e., a generalized median voter scheme) and take a vector of tops
(τ(R1)� � � � � τ(Rn)). Start at the left extreme of the interval a and push the outcome to
the right until it reaches an alternative α for which the following two things happen si-
multaneously: (i) there exists a coalition of agents S such that all its members have re-
ported a top alternative below or equal to α (i.e., τ(Ri) ≤ α for all i ∈ S) and (ii) the fixed
ballot pS associated to S is also located below α (i.e., pS ≤ α). Median voter schemes are
the anonymous subclass of generalized median voter schemes. Hence, the fixed ballots
of any two coalitions with the same cardinality of any anonymous generalized median
voter scheme are equal. From a monotonic family of fixed ballots {pS}S∈2N associated
to an anonymous generalized median voter scheme f : Un → [a�b] we can identify the
n + 1 ballots x1 ≤ · · · ≤ xn+1 needed to describe f as a median voter scheme as follows:
for each 1 ≤ k ≤ n + 1, xk = pS for all S ∈ 2N such that #S = n − k + 1. Moreover, the
onto social choice function f : Un → [a�b], where agent j ∈ N is the dictator (i.e., for all
R ∈ Un, f (R) = τ(Rj)), can be described as a generalized median voter scheme by set-
ting pT = a for all T ⊂ N such that j ∈ T and pS = b for all S ⊂ N such that j /∈ S. Then,
for any R ∈ Un, (i) max{τ(Rj)�p{j}} = τ(Rj), τ(Rj) ≤ maxi∈T {τ(Ri)�pT } for any T ⊂ N

such that j ∈ T , and (iii) maxi∈S{τ(Ri)�pS} = b for any S ⊂ N such that j /∈ S. Thus,
minS′∈2N maxi′∈S′ {τ(Ri′)�pS′ } = τ(Rj).

Given a monotonic family of fixed ballots p = {pS}S⊂N , let fp denote the generalized
median voter scheme associated to p.

4.2 Main result

Our main result will provide a systematic way to compare non-constant and non-
dictatorial generalized median voter schemes according to their manipulability. It turns
out that to perform this comparison it is crucial to identify, for each agent i ∈ N , the
subintervals where i is a non-dummy agent; i.e., the subset of alternatives that are even-
tually chosen at some profile but agent i is able to change the chosen alternative by
reporting a different preference relation. Below, we define formally the general notion
of a non-dummy agent at an alternative in a social choice function.

Definition 6. Let f : Un → [a�b] be a social choice function. Agent i is non-dummy at
α ∈ [a�b] in f if there exists R ∈ Un and R′

i ∈ U such that

f (Ri�R−i) = α and

f (R′
i�R−i) �= α�

The lemma below characterizes non-dummyness at an alternative in a generalized
median voter scheme fp : Un → [a�b] in terms of the monotonic family of fixed ballots p.
This characterization will be useful in the sequel.

8See Barberà et al. (1997) for a similar interpretation for the case of a finite number of ordered
alternatives.
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Lemma 4. Let fp : Un → [a�b] be a generalized median voter scheme. Then i is non-
dummy at α in fp if and only if there exists S ⊂ N such that i ∈ S, pS < pS\{i} and pS ≤
α ≤ pS\{i}.

For the proof, see Appendix B at the end of the paper.
The set of all α ∈ [a�b] such that i is non-dummy at α in fp : Un → [a�b] is denoted

by NDi
p. By Lemma 4,

NDi
p =

⋃
{S⊂N|i∈S and pS<pS\{i}}

[pS�pS\{i}]� (6)

We are now ready to state the main result of the paper.

Theorem 2. Let p = {pS}S⊂N and p̄ = {p̄S}S⊂N be two monotonic families of fixed ballots
and assume that the two associated generalized median voter schemes fp : Un → [a�b]
and f p̄ : Un → [a�b] are neither constant nor dictatorial. Then

[pN�p{i}] ∩ NDi
p ⊂ [p̄N� p̄{i}] ∩ NDi

p̄� (7)

[pN\{i}�p{∅}] ∩ NDi
p ⊂ [p̄N\{i}� p̄{∅}] ∩ NDi

p̄� (8)

and

[p{i}�pN\{i}] ⊂ NDi
p̄ (9)

hold for all i ∈N if and only if f p̄ is at least as manipulable as fp.

Before presenting three lemmata used in the proof of Theorem 2, a few remarks are
in order.

First, conditions (7), (8), and (9) say that the relevant information to compare two
generalized median voter schemes according to their manipulability for agent i ∈ N lies
in the values of the fixed ballots associated to coalitions N , N \ {i}, {i}, and {∅} and in i’s
non-dummy sets.

Second, observe that condition (9) is only relevant when p{i} < pN\{i} because if
pN\{i} < p{i}, then [p{i}�pN\{i}] = ∅, and if pN\{i} = p{i}, then (9) follows from (7) and
(8) since fp is not constant and pN\{i} = p{i} ∈ NDi

p.
Third, if the nonconstant generalized median voter schemes associated to the

monotonic families of fixed ballots p = {pS}S∈2N and p̄ = {p̄S}S⊂N are anonymous, then
NDi

p = [pN�p{∅}], NDi
p̄ = [p̄N� p̄{∅}] (i is non-dummy in the full ranges of fp and f p̄),

pN\{i} ≤ p{i}, and p̄N\{i} ≤ p̄{i} for all i ∈ N . Therefore, conditions (7), (8), and (9) are
equivalent to

[pN�p{i}] ⊂ [p̄N� p̄{i}]
and

[pN\{i}�p{∅}] ⊂ [p̄N\{i}� p̄{∅}]
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or

[pN�p{∅}] ⊂ [p̄N� p̄{∅}]
and

[pN\{i}�p{i}] ⊂ [p̄N\{i}� p̄{i}]�
Now, if x and y are the n+ 1 vectors associated to fp and f p̄, respectively, then x1 = pN ,
x2 = pN\{i}, xn = p{i}, xn+1 = p{∅}, y1 = p̄N , y2 = p̄N\{i}, yn = p̄{i}, and yn+1 = p̄{∅}. Thus,
conditions (7), (8), and (9) are equivalent to

[x1�xn+1] ⊂ [y1� yn+1]
and

[x2�xn] ⊂ [y2� yn]�
which is what Theorem 1 says. Hence, Theorem 1 can be seen as a corollary of
Theorem 2.

We will say that an interval Ii = [c�d] with c < d is a non-dummy interval for i in fp

if Ii ⊂ NDi
p. Whenever we refer to an interval as a non-dummy interval we exclude the

possibility that the interval contains only one alternative. If i ∈ S with pS < pS\{i}, then
[pS�pS\{i}] is a non-dummy interval for i in fp and we denote it by ISi . We will write ĪSi
when the median voter scheme used as a reference is f p̄ instead of fp.

We state now the three lemmata, whose proofs are given in Appendix B, that will be
used in the proof of Theorem 2. To simplify notation, given p = {pS}S⊂N and Ri ∈ U , we
denote of

p
(Ri) by op(Ri).

Lemma 5. Let fp : Un → [a�b] be a nonconstant generalized median voter scheme. Then
fp is not manipulable by i at Ri if and only if, for all ISi , Ri is single-peaked on (op(Ri) ∩
ISi )∪ {τ(Ri)�α

∗} for all α∗ ∈ ISi .

Lemma 6. Let p = {pS}S⊂N be a monotonic family of fixed ballots and let Ri ∈ U .
If p{i} <pN\{i}, then

op(Ri)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[pN�p{i}] if a ≤ τ(Ri)≤ pN

[τ(Ri)�p{i}] if pN < τ(Ri) ≤ p{i}
{τ(Ri)} if p{i} < τ(Ri) ≤ pN\{i}
[pN\{i}� τ(Ri)] if pN\{i} < τ(Ri)≤ p{∅}
[pN\{i}�p{∅}] if p{∅} < τ(Ri).

If pN\{i} ≤ p{i}, then

op(Ri) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[pN�p{i}] if a ≤ τ(Ri)≤ pN

[τ(Ri)�p{i}] if pN < τ(Ri) ≤ pN\{i}
[pN\{i}�p{i}] if pN\{i} < τ(Ri) ≤ p{i}
[pN\{i}� τ(Ri)] if p{i} < τ(Ri) ≤ p{∅}
[pN\{i}�p{∅}] if p{∅} < τ(Ri).
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Lemma 7. Let p = {pS}S⊂N and p̄ = {p̄S}S⊂N be two monotonic families of fixed ballots
such that fp and f p̄ are not constant. Assume (7), (8), and (9) in Theorem 2 hold. Then,
for any non-dummy interval ISi and for all α∗ ∈ ISi , there exists a non-dummy interval Îi
for i in f p̄ such that α∗ ∈ Îi and (op(Ri)∩ ISi )⊂ (op̄(Ri)∩ Îi) for all Ri ∈ U .9

Definition 7. Let f : Un → [a�b] be a social choice function. Agent i is a dictator at
α ∈ [a�b] in f if for all Ri ∈ U such that τ(Ri)= α,

f (Ri�R−i) = α for all R−i ∈ Un−1�

Let fp : Un → [a�b] be a generalized median voter scheme and let i ∈ N be an agent.
Denote the set of all α ∈ [a�b] such that i is a dictator at α in fp, by DTi

p. By Lemma 6,

DTi
p = [p{i}�pN\{i}]. Observe that if pN\{i} < p{i}, then i is not a dictator at any α ∈ [a�b]

in fp. Furthermore, if p{i} < pN\{i}, then, by monotonicity, pN\{j} ≤ p{i} < pN\{i} ≤ p{j}
for all j �= i. Therefore, if p{i} <pN\{i}, then j is not a dictator at any α ∈ [a�b] in fp for all
j �= i.

Definition 8. Let p = {pS}S⊂N and p̄ = {p̄S}S⊂N be two monotonic families of fixed
ballots. The generalized median voter scheme fp : Un → [a�b] is at least more (or more)
dictatorial for i than the generalized median voter scheme f p̄ : Un → [a�b] if ∅ �= DTi

p̄ ⊂
DTi

p (or ∅ �= DTi
p̄ � DTi

p).

Proposition 4 below formalizes the trade-off between dictatorialness and
manipulability.

Proposition 4. Let p = {pS}S⊂N and p̄ = {p̄S}S⊂N be two monotonic families of fixed
ballots. Assume that fp : Un → [a�b] and f p̄ : Un → [a�b] are nonconstant, non-
dictatorial, and comparable according to their manipulability. If fp is more dictatorial
for i than f p̄, then f p̄ is more manipulable than fp.

Proof. Since fp is more dictatorial than f p̄ for i, ∅ �= DTi
p̄ � DTi

p. Then [p̄{i}� p̄N\{i}] �
[p{i}�pN\{i}] and p̄{i} ≤ p̄N\{i}. Therefore, p{i} < p̄{i} and p̄N\{i} ≤ pN\{i} or p{i} ≤ p̄{i} and
p̄N\{i} < pN\{i}. Assume that p{i} < p̄{i} and p̄N\{i} ≤ pN\{i} hold; the proof for the other
case proceeds similarly and therefore is omitted. Since DTi

p �= ∅ and p = {pS}S⊂N is

monotonic, NDi
p = [pN�p{∅}] holds by (6). Thus,

[pN�p{i}] ∩ NDi
p = [pN�p{i}]�

Similarly, and since DTi
p̄ �=∅,

[p̄N� p̄{i}] ∩ NDi
p̄ = [p̄N� p̄{i}]�

Since fp and f p̄ are comparable according to their manipulability and p{i} < p̄{i},

[pN�p{i}] ∩ NDi
p = [pN�p{i}]� [p̄N� p̄{i}] = [p̄N� p̄{i}] ∩ NDi

p̄�

Thus, by Theorem 2, f p̄ is more manipulable than fp. �
9Note that Îi does not necessarily have to be written as ĪS

′
i for some S′ � i.
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5. Final remarks

Before moving to the omitted proofs we finish with two final remarks.
The reader could ask about the meaning of applying a median voter scheme to the

universal domain of preferences.10 One could argue that if preferences are unrestricted
it is like having no order on the set of alternatives. We also share this point of view. Under
the universal domain of preferences median voter schemes lose their appeal. However,
they still can be understood as a particular process for defining a specific subclass of
social choice functions. Each ordering on the set of alternatives and each median voter
scheme relative to this ordering defines a social choice function on the universal do-
main of preferences. This procedure becomes meaningful only when the structure and
characteristics of the set of alternatives induce a natural order on it. But then if we want
to design strategy-proof social choice functions on any domain that contains the set of
single-peaked preferences (relative to this natural ordering), we have to look only inside
the class of median voter schemes (this is a consequence of Moulin’s 1980 characteri-
zation); otherwise, the social choice function would be manipulable. Our approach is
relevant if agents, in addition to single-peaked preferences, may have additional prefer-
ences. The key point is to understand that a median voter scheme does not necessarily
become manipulable under this larger domain. This depends very much on the iden-
tity of the agent, the particular properties of the additional preferences, and the median
voter scheme under consideration. Lemmata 1 and 5 in the proofs of Theorems 1 and 2
identify exactly the class of extra preferences that an agent may have and simultane-
ously preserve the strategy-proofness of the median voter scheme. And again, this class
depends very much on the particular median voter scheme and, if it is not anonymous,
depends on the specific agent to whose domain these additional preferences have been
included. Our main contribution is then to compare, in terms of their manipulability,
some pairs of median voter schemes by using the setwise inclusion criterion on the cor-
responding extra classes of admissible preferences.

The second remark relates our comparability notion with two alternative notions
proposed by Pathak and Sönmez (2013) to compare two different matching mechanisms
(in school choice problems) according to their manipulability. Following Pathak and
Sönmez (2013), the profile R is vulnerable under the mechanism f if f is manipulable by
some agent at R; i.e., there exist i ∈N and R′

i ∈ U such that f (R′
i�R−i)Pi f (Ri�R−i). First,

and following their definitions in Section 1, a mechanism f is at least as manipulable as
mechanism g according to Pathak and Sönmez (at least as PS-manipulable as, for short)
if any profile that is vulnerable under g is also vulnerable under f :

• If there exist i ∈ N and R′
i ∈ U such that g(R′

i�R−i) Pi g(Ri�R−i), then there exist
j ∈N and R′′

j ∈ U such that f (R′′
j �R−j) Pj f (Rj�R−j).

Second, and following their definitions in Section 3, a mechanism f is at least as
strongly manipulable as mechanism g according to Pathak and Sönmez (at least as

10We are grateful to a referee who did ask this question. This first remark may help the reader to better
understand the meaning and interest of our contribution.
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strongly PS-manipulable as, for short) if for any profile where g is vulnerable, f is also
vulnerable by any agent who can manipulate g:11

• If there exist i ∈ N and R′
i ∈ U such that g(R′

i�R−i) Pi g(Ri�R−i), then there exists
R∗
i ∈ U such that f (R∗

i �R−i) Pi f (Ri�R−i).

Remark 2. If f is at least as strongly PS-manipulable as g, then f is at least as PS-
manipulable as g.

Proposition 5 below shows that if a generalized median voter scheme f is at least as
PS-manipulable as a generalized median voter scheme g, then f is at least as manipula-
ble as g.

Proposition 5. Let f and g be two generalized median voter schemes and assume that
f is at least as PS-manipulable as g. Then f is at least as manipulable as g.12

Proof. Fix i ∈ N and let Ri ∈ Mg
i . This means that there exists (R′

i�R−i) ∈ Un such that
g(R′

i�R−i) Pi g(Ri�R−i). Since g is tops-only, we may assume that R−i ∈ SPn−1. By as-
sumption, there exist j ∈N and R′′

j ∈ U such that

f (R′′
j �R−j) Pj f (Rj�R−j)� (10)

If j �= i, (10) implies that j can manipulate the generalized median voter scheme f at a
profile R, where Rj is a single-peaked preference, a contradiction with either Lemma 1

or Lemma 5. Hence, j = i. But then, by (10), Ri ∈ Mf
i . Thus, Ri ∈ Mf

i whenever Ri ∈ Mg
i ,

which implies that f is at least as manipulable as g. �

Example 1 below shows that the reverse implication does not hold; i.e., there exist
two median voter schemes f and g such that f is at least as manipulable as g but f

is not at least as PS-manipulable as g (and, by Remark 2, f is not at least as strongly
PS-manipulable as g). Therefore, Example 1 shows that our notion of being at least as
manipulable as is different than the two notions proposed by Pathak and Sönmez (2013).

Example 1. Let n = 3 and let f x and f y be two median voter schemes associated to
x = (0� 1

2 �
1
2 �1) and y = (0�0�1�1), respectively. By Theorem 1, and since [x1�xn+1] ⊂

[y1� yn+1] and [x2�xn]� [y2� yn], f y is at least as manipulable as f x. On the one hand, con-
sider any profile R = (R1�R2�R3) ∈ U3 and any preference R′

3 ∈ U such that (i) τ(Ri) = 1
for i = 1�2, (ii) τ(R3) = 1

4 and 3
4 P3

1
2 , and (iii) τ(R′

3) = 3
4 . Therefore, f x(R1�R2�R

′
3) =

3
4 P3

1
2 = f x(R) and, hence, R is vulnerable under f x. Moreover, f y(R) = 1 and R is not

vulnerable under f y . Thus, f y is not at least as PS-manipulable as f x and, hence, by

11Observe that the notions of “at least as PS-manipulable as” and “at least as strongly PS-manipulable
as” are relative to the inclusion of the sets of vulnerable profiles, while our notion of “at least as manipulable
as” is relative to the inclusion of the sets of manipulable preferences.

12In light of Remark 2, the statement of Proposition 5 also holds after replacing “g is at least as PS-
manipulable as f ” by “g is at least as strongly PS-manipulable as f .”



Theoretical Economics 11 (2016) Comparing median voter schemes 571

Remark 2, f y is not at least as strongly PS-manipulable as f x. On the other hand, con-
sider any profile R̂= (R̂1� R̂2� R̂3) ∈ U3 and any preference R̂′

3 ∈ U such that (i) τ(R̂1)= 1
2 ,

(ii) τ(R̂2) = 1
4 , (iii) τ(R̂3) = 3

4 and 1
4 P̂3

1
2 , and (iv) τ(R̂′

3) = 1
4 . Therefore, f x(R̂) = 1

2 and R̂

is not vulnerable under f x. Moreover, f y(R̂1� R̂2� R̂
′
3) = 1

4 P̂3
1
2 = f y(R̂) and, hence, R̂ is

vulnerable under f y . Thus, f x is not at least as PS-manipulable as f y and, hence, by Re-
mark 2, f x is not at least as strongly PS-manipulable as f y . Therefore, f x and f y are not
comparable according to the two notions proposed by Pathak and Sönmez (2013). ♦

Example 1 illustrates the fact that our comparability notion is based on the inclusion
of the maximal domains of preferences under which each of the two generalized median
voter schemes are strategy-proof. In this case, the maximal domain of preferences under
which f y is strategy-proof is the set of single-peaked preferences on [0�1] while f x ad-
mits a much larger maximal domain, the union of the three sets: {Ri ∈ U | 0 ≤ τ(Ri) <

1
2 ,

τ(Ri) < α < β ≤ 1
2 ⇒ α Ri β, and 1

2 < α ⇒ 1
2 Ri α}, {Ri ∈ U | 1

2 < τ(Ri) ≤ 1, 1
2 ≤ β < α <

τ(Ri) ⇒ αRi β, and α< 1
2 ⇒ 1

2 Ri α}, and {Ri ∈ U | τ(Ri) = 1
2 }.

Appendix A

Proof of Lemma 1. (⇒) Suppose there exists α∗ ∈ rfx such that Ri is not single-peaked
on ox(Ri) ∪ {τ(Ri)�α

∗}. We will prove that there exist R′
i ∈ U and R−i ∈ Un−1 such that

f x(R′
i�R−i) Pi f

x(Ri�R−i). We will divide the proof into three different cases.
Case 1. Suppose α∗ ∈ ox(Ri) and there exists β ∈ ox(Ri) such that α∗ < β < τ(Ri)

and α∗ Pi β; the other case where τ(Ri) < α∗ < β and β Pi α
∗ is similar and therefore is

omitted. Let R̂ ∈ Un be such that τ(R̂j) = α∗ for all j ∈ N . Since α∗ ∈ ox(Ri) and f x is a
median voter scheme, f x(Ri� R̂−i) = α∗. Similarly, let R̄ ∈ Un be such that τ(R̄j) = β for
all j ∈ N . Since β ∈ ox(Ri), f x(Ri� R̄−i)= β. Since f x(Ri� R̂−i) = α∗ Pi β= f x(Ri� R̄−i), by
the definition of f x, there must exist S ⊂ N \ {i} and j′ /∈ S such that

f x(Ri� R̂j′� R̂S� R̄−S∪{i�j′}) Pi f
x(Ri� R̄j′� R̂S� R̄−S∪{i�j′})� (11)

Now, let R′
i ∈ U be such that τ(R′

i) = f x(Ri� R̂j′� R̂S� R̄−S∪{i�j}). Since τ(R̂j) = α∗ < β =
τ(R̄j′) for all j ∈N ,

τ(R̂j′) = α∗ = f x(Ri� R̂−i)

≤ f x(Ri� R̂j′� R̂S� R̄−S∪{i�j′})

≤ f x(Ri� R̄j′� R̂S� R̄−S∪{i�j′})

≤ f x(Ri� R̄−i) (12)

= β

= τ(R̄j′)

< τ(Ri)�
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Then, by (12) and the definition of f x,

f x(R′
i� R̄j′� R̂S� R̄−S∪{i�j′}) = f x(Ri� R̂j′� R̂S� R̄−S∪{i�j′})�

Hence, by (11),

f x(R′
i� R̄j′� R̂S� R̄−S∪{i�j′}) Pi f

x(Ri� R̄j′� R̂S� R̄−S∪{i�j′})�

Thus, f x is manipulable by i at Ri with any R′
i with the property that τ(R′

i) = f x(Ri� R̂j′�
R̂S� R̄−S∪{i�j}).

Case 2. Suppose α∗ /∈ ox(Ri) and there exists β ∈ ox(Ri) such that α∗ < β < τ(Ri)

and α∗ Pi β; the other case where τ(Ri) < β < α∗ and α∗ Pi β proceeds similarly and is
therefore omitted. Let R̄ ∈ Un be such that τ(R̄j) = β for all j ∈N . Since β ∈ ox(Ri),

f x(Ri� R̄−i) = β� (13)

Let R̂ ∈ Un be such that τ(R̂j) = β for all j ∈ N . If there exist S ⊂ N \ {i} and j′ /∈ S such
that

f x(Ri� R̂j′� R̂S� R̄−S∪{i�j′}) Pi f
x(Ri� R̄j′� R̂S� R̄−S∪{i�j′}) (14)

holds, the proof proceeds as in Case 1. Hence, assume that there do not exist S ⊂ N \ {i}
and j′ /∈ S satisfying (14). Let N \ {i} = {j1� � � � � jn−1}. Then

β = f x(Ri� R̄−i) by (13)

Ri f
x(Ri� R̂j1� R̄−{i�j1}) consider S1 =∅� j′ = j1 /∈ S1� and ¬(14)

Ri f
x(Ri� R̂j2� R̂j1� R̄−{j1}∪{i�j2}) consider S2 = {j1}� j′ = j2 /∈ S2� and ¬(14)

Ri f
x(Ri� R̂j3� R̂{j1�j2}� R̄−{j1�j2}∪{i�j3}) consider S3 = {j1� j2}� j′ = j3 /∈ S3� and ¬(14)

���

Ri f
x(Ri� R̂jn−2� R̂{j1�j2�����jn−3}� R̄−{j1�j2�����jn−3}∪{i�jn−2})

consider Sn−1 = {j1� j2� � � � � jn−3}� j′ = jn−2 /∈ Sn−1� and ¬(14)

Ri f
x(Ri� R̂jn−1� R̂{j1�j2�����jn−2}� R̄−{j1�j2�����jn−2}∪{i�jn−1})

consider Sn = {j1� j2� � � � � jn−2}� j′ = jn−1 /∈ Sn� and ¬(14)

= f x(Ri� R̂−i) {j1� j2� � � � � jn−2} ∪ {i� jn−1} =N�

Hence, as α∗ Pi β,

α∗ Pi f
x(Ri� R̂−i)� (15)

Since α∗ ∈ rfx , f x(R̂i� R̂−i) = α∗. Thus, by (15), f x(R̂i� R̂−i) Pi f
x(Ri� R̂−i), which means

that f x is manipulable by i at Ri with any R̂i such that τ(R̂i)= α∗.
Case 3. Suppose α∗ /∈ ox(Ri) and there exists β ∈ ox(Ri) such that β < α∗ < τ(Ri)

and β Pi α
∗; the other case where τ(Ri) < α∗ < β and β Pi α

∗ proceeds similarly and
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is therefore omitted. We will prove that this case is not possible. Consider the pro-
file R̂ such that τ(R̂j) = α∗ for all j ∈ N . Since α∗ /∈ ox(Ri), β ∈ ox(Ri), and ox(Ri)

is an interval (see Lemma 2), f (Ri� R̂−i) < α∗. Furthermore, and since α∗ ≤ τ(Ri),
f x(R̂i� R̂−i) ≤ f x(Ri� R̂−i) < α∗. Hence, f x(R̂) < α. Thus, α∗ /∈ rfx , which contradicts
the initial hypothesis.

(⇐) Suppose f x is manipulable by i at Ri; that is, there exist R′
i ∈ U and R−i ∈ Un−1

such that

f x(R′
i�R−i) Pi f

x(Ri�R−i)� (16)

Consider the case τ(R′
i) < τ(Ri); the other case is similar and therefore is omitted. We

distinguish among three different cases.
Case 1: τ(Ri) < fx(Ri�R−i). Since f x is a median voter scheme and τ(R′

i) < τ(Ri),
f x(R′

i�R−i) = f x(Ri�R−i). But this contradicts (16).
Case 2: τ(Ri) = f x(Ri�R−i). Then f x(Ri�R−i) Pi f

x(R′
i�R−i), which also contradicts

(16).
Case 3: f x(Ri�R−i) < τ(Ri). Since τ(P ′

i) < τ(Ri) and (16) hold, f x(R′
i�R−i) <

fx(Ri�R−i). Hence, f x(R′
i�R−i) < fx(Ri�R−i) < τ(Ri) and τ(Ri) Pi f

x(R′
i�R−i) Pi

f x(Ri�R−i). Thus, and since f x(Ri�R−i)� τ(Ri) ∈ ox(Ri) ∪ {τ(Ri)} and f x(R′
i�R−i) ∈ rfx ,

Ri is not single-peaked on ox(Ri)∪ {τ(Ri)� f
x(R′

i�R−i)}. �

Proof of Lemma 2. We divide the proof into three cases.
Case 1: τ(Ri) < x1. The case xn+1 < τ(Ri) is symmetric and its proof proceeds simi-

larly; therefore, it is omitted. We prove that ox(Ri) = [x1�xn]. Let α ∈ ox(Ri) be arbitrary.
Then there exists R−i ∈ Un−1 such that

med{τ(R1)� � � � � τ(Rn)�x1� � � � � xn+1} = α�

Redefine y = (y1� � � � � y2n+1) ≡ (τ(R1)� � � � � τ(Rn)�x1� � � � � xn+1) ∈ [a�b]2n+1. If ys∗ < x1,
and since τ(Ri) < x1 ≤ · · · ≤ xn+1, #{s ∈ {1� � � � �2n + 1} | ys ≥ ys∗} ≥ n + 2. Hence,
α �= ys∗ . If xn < ys∗ and since τ(Ri) < x1 ≤ x2 ≤ · · · ≤ xn, #{s ∈ {1� � � � �2n + 1} |
ys ≤ ys∗} ≥ n + 2. Hence, α �= ys∗ . Thus, α ∈ [x1�xn]. Now, let α ∈ [x1�xn], R̂i = Ri,
and, for all j ∈ N \ {i}, let R̂j ∈ U be such that τ(R̂j) = α. Redefine y = (y1� � � � � y2n+1) ≡
(τ(R̂1)� � � � � τ(R̂n)�x1� � � � � xn+1) ∈ [a�b]2n+1. Since α ≤ xn ≤ xn+1, #{s ∈ {1� � � � �2n + 1} |
ys ≥ α} ≥ n + 1. Furthermore, and since τ(Ri) < x1 ≤ α, #{s ∈ {1� � � � �2n + 1} | ys ≤ α} ≥
n + 1. Hence, #{s ∈ {1� � � � �2n + 1} | ys ≥ α} = #{s ∈ {1� � � � �2n + 1} | ys ≤ α} = n + 1.
Thus, med{τ(R̂1)� � � � � τ(R̂n)�x1� � � � � xn+1) = α. Since R̂i = Ri, α ∈ ox(Ri). Therefore,
ox(Ri) = [x1�xn].

Case 2: x1 ≤ τ(Ri) < x2. The case xn < τ(Ri) ≤ xn+1 is symmetric and its proof
proceeds similarly; therefore, it is omitted. We prove that ox(Ri) = [τ(Ri)�xn+1]. Let
α ∈ ox(Ri) be arbitrary. Then there exists R−i ∈ Un−1 such that

med{τ(R1)� � � � � τ(Rn)�x1� � � � � xn+1} = α�

Redefine y = (y1� � � � � y2n+1) = (τ(R1)� � � � � τ(Rn)�x1� � � � � xn+1) ∈ [a�b]2n+1. If ys∗ < τ(Ri)

and since τ(Ri) < x2 ≤ · · · ≤ xn+1, #{s ∈ {1� � � � �2n + 1} | ys ≥ ys∗} ≥ n + 2. Hence,
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α �= ys∗ . If xn < ys∗ and since τ(Ri) < x2 ≤ · · · ≤ xn+1, #{s ∈ {1� � � � �2n + 1} | ys ≤ ys∗} ≥
n + 2. Hence, α �= ys∗ . Thus, α ∈ [τ(Ri)�xn]. Now let α ∈ [τ(Ri)�xn], R̂i = Ri, and,
for all j ∈ N \ {i}, let R̂j ∈ U be such that τ(R̂j) = α. Redefine y = (y1� � � � � y2n+1) ≡
(τ(R̂1)� � � � � τ(R̂n)�x1� � � � � xn+1) ∈ [a�b]2n+1. Since α ≤ xn ≤ xn+1, #{s ∈ {1� � � � �2n + 1} |
ys ≥ α} ≥ n + 1. Furthermore and since x1 ≤ τ(Ri) ≤ α, #{s ∈ {1� � � � �2n + 1} | ys ≤ α} ≥
n + 1. Hence, #{s ∈ {1� � � � �2n + 1} | ys ≥ α} = #{s ∈ {1� � � � �2n + 1} | ys ≤ α} = n + 1.
Thus, med{τ(R̂1)� � � � � τ(R̂n)�x1� � � � � xn+1) = α. Since R̂i = Ri, α ∈ ox(Ri). Therefore,
ox(Ri)= [τ(Ri)�xn].

Case 3: x2 ≤ τ(Ri) ≤ xn. We prove that ox(Ri) = [x2�xn]. Let α ∈ ox(Ri) be arbitrary.
Then there exists R−i ∈ Un−1 such that

med{τ(R1)� � � � � τ(Rn)�x1� � � � � xn+1} = α�

Redefine y = (y1� � � � � y2n+1) = (τ(R1)� � � � � τ(Rn)�x1� � � � � xn+1) ∈ [a�b]2n+1. If ys∗ < x2,
and since x2 ≤ · · · ≤ xn+1 and x2 ≤ τ(Ri), we have that #{s ∈ {1� � � � �2n + 1} | ys ≥
ys∗} ≥ n + 2. Hence, α �= ys∗ . If xn < ys∗ , and since x1 ≤ · · · ≤ xn and τ(Ri) ≤ xn,
we have that #{s ∈ {1� � � � �2n + 1} | ys ≤ ys∗} ≥ n + 2. Hence, α �= ys∗ . Thus, α ∈
[x2�xn]. Now let α ∈ [x2�xn], R̂i = Ri, and, for all j ∈ N \ {i}, let R̂j ∈ U be such that
τ(R̂j) = α. Redefine y = (y1� � � � � y2n+1) ≡ (τ(R̂1)� � � � � τ(R̂n)�x1� � � � � xn+1) ∈ [a�b]2n+1.
Since α ≤ xn ≤ xn+1, #{s ∈ {1� � � � �2n + 1} | ys ≥ α} ≥ n + 1. Furthermore and since
x1 ≤ x2 ≤ α, #{s ∈ {1� � � � �2n+ 1} | ys ≤ α} ≥ n+ 1. Hence, #{s ∈ {1� � � � �2n+ 1} | ys ≥ α} =
#{s ∈ {1� � � � �2n + 1} | ys ≤ α} = n + 1. Thus, med{τ(R̂1)� � � � � τ(R̂n)�x1� � � � � xn+1} = α.
Since R̂i = Ri, α ∈ ox(Ri). Therefore, ox(Ri) = [x2�xn]. �

Proof of Lemma 3. We divide the proof into five cases.
Case 1: τ(Ri) < x1. Then, by Lemma 2, ox(Ri) = [x1�xn]. Since τ(Ri) < x1 ≤ xn ≤ yn,

oy(Ri) =
⎧⎨
⎩

[y1� yn] if τ(Ri) < y1

[τ(Ri)� yn] if y1 ≤ τ(Ri) < y2

[y2� yn] if y2 ≤ τ(Ri)≤ yn.

Hence, ox(Ri) ⊂ oy(Ri).
Case 2: x1 ≤ τ(Ri) < x2. Then, by Lemma 2, ox(Ri) = [τ(Ri)�xn]. Since y1 ≤ x1 ≤

τ(Ri) < x2 ≤ xn ≤ yn,

oy(Ri) =
{ [τ(Ri)� yn] if y1 ≤ τ(Ri) < y2

[y2� yn] if y2 ≤ τ(Ri) ≤ yn.

Hence, ox(Ri) ⊂ oy(Ri).
Case 3: x2 ≤ τ(Ri) ≤ xn. Then y2 ≤ τ(Ri) ≤ yn. By Lemma 2, ox(Ri) = [x2�xn] and

oy(Ri)= [y2� yn]. Hence, ox(Ri) ⊂ oy(Ri).
Case 4: xn < τ(Ri) ≤ xn+1. Then, by Lemma 2, ox(Ri) = [x2� τ(Ri)]. Since y2 ≤ x2 ≤

xn < τ(Ri)≤ xn+1 ≤ yn+1,

oy(Ri)=
{ [y2� yn] if y2 ≤ τ(Ri) ≤ yn

[y2� τ(Ri)] if yn < τ(Ri) ≤ yn+1.

Hence, ox(Ri) ⊂ oy(Ri).
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Case 5: xn+1 < τ(Ri). Then, by Lemma 2, ox(Ri) = [x2�xn+1]. Since y2 ≤ x2 ≤ xn+1 <

τ(Ri),

oy(Ri)=
⎧⎨
⎩

[y2� yn] if y2 ≤ τ(Ri) ≤ yn
[y2� τ(Ri)] if yn < τ(Ri) ≤ yn+1

[y2� yn+1] if yn+1 < τ(Ri).

Hence, ox(Ri) ⊂ oy(Ri). �

Appendix B

We start with two preliminary notions and several remarks.
First, a generalized median voter scheme fp : Un → [a�b] can alternatively be repre-

sented by a monotonic family of right fixed ballots pr = {pr
S}S∈2N , where (i) for all S ∈ 2N ,

pr
S ∈ [a�b], (ii) S ⊂ T implies pr

S ≤ pr
T , (iii) for all S ∈ 2N , pr

S = pN\S , and (iv) for all R ∈ Un,
fp(R) = maxS∈2N minj∈S{τ(Rj)�p

r
S} ≡ fp

r
(R).

Second, a non-dummy interval Ii is a maximal non-dummy interval for i if there is
no non-dummy interval I ′

i such that Ii � I ′
i . Since the number of coalitions that contain

a player is finite, any maximal non-dummy interval Ii can be written as the union of a
family of intervals; namely, Ii = ⋃K

k=1 I
Sk
i , where i ∈ Sk for all k= 1� � � � �K.

Before moving to the proof of the four lemmata used to prove Theorem 2, we state
without proof the following facts.

Remark 3. Let fp : Un → [a�b] be a generalized median voter scheme and let Ri ∈ U .
Then Ri is single-peaked on (op(Ri)∩ Ii)∪{τ(Ri)�α

∗} for all α∗ ∈ Ii, for all maximal non-
dummy interval Ii if and only if Ri is single-peaked on (op(Ri) ∩ ISi ) ∪ {τ(Ri)�α

∗} for all
α∗ ∈ ISi , for all non-dummy interval ISi .

Remark 4. If p{i} < p{∅}, then [p{i}�p{∅}] is a non-dummy interval for i in fp : Un →
[a�b]. If pN <pN\{i}, then [pN�pN\{i}] is a non-dummy interval for i in fp.

Remark 5. If α ∈ [pN�pN\{i}], β ∈ [p{i}�p{∅}], and Ii is a maximal non-dummy interval
for i in fp : Un → [a�b] such that α�β ∈ Ii, then Ii = [pN�p{∅}].

Remark 6. If p{i} < pN\{i}, then [pN�p{∅}] is a (maximal) non-dummy interval for i in
fp : Un → [a�b].

Remark 7. If pN = p{i} <pN\{i} = p{∅}, then i is a dictator in fp : Un → [a�b].

Proof of Lemma 4. Let fp : Un → [a�b] be a generalized median voter scheme. We will
denote fp simply by f .

(⇒) Assume i is non-dummy at α in f . Then there exist R ∈ Un and R′
i ∈ U such that

f (Ri�R−i) = α and f (R′
i�R−i) �= α. We distinguish between two cases.

Case 1: f (Ri�R−i) = α < f(R′
i�R−i). Since f is a generalized median voter scheme,

τ(Ri) ≤ α < τ(R′
i). Let S = {j ∈ N | τ(Rj) ≤ α}. Observe that i ∈ S. First, we prove that
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pS ≤ α. Suppose otherwise, α < pS ; then maxj∈S{τ(Rj)�pS} = pS > α. By the defini-
tion of S and f , f (Ri�R−i) > α, a contradiction with f (Ri�R−i) = α. Now we prove that
α < pS\{i}. Suppose otherwise, pS\{i} ≤ α. For all j ∈ S \ {i}, τ(R′

j) = τ(Rj) ≤ α. Hence,
maxj∈S\{i}{τ(R′

j)�pS\{i}} ≤ α. Thus, f (R′
i�R−i) ≤ α, a contradiction with f (R′

i�R−i) > α.
Therefore, pS ≤ α ≤ pS\{i}. Since f (Ri�R−i) < f(R′

i�R−i), pS < pS\{i}.
Case 2: f (R′

i�R−i) < α = f (Ri�R−i). The proof proceeds symmetrically to Case 1
using the right fixed ballots representation of f .

(⇐) Assume there exists S ⊂ N such that i ∈ S, pS < pS\{i}, and pS ≤ α ≤ pS\{i}. We
distinguish between two cases.

Case 1: pS ≤ α < pS\{i}. Let R ∈ Un be such that τ(Rj) = α for all j ∈ S and τ(Rj) = b

for all j /∈ S. Then f (R) = α. Let R′
i ∈ U be such that α < τ(R′

i) < pS\{i}. Hence,
f (R′

i�R−i) = τ(R′
i) �= α. Thus, i is non-dummy at α in f .

Case 2: pS < α ≤ pS\{i}. Let R ∈ Un be such that τ(Rj) = pS for all j ∈ S \ {i}, τ(Ri) = α,
and τ(Rj)= b for all j /∈ S. Then f (R) = α. Let R′

i ∈ U be such that pS < τ(R′
i) < α. Hence,

f (R′
i�R−i) = τ(R′

i) �= α. Thus, i is non-dummy at α in f . �

Proof of Lemma 5. We will denote fp and op(Ri) simply by f and o(Ri), respectively.
(⇒) Assume f is not manipulable by i at Ri and let ISi = [pS�pS\{i}] be a non-dummy

interval for i in f . Fix α∗ ∈ ISi and let β ∈ (o(Ri) ∩ ISi ) ∪ {τ(Ri)}. We distinguish among
four cases.

Case 1: α∗ ∈ (o(Ri) ∩ ISi ) ∪ {τ(Ri)} and α∗ < β ≤ τ(Ri) (if β < α∗, the proof is similar,
changing the role of α∗ and β). We will show that β Ri α

∗. If β = τ(Ri), the statement
holds immediately. Assume β < τ(Ri). Then α∗�β ∈ ISi . Hence and since α∗ < β, pS ≤
α∗ <pS\{i}. Consider any R−i ∈ Un−1 with the property that for every j ∈N \ {i},

τ(Rj) =
{
α∗ if j ∈ S \ {i}
β if j ∈N \ S.

Let R̄ ∈ Un be such that τ(R̄j) = β for all j ∈ N \ {i} and τ(R̄i) = τ(Ri). Since β ∈ o(Ri) =
o(R̄i), f (R̄) = β. As τ(Rj) ≤ τ(R̄j) for j ∈ N , by Remark 1, f (R) ≤ f (R̄) = β. Moreover,
α∗ ≤ f (R). Hence,

α∗ ≤ f (R) ≤ β�

If S′ ⊂ S \{i}, then α∗ <pS\{i} ≤ pS′ because p is monotonic. Hence, maxj∈S′ {τ(Rj)�pS′ } >
α∗. If S′ � S \ {i}, then maxj∈S′ {τ(Rj)�pS′ } ≥ β> α∗. Thus, α∗ < f(R) ≤ β. We proceed by
distinguishing between two subcases.

Subcase 1.1: f (R) = β. Consider any R̂i ∈ U such that τ(R̂i) = α∗. Since α∗ < f(R),
α∗ ≤ f (R̂i�R−i). Furthermore, since pS ≤ α∗ = τ(R̂i) and τ(Rj) = α∗ for all j ∈ S \ {i},
f (R̂i�R−i) ≤ α∗. Hence, f (R̂i�R−i) = α∗. Since f is not manipulable by i at Ri, β Ri α

∗
holds.

Subcase 1.2: f (R) < β. Then f (R) /∈ {α∗�β�τ(Ri)} = {τ(Rj) | j ∈ N}. Thus, f (R) ∈
{pS | S ⊂ N}. Set R1 ≡ R and α∗

1 ≡ f (R1). Observe that α∗ < α∗
1 < β and since f is not

manipulable by i at Ri, α∗
1 = f (R1) Ri α

∗ (because f (R̂i�R
1
−i) = α∗ if τ(R̂i) = α∗). Since

{pS | S ⊂ N} is finite, we apply successively the previous argument starting with α∗
1 < β

and obtaining R1�R2� � � � �RK , where (i) K ≤ 2n, (ii) Rk
i = Ri for all k = 1� � � � �K, (iii) α∗ <



Theoretical Economics 11 (2016) Comparing median voter schemes 577

f (Rk) < f(Rk+1) < β for all k = 1� � � � �K − 1, (iv) f (R1) Ri α
∗ and f (Rk) Ri f (R

k−1) for
all k = 1� � � � �K, (v) f (Rk) ∈ {pS | S ⊂ N}, and (vi) f (RK) = β. Then, by transitivity of Ri,
βRi α

∗.
Case 2: α∗ ∈ (o(Ri) ∩ ISi ) ∪ {τ(Ri)} and τ(Ri) ≤ β < α∗. The proof proceeds as in

Case 1 using the right fixed ballots representation of f .
Case 3: α∗ /∈ o(Ri) and α∗ < β ≤ τ(Ri) (if τ(Ri) ≤ β < α∗, the proof is similar us-

ing the right fixed ballots representation of f ). We will show that β Ri α
∗. If β = τ(Ri),

the statement holds immediately. Assume β < τ(Ri) and consider any profile R̄ ∈ Un,
where, for every j ∈ N , τ(R̄j) = α∗. Since α∗ ∈ ISi ⊂ rf , f (R̄) = α∗. We will show that

α∗ ≤ f (Ri� R̄−i) ≤ β. Let R̂ = (Ri� R̄−i). Since α∗ ≤ τ(R̂j) for all j ∈ N , α∗ ≤ f (R̂). Con-
sider any subprofile R̃−i ∈ Un−1, where, for every j ∈ N \ {i}, τ(R̃j) = β. Since β ∈ o(Ri),
f (Ri� R̃−i) = β. As τ(R̄j) = α∗ <β = τ(R̃j) for all j ∈ N \ {i}, by Remark 1, f (Ri� R̄−i) ≤ β.
Since f is not manipulable by i at Ri and f (Ri� R̄−i) �= α∗ (because α∗ /∈ o(Ri)), we have
that f (Ri� R̄−i) Ri f (R̄) = α∗. Define α′ = f (Ri� R̄−i). Notice that α′ ≤ β ≤ τ(Ri) and
α′ ∈ o(Ri)∩ ISi . Therefore, by Case 1, βRi α

′. By transitivity of Ri, βRi α
∗.

Case 4: α∗ /∈ o(Ri) and β < α∗ ≤ τ(Ri) (if τ(Ri) ≤ α∗ < β, the proof is similar, chang-
ing the role of α∗ by β). We will show that this case is not possible. Consider any
profile R′ ∈ Un such that τ(R′

j) = α∗ for all j ∈ N . Since α∗ /∈ o(Ri), β ∈ o(Ri), and
o(Ri) is an interval, f (Ri�R

′
−i) < α∗. Furthermore, as α∗ ≤ τ(Ri) and Remark 1 holds,

f (R′
i�R

′
−i) ≤ f (Ri�R

′
−i) < α∗. Hence, f (R′) < α∗. Thus, α∗ /∈ rf , which contradicts the

fact that α∗ ∈ ISi .
(⇐) Assume f is manipulable by i at Ri. Then there exist R′

i ∈ U and R−i ∈ Un−1 such
that

f (R′
i�R−i) Pi f (Ri�R−i)� (17)

We assume that τ(R′
i) < τ(Ri) (if τ(Ri) < τ(R′

i), the proof is similar using the right fixed
ballots representation of f ). Set R′ = (R′

i�R−i). We distinguish among three cases.
Case 1: τ(Ri) < f(R). Since f is a generalized median voter scheme and τ(R′

i) <

τ(Ri), f (R′)= f (R), which contradicts (17).
Case 2: τ(Ri) = f (R). Then f (R) Ri f (R

′), which also contradicts (17).
Case 3: f (R) < τ(Ri). Since τ(R′

i) < τ(Ri), by Remark 1, f (R′) ≤ f (R), and (17),
f (R′) < f(R) holds. Hence, f (R′) < f(R) < τ(Ri) and τ(Ri) Pi f (R

′) Pi f (R). Thus,
as f (R)�τ(Ri) ∈ o(Ri) ∪ {τ(Ri)}, Ri is not single-peaked on o(Ri) ∪ {τ(Ri)� f (R

′)}. We
will show that there exists S ⊂ N such that i ∈ S and f (R′)� f (R) ∈ ISi = [pS�pS\{i}]. Set
α∗ ≡ f (R′) < f(R) ≡ β. Since f (R′) < f(R) and f is a generalized median voter scheme,
τ(R′

i) ≤ f (R′) = α∗. Define S̄ = {j ∈N | τ(Rj) ≤ α∗}. Then i /∈ S̄ and because β = f (R),

pS̄ ≥ β� (18)

Set S ≡ S̄ ∪ {i}. Hence, S = {j ∈ N | τ(R′
j) ≤ α∗}. Suppose pS > α∗. Then, for all S′ ⊂

Smaxj∈S′ {τ(R′
j)�pS′ } ≥ pS′ ≥ pS > α∗ and for all S∗ � S, maxj∈S∗{τ(R′

j)�pS∗} >α∗ because
if j /∈ S, then τ(R′

j) > α∗. Thus, α∗ < f(R′), which is a contradiction. Hence pS ≤ α∗.
Therefore, i ∈ S and

pS ≤ α∗ <β≤ pS\{i}�
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since S \ {i} = S̄ and (18) hold. Thus, there exist a non-dummy interval [pS�pS\{i}]
and α∗ = f (R′) ∈ [pS�pS\{i}] such that Ri is not single-peaked on (o(Ri) ∩ [pS�pS\{i}]) ∪
{τ(Ri)�α

∗}. �

The proof of Lemma 6 is omitted since it consists of verifying that the option set can
be written as stated.

Proof of Lemma 7. Let i ∈ S ⊂ N , let ISi be a non-dummy interval for i in fp, and let
α∗ ∈ ISi be arbitrary. The proof proceeds by looking at different cases that can be grouped
into two main cases depending on whether pN\{i} ≤ p{i} (Case 1) or p{i} <pN\{i} (Case 2).

Case 1: pN\{i} ≤ p{i}. Since [pN�p{i}] ∪ [pN\{i}�p{∅}] = rf and ISi ⊆ NDi
p ⊂ rf , either

α∗ ∈ [pN�p{i}] ∩ NDi
p or α∗ ∈ [pN\{i}�p{∅}] ∩ NDi

p. Hence, by (7) and (8), either α∗ ∈
[p̄N� p̄{i}] ∩ NDi

p̄ or α∗ ∈ [p̄N\{i}� p̄{∅}] ∩ NDi
p̄. Thus, there exists a non-dummy interval Īi

for i in f p̄ such that α∗ ∈ Īi. Let Îi be a maximal non-dummy interval for i in f p̄ such that
Īi ⊂ Îi. We have that α∗ ∈ Îi. We will show that (op(Ri)∩ ISi ) ⊂ (op̄(Ri)∩ Îi) for all Ri ∈ U ,
showing that for all β ∈ op(Ri)∩ ISi , two things happen simultaneously: β ∈ Îi (Claim a)
and β ∈ op̄(Ri) (Claim A) for all Ri ∈ U .

Claim a. β ∈ Îi.

Proof. We distinguish among five cases.
Case a.1: α∗ ∈ [pN�p{i}] \ [pN\{i}�p∅] and pN ≤ β ≤ p{i}. Assume β≤ α∗ (the proof of

the other case proceeds similarly). As β�α∗ ∈ [pN�p{i}] ∩ ISi and ISi is a interval, [β�α∗] ⊂
[pN�p{i}]∩ISi . Hence, by (7), [β�α∗] ⊂ [pN�p{i}]∩NDi

p ⊂ [p̄N� p̄{i}]∩NDi
p̄. Then [β�α∗] ⊂

NDi
p̄. As Îi is a maximal non-dummy interval and α∗ ∈ Îi, [β�α∗] ⊂ Îi. Therefore, β ∈ Îi.
Case a.2: α∗ ∈ [pN�p{i}] \ [pN\{i}�p{∅}] and p{i} < β ≤ p{∅}. As pN ≤ α∗ < pN\{i},

p{i} < β ≤ p{∅}, and ISi is a non-dummy interval such that α∗�β ∈ ISi , we have that by
Remark 5, NDi

p = [pN�p{∅}]. Then, by (7) and (8), [pN�p{i}] ⊂ [p̄N� p̄{i}] ∩ NDi
p̄ and

[pN\{i}�p{∅}] ⊂ [p̄N\{i}� p̄{∅}] ∩ NDi
p̄. Hence, [pN�p{i}] ∪ [pN\{i}�p{∅}] ⊂ NDi

p̄. Thus,

[α∗�β] ⊂ NDi
p̄. As Îi is a maximal non-dummy interval and α∗ ∈ Îi, [α∗�β] ⊂ Îi. There-

fore, β ∈ Îi.
Case a.3: α∗ ∈ [pN\{i}�p{∅}] \ [pN�p{i}] and pN\{i} ≤ β ≤ p{∅}. Assume α∗ < β (the

proof of the other case proceeds similarly). Since β�α∗ ∈ [pN\{i}�p{∅}] ∩ ISi and ISi is an
interval, by (8), [α∗�β] ⊂ [pN\{i}�p{∅}] ∩ ISi ⊂ [pN\{i}�p{∅}] ∩ NDi

p ⊂ [p̄N\{i}� p̄{∅}] ∩ NDi
p̄.

Hence, [α∗�β] ⊂ NDi
p̄. As Îi is a maximal non-dummy interval and α∗ ∈ Îi, [α∗�β] ⊂ Îi.

Therefore, β ∈ Îi.
Case a.4: α∗ ∈ [pN\{i}�p{∅}] \ [pN�p{i}] and pN ≤ β < pN\{i}. Since p{i} < α∗ ≤ p{∅},

pN ≤ β < pN\{i}, and ISi is a non-dummy interval such that α∗�β ∈ ISi , by Remark 5,
NDi

p = [pN�p{∅}]. Hence, by (7) and (8), [pN�p{i}] ⊂ [p̄N� p̄{i}]∩NDi
p̄ and [pN\{i}�p{∅}] ⊂

[p̄N\{i}� p̄{∅}] ∩ NDi
p̄. Hence, [pN�p{i}] ∪ [pN\{i}�p{∅}] ⊂ NDi

p̄ and [β�α∗] ⊂ NDi
p̄. As Îi is

a maximal non-dummy interval and α∗ ∈ Îi, [β�α∗] ⊂ Îi. Therefore, β ∈ Îi.
Case a.5: α∗ ∈ [pN\{i}�p{∅}] ∩ [pN�p{i}]. Hence, α∗ ∈ [pN\{i}�p{i}] ∩ NDi

p. Thus, by

(7) and (8), α∗ ∈ [p̄N\{i}� p̄{∅}] ∩ [p̄N� p̄{i}] ∩ NDi
p. Assume α∗ < β (the proof of the other
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case proceeds similarly). Since pN\{i} < α∗ < β ≤ p{∅} and ISi is an interval, [α∗�β] ⊂
[pN\{i}�p{∅}] ∩ ISi . Hence, by (8), [α∗�β] ⊂ [p̄N\{i}� p̄{∅}] ∩ NDi

p̄. Thus [α∗�β] ⊂ NDi
p̄. As

Îi is a maximal non-dummy interval and α∗ ∈ Îi, [α∗�β] ⊂ Îi. Therefore, β ∈ Îi. �

Claim A. β ∈ op̄(Ri).

Proof. We proceed by first distinguishing between Case A.1 and Case A.2, and in turn
for each one of them, the proof is divided in five subcases.

Case A.1: p̄N\{i} ≤ p̄{i}. By Lemma 6,

op(Ri) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[pN�p{i}] if a ≤ τ(Ri) ≤ pN

[τ(Ri)�p{i}] if pN < τ(Ri)≤ pN\{i}
[pN\{i}�p{i}] if pN\{i} < τ(Ri) ≤ p{i}
[pN\{i}� τ(Ri)] if p{i} < τ(Ri)≤ p{∅}
[pN\{i}�p{∅}] if p{∅} < τ(Ri),

and

op̄(Ri) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[p̄N� p̄{i}] if a ≤ τ(Ri) ≤ p̄N

[τ(Ri)� p̄{i}] if p̄N < τ(Ri)≤ p̄N\{i}
[p̄N\{i}� p̄{i}] if p̄N\{i} < τ(Ri) ≤ p̄{i}
[p̄N\{i}� τ(Ri)] if p̄{i} < τ(Ri)≤ p̄{∅}
[p̄N\{i}�p{∅}] if p̄{∅} < τ(Ri).

(19)

Case A.1.1: a ≤ τ(Ri) ≤ pN . Then β ∈ [pN�p{i}]. Since β ∈ ISi , β ∈ [pN�p{i}] ∩ NDi
p.

By (7), β ∈ [p̄N� p̄{i}]. Then β ∈ [τ(Ri)� p̄{i}] and p̄N ≤ β. Therefore, by the first three rows
in (19), β ∈ op̄(Ri) holds.

Case A.1.2: pN < τ(Ri) ≤ pN\{i}. Then β ∈ [τ(Ri)�p{i}]. Since β ∈ ISi , β ∈ [pN�p{i}] ∩
NDi

p. By (7), β ∈ [p̄N� p̄{i}]. Then β ∈ [τ(Ri)� p̄{i}] and p̄N ≤ β. Therefore, by the first
three rows in (19), β ∈ op̄(Ri) holds.

Case A.1.3: pN\{i} < τ(Ri) ≤ p{i}. Then β ∈ [pN\{i}�p{i}]. Since β ∈ ISi , β ∈
[pN\{i}�p{i}] ∩ NDi

p. By (7) and (8), β ∈ [p̄N\{i}� p̄{i}]. By (19), β ∈ op̄(Ri).

Case A.1.4: p{i} < τ(Ri) ≤ p{∅}. Then β ∈ [pN\{i}� τ(Ri)]. Since β ∈ ISi , β ∈
[pN\{i}�p{∅}] ∩ NDi

p. By (8), β ∈ [p̄N\{i}� p̄∅]. Then β ∈ [p̄N\{i}� τ(Ri)] and β ≤ p̄{∅}.
Therefore, by the last three rows in (19), β ∈ op̄(Ri) holds.

Case A.1.5: p{∅} < τ(Ri). Then β ∈ [pN\{i}�p{∅}]. Since β ∈ ISi , β ∈ [pN\{i}�p{∅}] ∩
NDi

p. By (8), β ∈ [p̄N\{i}� p̄∅]. Then β ∈ [p̄N\{i}� τ(Ri)] and β ≤ p̄{∅}. Therefore, by the
last three rows in (19), β ∈ op̄(Ri) holds.

Case A.2: p̄{i} < p̄N\{i}. By Lemma 6,

op̄(Ri)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[p̄N� p̄{i}] if a ≤ τ(Ri)≤ p̄N

[τ(Ri)� p̄{i}] if p̄N < τ(Ri) ≤ p̄{i}
{τ(Ri)} if p̄{i} < τ(Ri) ≤ p̄N\{i}
[p̄N\{i}� τ(Ri)] if p̄N\{i} < τ(Ri) ≤ p̄{∅}
[p̄N\{i}� p̄{∅}] if p̄{∅} < τ(Ri).

Case A.2.1: a≤ τ(Ri) ≤ pN . The proof proceeds as in Case A.1.1.
Case A.2.2: pN < τ(Ri) ≤ pN\{i}. The proof proceeds as in Case A.1.2.
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Case A.2.3: pN\{i} < τ(Ri) ≤ p{i}. Then β ∈ [pN\{i}�p{i}]. By (7), (8), and β ∈ NDi
p, β ∈

[p̄N\{i}� p̄{i}] ∩ NDi
p̄, contradicting that p̄{i} < p̄N\{i}. Then, in this case, ISi ∩ op(Ri) = ∅

and the proof is trivial.
Case A.2.4: p{i} < τ(Ri) ≤ p{∅}. The proof proceeds as in Case A.1.4.
Case A.2.5: p{∅} < τ(Ri). The proof proceeds as in Case A.1.5. �

Case 2: Assume p{i} < pN\{i}. Then, by Remark 6, NDi
p = [pN�p{∅}] and itself is

a maximal non-dummy interval for i in fp. As [pN�p{∅}] = [pN�p{i}] ∪ [p{i}�pN\{i}] ∪
[pN\{i}�p{∅}], by (7), (8), and (9), we have that there exists a non-dummy interval for i in
f p̄ such that [pN�p{∅}] ⊂ Îi. Let α∗ ∈ [pN�p{∅}] be arbitrary. Then α∗ ∈ Îi. We will show
that

(op(Ri)∩ [pN�p{∅}]) ⊂ (op̄(Ri)∩ Îi) for all Ri ∈ U � (20)

Then, and since ISi ⊂ [pN�p{∅}] for any S ⊂ N , the statement of Lemma 7 will follow
immediately since (op(Ri) ∩ ISi ) ⊂ (op(Ri) ∩ [pN�p{∅}]) ⊂ (op̄(Ri) ∩ Îi). To prove that
(20) holds, observe first that op(Ri) ∩ [pN�p{∅}] ⊂ Îi. It remains to be proven that if
β ∈ op(Ri) ∩ [pN�p{∅}], then β ∈ op̄(Ri). We proceed by distinguishing between two
cases.

Case 2.1: p̄N\{i} ≤ p̄{i}. By Lemma 6,

op(Ri) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[pN�p{i}] if a≤ τ(Ri) ≤ pN

[τ(Ri)�p{i}] if pN < τ(Ri) ≤ p{i}
{τ(Ri)} if p{i} < τ(Ri) ≤ pN\{i}
[pN\{i}� τ(Ri)] if pN\{i} < τ(Ri)≤ p{∅}
[pN\{i}�p{∅}] if p{∅} < τ(Ri)

and

op̄(Ri)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[p̄N� p̄{i}] if a ≤ τ(Ri)≤ p̄N

[τ(Ri)� p̄{i}] if p̄N < τ(Ri) ≤ p̄N\{i}
[p̄N\{i}� p̄{i}] if p̄N\{i} < τ(Ri) ≤ p̄{i}
[p̄N\{i}� τ(Ri)] if p̄{i} < τ(Ri) ≤ p̄{∅}
[p̄N\{i}� p̄{∅}] if p̄{∅} < τ(Ri).

(21)

We distinguish among five subcases.
Case 2.1.1: a ≤ τ(Ri) ≤ pN . Then β ∈ [pN�p{i}]. Since β ∈ ISi , β ∈ [pN�p{i}] ∩ NDi

p. By
(7), β ∈ [p̄N� p̄{i}]. Then β ∈ [τ(Ri)� p̄{i}] and p̄N ≤ β. Therefore, by the first three rows in
(21), β ∈ op̄(Ri) holds.

Case 2.1.2: pN < τ(Ri) ≤ p{i}. Then β ∈ [τ(Ri)�p{i}]. Since β ∈ ISi , β ∈ [pN�p{i}] ∩
NDi

p. By (7), β ∈ [p̄N� p̄{i}]. Then β ∈ [τ(Ri)� p̄{i}] and p̄N ≤ β. Therefore, by the first
three rows in (21), β ∈ op̄(Ri) holds.

Case 2.1.3: p{i} < τ(Ri) ≤ pN\{i}. Then β = τ(Ri) ∈ [pN�p{∅}] ⊂ Îi ⊂ [p̄N� p̄{∅}]. Since
β = τ(Ri) ∈ [p̄N� p̄∅], β ∈ op̄(Ri) because f p̄ in unanimous on rf p̄ = [p̄N� p̄∅].

Case 2.1.4: pN\{i} < τ(Ri) ≤ p{∅}. Then β ∈ [pN\{i}� τ(Ri)]. Since β ∈ ISi , β ∈ [pN\{i}�
p∅] ∩ NDi

p. By (8), β ∈ [p̄N\{i}� p̄{∅}]. Then β ∈ [p̄N\{i}� τ(Ri)] and β ≤ p̄{∅}. Therefore,
by the last three rows in (21), β ∈ op̄(Ri) holds.
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Case 2.1.5: p{∅} < τ(Ri). Then β ∈ [pN\{i}�p{∅}]. Since β ∈ ISi , β ∈ [pN\{i}�p{∅}] ∩
NDi

p. By (8), β ∈ [p̄N\{i}� p̄{∅}]. Then β ∈ [p̄N\{i}� τ(Ri)] and β ≤ p̄{∅}. Therefore, by the
last three rows in (21), β ∈ op̄(Ri) holds.

Case 2.2: p̄{i} < p̄N\{i}. By Lemma 6,

op̄(Ri)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[p̄N� p̄{i}] if a ≤ τ(Ri)≤ p̄N

[τ(Ri)� p̄{i}] if p̄N < τ(Ri) ≤ p̄{i}
{τ(Ri)} if p̄{i} < τ(Ri) ≤ p̄N\{i}
[p̄N\{i}� τ(Ri)] if p̄N\{i} < τ(Ri) ≤ p̄{∅}
[p̄N\{i}� p̄{∅}] if p̄{∅} < τ(Ri).

The proof follows arguments similar to those already used in Case 2.1. �

Proof of Theorem 2. (⇒) Suppose Ri ∈ Mfp

i . By Lemma 5, there exist a non-dummy
interval ISi = [pS�pS\{i}] for i in fp and α∗ ∈ ISi such that Ri is not single-peaked on
(op(Ri) ∩ ISi ) ∪ {τ(Ri)�α

∗}. Hence, by Lemma 7, there exists a maximal non-dummy
interval Îi for i in f p̄ such that α∗ ∈ Îi and (op(Ri) ∩ ISi ) ∪ {τ(Ri)�α

∗} ⊂ (op̄(Ri) ∩ Îi) ∪
{τ(Ri)�α

∗}. Thus, Ri is not single-peaked on (op̄(Ri)∩ Îi)∪{τ(Ri)�α
∗}. Then by Lemma 5

and Remark 3, Ri ∈ Mf p̄

i .
(⇐) Assume f p̄ is at least as manipulable as fp. Then

Mfp

i ⊂ Mf p̄

i for all i ∈N� (22)

To obtain a contradiction, assume [pN�p{i}] ∩ NDi
p � [p̄N� p̄{i}] ∩ NDi

p̄ or [pN\{i}�p{∅}] ∩
NDi

p � [p̄N\{i}� p̄{∅}]∩ NDi
p̄ or [p{i}�pN\{i}]� NDi

p̄. We proceed by distinguishing among
the three cases.

Case 1: [pN�p{i}] ∩ NDi
p � [p̄N� p̄{i}] ∩ NDi

p̄. Then there exists a maximal non-

dummy interval I for i in fp such that [pN�p{i}] ∩ I � [p̄N� p̄{i}] ∩ NDi
p̄. Let σ1 ≤ σ2

be such that [pN�p{i}] ∩ I = [σ1�σ2]. Let {Īit }t=1�����T be the collection of all maximal non-
dummy intervals for i in f p̄; in particular, by the definition of NDi

p̄ and the fact that

they are maximal intervals, NDi
p̄ = ⋃

t=1�����T Īit and for all t� t ′ = 1� � � � �T such that t �= t ′,
Īit ∩ Īit ′ = ∅. Then, for any maximal non-dummy interval Īit for i in fp̄, we have that

[σ1�σ2]� [p̄N� p̄{i}] ∩ Īit � (23)

We distinguish between two subcases.
Case 1.a: NDi

p̄ =∅. Two further subcases are possible.
Case 1.a.1: σ1 < σ2. Let α�β�γ ∈ [a�b] and Ri ∈ U be such that σ1 < α < β < γ < σ2,

τ(Ri) = α, and γ Pi β.13 Hence, τ(Ri) ∈ [σ1�σ2] ⊂ [pN�p{i}]. By Lemma 6,

op(Ri)=
{ [pN\{i}�p{i}] if pN\{i} < τ(Ri) ≤ p{i}

[τ(Ri)�p{i}] otherwise.

Then, and because β�γ ∈ [σ1�σ2] ⊂ I and β�γ ∈ [τ(Ri)�σ2] ⊂ [τ(Ri)�p{i}] ⊂ op(Ri), Ri is
not single-peaked on (op(Ri) ∩ I) ∪ {τ(Ri)} since γ Pi β. But for all t = 1� � � � �T and all

13The Ri is defined in any arbitrary way in [a�b] \ {γ�β}.
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α′ ∈ Īit , Ri is single-peaked on (op̄(Ri) ∩ Īit ) ∪ {τ(Ri)�α
′} trivially since op̄(Ri) ∩ Īit = ∅.

Thus, by Lemma 5, Ri ∈ Mfp

i \Mf p̄

i , which contradicts (22).
Case 1.a.2: σ1 = σ2. Since I ⊂ [pN�p{∅}], [pN�p{i}] ∩ I = {σ1} and I is a (non-

degenerated) interval (since I is a non-dummy interval), p{i} = σ1 = σ2. Therefore,
I = [p{i}�p{∅}] because I ⊂ [pN�p{∅}], I is a maximal non-dummy interval, and by Re-
mark 4, [p{i}�p{∅}] is a non-dummy interval of i in fp. Hence, as I is a nondegenerated
interval,

p{i} = σ1 <p{∅}�

Two subcases are possible.
Case 1.a.2.a: pN\{i} < p{∅}. Let α�β�γ ∈ [a�b] and Ri ∈ U be such that max{pN\{i}�

p{i}} < α<β< γ < p{∅}, τ(Ri) = γ, and α Pi β.14 Hence, τ(Ri) ∈ [max{pN\{i}�p{i}}�p{∅}].
By Lemma 6,

op(Ri) = [pN\{i}� τ(Ri)]�
Then and because α�β�τ(Ri) ∈ op(Ri)∩ I ∪ {τ(Ri)}, Ri is not single-peaked on op(Ri)∩
I∪{τ(Ri)} since αPi β. But for t = 1� � � � �T and all α ∈ Īit , Ri is single-peaked on (op̄(Ri)∩
Īit )∪ {τ(Ri)�α

′} trivially since op̄(Ri)∩ Īit =∅. Thus, by Lemma 5, Ri ∈ Mfp

i \Mf p̄

i which
contradicts (22).

Case 1.a.2.b: p{i} < pN\{i} = p{∅}. Then, by Remark 6, [pN�p{∅}] is a non-dummy
interval of i in fp. As I = [p{i}�p{∅}] is a maximal non-dummy interval of i in fp, we
must have I = [pN�p{∅}]. Therefore, pN = p{i}. Hence, pN = p{i} and pN\{i} = p{∅}. By
Remark 7, i is a dictator in fp, which is a contradiction.

Case 1.b: NDi
p̄ �= ∅. Then [p̄N� p̄{i}] ∩ Īit �= ∅ for all t = 1� � � � �T . To see that, ob-

serve that it holds immediately if p̄{i} = p̄{∅}. Assume p̄{i} < p̄{∅}. Then there exists

Īit ′ ⊇ Ī
{i}
i = [p̄{i}� p̄{∅}] because, by Remark 4, [p̄{i}� p̄{∅}] is a non-dummy interval for i

in f p̄. Then [p̄N� p̄{i}] ∩ Īit ′ �= ∅. Furthermore, for all t �= t ′, [p̄N� p̄{i}] ∩ Īit �= ∅, since
Īit ∩ Īt

′
i =∅. For each t = 1� � � � �T , let ηt

1 ≤ ηt
2 be such that [p̄N� p̄{i}] ∩ Īit = [ηt

1�η
t
2]. Then,

by (23), [σ1�σ2]� [ηt
1�η

t
2] for all t = 1� � � � �T . Hence,

σ1 <ηt
1 or σ2 >ηt

2 for all t = 1� � � � �T� (24)

Assume, without loss of generality, that η1
1 <η2

1 < · · · <ηT
1 (and η1

2 <η2
2 < · · · <ηT

2 ). We
distinguish among four different cases.

Case 1.b.1. There exists t ′ ∈ {1� � � � �T } such that σ1 < ηt ′
1 ≤ σ2 ≤ ηt ′

2 . This t ′ is unique,
because the family {Īit }t=1�����T is pairwise disjoint. Let

η2 =
{

max{α ∈ Īit ′−1} if t ′ �= 1
a if t ′ = 1

and

η1 =
{

min{α ∈ Īit ′+1} if t ′ �= T

b if t ′ = T .

14The Ri is defined in any arbitrary way in[a�b] \ {α�β}.
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Thus, η2 < ηt ′
1 (if η2 �= a, then the proof is trivial and if η2 = a, then a ≤ σ1 < ηt ′

1 ) and
η1 ≥ ηt ′

2 . Let Ri ∈ U and α�β�γ ∈ [a�b] be such that (i) max{σ1�η2} < α < β < γ < ηt ′
1 ,

(ii) τ(Ri) = α, (iii) γ Pi β, (iv) if ρ�δ ∈ [a�b] and ηt ′
1 < ρ < δ, then ηt ′

1 Ri ρ Ri δ, and
(v) if ρ�δ ∈ [a�b] and δ < ρ < max{σ1�η2}, then max{σ1�η2} Ri δ Ri ρ.15 Hence, τ(Ri) ∈
(σ1�σ2)⊂ [pN�p{i}] and τ(Ri) < ηt ′

1 < p̄{i}, where the last inequality follows from the fact
that [p̄N� p̄{i}] ∩ Īit ′ = [ηt ′

1 �η
t ′
2 ]. By Lemma 6, and since if p{i} < pN\{i}, then pN ≤ σ1 ≤

τ(Ri) ≤ σ2 ≤ p{i} <pN\{i}, and if p̄{i} < p̄N\{i}, then ≤ τ(Ri) ≤ ηt ′
1 ≤ p̄{i} < p̄N\{i},

op(Ri) =
{ [pN\{i}�p{i}] if pN\{i} < τ(Ri) ≤ p{i}

[τ(Ri)�p{i}] otherwise
(25)

op̄(Ri) =
⎧⎨
⎩

[p̄N� p̄{i}] if τ(Ri) < p̄N

[p̄N\{i}� p̄{i}] if p̄N\{i} < τ(Ri) ≤ p̄{i}
[τ(Ri)� p̄{i}] otherwise.

Then Ri is not single-peaked on (op(Ri) ∩ I) ∪ {τ(Ri)} because β�γ ∈ [σ1�σ2] ⊂ I and
β�γ ∈ [τ(Ri)�σ2] ⊂ [τ(Ri)�p{i}] ⊂ op(Ri). We will now show that, for all t = 1� � � � �T , Ri

is single-peaked on (op̄(Ri)∩ Īit )∪ {τ(Ri)�α
′} for all α′ ∈ Īit . We distinguish between two

subcases.
Case 1.b.1.a: t �= t ′. By the definition of Ri and the fact that either Īit ⊂ [p̄N�η2] ⊂

[p̄N�max{σ1�η2}] or Īit ⊂ [η1� p̄{∅}] ⊂ [η1� p̄{∅}] ⊂ [ηt ′
1 � p̄{∅}], Ri is single-peaked on Īit ∪

{τ(Ri)}. Thus, Ri is single-peaked on (op̄(Ri)∩ Īit )∪ {τ(Ri)�α
′} for all α′ ∈ Īit .

Case 1.b.1.b: t = t ′. By (25), op̄(Ri) ⊂ [p̄N� p̄{i}]. Hence, op̄(Ri) ∩ Īit ′ ⊂ [ηt ′
1 �η

t ′
2 ]. Thus,

by its definition, Ri is single-peaked on (op̄(Ri) ∩ Īit ′) ∪ {τ(Ri)}. Let α′ ∈ Īit ′ . Two further
subcases are distinguished.

Case 1.b.1.b.1: α′ ∈ [p̄N� p̄{i}]. Then α′ ∈ [ηt ′
1 �η

t ′
2 ] because α′ ∈ Īit ′ . Hence, by the def-

inition of Ri and the fact that op̄(Ri) ∩ Īit ′ ⊂ [ηt ′
1 �η

t ′
2 ], Ri is single-peaked on (op̄(Ri) ∩

Īit ′)∪ {τ(Ri)�α
′}.

Case 1.b.1.b.2: α′ /∈ [p̄N� p̄{i}]. Then α′ > p̄{i} ≥ ηt ′
2 ≥ ηt ′

1 . Hence, by the definition of Ri

and the fact that op̄(Ri)∩ Īit ′ ⊂ [ηt ′
1 �η

t ′
2 ], Ri is single-peaked on (op̄(Ri)∩ Īit ′)∪{τ(Ri)�α

′}.

Then, by Lemma 5, Ri ∈ Mfp

i \Mf p̄

i , which contradicts (22).
Case 1.b.2: There exists t ′ ∈ {1� � � � �T } such that ηt ′

1 ≤ σ1 ≤ ηt ′
2 < σ2. This t ′ is unique,

because the family {Īit }t=1�����T is pairwise disjoint. The proof of this case is similar to
Case 1.b.1, because the problem is symmetric, and therefore it is omitted.

Case 1.b.3: [σ1�σ2] ∩ [ηt
1η

t
2] = ∅ for all t ∈ {1� � � � �T }. The proof of this case is similar

to Case 1.a and therefore it is omitted.
Case 1.b.4: Assume that neither Case 1.b.1 nor Case 1.b.2 nor Case 1.b.3 hold. By (24),

for all t ∈ {1� � � � �T },

ηt
1 >σ1 and ηt

2 <σ2�

Let η1 = η1
1 and η2 = ηT

2 . Then

σ1 <η1 ≤ η2 <σ2�

15The Ri is defined in any arbitrary way in [max{σ1�η2}�ηt′
1 ] \ {γ�β}.
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Let Ri ∈ U and α�β�γ ∈ [a�b] be such that (i) σ1 < α < β < γ < η1, (ii) τ(Ri) = α,
(iii) γ Pi β, and (iv) if ρ�δ ∈ [a�b] and η1 < ρ < δ, then η1 Ri ρ Ri δ.16 Hence, τ(Ri) ∈
[σ1�σ2] ⊂ [pN�p{i}] and τ(Ri) < η1 ≤ p̄{i}. By Lemma 6 and similarly as in Case 1.b.1,

op(Ri) =
{ [pN\{i}�p{i}] if pN\{i} < τ(Ri) ≤ p{i}

[τ(Ri)�p{i}] otherwise

op̄(Ri) =
⎧⎨
⎩

[p̄N� p̄{i}] if τ(Ri) < p̄N

[p̄N\{i}� p̄{i}] if p̄N\{i} < τ(Ri) ≤ p̄{i}
[τ(Ri)� p̄{i}] otherwise.

Then Ri is not single-peaked on (op(Ri)∩ I)∪ {τ(Ri)} because β�γ ∈ op(Ri)∩ I. We will
now show that, for all t = 1� � � � �T , Ri is single-peaked on (op̄(Ri)∩ Īit )∪{τ(Ri)�α

′} for all
α′ ∈ Īit . Fix t = 1� � � � �T . Since op̄(Ri) ⊂ [p̄N� p̄{i}], op̄(Ri)∩ Īit ⊂ [ηt

1�η
t
2] ⊂ [η1�η2]. Then,

by its definition, Ri is single-peaked on (op̄(Ri)∩ Īit )∪ {τ(Ri)}. We will now show that Ri

is single-peaked on (op̄(Ri)∩ Īit )∪ {τ(Ri)�α
′} for all α′ ∈ Īit . We distinguish between two

subcases.
Case 1.b.4.a: α′ ∈ [p̄N� p̄{i}]. Then α′ ∈ [ηt

1�η
t
2] because α′ ∈ Īit . Hence, α′ ∈ [η1�η2].

Therefore, by definition of Ri and the fact that op̄(Ri)∩ Īit ⊂ [η1�η2], Ri is single-peaked
on (op̄(Ri)∩ Īit )∪ {τ(Ri)�α

′}.
Case 1.b.4.b: α′ /∈ [p̄N� p̄{i}]. Then α′ > p̄{i} ≥ η2 ≥ η1 because α′ ∈ Īit ⊂ rf p̄ . Hence,

by definition of Ri and the fact that op̄(Ri) ∩ Īit ⊂ [η1�η2], Ri is single-peaked on
(op̄(Ri)∩ Īit )∪ {τ(Ri)�α

′}.

Therefore, by Lemma 5, Ri ∈ Mfp

i \Mf p̄

i , which contradicts (22).
Case 2: [pN\{i}�p{∅}] ∩ NDi

p � [p̄N\{i}� p̄{∅}] ∩ NDi
p̄. Since the problem is symmetric,

the proof is similar to the one used in Case 1.
Case 3: [p{i}�pN\{i}]� NDi

p̄. Then p{i} ≤ pN\{i}. We proceed by distinguishing among
four subcases.

Case 3.a: p{i} = pN\{i}. Then we can apply either Case 1 or Case 2.
Hence, assume p{i} <pN\{i} and let γ ∈ [p{i}�pN\{i}] \ NDi

p̄.
Case 3.b: Either p{i} = γ or pN\{i} = γ holds. Then we can apply either Case 1 or

Case 2.
Case 3.c: p{i} < γ < pN\{i} and pN < p{i}. Let Ri ∈ U and let α�β ∈ [a�b] be such that

(i) pN < α < β< p{i}, (ii) τ(Ri) = α, (iii) γ Pi β, and (iv) if ρ�δ ∈ [a�b] \ {γ} and α < ρ < δ

or δ < ρ< α, then ρRi δ. By Lemma 6,

op(Ri)= [τ(Ri)�p{i}]�
Since p{i} < pN\{i}, NDp

i = [pN�p{∅}] holds. As Ri is not single-peaked on

(op(Ri) ∩ [pN�p{∅}]) ∪ {τ(Ri)�γ} and γ ∈ [pN�p{∅}] = NDp
i , by Lemma 5, Ri ∈ Mfp

i .

Furthermore, as Ri is single-peaked on [a�b] \ {γ} and γ /∈ NDi
p̄, by Lemma 5, Ri /∈ Mf p̄

i .

Thus, Ri ∈ Mfp

i \Mf p̄

i , which contradicts (22).
Case 3d: p{i} < γ <pN\{i} and pN = p{i}. Then pN\{i} <p{∅} (otherwise i is a dictator).

Let Ri ∈ U and α�β ∈ [a�b] be such that (i) pN\{i} <β< α<p{∅}, (ii) τ(Ri) = α, (iii) γPi β,

16The Ri is defined in any arbitrary way in[a�η1] \ {γ�β}.
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and (iv) if ρ�δ ∈ [a�b] \ {γ} and α< ρ< δ or δ < ρ< α, then ρRi δ. By Lemma 6,

op(Ri) = [pN\{i}� τ(Ri)]�

Since p{i} < pN\{i}, NDp
i = [pN�p{∅}] holds. As Ri is not single-peaked on

(op(Ri)∩ [pN�p{∅}]) ∪ {τ(Ri)�γ} and γ ∈ [pN�p{∅}] = NDp
i , by Lemma 5, Ri ∈ Mfp

i .

Furthermore, as Ri is single-peaked on [a�b] \ {γ} and γ /∈ NDi
p̄, by Lemma 5, Ri /∈ Mf p̄

i .

Thus, Ri ∈ Mfp

i \Mf p̄

i , which contradicts (22). �
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