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The formation of networks with local spillovers and
limited observability

Michael D. König
Department of Economics, University of Zurich

This paper analyzes the formation of networks in which each agent is assumed
to possess some information of value to the other agents in the network. Agents
derive payoff from having access to the information of others through communi-
cation or spillovers via the links between them. Linking decisions are based on
network-dependent marginal payoff and a network-independent noise capturing
exogenous idiosyncratic effects. Moreover, agents have a limited observation ra-
dius when deciding to whom to form a link. I find that for small noise the observa-
tion radius does not matter and strongly centralized networks emerge. However,
for large noise, a smaller observation radius generates networks with a larger de-
gree variance. These networks can also be shown to have larger aggregate payoff.
I then estimate the model using a network of co-inventors and scientific collabo-
rations in physics and economics, and find that the model can closely reproduce a
variety of observed patterns. I show that local search is important in all the empir-
ical networks conside, but that economists tend to search more broadly for new
collaboration opportunities.

Keywords. Diffusion, network formation, growing networks, limited observabil-
ity.
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1. Introduction

Networks are important in explaining a large variety of social and economic phenom-
ena. This insight has lead to an increasing interest in the study of networks in economics
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and related sciences accompanied by a growing number of publications in the field.1

Networks play a particularly important role in understanding the process of communi-
cation of information and knowledge diffusion among diverse actors, ranging from in-
ventors to scientists. In this paper, I introduce a simple, parsimoniously parameterized
and tractable model to study the emergence of networks of information and knowledge
diffusion, which is able to match and explain the observed empirical patterns on an
unprecedented scale.

A large body of literature has emphasized the crucial effect of social networks of in-
ventors on the productivity of innovative regions (see, e.g., Marshall 1919, Allen 1983,
Singh 2005, Almeida and Kogut 1999). A prominent example is the success story of Sili-
con Valley, which has been attributed to its informal networks of friendship and collab-
oration (Saxenian 1994, Fleming et al. 2007). Similarly, the formation of collaborations
in academic research is a crucial component in the process of scientific discovery and
knowledge production (Newman 2001a, 2004, Fafchamps et al. 2010, Goyal et al. 2006).

The networks of inventors and scientific collaborations share a number of empirical
regularities. First, the distributions of degree (the number of links of a node) in these
networks exhibit fat tails, typically decaying as a power law.2 Similarly, the average clus-
tering coefficient (Watts and Strogatz 1998), i.e., the fraction of connected neighbors of
a node, tends to decrease with the degree and also exhibits a power-law decay (cf. Goyal
et al. 2006). Moreover, the distribution of (small) connected components (in which there
exists a path between every pair of nodes) decays as a power law. Finally, the networks of
inventors and coauthors exhibit an increasing average neighbors’ degree with the degree
of a node, referred to assortativity (Newman 2002). In this paper, I introduce a simple
model that can explain all these distributions. This is a novel contribution and extends
previous studies that focused primarily on the distribution of degree or some aggregate
statistics (cf. Jackson and Rogers 2007).

I consider a degree-based approximation (see below) to a general class of models
(payoff functions) in which each agent is assumed to possess some information of value
to the other agents in the network. Agents derive payoff from having access to the in-
formation of others through direct communication or spillovers along the links in the
network.3 Agents’ incentives to form links can be partitioned into a network-dependent
part as well as a network independent exogenous random term, referred to as noise.
The network-dependent part of agents’ payoffs (represented by the degree) derives from
having access to the information of others. The noise term captures exogenous random

1This literature has steadily grown in the last decade. The monographs of Jackson (2008), Goyal (2007),
and Vega-Redondo (2007) are excellent surveys for the economic theory of networks. See also Newman
(2010) for a survey of the literature in physics, and Durrett (2007) for a concise review of the literature on
networks in mathematics.

2A power-law degree distribution in patent citation networks has been documented in e.g. Valverde et al.
(2007).

3For the purpose of tractability, in this paper I consider a simplified setup with myopically rational
agents, and I ignore issues related to private signals, strategic communication, and inference problems
with Bayesian updating (see, e.g., Hagenbach and Koessler 2010, Calvó-Armengol and De Martï 2007, for
alternative setups).
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perturbances, shortcomings in assessing the correct value of information possessed by
other agents, and exogenous matching effects.4

Moreover, it is assumed that the information transmitted through the links in the
network is exposed to decay, making information that travels longer distances less valu-
able (cf. Bala and Goyal 2000, Jackson and Wolinsky 1996). In this paper, I focus on the
case of strong decay, or weak knowledge spillover effects, where the value for an agent
of being connected in a network is determined by his immediate neighbors (cf. Galeotti
et al. 2010). This assumption is consistent with the empirical evidence. For example,
Singh (2005) and Breschi and Lissoni (2005) find in their studies of patent networks that
the existence of a tie is associated with a greater probability of knowledge flow, while
the probability is decreasing as the path length increases, and the probability is becom-
ing small or nearly null for social distance greater than 2. In turn, this implies that the
marginal return from connecting to an agent is determined by his degree.5

Agents sequentially enter the network and obtain an opportunity to acquire infor-
mation from the incumbent agents through forming links. Upon entry, each agent can
sample a given number of existing agents in the network and observes these agents and
their neighbors (cf. Friedkin 1983).6 I call the number of sampled agents the observation
radius. He then forms links to the observed agents in the sample based on the marginal
payoff (determined by the degree) obtained from each link. With this sampling proce-
dure I follow a common approach in the statistics and sociology literature for how indi-
viduals collect information on an existing population that is difficult to observe called
snowball/star sampling (Goodman 1961, Frank 1977, Kolaczyk 2009).7

I analyze the emerging networks for different observation radii and levels of noise.
I find that for small noise the observation radius does not matter and strongly central-
ized networks emerge. However, for large noise, a smaller observation radius generates
networks with a larger degree variance. One can show that the aggregate payoff maxi-
mizing networks in the class of models considered here increases with the degree vari-
ance.8 Hence, I find that when the exogenous noise is large, then a smaller observation
radius leads to networks that have larger aggregate payoff. This provides an example in
the context of a network-based meeting process where “knowing less can be better.”

Collaboration and the formation of teams involve opportunity, time, and friction
costs, and information available in the circle of acquaintances will be more easily avail-
able. Hence, collaborations are more likely the closer individuals are in the network of

4The introduction of noise also allows me to compare the current model with other papers that consider
a random network formation process (i.e., strong noise), such as the landmark model by Jackson and Rogers
(2007).

5Newman (2001b) finds in his empirical study of co-authorship networks that the probability of a scien-
tist acquiring a new collaborator increases with the number of his past collaborators, that is, his degree.

6In a similar way Jackson and Rogers (2007), Galeotti et al. (2010), McBride (2006), Alós-Ferrer and Wei-
denholzer (2008) assume that agents have only limited information of the network.

7See von Hippel et al. (1999) for a case study where a firm uses snowball sampling to collect information
from customers and their contacts.

8Similarly, Westbrock (2010) shows that in the model by Goyal and Moraga-González (2001), where firms
are competing on the product market while they can form research and development (R&D) collaborations
to reduce their production costs, welfare positively correlates with the degree variance.
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Figure 1. The network between co-inventors in the drugs development sector. Node colors in-
dicate different clusters of densely connected nodes using the modularity algorithm proposed
in Blondel et al. (2008); node sizes indicate their degree. The figure illustrates the existence of
highly connected clusters of inventors. In this paper, I develop a model that can explain the for-
mation of these densely connected groups through a local search process for new collaboration
partners. See Section 7 for further details about the data.

social ties (Fafchamps et al. 2010, Goyal et al. 2006). In the empirical application of the
model in this paper I compare the tendency of inventors (see Figure 1 for an example
of a network between co-inventors in the drugs development sector), and scientists in
condensed matter physics and economics to select their research collaborations in their
local neighborhood as compared to searching for more distant partners. I show that lo-
cal search is important in all the empirical networks considered, but that economists
tend to search more broadly for collaboration opportunities as the estimated observa-
tion radius tends to be higher. This might reflect the diverse backgrounds and applica-
tion areas of economists, which can also be witnessed in the large number of classifica-
tion codes categorizing economic sciences,9 and that economists are less constrained
by their institutional boundaries.10

9Comparing, for example, the number of academic disciplines and sub-disciplines listed on Wikipedia

we find 50 in economics and only 27 in physics. See also http://en.wikipedia.org/wiki/List_of_academic_
disciplines_and_subdisciplines.

10Schilling and Green (2011) find that search scope, search depth, and atypical connections between
different research domains significantly increase a paper’s impact in the social sciences. Similarly,

http://en.wikipedia.org/wiki/List_of_academic_disciplines_and_subdisciplines
http://en.wikipedia.org/wiki/List_of_academic_disciplines_and_subdisciplines
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The paper in the economics literature most closely related to the one presented here
is the seminal work by Jackson and Rogers (2007).11 In this influential article the au-
thors introduce a model of a growing network that combines random search protocols
for potential linking partners with local network-based search protocols. By means of
theoretical and empirical analysis, they are able to show that their model is very flexible
in fitting real-world data. However, while in Jackson and Rogers (2007) links are formed
at random, here instead I make a first attempt to start directly from a (degree-based)
discrete-choice approach,12,13 with an explicit modeling of the reasons why links are
formed. Further, albeit similar, the difference in the linking processes of their model
and the present one allows me to measure empirically the information radius of the
agents. Moreover, the results for the degree distribution and efficiency in Jackson and
Rogers (2007) are based on a mean-field approximation, while such an approximation
is not needed to obtain the corresponding results in the present paper. Further, Jackson
and Rogers (2007) do not derive explicitly all the statistics that I do here (such as the
average nearest neighbor connectivity, the clustering degree distribution,14 or the com-
ponent size distribution), and do not analyze the impact of different observation radii
on these statistics. Moreover, with varying levels of the noise in the payoff function of

Jones et al. (2008) find that multi-university research teams produce the highest impact papers. Moreover,
they observe that the growth in multi-institution collaboration was greater in the social sciences than sci-
ence and engineering. For instance, as noted by Winkler et al. (2011), “. . . research in the biological and
chemical sciences almost invariably requires a lab and thus has a strong local component. Research in eco-
nomics is different: Except for experimental economics, labs are rarely part of economic research; neither
is specialized equipment. But data and software can be readily shared and this encourages collaboration.”

11Besides the economics literature there also exists a large literature in computer science, physics, and
mathematics, where similar models are studied. I refer to Krapivsky et al. (2000), Krapivsky and Redner
(2001), Oliveira and Spencer (2005), Vázquez (2003), Kumar et al. (2000), Wang et al. (2009), and Toivonen
et al. (2006), to mention only a few. However, these authors typically do not make explicit behavioral as-
sumptions about why links are formed, do not analyze welfare implications, and do not estimate their
models for empirically observed networks.

12The payoff function I introduce focuses on the case of strong decay of the knowledge transmitted along
the links between agents, such that the degree of an agent determines his propensity to acquire new links
(see, e.g., Singh (2005), Breschi and Lissoni (2005), Newman (2001b) for an empirical motivation), so that
the degree of an agent will be a sufficient statistic to assess the agent’s marginal payoff from forming links
(see Assumption 1 in Section 2.1). There is clearly much more work to be done in this area that incorporates
more general payoff functions, but I believe that the model considered here provides a first step toward a
better understanding of the structure of real-world networks and the incentives and information sets that
are influencing the processes that generate these networks.

13The general class of models considered here (see also supplementary Appendix E) has the property that
the payoff of an agent is increasing with the number of collaborations, i.e., his degree. This is a characteristic
that has been found in empirical studies of co-authorship networks (see, e.g., Abbasi et al. 2011, Ductor
2015).

14Jackson and Rogers (2007, p. 900) conjecture that C(k), the clustering coefficient for a node with in-
degree k, is a strictly decreasing function of degree k. Here I complement their analysis by providing asymp-
totic expressions for C(k) showing that C(k) is not only decreasing with the degree, but actually decaying
as a power law with a well defined exponent. The intuition behind the decreasing clustering coefficient
with the degree is that in this growing network model older agents are connected to a larger number of
younger agents, and these younger agents have not only a smaller number of links but are also less likely to
be connected among each other. In contrast, the younger agents are primarily connected to older agents,
who have a higher degree and are more likely to be connected among other old agents. Hence, we observe a
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the agents, a transition from assortative to dissortative networks can be observed in the
model. As Jackson and Rogers (2007) do not provide results for the average nearest
neighbor connectivity, and they do not have a payoff function governing the decision
with whom to form a link, this behavior cannot be studied in their setup. Besides, a
feature of the model by Jackson and Rogers (2007) is that it generates dissortative undi-
rected networks.15 This is particularly problematic when we look at the networks in the
empirical examples in Section 7 (networks of co-authors and co-inventors), which are
all assortative. Also, when the marginal payoff of agents is increasing in the degree and
there is no exogenous noise, then differently to the efficiency results obtained in Jackson
and Rogers (2007), I show that the observation radius has no impact on aggregate payoffs
and efficiency.

Based on the pioneering model by Jackson and Rogers (2007) a number of exten-
sions and applications have been suggested. Ghiglino (2011) introduces an algorithm
similar to Jackson and Rogers (2007) to study the creation and recombination of ideas
from a pool of existing knowledge (more precisely, networks of citations between scien-
tific publications). Bramoullé et al. (2012) and Vigier (2014) introduce different types of
agents and study the mechanisms underlying homophily, that is, the tendency of sim-
ilar types of agents being connected. Moreover, Kovářík and Van der Leij (2014) intro-
duce risk aversion in the decisions of agents to form links locally or globally. They show
that risk aversion can lead to increased clustering in the network. In contrast, in Chaney
(2014) a spatial extension is suggested in which the network is embedded into geograph-
ical space and agents who are closer in space are more likely to form links. Differently
to these authors, I introduce a behavioral foundation (albeit simplistic) of why links are
formed in the model by Jackson and Rogers (2007) in the context of knowledge diffusion
in networks. Moreover, none of these works investigates all the empirical networks that
I do in the present paper and estimates the model for these data.

The paper is organized as follows. In Section 2, I introduce the general modeling
framework. Section 2.1 defines the payoff agents derive from the network. Next, in Sec-
tion 2.2, I describe the evolution of the network. In Section 3, I analyze the networks
generated by the model, while Section 4 provides an efficiency analysis and shows how
the level of noise and the observation radius affect aggregate payoffs. Section 5 analyzes
correlations between an agent and his neighbors. Section 6 discusses several extensions
of the model. Section 7 contains an application of the model to different real-world
networks. Section 8 concludes. Appendix A contains a few basic definitions and no-
tation. All proofs are relegated to Appendix B. Supplementary Appendices C and D,

negative clustering degree relationship. The numerator of the clustering coefficient then grows roughly lin-
early and the denominator grows roughly quadratically with degree, which results in a power-law behavior
of the clustering degree distribution. See Section 5.2 for a more detailed discussion.

15Assortativity in the model by Jackson and Rogers (2007) is found for the average nearest in-neighbor
connectivity that is increasing with the in-degree. The intuition is that older agents are more likely to form
links to other old agents with high degrees, while younger agents are more likely to form links to other
young agents with smaller degrees. This gives rise to an assortative trend. However, this does not hold
in the undirected closure of the network. In the undirected network the average nearest neighbor degree
of the younger agents is now much higher because it includes not only the in-neighbors, but also the out-
neighbors, who are older agents with high degrees. This can reverse the positive trend of the average nearest
neighbor connectivity and give rise to a dissortative network. See Section 5.1 for more details.
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available in a supplementary file on the journal website, http://econtheory.org/supp/
1524/supplement.pdf, present some technical details of the sampling scheme. Vari-
ous examples in the literature that fall into the general class of games considered here
are discussed in supplementary Appendix E. A detailed explanation of the empirical
method and results are given in supplementary Appendix F. Finally, supplementary Ap-
pendices G and H provide a more detailed discussion of the model extensions intro-
duced in Section 6.

2. The model

In the following sections we introduce the payoff agents derive from being connected
in a network and their incentives to form links within a dynamic network formation
process. The basic definitions and notation used throughout the paper can be found in
Appendix A.

2.1 Payoffs

For a given network G = 〈N �E〉 ∈ G(n) we assign each agent i ∈ N a payoff πi(·� δ) :
G(n) → R that depends on the network G and a (decay) parameter δ ≥ 0 that measures
the degree of interdependency between agents’ payoffs in G. We define the link incen-
tive function fi : G(n)×N → R for an agent i ∈ N as

f δi (G� j) ≡ πi(G⊕ ij� δ)−πi(G�δ)�

which measures the marginal payoff to the agent i resulting from the potential link ij /∈ E .
Here we focus on link incentive functions (and therefore on classes of games) that satisfy
the following conditions.

Assumption 1. For all i ∈ N the link incentive function f δi (G� ·) : N → R has the follow-
ing properties:

(LM) Link monotonicity. The incentives to link are nonnegative, i.e., f δi (G� j) ≥ 0 for
all j 	= i ∈ N .

(LD) Linear differences. With strong decay, the incentives to link to an agent are in-
creasing with his degree, i.e., for all ij� ik /∈ E , there exists a constant γ ≥ 0 and a
linear increasing function g :R→ R such that

f δi (G� j)− f δi (G�k)

δγ
= g(dG(j)− dG(k))+ o(1)

holds in the limit of δ→ 0.

Let us briefly discuss the implications of these two conditions in turn. Link mono-
tonicity (LM) requires that the incentives to link are nonnegative. Intuitively it says that
no link to be formed can harm an agent (cf. Dutta et al. 2005). Condition (LD), linear

http://econtheory.org/supp/1524/supplement.pdf
http://econtheory.org/supp/1524/supplement.pdf
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differences, allows us to order the linking incentives for the entering agent across all
potential linking partners. It says that the agent i has the highest incentive to direct a
link to the agent who has the current highest degree among all alternative linking part-
ners.16 Two potential links are judged as being equally attractive for the agent if the in-
volved agents have the same degree in the current network.17 Further, the assumption
of strong decay should capture the fact that in this model an agent cares about knowl-
edge spillovers from direct and indirect neighbors, that is, up to length-2 connections
but not longer.18

For our efficiency analysis, we further make the following assumption.

Assumption 2. Let � : G(n) × R+ → R denote aggregate payoff defined by �(G�δ) ≡∑
i∈N πi(G�δ) and let σ2

d(G) be the degree variance of G ∈ G(n� e). Then we assume that
the following condition holds:

(DC) Degree concentration. For n ∈N and 0 ≤ e≤ (n
2

)
,

arg max
G∈G(n�e)

�(G�δ) = arg max
G∈G(n�e)

σ2
d(G)

holds in the limit of δ→ 0.

Assumption (DC) assumes that networks with a higher degree inequality, as mea-
sured by the degree variance, generate higher welfare.19 For example, if welfare in an
economy depends on the rapid diffusion of knowledge and new technologies, then a
centralized structure can be optimal (cf., e.g., König et al. 2012). Assumption (DC) will
be needed for our efficiency analysis in Section 4.

Supplementary Appendix E provides a number of examples from the economic liter-
ature that satisfy Assumptions 1 and 2. These examples illustrate how the assumptions
made in this section arise naturally when knowledge diffuses in networks and the trans-
mission of information along the links is exposed to strong decay or when there are weak
knowledge spillover effects between neighboring agents (corresponding to small values
of δ).

16This is consistent, for example, with the empirical evidence for co-authorship networks, where it is
found that the probability of a particular scientist acquiring a new collaborator increases with the number
of his past collaborators (Newman 2001b). Moreover, Ductor (2015) investigates the causal effect of co-
authorship on individual productivity and provides evidence for the existence of peer effects. i.e., positive
knowledge spillovers. He further shows that by simultaneously controlling for time invariant unobserv-
able factors and for the potential endogeneity of co-authorship formation, co-authorship leads to a higher
academic productivity. This result is robust and statistically significant.

17An agent i is indifferent between linking to j and k when j and k have the same degree. It does not
matter with whom j and k are connected, even if j and k might share the same neighbor. In the network
formation process I consider the probability of overlapping neighborhoods is small when the network be-
comes large. The model by Jackson and Rogers (2007) has the same feature, and it has been used for their
mean field analysis. Hence, Assumption (LD) is not very restrictive.

18See also the examples discussed in supplementary Appendix E.
19Such a correlation between the degree variance and welfare has also been identified in R&D collabo-

ration networks (cf., e.g., Westbrock 2010). Further examples from the literature with this feature can be
found in supplementary Appendix E.
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2.2 The network formation process

In this section the formation of the network is introduced. We consider a discrete time,
nonstationary Markov chain (Gt = 〈Nt �Et〉)t∈{1�2�����T } for some T ∈ N ∪ {∞}, defining a
nested sequence of graphs G1 ⊂ G2 ⊂ · · · ⊂ GT ∈ G(T) in which each network Gt is ob-
tained from the predecessor Gt−1 by the addition of an agent and a specified number
m≥ 1 of links emanating from that agent. Each network Gt is a random variable adapted
to the filtration Ft = σ({Gs : 1 ≤ s ≤ t}). The probability measure P(·|Ft−1) : Ft → [0�1]
is denoted as Pt . Expected values with respect to Pt are similarly denoted by Et[·|Ft−1].
Agents are labeled by their date of birth, so that t is the label of the agent entering the
network at time t of the process.

We will need to agree on a given initial condition so that the network formation dy-
namics is well defined. I choose as the initial network the graph G1 ≡ Km+1, i.e., the
complete graph on m + 1 agents in which all agents are bilaterally connected by m di-
rected links (one in each direction) (cf. Jackson and Rogers 2007).20

Process time t ∈ [T ] ≡ {1�2� � � � �T } divides the population of agents into a countable
set in N of active and passive agents. These two sets are denoted, respectively, by At

and Pt . Passive agents have already entered the network and do not make any decisions
in subsequent stages of the network formation process. At any date t the agent with la-
bel t, and only this agent, becomes active and considers forming a set of links. Once
his decision has been made he joins the pool of passive agents. The initial composi-
tion of the population in active and passive agents is given by Pm+1 = {1�2� � � � �m + 1}
and Am+1 = [T ] \ Pm+1. Each graph Gt has exactly |Nt | = t (passive) vertices and
|Et | = e(Gt) = mt edges. It is formed from Gt−1 by adding one agent with the label
t > m + 1 and m edges from t to some passive agents i ∈ Pt−1. Hence, every passive
agent has constant out-degree equal to m, and thus we identify the in-degree simply by
the degree of a passive agent via the identity dGt (i) = d−

Gt
(i)+m for all agents i ∈ Pt .

Before creating links, an entering agent t must make an observation of the prevailing
network Gt−1 and identify a set of agents to whom he can form links. We call this set
the (observed) sample St ⊆ Pt−1. The sample St is obtained by selecting ns ≥ 1 passive
agents in Pt−1 uniformly at random (without replacement) and forming the union of
these agents and their out-neighbors. We call ns the observation radius. Note that an
agent j ∈ Pt−1 can enter the sample St either by being directly observed by the entrant
t or by being observed indirectly as the neighbor of a directly observed agent i ∈ Pt−1.
This network sampling procedure is also known as unlabeled star sampling (Frank 1977,
Kolaczyk 2009).21 An illustration is shown in Figure 2. Further note that we assume that
link formation follows a sampling procedure without replacement. Were we to allow for
sampling with replacement, multiple links could be created to the same agent.

20The initial network does not matter as long as it is small, compared to the final network and the noise
is large. However, when the noise term is small, and entering agents connect to the incumbent agent ex-
clusively with the highest degree, then the agent who has the highest degree initially will attract most of the
links most of the time.

21Instead of assuming that an agent can observe the degrees of the neighbors of the ns sampled nodes,
we could assume that he has to form beliefs about their degrees. Because this would complicate our anal-
ysis and introduce additional assumptions about how these beliefs are computed, we follow the statistical
sampling literature and assume that the degrees are actually observable.
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Figure 2. Illustration of the network sampling procedure. Left panel: In the first draw, the en-
tering agent t observes agent i and its out-neighbors j, k. The observed sample is St = {i� j�k}.
Right panel: In the second draw, agent t observes also agent j and the out-neighborhood {k� l}
of j. The observed sample is then St = {i� j�k� l}.

If the observed sample St constitutes only a small fraction of the passive agents Pt−1

in the network Gt−1, we speak of link formation with local information. Local informa-
tion is also a key ingredient to the model of Jackson and Rogers (2007),22 and has been
documented in various empirical studies (see, e.g., Friedkin 1983).

Given the observed sample St , the entrant t must make a decision to whom he wants
to create a link in St . I assume that this decision is made in a myopic way.23 I assume
that an entrant t chooses to link to the incumbent agent j ∈ St that maximizes the value
of his link incentive function plus a random element (cf. Snijders 2001, Snijders et al.
2010)

f δt (Gt−1� j)+ εtj� (1)

The term εtj is an exogenous random variable, indicating the part of the agent’s prefer-
ence that is not represented by the systematic component f δt (G� j). This includes, for
example, exogenous matching effects between characteristics of agents i and j that do
not depend on the network structure G. We assume that the random variables εtj are
independent and identically distributed for all t, j. When these exogenous matching ef-
fects are weak and δ → 0, (1) and Assumption (LD) introduce a preferential attachment
mechanism to agents with a larger number of connections. In this case, agents who have
a larger number of social ties are viewed as better sources for knowledge spillovers than
agents with only a few neighbors (Galeotti et al. 2010).

More formally, we can give the following definition of the network formation
process.

Definition 1. For a fixed T ∈N∪{∞} we define a network formation process (Gt)t∈[T ],
[T ] ≡ {1�2� � � � �T }, as follows. Given the initial graph G1 = · · · = Gm+1 = Km+1, for all
t > m+ 1, the graph Gt is obtained from Gt−1 by applying the following steps.

22See also McBride (2006) and Galeotti et al. (2010) for further examples.
23With this I mean that an agent t only considers the network Gt−1 as source of information for his

decision. He does not estimate the possible impact his linking decision at time t (which is an irreversible
act) has on the future evolution of his personal utility level. For an alternative approach, see, e.g., Dutta
et al. (2005).
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Growth: Given P1 and A1, for all t ≥ 2 the agent sets in period t are given by Pt =
Pt−1 ∪ {t} and At = At−1 \ {t}, respectively.

Network sampling: Agent t observes a sample St ⊆ Pt−1. The sample St is constructed
by selecting ns ≥ 1 agents i ∈ Pt−1 uniformly at random without replacement and
adding i as well as the out-neighbors N+

Gt−1
(i) of i to St .

Link creation: Given the sample St , agent t creates m ≥ 1 links to agents in St

without replacement. For each link, agent t chooses the j ∈ St that maximizes
f δt (Gt−1� j)+ εtj .

We next define the attachment kernel as the probability that an agent j ∈ Pt−1 re-
ceives a link from the entrant. It can be written as K

β
t (j|Gt−1) = ∑

St⊆Pt−1
K

β
t (j|St �

Gt−1)Pt (St |Gt−1), where K
β
t (j|St �Gt−1) is the probability, conditional on the sample St

and the prevailing network Gt−1, that an agent j receives a link after the m draws (with-
out replacement) by the entrant, and β is a parameter related to the distribution of the
additive error term εtj from (1) (see below).24 Since the entrant forms links to the in-
cumbent agents that maximize his link incentive function plus a random element, so as
to compute K

β
t (j|St �Gt−1) we need to consider the cases where agent j has the highest

value among all agents in the sample (or the second highest and so on). This means
that we need to compute the probability that f δt (Gt−1� j) + εtj ≥ f δt (Gt−1�k) + εtk for
all k ∈ St . Assuming that the exogenous random terms εtj are identically and indepen-
dently type I extreme value distributed (or Gumbel distributed) with parameter η,25 the
probability that an entering agent t chooses the passive agent j ∈ St for creating the link
tj (in the first of the m draws of link creation) follows a multinomial logit distribution
given by (cf. Anderson et al. 1992)

Pt

(
f δt (Gt−1� j)+ εtj = max

k∈St

f δt (Gt−1�k)+ εtk

)
≈ e

βdGt−1 (j)∑
k∈St

e
βdGt−1 (k)

� (2)

where we have applied condition (LD) for the link incentive function f δt (Gt−1� ·),
dropped terms of o(δb), and denoted β ≡ ηδb. Knowledge of the selection probability
in Equation (2) will allow us to analyze the networks generated by the stochastic process
introduced in Definition 1.

As I will show in the following sections, this stochastic process gives rise to different
network topologies, depending on the extent of the noise εtj , as measured by the scaling
parameter β and the observation radius, which depends on ns. Small values of ns (local
information) refer to a local network formation process in which entering agents have

24A more detailed derivation can be found in supplementary Appendix C.
25This assumption is commonly made in random utility models in econometrics (see, e.g., McFadden

1981). Alternative distributional assumptions on the error term are possible. See also footnote 64 in sup-
plementary Appendix C. However, relaxing the assumption of identically distributed error terms would
complicate significantly the analysis, both from a theoretical and an empirical point of view. For alterna-
tive models with heterogeneity, which allow for agents with different types, I refer to Bramoullé et al. (2012)
and Vigier (2014).
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Figure 3. Illustration of the different parameter regions identified by the scaling parameter β
and the observation radius ns . The figure also indicates the parameter regions to which the re-
sults discussed in Section 3 refer. Proposition 1(i) deals with the case of β = ∞ and arbitrary
values of ns , while (ii) considers the case of β = 0. Both, Proposition 2 and Corollary 1 assume
large values of ns (such that St = Pt−1). While the first considers small but positive values of β,
the latter assumes that β = 0. Proposition 3 deals with the case of β= 0 and small values of ns .

only limited observability of the prevailing network, while large values of ns (global infor-
mation) constitute a network growth process in which entrants have full information of
the network. It is important to note that we allow for ns to grow with the network size, in
particular, in the case of global information, where it is assumed that agents are able to
observe the entire network.26 Moreover, as β becomes large, the level of noise vanishes,
and entrants choose to form links to the agents in the sample St that maximize their link
incentive function. Conversely, when β tends to zero, then the noise term dominates
and agents form links to the agents observed in St at random. These different param-
eter regions are indicated in Figure 3. In the following sections I give a more detailed
account of the emerging networks depending on the level of noise scaled by β and the
observation radius ns.

3. Analysis of the network formation process

In this section I present a characterization of the different network architectures that
may arise, in dependence of the noise in the attachment kernels and the observation
radius. Section 3.1 analyzes the probability with which a class of strongly centralized
networks emerges and shows that these networks are the unique outcome almost surely
if the noise vanishes (β → ∞), irrespective of the observation radius ns. To gain further
insight into the network topologies created by the model in the opposite case of large
noise (β → 0), Section 3.2 studies the degree distributions arising for both small and
large observation radii. I show that networks tend to differ significantly for different
observation radii when the exogenous noise term is large. Due to Assumption (DC) the
varying degree of centralization across these different networks has important efficiency
implications and we will study them in Section 4.

26See also Section 3.2 and supplementary Appendix D.1.
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Figure 4. Illustration of the quasi-stars S1
7 , S2

7 , and S3
7 . Filled circles indicate the nodes with the

highest degree.

3.1 The emergence of quasi-stars

Our first result, which is central for understanding the network formation process when
the exogenous noise is small, is that it can produce a strongly centralized network
topology, which we term a quasi-star.27 A quasi-star Smn , n ≥ m + 1, with node set
[n] ≡ {1� � � � � n} is a directed graph in which all nodes in the set [m + 1] in Smn are bi-
laterally connected, while the nodes in the set [n − 1]\[m + 1] all maintain an outgoing
link to the agents in the set [m]. Consequently, we have that Km+1 ⊆ Smn .28 An illustration
of various quasi-stars can be seen in Figure 4. With this definition we are able to state
the following proposition.29

Proposition 1. Let (Gβ
t )t∈[T ] be a sequence of networks generated with observation ra-

dius n(1)s , and let (Hβ
t )t∈[T ] be a sequence of networks generated with observation radius

n
(2)
s such that n(1)s > n

(2)
s . Let �m

T ⊂ G(T) be the isomorphism class30 of quasi-stars of order
T >m+ 1. Then the following statements hold:

(i) In the limit of vanishing noise, we have that limβ→∞ P(H
β
T ∈ �m

T ) = limβ→∞ P(G
β
T ∈

�m
T ) = 1.

(ii) In the limit of strong noise, we have that limβ→0 P(H
β
T ∈ �m

T ) > limβ→0 P(G
β
T ∈

�m
T ) > 0.

Proposition 1 shows that in the limit of vanishing noise (β → ∞), the networks gen-
erated are quasi-stars, irrespective of the observation radius ns. However, as the level
of noise becomes large (β → 0), the probability of obtaining a quasi-star is higher, the
smaller is ns. The intuition for this result is that with increasing ns the probability to

27Some authors also refer to this type of graphs as core–periphery networks (cf. Borgatti and Everett 2000,
Galeotti and Goyal 2010).

28The complement S̄mn of a quasi-star Smn is the graph obtained from the complete graph Kd with d nodes
and a subset of n − d disconnected nodes by adding n − d links connecting one node in Kd to each of the
n− d disconnected nodes. This graph falls into the class of interlinked stars introduced by Goyal and Joshi
(2006) and the nested split graphs analyzed in König et al. (2012), König et al. (2009).

29Note that the essential assumption to obtain the result of Proposition 1 is the linear differences (LD), so
that incumbent agents with a higher degree are the ones that will be selected to receive a link by the entrant.
Hence, one could also allow for different distributional assumptions on the error term in (2) as long as (LD)
is satisfied.

30See Appendix A.
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sample the center(s) of the quasi-star decreases, and so does the probability to link to
them and to further grow the quasi-star.

In the presence of noise, the set of networks generated by the model is much richer
than the class of quasi-stars. So as to analyze these networks, we study in Section 3.2 the
degree distribution in the case of large noise and in Section 5 we analyze higher order
correlations.

3.2 Large noise limit and the distributions of degree

In this section we analyze the asymptotic degree distribution for large times t, when the
level of noise is large (or small values of β, respectively). For this purpose, let us intro-
duce some notation. For all t ≥ 1 we denote by Nt(k) ≡ ∑t

i=0 1k(d
−
Gt
(i)) the number of

nodes in the graph Gt with in-degree k. The relative frequency of nodes with in-degree
k is accordingly defined as Pt(k) ≡ (1/t)Nt(k) for all t ≥ 1. The sequence {Pt(k)}k∈Z+
is called the (empirical) in-degree distribution. Throughout this section I assume that
there are no hubs in the network, that is, I assume that d−

Gt
(i) = op(t) for all i ∈ Pt .31

We first analyze the case of the observation radius ns being large enough, such that
St = Pt−1, i.e., an entering agent can observe the entire population of incumbent agents
(see supplementary Appendix D.1). When St = Pt−1, we have that K

β
t (j|St �Gt−1) =

K
β
t (j|Gt−1) for all j ∈ Pt−1. The entrant t forms links by sampling m agents without re-

placement from Pt−1. The probability that an agent j with in-degree d−
Gt−1

(j) receives a
link in the (k+ 1)st draw, given that k agents have received a link in the previous draws,
1 ≤ k≤m, is given by ((1 +βd−

Gt−1
(j))/((1 +βm)t))(1 +O(1/t)) (see supplementary Ap-

pendix D.2). It then follows that the probability that an agent j ∈ Pt−1 receives a link by
the entrant t is given by32

K
β
t (j|Gt−1)≈ m

1 +βm

1 +βdGt−1(j)

t
+ o

(
1
t

)
� (3)

Having derived the attachment kernel, we are now able to obtain the asymptotic de-
gree distribution in the following proposition. The proof of the proposition using the
attachment kernel in (3) can be found in Appendix B.2.

Proposition 2. Fix ε > 0 small and let β ∈ (0� ε), m ≥ 1. Assume that dGt−1(j) = op(t)

for all j ∈ Pt−1. Consider the sequence of in-degree distributions {Pt}t∈N generated by an

31In the large noise limit we have a linear attachment kernel, that is, the probability that a node with
in-degree k at time t receives a link is linear in k, and can be written as (β + k)/t with β ≥ 0. Móri (2005)
has shown that the maximum degree in growing network models with a linear attachment kernel grows as
O(t1/(2+β)), which is sublinear, and hence o(t).

32We have that

K
β
t (j|Gt−1) ≈ 1 −

(
1 − 1 +βdGt−1(j)

(1 +βm)t

)m

+ o

(
1
t

)
= 1 −

(
1 −m

1 +βdGt−1(j)

(1 +βm)t

)
+ o

(
1
t

)

= m

1 +βm

1 +βdGt−1(j)

t
+ o

(
1
t

)
�
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indefinite iteration of the network formation process (Gβ
t )t∈N assuming that St = Pt−1 for

every t > m+ 1. Then Pt(k) → Pβ(k), almost surely, where

Pβ(k) = (1 +βk)−(2+1/(mβ))

(
1 +O

(
1
k

))
(4)

for all k≥ 0 as t → ∞.

Thus, Proposition 2 shows that in the limit of large noise and a large observation
radius we obtain networks with a degree distribution that decays as a power law with
exponent 2 + 1/(mβ) for large degrees. This heavy tailed distribution indicates a highly
uneven distribution of links, where old nodes typically have a larger degree as they have
more time to accumulate links and thus become more likely to receive a link by the en-
trant. The tail flattens with increasing m, making high degree agents more likely as en-
tering agents are forming more links. Note, however, that the power-law decay does not
hold for small degrees. The degree distribution of (4) and a typical distribution obtained
from a numerical simulation of the network formation process are shown in Figure 5.

The smaller is the number of links m created by an entrant and the stronger is the
exogenous noise (the smaller β), the higher is the decay in the power-law tail of the dis-
tribution, making high degree agents less likely and reducing inequality. In the extreme
case that we assume “strong noise,” corresponding to the situation with β = 0, we then
obtain a process of uniform attachment (cf. Bollobás et al. 2001).

Corollary 1. In the network formation process (G
β
t )t∈N, assuming that St = Pt−1 for

every t > m+ 1 and β= 0, the agents perform a uniform attachment process whose degree
distribution is given by

P0(k) = 1
m+ 1

(
m

m+ 1

)k

� (5)

which is a geometric distribution with parameter m/(m+ 1) for all k≥ 0.

When St does not encompass all agents in Pt−1, then our analysis becomes more
complicated. We therefore restrict our discussion to the case of strong noise when β= 0.
In this case we have that the attachment kernel (which gives the probability that j re-
ceives a link from the entering agent given that j is in the sample St ) is

K0
t (j|St �Gt−1) = m

|St |1St (j)�

The sample size is bounded by |St | ≤ ns(m+ 1). If no agent enters the sample more than
once, then equality holds. The sample St is constructed by selecting ns nodes from Pt−1
without replacement, and forming the union of these nodes and their out-neighbors.
Assuming that ns = o(t) and dGt−1(j) = op(t), the probability that a node is entering St

more than once is of o(t) and thus

1
|St | = 1

ns(m+ 1)
+ op

(
1
t

)
� (6)
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Figure 5. Top row: Comparison of the simulation results with the theoretical predictions for T = 105, St = Pt−1, and m = 4 with β = 0�1 under
the linear approximation to the attachment kernel. Bottom row: Comparison of the simulation results for T = 105 and ns = m = 4 (β = 0) with
the theoretical predictions. The exact expressions for the different distributions can be found in the proofs in Appendix B.
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The unconditional probability that an agent j ∈ Pt−1 receives a link by the entrant t is
then given by K0

t (j|Gt−1) = (1/(ns(m+1)))P(j ∈ St |Gt−1)+o(1/t). If the degree of node j

is small compared to the network size t, i.e., dGt−1(j) = op(t), and the observation radius
is small such that ns = o(t), then P(j ∈ St |Gt−1) = ns(1 + dGt−1(j))/t + o(1/t) and we
obtain

K0
t (j|Gt−1) = 1

1 +m

1 + dGt−1(j)

t
+ o

(
1
t

)
� (7)

We then can state the following result for the asymptotic degree distribution when the
observation radius is small. The proof, which is based on the attachment kernel in (7),
can be found in Appendix B.2.

Proposition 3. Consider the sequence of degree distributions {Pt}t∈N generated by an
indefinite iteration of the network formation process (G

β
t )t∈N with a small observation

radius ns = o(t). Assume that β = 0 and dGt−1(j) = op(t) for all j ∈ Pt−1. Then we have
that Pt(k) → P(k), almost surely, where

P(k) = k−(2+1/m)

(
1 +O

(
1
k

))
(8)

for all k≥ 0 as t → ∞.

Equation (8) is a power law decaying with an exponent 2 + 1/m. A comparison with
numerical simulations can be found in Figure 5. Compared to the power-law behavior
in (4) obtained for a large observation radius, we find that the degree distribution in
the case of a small observation radius has fatter tails, making high degree agents more
likely and indicating a more unequal organization of the network. This is due to the
fact that agents with a high degree can be found in a larger number of neighborhoods
when entrants form the sample St and thus are more likely to receive a link. Also, when
entrants form more links (by increasing m), the probability of agents with a high degree
increases (which can be seen from a smaller exponent of the power-law decay).

Observe that the degree distribution in (8) does not depend on the number ns of
samples taken by the entering node. The reason is that two effects on the probability to
receive a link of an incumbent cancel each other: On one hand, a larger value of ns makes
it more likely that an agent enters the sample St and, hence, increases the probability
that he receives a link. On the other hand, a higher value of ns also increases the sample
size |St | and thus decreases the probability that he is selected by the entrant to receive a
link.

The results obtained in this section show that when agents have global information,
the presence of strong noise (β → 0) induces networks with a smaller degree variance
(following from the geometric distribution of Corollary 1) than when agents have only
local information to form links (as implied by the power-law distribution of Proposi-
tion 3). However, as we have seen in part (i) of Proposition 1, in the absence of noise
(as β→ ∞), the amount of information available to the agents when forming links does
not matter, and the emerging network will be a quasi-star with a high degree variance.
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Figure 6. Degree variance σ2
d for local (ns = 1) and global (ns = t) search strategies for different

values of β with m = 1, T = 104 nodes (averaged over 10 simulation runs). The degree variance
of the star K1�T−1 is given by σ2

d(K1�T−1)= (T − 1)(T − 2)2/T 2.

These results are indicated in Figure 3. Hence, whether a limited observation radius im-
pacts inequality in outcome networks depends crucially on the level of exogenous noise
in agents’ payoffs. The degree variance is also closely related to aggregate payoff and
efficiency, and this will be discussed in more detail in the next section.

4. Efficiency

Since we have computed the degree distribution in Section 3 for different values of the
observation radius ns, by virtue of Assumption (DC) we can readily state the following
efficiency result.

Proposition 4. Consider the sequence of networks (Gβ
t )t∈[T ], generated with an obser-

vation radius n(1)s large such that St = Pt−1 for all t ≥ m + 2, and (H
β
t )t∈[T ] with a small

observation radius n(2)s = o(t), and assume that dHt (i) = op(t) for all i ∈ Pt as t becomes

large. Let �(G
β
T �δ) and �(H

β
T �δ) be the aggregate payoff under G

β
T , respectively, Hβ

T ,
after T iterations. Then, almost surely, the following statements hold:

(i) For β → ∞ we have �(H
β
T �δ) = �(G

β
T �δ) = �(�m

T �δ), where �m
T ⊂ G(T) is the iso-

morphism class of quasi-stars of order T .

(ii) In the limit of large T , we have for β → 0 that �(H
β
T �δ) > �(G

β
T �δ).

A comparison of the degree variance σ2
d for different observation radii ns (local vs.

global) obtained by means of numerical simulations for T = 104 agents with different
values of β can be seen in Figure 6. The figure shows that aggregate payoff is higher
for G

β
T (global information) if β is high enough; however, the opposite holds for small

values of β, where aggregate payoff is higher for Hβ
T (local information).

Proposition 4 and Figure 6 show a major difference between the model considered
here and the one by Jackson and Rogers (2007) (apart from differences in the sampling
technology). In Jackson and Rogers (2007) a higher ratio of (local) neighborhood-based
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ns k±
nn(k) C(k)

Global information k−
nn(k) =O(ln(k)) C(k)= O(t−2/(1+βm) · k2(1/(βm)−1))

k+
nn(k) = O(t(βm)/(1+βm))

Local information k−
nn(k) =O(ln(k)) C(k)= O( 1

k )

k+
nn(k)= O(t(m−1)/(m+1) · k1/m)

Table 1. Asymptotic behavior of the average nearest neighbor connectivity, k±
nn(k), and the

clustering degree distribution, C(k), in the large noise limit summarizing the results of Proposi-

tions 5, 6, 7, and 8 in Section 5.

linking to (global) random-based linking is always increasing average payoff as long as
payoff is a convex function of the degree.33 However, here we find that this does not
hold in general when exogenous effects are taken into account, where this relationship
might be reversed.34 Also, when the marginal payoff of agents is increasing in the degree
(and there is no exogenous noise), then differently to the welfare results obtained in
Jackson and Rogers (2007), whether links are formed locally or globally has no impact
on average payoffs and efficiency. Thus, the introduction of noise into decisionmaking
in a network-based meeting process matters significantly for efficiency results.

5. Large noise limit and higher order statistics

In the following sections I analyze correlations between an agent and his neighbors.
Such correlations are not only interesting as they help us to understand the behavior
of our model for different parameter values, but also to compare it with correlations
observed in real-world networks.

In Section 5.1 we first investigate the average in-degree of the in- and out-neighbors
of a node with in-degree k, denoted by the average nearest in-neighbor connectivity
k−

nn(k) and the average nearest out-neighbor connectivity k+
nn(k) (Pastor-Satorras et al.

2001). Next, in Section 5.2, we analyze the fraction of connected neighbors of a node
with degree k (in the closure of the network), referred to the clustering coefficient C(k)

(Watts and Strogatz 1998). The results of these sections are anticipated in Table 1.
Note that, so as to derive the functional forms of these statistics, I consider a contin-

uous representation of our discrete dynamical system, the so-called continuum approx-
imation, in which both time t and degree k are treated as continuous variables in R+.35

Using the continuum approximation, we can then apply the rate equation approach
outlined in Barrat and Pastor-Satorras (2005) to compute higher order correlations in
the network.

33See Corollary 1 and footnote 51 in Jackson and Rogers (2007).
34Observe, however, that a reversal of the assumption on the degree concentration (DC) would also re-

verse the inequality in part (ii) of Proposition 4 and this conclusion would no longer hold.
35 This is an approximation that has been shown to be accurate in various growing network models as

T → ∞ (Dorogovtsev and Mendes 2013, p. 117). See Appendix B.4 for more discussion.
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5.1 Average nearest neighbor connectivity

In this section we analyze two vertex degree correlations, i.e., correlations between the
degree of an agent and his neighbors’ degrees. Let P(k′|k) denote the probability that a
node of in-degree k has an in-neighbor with in-degree k′. The average in-degree of in-
neighbors of nodes with in-degree k can then be written as k−

nn(k) = ∫ ∞
0 k′P(k′|k)dk′

(cf. Pastor-Satorras et al. 2001). In the case that k−
nn(k) is an increasing function of k,

we speak of assortative mixing, while for k−
nn(k) decreasing with k, we have dissortative

mixing (Newman 2002). Similarly, the average nearest out-neighbor connectivity k+
nn(k)

can be defined. We now derive these quantities for different observation radii.
In the case of global information (when the observation radius ns is large) and small

β (large noise) we obtain the following proposition.

Proposition 5. Consider the network formation process (Gβ
t )t∈R+ with St = Pt−1. Then

under the continuum approximation in the limit β → 0, the average nearest in-neighbor
in-degree of an agent with in-degree k grows logarithmically with k and is independent of
t, k−

nn(k) = O(ln(k)), and the average nearest neighbor out-degree becomes independent
of k and grows with the network sizes as k+

nn(k) = O(t(βm)/(1+βm)) as t → ∞.

Similarly, we can compute the nearest neighbor connectivities under local informa-
tion (when the observation radius ns is small), assuming strong noise (β= 0).

Proposition 6. Consider the network formation process (Gβ
t )t∈R+ with ns small. If β =

0, then under the continuum approximation the average nearest in-neighbor in-degree of
an agent with in-degree k grows logarithmically with k, that is, k−

nn(k) = O(ln(k)), and
the nearest out-neighbor degree grows as k+

nn(k) =O(t(m−1)/(m+1) · k1/m) as t → ∞.

In Figure 5 a comparison of numerical simulations with the theoretical predictions
of Propositions 5 and 6 are shown.

In both cases—local as well as global information (corresponding to Propositions 5
and 6, respectively)—we find that networks are characterized by positive degree corre-
lations, or assortative mixing.36 The intuition for this result derives from the observa-
tion that older agents form links to other old agents with high degrees, while younger
agents are more likely to form links to agents with smaller degrees. This gives rise to
an assortative trend in the average nearest out-neighbor degree k+

nn(k). This intuition
carries over to the average nearest in-neighbor degree k−

nn(k), but the average degree of
the in-neighbors of older nodes is much smaller, because in this case the in-neighbors
include also a large number of younger nodes. Consequently, we observe that the assor-
tative trend is much weaker in the case of the average nearest in-neighbor degree k−

nn(k)

(growing only logarithmically with the degree k).
If we compute the average nearest neighbor degree in the closure G of G, then the

average nearest neighbor degree knn(k) (the sum of in- and out-neighbors’ total degrees

36Note that in contrast to the model considered here, both the Erdös–Rényi random graph G(n�p) with
link density p> pc , where pc is the critical link probability below which the graph becomes disconnected,
and the Barabási–Albert power-law graph are zero assortative (Van Mieghem 2011).
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divided by the total degree) of older nodes is similar to the case of the average nearest in-
neighbor degree; however, the average nearest neighbor degree of younger nodes is now
higher because the average nearest neighbor degree includes not only the in-neighbors,
but also the out-neighbors which tend to have higher degrees. Therefore, we expect
to see a dissortative trend in the average nearest neighbor connectivity knn(k) in the
closure G. This intuition is confirmed by combining the results we have obtained for
k+

nn(k) and k−
nn(k).37

As we will see in the next section, the similarities between local and global observ-
ability do not carry over to the case of three vertex correlations, where networks gener-
ated under local and global information produce starkly different results.

5.2 Clustering degree correlations

In this section I study three vertex degree correlations in the undirected network ob-

tained from the closure G
β
t of the directed network (G

β
t )t∈R+ . The clustering coefficient

C(k) is defined as the probability that a vertex of degree k in G
β
t is connected to vertices

with degrees k′ and k′′, and that these vertices are themselves connected, averaged over
all k′ and k′′ (Watts and Strogatz 1998).38 Note that in the case of m = 1 all networks

will be trees, G
β
t ∈ T ([t]), which are characterized by a vanishing clustering coefficient.

Hence, we will consider only the case of m> 1 in this section.
Similarly to the case of two vertex degree correlations in the previous section, we

can derive the clustering coefficient using a rate equation approach (Barrat and Pastor-
Satorras 2005). With global information (St = Pt−1) and small β (strong noise) we can
state the following proposition.

Proposition 7. Consider the network formation process (G
β
t )t∈R+ with St = Pt−1 and

m> 1. Then under the continuum approximation in the limit β → 0 the clustering coef-
ficient of an agent with degree k is given by C(k) =O(t−2/(1+mβ) · k2(1/(mβ)−1)) as t → ∞.

The clustering coefficient for m= 4 and β= 0�1 can be seen in Figure 5. It grows with
k as a power law with exponent 2(1/(mβ) − 1).39 Moreover, we find that the clustering
coefficient is decreasing with the network size as t−2/(1+mβ). Hence, for large networks

37An increasing total nearest neighbor connectivity knn(k) can be obtained in two possible extensions
of the model, considering undirected links (see Section 6.1), or heterogeneous linking opportunities (see
Section 6.2).

38So as to compute the clustering coefficient as a function of the degree, in this section we proceed by
first computing the clustering coefficient of a vertex s, born at time s. The clustering coefficient of vertex s

is defined as the number of links between the neighbors of s divided by the total number of links that can
exist between them (in the undirected closure of the graph), which is ks(ks − 1)/2 when ks is the degree of
vertex s (Watts and Strogatz 1998). Under the continuum approximation (see also footnote 35), there exists
a continuous mapping between the time of birth, s, and the degree, ks , of a vertex s. Hence, under the con-
tinuum approximation, knowing the clustering coefficient of a vertex born at time s tells us the clustering
coefficient of a vertex with degree ks (cf., e.g., Barrat and Pastor-Satorras 2005, Boguná and Pastor-Satorras
2003). See Appendix B.4.2 for a detailed derivation.

39We need only consider values of k such that C(k) does not exceed its upper bound given by 1.
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with a high clustering coefficient (such as the network of co-inventors; see Section 7), the
assumption of global information seems to be at odds with the empirical observation.

When agents have only local information and β = 0 (strong noise), we obtain clus-
tering degree correlations as given in the next proposition.

Proposition 8. Consider the network formation process (Gβ
t )t∈R+ with ns = o(t) small

and assume that m> 1. If β= 0, then under the continuum approximation the clustering
coefficient C(k) of an agent with degree k is given by C(k) =O(1/k) as t → ∞.

The proof of Proposition 8 relies on deriving upper lower and upper bounds for the
clustering coefficient that asymptotically decay as O(1/k).40 These bounds for the clus-
tering coefficient for m= ns = 4 can be seen in Figure 5. The figure confirms the asymp-
totic decay of the clustering coefficient as a power law with exponent −1. Note that,
in contrast to the results obtained in Proposition 7, the clustering coefficient in Proposi-
tion 8 does not vanish as the network becomes large. Moreover, the clustering coefficient
shows a power-law decay that is a typical feature of all the empirical networks we con-
sider (see Section 7), indicating that a limited observation radius is a general constraint
in the creation of various real-world networks.

Comparing the results for global and local information, we find that networks gen-
erated under global information produce relatively low clustering and a positive degree
clustering correlation. This is what one would expect from a global link formation pro-
cess in which the formation of cliques is very unlikely, and becomes even more unlikely
the later an agent enters. Hence, we find an increasing clustering degree correlation
since older agents tend to have higher degrees. However, networks formed with local
information tend to produce higher clustering and a negative clustering degree cor-
relation (see also Figure 5). Local link formation favors the creation of links between
neighboring agents, making the network highly clustered. Moreover, the large number
of younger agents that connect to the older ones with higher degrees are less clustered
and thus gives rise to a negative clustering degree correlation (as conjectured by Jackson
and Rogers 2007).

Finally, while the results for different observation radii are fairly robust as long as
the observation radius does not become too large, this does not hold for the average
clustering coefficient, which is decreasing sharply with the observation radius ns. As the
number of links are distributed across a larger number of agents when ns increases, the
formation of triangles becomes less likely and, hence, the clustering coefficient declines.

6. Robustness analysis and extensions

6.1 Undirected links

An extension to the network formation process we have introduced in Definition 1 is to
allow entering agents to observe not only the out-neighbors of incumbent agents (the
ones to which these agents have formed links), but also their in-neighbors (the ones

40See (29) and (30) in Appendix B.4.2.
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from which they have received links). The resulting network can then be viewed as an
undirected graph. One can show that the distributions of the network statistics we have
considered follow a similar behavior as in the case of directed links. The degree distri-
bution exhibits a power-law decay k−α with exponent α = 3 + 1/(mβ) for a large ob-
servation radius and α = 3 + 1/m for a small observation radius. Note, however, that
by introducing undirected links, the rigorous approach to derive the degree distribu-
tions for a small observation radius in Section 3.2 is no longer viable, because there is
no straightforward way to compute the sample size |St |. Instead, one has to resort to
an approximation as |St | ≈ ns(d̄ + 1). The results obtained using this approximation are
given in supplementary Appendix G.

6.2 Heterogeneous linking opportunities

We can introduce heterogeneity in the linking opportunities of entering agents by as-
suming that a fixed fraction 1 − p, with p ∈ (0�1), of the population of agents does not
form any links and remains passive throughout the evolution of the network. Moreover,
one can also allow for a varying number of links to be created by each entrant following
a certain distribution function with given mean m ≥ 1. This extension is studied in the
accompanying supplementary Appendix H.41 We find degree distributions that follow
a power-law decay k−α with exponent α = 2 + 1/(βmp) for a large observation radius
and α = 1 + (1 + m)/(mp) for a small observation radius. The main difference with re-
spect to the basic model in Definition 1 is that this extension gives rise to a nontrivial
component structure of the network, where the component size distribution exhibits a
power-law decay. In the special case of β = 0 and ns = m = 1 one can show that the dis-
tribution P(s) of components of size s is identical for both large and small observation
radii and decays as a power law with exponent 1 + 1/p. Moreover, we find an assortative
trend for the nearest neighbor connectivity (in the closure of the graph) when the obser-
vation radius ns and p are small enough in the large noise limit (β → 0). Note, however,
that differently to Proposition 1, a value of p < 1 can lead to the emergence of multiple
quasi-stars in the limit of vanishing noise (β→ ∞) when the observation radius is small,
and an analytic characterization as in Proposition 1 becomes harder to obtain.

6.3 From assortative to dissortative networks

Finally, when combining the model with undirected links and heterogeneity in the num-
ber of links that entrants can form, a transition from an assortative to a dissortative net-
work can be observed when varying the parameter β, which is related to the noise in
the payoff function of the agents. Figure 7 shows two examples for the average near-
est neighbor degree distribution knn(k), either for β = 0 (left panel) or for β = 5 (right
panel). Recall that β is a parameter related to the level of noise in the payoff function
of the agents and their decisions with whom to form a link. For β = 0 (large noise) we

41A related, more general setup is introduced in Vigier (2014), where agents’ propensities to form a link
follow a certain distribution that allows the incorporation of homophily, making more similar agents more
likely to connect.
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Figure 7. Left panel: The average nearest neighbor degree distribution knn(k). The parameters
used are T = 50,000, ns = 2, m = 4, p= 0�7, and β = 0. Right panel: The average nearest neighbor
degree distribution knn(k) with the same parameters except for β = 5.

see that knn(k) is increasing with the degree k, indicating an assortative network, while
for β = 5 (weak noise) we find that knn(k) is decreasing with the degree k, characteriz-
ing a dissortative network.42 While dissortativity does not play any role in the empirical
networks we consider in Section 7, dissortativity has been found, for example, in trade
networks (see the working paper version König 2011).43

7. Empirical implications

To bring the model to data, I consider three different real-world collaboration networks
in which knowledge diffusion and spillovers are an important source of knowledge gen-
eration and dissemination.

First, I analyze a network of inventors constructed from United States Patent and
Trademark Office (USPTO) patent data in the year 2009.44 I consider only patents in the
drugs and medical sector with patent classification numbers 424 and 514 (see also the
classification in Hall et al. (2001)). I focus on the drugs development sector due to the
high collaboration intensity in this sector as well as for practical reasons, since for the
size of the subsample corresponding to this sector our estimation process is feasible,
while larger sample sizes would make the estimation of the model computationally dif-
ficult.45 The network of co-inventors is constructed by creating a link between any pair
of inventors that has appeared together on a patent. The resulting network is undirected.
I use this network as a proxy for the social network of inventors, in which local knowl-
edge spillovers take place.46 This gives us a network with 27,492 nodes, an average de-
gree of d̄ = 3�51, and a degree variance of σ2

d = 30�03 (with a coefficient of variation of

42Note that as Jackson and Rogers (2007) do not provide results for knn(k) and they do not have a payoff
function governing the decision with whom to form a link, this transition cannot be studied or observed in
their setup.

43For a classification of assortative vs. dissortative networks, see Newman (2002).
44See Lai et al. (2009) for a more detailed description of the data.
45The statistics computed for this subsample of the original data set are similar to the full sample or other

subsamples for different sectors.
46As noted by Fafchamps et al. (2006), in the context of scientific co-authorship networks, the (unob-

served) social network of personal acquaintances has more links than the co-inventor network. However,
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cv ≡ σd/d̄ = 0�94). The distribution of degrees is highly skewed, following a power law
for large degrees (see Figure 8). The network is highly clustered with an average clus-
tering coefficient of C = 0�64 and a negative clustering-degree correlation (Figure 8, sec-
ond column). Moreover, the network is assortative, with an assortativity coefficient of
κ = 0�28 (Newman 2002).47 The nearest neighbor average degree is monotonically in-
creasing with degree (Figure 8, third column). The largest component consists of 12,060
nodes (which is 44% of all nodes).

Second, I consider the network of scientific co-authorships among physicists in the
field of condensed matter physics in the year 2003 (Leskovec et al. 2007).48 The co-
author network is constructed from the e-print service arXiv and covers scientific col-
laborations between authors’ papers submitted to the category of condensed matter
physics.49 If an author co-authored a paper with another, the network contains an undi-
rected edge between them. The network constructed in this way contains 23,133 nodes.
The average degree is d̄ = 8�08 and the degree variance is σ2

d = 113�13, and we obtain a
coefficient of variation of cv = 1�32. The degree distribution is heavy tailed (see Figure 8,
first column). Similar to the network of inventors, the network of scientific co-authors
in condensed matter physics is highly clustered with an average clustering coefficient of
C = 0�63. Moreover, the clustering degree distribution exhibits a similar power-law de-
cay for large degrees (see Figure 8, second column). Moreover, we obtain a positive as-
sortativity coefficient of κ = 0�13. The size of the largest connected component is 21,363
encompassing 92% of all nodes. As in the inventor network we observe a power-law
decay for the sizes of the small components (see Figure 8, fourth column).

Third, I consider the network of scientific co-authorships between economists as re-
ported by the collaboration network service CollEc for authors registered in the RePEc
author service in the year 2012.50 When two authors claim the same paper in the RePEc
digital library,51 they are co-authors, and the relationship of co-authorship creates an
undirected network between them. The network constructed in this way contains 24,721
nodes. The average degree is d̄ = 5�83, the degree variance is σ2

d = 40�48, and the coef-
ficient of variation is cv ≡ σd/d̄ = 1�09. The clustering coefficient is C = 0�23, which is
lower by a factor of 3 than for the network of inventors or research collaborations among
physicists. The assortativity coefficient is κ = 0�19, and the slope of the average nearest
neighbor connectivity knn(k) is slightly smaller than in the other networks (see Figure 8,
third column). We further find that the largest connected component encompasses all
nodes in the network (see Figure 8, fourth column).

the acquaintance network includes the co-inventor network because it can reasonably be assumed that in-
dividuals who have appeared on a patent together know each other, and it can be used as a proxy for the
network of acquaintances.

47The assortativity coefficient κ ∈ [−1�1] is essentially the Pearson correlation coefficient of degree be-
tween nodes that are connected. Positive values of κ indicate that nodes with similar degrees tend to be
connected (and knn(k) is an increasing function of the degree k), while negative values indicate that nodes
with different degrees tend to be connected (and knn(k) is a decreasing function of the degree k). See
Newman (2002) and Pastor-Satorras et al. (2001) for further details.

48See http://snap.stanford.edu/data/ca-CondMat.html.
49See http://arxiv.org/.
50See http://collec.repec.org/.
51See http://repec.org/.

http://snap.stanford.edu/data/ca-CondMat.html
http://arxiv.org/
http://collec.repec.org/
http://repec.org/
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Figure 8. Empirical degree distribution P(d) (first column), clustering-degree correlation C(d) (second column), average nearest neighbor
connectivity knn(d) (third column), and component size distribution P(s) (fourth column) constructed from (first row) USPTO patents on
drugs (patent classes 424 and 514), (second row) co-authors in condensed matter physics from the arXiv data base, and (third row) the network
of co-authors in economics from the CollEc data base (empirical data points indicated by �) and the corresponding distributions generated by
the model (indicated by ©).
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To estimate the parameters of the model I follow the likelihood-free Markov chain
Monte Carlo (LF-MCMC) algorithm suggested by Marjoram et al. (2003).52,53 The de-
tails of this algorithm are outlined in supplementary Appendix F.54 I analyze the model
with undirected links, as it provides a better fit to the data, which has been discussed
in Section 6.1. Moreover, I allow for heterogeneous linking probabilities, including the
basic model when these probabilities are set to 1, as discussed in Section 6.2.

The estimated parameter values are shown in Table 2. Moreover, Figure 8 shows
various distributions for the inventor network, and the networks of co-authors among
physicists and economists. The comparison of observed and simulated distributions
shown in Figure 8 indicates that the model can well reproduce the observed empirical
networks for all the distributions that we consider.55

Comparing the estimated observation radius ns for the inventor network and the
network among physicists to that for the co-author network among economists in Ta-
ble 2 shows that the number of observed agents by an entrant is larger for economists
(with an observation radius ns of 2 instead of 1).56 Hence, this result indicates that
economists tend to use a larger information set for their linking decisions than inven-
tors or physicists. We also observe that the higher clustering coefficient of the inventor
network as compared to the network of co-authors in economics is not due to a higher
link density (the average degree in the first is 3�51, while in the latter it is 5�83), but can
only be understood from a network formation process where agents use a different mix
of local vs. global information as the basis for their decision with whom to form a link.

8. Conclusion

The current paper analyzes the growth of networks where an agent’s linking incentives
can be decomposed into a network-dependent part and an independent exogenous ran-
dom term, referred to as noise. The network formation process sequentially adds agents
to the network. Upon entry, each agent can sample a given number ns (the observation
radius) of existing agents in the network and observe these agents and their neighbors.

52Kolotilin (2013) discusses conditions for consistent estimation and identification using a generalized
method of moments (GMM) approach of the related model by Cooper and Frieze (2003), and it would be
desirable to use a similar approach here. However, because we do not have closed-form analytic solutions
for the distributions of interest for all possible parameter configurations, we cannot proceed as in Kolotilin
(2013), and instead need to resort to LF-MCMC methods. For this reason I do not address the issue of
identification here, and from a more conservative point of view, one can also view this empirical section as
a calibration exercise of the model’s parameters.

53The same statistical method has been used in Ratmann et al. (2007). It is essentially a simulated
method of moments (SMM) estimation procedure (cf. McFadden 1989, Pakes and Pollard 1989).

54See Sisson and Fan (2011) for an introduction to LF-MCMC, Robert and Casella (2004) for a general
discussion of Markov chain Monte Carlo (MCMC) approaches, and Chib (2001) and Chernozhukov and
Hong (2003) for applications of MCMC in econometrics.

55Note that, as can be seen from the top left panel in Figure 8, the estimated model for the network of
inventors slightly underestimates the degree distribution, which leads to a slightly lower average degree
than the one that can be observed in the data.

56The small variances of the estimates make clear that any two-sample Z-test for comparing two means
would always reject the null that they are equal.
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USPTO Network arXiv Network CollEc Network

μθ σ̄θ σθ ιθ pθ(n) μθ σ̄θ σθ ιθ pθ(n) μθ σ̄θ σθ ιθ pθ(n)

ns 1 0 0 3�3100 1 1 0 0 0�9994 1 2 0 0 0�9921 1
p 0�5703 0�0381 0�0069 758�1600 0�9636 0�7488 0�0454 0�0022 36�3550 0�9982 0�6089 0�0533 0�0117 961�2000 0�9325
m 4�6340 0�4838 0�0859 877�6300 0�9286 5�3148 0�4645 0�0244 40�0400 0�9923 4�7303 0�4439 0�0977 975�8500 0�9111
β 0�4758 0�3226 0�0592 548�8400 0�8367 0�0622 0�0780 0�0069 78�8640 0�7263 0�0023 0�0015 0�0003 996�2500 0�5212

T 27,495 23,133 24,721
n 15,000 10,000 10,000

aThe notation μθ is the average and σ̄θ is the simulation standard deviation of the respective parameter, while σθ is the standard deviation calculated from batch means (of length 10)
for each parameter θ ∈ θ (Chib 2001); ιθ is the integrated autocorrelation time, which should be much smaller than the number n of iterations of the Markov chain (Sokal 1996).

bThe notation pθ(n) is the p-value of Geweke’s spectral density diagnostic (converging in distribution to a standard normal random variable as n → ∞) indicating the convergence of
the chain (Geweke 1992, Brooks and Roberts 1998). The maximum number of iterations, n, has been chosen such that reasonably high values of pθ(n) were obtained.

Table 2. Estimation of the model parameters θ ∈ θ = (ns�p�m�β) for the network of inventors from USPTO patents, the network of co-authors

in condensed matter physics from the arXiv data base, and the network of co-authors in economics from the CollEc data base. The table shows

simulated averages of the parameters and their standard deviations,a after the chain has converged.b
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The set of observed agents constitutes the sample St . The entrant then forms links to
the agents in St based on his linking incentives.

I analyze the emerging networks for different observation radii, ns, and levels of
noise. For small noise the observation radius does not matter and strongly centralized
networks emerge. However, for large noise, a smaller observation radius generates net-
works with a larger degree variance and a higher aggregate payoff. Estimating the model
for networks from co-inventors and co-authors in physics and economics, I find that the
model can well reproduce the observed patterns. The estimation shows that local search
for new collaboration partners is important in all the empirical networks considered, but
that economists tend to search more broadly for new collaboration opportunities. This
finding can guide future research on differences in communication culture, search costs
and funding, and organization of research across different disciplines (cf. Stephan 2012,
Schilling and Green 2011, Jones et al. 2008) by providing a simple model that can explain
the empirical observations.

The paper could be extended along several directions. First, it would be interest-
ing to extend the model by allowing both entering and incumbent agents to form links
in a similar way (such as in Cooper and Frieze 2003). Moreover, the deletion of links
is another important extension. Second, an extension of the analysis presented here
could investigate further network measures and analyze additional network data sets.
This could help to shed light on the generality of the patterns I have identified. Finally,
the payoff functions considered in Section 2.1 typically assume that spillover effects (as
measured by the parameter δ) are weak. An extension of the current paper could investi-
gate the effect of stronger spillover effects on the emerging network structures and their
impact on efficiency.

Appendix A: Basic definitions

The network is modeled as a directed graph, which is a pair G ≡ 〈N �E〉, where N ≡
{1� � � � � n} is a set of nodes (vertices) and E ⊂ N × N is a set of edges (links). The set
of all networks with n nodes is denoted by G(n). Similarly, the set of networks with n

nodes and e edges (or links) is denoted by G(n� e). We identify every graph G with a net-
work, and thus use these two terms interchangeably. We denote the out-neighborhood
of a vertex i as the set of agents he can directly access, i.e., N+

G(i) ≡ {j ∈ N |ij ∈ E}.
The in-neighborhood of i is conversely the set of agents who can access i directly, i.e.,
N−

G(i) ≡ {j ∈ N |ji ∈ E}. The in-degree of i is the cardinality of i’s in-neighborhood set
and is denoted as d−

G(i) ≡ |N−
G(i)|. The out-degree of i is d+

G(i) ≡ |N+
G(i)|. The (total) de-

gree of i is dG(i) ≡ d+
G(i) + d−

G(i) and the total neighborhood is NG(i) ≡ N+
G(i) ∪ N−

G(i).
The average degree of G is d̄G ≡ (1/n)

∑
i∈N dG(i) and the degree variance is given by

σ2
d(G) ≡ (1/n)

∑
i∈N (dG(i) − d̄G)

2. Following Bala and Goyal (2000), the closure of a
graph G, denoted by G, is defined by the condition ij ∈ E(G) ⇔ ij ∈ E(G) ∨ ji ∈ E(G).
The number of edges e(G) in G satisfies e(G) = ∑

i∈N d+
G(i) = ∑

i∈N d−
G(i), while the

number of edges e(G) in the closure G is given by e(G) = 1
2
∑

i∈N dG(i). We denote by
G⊕ ij the network obtained by adding the link ij to E . Similarly, G� ij is the network ob-
tained from G by removing the link ij from E . We call two graphs G and H isomorphic if
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an isomorphism exists between them. An isomorphism of graphs G and H is a bijection
between the nodes of G and H such that f :N (G) → N (H), and any two nodes u and v

of G are adjacent in G if and only if f (u) and f (v) are adjacent in H. Loosely speaking, G
and H are isomorphic if we can rearrange a picture of G to match a picture of H, except
for the nodes’ labels. All graphs isomorphic to each other form an isomorphism class.
For further graph theoretic terminology, see, e.g., West (2001) and Bollobás (1998).

Appendix B: Proofs

In this appendix the proofs of the propositions, corollaries, and lemmas stated in the
paper are provided.

B.1 Quasi-stars

Proof of Proposition 1. We first give a proof for part (i) of the proposition. For each
agent j ∈ St , let the best response of the entrant t be the set-valued map Bt : Nt → Nt

given by

Bt (St ) ≡ arg max
k∈St

f δt (Gt−1�k) = arg max
k∈St

dGt−1(k)�

Then, in the limit β → ∞, we obtain from (2) that

lim
β→∞Pt

(
f δt (Gt−1� j)+ εtj = max

k∈St

f δt (Gt−1�k)+ εtk

)
= 1

|Bt(St )|1Bt (St )(j)�

Hence, the entrant makes a uniform draw without replacement from the best response
set Bt when deciding with whom to form a link with probability 1, and the probability
that an agent j receives a link by the entrant is given by

lim
β→∞K

β
t (j|Gt−1�St ) =

(
1 −

(
1 − 1

|Bt(St )|
)

· · ·
(

1 − 1
|Bt(St )| −m+ 1

))
1Bt (St )(j)

=
(

1 − |Bt(St )| −m

|Bt(St )|
)

1Bt (St )(j) = m

|Bt(St )|1Bt (St )(j)�

We now give a proof by induction for (Gt)
T
t=m+2 and an arbitrary value of ns ≥ 1.

The induction basis adds one agent at time t = m + 2 to the complete graph Km+1. By
drawing a random sample St after selecting ns agents from Km+1 uniformly at random,
the entrant observes all agents in the set [m+ 1] ≡ {1�2� � � � �m+ 1}. All of them have the
same degree. Therefore, the entrant forms links to m of the agents in [m+1] uniformly at
random, and we obtain a quasi-star Smm+2 with probability 1. Without loss of generality
(w.l.o.g.), we can label the nodes that receive these links from 1 to m. Similarly, at time t =
m+ 3, by sampling ns agents in Smm+2, the entrant always observes the set of agents [m].
These agents have maximal degree in the prevailing network and hence obtain all the m

links. It follows that we obtain the quasi-star Smm+3 with probability 1.
In the following discussion, we consider the induction step. The induction hypothe-

sis is that the network Gt−1 is a quasi-star, with the highest degree agents in the set [m].
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After sampling ns nodes uniformly at random, it must hold that [m] ⊆ St with proba-
bility 1. The reason is that either one of the agents in [m] is observed directly. Since
each of them has an outgoing link to all other agents in [m], they all enter the sample St .
Otherwise, if one of the agents not in [m] is observed directly, we know from the defini-
tion of the quasi-star that such an agent has outgoing links to all the agents in [m] and,
therefore, they all enter the sample St . The agents in [m] are the ones with the highest
degree in Gt−1 and so they receive all the m links. It follows that the network Gt must
be a quasi-star. Hence, for all ns ≥ 1 and T > m + 1, we must have that in the limit of
β → ∞, Gβ

T ∈ �m+1
T almost surely.

Next, we consider part (ii) of the proposition. In the limit of strong shocks, as β→ 0,
we obtain from (2) that

lim
β→0

Pt

(
f δt (Gt−1� j)+ εtj = max

k∈St

f δt (Gt−1�k)+ εtk

)
= 1

|St | �

It follows that the entrant selects m agents uniformly without replacement from the sam-
ple St with probability 1 as β → 0. The probability that an agent j receives a link by the
entrant is then given by

lim
β→0

K
β
t (j|Gt−1�St )= m

|St |1St (j)�

Let us consider the sequence (Gt)
T
t=m+2 with ns ≥ 1 and assume that Gt−1 ∈ �m

t−1. We are
interested in the probability Pt (Gt ∈ �m

t |Gt−1 ∈ �m
t−1). We have that Gt ∈ �m

t if only the
m agents in the set [m] receive a link by the entrant at time t. Given the sample St , the
probability that this happens is

m

|St |
(

m− 1
|St | − 1

)
· · ·

(
1

|St | −m+ 1

)
= m!|(St | −m)!

|St |! =
(|St |

m

)−1
� (9)

Consequently, we then can write

Pt (Gt ∈ �m
t |Gt−1 ∈ �m

t−1)=
∑

St∈Pt−1

(|St |
m

)−1
Pt (St |Gt−1 ∈ �m

t−1)� (10)

Due to the properties of the quasi-star Gt−1 ∈ �m
t−1, the sample can only be of size |St | =

m + 1�m + 2� � � � �m + 1 + ns. The sample St has size m + 1 if all the ns draws are from
the m + 1 nodes in the set [m + 1] that are in the initial complete graph Km+1. It is of
size m + 2 if ns − 1 draws are from the set [m + 1], and one agent is drawn from the
remaining agents, and so on. An illustration can be seen in Figure 9. Let X0 denote the
number of agents drawn from the set [m+ 1] and let X1 be the number of agents drawn
from the remaining agents in the set [t − 1]\[m+ 1]. Then X0 follows a hypergeometric
distribution, and the sample size distribution is given by

Pt (|St | =m+ 1 + k|·)= Pt (X0 = ns − k�X1 = k|·) =
(m+1
ns−k

)(t−m−2
k

)
(t−1
ns

) �
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|St | X0 X1

m+ 1 ns 0
m+ 2 ns − 1 1
m+ 3 ns − 2 2
���

���
���

m+ 1 + ns 0 ns

Figure 9. Left panel: Illustration of the selection of agents in a quasi-star by the entrant t. The
filled circles indicate the nodes present in the initial complete graph Km+1. Right panel: The
variable X0 denotes the number of agents drawn from the set [m+1] and X1 denotes the number
of agents drawn from the remaining agents in the set [t−1]\[m+1]. The table shows the possible
values for |St |, X0, and X1.

The expected sample size is

Et[|St ||·] =
ns∑
k=0

(m+ 1 + k)Pt (|St | = m+ 1 + k|·)= (m+ 1 + k)

(m+1
ns−k

)(t−m−2
k

)
(t−1
ns

)
= ns +m+ 1 − ns(m+ 1)

t − 1
�

We thus find that the expected sample size is decreasing with ns. Moreover, we have that
the sample size distribution for ns + 1 first-order stochastically dominates the distribu-
tion for ns. Let 0 ≤ l ≤ ns. Then first-order stochastic dominance is implied by

l∑
k=0

(m+1
ns−k

)(t−m−2
k

)
(t−1
ns

) ≥
l∑

k=0

( m+1
ns+1−k

)(t−m−2
k

)
( t−1
ns+1

) �

which is equivalent to

0 ≤
l∑

k=0

(
t − 2 −m

k

)((m+1
ns−k

)
(t−1
ns

) −
( m+1
ns+1−k

)
( t−1
ns+1

)
)

= (l + 1)(ns − l −m− 2)
t(ns − l)−m(ns + 1)− 2(ns + 1)

×
(t−m−2

l+1
)

(t−1
ns

)( t−1
ns+1

)
((

t − 1
ns

)(
m+ 1
ns − l

)
−

(
t − 1
ns + 1

)(
m+ 1

ns − l − 1

))

= (l + 1)(ns − l −m− 2)
t(ns − l)−m(ns + 1)− 2(ns + 1)

(
t −m− 2

l + 1

)(
1 + t − ns − 1

ns + 1
ns − l

ns − l −m− 2

)(m+1
ns−l

)
( t−1
ns+1

)

= l + 1
ns + 1

(t−m−2
l+1

)(m+1
ns−l

)
( t−1
ns+1

) �
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The last expression is nonnegative for all admissible parameter values. If one distribu-
tion is first-order stochastically dominated by another, then the expected value of any
decreasing function of a random variable governed by the first distribution is higher
than the expectation under the latter (see, e.g., Mas-Colell et al. 1995). Since (9) is a
decreasing function of the sample size |St |, we can apply stochastic dominance and
it follows that (10) is decreasing with ns. The network Gt≤m+1 is the complete graph
Km+1 and, therefore, is a quasi star. The probability of observing a quasi-star in period
T is given by P(GT ∈ �m

T ) = ∏T
t=m+2 Pt (Gt ∈ �m

t |Gt−1 ∈ �m
t−1). As we have shown above,

the probability Pt (Gt ∈ �m
t |Gt−1 ∈ �m

t−1) is decreasing in ns for any t ≥ m + 2. Thus, if

β → 0, it follows that for a sequence (G
β
t )

T
t=m+2 of networks generated under n(1)s and

a sequence (H
β
t )

T
t=m+2 of networks generated under n(2)s with n(1)s > n(2)s , we must have

that limβ→0 P(G
β
T ∈ �m

T ) < limβ→0 P(H
β
T ∈ �m

T ). �

B.2 The degree distributions

Let us review some notation we have introduced in the main part of the paper. For all
t ≥ 1 we denote by Nt(k) ≡ ∑t

i=0 1k(dGt (i)) the number of nodes in the graph Gt with
in-degree k. The relative frequency of nodes with in-degree k is accordingly defined
as P

β
t (k) ≡ (1/t)Nt(k) for all t ≥ 1. The sequence {Pβ

t (k)}k∈N is the (empirical) degree
distribution. In the following text, we will show almost sure convergence of the empir-
ical degree distribution to its expected value (see Propositions 9 and 10), and explic-
itly characterize the limiting distribution (see the proofs of Propositions 2 and 3, and
Corollary 1).

We will now derive a recursive system that can be used to describe the time evolution
of the expected degree distribution. Let Nt ≡ {Nt(k)}k≥0. Denoting k = d−

Gt−1
(j), we

write the attachment kernel as K
β
t (j|Gt−1) = a(k)/(tζ(β�m)) + o(1/t). The expected

number of nodes with in-degree k at time t can increase by the creation of a link to a
node with in-degree k − 1 or it decreases by the creation of a link to a node with in-
degree k. It then follows that

E[Nt+1(k)|Nt] =Nt(k)

(
1 − a(k)

tζ(β�m)

)
+Nt(k− 1)

a(k− 1)
tζ(β�m)

+ δ0�k + o

(
1
t

)
� (11)

Taking expectations on both sides of (11), dividing by t + 1, and denoting P
β
t (k) =

E[Nt(k)] gives us

P
β
t+1(k) = t

t + 1

[
P
β
t (k)

(
1 − a(k)

tζ(β�m)

)
+ P

β
t (k− 1)

a(k− 1)
tζ(β�m)

+ 1
t
δ0�k

]
+ o

(
1
t

)
�

Some algebraic manipulations allow us to write this as

P
β
t+1(k)− P

β
t (k) = bt(k)[ct(k)− P

β
t (k)] + o

(
1
t

)
� (12)
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where

bt(k) ≡ ζ(β�m)+ a(k)

ζ(β�m)

1
t + 1

ct(k) ≡ P
β
t (k− 1)

a(k− 1)
ζ(β�m)+ a(k)

+ ζ(β�m)

ζ(β�m)+ a(k)
δ0�k�

The following lemma gives us a simple way to determine the asymptotic solution (i.e.,
as t → ∞) of the recursion in (12).

Lemma 1. Let (xn), (yn), (ηn), and (rn) denote real sequences such that

xn+1 − xn = ηn(yn − xn)+ rn

and (i) limn→∞ yn = x, (ii) ηn > 0,
∑∞

n=1 ηn = ∞ and there exists a N0 such that for all
n ≥N0, ηn < 1, and (iii) rn = o(ηn). Then limn→∞ xn = x.

For the proof of Lemma 1, see Jordan (2006, p. 229).
For our purposes the lemma can be applied by identifying xt = P

β
t (k), ηt = bt(k)

and yt = ct(k). We have that bt(k) > 0 and
∑

t≥0 bt(k) = ∞ since ζ(β�m) < ∞. Under
this condition it is evident that ct(k) has a well defined limit, which is determined in a
recursive way. We give a proof by induction. The induction basis follows from the case
of k= 0, where

c(0) ≡ lim
t→∞ ct(0) = ζ(β�m)

ζ(β�m)+ a(0)
�

To proceed with the induction proof, suppose we have already determined the lower tail
of the distribution c(0) = Pβ(0), � � � , c(k− 1) = Pβ(k− 1), k> 0. Then we see that

c(k) ≡ lim
t→∞ ct(k) = Pβ(k− 1)

a(k− 1)
ζ(β�m)+ a(k)

�

and iterating this equation with respect to k gives us

c(k) = Pβ(0)
k∏

j=1

a(j − 1)
ζ(β�m)+ a(j)

�

Hence, we get for the explicit expression for the asymptotic degree distribution

Pβ(k) = ζ(β�m)

ζ(β�m)+ a(0)

k∏
j=1

a(j − 1)
ζ(β�m)+ a(j)

� (13)

This general scheme can be used to determine the degree distribution for the different
parameters we consider, as we show now in the following proof.

Proof of Proposition 2. For β → 0 the attachment kernel of (3) is given by
K

β
t (j|Gt−1) = a(k)/(tζ(β�m))+ o(1/t), where k = dGt−1(j), a(k) = 1+βk, and ζ(β�m) =
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(1 + βm)/m. We then can apply (13), noting that the product on the right-hand side
admits a closed-form representation in terms of Gamma functions as

Pβ(k) = 1 +βm

1 +m(1 +β)

�
( 1
β + k

)
�
(
2 + 1+βm

βm

)
�
( 1
β

)
�
(
2 + 1+m

1+βm + k
) � (14)

By Stirling’s formula we can approximate the Gamma function for large k as57

�(k)

�(k+ c)
= k−c

(
1 +O

(
1
k

))
� (15)

For the tails of the degree distribution in (14) this implies that Pβ(k) ∼
(1 +βk)−(2+1/(βm))(1 +O(1/k)) for large k. �

The case of β = 0 can be treated analogously.

Proof of Corollary 1. The degree distribution in (5) follows from the attachment
kernel K0

t (j|Gt−1) = a(k)/(tζ(β�m))+ o(1/t) = m/t + o(1/t) and inserting a(k) = 1 and
ζ(β�m) = 1/m into (13). �

Similarly, we can derive the asymptotic degree distribution in Proposition 3 for β= 0
when the observation radius ns is small enough. The proof is given in the following text.

Proof of Proposition 3. With the attachment kernel from (7) given by K0
t (j|Gt−1) =

a(k)/(tζ(β�m)) + o(1/t) = (m/(m + 1))((1 + k)/t) + o(1/t), where k = dGt−1(j), a(k) =
1 + k, and ζ(β�m) = (m+ 1)/m, we can apply (13) to obtain

P(k) = (1 +m)�
(
3 + 1

m

)
�(k+ 1)

(1 + 2m)�
(
3 + 1

m + k
) � k≥ 0�

Using (15) we get P(k) ∼ k−(2+1/m) for large k. �

57By Stirling’s formula we can approximate the Gamma function for large k as

�(k) =
√

2π
k

(
k

e

)k(
1 +O

(
1
k

))
�

Hence,

�(k)

�(k+ a)
=

(
1 +O

(
1
k

))√
(1 + a/k)(1 + a/k)−k

(
k

k+ a

)k(
k+ a

e

)−a

�

Since
√
(1 + a/k) → 1 for k→ ∞, this term is asymptotically negligible. Additionally (1 + a/k)−k → e−a for

k → ∞, and (k + a)−a ∼ k−a for k → ∞. Hence, the leading order approximation of the ratio of Gamma
functions is given by

�(k)

�(k+ a)
= k−a

(
1 +O

(
1
k

))
�
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Finally, we can give an upper bound on the deviations for finite t and show that the
empirical degree distribution is a consistent estimator of the expected degree distribu-
tion in the limit of large t.

Proposition 9. Let the empirical in-degree distribution be given by {Pt(k)}k∈N. Then
for any ε > 0 we have that

Pt
(∣∣Pt(k)−Et[Pt(k)]

∣∣ ≥ ε
) ≤ 2 exp

(
− ε2t

8(m+ 1)2

)
� (16)

and Pt(k) converges in probability to Et[Pt(k)] for large t.

Proof. Let the number of vertices with in-degree k in network Gt = 〈Nt �Et〉 be de-
noted by Nt(k) = ∑

i∈Nt
1d−

Gt−1
(i)(k) = |Nt |Pt(k). Consider the filtration Fn = σ(G1�G2�

� � � �Gn), 1 ≤ n ≤ t, which is the smallest σ-algebra generated by G1�G2� � � � �Gn, with
the property that Fn ⊆ Fn+1, and let F∞ be the σ-algebra generated by the infinite
union of the Fn’s. For n = 1� � � � � s, we denote the conditional expectation of the num-
ber of vertices with in-degree k at time s, conditional on the filtration Fn, by Zn =
Et[Nt(k)|Fn]. First, from the fact that Nt(k) ≤ t, it follows that Et[|Zn|] = Et[Zn] =
Et[Nt(k)] ≤ t < ∞. Second, since Fn ⊆ Fn+1, we have that for all n ≤ t − 1, Et[Zn+1|Fn] =
Et[Et[Nt(k)|Fn+1]|Fn] = Et[Nt(k)|Fn] = Zn. We thus find that (Zn)

t
n=1 is a martingale

with respect to (Fn)
t
n=1.

Moreover, note that Z1 = Et[Nt(k)|F1] = Et[Nt(k)|G1], since F1 contains no more
information than the initial network G1. The Zt is given by Zt = Et[Nt(k)|Ft] = Nt(k).
Therefore, we have that Zt −Z1 = Nt(k)−Et [Nt(k)|G1]. Next, we show that |Zn−Zn−1| ≤
2(m+ 1). To see this note that Zn = Et[Nt(k)|Fn] = ∑

i∈Nt
Pt (dGt−1(i) = k|Fn) and, simi-

larly, Zn−1 = Et[Nt(k)|Fn−1] = ∑
i∈Ns

Pt (dGt−1(i) = k|Fn−1), so that we can write

Zn −Zn−1 =
∑
i∈Nt

[
Pt (dGt−1(i) = k|Fn)− Pt (dGt−1(i) = k|Fn−1)

]
� (17)

In Fn−1 we know where the edges up to time n − 1 have been attached. In Fn we know
in addition where the edges in the nth step are attached. These edges affect the total
degree of m+ 1 vertices, namely those receiving a link and those initiating the links.

For the conditional expectation given Fn, we need to take the expectation over all
possible ways of attaching the remaining edges in the periods n+ 1� � � � � s. Only the dis-
tribution of the degrees of the vertices that have obtained or initiated an edge in period
n are affected by the knowledge of Fn, compared to the knowledge of Fn−1. Neither the
probability of the other vertices to receive a link nor the probability to initiate a link is
affected by the creation of the edges in the nth step. Thus, also the law of their total
degree is unaffected. There are at most m + 1 vertices that receive or initiate a link in
period n. Therefore, (17) shows that the distribution of at most 2(m + 1) vertices in Gt

is different by conditioning on Fn compared to conditioning on Fn−1. This implies that
|Zn − Zn−1| ≤ 2(m + 1). We then can apply the Azuma–Hoeffding inequality (see, e.g.,
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Grimmett and Stirzaker 2001) to obtain, for any η> 0,

Pt
(∣∣Nt(k)−Et[Nt(k)|G1]

∣∣ ≥ η
) ≤ 2 exp

(
− η2

8(m+ 1)2t

)
�

and by choosing η= εt, (16) follows. �

With Proposition 9 we are now able to show almost sure convergence of the empiri-
cal degree distribution to its expected value.

Proposition 10. For a fixed k≥ 0, Pt(k)
a�s�−→ Et[Pt(k)] as t → ∞.

Proof. The proof follows from the Borel–Cantelli lemma (see, e.g., Grimmett and
Stirzaker 2001) and Proposition 9 by observing that for any ε > 0,

∞∑
t=1

Pt
(∣∣Pt(k)−Et[Pt(k)]

∣∣ ≥ ε
) ≤ 2

∞∑
t=1

e−(ε2t)/(8(m+1)2) = 1

e(ε
2)/(8(m+1)2) − 1

<+∞�
�

B.3 Efficiency

Proof of Proposition 4. Part (i) of the proposition is a direct consequence of part (ii)
of Proposition 1.

Part (ii) of the proposition follows from the fact that networks generated under
(Ht)

T
t=m+2 have a finite degree variance, while the degree variance of networks gener-

ated under (Gt)
T
t=m+2 diverge with T , since the first has a geometric degree distribution

while the latter has a power-law degree distribution in the large T limit. More precisely,
the degree variance under HT is given by

σ2
d = lim

T→∞

T∑
k=0

1
1 +m

(
m

m+ 1

)k

(k−m)2 = m(m+ 1) <+∞

while the variance under GT is

σ2
d = lim

T→∞

T∑
k=0

(m+ 1)�
(
3 + 1

m

)
�(k+ 1)

(1 + 2m)�
(
3 + 1

m + k
) (k−m)2 = lim

T→∞
O(T 1−1/m) = +∞�

if m> 1, while for m= 1 we get

σ2
d = lim

T→∞

(
4HT+1 − 4(1 + T)(5 + 3T)

6 + 5T + T 2

)
= +∞�

where HT is the harmonic number, diverging as lnT for large T . �
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B.4 Higher order statistics

The results of this section are derived using a continuum approximation in which both
time and degree are treated as continuous variables in R+ (see Dorogovtsev and Mendes
2013, p. 117). In this continuum approach, the probability that a vertex s has in-degree
d−
Gt
(s) = k at time t is given by δ(k − k̄(s� t)), where k̄(s� t) = Et[d−

Gt
(s)] denotes the ex-

pected degree of vertex s at time t. The degree distribution can then be obtained from

Pt(k) = 1
t

∫ t

0
δ(k− k̄(s� t))ds = −1

t

(
∂k̄(s� t)

∂s

)−1∣∣∣∣
s=s(k�t)

� (18)

So as to compare this approximation with our previous analysis, we will derive the de-
gree distributions in the case of a large and a small observation radius. To ease the nota-
tion we will denote by ks(t) the in-degree d−

Gt
(s) of a vertex s at time t for the remainder

of this section, and we will focus only on the in-degree ks(t), since it uniquely deter-
mines the total degree dGt (s) = ks(t)+m and vice versa.

We first consider the expected change in the in-degree ks(t) of a vertex s receiving
a link from an entrant t when St = Pt−1 (large observation radius). In the continuum
approximation, the corresponding expectation in the time interval [t� t +�t) is given by
Et[ks(t+�t)−ks(t)|Gt] ≈ (m/(1+βm))((1+βks(t))/t)�t for large t, where (3) describes
a transition rate and �t = O(1/T). The evolution of the in-degree of vertex s at time t is
governed by the differential equation

dks(t)

dt
= lim

�t↓0

Et[ks(t +�t)− ks(t)|Gt]
�t

= m

1 +βm

1 +βks(t)

t
�

with the initial condition ks(s) = 0 for all s ≥ 0. The solution is given by

ks(t) = 1
β

((
t

s

)(mβ)/(1+mβ)

− 1
)
� (19)

From (18) we then get

Pβ(k) = 1 +βm

m
(1 +βk)−(2+1/(βm))� (20)

with
∫ ∞

0 Pβ(k)dk = 1. This is asymptotically equivalent to the degree distribution we
obtained in (4).

Similarly, in the case of ns small enough (small observation radius), we have from
(7) that Et[ks(t + �t) − ks(t)|Gt] ≈ (m/(1 + m))((1 + ks(t))/t)�t for large t. The time
evolution of the in-degree of a vertex s can then be written as

dks(t)

dt
= m

m+ 1
ks(t)+ 1

t
�

with the initial condition ks(s) = 0 for all s ≥ 0. The solution is given by

ks(t) =
(
t

s

)m/(m+1)

− 1� (21)
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From (18) we then get

P(k) = m+ 1
m

(1 + k)−(2+1/m)� (22)

with the property that
∫ ∞

0 P(k)dk = 1. Comparing this distribution with the one in (8)
shows that they are both asymptotically equivalent. Since the continuum approxima-
tion delivers only meaningful results in the large t limit, we will consider only the leading
order terms in O(1/t) in our derivations in the following sections.

B.4.1 Average nearest neighbor degree distribution

Proof of Proposition 5. Let R−
s (t) denote the sum of in-degrees of the in-neighbors

of a vertex s at time t, that is, R−
s (t) = ∑

j∈N−
Gt

(s) kj(t). In the continuum approximation,

with the attachment kernel from (3), we have up to leading orders in O(1/t) that

dR−
s (t)

dt
=

∑
j∈N−

Gt
(s)

m
1 +βkj(t)

(1 +βm)t
= a

t
R−
s (t)+ a

βt
kj(t) = a

t
R−
s (t)+ a

β2t

((
t

s

)a

− 1
)
�

where we have denoted a≡ (mβ)/(1+mβ). Wit the initial condition R−
s (s) = 0 we obtain

R−
s (t) = 1

β2

(
1 +

(
a ln

(
t

s

)
− 1

)(
t

s

)a)
�

and the average nearest neighbor in-degree is given by k−
nn(ks) = R−

s (t)/ks . From (19)
we know that t/s = (1 +βks)

1/a, and we obtain

k−
nn(k) = 1

β2k

(
1 + (ln(1 +βk)− 1)(1 +βk)

)
� (23)

Next, we turn to the analysis of the average nearest out-neighbor in-degree. Let us de-
note by R+

s (t) the sum of the in-degrees of the out-neighbors of vertex s at time t, that is,
R+
s (t) = ∑

j∈N+
Gt

(s) kj(t). Up to leading orders in O(1/t) we can write

dR+
s (t)

dt
=

∑
j∈N+

Gt
(s)

a

t

(
1
β

+ kj(t)

)
= a

t

(
m

β
+R+

s (t)

)
�

The solution is given by

R+
s (t) = −m

β
+Cst

a� (24)

where the constant Cs is determined by the initial conditions. They are given by

R+
s+1 =

s∑
j=1

a

s

(
1
β

+ kj(s)

)
(kj(s)+ 1) = a

β2

(
β(1 +m(β− 1))− 1 + s2a−1ζ(s�2a)

)
�
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where ζ(s�2a) is the Hurwitz zeta function.58 Together with the solution (24) we then get

R+
s (t) = 1

β2

((
βm(1 +p(β− 1))+ a

s
s2aζ(s�2a)

)(
t

s + 1

)a

−mβ

)
�

The average nearest out-neighbor in-degree is then given by k+
nn(k) =R+

s /m, that is,

k+
nn(k) = 1

β2m

((
βm(1 +p(β− 1))+ a

s
s2aζ(s�2a)

)(
t

s + 1

)a

−mβ

)
�

Hence, we find that for large k, the average nearest in-neighbor connectivity grows loga-
rithmically with k and is independent of t, while the average nearest out-neighbor con-
nectivity becomes independent of k and grows with the network sizes as t(βm)/(1+βm). �

Proof of Proposition 6. Let R−
s (t) denote the sum of in-degrees of the in-neighbors

of a vertex s at time t, that is, R−
s (t) = ∑

j∈N−
Gt

(s) kj(t). In the continuum approximation,

with the attachment kernel from (7), we have up to leading orders in O(1/t) that59

dR−
s (t)

dt
= a

t

∑
j∈N−

Gt
(s)

(1 + kj(t)) = a

t
ks(t)+ a

t
R−
s (t)�

where we have denoted a ≡ m/(1 + m). In the continuum approximation we have that
ks(t) = (t/s)a − 1 (see (21)), so that we can write

dR−
s (t)

dt
= a

t

((
t

s

)a

− 1 + a

t
R−
s (t)

)
�

The solution is given by

R−
s (t) = Cst

a + 1 + a

(
t

s

)a

ln t�

where the constant Cs is determined by the initial conditions given by R−
s (s) = 0. With

these initial conditions we get

R−
s (t) = 1 −

(
t

s

)a

+ a

(
t

s

)a

ln
(
t

s

)
�

Further, using the fact that s(k� t) = t/((k+ 1)1/a) we obtain

R−
s (t) = 1 + (k+ 1)(ln(k+ 1)− 1)�

It follows that

k−
nn = R−

s

k
= 1

k

(
1 + (k+ 1)(ln(k+ 1)− 1)

)
�

58The Hurwitz zeta function is defined by ζ(s�a) ≡ ∑∞
n=0 1/(a+ n)s .

59We ignore cases in which two or more neighbors of s are found as the neighbors of directly observed
vertices (other than s), which happens with probability O(1/t2).
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Next, we turn to the average nearest out-neighbor in-degree. Let us denote by R+
s (t)

the sum of the in-degrees of the out-neighbors of vertex s at time t, that is, R+
s (t) =∑

j∈N+
Gt

(s) kj(t). So as to compute the expected increase in the sum of the degrees of the

out-neighbors of s we need to consider two different cases. First, s is observed directly
and enters the sample St together with all the out-neighbors. The expected number of
links created among the out-neighbors of s in this way is given by

ns

t

m∑
k=1

k

(m
k

)(|St |−m
m−k

)
(|St |
m

) = m2

(m+ 1)t
�

where we have used the fact that |St | = ns(m + 1) up to leading orders in O(1/t). Sec-
ond, we need to consider the cases where the out-neighbors of s are found either di-
rectly or indirectly through vertices other than s. The probability of this is given by
(m/((m+ 1)t))kj(t) for each j in N+

Gt
(s) (discounting the link from s). Taking these cases

together and denoting a =m/(m+ 1), we can write

dR+
s (t)

dt
= ma

t
+

∑
j∈N+

Gt
(s)

a

t
kj(t) = ma

t
+ a

t
R+
s (t)�

with the solution

R+
s (t) = −m+Cst

a�

The term Cs is determined by the initial condition R+
s (s), which is given by

R+
s (s) = a

s

s∑
j=1

(1 + kj(s))
2 = as2a−1H(s�2a)�

where H(s�2a) ≡ ∑s
j=1 j

−2a is the generalized harmonic number. Inserting the initial
condition delivers

R+
s (t) = m

((
t

s

)a

− 1
)

+ aH(s�2a)sa−1ta�

Further, using s(k� t) = t/((k+ 1)1/a) from (21) gives

R+
s (k) =

(
m�(2 +m)2

�
(
1 +m+ m

m+1

)2 + m

m+ 1
ζ

(
2m

m+ 1
�2 +m

))
t(m−1)/(m+1)(1 + k)1/m�

With k+
nn(k) = R+

s (k)/m we then get

k+
nn(k) =

(
�(2 +m)2

�
(
1 +m+ m

m+1

)2 + 1
m+ 1

H

(
2m

m+ 1
�2 +m

))
t(m−1)/(m+1)(1 + k)1/m�

For large k we find that k−
nn(k) grows logarithmically with k and is independent of the

network size t, and k+
nn(k) grows as O(t(m−1)/(m+1) · k1/m). �
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Figure 10. Left panel: Vertex s and one of its out-neighbors u ∈ N+
Gt
(s) receive a link by the

entrant t. Right panel: Vertex s and one of its in-neighbors u ∈ N−
Gt
(s) receive a link.

B.4.2 Clustering degree distribution We denote by Ms(t) the number of links between
neighbors of vertex s at time t in the closure Gt . The clustering coefficient of vertex s can
then be written as

Cs(t) = 2Ms(t)

(ks(t)+m)(ks(t)+m− 1)
�

In the following text we derive the clustering coefficient for different observation radii.
In the case of a large observation radius, we can give the following proof.

Proof of Proposition 7. The term Ms(t) can increase at time t only through the ad-
dition of an edge to s and one of its neighbors. There are two possible cases to consider:
(i) vertex s and one of its out-neighbors u ∈ N+

Gt
(s) receive a link, or (ii) s and one of its

in-neighbors u ∈ N−
Gt
(s) receive a link. This is illustrated in Figure 10.

The probability associated with case (i) up to leading orders in O(1/t) is given by

m(1 +βks(t))

(1 +βm)t

∑
j∈N+

Gt
(s)

(m− 1)(1 +βkj(t))

(1 +βm)t
= m(m− 1)(1 +βks(t))

(1 +βm)2t2 (m+βR+
s (t))�

Similarly, the probability associated with case (ii) up to leading orders in O(1/t) is given
by

m(1 +βks(t))

(1 +βm)t

∑
j∈N−

Gt
(s)

(m− 1)(1 +βkj(t))

(1 +βm)t
= m(m− 1)(1 +βks(t))

(1 +βm)2t2 (ks(t)+βR−
s (t))�

With R−
s and R+

s given in the proof of Proposition 5, we obtain

dMs(t)

dt
= m(m− 1)(1 +βks(t))

(1 +βm)t2 (m+ ks(t)+β(R+
s +R−

s ))

(25)

= a2

t2
m− 1
mβ3

(
(β2m+ as2a−1H(s�2a))

(
t

s

)a(
t

s + 1

)a

+
(
t

s

)2a

a ln
(
t

s

)a)
�

The initial condition Ms is determined by all connected pairs of vertices i, j, which both
obtain a link from the entering vertex s at time s. Taking into account that all vertices
with i ≤ m are connected while the vertices i, j introduced later in the network are con-
nected only if either i has formed a link to j or j to i (depending on who has entered the
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network first and noting that all vertices with indices 1 ≤ i ≤ m are initially connected),
we can write the initial condition as60

Ms+1 = m(m− 1)
2

s∑
j 	=i

1 +βki(s)

(1 +βm)s

1 +βkj(s)

(1 +βm)s

(
�(m+ 1 − i)�(m+ 1 − j)

+�(i− j)�(j −m)m
1 +βkj(i)

(1 +βm)(i− 1)
(26)

+�(j − i)�(i−m)m
1 +βki(j)

(1 +βm)(j − 1)

)

= m(m− 1)s2a−2

(1 +βm)2

(
m∑
i=1

1
ia

m∑
j=i+1

1
ja

+ 2m
1 +βm

s∑
i=m+1

1
i2a

∑
j=i+1

1
j − 1

)
�

where a = (βm)/(1 + βm). Combining the initial condition in (26) with (25) shows that
the clustering coefficient of an agent with degree k is given by

C(k) = 2
(k+pm)(k+pm− 1)

a(m− 1)
mpβ3b2s

(
sb2 mpβ3

a(m− 1)
Ms + ((1 +βk)b − 1)

×
(
b

(
s

s + 1

)a

(β2m+ as2a−1ζ(s�2a))− 1
)

+ b(1 +βk)b ln(1 +βk)

)
�

where a= (βm)/(1 +βm), b = 2 − 1/a, the initial condition is

Ms+1 = m(m− 1)s2a−2

(1 +βm)2

(
m∑
i=1

1
ia

m∑
j=i+1

1
ja

+ 2m
1 +βm

s∑
i=m+1

1
i2a

s−1∑
j=i

1
j

)
�

and s = t(1 + βk)−1/a as t → ∞. For large k (and small s, respectively) the first term
in the initial condition Ms+1 dominates and the asymptotic behavior of the clustering
coefficient is given by

C(k) =O(t−2/(1+mβ) · k2(1/(mβ)−1))�

This expression grows with k as a power law with exponent 2(1/(mβ) − 1).61 Moreover,
we find that the clustering coefficient is decreasing with the network size as t−2/(1+mβ). �

Next, we turn to the derivation of the clustering coefficient when the observation
radius is small.

Proof of Proposition 8. For the increase of Ms(t) at time t we have to consider the
following cases: (i) vertex s and one of its out-neighbors u ∈ N+

Gt
(s) receive a link or (ii) s

and one of its in-neighbors ∈ N−
Gt
(s) receive a link, and (iii) the entrant observes a vertex

v and forms a link to both vertices s and u which are both out-neighbors of v. This is
illustrated in Figure 11. In case (i), we consider that vertex s is observed directly. The

60The Heaviside step function is defined as �(x)= 1 if x > 0 and �(x)= 0 if x ≤ 0.
61We need only consider values of k such that C(k) does not exceed its upper bound given by 1.
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Figure 11. Left panel: Vertex s and one of its out-neighbors u ∈ N+
Gt
(s) receive a link. Middle

panel: Vertex s and one of its in-neighbors u ∈ N−
Gt
(s) receive a link. Right panel: The entrant t

observes a vertex v and forms a link to both vertices s and u, which are both out-neighbors of v.

probability of this happening is given by ns/t. Assuming that s has been observed di-
rectly, s and all the out-neighbors N+

Gt
(s) of s are in the sample St . We can then partition

the sample St in three subsets: {s}, N+
Gt
(s), and St\(N+

Gt
(s) ∪ {s}), with corresponding

cardinalities |{s}| = 1, |N+
Gt
(s)| = m, and |St\(N+

Gt
(s) ∪ {s})| = ns(m + 1) − (m + 1). We

need to take into account all cases where vertex s and at least one of the out-neighbors
of s receive a link. The expected number of triangles formed in this way can then be
computed with a trivariate hypergeometric distribution as

ns

t

m−1∑
k=1

k

(1
1

)(m
k

)(|St |−(m+1)
m−(k+1)

)
(|St |
m

) = ns

t

m−1∑
k=1

k

(m
k

)((ns−1)(m+1)
m−(k+1)

)
(ns(m+1)

m

) = m2(m− 1)
(m+ 1)(ns(m+ 1)− 1)t

�

In case (ii), we consider that one of the in-neighbors u ∈ N−
Gt
(s) of s is observed directly

by the entrant, which happens with probability ns/t, and both u and s receive a link. The
latter event follows a bivariate hypergeometric distribution where two nodes are drawn
from the set {s�u} and m−2 are drawn from the remaining nodes in the set St\{s�u} with
a total of m draws. Summing over all ks(t) in-neighbors of s delivers the total probability
measure associated with case (ii) as given by

ks(t)
ns

t

(2
2

)(|St |−2
m−2

)
(|St |
m

) = ks(t)

t

m(m− 1)
(m+ 1)(ns(m+ 1)− 1)

�

Next, in (iii) we need to consider all cases where a node v is observed directly by the en-
trant and the two out-neighbors s and u, which have a link between them, both receive
a link. Similar to case (ii) we can then partition the set St in the subset {s�u} and the set
of remaining nodes St\{s�u}. The probability of both s and u receiving a link by the en-
trant follows a bivariate hypergeometric distribution as

(2
2
)(|St |−2

m−2

)
/
(|St |
m

)
. The probability

that node v is observed directly is ns/t. The number of such triangles including node s is
given by Ms(t) (in both Gt and its closure Gt ). The expected number of triangles being
formed in this way is then given as

Ms(t)
ns

t

(2
2
)(|St |−2

m−2

)
(|St |
m

) = Ms(t)

t

m(m− 1)
(m+ 1)(ns(m+ 1)− 1)

�
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Taking together the cases (i)–(iii), we can write in the continuum approximation for the
dynamics of Ms(t) that

dMs(t)

dt
= a(m− 1)

t(ns(m+ 1)− 1)
(a(m+ 1)+ ks(t)+Ms(t))

= a(m− 1)
t(ns(m+ 1)− 1)

(
a(m+ 1)− 1 +

(
t

s

)a

+Ms(t)

)
�

where we have denoted a = m/(m + 1) and used the fact that ks(t) = (t/s)a − 1 in the
continuum approximation in (21). Further denoting b = (a(m − 1))/(ns(m + 1) − 1) we
can write this as

dMs(t)

dt
= b

t

(
m− 1 +

(
t

s

)a

+Ms(t)

)
� (27)

The general solution of (27) is given by

Ms(t) = 1
a− b

(
(b− a)(m− 1)+ b

(
t

s

)a

+ (a(m− 1)− bm+ (a− b)Ms(s))

(
t

s

)b)
� (28)

From (28) we can obtain an upper and a lower bound for the number of triangles in-
volving node s, i.e., Ms(t) ≤ Ms(t) ≤ Ms(t), by noting that 0 ≤ Ms(s) ≤ (m

2

)
. For the lower

bound we set Ms(s) = 0 and obtain

Ms(t) = a(m− 1)
((

t
s

)b − 1
) + b

(
m− 1 + (

t
s

)a −m
(
t
s

)b)
a− b

�

Similarly, for the upper bound we set Ms(s) = (m
2

)
. Then we get

Ms(t) = 2a(1 −m)+ (a(m(m+ 1)− 2)− bm(m+ 1))
(
t
s

)b + 2b
(
m− 1 + (

t
s

)a)
2(a− b)

�

From (21) we know that s = t(1 + k)−1/a. Inserting this into Ms(t) and Ms(t), and us-
ing the fact that C(k) = (2Mk)/((k + m)(k + m − 1)) allows us to bound the clustering
coefficient as C(k) ≤ C(k) ≤ C(k), where

C(k) = 2bk+ 2(a(m− 1)− bm)((1 + k)b/a − 1)
(a− b)(k+m)(k+m− 1)

(29)

and

C(k) = 2a(m− 1)+ 2b(k+m)+ (a(m(m+ 1)− 2)− bm(1 +m))(1 + k)b/a

(a− b)(k+m)(k+m− 1)
� (30)

For large k, these bounds decay as O(1/k). Furthermore, their difference is given by

C(k)−C(k) = 2b(1 + k)m− (1 + k)b/am(b(m+ 1)− a(m− 1))
(a− b)(k+m− 1)(k+m)

�

with the property that limk→∞ C(k)−C(k) = 0, showing that also C(k) =O(1/k). �
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