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Auction design without quasilinear preferences

BRIAN Barsa
Department of Economics, Amherst College

I study the canonical private value auction model for a single good without the
quasilinearity restriction. I assume only that bidders are risk averse and the indi-
visible good for sale is a normal good. I show that removing quasilinearity leads
to qualitatively different solutions to the auction design problem. Expected rev-
enue is no longer maximized using standard auctions that allocate the good to the
highest bidder. Instead, the auctioneer better exploits bidder preferences by us-
ing a mechanism that allocates the good to one of many different bidders, each
with strictly positive probability. I introduce a probability demand mechanism
that treats probabilities of winning the indivisible good like a divisible good in net
supply 1. With enough bidders, it has greater expected revenues than any stan-
dard auction, and under complete information, it implements a Pareto efficient
allocation.

KEYwoRDSs. Auctions, multidimensional mechanism design, risk aversion, wealth
effects.

JEL crLAssIFICATION. C70, D44, D82.

1. INTRODUCTION
1.1 Motivation

Most of the auction design literature considers bidders with quasilinear preferences. In
this paper, I revisit the canonical private value auction design problem and I remove
the quasilinearity restriction. Instead, I assume only that bidders are risk averse and
have positive wealth effects. This relaxation allows for a more complete description of
bidder preferences but also complicates standard economic analysis. With quasilinear-
ity, a bidder’s incentives are described by her valuation. Without quasilinearity, bidder’s
incentives are also affected by her risk preferences, financial constraints, and wealth
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effects. Thus, bidders’ types are multidimensional and characterizing the optimal auc-
tion through a Myerson-like approach proves intractable. For this reason, I take a new
approach to studying the design problem and obtain qualitatively different solutions
relative to the quasilinear benchmark. I propose an alternative to standard auctions
called the probability demand mechanism. The mechanism uses randomization to bet-
ter exploit features of bidder preferences. While the multidimensionality of bidder types
inhibits explicit characterizations of equilibrium behavior, I provide a partial character-
ization of bid behavior, and use this to obtain revenue comparisons. Specifically, I elimi-
nate dominated strategies to bound a bidder’s report. I use this bound on bid behavior to
show that the probability demand mechanism has greater revenues than any standard
auction when there are enough bidders.

There are many well studied settings where the quasilinearity restriction is violated.
As an example, consider firms bidding on spectrum rights or oil tracts. The corporate
finance literature shows that many firms have an internal spending hierarchy (Fazzari et
al. 1988). Firms prefer to use internal versus external financing, because they pay higher
interest on money borrowed from third parties. A firm may be able to place a relatively
low bid in an auction without needing external financing, but to place a relatively high
bid, the firm may need to obtain external financing and pay a higher interest rate on this
debt. Consequently, even if firms are risk neutral, such a financing constraint makes
them behave as though they have declining marginal utility of money.

I show that the auctioneer can increase revenue by using randomization. This result
may seem counterintuitive with risk averse bidders, but the intuition follows directly
from the assumption that the good is normal. When a good is normal, a bidder’s will-
ingness to pay for it increases with her wealth. Similarly, her willingness to pay for any
given probability of winning the good increases with her wealth. Therefore, the bidder
is willing to pay the most for her first marginal “unit” of probability of winning, before
she has spent any of her wealth. Thus, the bidder is willing to buy a small probability of
winning the good at a price per unit of probability that exceeds her willingness to pay
for the entire good. Standard auctions that allocate the good to the highest “bidder” do
not make use of this property of bidder preferences.

I construct a probability demand mechanism that uses lotteries to better exploit bid-
der preferences. The mechanism sells probabilities of winning the good like a divisible
good that is in net supply 1. Bidders report a demand curve over probabilities of win-
ning. The curve reports the probability of winning the bidder demands (Q) for a given
price per unit of probability (P). The auctioneer uses an algorithm similar to that of the
Vickrey auction for a divisible good to determine each bidder’s probability of winning
and expected payment.

I study the revenue properties of the probability demand mechanism in a setting
that nests the benchmark independent private types case, but also allows for correlated
types. Removing quasilinearity makes it difficult to explicitly solve for equilibria. In-
stead, I form alower bound on bid behavior by using the normal good assumption. [ use
this partial characterization of bid behavior to construct a lower bound on expected rev-
enues in the probability demand mechanism. With enough bidders, this lower bound
on revenues strictly exceeds an analogously constructed upper bound on revenues from



Theoretical Economics 12 (2017) Auction design without quasilinear preferences 55

any standard auction. That is, with enough bidders the probability demand mechanism
has higher expected revenues than any standard auction (Propositions 3 and 4). This
class of standard auctions includes the first price, second price, and all pay auctions, as
well as modifications of these formats to allow for entry fees and/or reserve prices. When
there are relatively few bidders, I use a numerical example to show that the probability
demand mechanism can have (nonnegligibly) greater revenues than standard auctions.

I also show that under complete information, the probability demand mechanism is
an efficient mechanism. My motivation for studying the complete information case is
driven by recent impossibility results regarding the dominant strategy implementation
of Pareto efficient allocations for cases where bidders have non-quasilinear preferences.
While implementing efficient allocations under incomplete information may prove to
be impossible, under complete information any undominated Nash equilibrium of the
probability demand mechanism is Pareto efficient. This is not true of standard auctions
that assign the good to the highest bidder.

The rest of the paper proceeds as follows. The remainder of the Introduction relates
my work to the current literature on auction design. Section 2 describes the model and
specifies the assumptions I place on bidders’ preferences. Section 3 motivates the use
of probabilistic allocations. Section 4 outlines the construction of the probability de-
mand mechanism. Section 5 focuses on revenue comparisons between the probability
demand mechanism and standard auction formats. Section 6 provides a numerical ex-
ample illustrating the practical applicability of my results. Section 7 discusses efficiency.
The Appendix concludes.

1.2 Related literature

Most research that studies auctions with risk averse bidders fits into one of two cate-
gories: (i) comparing the performance of standard auction formats and (ii) studying the
design of optimal auctions. In the first category, Matthews (1983, 1987) and Che and
Gale (2006) compare first and second price auctions. These papers show that first price
auctions yield higher revenue than second price auctions. The payoff environment con-
sidered by Che and Gale (2006) is closest to the one studied here. Their setting allows for
risk aversion, wealth affects, and multidimensional heterogeneity.

This paper fits into the second category of papers that study the auction design prob-
lem. Maskin and Riley (1984) are the first to study the properties of revenue maximizing
auctions when bidders are not quasilinear. Their paper studies the case where bidders’
types are single dimensional and independent and identically distributed (i.i.d.). They
show that the exact construction of the optimal mechanism depends on the distribution
of types and the functional form of the bidders’ utility. Their setting is general enough
to include bidders with wealth effects and/or risk aversion, but is limited to cases with
single-dimensional heterogeneity and i.i.d. types. This paper expands on their analysis
by considering the auction design problem when bidders can have multidimensional
and correlated types.

In arelated line of research, Laffont and Robert (1996) and Pai and Vohra (2014) study
the revenue maximizing auction design problem of Myerson (1981), but when bidders
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have budgets. They consider settings with i.i.d. types and show that the auctioneer can
increase revenues by using randomization. In this paper, I show that with many bidders,
randomization can increase revenue in a more general setting that allows for budgets as
a limiting case, but also includes any case where bidders have positive wealth effects.

In my model, the multidimensionality of bidder types complicates the Myersonian
approach of characterizing bidders’ interim incentive constraints. Thus, I take a new
approach to studying the auction design problem. Instead of explicitly characterizing
equilibria, I show that by placing bounds on bid behavior, we can construct a mecha-
nism that obtains higher revenues than standard auctions when there are many bidders.
Armstrong (1999) uses a similar approach to study the problem of a multiproduct mo-
nopolist selling to a representative consumer. In Armstrong’s model, consumers have
multidimensional types. He describes qualitative features of an almost optimal solution
for the monopolists when there are many products.

In addition, I show that my probability demand mechanism is Pareto efficient in a
complete information setting. I focus on the complete information case because the
recent work of Dobzinski et al. (2012) shows that when bidders have private budgets,
there is no mechanism that is dominant strategy implementable, is Pareto efficient, and
satisfies a no budget deficit condition. Thus, while it is impossible to obtain an efficient
and detail-free mechanism with incomplete information, this paper is able to provide a
prescription for efficient implementation under complete information.

2. THE MODEL
2.1 The payoff environment

Consider a private value auction setting for an indivisible good with a single risk neutral
seller and N > 2 buyers, indexed by i € {1, ..., N}. Bidder i’s preferences are described
by utility function u;, where I let u;(1, w;) denote bidder i’s utility with wealth w; when
she owns the object. Similarly, u;(0, w;) denotes bidder i’s utility with wealth w; when
she does not own the object. Thus,

u; 2 {0,1} x [w, 00) — R,

where w € R U {—oo} is a lower bound on a bidder’s wealth and w; > w.!
The object is a “good;” thus,

ui(1,w) > u;(0,w) VYw e [w, 00).

Additionally, T assume that bidders’ preferences are strictly increasing and twice contin-
uously differentiable in wealth.

Let k(u;, w;) be bidder i’s willingness to pay for the good when she has an initial
wealth w; and a utility function u;. That is, k is implicitly defined as

ui(1, w; — k) = u; (0, wy). 2.1

11f w € R, then assume that u;(x, w) = —oo if w < w.
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I place two additional restrictions on bidder preferences. First, I assume that the
good being sold is a normal good (i.e., positive wealth effects). My notion of positive
wealth effects is analogous to the notion in the divisible goods case, where a bidder’s
demand for the good increases as her wealth increases for a constant price level.

AssumpTioN 1 (Positive wealth effects). Bidder i has positive wealth effects:

Ik (uj, w)
—_— >

0, VYwelw, o).
Jw

Note that Assumption 1 can also be written in terms of primitives.? Second, I assume
that bidders have strictly declining marginal utility from money.

AssumpTioN 2 (Risk aversion). Bidder i has declining marginal utility of money:

&zui(x, w)

R <0 forx=0,1.
w

Let U be the set of all utility functions that satisfy Assumptions 1 and 2. Quasilinear
preferences are not included in i/ as dk(w, u;) /dw = 0 and F*u;i(x, w)/ow* = 0. However,
quasilinear preferences are a limiting case of the environment.

2.2 Incomplete information setting

I describe bidder i’s preferences by her type t; e T C R™, where m € N and T is compact.
I let the first element represent bidder i’s initial wealth level w;. A bidder with type ¢
has preferences described by the utility function u(-, -, ;) when her type is ¢;. I assume
that bidders’ preferences have declining marginal utility of money and positive wealth
effects. That is, for any #; € R™, u(-, -, t;) € Y. In addition, I assume u is continuous in
t;. At the same time, this setup allows for heterogeneity across risk preferences, initial
wealth, and financing constraints.

Note that by assuming that a bidder’s type ¢ is finite dimensional, we are considering
a type space T that is a subspace of the infinite-dimensional space of utility functions
that satisfy Assumptions 1 and 2. We could alternatively allow bidder types to be infinite
dimensional, but then we would need to define a topology on the (infinite-dimensional)

type space.’

2Speciﬁcally it requires that (¢/dw)u;(1, w — k) > (d/dw)u;(0, w) when k = k(u;, w).

3For example, suppose instead that bidders have types ¢ where t € T ¢ LP. The difference is impor-
tant only when I make revenue comparisons between the probability demand mechanism and standard
auctions. I will show that there is an upper bound on revenue for any mechanism that satisfies interim
individual rationality, and I then show that with a large N, the probability demand mechanism attains this
bound. I establish this bound by finding the highest price a bidder is willing to pay for a unit of probability
(see Section 5.1). This will be called p(¢). By using the compactness of 7, I show that there exists a x € R
such that p(#) < x for all € T. Thus, expected revenues are bounded by x for any N. If the type space was
infinite dimensional, then compactness does not imply 3x € R such that p(¢) < x V¢ € T. Thus, if the type
space was infinite dimensional, I would need an assumption that states that there exists an x > 0 such that
x>p)VieT.
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I assume that the profile of bidder types (¢, ..., ;) is conditionally independent.
I introduce aggregate demand uncertainty by allowing for different states of the world.
There is a finite number of states of the world, s1, ..., s; € S. Conditional on state s, bid-
der types are i.i.d. draws of a random variable with distribution function F(z|s), where
F: T xS§~—[0,1]. Thereis a g(s;) probability of state s; occurring, where Zle g(sj) =1
Note that if / = 1, this is the benchmark i.i.d. case. A bidder observes her type, but not
the state of the world.

2.3 Allocations and mechanisms

By the revelation principle, I can limit attention to direct revelation mechanisms.
A mechanism describes how the good is allocated and how transfers are made. Let A
be the set of all feasible assignments, where

N
A= {a’a € {0, 1} and Zai < 1},

i=1

where a; = 1 if bidder i is given the object. A feasible outcome ¢ specifies both trans-
fers and a feasible assignment: ¢ € A x RY. I define ® := A x RV as the set of feasible
outcomes. A (probabilistic) allocation is a distribution over feasible outcomes. Thus, an
allocation « is an element of A(®).

Let E,[t#] denote the expected utility of bidder i under allocation « € A(®) when
she has type ¢;. Similarly, let E,[ug] be the expected revenue for the auctioneer under
allocation «. A direct revelation mechanism M maps reported types to an allocation.
That is,

M: TN > A(D).

3. PROBABILISTIC ALLOCATIONS

I propose a probability demand mechanism that uses randomization to increase rev-
enue over standard auctions. The value of randomization stems from the normal good
assumption. With a normal good, a bidder is willing to pay the most for her first unit
of probability of winning the good, when her wealth is relatively high. To formalize this
intuition, I show that a bidder’s demand for probabilities of winning the indivisible good
is similar to a consumer’s demand for a divisible normal good. If we imagine that prob-
abilities of winning are sold at a constant per unit price p, then bidder i has a demand
curve for probability units g; that is (i) decreasing in p and (ii) positive for some values
of p that exceed her willingness to pay for the indivisible good.

Consider a gamble where bidder i wins the good with probability ¢ and pays x in
expectation. I call a payment scheme efficient if, given a bidder’s expected payment and
probability of winning the good, her payments maximize her expected utility. In the
efficient payment scheme, bidder i pays p;, and p; contingent on winning or losing,



Theoretical Economics 12 (2017) Auction design without quasilinear preferences 59

respectively, where

(py, P} = arg max qu(1, w; — py, ;) + (1 — @u; (0, w; — p, t;)
st.x=qpuy+{1—q)p;.

In the probability demand mechanism, bidders’ payments are structured efficiently.
Thus, given bidder i’s probability of winning and expected payment, the auctioneer con-
structs a payment scheme to maximize her expected utility. This is useful, because with
many bidders, the auctioneer is able to extract the additional surplus generated by effi-
cient payments.

Assuming efficient payments, a bidder’s indirect utility function V' is a function of
her expected payments and the probability she wins the good. It is defined as

Vig,—x,t):= ;naz)fz qu(1l, w; — py, ;) + (1 — q)u;(0, w; — py, t;)

s.t. x=gpw+ 1 —q)p

The indirect utility function gives the maximal expected utility for bidder i conditional
on winning the object with probability ¢ and paying x in expectation.
Bidder i’s indirect utility function defines her probability demand curve g, where

q(p, t;) == arg max V(q, —qp, t;). (3.3)
q<(0,1]

I economize notation by writing bidder i’s indirect utility function as V;(q, —x) =
V (g, —x, t;) and her probability demand curve as g;(p) = q(p, t;). A bidder’s probability
demand curve has similar properties to demand curves for divisible normal goods.

ProposiTioN 1. If bidder i has type t; € T and willingness to pay k;, then the follwing
statements hold:

(i) Curve q;(p) is continuous and weakly decreasing.

(i) Curve q;(k; + €) > 0 for some € > 0.

The proof is given in the Appendix. The first point is similar to that made by Garratt
(2012), who shows that consumers’ demands of probability units of an indivisible good
satisfy a law of demand. In addition, the second point will be useful for my analysis, as it
shows that any bidder with positive wealth effects is willing to accept a gamble where she
pays a price per unit of probability that exceeds her willingness to pay for the indivisible
good.

As an example, consider a bidder i, with initial wealth 100 and preferences described
by

u(x,w)=4L,_1 + Jw.
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FIGURE 1. A probability demand curve.

Note that the utility function satisfies Assumptions 1 and 2.* If bidder i faces a gamble
where she wins the good with probability ¢ and pays x in expectation, then the efficient
payment is such that she makes an equal payment in the win state and the lose state.
Thus,

Vi(g, —x) =4q + /100 — x.

The corresponding probability demand curve is illustrated in Figure 1.

Bidder i is only willing to pay 64 for the good, as u(1, 100 — 64) = u(0, 100) = 10. How-
ever, if probability units are sold at a constant per unit price p, then bidder i demands a
positive probability of winning the good at any p that is below 80.

Standard auctions do not make use of this feature of bidder preferences. For exam-
ple, in the first or second price auction, bids are bounded by a bidder’s willingness to
pay for the good. The auctioneer can increase her revenue by selling lotteries instead.
Prior work has shown that using lotteries can increase seller revenue when bidders have
budgets. I use Proposition 1 to show that we can similarly use randomization to increase
the revenue for selling any normal good when there are enough bidders.

4. THE PROBABILITY DEMAND MECHANISM

Proposition 1 shows that if a bidder is indifferent between accepting or rejecting a take-
it-or-leave-it offer for the good at a price of k, there are gambles she strictly prefers where
she wins the good with positive probability ¢ and pays strictly greater than gk in expec-
tation. A natural way to exploit the above bidder preference is to introduce randomiza-
tion to the auction design. Perhaps the simplest such design is selling raffle tickets at a
fixed price per ticket. For a straightforward example, imagine a case where all bidders
are identical. The auctioneer sells each bidder a ticket that gives a 1/N probability of
winning. With enough bidders, the auctioneer can set the (expected) price of the ticket
to be greater than k/N (where k is a bidder’s willingness to pay) and still sell all N tick-
ets. Thus, this simple mechanism could already raise more money than a first or second
price auction, where revenues are bounded by bidders’ willingness to pay for the good.
However, it is easy to find cases where raffles perform poorly. Determining the appropri-
ate ticket price requires the auctioneer to have precise information on the distribution

4This utility function is not defined over negative wealth levels. This will not be relevant in the analysis
shown below as the bidder’s wealth will never approach zero. This is meant to be used as an illustration.
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of bidder types. Even if the auctioneer were to know the underlying distribution of bid-
der types, there may be correlation across bidder types. If bidders have correlated types,
in arelatively high demand state the auctioneer would want to sell more expensive raffle
tickets. In a lower demand state, bidders may not want to buy tickets at this relatively
high price. At the same time, the auctioneer is unable to extract information on the ag-
gregate demand state using Cremer and McLean-style gambles because bidders are risk
averse.

The probability demand mechanism sells the indivisible good as though it were a
divisible good in net supply 1 sold through a Vickrey auction. It is approximately revenue
maximizing with many bidders, while standard auctions and raffles are not.

4.1 The probability demand mechanism

In the probability demand mechanism, a bidder reports her probability demand curve
gi(+) and her type #;. The reported g; must be such that g; is continuous, ¢;(0) =1, and
lim,_,~ gi(p) = 0. The auctioneer uses the reported demand curves to calculate each
bidder’s probability of winning and expected payment. Given a bidder’s probability of
winning and expected payment, her payments are then structured efficiently. °

The probability that bidder i wins the object is calculated using the reported proba-
bility demand curves. Given the reported demand curves, the auctioneer calculates the
(lowest) price for probabilities of winning the good that “clears the market.” That is, she
finds the (lowest) price p* where the total reported demand for probabilities of winning
the good equals 1:

N
p* ;:igf{p)lzZqi(p)}. 4.1)
i=1

The price p* determines each bidder’s probability of winning and it turns out that bidder
i wins with probability ¢;(p*).%

The price p* is not the per unit price bidders pay for probabilities of winning the
good. Instead each bidder faces a probability supply curve that represents her marginal
price curve for probabilities of winning the good. The supply curve is the residual de-
mand for probabilities of winning. It is analogous to the residual demand curve in a
Vickrey auction for a divisible good. Thus, the price a bidder pays for a unit of probabil-
ity depends on her rivals’ actions.

5We could define the probability demand mechanism as a direct revelation mechanism where a bidder
only reports her type to the auctioneer, and a proxy bidder then reports a demand curve for the bidder. The
advantage of the current setup over this approach is that the current setup allows us to study cases where a
bidder misreports her probability demand curve, without necessarily misreporting her risk preferences. In
addition, the current setup illustrates the connection between the probability demand mechanism and the
Vickrey auction for a divisible good.

6Since we assume ¢; is continuous, we have that 3p such that 1 = Zfi 19i(p).
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qi(p)

i's expected
payment

0o 02 04 06 o8 1d

F1GuRre 2. Expected payment in the probability demand mechanism.

Given a price p, a bidder’s probability supply curve S;( p) states the amount of prob-
ability of winning the good that is not demanded by the N — 1 other bidders:

1=344qi(p) 1-3.:q;(p)>0

Si(p) =
iwp otherwise.

4.2)

Bidder i’s (reported) probability demand curve equals her probability supply curve at
the price p*. Thus, the market clearing price sets each bidder’s probability demand
curve equal to her probability supply curve.

Bidder i’s expected payments are determined by treating her probability supply
curve as her (expected) marginal price curve. Her expected payment to the auctioneer
is X;, where

p*
X,’ = / adS,-(a). (4.3)
0

I suppress notation in writing X;; it is a function of the complete profile of reported
demand curves (q1, ..., qn). Figure 2 illustrates this graphically.

Thus, the reported probability demand curves determine each bidder’s expected
transfers and probability of winning the good. If the profile of reported demand curves
(q1, ..., gn) is such that bidder i wins with probability ¢;( p*) and pays the auctioneer X;
in expectation, she makes an efficient payment. If bidder i reports her type t;, she pays
P}, when she wins and pz ; When she loses, where

(Piw» Piy) = arg max qi(pHu(l, w; — py, t;) + (1 — g;(p™)u(0, w; — py, t;)
s.t. Xi=qi(p")pw+ (1 —qi(p*) p1.

DeriNITION 1 (The probability demand mechanism). The probability demand mech-
anism maps reported demand curves (gi, ..., gy) and reported types (f1,...,tn) to a
probabilistic allocation described by (4.1)—(4.4).

4.2 Behavior in the probability demand mechanism

I derive a bound on bidders’ reports by showing that it is a dominated strategy for a
bidder to underreport her demand for winning probabilities. The intuition for this result
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F1GURE 3. Expected payment when facing a perfectly elastic supply curve.

can be understood graphically. Consider the hypothetical case where bidder i faces a
perfectly elastic probability supply curve and, thus, pays a constant marginal price for
units of probability of winning. Let this price be pg. The bidder seeks to maximize her
expected utility given this price pg. The solution to this maximization problemis g;( pg),
because ¢;(pr) is defined as the probability of winning the good that she desires when
she pays a price of pg per unit of probability. Thus, truthful reporting is a best response.
By truthfully reporting, she wins the good with probability ¢;(pr) and pays peqi(pE) in
expectation. This case is illustrated in Figure 3.

Suppose, instead, bidder i faces a more inelastic (relative to perfectly elastic) proba-
bility supply curve. Suppose her residual probability demand curve still passes through
the (arbitrary) point (pg, qi(pg)). If bidder i truthfully reports her probability demand
curve, she wins the good with the probability g;(pg). Thus, her probability of winning
the good is the same as it was when she faced the perfectly elastic supply curve. How-
ever, she pays less when she faces the more inelastic supply curve. The marginal price
she pays for all but the final unit of probability she acquires is less than pg. Thus, she
pays X;, which is less than prq;(pg) for a ¢;(pr) probability of winning. It is as though
she faced a perfectly elastic supply curve with constant price pg, and then is given a re-
fund of prqi(pr) — X; > 0. Positive wealth effects imply that this refund increases her
demand of the good relative to the case where she simply pays the price of pg per unit
of probability. This case is illustrated in Figure 4.

It was a best response for bidder i to truthfully report her demand curve when she
faced a constant marginal price curve, but with an upward sloping marginal price curve
she has an incentive to overreport her demand curve. Since bidders report downward
sloping demand curves, bidder i will always face an upward sloping marginal price
curve. The precise amount that bidder i wants to overreport her demand curve depends
on the elasticity of the supply curve she expects to face. Her incentive to overreport is
greater when facing a more inelastic supply curve (larger “refund”). What is clear is that
it is never a best reply for bidder i to underreport her demand curve. This observation
allows us to use bidder i’s truthful report as a lower bound on her actual report.

ProproSITION 2. Assume bidder i has probability demand curve q;( p). Reporting a prob-
ability demand curve q;, where §;(p) < qi(p) for some p € Ry, is weakly dominated by
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qi(p)
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FiGURE 4. Expected payment when facing a relative inelastic supply curve.

reporting q, where
qi(p) =max{q;(p), qi(p)}.

Proposition 2 shows that truthful reporting can serve as a lower bound on a bidder’s
possible report. This lower bound on a bidder’s report enables revenue comparisons
between the probability demand mechanism and other auctions.

5. REVENUE COMPARISONS

With many bidders, a lower bound on expected revenues from the probability demand
mechanism exceeds the expected revenues of a large class of standard auctions.

5.1 A revenue upper bound for all mechanisms

Consider the highest per unit price where a bidder still demands a positive probability
of winning. Let p; be such a per unit price for bidder i—her choke price for probabilities
of winning. This is a function of a bidder’s type,

p(t) :==sup{plq(p,t;) > 0}.
p

Since preferences u are continuous in ¢, it follows that p(#;) is continuous in 7. Ilet f;
be the density of bidder types conditional on the state of the world being s. Similarly,
let P(s) = max{p(t)|t € supp(f;)} be the maximal choke price given the state, and let P be
the expectation of P(s),

P :=E(P(s)).

Since T is compact, P(s) < oo, Vs and hence, P < co. The price P is an upper bound
on the expected revenues from any interim individually rational mechanism. A mech-
anism with expected revenues that exceed P necessarily violates some bidder’s interim
individual rationality constraint because bidder i is never willing to pay more than p(#;)
for a unit of probability.
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5.2 Revenues from the probability demand mechanism

Proposition 2 shows that with many bidders, a lower bound on expected revenue from
the probability demand mechanism approaches the expected revenues upper bound P.
For ease of notation I write R(N) as the expected revenue from truthful reporting in the
probability demand mechanism when there are N bidders.

ProposITION 3. Forany e > 0, AN* such that for all N > N*,
R(N)>P —e.

To see the intuition for this result, suppose that the bidder with the highest willing-
ness to pay for a unit of probability is bidder 1. Bidder 1 is willing to pay p(#;) for her
first marginal unit of probability. Thus bidder 1 demands a strictly positive probability
of winning for any price that is under p(#). With many bidders, there are many other
bidders with types similar to bidder 1. Thus, there are many bidders who demand a pos-
itive probability of winning at a price slightly lower than p(#;). With enough bidders,
this means the residual demand for units of probability at price p(#;) — € is zero. If a bid-
der does win the good with a positive probability, she pays a per unit price that exceeds
p(t1) — €. Thus, expected revenues exceed p(#) — €. In expectation, this means revenues
exceed P — €, which gives the above result. By combining this with Proposition 2, we see
that when bidders play undominated strategies, expected revenues exceed P — e when
there are many bidders.

Figure 5 illustrates this for a special case where bidders all have initial wealth of 100
and preferences u given by

u(x,w) =4L_; + Jw.

By assuming that bidders truthfully report their probability demand curves, I obtain
a lower bound on a bidder’s residual probability demand. As N increases, the lower
bound on the residual probability demand curves approaches the expected revenue up-
per bound of P = 80.

P
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F1GURE 5. Bounds on residual probability demand curves.
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5.3 Revenue comparisons with standard auction formats

While the probability demand mechanism approaches the expected revenue upper
bound of any individually rational mechanism, the expected revenues from standard
auction formats do not approach this upper bound, even with many bidders.

To see this, first consider the first and second price auctions. In each format, it is a
dominated strategy for a bidder to submit a bid that exceeds her willingness to pay for
the good. Thus, expected revenues are bounded by the highest willingness to pay of any
bidder, which I call K, where

K = E(l_zr}qﬁcN k,-).

Yet, Proposition 1 shows that each bidder is willing to purchase a positive amount of
probability of winning at a price per unit that exceeds her willingness to pay for the
(entire) good. That is, if bidder i has preferences such that, u;(1, w; — k;) = u;(0, w;),
then p(¢) > k;. In the probability demand mechanism, with many bidders, the expected
revenue approaches the expected highest price any agent is willing to pay for positive
probability of winning the good, P. Thus, the expected revenues from the probability
demand mechanism P strictly exceed the expected revenues upper bound first price or
second price auction K when there are sufficiently many bidders.

CoROLLARY 1. Assume that bidders play undominated strategies. When N is sufficiently
large, expected revenues from the probability demand mechanism exceed expected rev-
enues from the first or second price auctions.

This result generalizes to a broad class of indirect mechanisms where bidders submit
single-dimensional bids. In particular, I focus on “highest bid wins” mechanisms, where
a bidder receives the object only if she submits the highest bid and leaves the auction at
no cost by bidding 0. Thus, I study mechanisms where each bidder reports a bid b; € R,..
The indirect mechanism M maps the N bids to a distribution over feasible outcomes:

M :RY — A(D).

If b; = 0, bidder i makes no transfers and wins the good with zero probability. This is
equivalent to allowing bidders free exit from the auction. I allow for a minimum bid,
which I call by,.

DeriNITION 2 (Highest bid mechanism). The indirect mechanism M is a highest bid
mechanism if bidder i is given the object if and only if she submits the highest bid and it
is at least the minimum bid by;,:

maxb; >b; = a;=0 and b;> maxb;j, bmin = a;=1.
J#i J#i

If b; =0, then bidder i pays 0 and a; = 0.
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This class of mechanisms includes the first price, second price, and all pay auctions. It
also includes each of these formats with entry fees or reserve prices.

Most commonly studied auction formats have the property that along the equilib-
rium path, the probability of a tie is zero. With a sufficient amount of heterogeneity in
preferences, this is to be expected. This property is always true of any equilibrium of
a first price or all pay auction. I say that an equilibrium of a highest bid mechanism
is a “no-tie” equilibrium if in equilibrium there is a zero probability of a tie along the
equilibrium path.

DEerINITION 3 (No-tie equilibrium). A Bayesian Nash equilibrium of a highest bid mech-
anism is a no-tie equilibrium if in equilibrium,

P(b,- = maxbj|b; > bmin) —0 Vi
j#i

Whether a mechanism has a no-tie equilibrium depends on the underlying distribu-
tion of preferences and states and on how the mechanism M structures payments.

For a given distribution of preferences, there is an upper bound on the expected
revenues in any no-tie equilibrium of a highest bid mechanism. The upper bound is
independent of the number of bidders and is strictly less than the revenue upper bound
derived for any interim individually rational mechanism.

PropPosITION 4. There exists an a > 0 such that for any N, the expected revenues from
any no-tie Bayesian Nash equilibrium of a highest bid mechanism are less than P — a.

This shows that when there are many bidders, any no-tie equilibrium of a highest bid
mechanism gives strictly lower expected revenues than the probability demand mecha-
nism.

6. A NUMERICAL EXAMPLE

The results from the previous section show that the expected revenues from the proba-
bility demand mechanism exceed the expected revenues from standard auction formats
when there are sufficiently many bidders. This leads to other questions. First, how many
bidders are needed for the probability demand mechanism to generate greater revenues
than standard auction formats? Second, how much greater are the revenues from the
probability demand mechanism than other auction formats?

The answers to both questions depend on the assumed distribution of preferences.
To further study these questions, I consider a particular setting that is embedded in my
model: financially constrained bidders. Each bidder must borrow money to finance her
payments to the auctioneer. The interest rate rises in the amount that she borrows. This
is a similar setting to that studied by Che and Gale (1998). I find that revenues from the
probability demand mechanism exceed those from standard auction formats, even with
a small number of bidders. The differences in revenues are nonnegligible.

For the example, assume each bidder has a valuation of the good v;, where v; ~
uniform([5, 15]. I depart from the quasilinear environment by assuming that bidders are
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financially constrained. So as to make payments, bidders borrow money from the bank.
The interest rate paid on a loan of m dollars is r(m), where

r(m) = 100"

Thus, the bidder’s payoff is given by
ui(x,—m) = vl — m(1 4+ r(m)).

The financing constraint is the only departure from the quasilinear environment.

Even with few bidders, the probability demand mechanism has expected revenues
that exceed the revenues of standard auction formats. Using the methodology devel-
oped in Section 3, a bidder’s probability demand curve can be expressed as

qi<p>={max”’$(¥)} A
0 if p>v;.

I compare the lower bound on expected revenues from the probability demand
mechanism to the expected revenues of the first and second price auctions. I assume
bidders truthfully report their demand curves to obtain the lower bound on revenues
in the probability demand mechanism. Applying results of Che and Gale (1998) gives
the equilibrium bidding function for the first price auction. In the second price auction,
it is a dominant strategy for a bidder to bid her willingness to pay for the good.” Fig-
ure 6 illustrates the revenue comparisons between the three formats using Monte Carlo
simulations.

The dark line marked with circles is the revenue lower bound for the probability de-
mand mechanism. The gray line with squares represents the revenues of both the first
and second price auction. The results of Che and Gale (1998) show the first price auction
has greater expected revenues than the second price auction when bidders face financ-
ing constraints. In this environment, the difference in expected revenues between first
and second price auctions is relatively small when compared to the expected revenue
difference between either format and the probability demand mechanism. When there
are four or more bidders, the lower bound on expected revenues from the probability
demand mechanism exceeds the expected revenues of the first and second price auc-
tions. Also, the difference in expected revenues between the two formats grows as the
number of bidders increases. As the number of bidders increases, expected revenue
from the probability demand mechanism approaches 15. Yet in the first and second
price auctions, as the number of bidders increases, the expected revenues approach the
highest possible willingness to pay of any bidder. Here, this is 13.24. When there are 21
or more bidders, the lower bound on revenues from the probability demand mechanism
will actually exceed any bidder’s willingness to pay for the (entire) good in expectation.

"The equilibrium bid functions are by (v;) = 10,/25+5/N + (N — 1)/Nv; — 50 and b,(v;) = 10/25 + v; —
50.
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F1GURE 6. Revenue comparisons between formats.

7. PARETO EFFICIENCY

Now consider the question of efficient auction design. When bidders have quasilinear
preferences, a second price auction implements a Pareto efficient allocation. This is
not the case when we remove quasilinearity. As an example, consider a case with two
bidders who each have initial wealth of 100 and preferences u;(x, w) = 4x + /w. If the
goods are sold by a second price auction, both bidders bid their willingness to pay, which
is 64. Thus, the object is randomly allocated to one of the two bidders and is sold for
64. Since the bidders pay their willingness to pay, conditional on winning, both bidders
have an expected utility of 10. As an alternative, suppose that each bidder buys a lottery
ticket that gives a % probability of winning. Assume that each lottery ticket is sold for
a price of 32. In this case, a bidder gets expected utility %(4) + 4/100 — 32 2 10.25, and
the auctioneer’s revenue is 64. Thus, the outcome of the second price auction is Pareto
dominated.

Without quasilinearity, the impossibility result of Dobzinski et al. (2012) shows that
under incomplete information, it is impossible to construct a mechanism that imple-
ments a Pareto efficient allocation in dominant strategies. While it is impossible to im-
plement an efficient allocation under incomplete information, I show that with com-
plete information, the probability demand mechanism implements a Pareto efficient
allocation. Specifically, I show that for any profile of bidder types, there is a Nash equi-
librium that implements an efficient allocation, and that any Nash equilibrium in un-
dominated strategies is Pareto efficient. This is not true of standard auctions, as we see
in the above example.

My notion of Pareto efficiency under complete information is equivalent to most
notions of ex post Pareto efficiency used in games of incomplete information (see, for
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example, Section 3 of Holmstrom and Myerson 1983). Suppose that bidder types are
(t1,...,ty).8 I say an allocation o € A(®) is Pareto efficient if there is no other alloca-
tion o’ € A(P) that gives greater or equal expected revenues and increases at least one
bidder’s expected utility without decreasing any other bidder’s expected utility.

DEFINITION 4 (Pareto efficiency). An allocation a € A(®) is Pareto efficientif # o € A(D)
such that

Eqlti] > Eylt;] Vi=1,...,N
and
Ea[u()] > Ea’[u[)],

where at least one of the above statements holds with a strict inequality.

In this section, I place one additional restriction on the strategy space of the mecha-
nism. [ assume that bidders must report probability demand curves where ql._1 is con-
tinuous. This ensures that a bidder faces a continuous marginal price curve, and in
equilibrium all winning bidders have the same marginal willingness to pay for a unit of
probability. Without this additional restriction on the strategy space, there exists an ef-
ficient Nash equilibrium of the probability demand mechanism, but I cannot show that
all Nash equilibria in undominated strategies are Pareto efficient.”

There exists a Nash equilibrium of the probability demand mechanism that imple-
ments a Pareto efficient allocation. Let p* be the market clearing price if bidders report
their types truthfully. Suppose that bidder i plays the strategy g;, where

. qi(p) ifp>p*
qi(p) = .
1 if p < p*.

REMARK 1. The pure strategy profile (g1, ..., gn) is a Nash equilibrium of the probabil-
ity demand mechanism.

Thus, there exists a Nash equilibrium in undominated strategies. Next, I show that any
Nash equilibrium in undominated strategies is Pareto efficient. I use the notation U; to
describe the set of undominated strategies for bidder i.

ProPOSITION 5. Suppose that (41, ...,qn) is a pure strategy Nash equilibrium of the
probability demand mechanism. In addition, suppose that q; € U; Vi. ThenT'(g1,...,q4N)
is Pareto efficient.

81t is without loss of generality to assume w; = 0 Vi. To see this, note that a bidder with initial wealth w;
and preferences ii; behaves the same as a bidder with initial wealth 0 and utility u;(x, d) = &;(x, w; + d).

9Assumptions 1 and 2 imply bidders’ actual probability demand curves have continuous inverses. This
holds because Assumptions 1 and 2 imply that a bidder’s marginal willingness to pay for additional units of
probability strictly decreases as her expected payment increases.
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APPENDIX

Proor oF ProposiTioN 1. Recall that ¢;(p) is defined as
qi(p) =arg max V(q, —qp).
q<(0,1]

Since V' is continuous and increasing in both arguments, then ¢; is weakly decreasing
in p.

Next, I show that g;(p) is continuous in p. Suppose that g; is discontinuous at
some p > 0 and let g; := lim,_, 5+ q:(p) and q;, = lim,,_, 5- q;(p). Thus, g > g, by as-
sumption. Since V; is continuous in both arguments, Vi(q;, —pq;) = Vi(qn, —pqr) =
TWViqi, = pap) + Vi(qn, — pan))-

Let x,, and x; be the efficient payments when i wins with probability ¢; and pays
Pq; in expectation. Similarly, let y,, and y; be the efficient payments when i wins with
probability g, and pays pg, in expectation. For simplicity, I use the notation G(w) :=
u;i(1, w) and B(w) := u;(0, w). Rewriting (V;(q1, — pq1) + Vi(qn, —pqn)) /2 gives

q1G(w; — xy) + (1 — g B(w; — x) + q,G(w; — yu) + (1 — gp)B(w; — y)
5 )

If x,y # yw and/or x; # y;, then Jensen’s inequality implies

q1G(w; — xu) + qnG(w; —yw)  q1+qn ( q1xw +qhyw>
< Glw, — 12w~ 1hJw
2 2 q1+qp

and/or

(1 —qpB(w; —x;) + (1 — gp)B(w; — y)
2

<1—fll+1—61h> ( (1—qz)XI+(1—Qh)YI)
<|—————|Blw; — .
2 l—q+1—gqp

Let gm = (q1+qn)/2, zw = (q1Xw + qnyw)/(q + qn), and z; = (1 — g x; + (L = qp)y1) /(1 -
q1+1—gqyp). Note that pgm, = gmzm + (1 — gm)z; and

Vi(gms —gmp) > SVi(q, —pq) + Vi(qn, — pan)) = Vi(qr, — pqp)-

This contradicts that g; = argmaxyeo,11 V' (g, —q p).
Finally I show that g;(k; + €) > 0 for some € > 0. Given that g; is continuous and
weakly decreasing, it suffices to show that g;(k;) > 0. Suppose that g;(k;) = 0. Then

B(w;j) =Vi(1, —k;) = G(wy) =V;(0,0) > Vi(5, —3k:).

Since B and G are strictly increasing, continuous, and differentiable, then B~! and G~!
are strictly increasing, continuous, and differentiable. We can then rewrite a bidder’s
willingness to pay as a function of her initial wealth, k(u;, w) = w — G~!(B(w)). By the
inverse function theorem,

dk(u;, w) _ 1

ow _G/(G—l(B(w)))B(w)'
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Positive wealth effects imply (dk(u;, w))/(dw) > 0. Thus,

Ik (u;, w)
_— >

0 = G'(w-k(u;,w))>B(w).
Jw

At w = w; this implies that
G'(w; — ki) > B'(w;).
Thus, for a sufficiently small € > 0,
3(G(w; — ki+ €) + B(=€)) > 3(G(w; — ki) + B(wp)) = u;(0, wy) = V;(0, 0).
The definition of V; implies
Vi(3, —3ki) = 3(Gwi — ki + €) + B(=€)) > Vi(0,0).
This contradicts that V;(0, 0) > Vi(1, —3k). O

Proor or ProprosITION 2. I prove this by showing that if stating the demand curve g;
instead of g; does change bidder i’s payoff, it must lower the payoff.

Consider a case where i faces a perfectly elastic residual probability demand curve
(i.e., a constant marginal price per unit of probability). It is a best response for her to
truthfully reveal her demand curve. Let pg > 0 be the constant marginal price for units
of probability. If her payoff is changed by reporting g;, then g;(pr) < ¢;(pe). By the
definition of g;, then g,(pr) = qi(pE). Thatis, if reporting g; does change her payoff, it is
the case that, g; is strictly below her demand for probability at pg. By the construction of
the probability demand curve, truthful reporting is a best response to a perfectly elastic
supply curve. Thus, she decreases her payoff by reporting type g;. Recalling that V; is her
indirect utility function under efficient payments, it follows that

Vi(qi(pE), —pEqi(PE)) = Vi(q, —pEq) foranyq e (0,1).

Now consider instead that bidder i faces a more inelastic (relatively to perfectly elas-
tic) residual probability demand curve. Assume that the supply curve is such that
Si(pe) = qi(pe). Once again if her payoff is changed by reporting g;, then §;(pg) <
q,(pE) = qi(pE), using the same argument as before. Thus, she wins with a lower prob-
ability by reporting §. Assume that if she reports §;, she pays X in expectation and wins
with probability g(p*), where g;(p*) = S;(p*). Since her marginal price is strictly below
pE, X < pegi(p*). If she instead reports g;, she wins with probability ¢;(pg) and pays
a marginal price below pg for the incremental probability of winning gained by report-
ing g;. Thus, she pays X < X+ pe(qi(pE) — qi(p*)). Let Y = ppqi(p*) — X > 0. Thus, it
is sufficient to show that

Vi(qi(pE), —PEqi(pE) +Y) = Vi(qi(P*), —pEGi(PT) + Y).

Since we have already shown that the above expression holds true at Y = 0, it is then
sufficient to show that when Y > 0 and g < g;(pg),

d
d—Vi(q, —-peEq+Y)>0.
q
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Since the above function is concave in g (see Proof of Proposition 1), it suffices to show
this at g = ¢;(pg). Note that

d Jd Jd
—Vilq,—peq+Y)=—Vi(q,—peq+Y) — pE—Vi(q, —peq+ Y).
dq aq Y
When Y =0, the necessary first order condition defining g;( pg) implies that
d .
d—qVi(q, -peq) =0 ifg=qi(pE).
Thus, it suffices to show that increasing Y does not decrease the above derivative:

d d .
d—Yd_qVi(CI: —PEq+Y) =0 ifg=qi(pr),Y >0.
Rewriting the above expression, we find
d d J d 7

— ~Vi(q, - Y)=—-"Vi(q, - Y) — pe—Vi(q, — Y).

a4y dq (g, —peq+Y)=—3 7q (g, —pEq+Y) = pe— 5 Vi(g, —pEq +Y)
Note that by the envelope theorem, (J/9q)Vi(q, —peq+Y) = ui(1, w—xy) —u; (0, w—xy),
where x,, (or x,) is the efficient payment conditional on winning (or losing) with prob-
ability ¢ and paying —pgg + Y in expectation. As Y increases, the efficient payments
made when winning and losing both decrease; thus, bidder i finishes with a greater
wealth conditional on winning. Since this increases her utility conditional on winning,
then (8/9Y)(d/dq)Vi(q, —peq + Y) > 0. The second term is negative since bidders have
declining marginal utility of money. Thus,

d d

d_Yd_qVi(q’ —peq+Y)>0 ifg=qi(pp),Y >0.

This implies,
Vi(qi(pE), —PEqi(PE) + Y) > Vi(Gi(P"), —pEqi(P*) + Y),

which is what we wanted to show. |

Proor oF ProprosITION 3. I use the notation, g(p, ¢;) to represent the probability de-
mand curve for a bidder with type . Fix € > 0. Let 7(¢, 8, 5) := {t|q(P(s) — €,1) > 8,t €
supp(f)}. This is the set of all types that demand at least a 6 probability of winning in
state s, at price P(s) — . By the definition of P(s), the set 7(e, 8, s) is nonempty when
& > 0 is sufficiently small.

Note that

N . N
> qi(P(s) — €,1) = 8 Ljer(esus)-

i=1 1=i

This states that the total demand at price P(s) — € is greater than & times the number of
bidders whose demand strictly exceeds & at P(s).
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Suppose that 8 Y. Iier(e,,5) > 2. It follows that S;(P(s) — €) = 0 for all i. That
is, if at price P(s) — ¢, all bidders demands for probabilities of winning exceed 2, then
there is zero residual demand for each bidder at price P(s) — €. Thus, if i wins with
positive probability, she pays a marginal price per unit that exceeds P(s) — . Thus,
X; > qi(p*)(P(s) — €) for all i. Since > qi(p*) =1, this implies that total expected trans-
fers exceed P(s) — e€:

N
Z X, > P(s) —e.
i=1
When & > 0 is sufficiently small, there is a strictly positive probability that a ran-
domly drawn bidder has type ¢ € 7(e, 8, s). That is, there is a positive probability that a
randomly drawn bidder demands at least a  probability of winning the good when she
pays a price of P — €. Represent this probability as

v(e, 8,5) = / fi(t)dt.
tet(e,d,s)

Suppose & > 0 is such that v(e, 6,s) > 0. Then, by the law of large numbers, as N —
oo the probability that the sum 6 Y%, I;cy(e.5.5) €xceeds 2 approaches 1. Note that we
can apply the law of large numbers as I;c-(¢,s,s5) is @ Bernoulli random variable that is
independent of i and equals 1 with probability v(e, &, s).

Thus, for any « € (0, 1), there is a finite N(«) such that there is a 1 — « probability
that 6 Zjlv:[]ltiev(e,ﬁ, s) > 2. This holds for all 5. Since « and € are arbitrary, let them be
arbitrarily close to 0 when N is sufficiently large. Thus with a sufficiently large N, total
payments exceed P(s) — e with probability 1 — «, where both « and € are arbitrarily small.
Since there are only finitely many states of the world, we can say that for any e > 0, @ €
(0, 1), there is an N that is sufficiently large such that there is at least a 1 — a probability
that revenues exceed P(s) — € Vs € S. This yields the desired result. O

ProoF oF PrRoPOSITION 4. LetV(q, —x, t;) be the indirect utility function of type ¢, € T,
under efficient payments. Before I begin the proof, it will be useful to show that V¢,
3B > 0 such that

V(O) 07 tl) > V(qa B - q?(tl)a tl)
1

for any g > % That is, any gamble where type #; wins with probability ¢ > 5 and pays
qp(t;) — B necessarily violate her individual rationality constraint. This is useful, because
then we know that if bidder i wins with a high interim probability, she must pay a price
per unit of probability that is strictly below p(#;) — B.

Recall that we have already shown that V' (g, —gp, t;) is strictly concave in ¢ for any
t; (this is shown in Proof of Proposition 1). In addition, since p(¢;) is bidder i’s maximal
willingness to pay for a unit of probability, then

d _
d—V(q, —qp(t)) <0 Vqe(0,1).
q



Theoretical Economics 12 (2017) Auction design without quasilinear preferences 75

If this did not hold, then bidder i would demand a positive probability when the price of
units is p(t;). Thus,

V(Oy 09 tl) > V(%’ _%ﬁ(tl)a tl) > V(q7 _qﬁ([l)a tl) Vq > %
Since V' is continuous, then Vg € [%, 11, 3R(q, t;) > 0 such that
V0,0, %) =V(q, R(q, t;) — qp(t), t;).

Let R(t;) = minqe[l 1]R(q, t;) and o = min;e7(R(%))/2. Thus, we have that V¢, 3a > 0
27
such that

V(Oa 07 tl) > V(q7 o — Qﬁ(tz), tl)

Let Q;(t;) be i’s interim probability of winning. I analogously define X;(¢;) as bidder
i’s interim expected payment. Let Q be the probability that, from the ex ante perspective,
the good is won:

N
> [ awswar=o.
i=1 teT

Feasibility requires that O < 1. I assume Q > 0, or else individual rationality requires that
expected revenue is 0. Let p= min,c7 p(¢). This is the lowest amount that any bidder is
willing to pay for her first marginal unit of probability. Note that

N
(1—Q)B+Z/t TQi(t)ﬁ(t)f(t)dtSP
i=171€

The right hand side is the highest expected willingness to pay (for a unit of probability)
of any bidder. The left hand side is the expected willingness to pay of the winner if we
instead gave the object to a bidder with the lowest possible willingness to pay whenever
the direct mechanism states the object is not sold. In other words, the left hand side is
the expected value of the winner’s p(¢) term if, instead, we always assign the good, but
do not necessarily give the good to the bidder with the highest p(¢) term.

Let g := mins—;__sg(s). That is, each state occurs with a probability of at least g.
Given the state of the world s, let G (b|s) be the distribution of highest submitted bids.
Note that G(b|s) is continuous and weakly increasing over (bp;,, 00) by the no-tie as-
sumption. Let b*(s) = infy>p_. {b|G(D|s) > %}. That is, given state s, there is at least a %
probability that the highest bid is below b*(s). Let b = maxyes b*(s). Thus, if b;j(1) > b,
then Q;(1) > %Vi, as there is at least a % probability that b isa winning bid in any state
of the world.

Suppose that b > bmin. Let A; be the set of all types for bidder i such that 4; :=
{t|Qi(¢t) > %}. We know that if ¢ is such that b;(¢) > E*, then ¢ € A4;. Thus, the probability
the good is won by a bidder with type ¢ € A4; is

N
L

1
Qi f(ndt = 78
teA; -
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because there is a % probability that the good is won by a bidder who bids b > b in at
least one state.
Ex ante expected revenues are

N N N

Xi() / X; (1)
E X;i(t tdt:E i(t tdt+§ i(t 1) dt.
P /I:GT (Or® Pt /teAi il )Qi(t)f( ) ] Jreal il )Qi(f)f( :

Note that if ¢ € A4;, then individual rationality requires that (X;(#))/(Q;(?)) < p(t) — B.
In addition, individual rationality requires that X;(¢)/Q;(¢t) < p(t) Vt € T. Thus, we can
rewrite the right hand side as

N N N

1
> / QPN f(Ddt—BY / Q(f(dr<) / QN P()f (1) dt — 3 Bg,
i—1 YteT i—1 Y teA; iy JteT

where the inequality follows because Z?Ll fte A Qi f(t)dt > % g Recalling that

N
Y| Qwpnfmdi<P,
i—1 teT

we can rewrite the right hand side of the above expression and say that expected revenue
is bounded by

1
P- -Bg.
2P8

Now suppose instead that b < bmin. Then there is at least a 0.5 probability that the
highest bid does not exceed by,j,. Thus, Q < % Recall that earlier we showed that

N
1-Qp+) TQi(t)ﬁ(t)f(t)dtS?
i=171€

and that revenue is bounded by Zf\il fteT Qi(p()f(t)dt. Thus, expected revenue is
bounded by

N
Y| Qnpf(tydi<P—(1-Q)p.
i=1"1€
Because Q < %, we have that expected revenue is bounded by P — % p- Thus, revenues are
bounded by min{P — } p, P —  Bg}. Letting & = max{J p, 3dg} yields our desired result.
(]

Proor oF REMARK 1. Suppose that bidder i reports demand curve g;. If bidder i wins
the same number of probability units by reporting g;, her payoff is unchanged. Suppose
that bidder i wins a strictly greater number of probability units g, by bidding g;. She
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pays X, in expectation for these g, probability units. Since S;(p) =0 if p < p*, then
Xy, > p*qy. Recall that by definition of g;,

Vi(qi(p*), —p*qi(p™)) = Vi(qn, —p*qn) = Vi(qn, —Xn).

Thus, reporting g; is a best reply to g_;. O

Proor oF ProrosiTION 5. Suppose that market clearing price bidders report (g1, ...,
gn) is p*. Thus, the marginal price of an additional unit of probability is p*. Suppose
that bidder i wins ¢; Ng := ¢;(p*) units of probability and pays %; in expectation in the
Nash equilibrium (NE). Hence, bidder i best responds by reporting ¢; when her rivals
report ¢_;. Her indirect utility is then

Vi(gnE, —X)).

If g;ng =0, then p* is such that ¢;(p*) = 0. If not, then g;(p*) > 0 and bidder i can in-
crease her payoff by reporting her demand truthfully. Recall that bidder i faces a (contin-
uous) marginal price curve for units of probability. Note that continuity is guaranteed by
the fact that all bidders report probability demand curves that have continuous inverses.
Thus, the necessary first order condition implies that if §; Ng > 0, then

IVi(GNE, —=Xi)  ~, IVi(GNE, — X))
aq ox

Let w; = g; NgP* — %;. Suppose that instead of starting with initial wealth 0, each bidder
starts with an initial wealth of w;. Then p* is the Walrasian equilibrium for units of prob-
ability. This holds as the function Vj(q, x — gp) is concave in ¢ (shown in Proof of Propo-
sition 1) and the necessary first order condition stated above holds as w; — g; Ngp* = %;.
The first welfare theorem then implies that this is Pareto efficient. O
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