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Sequential voting and agenda manipulation
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We study the possibilities for agenda manipulation under strategic voting for two
prominent sequential voting procedures: the amendment procedure and the suc-
cessive procedure. We show that a well known result for tournaments, namely
that the successive procedure is (weakly) more manipulable than the amendment
procedure at any given preference profile, extends to arbitrary majority quotas.
Moreover, our characterizations of the attainable outcomes for arbitrary quotas
allow us to compare the possibilities for manipulation across different quotas. It
turns out that the simple majority quota maximizes the domain of preference pro-
files for which neither procedure is manipulable, but at the same time neither the
simple majority quota nor any other quota uniformly minimizes the scope of ma-
nipulation once this becomes possible. Hence, quite surprisingly, simple majority
voting is not necessarily the optimal choice of a society that is concerned about
agenda manipulation.
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1. Introduction

Many societies and institutions, when choosing among alternatives, resort to sequen-
tial (multistage) decision procedures whereby different voters can determine, in a se-
quence of different steps, which alternatives are definitely out and which ones retain a
chance to be considered again, until one of them is definitely selected. In this paper we
study two families of classical methods of that sort—the amendment and the successive
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procedures—both of which are used extensively in many parts of the world.1 Our focus
will be on the strategic behavior of voters and also of a special agent, to be called the
agenda setter, in societies that use these methods.

It is known since ancient times2 that the order in which different alternatives are
considered along a sequential decision procedure can affect the final choice that a given
society may reach, even if the preferences of its members stay the same. Therefore, set-
ting the agenda is a very influential decision, and whoever controls the order of vote
often has the possibility to engage in agenda manipulation, that is, to determine the
outcome of the choice process.3 That power is not absolute, however, since there may
be cases where any agenda would lead to the same outcome, as long as the rest of the
features defining a rule remain unchanged, and other cases where the range of choices
that may be obtained is limited to some subset of all possible alternatives. As already
announced, in this paper we analyze the extent to which an agenda setter could choose
among several outcomes, and we determine what these can be as a function of the vot-
ers’ preferences and strategies. Specifically, we assume that voters themselves, given
any agenda, will act strategically in a precise way to be described shortly.4 The results of
our line of analysis are well known for the special case of tournaments, for which Miller
(1977) showed that the set of alternatives that are attainable by the successive proce-
dure coincide with the top cycle and for which Banks (1985) provided a characterization
of the attainable set for the amendment procedure that became known as the Banks set.
However, to the best of our knowledge we are the first to provide characterizations of the
sets of attainable alternatives for all possible majority quotas applied to the amendment
and the successive voting procedures, including all possible supermajority and subma-
jority quotas.5 Our characterizations differ from those of Miller (1977) and Banks (1985)
and hence are not straightforward extensions from the case of tournaments to arbitrary
quotas. Moreover, our general characterization results allow us to compare the power of
the agenda setter across different quotas, which is relevant for institutional design.

The exact characteristics of a sequential voting rule are determined by combining
several ingredients, the first of which is what we can call a tree form, which determines

1Precise definitions of these rules are provided in Section 2. These rules were named by Farquharson
(1969) and then studied by Miller (1977, 1980) in the special but important case where decisions are made
by simple majority. A recent axiomatic characterization is in Apesteguia et al. (2014). The relevance of these
methods in parliamentary practice and their use in different countries is discussed in Rasch (2000).

2See the Letter to Titus Aristo by Pliny the Younger (A.D. 105) reproduced in McLean and Urken (1995).
Farquharson’s path-breaking book (1969) uses that letter extensively for motivation and analysis.

3We concentrate on manipulations that involve changes in the order of vote, while keeping the same set
of alternatives. Other forms of agenda manipulation involve the addition of new items to the agenda or
the removal of some alternatives. This has been studied, among others, by Dutta et al. (2004) and Duggan
(2006).

4Under some binary rules, like the amendment procedure, it is clear what it would mean to act non-
strategically. Under other rules, like the successive procedure, that notion is not as obvious. Whenever the
notion of nonstrategic behavior is well defined, it is clear that an agenda setter could also derive advantages
from choosing the agenda in many cases.

5Apart from the theoretical motivation to deliver a comprehensive analysis that covers all majority quo-
tas, submajority quotas are also empirically relevant, because there are a number of institutions that actu-
ally use submajority rules (see Vermeule 2005).
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two aspects of the sequential process. One aspect is the number and the nature of ac-
tions that agents can take at any node, starting from an initial node, until a terminal
node is reached at the end of each path. But since one and only one alternative will
eventually be attached to each terminal node, so as to define trees, a tree form is also
defined by any restriction that may be imposed on the possible assignment of the same
alternative to different terminal nodes. The two families of procedures we study here
are based on binary tree forms, where each nonterminal node has two successors. The
second ingredient defining a sequential rule is the agenda, that is, the specific assign-
ment of alternatives to terminal nodes, respecting the restrictions imposed by the tree
form. That assignment determines what choices will be made by society after following
the possible path that leads to each terminal node. In all the cases we study, an agenda
is just an order over the alternatives, because we provide specific and unique rules that
translate each possible order into a unique admissible assignment of alternatives to the
terminal nodes of the tree forms that we consider. A tree is then given by a tree form
and by an agenda. Now, to turn a tree into a sequential voting rule, we must specify how
the different members of a voting body will influence the choice of paths along the tree.
Since we are working with binary trees, and we want to consider methods that treat all
agents on the same footing, we consider as possible methods all those that are defined
by a quota q, with q between 1 and the number of voters. When confronted with two
choices at any node, society will move to a prespecified successor of that node if at least
q people vote for it, and otherwise will take the opposite path.

A sequential voting rule will thus be fully specified once we have a tree and a quota.
Of course, a voting rule is defined independently of the preferences that may be held by
different agents regarding the alternatives. It sets the rules through which agents will be
able to contribute to the social decision. But to study the behavior of different agents
under these rules, we need to know what their preferences will be. And then, given a
profile of preferences, we will have all the elements to study the strategic behavior of
those agents. A tree and a quota then provide a game form, and when we add to them a
preference profile we have a game.

Although our motivation is to study the strategic behavior of voters under these se-
quential rules, it turns out that most of our analysis can be carried out by just knowing
a dominance relation among alternatives that generalizes the notion of a tournament,
and that can be used to represent the preferences of society. Whereas a tournament is
any complete and asymmetric relation over alternatives, the binary relations generated
by comparing alternatives according to quotas different than simple majority give rise
to relations that may fail one of these two properties.6 Moreover, some relations that
are either complete but not asymmetric or asymmetric and not complete may never be
obtained as the dominance relation induced by a quota and a preference profile. Yet
our main characterization results still hold for this larger class of social preferences. Be-
cause of that, our work can also be understood as a natural extension of tournament
theory, and the sets we identify can be compared to the different solution sets proposed

6For supermajority quotas, the binary relation may be incomplete, while for submajority quotas, the
relation may violate asymmetry.
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for tournaments and for their extensions (Miller 1977 and 1980, Shepsle and Weingast
1984, Banks 1985, Moulin 1986, Banks and Bordes 1988, Laslier 1997).

We first provide characterizations of the unique equilibrium outcomes obtained
by iterative elimination of weakly dominated strategies for each of the two families of
games we consider. We then use these characterizations to identify the sets of alterna-
tives that could be the outcome of games that share the same tree form and the same
rule for choosing among nodes, but differ on the agenda. Comparisons among these
sets allow us to discuss the degree of agenda manipulability of different rules in our
classes. It turns out that both procedures are nonmanipulable on the same set of pref-
erence profiles, namely those profiles for which there exists a (generalized) Condorcet
winner, i.e., an alternative that dominates all others and in turn is not dominated. More-
over, if there is no Condorcet winner, then the successive procedure is more vulnerable
toward agenda manipulation than the amendment procedure in the following sense: at
any preference profile (or, more generally, for any dominance relation), any outcome
that can be achieved for some agenda under the amendment procedure can also be
achieved by some agenda under the successive procedure, while the reverse is not true
in general. While this result was already known for tournaments given the characteriza-
tions of Miller (1977) and Banks (1985), we are able to show that it holds for all quotas.

Comparing different quotas under the same sequential voting procedure, we find
that the set of preference profiles that do not allow for manipulation is maximized at
simple majority voting and is otherwise weakly decreasing (increasing) in the quota for
supermajority (submajority) quotas. This gives some support for simple majority voting
if the possibility of agenda manipulation is a concern. But if at a given preference pro-
file there are opportunities for agenda manipulation under simple majority voting, then
there is no quota that uniformly minimizes the degree of manipulability, neither for the
successive nor for the amendment procedure. There are even cases where a submajority
quota minimizes the possibilities for manipulation.

The outline of the paper is as follows. In Section 2 we introduce general binary vot-
ing games and derive the equilibrium outcome of the voting game for the amendment
and the sequential procedures at a given agenda. In Sections 3 and 4 we characterize
the set of outcomes that can be obtained by agenda manipulation for the amendment
and sequential procedures. In Section 5 we compare the scope of manipulation under
the amendment and successive procedures for different quotas. Section 6 discusses the
robustness of our rules with respect to some conventions we adopt in their definition.
Section 7 concludes.

2. Sequential binary voting games

Let there be a finite set of alternatives X with #X ≥ 2.7 A binary voting tree on X is a
tree in which every nonterminal node has exactly two successors—left and right—and
to every terminal node an alternative in X is assigned, so that this mapping is onto.8

7The term #A denotes the number of elements in a finite set A.
8For purposes of expediency we define trees directly, rather than starting with tree forms as introduced

in Section 1. Thus, at this stage the role of agendas is implicit, and is the one suggested in Section 1. It
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Formally, we define a binary voting tree on X to be a quadruple (X�N���φ), such that
the following conditions are satisfied.

Condition 1. N is a finite set of nodes.

Condition 2. � is a binary relation on N that satisfies the following conditions:

(i) There exists a unique ν0 ∈N (the initial node) such that

{ν|ν ∈N and ν0 � ν} =∅�

(ii) For all ν ∈N \ {ν0}, there exists a unique ν′ ∈N with ν � ν′.

(iii) There exists a nonempty subset T ⊂ N of terminal nodes such that
for all ν ∈ T ,

{ν′|ν′ ∈N and ν′ � ν} = ∅�

(iv) For all ν ∈N \ T , {ν′|ν′ � ν} = {l(ν)� r(ν)}.9

Condition 3. φ : T →X is an onto function assigning to each terminal node a unique
alternative in X .

If ν � ν′ for ν� ν′ ∈ N , then we call ν a successor of ν′ and call ν′ a predecessor of ν.
A nonterminal node of a binary voting tree on X is called a decision node.

Let there be n voters. Each voter i’s strategy is a function σi : N \ T → N such that
σi(ν) ∈ {l(ν)� r(ν)} for all ν ∈ N \ T . That is, a strategy indicates which of the two possi-
ble successor nodes the voter will vote for once he/she arrives at node ν. To determine
the outcome resulting from any n-tuple of strategies, we must describe which of the two
nodes l(ν) or r(ν) will be selected as a continuation, given that ν was reached. To do that,
consider any quota q between 1 and n, which will be used to determine which of the two
successors is a q winner. When one of the two nodes obtains q votes and the other does
not, the node most voted for is declared the q winner. Exceptionally, when n is odd and
q = (n + 1)/2, it must always be that one and only one of the two competing nodes is a
winner in that sense. Otherwise, there may be some ambiguity left. It may be that n is
even, q = n

2 , and both l(ν) and r(ν) obtain q votes. It could also be that q < n
2 and both

obtain q or more votes or that q > n
2 and the votes for none of the two nodes reaches the

quota. In all these cases, determining which alternative will confront the following vote,
or become the winner, requires the use of a convention. Although these cases are obvi-
ously different, we may sometimes follow tradition, referring colloquially to all of them
as situations where there is a tie, and call the convention that we adopt regarding which
node is favored a tie-breaking rule. We could think of this convention as providing the
advantage of being a (temporary) status quo to either l(v) or to r(v). In the main part of
this paper, we use the convention that l(ν) will be the q winner if it gets at least q votes

will become more explicit when we introduce the binary voting games for the amendment and successive
procedures below.

9Since every decision node is assumed to have exactly two successors, we follow Austen-Smith and Banks
(2005) and label the successors of every ν ∈ N \ T as l(ν) (left successor), and r(ν) (right successor).
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and that r(ν) is the q winner otherwise. This convention is in agreement with the most
usual interpretation of sequential voting methods as representations of legislative vot-
ing procedures where the status quo prevails unless some alternative strictly dominates
it, and the status quo is the last (right) alternative to appear. But other variants of the
model could express the same idea: for example, we could consider that the status quo
is the first (left) element in the list and that it takes a q majority to defeat the left alterna-
tives, or we could also switch the roles of right and left alternatives and modify the rules
accordingly. As a result, all variants essentially reduce to two: the one we consider in
the main text and the alternative formulation that we briefly describe in Section 6. Our
main points regarding the manipulability of the different rules are maintained, and are
robust to the alternative specifications, with small variations that are spelled out in that
penultimate section of the paper.

Now, each quota, along with its associated notion of a q-majority winner, allows us
to associate a unique terminal node ν(σ) and a unique alternative φ(ν(σ)) ∈X to every
n-tuple of strategies σ = (σ1� � � � �σn) in a natural manner. At every nonterminal node ν

there is a q-majority vote over the successors l(ν) and r(ν), such that l(ν) wins if at least q
voters vote in favor of l(ν), and r(ν) wins otherwise. If r(ν) wins, the next q-majority vote
is over the successors l(r(ν)) and r(r(ν)) of r(ν), while if l(ν) wins, the next q-majority
vote is over the successors l(l(ν)) and r(l(ν)) of l(ν). The strategy sets associated to a
tree structure, along with the outcome function associated to the tree under any quota q

define a game form, just short of being a game in the absence of the voters’ preferences.
We now turn to these preferences. Every voter i is assumed to have a strict preference

ordering Pi over X , i.e., Pi is complete (for all x� y ∈ X with x �= y, it is true that xPi y or
y Pi x), transitive (for all x� y� z ∈ X , if x Pi y and y Pi z, then x Pi z), and asymmetric
(for all x� y ∈ X , if x Pi y, then ¬y Pi x). Let P = (P1� � � � �Pn) be the profile of voters’
preferences. Now, for any game form associated to a voting tree, its strategy space, and a
given quota, we can define a sequential binary voting game (X�N���φ�P� q) as the one
resulting from endowing agents with a given preference profile.

Since the sequential binary voting games defined above can have very implausible
Nash equilibria, where all voters coordinate on the same strategy irrespective of their
preferences, we restrict to the class of Nash equilibria in undominated strategies as is
common in the literature on voting games. Recall that a normal form game is dom-
inance solvable if all players are indifferent between all strategy profiles that survive
the iterative procedure where all weakly dominated strategies of all players are simul-
taneously eliminated at each stage. An extensive form game (like the sequential binary
voting game defined above) is dominance solvable if the corresponding normal form
game is dominance solvable.10 We will now argue that the sequential binary voting
game (X�N���φ�P� q) is dominance solvable for all quotas q: first, for every voter i

we can eliminate all strategies, where i does not vote for his preferred terminal node at
every last decision node, i.e., at every decision node whose successors are two terminal
nodes. Observe that given the strict preference ordering Pi, voter i is indifferent between
two terminal nodes ν and ν′ if and only if φ(ν) = φ(ν′). Hence, voter i is indifferent be-
tween two terminal nodes if and only if all voters j �= i are indifferent between these

10In voting theory dominance solvability is also known as sophisticated voting (see Farquharson 1969).



Theoretical Economics 12 (2017) Sequential voting and agenda manipulation 217

nodes. Thus, conditional on reaching a specific terminal decision node, all strategy pro-
files surviving the first elimination round are outcome equivalent. Hence, after the first
elimination round every voter has well defined preferences over all last decision nodes
since all these nodes are associated with a unique outcome (alternative) under the sur-
viving strategy profiles. We continue by eliminating for every voter i all strategies where
i does not vote for his preferred successor node at every penultimate decision node, i.e.,
at every decision node that is a predecessor of two last decision nodes. Again, after this
second elimination round every voter has well defined preferences over all penultimate
decision nodes and if one voter is indifferent between two penultimate decision nodes,
all voters are indifferent. Continuing in this way we finally arrive at the initial node and
we eliminate for every voter i all strategies where i does not vote for his preferred suc-
cessor node. Then all voters are indifferent between all remaining strategy profiles, and
all these surviving profiles σ lead to the same alternative φ(ν(σ)) ∈ X , which we call
the outcome, o(X�N���φ�P� q), of the sequential binary voting game. Hence, we have
the following result (cf. McKelvey and Niemi 1978, Moulin 1979, Gretlein 1982, Austen-
Smith and Banks 2005).

Theorem 2.1. Every sequential binary voting game (X�N���φ�P� q) is dominance
solvable.

In this paper we will focus on two specific binary voting trees on X that represent two
prominent sequential voting procedures: the amendment procedure and the successive
procedure. Both procedures start with an agenda, i.e., an ordering (x1�x2� � � � � xm) of the
alternatives in X , where the nontrivial case is when m≥ 2.11

Amendment procedure

Given an agenda (x1� � � � � xm), the binary voting tree (X�N���φ) for the amendment
procedure is such that the first vote is over x1 and x2, the second vote is over the winner
of the first vote and x3, the third vote is over the winner of the second vote and x4, and
so on until all alternatives are exhausted. Figure 1 shows the binary voting tree for the
amendment procedure in the case where m = 3. Observe that the agenda also yields
a natural labeling of the two successor nodes of every nonterminal decision node: at
every decision node ν there is a vote over two alternatives, xi and xj , where i < j. The
left successor, l(ν), then is the node reached if alternative xi wins, and r(ν) is the node
reached if alternative xj wins.

11We follow Shepsle and Weingast (1984) and Banks (1985) by calling an agenda an ordering of the alter-
natives. But, unfortunately, the terminology in the related literature is not always the same. Miller (1995)
calls a binary voting tree an agenda. Laslier (1997) uses the term agenda to designate a binary voting tree
where no alternatives have been assigned to the terminal nodes yet, and he calls the order of alternatives
a drawing. Our choice of words tries to reflect the fact that the tree, along with the rules determining how
to move from node to node through its branches after each vote, represents the formal procedure, while
the agenda refers to the substantial issues at hand and the order in which they are debated. At any rate,
terminology is not a problem when it comes to comparing results.
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Figure 1. Binary voting tree for the amendment procedure with agenda (x1�x2�x3).

Consider now the sequential binary voting game (X�N���φ�P� q) for the amend-
ment procedure. By Theorem 2.1 the game is dominance solvable and we have seen
that there is a simple backward induction procedure to derive the unique outcome of
the game. To determine this outcome, we let P denote the social preference relation on
X under sincere voting with quota q, i.e. for all x� y ∈X ,

x P y ⇐⇒ #{i|xPi y} ≥ q� (1)

Observe that for a given quota q, P is either complete (if q ≤ �n
2 �) or asymmetric (if

q ≥ 
n
2 � + 1) or both.12 In the latter case P defines a tournament.13 By allowing P to

be incomplete or to violate asymmetry we depart from the tournament literature and
provide a more general analysis of sequential voting games. Let oA(x1�x2� � � � � xm) de-
note the outcome of the sequential binary voting game for the amendment procedure
with a given agenda (x1� � � � � xm). Then oA(x1�x2� � � � � xm) is inductively defined over the
number of alternatives in the agenda as follows.

If m= 1, then oA(x1)= x1. Let m≥ 2 and suppose the outcome has been defined for
any agenda with up to m− 1 alternatives. Consider the agenda (x1�x2� � � � � xm). Then

oA(x1�x2� � � � � xm)
(2)

=
{
oA(x1�x3� � � � � xm) if oA(x1�x3� � � � � xm) P oA(x2�x3� � � � � xm)�

oA(x2�x3� � � � � xm) if ¬oA(x1�x3� � � � � xm) P oA(x2�x3� � � � � xm)�

Note that in (2) we have used the tie-breaking rule introduced previously: x1

wins against x2 if and only if the ultimate outcome that is reached if we let x1 pass,
oA(x1�x3� � � � � xm), defeats the ultimate outcome oA(x2�x3� � � � � xm) that is reached if we

12Here, 
c� (�c�) denotes the largest (smallest) integer less (larger) than or equal to c ∈R.
13This is the case if n is odd and q = (n+ 1)/2.



Theoretical Economics 12 (2017) Sequential voting and agenda manipulation 219

Figure 2. Binary voting tree for the successive procedure with agenda (x1�x2�x3).

let x2 pass. Hence, in any pairwise vote the tie-breaking rule can be interpreted as at-
tributing to the alternative introduced later the role of a status quo that prevails unless
it is defeated by the alternative introduced earlier.14

Successive procedure

Given an agenda (x1� � � � � xm), the binary voting tree (X�N���φ) for the successive pro-
cedure is such that the first vote is over the approval of x1. If x1 is approved, the voting
is over and the outcome is x1. If x1 is rejected, the next vote is over the approval of x2. If
x2 is approved, the voting is over and the outcome is x2. Otherwise, if x2 is rejected, the
next vote is over the approval of x3, and so on. If xm−1 is rejected, the outcome is xm. Fig-
ure 2 shows the binary voting tree for the successive procedure in the case where m = 3.
Again, the agenda yields a natural labeling of the two successor nodes of every nonter-
minal decision node: at every decision node ν there is a vote over approving or rejecting
an alternative xi. The left successor, l(ν), then is the node reached if xi is approved, and
r(ν) is the node reached if xi is rejected.

As for the amendment procedure, we consider the sequential binary voting game
(X�N���φ�P� q) for the successive procedure. Again, let P be the social preference
relation over X as defined in (1). Then the outcome oS(x1�x2� � � � � xm) for the succes-
sive procedure is inductively defined over the number of alternatives in the agenda as
follows.

14This is in line with the convention in legislative voting to place the status quo bill last in the agenda
and before that the alternative bill, the amendment to the alternative bill, and so on. At each stage of the
sequential voting, a bill then is replaced by an amended version if and only if the amended version defeats
it. We refer the reader to Section 6 for a discussion of the alternative tie-breaking rule where the earlier
alternative in an agenda is treated as a status quo.
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If m = 1, then oS(x1) = x1. Let m ≥ 2 and suppose the outcome has been defined for
any agenda with up to m− 1 alternatives. Consider the agenda (x1�x2� � � � � xm). Then

oS(x1�x2� � � � � xm)=
{
x1 if x1 P oS(x2�x3� � � � � xm)�

oS(x2�x3� � � � � xm) if ¬x1 P oS(x2�x3� � � � � xm)�
(3)

Again note that in (3) we have used the tie-breaking rule introduced before,
according to which x1 is approved if and only if x1 defeats the ultimate outcome
oS(x2�x3� � � � � xm) that is reached if x1 is rejected.15

The inductive definitions of oA(x1�x2� � � � � xm) and oS(x1�x2� � � � � xm) for the amend-
ment and successive procedure in (2) and (3) reveal that the outcome of an agenda only
depends on the social preference relation P and is invariant with respect to changes
in the individual preferences Pi that leave P unchanged. Hence, in the following we
will consider the general case, where society makes binary choices according to an ar-
bitrary binary relation P on X , which is not necessarily derived from majority voting
with quota q. We refer to P as a dominance relation and continue to use the term social
preference relation if P is derived from q-majority voting. If we assume that society is
rational in the sense that at every decision node in the binary voting tree it chooses the
successor node that ultimately leads to the alternative that is preferred according to P ,
then the outcome of an agenda for the amendment and successive procedures is still
given by (2), respectively by (3).

The following two sections will provide characterizations of the outcomes that an
agenda setter can achieve under the amendment and successive procedure for a given
dominance relation P .

3. Choosing with the amendment procedure

In this section we consider the case where society uses the amendment procedure for a
given agenda to choose an alternative from X . Throughout we assume that the agenda
incorporates all alternatives in X , i.e., for any agenda (x1� � � � � xm) it is true that X =
{x1� � � � � xm}.

We assume that there is a dominance relation P on X and that the outcome of an
agenda is determined according to (2). So as to characterize the set of alternatives that
can be supported as the outcome for some agenda, we will assume that P is complete
or asymmetric. We first derive some auxiliary results. All proofs are provided in the
Appendix.

For a given agenda (x1� � � � � xm) define the auxiliary alternatives x̄1� � � � � x̄m by

x̄k = oA(xk�xk+1� � � � � xm) for k= 1� � � � �m� (4)

Lemma 3.1. For all k= 1� � � � �m− 1,

x̄k = xk ⇐⇒ xk P x̄l for all l = k+ 1� � � � �m�

15See Section 6 for a discussion of the alternative tie-breaking rule where x1 is approved if and only if it
is not defeated by oS(x2�x3� � � � � xm).
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Lemma 3.2. If xk = oA(x1� � � � � xm) for some k with 1 ≤ k≤m, then xk = x̄k.

We are now ready to state our main characterization result that provides a necessary
and sufficient condition for an alternative to be the outcome of some agenda under the
amendment procedure.

Theorem 3.1. Let P be complete or asymmetric. Let x ∈X and let

Y(x) = {y ∈X|y P x and ¬x P y}�
Then there exists an agenda (x1� � � � � xm) with x = oA(x1� � � � � xm) if and only if for all
y ∈ Y(x), there is an alternative z(y) ∈ X , such that the following two conditions are sat-
isfied.

(i) We have ¬y P z(y) and x P z(y).

(ii) There exists an ordering (z1� � � � � zt) of the alternatives in

Z(x) = {
z|z = z(y) for some y ∈ Y(x)

}
�

such that zk P zl for all k= 1� � � � � t − 1 and for all l > k.

Although the proof of the theorem is in the Appendix, let us briefly hint at the ma-
jor ideas behind it. Regarding necessity, it is clear that the choice of x is threatened by
the existence of the elements of Y(x), which would eliminate x if ever really confronted
against it. Hence, alternatives that are beaten by x but not beaten by those in Y(x) are
needed, and these are the ones in the set Z(x). The additional conditions on the dom-
inance relation among the alternatives in Z(x) are also needed to ensure that they can
be presented in an appropriate order, so as to fulfill their role as deterrents of alterna-
tives in Y(x). The sufficiency part consists in exhibiting a way to order the alternatives
that would deliver x as an outcome, given that the conditions are satisfied. These orders
depend on whether we consider the case of a complete or an asymmetric dominance
relation. For the complete case, if Y(x) is empty, then use any order where x is the first
alternative in the agenda. Otherwise, use the order

(x�x1� � � � � xm−r−t−1� y1� � � � � yr� z1� � � � � zt)�

where here the order of the yi’s is any, and the xi’s stand for those alternatives other
than x that do not belong to either Y(x) or Z(x). Similarly, for the asymmetric case, if
Y(x) is empty, use any order where x is the last alternative in the agenda, and if Y(x) is
nonempty, use the order

(x1� � � � � xm−r−t−1�x� y1� � � � � yr� z1� � � � � zt)�

where again the order of the yi’s is any, and the xi’s stand for those alternatives other
than x that do not belong to either Y(x) or Z(x).

For later use we provide the following alternative characterization of the set of at-
tainable alternatives under the amendment procedure. It is immediate to see that the
following characterization is equivalent to the one in Theorem 3.1.
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Theorem 3.2. Let P be complete or asymmetric. Let x ∈X and let

Y(x) = {y ∈X|y P x and ¬x P y}�
Then there exists an agenda (x1� � � � � xm) with x = oA(x1� � � � � xm) if and only if there is a
set of alternatives Z(x) with x /∈ Z(x) and x P z for all z ∈ Z(x), such that the following
two conditions are satisfied:

(i) For all y ∈ Y(x) there exists a z ∈Z(x) such that ¬y P z.

(ii) There exists an ordering (z1� � � � � zt) of the alternatives in Z(x) such that zk P zl for
all k = 1� � � � � t − 1 and for all l > k.

Clearly, in many cases one can attain a given alternative through several orders.
Therefore, no uniqueness claim is placed on the orders that we use in the sufficiency
part of the proof. However, it is interesting to realize that, in the complete case, placing
in first place the alternative that one wants to obtain is always effective, in the following
sense.

Corollary 3.1. Let P be complete and let (x1� � � � � xm) be an agenda. If for some k > 1,
xk = oA(x1� � � � � xm), then there exists an agenda (x′

1� � � � � x
′
m) with x′

1 = xk and

xk = oA(x′
1� � � � � x

′
m)�

The proof of Corollary 3.1 follows immediately from the constructive sufficiency
proof of Theorem 3.1.

The following example shows that it is not sufficient to move the outcome of an
agenda one or only a few steps forward. Unless it is moved to the first position in the
agenda, it need not remain the outcome.

Example 3.1. Let X = {x1�x2�x3} and consider the dominance relation P given by

x2 P x1�x2 P x3�x3 P x1� and x3 P x2�
16

Observe that P is complete but not asymmetric. Then

x3 = oA(x1�x2�x3)= oA(x3�x1�x2)= oA(x3�x2�x1)

and

x2 = oA(x1�x3�x2)= oA(x2�x3�x1)�

♦

For a given dominance relation P , an alternative x belongs to the uncovered set
(Miller 1980) if and only if for all y �= x, either x P y or there exists a z ∈ X with x P z

and z P y. The following then is a straightforward corollary of Theorem 3.1.

16The following preference profile (P1�P2�P3) for three voters generates P for majority voting with quota
q = 1: x3 Pi x2 Pi x1 for i = 1�2 and x2 P3 x3 P3 x1.
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Corollary 3.2. Let P be complete and let x = oA(x1� � � � � xm) for some agenda
(x1� � � � � xm). Then x belongs to the uncovered set.

Corollary 3.2 recovers Miller’s (1980) result that in the case of a tournament, i.e.,
where P is complete and asymmetric, the set of sophisticated voting outcomes for the
amendment procedure is a subset of the uncovered set.

If P is asymmetric, then Theorem 3.1 provides an alternative characterization of the
set of possible outcomes to the one given in Banks and Bordes (1988, Theorem 3.6). To
state their result, we need some additional definitions. For our tie-breaking rule, the pair
(X ′� d) with X ′ ⊆ X is a trajectory if d : X ′ → {1� � � � �m} is one-to-one and d(x) > d(y)

implies that xP y. A trajectory (X ′� d) is maximal if for all y ∈X \X ′ the pair (X ′ ∪{y}� d′)
is not a trajectory, where d′(x) = d(x) for all x ∈ X ′ and d(y)= #X ′ + 1.

Corollary 3.3 (Banks and Bordes 1988). If P is asymmetric, then x = oA(x1� � � � � xm)

for some agenda (x1� � � � � xm) if and only if there exists a maximal trajectory (X ′� d) with
d(x) = t, where t = #X ′.

4. Choosing with the successive procedure

We now turn to the case where society uses the successive procedure for a given agenda
to choose an alternative from X . Hence, we assume that there is a dominance relation
P on X and that the outcome of an agenda is determined according to (3). Again we
first derive some auxiliary results before presenting the characterization of the set of
alternatives that can be achieved as the outcome for some agenda. To this end, we define
the auxiliary alternatives x̄k by

x̄k = oS(xk�xk+1� � � � � xm) for k= 1� � � � �m�

The first lemma shows that an alternative that was eliminated at some stage will
never return.

Lemma 4.1. Let (x1� � � � � xm) be an agenda. If x̄k �= xs for some s ≥ k, then x̄l �= xs for all
l < k.

Lemma 4.1 immediately implies the following result.

Lemma 4.2. We have xk = oS(x1� � � � � xm) for some 1 ≤ k ≤ m if and only if x̄l = xk for all
l ≤ k.

We are now ready to present our main characterization result for the successive pro-
cedure.

Theorem 4.1. Let P be complete or asymmetric. Let x ∈X and let

Y(x) = {y ∈X|y P x and ¬x P y}�
Then there exists an agenda (x1� � � � � xm) with x = oS(x1� � � � � xm) if and only if there is a set
of alternatives Z(x) with x /∈Z(x) such that the following two conditions are satisfied:
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(i) For all y ∈ Y(x) there exists a z ∈Z(x) such that z P y if P is complete and such that
¬y P z if P is asymmetric.

(ii) There exists an ordering (z1� � � � � zt) of the alternatives in Z(x) such that zl P zl+1
for all l = 1� � � � � t − 1 and x P z1.

Again let us briefly dwell on the major ideas of the proof, which is given in the Ap-
pendix. For necessity, any alternative in Y(x) that threatens x must be eliminated before
it meets x. This is achieved by the alternatives in Z(x) that may in turn threaten x, but
that can be placed in such an order that the alternative that actually meets x is elimi-
nated by x. For sufficiency, we must find an order of the alternatives that delivers x as an
outcome, given that the conditions are satisfied. This order again depends on whether
we consider the case of a complete or an asymmetric dominance relation. For the com-
plete case, if Y(x) is empty, then x P y for all y �= x. Hence, x beats the outcome of any
agenda on the remaining alternatives, which implies that x is the outcome of any agenda
that has x as the first alternative. Otherwise, if Y(x) �= ∅, use the order

(x�x1� � � � � xm−r−1�w1� � � � �wr)�

Here, the xi’s are all alternatives other than x that do not belong to either Y(x) or Z(x),
and the wi’s are alternatives that belong either to Y(x) or to Z(x), and their order has to
be selected in a delicate manner that is explained along the inductive proof. Similarly,
for the asymmetric case, if Y(x) is empty, then ¬y P x for all y �= x. Hence, no predecessor
of x in an agenda ever beats x and we can use any order where x is the last alternative to
obtain x as the outcome of the agenda. If Y(x) is nonempty, use the order

(x1� � � � � xm−r−1�x�w1� � � � �wr)�

where again the xi’s are all alternatives other than x that do not belong to either Y(x)

or Z(x) and the wi’s are alternatives that belong either to Y(x) or to Z(x) and that are
ordered in a specific manner.

Like for the amendment procedure, if P is complete and an alternative x can be ob-
tained as the outcome for some agenda, then x is the outcome of some agenda where x

is placed first.

Corollary 4.1. Let P be complete and let (x1� � � � � xm) be an agenda. If for some k > 1,
xk = oS(x1� � � � � xm), then there exists an agenda (x′

1� � � � � x
′
m) with x′

1 = xk and

xk = oS(x′
1� � � � � x

′
m)�

The proof is again straightforward given the constructive sufficiency proof of Theo-
rem 4.1.

For the special case where P is a tournament, i.e., complete and asymmetric, The-
orem 4.1 recovers the well known result that the set of attainable outcomes under the
successive procedure coincides with the top cycle (Miller 1977). We can even generalize
this result to any complete and not necessarily asymmetric dominance relation P . To
this end, we first define the top cycle for a complete dominance relation P .17 The top

17In Section 6 we will provide a definition of the top cycle for an asymmetric dominance relation.



Theoretical Economics 12 (2017) Sequential voting and agenda manipulation 225

cycle of P is the set of all alternatives x such that for all y �= x, there exists a sequence of
alternatives z0� z1� � � � � zs , with z0 = x, zs = y, and zl P zl+1 for all l = 1� � � � � s − 1.

Corollary 4.2. If P is complete, then x = oS(x1� � � � � xm) for some agenda (x1� � � � � xm)

if and only if x is in the top cycle of P .

5. On the forms and extent of agenda manipulation

In this section we focus on the possibilities that an agenda setter may find to use her
power to determine the order of vote in her own favor, so as to get a most preferred
alternative. In its most demanding version, nonmanipulability would require that who-
ever is chosen as an agenda setter could not change the outcome at all, because it is the
same regardless of the order of vote.

Definition 5.1. A sequential voting procedure is nonmanipulable by any agenda set-
ter at a given dominance relation P if it yields the same outcome regardless of the
agenda.

Note that the definition applies to any potential agenda setter.
It turns out that both the amendment and the successive procedure are nonmanip-

ulable whenever there exists a (generalized) Condorcet winner, i.e., an alternative that
dominates all others and in turn is not dominated. Hence, both procedures are nonma-
nipulable on the same set of preference profiles. So as to state this result, for any domi-
nance relation P we let OA(P) (OS(P)) denote the set of alternatives that are outcomes
for some agenda under the amendment (successive) procedure given P .

Theorem 5.1. Let P be complete or asymmetric and let x ∈ X . Then the following state-
ments are equivalent:

(i) We have OS(P) = {x}.

(ii) We have OA(P) = {x}.

(iii) For all y ∈ X with y �= x it is true that x P y and ¬y P x.

For those profiles where several outcomes could be reached, depending on the order
of vote, it is possible to compare the choice flexibility that an agenda setter may obtain
from alternative rules, as expressed by the following definition.

Definition 5.2. Given two sequential voting procedures, we say that one is more
agenda manipulable than the other if, for any complete or asymmetric dominance rela-
tion P , the set of alternatives that are attainable by agenda manipulation under the latter
is a subset of the former, and it is a strict subset for at least one dominance relation P .

We can now state our first result on agenda manipulation.
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Proposition 5.1. The successive procedure is more agenda manipulable than the
amendment procedure.

The claim that OA(P) ⊆OS(P) for all preference relations P is an immediate implica-
tion of Theorems 3.2 and 4.1. To get an intuition for this result observe that the amend-
ment procedure imposes stronger conditions on an alternative for it to survive the se-
quential voting procedure than the successive procedure. To obtain x as the outcome
of an agenda for the successive procedure, it is sufficient that x dominates the outcome
of some agenda for the remaining alternatives. Hence, it is sufficient to find some or-
dering (x1� � � � � xm−1) of the alternatives different from x, such that x P oS(x1� � � � � xm−1)

(see (3)). By contrast, for x to be the outcome of the agenda (x�x1� � � � � xm−1) under
the amendment procedure, x must be the outcome of any agenda (x�xk� � � � � xm−1) for
k= 1� � � � �m− 1 (see (2)).

Observe that Proposition 5.1 generalizes a known result for tournaments to arbitrary
preference relations or arbitrary quotas, respectively.18

To verify that there exist relations P with OA(P)�OS(P), consider the following ex-
ample.

Example 5.1. Let X = {x� y�w�z} and let P be given by

x P w�y P x� y P w�w P z�z P x� and z P y�19

Then x = oS(x�w�z� y), but x /∈OA(P). In fact, only y, w, and z satisfy conditions (i) and
(ii) in Theorem 3.1. ♦

In what follows we analyze the role of the quota in determining the degree of manip-
ulability of our rules for the special case where the social relation P is derived from a vote
under a given quota. It turns out that the set of preference profiles at which the amend-
ment and successive procedures are nonmanipulable is maximized at simple majority
voting. To state this result, we denote by �(q) the set of profiles P such that there exists
a generalized Condorcet winner under majority voting with quota q, i.e., �(q) is the set
of profiles at which the amendment and the successive procedures are nonmanipulable
given q (cf. Theorem 5.1).

Proposition 5.2. Let 1 ≤ q < q′ ≤ 
n
2 � + 1 or 
n

2 � + 1 ≤ q′ < q ≤ n. Then

�(q)⊆�(q′)�

In particular, �(q) is maximal for q = 
n
2 � + 1, i.e., for simple majority voting.20

The intuition for this result is simple: By Theorem 5.1, the amendment and succes-
sive procedures are nonmanipulable at quota q if there exists an alternative x such that

18For tournaments, the result follows from the fact that the Banks set is a subset of the top cycle.
19The following preference profile (P1�P2�P3) for three voters generates P for simple majority voting:

y P1 xP1 wP1 z�wP2 z P2 y P2 x�z P3 y P3 xP3 w.
20If n is even, then �(n2 ) = �(n2 + 1), i.e., the maximizer of �(q) is not unique.
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for all alternatives y �= x, (i) x is a q winner over y and (ii) y is no q winner over x. Now
obviously (i) is easier to satisfy if q is small while (ii) is easier to satisfy if q is large. The
simple majority quota balances the opposite effects that the quota has on the fulfillment
of (i) and (ii). Hence, the domain of preference profiles at which the voting procedures
are nonmanipulable is maximal for the simple majority quota.

We now fix a preference profile and compare the degree of manipulability across dif-
ferent quotas. Let OA(P� q) (OS(P� q)) denote the set of alternatives that are outcomes
under majority voting with quota q at profile P for some agenda under the amendment
(successive) procedure.

We first consider the amendment procedure. The following example shows that the
sets OA(P� q) are not nested in general.

Example 5.2. Let X = {x� y� z} and let there be five voters with preferences

z Pi y Pi x for i = 1�2�

y Pi xPi z for i = 3�4�

xP5 z P5 y�

Using Theorem 3.1 it is straightforward to verify that

OA(P�1) =OA(P�3)= OA(P�5) = {x� y� z} and OA(P�2)= OA(P�4) = {y� z}� ♦

While there is no quota that minimizes the degree of manipulability for the amend-
ment procedure, unanimity turns out to be the one that maximizes it.

Proposition 5.3. For every preference profile P and for all q = 1� � � � � n−1, it is true that

OA(P� q)⊆ OA(P� n)�

The situation is somewhat different for the successive procedure. There, the sets
OS(P� q) are nested for submajority and simple majority quotas. Hence, simple majority
is a manipulation minimizer among all submajority and simple majority quotas. How-
ever, nestedness does not hold for supermajority quotas. We summarize these results in
the following proposition.

Proposition 5.4. Let P be an arbitrary preference profile. Then the following statements
are true:

(i) For all q�q′ with 1 ≤ q < q′ ≤ 
n
2 � + 1 it holds that OS(P� q′) ⊆OS(P� q).

(ii) For all q�q′ with 
n
2 � + 1 ≤ q < q′ ≤ n the sets OS(P� q) and OS(P� q′) are not nec-

essarily nested, i.e., there exist a set of alternatives X and a preference profile P such
that neither OS(P� q) ⊆ OS(P� q′) holds for all q�q′ with 
n

2 � + 1 ≤ q < q′ ≤ n nor
OS(P� q′) ⊆ OS(P� q) holds for all q�q′ with 
n

2 � + 1 ≤ q < q′ ≤ n.
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The first claim in Proposition 5.4 is proved in the Appendix. The intuition is as fol-
lows. For any submajority quota q the social preference relation P derived from major-
ity voting with quota q is complete. In this case conditions (i) and (ii) in Theorem 4.1
only involve dominance relations on pairs of alternatives that continue to hold for quo-
tas smaller than q. Hence, if some alternative x is attainable under some submajority
quota q′, it is also attainable under any quota q < q′.

To prove the second claim in Proposition 5.4, observe that for the preferences in
Example 5.2 we obtain

OS(P�1)= OS(P�2) =OS(P�3) =OS(P�5)= {x� y� z}
and

OS(P�4) = {y� z}�
The preference profile in Example 5.2 also demonstrates that it is not true that simple

majority voting always minimizes the degree of manipulability, neither for the amend-
ment nor for the successive procedure.

One source of the difference in the set of attainable outcomes under the amendment
and successive procedures is that the former always selects an outcome in the Pareto
set while the latter may also have inefficient outcomes as we will show below. For the
special case of a tournament this is well known since in this case the attainable set for
the amendment procedure is a subset of the uncovered set (see Corollary 3.2 and Miller
1980), which in turn is a subset of the Pareto set (see Miller 1980). Moreover, in case
of a tournament the attainable set for the successive procedure coincides with the top
cycle (see Corollary 4.2 and Miller 1977), which is not, in general, a subset of the Pareto
set (see Example 6 in Miller 1995, and Theorem 10.2.3 in Laslier 1997). The following
propositions extend to any arbitrary complete or asymmetric dominance relation what
was known in the case of tournaments about the relationship between the Pareto set
and the attainable sets for the amendment and successive procedure.

Proposition 5.5. (i) No Pareto dominated alternative is attainable under the amend-
ment procedure for any q = 1� � � � � n, i.e.,

OA(P� q)⊆ {x| there exists no y with y Pi x for all i}�

(ii) For q ∈ {1� n} the set of outcomes OA(P� q) coincides with the set of alternatives that
are not Pareto dominated, i.e.,

OA(P�1)= OA(P� n)= {x| there exists no y with y Pi x for all i}�

For the successive procedure, OS(P� n) is the set of alternatives that are not Pareto
dominated by any other alternative. However, different from the amendment proce-
dure, for the successive procedure and q < n an alternative can be the outcome for
some agenda even if it is Pareto dominated. In particular, it is not true in general that
OS(P�1)= OS(P� n).
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Proposition 5.6. (i) We have OS(P� n)= {x| there exists no y with y Pi x for all i}�
(ii) Let n ≥ 3 and let 1 ≤ q ≤ n − 1. Then there exist a set of alternatives X and voters’

preferences P such that x ∈OS(P� q) for some Pareto dominated alternative x ∈X .

The first claim in Proposition 5.6 is proved in the Appendix. The second claim is
proved by the following examples.

Example 5.3. Let X = {x� y� z} and let there be n≥ 3 voters with preferences

z P1 y P1 x�

y Pi xPi z for all i = 2� � � � � n�

Then x is Pareto dominated by y and x = oS(x� z� y) for majority voting with quota q = 1,
i.e., x ∈OS(P�1). ♦

Example 5.4. Let n ≥ 3 and 2 ≤ q ≤ n − 1. Let X = {x� y�w�z} and let there be n voters
with preferences

w P1 z P1 y P1 x�

z P2 y P2 xP2 w�

y Pi xPi w Pi z� for all i = 3� � � � � q+ 1�

If q < n− 1, let

z Pi y Pi w Pi x� for all i = q+ 2� � � � � n�

Then x is Pareto dominated by y and x = oS(x�w�y� z) for majority voting with quota q,
i.e., x ∈OS(P� q). ♦

As shown by Example 5.2, the difference in the Pareto properties is not the only
source of a difference between OA(P� q) and OS(P� q). In this example, x ∈ OS(P�2)
and x /∈OA(P�2), but x is not Pareto dominated.

6. Robustness

In Section 2 we have already pointed to the role of the convention whereby, in defining
our rules, we attribute to alternatives in one of the directions, right or left in the tree, the
opportunity to stay for the next stage in the vote. We can think of that convention as as-
signing either the left or right successor (l(ν) or r(ν)) the role of a temporary status quo,
and assuming that it will prevail if and only if it is not beaten by the other successor node
in a q-majority vote. Unless there are constraints on the formation of an agenda, as in
legislative voting, it seems arbitrary whether one treats the left or right successor node as
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the temporary status quo.21 In fact, as Banks and Bordes (1988, p. 36) state when consid-
ering the amendment procedure, “two ‘natural’ tie-breaking rules are (i) the alternative
introduced earlier proceeds to the next vote [� � �] and (ii) the alternative introduced later
continues.” Up to this point we have considered the second rule, which we will call the
backward looking rule because it treats the right successor, i.e., later (higher numbered)
alternatives, as a temporary status quo. In the following discussion we will show that our
main results continue to hold under the first rule, which we will call the forward looking
rule, because it treats the left successor, i.e., earlier (lower numbered) alternatives, as a
temporary status quo. We will also point to some interesting modifications that obtain
under the forward looking rule. We do not provide any proofs for the results in this sec-
tion but instead refer the reader to Barberà and Gerber (2015) where the proofs can be
found.

Using the forward looking rule we obtain the following modifications in the induc-
tive definition of the outcome of an agenda. For the amendment procedure replace (2)
by

oA(x1�x2� � � � � xm)

=
{
oA(x1�x3� � � � � xm) if ¬oA(x2�x3� � � � � xm) P oA(x1�x3� � � � � xm)�

oA(x2�x3� � � � � xm) if oA(x2�x3� � � � � xm) P oA(x1�x3� � � � � xm)�

Similarly, for the successive procedure replace (3) by

oS(x1�x2� � � � � xm) =
{
x1 if ¬oS(x2�x3� � � � � xm) P x1�

oS(x2�x3� � � � � xm) if oS(x2�x3� � � � � xm) P x1�

With these definitions the attainable alternatives under the amendment and succes-
sive procedure can be characterized as follows.

Theorem 6.1. Let P be complete or asymmetric. Let x ∈X and let

Y(x) = {y ∈X|y P x and ¬x P y}�

Then there exists an agenda (x1� � � � � xm) with x = oA(x1� � � � � xm) if and only if there is a
set of alternatives Z(x) with x /∈ Z(x) and ¬z P x for all z ∈ Z(x), such that the following
two conditions are satisfied.

(i) For all y ∈ Y(x) there exists a z ∈Z(x) such that z P y.

(ii) There exists an ordering (z1� � � � � zt) of the alternatives in Z(x) such that ¬zl P zk
for all k = 1� � � � � t − 1 and for all l > k.

21In legislative voting there is the convention to build the agenda (x1� � � � � xm) backward (Shepsle and
Weingast 1984), i.e., xm is the status quo bill, xm−1 is an alternative bill, xm−2 is the alternative bill with an
amendment, and so on. In this case, the natural convention is to give priority to alternatives that come later
in the agenda, which is the rule we used so far.
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Theorem 6.2. Let P be complete or asymmetric. Let x ∈X and let

Y(x) = {y ∈X|y P x and ¬x P y}�

Then there exists an agenda (x1� � � � � xm) with x = oS(x1� � � � � xm) if and only if there is a set
of alternatives Z(x) with x /∈Z(x) such that the following two conditions are satisfied:

(i) For all y ∈ Y(x) there exists a z ∈Z(x) such that z P y if P is complete and such that
¬y P z if P is asymmetric.

(ii) There exists an ordering (z1� � � � � zt) of the alternatives in Z(x) such that ¬zl+1 P zl
for all l = 1� � � � � t − 1, and ¬z1 P x.

It is then immediate to see that Proposition 5.1 continues to hold under the forward
looking rule.22 The same is true for our results concerning the nonmanipulability of the
voting procedures (Theorem 5.1) and the domain of preference profiles for which the
procedures are nonmanipulable under a given quota (Proposition 5.2). Moreover, all
additional results for the amendment procedure in Section 5 concerning the nonnest-
edness of the attainable sets and the efficiency properties continue to hold under the
forward looking rule.

Let us now come to some interesting modifications of our previous results under the
forward looking rule. All modifications pertain to the successive procedure. The first
concerns the relation between the top cycle and the set of outcomes under the succes-
sive procedure. While under the backward looking rule we showed that the two sets
coincide if P is complete (Corollary 4.2), under the forward looking rule the two sets co-
incide if P is asymmetric. To state this result, we first have to define the top cycle for
an asymmetric dominance relation P . To this end, let R be the binary relation on X de-
fined by x R y if and only if ¬y P x for x� y ∈ X . Observe that R is complete since P is
asymmetric. The top cycle of P then is the set of all alternatives x such that for all y �= x,
there exists a sequence of alternatives z0� z1� � � � � zs , with z0 = x�zs = y, and zl R zl+1 for
all l = 1� � � � � s − 1. We then get the following corollary to Theorem 6.2.

Corollary 6.1. If P is asymmetric, then x = oS(x1� � � � � xm) for some agenda (x1� � � � � xm)

if and only if x is in the top cycle of P .

Moreover, under the forward looking rule the sets of attainable alternatives under
the successive procedure are nested for supermajority but not for submajority quotas,
i.e., we have the following modification of Proposition 5.4.23

Proposition 6.1. Let P be an arbitrary preference profile. Then the following statements
are true:

22Note that Example 5.1 continues to hold under the forward looking rule since the dominance relation
is complete and asymmetric so that no ties ever obtain.

23The first claim in Proposition 6.1 can again be proved with the preference profile in Example 5.2 for
which we obtain OS(P�1) = OS(P�3) = OS(P�4) = OS(P�5) = {x� y� z} and OS(P�2) = {y� z} under the for-
ward looking rule.
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(i) For all q�q′, with 1 ≤ q < q′ ≤ 
n
2 �+ 1 the sets OS(P� q) and OS(P� q′) are not neces-

sarily nested, i.e., there exist a set of alternatives X and a preference profile P such
that neither OS(P� q) ⊆ OS(P� q′) holds for all q�q′ with 1 ≤ q < q′ ≤ 
n

2 � + 1 nor
OS(P� q′) ⊆OS(P� q) holds for all q�q′ with 1 ≤ q < q′ ≤ 
n

2 � + 1.

(ii) For all q�q′, with 
n
2 � + 1 ≤ q < q′ ≤ n it holds that OS(P� q)⊆ OS(P� q′).

Finally, under the forward looking rule the set of attainable alternatives for the suc-
cessive procedure coincides with the set of undominated alternatives for quota 1 but not
for quota n. In fact, for all quotas different from 1 the successive procedure may select a
dominated alternative under the forward looking rule. This is true, in particular, for the
unanimity rule. To see this, consider the following example.

Example 6.1. Let X = {x� y� z} and let there be three voters with preferences

z Pi y Pi x for i = 1�2�

y P3 xP3 z�

Then x is Pareto dominated by y, but nevertheless x= oS(x� z� y) for majority voting with
quota q = 3. ♦

7. Conclusion

It is well known that sequential voting procedures are prone to agenda manipulation
except for very special cases, where there is a unique alternative that is the outcome
under every agenda at a given profile of voters’ preferences. Nevertheless, to the best
of our knowledge our paper is the first to provide a comprehensive analysis of whether
and how the voting procedures derived from the amendment and successive procedures
with different majority quotas differ with respect to the scope of manipulation they per-
mit.

Our analysis builds upon a characterization of the attainable sets for the amendment
and successive procedures for arbitrary majority quotas. Using this characterization we
can show that a well known result for tournaments extends to arbitrary majority quo-
tas, namely that the successive procedure is uniformly more vulnerable toward agenda
manipulation than the amendment procedure. This gives support to using the amend-
ment rather than the successive procedure if the possibility of agenda manipulation is a
concern in a committee or, more generally, in any democratic institution. We have also
shown that the set of preference profiles for which neither procedure is manipulable is
maximal under simple majority voting. However, when manipulation is possible, the
connection between the degree of manipulability and the choice of a quota is complex.
In particular, simple majority need no longer be the quota that minimizes the size of
choices available to the agenda setter.
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Appendix

Proof of Lemma 3.1. The proof is by induction over m. For m = 2 the claim immedi-
ately follows from (2). So assume that the claim has been proved for all agendas with
at most m− 1 alternatives and consider an agenda with m alternatives, (x1� � � � � xm). By
assumption, the claim holds for all k = 2� � � � �m, and it remains to consider k= 1.

To prove necessity assume that x̄1 = x1. By (2), x̄1 = x1 implies that x1 = oA(x1�x3�

� � � � xm). Since there are m− 1 alternatives in the agenda (x1�x3� � � � � xm), it follows that
x1P x̄k for all k= 3� � � � �m (observe that the auxiliary variables for agenda (x1�x3� � � � � xm)

defined in (4) are identical to those for agenda (x1� � � � � xm) whenever k ≥ 3). Moreover,
by (2), oA(x1� � � � � xm) = oA(x1�x3� � � � � xm) = x1 if and only if x1 P oA(x2� � � � � xm), where
the latter is equivalent to x1 P x̄2.

For sufficiency assume that x1 P x̄l for all l = 2� � � � �m. Then, by (2), oA(x1� � � � � xm) �=
x1 implies that either x1 �= oA(x1�x3� � � � � xm) or x1 = oA(x1�x3� � � � � xm) and ¬x1 P

oA(x2� � � � � xm), which holds if and only if ¬x1 P x̄2. The latter case immediately leads
to a contradiction since we have assumed that x1 P x̄2. It remains to consider the case
where x1 �= oA(x1�x3� � � � � xm). Because the agenda (x1�x3� � � � � xm) has m − 1 alterna-
tives, we conclude that there must exist a k ≥ 3 with ¬x1 P x̄k, which contradicts our
assumption that x1 P x̄l for all l = 2� � � � �m. This proves the claim. �

Proof of Lemma 3.2. If k= 1, nothing has to be shown. Hence, assume that k≥ 2. The
proof is by induction over m. For m = 2 nothing has to be proved if k = 2. Hence, as-
sume that the claim is true for any agenda with up to m≥ 2 alternatives and consider an
agenda with m+ 1 alternatives. Let xk = oA(x1� � � � � xm+1). By definition of the outcome
of an agenda this implies that

xk ∈ {
oA(x1�x3� � � � � xm+1)�o

A(x2� � � � � xm+1)
}
�

Since both agendas (x1�x3� � � � � xm+1) and (x2� � � � � xm+1) have m alternatives, it follows
in either case that xk = oA(xk� � � � � xm+1). �

Proof of Theorem 3.1.
Necessity. Let xk = oA(x1� � � � � xm) for some k ∈ {1� � � � �m}. From Lemma 3.2 it fol-

lows that x̄k = xk and then Lemma 3.1 implies that xk P x̄l for all l > k. We will now
show that for all l < k, xk = x̄l or xk P x̄l. Suppose by way of contradiction that there
exists l < k with xk �= x̄l and ¬xk P x̄l. We will prove that this implies, that x̄s �= xk for
all s = 1� � � � � l − 1, where the case s = 1 yields a contradiction to the assumption that
xk = x̄1 = oA(x1� � � � � xm).

The proof is by backward induction over s. Let s = l − 1 and suppose by way of con-
tradiction that x̄l−1 = xk. Since

x̄l−1 ∈ {
oA(xl−1�xl+1� � � � � xm)� x̄l

}
�

this implies xk = x̄l−1 = oA(xl−1�xl+1� � � � � xm) and xk P x̄l, which is a contradiction.
Hence, x̄l−1 �= xk. Assume we have shown that x̄s �= xk for all s with t ≤ s ≤ l − 1, where
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2 ≤ t ≤ l − 1. Suppose by way of contradiction that x̄t−1 = xk. Since

x̄t−1 ∈ {
oA(xt−1�xt+1� � � � � xm)� x̄t

}
�

this implies xk = x̄t−1 = oA(xt−1�xt+1� � � � � xm). Since

oA(xt−1�xt+1� � � � � xm) ∈ {
oA(xt−1�xt+2� � � � � xm)� x̄t+1

}
and x̄t+1 �= xk, it follows that xk = oA(xt−1�xt+2� � � � � xm). Continuing in this manner we
conclude that

xk ∈ {
oA(xt−1�xl+1� � � � � xm)� x̄l

}
and hence xk = oA(xt−1�xl+1� � � � � xm), which is impossible given that ¬xk P x̄l.

Summarizing, we have shown that for all l �= k, xk = x̄l or xk P x̄l. Returning to the
proof of necessity we first note that nothing has to be proved if Y(xk) = ∅. Hence, let
Y(xk) �= ∅ and let xl ∈ Y(xk), i.e., xl P xk and ¬xk P xl. Then by our previous argument
x̄l �= xl. Hence, from Lemma 3.1 it follows that there exists l′ > l with ¬xl P x̄l′ . By what
we have shown above xk P x̄l′ . Moreover, either xl′ = x̄l′ and xk P xl′ or there exists l′′ > l′
with x̄l′′ = xl′′ = x̄l′ . Also in this case xkP xl′′ . This proves that for all y ∈ Y(xk) there exists
z(y) ∈X with z(y)= z(y)�¬y P z(y) and xk P z(y), i.e., in particular (i) holds. Let Z(xk) =
{z|z = z(y) for some y ∈ Y(xk)} and let (z1� � � � � zt) be the ordering of the alternatives in
Z(xk) in the agenda of which xk is the outcome. Since we have shown that z̄s = zs for all
s = 1� � � � � t, Lemma 3.1 implies that (ii) holds.

Sufficiency. The proof is by construction. We consider the cases where P is complete
and where P is asymmetric.

Case 1: P is complete. Let x be an alternative such that for all y ∈ Y(x) there ex-
ists an alternative z(y) ∈ X such that conditions (i) and (ii) are satisfied. If Y(x) = ∅,
then by completeness of P , x P y for all alternatives y �= x and hence x is the out-
come of any agenda (x1� � � � � xm) with x1 = x. If Y(x) �= ∅, let (z1� � � � � zt) be the or-
dering of the alternatives in Z(x) with the property as given in (ii). Observe that
zk �= x for all k = 1� � � � � t, since y P x and ¬y P zk for all y ∈ Y(x). Take an arbitrary
order (y1� � � � � yr) of the alternatives in Y(x). If r + t + 1 < m, let (x1� � � � � xm−r−t−1)

be an arbitrary order of the set of alternatives in X \ (Y(x) ∪ Z(x) ∪ {x}) �= ∅. Con-
sider the agenda (x�x1� � � � � xm−r−t−1� y1� � � � � yr� z1� � � � � zt) (if r + t + 1 =m, the agenda is
(x� y1� � � � � yr� z1� � � � � zt)). We will now verify that

x= oA(x�x1� � � � � xm−r−t−1� y1� � � � � yr� z1� � � � � zt)�

By Lemma 3.1 it is sufficient to show that

(a) x P oA(zk� � � � � zt) for all k = 1� � � � � t.

(b) x P oA(yk� � � � � yr� z1� � � � � zt) for all k = 1� � � � � r.

(c) x P oA(xk� � � � � xm−r−t−1� y1� � � � � yr� z1� � � � � zt) for all k= 1� � � � �m− r − t − 1.
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Statement (a) follows from the fact that oA(zk� � � � � zt) = zk by Lemma 3.1 and x P zk for
all k = 1� � � � � t. Statements (b) will follow from the fact that oA(yk� � � � � yr� z1� � � � � zt) ∈
{z1� � � � � zt} for all k= 1� � � � � r and xP zs for all s = 1� � � � � t. We prove the latter by showing
that

oA(y ′
1� � � � � y

′
l � z1� � � � � zt) ∈ {z1� � � � � zt} (5)

for any agenda with y ′
1� � � � � y

′
l ∈ Y(x) and l = 1� � � � � r. The proof is by induction over l.

Let l = 1. Then by Lemma 3.1 and the definition of Z(x), oA(y ′
1� z1� � � � � zt) ∈ {z1� � � � � zt}.

Suppose (5) has been shown for all subsets of Y(x) with at most l ≥ 1 alternatives, where
l ≤ r − 1. Consider now the agenda (y ′

1� � � � � y
′
l+1� z1� � � � � zt) with l + 1 alternatives from

Y(x). By definition of the outcome of an agenda,

oA(y ′
1� � � � � y

′
l+1� z1� � � � � zt)

∈ {
oA(y ′

1� y
′
3� � � � � y

′
l+1� z1� � � � � zt)�o

A(y ′
2� � � � � y

′
l+1� z1� � � � � zt)

}
�

Since there are l alternatives from Y(x) in the agendas (y ′
1� y

′
3� � � � � y

′
l+1� z1� � � � � zt) and

(y ′
2� � � � � y

′
l+1� z1� � � � � zt), it follows that the outcome of these agendas is an alternative in

{z1� � � � � zt}, which implies that oA(y ′
1� � � � � y

′
l+1� z1� � � � � zt) ∈ {z1� � � � � zt}. This proves (b).

To prove (c), suppose by way of contradiction that

¬x P oA(xk� � � � � xm−r−t−1� y1� � � � � yr� z1� � � � � zt)

for some k ∈ {1� � � � �m − r − t − 1}. Since x P xl for all l = 1� � � � �m − r − t − 1 and x P zs
for all s = 1� � � � � t, this implies that

oA(xk� � � � � xm−r−t−1� y1� � � � � yr� z1� � � � � zt) ∈ {y1� � � � � yr}�
Using Lemma 3.2 we conclude that there exists k ∈ {1� � � � � r} such that yk = oA(yk� � � � � yr�

z1� � � � � zt). However, this contradicts (5) and hence (c) holds as claimed.
Case 2: P is asymmetric. Let x be an alternative such that for all y ∈ Y(x) there exists

an alternative z(y) ∈ X such that conditions (i) and (ii) are satisfied. If Y(x) = ∅, then
from Lemmas 3.1 and 3.2 it follows that x is the outcome of any agenda (x1� � � � � xm) with
xm = x. If Y(x) �= ∅, let (y1� � � � � yr) be an arbitrary ordering of the alternatives in Y(x).
Moreover, let (z1� � � � � zt) be the ordering of the alternatives in Z(x) with the property
as given in (ii). As in Case 1 observe that zk �= x for all k = 1� � � � � t. If r + t + 1 < m, let
(x1� � � � � xm−r−t−1) be an arbitrary ordering of the set of alternatives in X \ (Y(x)∪Z(x)∪
{x}). Consider the agenda (x1� � � � � xm−r−t−1�x� y1� � � � � yr� z1� � � � � zt) (if r + t + 1 = m, the
agenda is (x� y1� � � � � yr� z1� � � � � zt)). We will now verify that

x= oA(x1� � � � � xm−r−t−1�x� y1� � � � � yr� z1� � � � � zt)�

As in the case where P is complete, we can show that oA(zk� � � � � zt) = zk for all k =
1� � � � � t, and oA(yk� � � � � yr� z1� � � � � zt) ∈ {z1� � � � � zt} for all k = 1� � � � � r. Since x P zs for
all s = 1� � � � � t, Lemma 3.1 implies that oA(x� y1� � � � � yr� z1� � � � � zt) = x. To complete the
proof we show that

oA(x′
1� � � � � x

′
l� x� y1� � � � � yr� z1� � � � � zt)= x (6)
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for any agenda with x′
1� � � � � x

′
l ∈ X \ (Y(x) ∪ Z(x) ∪ {x}) and l = 1� � � � �m − r − t − 1.

The proof is by induction over l. Let l = 1. Suppose by way of contradiction that
oA(x′

1�x� y1� � � � � yr� z1� � � � � zt) �= x. Since

oA(x′
1�x� y1� � � � � yr� z1� � � � � zt)

∈ {
oA(x′

1� y1� � � � � yr� z1� � � � � zt)�o
A(x� y1� � � � � yr� z1� � � � � zt)

}
and oA(x� y1� � � � � yr� z1� � � � � zt) = x, it follows that oA(x′

1�x� y1� � � � � yr� z1� � � � � zt) =
oA(x′

1� y1� � � � � yr� z1� � � � � zt) and oA(x′
1� y1� � � � � yr� z1� � � � � zt) P x. This implies that

oA(x′
1� y1� � � � � yr� z1� � � � � zt) ∈ {y1� � � � � yr} since ¬x′

1 P x and that ¬zs P x for all s = 1� � � � � t,
since P is asymmetric and x P zs for all s = 1� � � � � t. However, oA(x′

1� y1� � � � � yr� z1� � � � �

zt) = yk for some k ∈ {1� � � � � r} implies that yk = oA(yk� � � � � yr� z1� � � � � zt) by Lemma 3.2,
which is a contradiction to what we have shown above. Hence, (6) holds for l = 1.

Suppose (6) has been shown for all for any agenda with x′
1� � � � � x

′
l ∈X \(Y(x)∪Z(x)∪

{x}) with at most l ≥ 1 alternatives, where l ≤ m − r − t − 1. Consider now the agenda
(x′

1� � � � � x
′
l+1�x� y1� � � � � yr� z1� � � � � zt) with x′

1� � � � � x
′
l+1 ∈X \ (Y(x)∪Z(x)∪ {x}). Then

oA(x′
1� � � � � x

′
l+1�x� y1� � � � � yr� z1� � � � � zt)

∈ {
oA(x′

1�x
′
3� � � � � x

′
l+1�x� y1� � � � � yr� z1� � � � � zt)�

oA(x′
2� � � � � x

′
l+1�x� y1� � � � � yr� z1� � � � � zt)

}
�

Since there are l alternatives from X \(Y(x)∪Z(x)∪{x}) in the agendas (x′
1�x

′
3� � � � � x

′
l+1�

x� y1� � � � � yr� z1� � � � � zt) and (x′
2� � � � � x

′
l+1�x� y1� � � � � yr� z1� � � � � zt), it follows that the out-

come of both agendas is x. This proves (6). �

Proof of Corollary 3.3. Let P be asymmetric and let x be an alternative such that
there exists a maximal trajectory (X ′� d) with d(x)= t, where t = #X ′. Let zl = d−1(l) for
l = 1� � � � � t − 1. Since (X ′� d) is a trajectory, it follows that

x P zl for all l = 1� � � � � t − 1 (7)

and

zl P zk for all k = 1� � � � � t − 2 and for all l with k< l ≤ t − 1� (8)

Consider the set

Y(x) = {y|y P x}�24

If Y(x) =∅, then by Theorem 3.1 x = oA(x1� � � � � xm) for some agenda. If Y(x) �=∅, then
for all y ∈ Y(x), ¬y P zl for some l ∈ {1� � � � � t − 1} since (X ′� d) is a maximal trajectory.
Since x P zl by (7), z(y) := zl fulfills condition (i) in Theorem 3.1. Moreover, if we let
Z(x) = {z1� � � � � zt−1}, then by (8) condition (ii) in Theorem 3.1 is satisfied for the ordering
(zt−1� � � � � z1). Hence, x= oA(x1� � � � � xm). This proves the first part of the claim.

24Observe that y P x implies ¬x P y since P is asymmetric.
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Let x = oA(x1� � � � � xm) for some agenda (x1� � � � � xm). If Y(x) = {y|y P x} = ∅, then
({x}� d) with d(x) = 1 is a maximal trajectory. If Y(x) �= ∅, then Theorem 3.1 implies the
existence of alternatives z1� � � � � zt , such that the conditions (i) and (ii) in Theorem 3.1
are satisfied. Let (z1� � � � � zt) be the ordering of the alternatives such that (ii) holds. Then
({z1� � � � � zt� x}� d) with d(zl)= t − l+ 1 for l = 1� � � � � t, and d(x) = t + 1 is a trajectory. Let
y /∈ {z1� � � � � zt� x}. Then either ¬y P x or y P x. In the latter case, y ∈ Y(x) and hence there
exists an l�1 ≤ l ≤ t, with ¬y P zl. Hence, ({z1� � � � � zt� x}� d) is a maximal trajectory. This
proves the claim. �

Proof of Lemma 4.1. Let (x1� � � � � xm) be an agenda with x̄k �= xs for some s ≥ k. The
proof is by backward induction over l < k. Let l = k − 1. Then by definition x̄k−1 ∈
{xk−1� x̄k} and since x̄k �= xs by assumption, it follows that x̄k−1 �= xs . Suppose the claim
has been proven for all l with t ≤ l < k, where 2 ≤ t ≤ k − 1. Since by definition x̄l−1 ∈
{xl−1� x̄l} and since x̄l �= xs by assumption, it follows that x̄l−1 �= xs . �

Proof of Lemma 4.2. Let xk = oS(x1� � � � � xm) for some 1 ≤ k≤m, and suppose by way
of contradiction that x̄l �= xk for some l ≤ k. By Lemma 4.1 this implies that x̄s �= xk for
all s < l, contradicting the fact that xk = x̄1.

Let 1 ≤ k≤m and let x̄l = xk for all l ≤ k. In particular, we have x̄1 = oS(x1� � � � � xm) =
xk, which proves the claim. �

Proof of Theorem 4.1. (i) Let P be complete.
Necessity. Let xk = oS(x1� � � � � xm). Nothing has to be proved if Y(xk) = ∅. Hence,

let Y(xk) �= ∅ and let Y(xk) = {xl(1)� � � � � xl(r)}, where l(1) < l(2) < · · · < l(r). From
Lemma 4.2 it follows that k < l(1). We now construct a sequence (z1� � � � � zt) with the
properties

• zl+1 P zl for all l = 1� � � � � t − 1

• xk P zt

• x �= zs for all s = 1� � � � � t

• for all j = 1� � � � � r, there exists an s�1 ≤ s ≤ t, with zs P xl(j).

Renumbering the alternatives such that z′
s = zt−s+1 for s = 1� � � � � t, and defining Z(xk) =

{z′
1� � � � � z

′
t}, this will prove necessity.

Define z1 = oS(xl(r)� xl(r)+1� � � � � xm) and

s(1) = min
{
h|oS(xh� � � � � xm) = z1

}
�

Since xk = oS(x1� � � � � xm), it follows that s(1) > k.
Suppose s(1) ≤ l(1). Then ¬xl(j) P z1, which implies that z1 P xl(j) for all j = 1� � � � � r−

1, since P is complete. If xk P z1 it follows that z1 �= xl(r) and hence ¬xl(r) P z1, which
implies that z1 P xl(r) since P is complete. In this case we are done because the sequence
(z1) has all the properties specified above. If ¬xk P z1, define z2 = xs(1)−1. Then, by
definition of s(1), z2 P z1. Moreover, either z1 �= xl(r) and hence ¬xl(r) P z1, which implies
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that z1 P xl(r) by completeness of P , or z1 = xl(r) and z2 P xl(r). If xk P z2 we are done
because the sequence (z1� z2) has all the properties specified above. If ¬xk P z2 there
exists an s(2) with k < s(2) < s(1) such that xs(2) P z2. Let z3 = xs(2). If xk P z3 we are
done because the sequence (z1� z2� z3) has all the properties specified above. Otherwise,
we continue in the same manner. Since xk = oS(xk� � � � � xm), after finitely many steps we
arrive at an alternative zt with xk P zt . The sequence (z1� � � � � zt) has all the properties
specified above.

Suppose now that l(j) < s(1) ≤ l(j + 1) for some j with 1 ≤ j ≤ r − 1. Then z1 P xl(i)
for all i = j + 1� � � � � r − 1. Define z2 = xs(1)−1. Then z2 P z1 and either z1 = xl(r), which
implies that z2 P xl(r), or z1 �= xl(r), which implies that ¬xl(r) P z1 and hence z1 P xl(r)
since P is complete. Define

s(2) = min
{
h|oS(xh� � � � � xm)= z2

}
�

Observe that s(2) < s(1). If s(2) ≤ l(1) we can use the same argument as in the case
where s(1) ≤ l(1) to construct a sequence (z1� � � � � zt) with the desired properties. If l(i) <
s(2) ≤ l(i + 1) for some i with 1 ≤ i ≤ r − 1, define z3 = xs(2)−1. Then z3 P z2, and if i < j,
then ¬xl(h) P z2, which implies that z2 P xl(h) for all h = i + 1� � � � � j, since P is complete.
Define

s(3) = min
{
h|oS(xh� � � � � xm)= z3

}
�

Again, either s(3) ≤ l(1) and we can follow the proof for the case where s(1) ≤ l(1) or
l(h) < s(3) ≤ l(h+1) for some h with 1 ≤ h ≤ r−1. Continuing in this manner we see that
after finitely many steps we arrive at an index s(K) with s(K) ≤ l(1) and we can follow
the argument in the proof for the case where s(1) ≤ l(1). This proves the existence of a
sequence (z1� � � � � zt) with the desired properties.

Sufficiency. Let x ∈ X . If Y(x) = ∅, then by completeness of P , x P y for all y �= x.
Hence, x= oS(x1� � � � � xm) for any agenda (x1� � � � � xm) with x1 = x.

Let Y(x) �= ∅. Then there exists a set of alternatives Z(x) with x /∈ Z(x) and an or-
dering (z1� � � � � zt) of the alternatives in Z(x) such that

• for all y ∈ Y(x), there exists an s�1 ≤ s ≤ t, with zs P y

• zl P zl+1 for all l = 1� � � � � t − 1

• x P z1.

We now define an agenda (w1� � � � �wr) with Y(x) ∪ Z(x) = {w1� � � � �wr} and oS(w1�

� � � �wr) = z1. Let Y ′ = Y(x) \Z(x). If Y ′ =∅, then let r = t and ws = zs for all s = 1� � � � � t.
In this case it immediately follows that oS(w1� � � � �wr) = z1. If Y ′ �= ∅, let (w1� � � � �wr) be
the agenda that is obtained if all y ∈ Y ′ with zt P y (if any) are placed after zt , all y ∈ Y ′
with ¬zt P y and zt−1 P y (if any) are placed between zt−1 and zt , and so on, and finally
all y ∈ Y ′ with ¬zs P y for all s = 2� � � � � t, and z1 P y (if any) are placed between z1 and z2.
Then, by definition Y(x)∪Z(x) = {w1� � � � �wr} and oS(w1� � � � �wr) = z1.

If Y(x)∪Z(x)∪ {x} = X , then

x = oS(x�w1� � � � �wr)
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since x P z1. If X \ (Y(x) ∪ Z(x) ∪ {x}) = {x1� � � � � xm−r−1}, where r ≤ m − 2, then x P xs
for all s = 1� � � � �m− r − 1, since P is complete. Since

oS(x1� � � � � xm−r−1�w1� � � � �wr) ∈ {x1� � � � � xm−r−1� z1}�
it follows that x P oS(x1� � � � � xm−r−1�w1� � � � �wr), which implies that

x= oS(x�x1� � � � � xm−r−1�w1� � � � �wr)�

This proves sufficiency.
(ii) Let P be asymmetric. The proof is very similar to the proof for a complete rela-

tion P .
Necessity. Let xk = oS(x1� � � � � xm). Nothing has to be proved if Y(xk) = ∅. Hence,

let Y(xk) �= ∅ and let Y(xk) = {xl(1)� � � � � xl(r)}, where l(1) < l(2) < · · · < l(r). From
Lemma 4.2 it follows that k < l(1). We now construct a sequence (z1� � � � � zt) with the
properties

• zl+1 P zl for all l = 1� � � � � t − 1

• xk P zt

• x �= zs for all s = 1� � � � � t

• for all j = 1� � � � � r, there exists an s�1 ≤ s ≤ t, with ¬xl(j) P zs.

Again, renumbering the alternatives such that z′
s = zt−s+1 for s = 1� � � � � t and defining

Z(xk) = {z′
1� � � � � z

′
t}, this will prove necessity.

Define z1 = oS(xl(r)� xl(r)+1� � � � � xm) and

s(1) = min
{
h|oS(xh� � � � � xm) = z1

}
�

Since xk = oS(x1� � � � � xm) it follows that s(1) > k.
Suppose s(1) ≤ l(1). Then ¬xl(j) P z1 for all j = 1� � � � � r − 1. If xk P z1, it follows

that z1 �= xl(r) and hence ¬xl(r) P z1. In this case we are done because the sequence
(z1) has all the properties specified above. If ¬xk P z1, define z2 = xs(1)−1. Then z2 P z1
and either z1 �= xl(r), which implies that ¬xl(r) P z1, or z1 = xl(r) and hence z2 P xl(r),
which implies that ¬xl(r) P z2 since P is asymmetric. If xk P z2, we are done because the
sequence (z1� z2) has all the properties specified above. If ¬xk P z2, there exists an s(2)
with k < s(2) < s(1) such that xs(2) P z2. Let z3 = xs(2). If xk P z3, we are done because
the sequence (z1� z2� z3) has all the properties specified above; otherwise, we continue
in the same manner. Since xk = oS(xk� � � � � xm), after finitely many steps we arrive at
an alternative zt with xk P zt . The sequence (z1� � � � � zt) has all the properties specified
above.

Suppose now that l(j) < s(1) ≤ l(j + 1) for some j with 1 ≤ j ≤ r − 1. Then ¬xl(i) P z1
for all i = j + 1� � � � � r − 1. Define z2 = xs(1)−1. Then z2 P z1 and either z1 = xl(r), which
implies that z2 P xl(r) and hence ¬xl(r) P z2 since P is asymmetric, or z1 �= xl(r), which
implies that ¬xl(r) P z1. Define

s(2) = min
{
h|oS(xh� � � � � xm) = z2

}
�
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Observe that s(2) < s(1). If s(2) ≤ l(1), we can use the same argument as in the case
where s(1) ≤ l(1) to construct a sequence (z1� � � � � zt) with the desired properties. If l(i) <
s(2) ≤ l(i + 1) for some i with 1 ≤ i ≤ r − 1, define z3 = xs(2)−1. Then z3 P z2 and if i < j,
then ¬xl(h) P z2 for all h= i+ 1� � � � � j. Define

s(3) = min
{
h|oS(xh� � � � � xm)= z3

}
�

Again, either s(3) ≤ l(1) and we can follow the proof for the case where s(1) ≤ l(1), or
l(h) < s(3) ≤ l(h+1) for some h with 1 ≤ h≤ r−1. Continuing in this manner we see that
after finitely many steps we arrive at an index s(K) with s(K) ≤ l(1) and we can follow
the argument in the proof for the case where s(1) ≤ l(1). This proves the existence of a
sequence (z1� � � � � zt) with the desired properties.

Sufficiency. Let x ∈ X . If Y(x) = ∅, then ¬y P x for all y �= x. Hence, x =
oS(x1� � � � � xm) for any agenda (x1� � � � � xm) with xm = x.

Let Y(x) �= ∅. Then there exists a set of alternatives Z(x) with x /∈ Z(x) and an or-
dering (z1� � � � � zt) of the alternatives in Z(x) such that

• for all y ∈ Y(x), there exists an s�1 ≤ s ≤ t, with ¬y P zs

• zl P zl+1 for all l = 1� � � � � t − 1

• x P z1.

We now define an agenda (w1� � � � �wr) with Y(x) ∪ Z(x) = {w1� � � � �wr} and oS(w1�

� � � �wr) = z1. Let Y ′ = Y(x) \Z(x). If Y ′ =∅, then let r = t and ws = zs for all s = 1� � � � � t.
In this case it immediately follows that oS(w1� � � � �wr) = z1. If Y ′ �= ∅, let (w1� � � � �wr)

be the agenda that is obtained if all y ∈ Y ′ with ¬y P zt (if any) are placed between zt−1

and zt , all y ∈ Y ′ with y P zt and ¬y P zt−1 (if any) are placed between zt−2 and zt−1, and
so on, and finally all y ∈ Y ′ with y P zs for all s = 2� � � � � t and ¬y P z1 (if any) are placed
before z1. Then, by definition Y(x)∪Z(x) = {w1� � � � �wr} and oS(w1� � � � �wr)= z1.

If Y(x)∪Z(x)∪ {x} = X , then

x = oS(x�w1� � � � �wr)

since x P z1. If X \ (Y(x) ∪Z(x)∪ {x}) = {x1� � � � � xm−r−1}, where r ≤ m− 2, then ¬xs P x

for all s = 1� � � � �m− r − 1, which implies that

x= oS(x1� � � � � xm−r−1�x�w1� � � � �wr)�

This proves sufficiency. �

Proof of Corollary 4.2. Let P be complete. Assume first that x = oS(x1� � � � � xm) for
some agenda (x1� � � � � xm) and let y ∈ X , y �= x. If x P y, then define z0 = x and z1 = y.
If ¬x P y, then y P x by completeness of P . In this case, by Theorem 4.1 there exists a
sequence of alternatives (z1� � � � � zt) with the properties

• there exists an s�1 ≤ s ≤ t, such that zs P y



Theoretical Economics 12 (2017) Sequential voting and agenda manipulation 241

• zl P zl+1 for all l = 1� � � � � t − 1

• x P z1.

This proves that x is in the top cycle of P .
For the reverse, let x be in the top cycle of P and let Y(x) = {y|y P x and ¬x P y}.

If Y(x) = ∅, then x = oS(x1� � � � � xm) for some agenda (x1� � � � � xm) by Theorem 4.1 and
we are done. Suppose Y(x) = {y1� � � � � yr} for some r ≥ 1. Since x is in the top cycle
of P , for all l = 1� � � � � r, there exists a sequence of distinct alternatives (wl

1� � � � �w
l
s(l))

with wl
1 = yl�w

l
k+1 P wl

k for all k= 1� � � � � s(l), and x P wl
s(l).

For l = 1� � � � � r, we now inductively define sequences of distinct alternatives zl as
follows: For l = 1, define s̄(1) = s(1) and

z1 = (w1
s̄(1)� � � � �w

1
1)�

For l = 2, let z2 = z1, if y2 ∈ {w1
1� � � � �w

1
s̄(1)}. Otherwise, if y2 /∈ {w1

1� � � � �w
1
s̄(1)} let s̄(2) ∈

{1� � � � � s(2)− 1} be the minimal s with the property that

w2
s+1 ∈ {w1

1� � � � �w
1
s̄(1)}�

If there is no such s define s̄(2) = s(2). Then define

z2 = (w1
s̄(1)� � � � �w

1
1�w

2
s̄(2)� � � � �w

2
1)�

For ease of presentation we assume that y2 /∈ {w1
1� � � � �w

1
s̄(1)} and then continue to

define z3. If y3 ∈ {w1
1� � � � �w

1
s̄(1)�w

2
1� � � � �w

2
s̄(2)}, define z3 = z2. Otherwise, if y2 /∈

{w1
1� � � � �w

1
s̄(1)�w

2
1� � � � �w

2
s̄(2)}, let s̄(3) ∈ {1� � � � � s(3)−1} be the minimal s with the property

that

w3
s+1 ∈ {w1

1� � � � �w
1
s̄(1)�w

2
1� � � � �w

2
s̄(2)}�

If there is no such s, define s̄(3) = s(3). Then define

z3 = (w1
s̄(1)� � � � �w

1
1�w

2
s̄(2)� � � � �w

2
1�w

3
s̄(3)� � � � �w

3
1)�

Continuing in this manner and assuming that yk /∈ ⋃k−1
l=1 {wl

1� � � � �w
l
s̄(l)} for all k =

2� � � � � r,25 we arrive at the sequence

zr = (w1
s̄(1)� � � � �w

1
1�w

2
s̄(2)� � � � �w

2
1� � � � �w

r
s̄(r)� � � � �w

r
1)�

Observe that by construction zr has the property that yk ∈ ⋃r
l=1{wl

1� � � � �w
l
s̄(l)} for all k =

1� � � � � r and that

oS(w1
s̄(1)� � � � �w

1
1�w

2
s̄(2)� � � � �w

2
1� � � � �w

r
s̄(r)� � � � �w

r
1) ∈ {w1

s(1)�w
2
s(2)� � � � �w

r
s(r)}�

25The proof for the case where yk ∈ ⋃k−1
l=1 {wl

1� � � � �w
l
s̄(l)} for some k and hence, zk = zk−1 is similar and

hence is omitted.
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Since x P wl
s(l) for all l = 1� � � � � r, it follows that

x= oS(x�w1
s̄(1)� � � � �w

1
1�w

2
s̄(2)� � � � �w

2
1� � � � �w

r
s̄(r)� � � � �w

r
1)�

If X \ {x} = ⋃r
l=1{wl

1� � � � �w
l
s̄(l)}, we are done. Otherwise, let

X
∖(

{x} ∪
r⋃

l=1

{wl
1� � � � �w

l
s̄(l)}

)
= {x1� � � � � xt}�

Since P is complete and Y(x) ⊂ ⋃r
l=1{wl

1� � � � �w
l
s̄(l)}, it follows that x P xs for all s =

1� � � � � t. Hence,

x= oS(x�x1� � � � � xt�w
1
s̄(1)� � � � �w

1
1�w

2
s̄(2)� � � � �w

2
1� � � � �w

r
s̄(r)� � � � �w

r
1)�

This proves the claim that any alternative x in the top cycle is an outcome for some
agenda under the successive procedure. �

Proof of Theorem 5.1. The theorem is proved by showing that (i) and (ii) are equiva-
lent to (iii).

(i) ⇐⇒ (iii). Assume (iii), i.e., x P y and ¬y P x for all y �= x. Then, by Theorem 4.1,
OS(P) = {x}, i.e., (i) holds. Assume (i), i.e., OS(P) = {x}. Then, x = oS(x1� � � � � xm) for
any agenda with xm = x. By definition of the successive procedure, this implies that
x = oS(xk� � � � � xm) for all k= 1� � � � �m− 1 and hence ¬xk P x for all k = 1� � � � �m− 1. This
already establishes the proof when P is complete. As for the asymmetric case, suppose
by way of contradiction that ¬x P y for some y �= x. Then oS(x� y) = y, which implies
that x �= oS(x1� � � � � xm) for any agenda with xm−1 = x and xm = y by Lemma 4.1. This
contradicts our assumption that OS(P) = {x}. Hence, also for P asymmetric, OS(P) = {x}
implies that (iii) holds.

(ii) ⇐⇒ (iii). Assume (iii), i.e., x P y and ¬y P x for all y �= x. Then, by Theorem 3.1,
OA(P) = {x}, i.e., (ii) holds. Assume (ii), i.e., OA(P) = {x}. First consider the case where
P is asymmetric. Then x = oA(x1� � � � � xm) for all agendas (x1� � � � � xm). Let y ∈ X , y �=
x. Then x = oA(x�x1� � � � � xm−2� y), where (x1� � � � � xm−2) is an arbitrary ordering of the
alternatives different from x and y. Lemma 3.1 then implies that x P y. Hence, OA(P) =
{x} implies that x P y for all y �= x. Since P is asymmetric, this implies (iii).

Next consider the case where P is complete. Suppose by way of contradiction that
there exists y ∈ X , y �= x, with y P x. We then claim that x �= oA(x1� � � � � xm) for any
agenda with x1 = y and xm = x. The claim is proved by induction over m. If m = 2,
the claim is immediate. Suppose now that the claim is true for m ≥ 2 and consider the
agenda (x1� � � � � xm+1) with x1 = y and xm+1 = x. Suppose by way of contradiction that
x = oA(x1� � � � � xm+1). By definition of the amendment procedure,

oA(x1� � � � � xm+1) ∈ {
oA(x1�x3� � � � � xm+1)�o

A(x2� � � � � xm+1)
}
�

Since the agenda (x1�x3� � � � � xm+1) has m alternatives, it follows that x �= oA(x1�x3�

� � � � xm+1). Then x= oA(x1� � � � � xm+1) implies that x= oA(x2� � � � � xm+1) and

¬oA(x1�x3� � � � � xm+1) P x� (9)
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Since x1 = y and y P x it follows that oA(x1�x3� � � � � xm+1) = xk for some k with
3 ≤ k≤m. Lemma 3.2 then implies that xk = oA(xk� � � � � xm+1) = x̄k. But then xk P x̄m+1
by Lemma 3.1. Since x̄m+1 = xm+1 = x, this is a contradiction to (9). This proves our
claim.

Hence, OA(P) = {x} implies that ¬y P x for all y �= x. Finally, by completeness of P ,
we conclude that x P y for all y �= x, i.e., (iii) holds. �

Proof of Proposition 5.2. Consider first the case where 1 ≤ q < q′ ≤ 
n
2 � + 1 and let

P ∈�(q). Then, by definition of �(q), there exists an alternative x such that for all y �= x,

#{i|xPi y} ≥ q and #{i|y Pi x} < q� (10)

Observe that #{i|yPi x} = n−#{i|xPi y}< q implies that #{i|xPi y} ≥ q since q < 
n
2 �+1.

Hence, (10) is satisfied if and only if

#{i|xPi y}> n− q�

This immediately implies that �(q) ⊆ �(q′) if q < q′ < 
n
2 � + 1. It remains to consider

the case where q = 
n
2 � and q′ = 
n

2 � + 1. If n is odd, then by what we have shown above,
P ∈�(
n

2 �) if and only if there exists an alternative x such that for all y �= x,

#{i|xPi y}> n−
⌊
n

2

⌋
= n+ 1

2
=

⌊
n

2

⌋
+ 1�

This implies

#{i|y Pi x} < n− 1
2

=
⌊
n

2

⌋
<

⌊
n

2

⌋
+ 1�

Hence, P ∈ �(
n
2 � + 1), i.e., �(
n

2 �) ⊆ �(
n
2 � + 1). If n is even, then by the above, P ∈

�(
n
2 �) if and only if there exists an alternative x such that for all y �= x,

#{i|xPi y} > n−
⌊
n

2

⌋
= n

2
�

This implies

#{i|xPi y} ≥ n

2
+ 1

and

#{i|y Pi x} < n

2
<

n

2
+ 1�

Hence, also for n even we conclude that P ∈ �(
n
2 � + 1), which implies that �(
n

2 �) ⊆
�(
n

2 � + 1).
Next consider the case where 
n

2 � + 1 ≤ q′ < q ≤ n and let P ∈ �(q). Since the ma-
jority relation is asymmetric for quotas greater than or equal to 
n

2 � + 1, by definition of
�(q) there exists a unique alternative x such that for all y �= x,

#{i|xPi y} ≥ q�

Since q > q′ this immediately implies that �(q)⊆ �(q′). �
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Proof of Proposition 5.3. Suppose by way of contradiction that there exists a q ∈
{1� � � � � n− 1} and an alternative x ∈X such that x ∈OA(P� q) and x /∈ OA(P� n). By The-
orem 3.1 the latter implies that there exists an alternative y with y Pi x for all i = 1� � � � � n.
Since x ∈ OA(P� q), by Theorem 3.1 there exists z(y) with

#
{
i|y Pi z(y)

}
< q and (11)

#
{
i|xPi z(y)

} ≥ q� (12)

However, y Pi x for all i = 1� � � � � n and (12) imply that #{i|y Pi z(y)} ≥ q, contradicting
(11). This proves the claim that OA(P� q) ⊆OA(P� n). �

Proof of Proposition 5.4. (i) For x ∈X and q ∈ {1� � � � � n}, define

Yq(x) := {
y|#{i|y Pi x} ≥ q and #{i|xPi y}< q

}
�

Let q�q′ be given with 1 ≤ q < q′ ≤ 
n
2 � + 1. Then the dominance relation P derived

from majority voting with quota q is complete. Let x ∈ OS(P� q′). If Yq(x) = ∅, then
by Theorem 4.1, x ∈ OS(P� q) and we are done. It remains to consider the case where
Yq(x) �= ∅. We will first prove that

Yq(x) ⊆ Yq′(x)� (13)

Let y ∈ Yq(x). Then #{i|xPi y} < q < q′, which implies that

#{i|y Pi x}> n− q� (14)

Since q < 
n
2 � + 1, (14) implies that

#{i|y Pi x} ≥
⌊
n

2

⌋
+ 1 ≥ q′�

Hence, from (14) it follows that #{i|y Pi x} ≥ q′, which implies that y ∈ Yq′(x). This
proves (13).

Consider first the case where either n is even and q′ ≤ n
2 or n is odd and q′ ≤


n
2 �+1. In both cases the dominance relation P derived from majority voting with quota

q′ is complete. Since x ∈ OS(P� q′), Theorem 4.1 implies that there exists a sequence of
distinct alternatives (z1� � � � � zt) with the properties

• for all y ∈ Yq′(x), there exists an s�1 ≤ s ≤ t, with #{i|zs Pi y} ≥ q′

• #{i|zl Pi zl+1} ≥ q′ for all l = 1� � � � � t − 1

• #{i|xPi z1} ≥ q′.

Since q′ > q, (13) and Theorem 4.1 imply that x ∈ OS(P� q). It remains to consider the
case where n is even and q′ = n

2 + 1. In this case, the dominance relation derived from
majority voting with quota q′ is asymmetric (but not complete) and Theorem 4.1 implies
that there exists a sequence of distinct alternatives (z1� � � � � zt) with the properties
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• for all y ∈ Yq′(x), there exists an s�1 ≤ s ≤ t, with #{i|y Pi zs}< q′

• #{i|zl Pi zl+1} ≥ q′ for all l = 1� � � � � t − 1

• #{i|xPi z1} ≥ q′.

Since q′ = n
2 +1, the first property implies that for all y ∈ Yq′(x) there exists an s�1 ≤ s ≤ t,

with #{i|zsPi y} ≥ n
2 ≥ q. But then as above we can use (13) and Theorem 4.1 to conclude

that x ∈OS(P� q) for q < q′ since the dominance relation P derived from majority voting
with quota q is complete. This proves the claim. �

Proof of Proposition 5.5.

(i) Let q ∈ {1� � � � � n} and let x ∈ OA(P� q). Suppose by way of contradiction that x is
Pareto dominated by some alternative y, i.e., y Pi x for all voters i. Then y ∈ Y(x)

and by Theorem 3.1 there exists an alternative z(y) such that

#
{
i|y Pi z(y)

}
< q and (15)

#
{
i|xPi z(y)

} ≥ q� (16)

However, since y Pi x for all voters i, (16) implies that #{i|y Pi z(y)} ≥ q, contra-
dicting (15). Hence, x is not Pareto dominated by any alternative y.

(ii) Let x ∈ X and let q ∈ {1� n}. Then Y(x) = {y|y Pi x for all i}, i.e., Y(x) is the set
of all alternatives that Pareto dominate x. From (i) we know that OA(P� q) ⊆
{x| there exists no y with y Pi x for all i}. Hence, it remains to show that any alter-
native x, which is not Pareto dominated, is an element of OA(P� q). If x is not
Pareto dominated by any other alternative, then Y(x) = ∅ and Theorem 3.1 im-
plies that x ∈OA(P� q).

�

Proof of Proposition 5.6. (i) If q = n, then Y(x) = {y|y Pi x for all i}. Hence, if x is
an alternative that is not Pareto dominated by any other alternative, then Y(x) =∅, and
Theorem 4.1 implies that x ∈ OS(P� n). Now let x ∈ OS(P� n) and suppose by way of
contradiction that x is Pareto dominated by y. Then y ∈ Y(x) and by Theorem 4.1 there
exists a set of alternatives Z(x) and an ordering (z1� � � � � zt) of the alternatives in Z(x)

such that the following conditions are satisfied:

• There exists an s ∈ {1� � � � � t} and a voter j with zs Pj y.

• We have zl Pi zl+1 for all voters i and for all l = 1� � � � � t − 1.

• We have xPi z1 for all voters i.

However, this implies that

xPj z1 Pj z2 · · ·Pj zs Pj y�

contradicting the assumption that y Pareto dominates x. Hence, no alternative in
OS(P� n) is Pareto dominated, which proves the claim. �
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