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The allocation and exchange of discrete resources, such as transplant organs, pub-
lic housing, dormitory rooms, and many other resources for which agents have
single-unit demand, is often conducted via direct mechanisms without monetary
transfers. Incentive compatibility and efficiency are primary concerns when de-
signing such mechanisms. We construct the full class of group strategy-proof and
Pareto-efficient mechanisms and show that each of them can be implemented by
endowing agents with control rights over resources. This new class, which we call
trading cycles, contains new mechanisms as well as known mechanisms such as
top trading cycles, serial dictatorships, and hierarchical exchange. We illustrate
how one can use our construction to show what can and what cannot be achieved
in a variety of allocation and exchange problems, and we provide an example in
which the new trading-cycles mechanisms are more Lorenz equitable than all pre-
viously known mechanisms.
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1. Introduction

The central concerns in the design of allocation mechanisms are the incentives of par-
ticipants and the efficiency of outcomes. In this paper, we construct and characterize
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the entire class of group strategy-proof and Pareto-efficient direct mechanisms in en-
vironments without transfers in which agents have single-unit demands.1 These envi-
ronments include the allocation and exchange of transplant organs, such as kidneys (see
Roth et al. 2004), the allocation of public housing, and the allocation of dormitory rooms
(see Abdulkadiroğlu and Sönmez 1999).

We study a finite group of agents, each of whom would like to consume a single
indivisible object, which we sometimes refer to as a house, using the terminology coined
by Shapley and Scarf (1974). We allow for objects brought to the allocation by individual
agents as well as by a social planner. Agents have strict preferences over objects and are
indifferent over how objects are allocated to other agents. We focus on mechanisms that
match objects to agents.

A mechanism is group strategy-proof if no group of agents can jointly manipulate
their reports so that all of them weakly benefit from this manipulation, while at least one
agent in the group strictly benefits. Group strategy-proofness matters because coordi-
nated reporting to a mechanism has been documented in relevant environments such
as organ allocation and exchange.2 Furthermore, coordinated reporting is effectively the
only way a group of agents can manipulate the allocation in many of the relevant envi-
ronments; for instance, without approval from the school, two students cannot trade
their dormitory rooms ex post. A mechanism is Pareto efficient if its allocations are; an
allocation is Pareto efficient if no other allocation makes every agent at least as well off
and at least one agent strictly better off.

Our main results show (i) that in a group strategy-proof and Pareto-efficient mech-
anism, each object is either owned or brokered (in the sense made precise below), and
(ii) that all such mechanisms can be implemented by having the owners and brokers
recursively swap the objects they control. We refer to the associated algorithm and the
resulting class of mechanism as trading cycles. Our construction of trading cycles builds
on David Gale’s top trading cycles (reported by Shapley and Scarf 1974) and on Pápai’s
(2000) hierarchical exchange.

To get a sense of trading cycles, consider two examples in an environment in which
there are as many objects as agents and each agent initially controls one object. One
example is Gale’s top trading cycles. Gale’s algorithm matches agents and objects in a
sequence of rounds. In each round, each object points to the agent who controls it,
and each agent points to his most preferred unmatched object. Because there is a finite

1The prior theoretical literature on single-unit-demand allocation without transfers has focused on char-
acterizing mechanisms that are strategy-proof and efficient alongside other properties; see below for exam-
ples of such characterizations. In contrast, our main results do not rely on any additional assumptions. The
restriction to direct mechanisms is justified by the revelation principle.

2In kidney exchange, both the transplant centers and doctors occasionally game the medical system for
the benefit of their patients (see Warmbir 2003, Sönmez and Ünver 2006, 2013, Ashlagi and Roth 2014). Co-
ordinated reporting has also been observed in other related settings, such as school choice (see Pathak and
Sönmez 2008). In our setting, group strategy-proofness is equivalent to the lack of manipulation opportu-
nities for groups of two agents. Group strategy-proof mechanisms are immune to manipulation regardless
of the information the agents possess, they impose minimal costs of searching for and processing strategic
information, and they do not discriminate among agents based on their access to information and ability
to strategize.
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number of agents, there exists at least one pointing cycle in which an agent, say agent 1,
points to an object, say object A; the agent who controls object A points to object B, etc.;
and finally the last agent in the cycle points to the object controlled by agent 1.3 The
procedure then matches each agent in each pointing cycle with the object to which he
points. The pointing cycles thus become cycles of trading. Rounds are repeated until no
agents and objects are left unmatched. Roth (1982) showed that the resulting mecha-
nism is group strategy-proof and Pareto efficient. Another example of trading cycles ob-
tains when we take one of the agents—we call him a broker—and change the way he can
trade the object he controls—which we call the brokered object or the brokered house.
We do so by running the same algorithm as above with the additional requirement that
we have the broker point to his most preferred unmatched object that is different from
the brokered object. The resulting mechanism remains group strategy-proof and Pareto
efficient.4

While we described examples of trading cycles in the environment where each agent
initially controls one object, the algorithm can be used in more general environments,
for instance, when all objects are initially owned by a social planner. In such environ-
ments, to run top trading cycles, we need to specify a controlling agent for each object
at each round (see Abdulkadiroğlu and Sönmez 1999, Pápai 2000); to run trading cycles,
we additionally need to specify for each object whether the agent who controls it is an
owner or a broker.

Surprisingly, adding brokers and brokered objects to the previous constructions of
top trading cycles gives us the full class of group strategy-proof and efficient mecha-
nisms. The key insight behind this characterization is that in every group strategy-proof
and Pareto-efficient mechanism, each object is either owned or brokered in the follow-
ing sense: Either there is a unique agent who obtains this object whenever he ranks it as
his top choice (we call such an agent an owner) or else there is a unique agent who ob-
tains his second choice whenever all agents rank the object mentioned earlier as their
top choice (we call such an agent a broker). Owners and brokers defined in this way
correspond to the owners and brokers in the initial round of trading cycles. The ana-
logue of this insight remains true for other rounds. Suppose that some agents are al-
ready matched, fix a reference unmatched object, and consider all preference profiles
in which matched agents put their outcomes at the top of their ranking, while the un-
matched agents put the reference object at the top of their ranking and the matched
objects at the bottom of their ranking. We prove that in every group strategy-proof and
Pareto-efficient mechanism, either there is a unique unmatched agent who obtains the
referenced object at all the above preference profiles, or else there is a unique agent who
obtains his second choice at all the above preference profiles. In the former case we call
this unique agent an owner; in the latter case we call the unique agent a broker of the ref-
erence object at the partial matching considered. In every round of trading cycles, the

3The pointing cycles might be short (agent 1 points to object A, which points back to agent 1) or might
involve many agents.

4The mechanisms with brokers remain Pareto efficient because the broker is assigned something other
than his top choice only if another agent wants this top choice. Intuitively, these mechanisms are strategy-
proof because the set of objects any agent can obtain by changing his or her preference ranking is mono-
tonically increasing (in terms of inclusion) with each round of trading cycles.
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owners and brokers in the trading-cycles algorithm correspond exactly to the owners
and brokers described above at the partial matching obtained in previous rounds. This
insight allows us to construct the trading-cycle representation for every group strategy-
proof and Pareto-efficient mechanism.5

Knowing that all group strategy-proof and Pareto-efficient mechanisms may be rep-
resented as trading cycles allows us to reduce many otherwise hard problems to the
simple analysis of trading cycles. In this sense, the role trading-cycles mechanisms
play in the single-unit demand no-transfer environments we study can be compared to,
for instance, the role that the mechanisms of Vickrey (1961), Clarke (1971), and Groves
(1973) play in environments with transfers and quasi-linear utilities (see Green and Laf-
font 1977, and Holmström 1979). Other characterizations of efficient and strategy-proof
mechanisms that are nondictatorial have been obtained by Barberà et al. (1997) for shar-
ing a perfectly divisible good among agents with single-peaked preferences over their
shares (see Sprumont 1991), and by Barberà et al. (1993) for committee-voting problems
with single-peaked preferences (see Moulin 1980).

To illustrate the usefulness of our reduction approach, we use it to obtain further
insights into allocation and exchange, and to derive some of the canonical prior results
as immediate corollaries. First, we show that the class of group strategy-proof, Pareto
efficient, and individually rational mechanisms equals the class of trading cycles that
(i) may be represented by a control-rights structure in which each agent is given con-
trol rights over all objects from his endowment, and (ii) none of these agents is a broker.
In particular, we show that when each agent has a private endowment, then this class
of mechanisms can be represented via Pápai’s (2000) hierarchical exchange.6  Pápai’s
hierarchical-exchange mechanisms use the same algorithm as Gale’s top-trading-cycles
mechanism, with the exception that the mechanism takes as an input a structure of
control rights (without brokers) that—for each round of the mechanism and each un-
matched object—determines the agent to whom the object points.7

Second, we derive Pápai’s (2000) and Svensson’s (1999) canonical results as imme-
diate corollaries of our characterization. Pápai showed that her hierarchical-exchange
mechanisms are precisely these group strategy-proof and Pareto-efficient mechanisms
that satisfy an additional technical property that she refers to as reallocation-proofness.8

Her result is a corollary of our characterization because trading cycles with brokers do

5The trading-cycles mechanism constructed in this way is equivalent to the mechanism being repre-
sented, that is the two mechanisms produce the same outcome for every preference profile. We verify this
equivalence via a recursive argument on the rounds of trading cycles.

6In the special case of our setting in which there are as many objects as agents and each agent is endowed
with exactly one object, this corollary of our main results is implied by an earlier result of Ma (1994) that
top trading cycles is the unique strategy-proof, Pareto-efficient, and individually rational mechanism. Fol-
lowing our work, Tang and Zhang (2016) extended Ma’s result by strengthening individual rationality. See
also Pápai (2007) for the analysis of multi-unit demand, and Pycia (2016) for the analysis on networks.

7Redefining Pápai’s hierarchical-exchange mechanisms in terms of the structure of ownership rights is
one of our contributions to the rich literature that follows her seminal work. This redefinition has become
standard; see, for instance, Tang and Zhang (2016). We would like to thank a referee for drawing our atten-
tion to this contribution.

8A mechanism is reallocation-proof in the sense of Pápai if there is no profile of preferences with a pair of
agents and a pair of preference manipulations such that (i) if both of them misrepresent their preferences,
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not satisfy Papai’s reallocation-proofness property. Svensson showed that a mechanism
is neutral and group strategy-proof if and only if it is a serial dictatorship; neutrality
means that a mechanism is invariant to any renaming of objects. His result is a corollary
because neutral and group strategy-proof mechanisms are Pareto efficient, and because,
to be neutral, a trading-cycle mechanism must be a serial dictatorship.9

Our paper is the first to recognize the role of brokers in allocation and exchange with
no transfers. While the main role played by brokers is to give us the full class of strategy-
proof and efficient mechanisms, brokers can also be useful in some mechanism-design
settings. We close the paper by providing an example in which the trading cycle with one
broker described above is the most equitable allocation mechanism, and in particular
it is strictly more equitable—in the sense of Lorenz dominance—than any hierarchical-
exchange mechanism.

2. Model

Let I be a set of agents and letH be a set of objects that we often refer to as houses; these
sets are fixed throughout the analysis. We use i, j, k to refer to agents and h, g, e to refer
to houses. Each agent i has a strict preference relation over H, denoted by �i.10 The set
of all strict preference relations of agent i is denoted Pi and the set of preference profiles
P is the Cartesian product ×i∈IPi. For any J ⊆ I, �J = (�i)i∈J is the restriction of � ∈ P
to J, and PJ = ×i∈JPi is the set of all such restricted profiles.

These primitives define the model of house allocation. In Section 5, we introduce the
possibility that some agents have initial rights over houses; the analysis of the resulting
model of allocation and exchange turns out to be straightforward once we understand
house allocation. Throughout, we assume that there are no outside options; thus there
are at least as many houses as agents.11

We study ways to allocate houses to agents. We call an outcome of such an allocation
a matching. To define it, we start with a more general concept that we use frequently.

both of them weakly gain and one of them strictly gains by swapping their assignments, and (ii) if only one
of them misrepresents his preferences, he cannot change his assignment. As Pápai observes, reallocation-
proofness-type properties obtained by dropping condition (ii) or by allowing swaps among more than two
agents conflict with group strategy-proofness and Pareto efficiency. We do not use reallocation-proofness
in our results.

9All allocation papers cited above, and the literature in general, share with our paper the assumption that
agents have strict preferences. This is the standard modeling assumption for several reasons. First, partic-
ipants are frequently allowed to submit only strict preference orderings to real-life direct mechanisms in
various markets, such as dormitory room allocation, school choice, and matching of interns and hospitals.
Second, and more fundamentally, Ehlers (2002) shows that “one cannot go much beyond strict preferences
if one insists on efficiency and group strategy-proofness”; when agents can be indifferent among objects,
no mechanism is group strategy-proof and Pareto efficient. See Bogomolnaia et al. (2005) for further explo-
ration of the domain with possible indifferences.

10By �i we denote the induced weak preference relation; that is, for any g�h ∈ H, g �i h⇐⇒ g = h or
g�i h.

11The analysis of outside options from earlier drafts of this paper, including the case of fewer houses
than agents, will form the core of a separate paper; for more details, see the Supplement, which is available
in a supplementary file on the journal website, http://econtheory.org/supp/2201/supplement.pdf. Our
insights remain true in the presence of outside options.

http://econtheory.org/supp/2201/supplement.pdf
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A submatching on J ⊆ I is a one-to-one function σ : J →H. A submatching allocates a
subset of houses to a subset of agents so that no two different agents obtain the same
house; σ(i) is the house matched with agent i ∈ J, and σ−1(h) is the agent matched with
house h ∈ σ(J). The set of submatchings is denoted by S . For each σ ∈ S , the set of
matched agents is denoted by Iσ , and the set of matched houses is denoted by Hσ . We
write Iσ for I−Iσ andHσ forH−Hσ . For any h ∈H, S−h is the set of submatchingsσ ∈ S
at which house h is unmatched, that is, that belongs to Hσ . Identifying a function with
its graph, we can talk about submatchings as sets of agent–house pairs; these sets are
ordered by inclusion. A matching is a maximal submatching; that is, μ ∈ S is a matching
if Iμ = I. The set of matchings is denoted by M, and M = S −M.

A mechanism is a mapping ϕ : P −→ M that assigns a matching for each preference
profile.12

2.1 Strategy-proofness and Pareto efficiency

A matching is Pareto efficient if no other matching makes each agent weakly better off
and at least one agent strictly better off. That is, a matching μ ∈ M is Pareto efficient
if there exists no matching ν ∈ M such that for all i ∈ I, ν(i) �i μ(i), and for some i ∈ I,
ν(i) �i μ(i). A mechanism is Pareto efficient if it assigns a Pareto-efficient matching to
every preference profile.

A mechanism is individually strategy-proof if truthful revelation of preferences is a
weakly dominant strategy for any agent, that is, for all � ∈ P, there is no i ∈ I and �′

i ∈ Pi
such that ϕ[�′

i��−i](i) �i ϕ[�](i). A mechanism is group strategy-proof if there is no
group of agents who can misreport their preferences in such a way that each agent in the
group gets a weakly better house and at least one agent in the group gets a strictly better
house irrespective of the preference reports of the agents not in the group. Formally, a
mechanism ϕ is group strategy-proof if, for all � ∈ P, there exists no J ⊆ I and �′

J ∈ PJ
such that ϕ[�′

J��−J](i) �i ϕ[�](i) for all i ∈ J and ϕ[�′
J��−J](j) �j ϕ[�](j) for at least

one j ∈ J.
Group strategy-proofness has two properties that we use throughout. First, in the

environment we study, group strategy-proofness is equivalent to the conjunction of two
noncooperative properties: individual strategy-proofness and nonbossiness.13 Non-
bossiness (Satterthwaite and Sonnenschein 1981) means that no agent can misreport
his preferences in such a way that his allocation is not changed but the allocation of
some other agent is changed: a mechanism ϕ is nonbossy if, for all � ∈ P, there is no
i ∈ I and �′

i ∈ Pi such that ϕ[�′
i��−i](i)= ϕ[�](i) and ϕ[�′

i��−i] 
= ϕ[�]. The following
lemma is due to Pápai (2000).

Lemma 1 (Pápai 2000). A mechanism is group strategy-proof if and only if it is individu-
ally strategy-proof and nonbossy.

12We study direct mechanisms. By the revelation principle, this is without loss of generality.
13Both of these properties are noncooperative in the sense that they relate a mechanism’s outcomes

under two scenarios when a single agent makes unilateral preference revelation deviations.
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Second, in the environment we study, group strategy-proofness is equivalent to
Maskin monotonicity (Maskin 1999). A preference profile �′ ∈ P is a ϕ-monotonic trans-
formation of � ∈ P if h �′

i ϕ[�](i) implies h �i ϕ[�](i) for all i ∈ I and h ∈H. Thus, for
each agent, the set of houses better than the base-profile allocation weakly shrinks when
we go from the base profile to its monotonic transformation. A mechanism ϕ is Maskin
monotonic if ϕ[�′] = ϕ[�] whenever �′ ∈ P is a ϕ-monotonic transformation of � ∈ P.
The following lemma was proven by Takamiya (2001) for a subset of the problems we
study; his proof can be extended to our more general setting.

Lemma 2. A mechanism is group strategy-proof if and only if it is Maskin monotonic.

3. Preliminaries

To set the stage for our trading-cycles mechanism, we redefine Pápai’s (2000) hierarchical-
exchange, or top-trading-cycles, mechanisms, and discuss an example of a group
strategy-proof and Pareto-efficient mechanism that is different from all top-trading-
cycles mechanisms. We then introduce the concept of control rights and define trading
cycles (TC).

3.1 Top trading cycles

The well known top-trading-cycles (TTC) algorithm has been extended to house alloca-
tion by Abdulkadiroğlu and Sönmez (1999) and generalized by Pápai (2000). The class of
mechanisms presented in this subsection is identical to Pápai’s hierarchical exchange.
Our presentation, however, is novel, and it aims to simplify Pápai’s construction and to
introduce some of the terminology we later use to describe trading cycles.14

TTC is a recursive algorithm that matches houses to agents in a sequence of rounds.
In each round, some agents and houses are matched; the matches are not changed in
subsequent rounds. At the beginning of each round, each unmatched house is owned by
an unmatched agent. The algorithm creates a directed graph in which each unmatched
house points to the agent who owns it, and each unmatched agent points to his most
preferred unmatched house. There exists at least one exchange cycle in which agent 1’s
most preferred house is owned by agent 2, agent 2’s most preferred house is owned by
agent 3, � � � , and finally, for some k= 1�2� � � � , agent k’s most preferred house is owned by
agent 1. Moreover, no two exchange cycles intersect. The algorithm matches all agents
in exchange cycles with their most preferred houses. When all agents are matched, the
algorithm terminates. Because at least one agent–house pair is matched in each round,
the algorithm terminates after finitely many rounds.

The outcome of the TTC algorithm is determined by two types of inputs: agents’
preferences and agents’ rights of ownership over houses. While the preferences are sub-
mitted by the agents, the ownership rights are defined exogenously as part of the mech-
anism. We formalize this aspect of the mechanism via the following concept.

14Our reformulation has become standard in the literature; see Tang and Zhang (2016) for a recent ex-
ample.
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Definition 1. A structure of ownership rights is a collection of mappings {cσ : Hσ →
Iσ }σ∈M. The structure of ownership rights {cσ }σ∈M is consistent if, for all submatchings
σ ⊆ σ ′ ∈ M, if an agent i ∈ Iσ ′ owns a house h ∈Hσ ′ at σ , then i owns h at σ ′.

For each submatching σ and unmatched house h, the structure of ownership rights
specifies the unmatched agent cσ(h)who owns it. Consistency means that whenever an
agent owns a house at a submatching σ , then he also owns it at any larger submatch-
ing σ ′, as long as the agent and the house are unmatched.

Each consistent structure of ownership rights {cσ }σ∈M determines a hierarchical-
exchange mechanism of Pápai (2000), and each hierarchical-exchange mechanism can
be implemented as TTC with a consistent structure of ownership rights. We thus also
refer to hierarchical exchanges as TTC mechanisms. Pápai showed that all TTC mecha-
nisms are group strategy-proof and Pareto efficient, extending an earlier insight of Roth
(1982).15

3.2 Example: Beyond top trading cycles

What might a group-strategy-proof and efficient non-TTC mechanism look like? Con-
sider the following example that builds on the TTC idea.

Example 1. Consider three agents i1, i2, i3, three houses h1, h2, h3, and an ownership
structure that allocates initial ownership of house h� to agent i� for � = 1�2�3. Given
this structure, we run TTC with one modification: agent i1 is not allowed to point to
house h1 as long as there are other unmatched agents. In rounds with other unmatched
agents (and hence other unmatched houses), agent i1 points to his most preferred house
among unmatched houses other than h1.16

For instance, if each agent i has the preference h1 �i h2 �i h3, then in the first round
agents i2 and i3 point to h1, but agent i1 points to his second-choice house, h2. An ex-
change cycle forms in which i1 is matched with h2 and i2 is matched with h1. In the
second round, the algorithm matches agent i3 and house h3, and terminates.

This mechanism is group strategy-proof and Pareto efficient. An easy recursion
shows that at each round the submatching formed is Pareto efficient for matched agents.
Indeed, if an agent matched in the first round does not get his top choice, he gets his
second choice, and getting his first choice would harm another agent matched in that
round. In general, agents matched in the nth round get their first or second choice
among houses available in the nth round, and giving one of these agents a better house
would harm some other agent matched at the same or earlier round.

15To appreciate the generality of Pápai’s class, notice that the serial dictatorship of Satterthwaite and
Sonnenschein (1981) and Svensson (1994) is a special case of the TTC mechanisms in which at each sub-
matching there is an agent who owns all unmatched houses. Also, Pápai’s fixed endowment mechanisms
are TTC mechanisms such that cσ(h)= cσ ′(h) for all σ and σ ′ such that Iσ = Iσ ′ .

16Pápai (2000) gives an example of a non-TTC mechanism. Her construction is different from ours,
though the resulting mechanisms are identical. As we show in the next section, the advantage of our con-
struction lies in it being generalizable to the whole class of group strategy-proof and efficient mechanisms.
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Roth’s (1982) approach to the group strategy-proofness of TTC can be extended to
the above mechanism. Alternatively, for each agent and round of the algorithm, define
the set of houses obtainable by the agent to be the set of houses the agent could ob-
tain in this round by either submitting his true preference ranking or by changing the
ranking of unmatched objects. As long as an agent is unmatched, the agent’s set of ob-
tainable objects stays the same or becomes larger with each round. Similarly, the set
of houses that a group of agents could obtain in a given round by varying the ranking
of unmatched objects weakly increases with each round. This monotonicity drives the
strategy-proofness of the mechanism. ♦

The above mechanism is different from all TTC mechanisms. Indeed, observe that
the mechanism matches house h1 with agent i2 under the illustrative preference profile
analyzed above, whereas it would match h1 with another agent, i3, if agent i1 submit-
ted preferences h1 �i1 h3 �i1 h2 (and other agents i 
= i1 continued to have preferences
h1 �i h2 �i h3). However, any TTC mechanism would match h1 with the same agent
when either of these two preference profiles is submitted. The reason is that the TTC
ownership structure uniquely determines which agent owns h1 at the empty submatch-
ing, implying that this agent would be matched with h1 in the first round of the algorithm
under any preference profile in which all agents rank h1 as their first choice.

For future use, observe that agent i1 does not have full ownership rights over h1.
Unless he is the only agent left, he cannot form the trivial exchange cycle that would
match him with h1. He does have some control rights over h1, however: he can trade h1

for houses owned by other agents. In our general trading-cycles algorithm, we refer to
such weak control rights as brokerage.

Ownership and brokerage can be identified by the mechanism’s outcomes. When-
ever agent i2 ranks house h2 as his top choice, the mechanism in the example assigns
him this house irrespective of other agents’ rankings. For any mechanism, not neces-
sarily group strategy-proof or efficient, we call an agent who obtains a house whenever
he ranks it first an owner of this house (or, an owner* of this house, when we distin-
guish between this notion of ownership and the ownership in the algorithms). In the
current example i2 is an owner* of h2 and i3 is an owner* of h3. Furthermore, whenever
all agents rank house h1 as their top choice, the mechanism in the example assigns agent
i1 his second choice, irrespective of how other houses are ranked. For any mechanism,
not necessarily group strategy-proof or efficient, we call an agent who obtains his sec-
ond choice across all preference profiles in which all agents rank the same house first,
a broker of the house that everyone ranks first (or a broker* of this house when we dis-
tinguish between this notion of brokerage and the brokerage in the algorithms). In the
current example i1 is a broker* of h1.

In the current example, each house is either owned* or brokered*. In Section 4, we
prove that this property holds true for any group strategy-proof and Pareto-efficient
mechanism. This allows us to represent any such mechanism through an algorithm
similar to the algorithm in the example. In our representation, owners in the algorithm
correspond to owners* defined in terms of outcomes and brokers in the algorithm cor-
respond to brokers* defined in terms of outcomes.
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3.3 Trading cycles

The TC algorithm matches agents and houses in exchange cycles recursively over a se-
quence of rounds. TC is more flexible than TTC as it allows two types of intra-round
control rights over houses: ownership and brokerage. We add brokerage rights to our
definition of the structure of ownership rights as follows.

Definition 2. A structure of control rights is a collection of mappings

{
(cσ�bσ) : Hσ → Iσ × {ownership, brokerage}}

σ∈M�

At submatching σ , the function cσ maps each unmatched house h to the unique un-
matched agent cσ(h)who controls it. The type of control is determined by bσ . The agent
cσ(h) owns h at σ if bσ(h)= ownership and cσ(h) brokers h at σ if bσ(h)= brokerage. In
the former case, we call the agent an owner and the controlled house an owned house.
In the latter case, we use the terms broker and brokered house.

We impose two types of consistency requirements on TC control-rights structures:
constraints on brokerage at any given submatching (the within-round requirements)
and constraints on how the control rights are related across different submatchings (the
across-rounds requirements). For simplicity, we initially formulate the consistency re-
quirements and the TC algorithm assuming that |H| > |I|; we relax this assumption in
the Supplement.17

Within-round Requirements. Consider any σ ∈ M.

(R1) There is at most one brokered house at σ .

(R2) If i is the only unmatched agent at σ , then i owns all unmatched houses at σ .

(R3) If agent i brokers a house at σ , then i does not control any other houses at σ .

With requirements R1–R3 in place, we are ready to describe the basic TC algorithm.18

The TC algorithm matches agents with houses over a finite sequence of rounds
r = 1�2� � � � . We set σ0 = ∅ and recursively construct submatchings σr−1 of agents and
houses matched before round r. Each round r consists of the following steps.

Step 1. Pointing. Each house h ∈Hσr−1 points to the agent who controls it at σr−1.
If there is a broker at σr−1, then he points to his most preferred house among houses
owned at σr−1. Every other agent i ∈ Iσr−1 points to his most preferred house inHσr−1 .

17This appendix relaxes the assumption that there are more houses than agents and extends the consis-
tency conditions, the TC algorithm, and all our results accordingly.

18R1 allows for different houses to be brokered at different submatchings, even though there is at most
one brokered house at any given submatching. The lemmas of Appendix C.2 show why R1 and R3 are
implied by Pareto efficiency and group strategy-proofness. R2 is imposed so as to simplify the basic TC
algorithm presented here (it is not needed in the version of the TC algorithm presented in the Supplement).
We define R1–R3 (and, later, R4–R6) for all submatchings whether or not they can appear in a round of the
TC algorithm. This simplifies the definition of the consistency conditions, but we could equivalently define
the control rights only on submatchings that can appear in a round of the TC algorithm.
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Step 2. Matching Trading Cycles. There exists n ∈ {1�2� � � �} and an exchange cycle
h1 → i1 → h2 → ·· · → hn → in → h1 in which agents i� ∈ Iσr−1 point to houses h�+1 ∈
Hσr−1 and houses h� point to agents i� (here � = 1� � � � � n and superscripts are added
modulo n). Each agent in each trading cycle is matched with the house he is pointing to.

Step 3. Submatching σr is defined as the union of σr−1 and the set of newly matched
agent–house pairs. When all agents or all houses are matched, the algorithm terminates
and gives matching σr ∈ M as its outcome.

The TC algorithm builds on Gale’s, Abdulkadiroğlu and Sönmez’s, and Pápai’s top-
trading-cycles ideas but allows more general trading cycles than top cycles.19 There
exists a trading cycle in each round because the number of agents is finite, each agent
points to a unique house, and each house points to a unique agent. This also implies
that trading cycles cannot intersect and, hence, which houses are matched in a round is
well defined.20 Because we match at least one agent–house pair in every round, and be-
cause there are finitely many agents and houses, the algorithm terminates after finitely
many rounds. For instance, the algorithm described in the previous section is TC with
agent i1 brokering house h1 and other agents owning their respective houses.

The TC algorithm with a control-rights structure satisfying R1–R3 determines a
mechanism that maps profiles from P to Pareto-efficient matchings in M.21 To guar-
antee that the resulting mechanism is group strategy-proof, we impose the following
across-round consistency requirements on the control-rights structure.

Across-round Requirements. Consider submatchings σ , σ ′ such that σ ⊂ σ ′ ∈ M
and an agent i ∈ Iσ ′ who owns a house h ∈ Hσ ′ at σ . Then the following statements
hold:

(R4) Agent i owns h at σ ′.

(R5) If i′ brokers house h′ at σ and i′ ∈ Iσ ′ , h′ ∈Hσ ′ , then either i′ brokers h′ at σ ′ or i
owns h′ at σ ′.22

(R6) If agent i′ ∈ Iσ ′ controls h′ ∈Hσ ′ at σ , then i′ owns h at σ ∪ {(i�h′)}.

Requirement R4 (persistence of ownership) postulates that ownership rights persist:
agents retain control rights as they move from smaller to larger submatchings or through
the rounds of the algorithm. This is the only requirement that we imposed on control-
rights structures without brokers to obtain Pápai’s (2000) hierarchical-exchange mech-
anisms; the other requirements R1–R3, R5, and R6 have no counterpart in Pápai’s con-
struction.

19Previous developments of Gale’s idea—e.g., Abdulkadiroğlu and Sönmez (1999, 2003), Pápai (2000),
Ehlers et al. (2002), Ehlers and Klaus (2004), and Roth et al. (2004)—required each agent to point to his or
her top choice among unmatched houses and hence allowed only top trading cycles. For an extension of
trading cycles to the school choice environment, see Pycia and Ünver (2011).

20The order in which we clear cycles in the TC algorithm does not matter for its outcome (see the Sup-
plement). In the version of the algorithm introduced here, we clear cycles as soon as possible.

21The recursive argument for the efficiency of the mechanism from Section 3.2 applies.
22Notice that the latter case can only happen if i is the only agent in Iσ ′ who owns a house at σ .
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Requirement R5 (persistence of brokerage) is a counterpart of R4 for brokers. It im-
plies that the brokerage right persists whenever there are at least two owners.23 R5 allows
a broker to lose brokerage rights when there is exactly one owner at the base submatch-
ing σ ; at the larger submatching σ ′, this unique owner must then own the formerly bro-
kered house. If no owner at the base submatching remains unmtatched at σ ′, then R5
imposes no restrictions on the control rights over h′; we refer to such situations as a
complete restart.

Requirement R6 (consolation for lost control rights) postulates that when an agent i
is matched with a house controlled by i′, then i′ owns the houses previously owned by i.
A key implication of R4, R5, and R6 is the transfer of ownership rights to ex-brokers: if i′
brokers h′ at σ but not at σ ′, and i ∈ Iσ ′ owns h ∈Hσ ′ at σ , then R6 implies that i′ owns
h at σ ∪ {(i�h′)}, and R4 further implies that i′ owns h at σ ′ ∪ {(i�h′)}. We refer to this
consequence of R6 and R4 as broker-to-heir transition.

The examples in the Supplement illustrate the role of requirements R4–R6 in en-
suring that trading cycles are group strategy-proof. A good way to understand these
requirements is to consider the concept of obtainable objects introduced in Section 3.2:
the requirements ensure that for each agent the set of obtainable objects stays the same
or becomes larger with each round. The complexity of R5 and R6 notwithstanding, a pri-
ori one could expect the conditions needed to define the class of group strategy-proof
and efficient mechanisms to be much more complex than they turned out to be.24

We are now ready to define the TC mechanisms.

Definition 3. A control-rights structure is consistent if it satisfies requirements R1–R6.
A mechanism is TC (trading cycles) if its outcomes may be determined by running the
TC algorithm with some consistent control-rights structure.

We denote by ψc�b the TC mechanism obtained from a consistent control-rights
structure {(cσ�bσ)}σ∈M. The TTC mechanisms of Section 3.1 and the non-TTC mecha-
nism of Section 3.2 are examples of TC.25

4. Main results

Every group strategy-proof and Pareto-efficient mechanism can be described in terms
of owners and brokers and implemented as trading cycles. We first state and prove these

23Indeed, the assumption postulates that if a broker i′ loses the brokerage right, then the house is owned
by any agent i who owns some house at σ and remains unmatched. Hence, if there are two agents owning
houses at σ , then the brokerage right cannot be lost.

24Sections 5 and 6 illustrate the use of brokers and restrictions R5 and R6. We think that nearly all of the
flexibility of brokers is captured by the simpler class of mechanisms in which R5 and R6 are replaced with
the restriction that if |σ ′|< |I|− 1 and i brokers h at σ , then i brokers h at σ ′. This simpler restriction results
in a smaller class of mechanisms (see the Supplement).

25A natural extension of Pápai’s (2000) fixed-endowment mechanisms (see Section 3.1 for a discussion)
is the TC mechanisms in which (cσ �bσ)(h) = (cσ ′ � bσ ′)(h) for all σ and σ ′ such that Iσ = Iσ ′ . In addition
to Pápai’s fixed-endowment mechanisms, this class contains, for instance, the TC mechanism from Sec-
tion 3.2.
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results—Theorems 1 and 2—for the model of allocation in which there are more objects
than agents, and we later relax these assumptions.26

Theorem 1. A mechanism is group strategy-proof and Pareto efficient if and only if it is
a trading-cycles mechanism.

The proof that trading-cycles mechanisms are Pareto efficient follows the same re-
cursive steps as the argument for the efficiency of the non-TTC mechanism in Sec-
tion 3.2.27 By the lemma of Pápai (2000) (Lemma 1 above), a mechanism is group
strategy-proof if and only if it is individually strategy-proof and nonbossy. The proof
of these two properties builds on the following straightforward lemma.

Lemma 3. If an agent i is unmatched at a round r of the algorithm under preference
profiles [�i��−i] and [�′

i��−i], then the same submatching forms before round r under
[�i��−i] and [�′

i��−i], and hence the control rights structure at round r is the same under
[�i��−i] and [�′

i��−i].

This lemma is key in proving individual strategy-proofness. It tells us that as long
as an agent is unmatched, he cannot influence when he becomes an owner, becomes
a broker, or enters the broker-to-heir transition (see the discussion of R6) by choosing
which preferences to submit. Owners cannot benefit from waiting because they get the
best available house at the time they match under �. Checking that brokers cannot ben-
efit from waiting is only slightly more subtle, as is checking that no agent can improve
his match by matching early. Appendix A provides the details.

To get a sense of why the TC mechanisms are nonbossy, consider a TC mechanism
without brokers and an agent i who gets the same object whether he submits prefer-
ences �i or �′

i. A standard inductive argument then shows that the algorithm goes
though the same cycles under � = (�i��−i) and �′ = (�′

i��−i) even if the rounds at
which these cycles are formed differ. The same argument applies in the presence of bro-
kers unless one of them loses the brokerage right.28 A broker can lose the brokerage right
only in a limited set of circumstances delineated in conditions R5 and R6; these condi-
tions ensure that the mechanism is nonbossy even if some brokers lose their brokerage
rights. Appendix B provides the details.

The main part of the proof of Theorem 1 is to show that if a mechanism ϕ is group
strategy-proof and Pareto efficient, then we can construct a TC mechanism ψc�b that is
equivalent to ϕ. The construction proceeds in three steps: we construct the candidate
control-rights structure (c�b), we check that it satisfies conditions R1–R6, and we ver-
ify by an induction on the rounds of the resulting TC mechanism ψc�b that ψc�b = ϕ.
Appendix C provides the details of all three steps.

The keystone of the proof is the construction of the candidate control-rights struc-
ture. We define it in terms of how ϕ allocates objects for preferences from some special

26See the end of this section for more details.
27For completeness, we present the proof of Pareto efficiency in the Supplement.
28When a broker loses his brokerage right, cycles of one or two agents can be different under � and �′.

The Supplement contains an example illustrating this possibility.
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preference classes, using the approach we introduced in Section 3.2. Consider first the
empty submatching and a house h. Note that if ϕwere a TC, hwas owned, and all agents
ranked h at the top, then ϕ would allocate h to its owner. We thus check whether ϕ al-
locates h to the same agent when all agents put h at the top, and if it does, we say that
this agent owns* h at the empty submatching.29 If ϕ does not allocate h to the same
agent at all the above profiles, we call h a brokered* house. Note that if ϕ were a TC
and h was brokered, then at every profile at which every agent ranks h as his most pre-
ferred house and some other house h′ as his second-most preferred house, ϕ would
allocate h′ to the broker of h at the empty submatching. We thus check whether there is
an agent who always gets his second-most preferred house at the above profiles, and if
there is such an agent, we say that this agent brokers* h at the empty submatching. The
construction of candidate control rights at nonempty submatchings is similar. Instead
of looking at preferences at which all agents agree on their most preferred house (or
two most preferred houses), we impose this commonality only on unmatched agents.
When matched agents rank the houses they are matched with at the top while all other
agents rank matched houses at the bottom, the Pareto efficiency of TC mechanisms im-
plies that the above procedure recovers the ownership and brokerage rights of any TC
mechanism. We thus use this procedure to define candidate control rights at nonempty
submatchings.30

To show that this construction delivers the entire candidate structure of control
rights, we need to check whether each unmatched house is either owned* or brokered*.
The surprising result establishing this property is the keystone of the entire paper (and
its proof is the hardest).

Theorem 2. For any group strategy-proof and Pareto-efficient mechanism, for any sub-
matching σ , and for any house unmatched at σ , there is either a unique agent who owns*
this house at σ or else there is a unique agent who brokers* this house at σ .

To get a sense of the proof, consider the empty submatching. We first show that if
all agents rank some house h as their first choice and some other house as their second
choice, then the agent who obtains h does not depend on the rest of the preference
profile (Lemma 8). Then we show that this house is either owned* or brokered*: the
house is owned* if the same agent obtains it when all agents rank it first, irrespective of
what house is ranked second (Lemma 10); otherwise, the house is brokered* (Lemma 9).
Appendix C.1 provides the details.

The next section extends our analysis to allocation and exchange, and the Supple-
ment relaxes the assumption that there are more objects than agents. The latter as-
sumption simplifies the exposition, but our results do not hinge on it. In particular, with

29By Maskin monotonicity, a group strategy-proof mechanism ϕ allocates h to an agent whenever he
ranks it at the top if and only if ϕ allocates h to this agent whenever all agents put h at the top. Thus, the
formulation of ownership* in the introduction and Section 3.2 is equivalent to the one above.

30Recovering the control-rights structure in this way ensures that there are no brokers at a submatching
unless there are at least two owners at this submatching. For flexibility we also allow control-rights struc-
tures in which a broker coexists with a single owner at some submatchings. Following Theorem 6 in the
Appendix, we discuss the equivalence of these two approaches.



Theoretical Economics 12 (2017) Allocation and exchange of discrete resources 301

this assumption relaxed, the key insight that group strategy-proof and Pareto-efficient
mechanisms can be described in terms of owners* and brokers* (Theorem 2) remains
true with no change in its statement or its proof. The resulting owner-and-broker mech-
anisms can then again be described through a recursive trading-cycles algorithm.31

5. Individually rational house allocation and exchange

Our results extend to the setting in which some agents have private endowments.32

5.1 Model of house allocation and exchange

Let H = {Hi}i∈{0}∪I be a collection of |I|+1 pairwise-disjoint subsets ofH (some of which
might be empty) such that

⋃
i∈{0}∪I Hi = H. We interpret houses from H0 as the so-

cial endowment of the agents, and houses from Hi, i ∈ I, as the private endowment of
agent i. Because we allow some of the agents to have an empty endowment, the alloca-
tion model of Section 2 is contained as a special case with H = {H�∅� � � � �∅}. Matchings
and mechanisms are defined as in the allocation model of Section 2.

The concepts of Pareto efficiency and group strategy-proofness are the same as be-
fore. In particular, the equivalence between group strategy-proofness and the con-
junction of individual strategy-proofness and nonbossiness continues to hold true. In
addition to efficiency and strategy-proofness, satisfactory mechanisms in this problem
domain should be individually rational. A mechanism is individually rational if it al-
ways selects an individually rational matching. A matching is individually rational if it
assigns each agent a house that is at least as good as the house he would choose from
his endowment: μ(i) �i h for all i ∈ I and h ∈Hi. For agents with empty endowments,
Hi = ∅, this condition is tautologically true.

5.2 Results

The analogue of Theorem 2 remains true with no change in the statement or the proof,
and the following characterization is an immediate corollary of Theorem 1.33

31In pre-2015 drafts, we erroneously claimed that no mechanism with multiple simultaneous brokers* is
group strategy-proof whether or not |H|> |I|: the last paragraph of the proof of Lemma 11 was incorrect in
the case of three houses and three agents. This error had no impact on the results in the main part of our
paper; its impact on our analysis was limited to the last step of our recursive construction and proofs in the
environment of the current Supplement. Bade (2014) recognized this error, implemented the special case
of our owner*-and-broker* construction with exactly three houses that all are brokered* via an algorithm
that avoids certain matchings, and verified its efficiency and group strategy-proofness.

32Our results allow one to easily obtain further new insights into allocation and exchange without trans-
fers. For instance, they imply that a mechanism is individually strategy-proof, Pareto efficient, and invariant
if and only if it is a hierarchical-exchange mechanism of Pápai (2000). This and other results from earlier
drafts will form the core of a separate paper.

33The assumptions of Theorem 3 are satisfied, for instance, in the house allocation with existing ten-
ants of Abdulkadiroğlu and Sönmez (1999). Their subject matter is the subclass of house allocation and
exchange in which each agent is endowed with one or zero houses—a situation common, for instance, in
the allocation of college dormitory rooms.
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Theorem 3. A mechanism is individually rational, group strategy-proof, and Pareto ef-
ficient if and only if this mechanism is an individually rational TC mechanism.

It is straightforward to identify individually rational TC mechanisms.

Theorem 4. A TC mechanism is individually rational if and only if it may be represented
by a consistent control-rights structure in which each agent is given the initial ownership
rights over all houses from his endowment.34

Proof. To prove individual rationality of the above subclass of TC mechanisms, con-
sider an agent i and assume that, at the empty submatching, i owns some house h from
his endowment. Then R4 ensures that i owns h throughout the execution of the TC algo-
rithm. Thus, the TC mechanism allocates to i house h or a house that i prefers to h. Now,
let ψ be an individually rational TC mechanism. Recall that ownership* was defined in
the proof of Theorem 1. For any agent i and house h from i’s endowment, i is the owner*
of h because individual rationality implies that ψ[�](i)= h for any � ∈ P[∅�h], which is
the set of preference profiles that rank h first for all agents. The construction from the
proof of Theorem 1, therefore, yields a control-rights structure that assigns to each agent
the initial ownership rights over the houses from his endowment, and represents ψ. �

As a corollary, we obtain the following characterization of top trading cycles in an
important subdomain of allocation and exchange.35

Theorem 5. Suppose each agent has a nonempty endowment. A mechanism is individ-
ually rational, group strategy-proof, and Pareto efficient if and only if this mechanism is a
TTC mechanism (aka hierarchical exchange) that assigns all agents the initial ownership
rights over houses from their endowment.

Proof. By Theorem 3, a mechanism ϕ is individually rational, Pareto efficient, and
group strategy-proof if and only if there exists an individually rational and consistent
control-rights structure (c�b) such that ϕ = ψc�b. By Theorem 4 we may assume that
each agent has initial ownership rights over the houses from their endowment. By con-
dition R4 (regarding consistency), all unmatched agents own a house throughout the
mechanism and, hence, R3 implies that no agent is a broker. Thus ψc�b is a TTC mecha-
nism. �

34The initial control rights are the control rights at the empty submatching. When one agent is en-
dowed with all houses, there are individually rational mechanisms that might be represented both by a
control-rights structure that assigns this agent initial ownership rights over all houses and by an alternative
control-rights structure that assigns this agent ownership rights over all houses but one, which is brokered
by a broker. Except for such situations, however, any control-rights structure of an individually rational TC
mechanism assigns to each agent the initial ownership rights of all houses from his endowment.

35The assumptions of Theorem 5 are satisfied by the kidney exchange with strict preferences (Roth et al.
2004), and the kidney exchange with good Samaritan donors (Sönmez and Ünver 2006). In this interpre-
tation, kidney transplant patients are the agents and live kidney donors are the houses. Each agent is en-
dowed with a live donor who would like to donate a kidney if his paired-donor receives a transplant in
return. Thus, all agents have nonempty endowments. The model also allows for unattached donors known
as good Samaritan donors who would like to donate a kidney to any patient.
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6. Further illustrative corollaries

Some of the canonical prior insights of the allocation literature easily follow from our
main results.36

6.1 Neutrality

Svensson (1999) showed that all neutral and group strategy-proof mechanisms are serial
dictatorships. A mechanism is neutral if, whenever the house names are relabeled, the
mechanism assigns each agent the house that carries the relabeled name of the house
that was assigned before the relabeling.37 In a serial dictatorship, agents are ordered,
and the first agent in the ordering gets his most preferred house, the second agent in the
ordering gets her most preferred house among those unassigned to agents higher in the
ordering, etc.

Svensson’s result is a corollary of Theorem 1, as illustrated below.

Corollary 1 (Svensson 1999). A mechanism is group strategy-proof and neutral if and
only if it is a serial dictatorship.

Proof. Let ϕ be a group strategy-proof and neutral mechanism. Neutrality implies that
φ has full range, that is,φ[P] = M. Indeed, for anyμ ∈ M, we can take an arbitrary � ∈ P,
define relabeling π so that π(ϕ[�](i)) = μ(i) for all i ∈ I, and conclude from neutrality
thatϕ[�π] = μ. Full range and group strategy-proofness imply Pareto efficiency. Thus, ϕ
is a trading-cycles mechanismψc�b by Theorem 1. Consider this TC mechanism. For any
σ ∈ M, conditions R1 and R3 imply that there is an agent i ∈ Iσ who owns some house
h ∈Hσ at σ . In particular, for any � ∈ P[σ;h], ψc�b[�](i)= h. Let σ ′ ∈ M with Iσ ′ = Iσ .
Let g ∈Hσ ′ . Take a relabelingπ such thatπ(h)= g andπ(σ(j))= σ ′(j) for all j ∈ Iσ . Now
�π ∈ P[σ ′;g] and by neutrality ψc�b[�π](i) = π(h) = g. Maskin monotonicity implies
that i is allocated the best unmatched house at σ ′ as long as Iσ ′ = Iσ . The mechanism
ψc�b is thus equivalent to a serial dictatorship.38 �

6.2 Reallocation-proofness

Pápai (2000) showed that group strategy-proof and Pareto-efficient mechanisms that
satisfy an additional condition can be implemented as hierarchical exchange. The con-
dition she relies on is that a mechanism ϕ is reallocation-proof if there exists no pair

36Our results may also be used, for instance, to facilitate the analysis of consistent, individually strategy-
proof, and Pareto-efficient mechanisms (Sönmez and Ünver 2006, Ehlers and Klaus 2007, and Velez 2014).
Indeed, individually strategy-proof and consistent mechanisms are group strategy-proof. See also Ergin
(2000).

37More formally, a relabeling of houses is a bijection π : H →H. For any preference profile � ∈ P and
relabeling π, let �π ∈ P be such that g �πi h⇔ π−1(g) �i π−1(h) for all i ∈ I and g�h ∈H. A mechanism ϕ

is neutral if for all relabelings π, all � ∈ P, and all i ∈ I, we have ϕ[�π ](i)= π(ϕ[�](i)).
38We prove here Svensson’s result for the case when there are more houses than agents, but neither

Svensson’s result nor our argument hinges on this assumption; see the Supplement for details. Interest-
ingly, in the presence of outside options, Svensson’s result is no longer true, as shown by Pycia and Ünver
(2014).
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of agents i� j ∈ I such that for some � ∈ P, �′
i ∈ Pi, and �′

j ∈ Pj with ϕ[�′
i��−i] = ϕ[�′

j�

�−j] = ϕ[�], we have ϕ[�′
{i�j}��−{i�j}](j)�i ϕ[�](i) and ϕ[�′

{i�j}��−{i�j}](i)�j ϕ[�](j). We
can derive the key insight of Pápai (2000) as follows.

Corollary 2 (Pápai 2000). If a mechanism is group strategy-proof, Pareto efficient, and
reallocation-proof, then it is a hierarchical-exchange mechanism.

Proof. Let ϕ be a group strategy-proof, Pareto -efficient, and reallocation-proof mech-
anism. By Theorem 1, ϕ is equivalent to a reallocation-proof TC mechanism ψc�b. The
unique control-rights structure we construct has the property that there are no brokers
at submatchings with exactly one owner (see Theorem 6). To prove that there are no
brokers at other submatchings, let σ ∈ M, let j�k ∈ Iσ be two different owners, and let
hj be a house owned by j and hk be a house owned by k at σ . By way of contradic-
tion, assume that some house h is brokered by some agent i at σ . Consider a preference
profile � ∈ P[σ] such that �i ∈ Pi[σ;h�hk�hj], �j ∈ Pj[σ;hj], and �k ∈ Pk[σ;h] (these
sets of preference rankings are defined in the proof of Theorem 1). Then the deviation
to �′

i ∈ Pi[σ;h�hj�hk] and �′
j ∈ Pj[σ;h�hj] violates the reallocation-proofness condi-

tion.39 �

7. Conclusion

We study allocation and exchange in environments without transfers and with single-
unit demands. Addressing the central concern of both market-design practice and its
theory, we construct the full class of group strategy-proof and Pareto-efficient mecha-
nisms.40 Our construction relies on the introduction of brokers to the analysis of al-
location and exchange. Suppose some (possibly none) agents and objects are already
matched, and consider the unmatched agents and objects: a broker of an object is the
agent who obtains his second choice whenever all agents rank the brokered object as
their top choice. Our key insight is that every unmatched house either has a uniquely
determined broker or a uniquely determined owner (that is, an agent who obtains this
house whenever he prefers it over other outcomes).

Brokers can be useful beyond allowing us to construct the full class of strategy-proof
and efficient mechanisms. In asymmetric settings, we may want to use brokered trading
cycles instead of top trading cycles because of equity or other considerations. For in-
stance, consider a manager who assigns n tasks h1� � � � �hn to n employees i1� � � � � in with
strict preferences over the tasks. The manager wants the allocation to be Pareto efficient
with regard to the employees’ preferences. Within this constraint, she would like to avoid
assigning task hn to employee in (for instance, this employee may be known to be less
proficient than the other employees at this task). That is, if there is a Pareto-efficient

39As in the case of Svensson’s result, here we prove Pápai’s result for the case when there are more houses
than agents, but neither Pápai’s result nor our argument hinges on this assumption; see the Supplement for
details.

40One of our corollaries characterizes TTC; for later such characterizations, see Abdulkadiroğlu and Che
(2010), Morrill (2013), Dur (2013), Dur and Ünver (2015), Tang and Zhang (2016), and Pycia (2016).
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matching that avoids assigning hn to in, she would like to choose it. Because she does
not know employees’ preferences, she wants to use a group strategy-proof mechanism.

The use of brokerage rights allows the manager to improve the outcome of agent in
over any top-trading-cycles mechanism. Indeed, to use one of the top-trading-cycles
mechanisms of Pápai (2000), the manager would need to initially endow employees
i1� � � � � in−1 with all the tasks, and the manager can allow in to inherit some task only
after either (i) all other employees are already matched, or (ii) task hn is matched. The
trading-cycles mechanism that modifies such a top-trading-cycles mechanism by en-
dowing employee in with initial brokerage rights over hn improves in’s allocation and
satisfies the constraints of the manager’s problem.

The use of brokerage rights also allows the manager to treat the employees more
equitably than is possible under top trading cycles. In an earlier draft, we showed that
a trading-cycles mechanism in which in is the permanent broker of hn and every other
agent is an owner of one of the remaining tasks is more equitable—in the sense of strict
Lorenz dominance (Lorenz 1905)—than any top-trading-cycles mechanism.41

Trading cycles with brokers are useful in maximizing many other social welfare cri-
teria. In fact, as discussed in Pycia and Ünver (2016), the class of trading-cycles mecha-
nisms is exactly the class of mechanisms that are individually strategy-proof and always
select the efficient outcome with respect to a social ranking satisfying Arrovian postu-
lates.

Appendix A: Proof of individual strategy-proofness of TC

The first part of the following lemma is used in the proof of individual strategy-
proofness, and the second part is used in the proof of non-bossiness of TC.

Lemma 4. Letψc�b be a TC mechanism, � ∈ P, and n≥ 2. If a chain h1 → i1 → h2 → ·· · →
hn → in forms in some round of ψc�b, then ψc�b(in)�in h1. If, additionally, ψc�b(in)= h1,
then ψc�b(i�)= h�+1 for �= 1� � � � � n− 1 and either the cycle h1 → i1 → h2 → ·· · → hn →
in → h1 forms in some round of ψc�b or else n= 2 and the cycles h2 → i1 → h2 and h1 →
i2 → h1 form in two subsequent rounds of ψc�b.

Proof. First suppose that in round r for each � ∈ {1� � � � � n} agent i� owns house h�. R4
implies that the chain h1 → i1 → h2 → ·· · → hn → in continues forming in subsequent
rounds as long as in is unmatched. Thus, at the round agent i leaves, he is matched with
a house at least as good as h1, and the first part of the lemma obtains. In addition, if in

is matched with h1, then he leaves in the cycle h1 → i1 → h2 → ·· · → hn → in → h1, and
the reminder of the lemma obtains.

Second, suppose there is � ∈ {1� � � � � n} such that i� brokers h� in round r. Because
all agents in the chain other than i� have ownership rights, R4 implies that the chain
h′ = h1 → i1 → h2 → ·· · → hn → in forms in subsequent rounds as long as i� continues

41For further development of our Lorenzian approach to equity in deterministic allocation without trans-
fers, see Harless and Manjunath (2016) and Harless (2015); for other approaches, see Hakimov and Kesten
(2014) and Morrill (2015a).
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brokering h� and in+1 is unmatched. If i� continues to broker h� until the round in is
matched, then in this round the cycle h1 → i1 → h2 → ·· · → hn → in → h1 is matched,
and the lemma obtains. Suppose, thus, that i� brokers h� between round r and some
round s− 1 ≥ r but not at round s, and that in is still unmatched at s. Other agents in the
cycle of i� are owners at both rounds s′′ − 1 and s′′. By R5, each of these owners becomes
the owner of h� in round s′′, implying that there is only one such owner and that n= 2.
By R1 and R5, in round s′′ the unique previous owner owns both houses: his previously
owned house and the ex-brokered house. There are two subcases: in round s either i1

owns both h1 = h′ and h2 or i2 does. In the former subcase, i1 leaves with h2 in round
s in a single-agent cycle, and R6 implies that i2 owns h1 in round s + 1 (broker-to-heir
transition) and, hence, R1 yields the lemma. In the latter subcase, i2 owns h1 in round
s′′ and, by R1, leaves with a house at least as good as h1, and the first part of the lemma
obtains. If, now, i2 leaves with h1, then he leaves in a single-agent cycle; furthermore R6
then implies that i1 owns h2 after i1 left. Since h1 is already matched, we conclude that
i1 is matched with h2 in a single-agent cycle, and the reminder of the lemma obtains. �

Proof of the Individual Strategy-Proofness of TC. Let ψc�b be a TC mechanism
and let � be a preference profile. By σs−1[�] we denote the submatching of agents and
houses matched before round s of ψc�b when agents submitted preference profile �.

Fix agent i ∈ I. We need to show that i cannot benefit from submitting �′
i 
= �i while

the other agents submit �−i. Let s be the round i leaves submitting �i and let h be the
house he is matched to. Let s′ be the round i leaves submitting �′

i and let h′ be the house
he is matched to. By Lemma 3, at round min(s� s′) the same houses and agents are in the
market and the control rights are the same at both �i and �′

i. We consider two cases.
Case s > s′. In round s′ = min(s� s′) under �′

i, agent i points to house h′ = h1 that
points to some agent i1 that points to � � � that points to some house hn that points to
agent i = in, and this cycle leaves. If n = 1, then i is the owner of h′ in round s′ and R1
yields the individual strategy-proofness. Suppose n≥ 2. The chain h′ = h1 → i1 → h2 →
·· · → hn → in = i forms in round s′ under �, and Lemma 4 implies that when agent i
reports the true ranking, he is matched with a house he weakly prefers over h′. Thus, the
individual strategy-proofness obtains.

Case s ≤ s′. If i is not a broker at time s = min(s� s′) under �i or else he prefers some
other house unmatched at σs−1[�] over the brokered house, then submitting �i gives
agent i his top choice house among houses remaining in round s, and he cannot be
better off submitting �′

i. Thus, assume that i is a broker in round s under �i and that
the brokered house, denoted e, is his top choice remaining house. Under �i, he leaves
with his second-best remaining house. Thus, there is an agent j who is matched with e
in round s. By R1, in this round, j is an owner of some house hj and e is his top choice
house. By Lemma 3, if i submits �′

i, then he is still the broker of e and j is still the owner
of hj in round s. By way of contradiction, suppose that i is matched with e under �′

i.
Because j’s top choice is still e and because j remains an owner of hj until matched (by
R1), this agent stays unmatched as long as e is unmatched. Agent i is not the broker of
e in round s′ because he leaves with e in this round and a broker cannot leave with the
brokered house while owner j wants it. There is thus a round s′′ ∈ {s+ 1� � � � � s′} at which
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agent i stops being the broker of e. Because j is an owner of hj at both s′′ − 1 and s′′, he
would have inherited e at s′′ by R5. But e is j’s top choice in round s and hence s′′, and
hence j would have left with e at s′′; a contradiction. �

Appendix B: Proof of non-bossiness of TC

As before, ψc�b is a TC mechanism. Fix an agent i∗ ∈ I and two preference profiles � =
[�i∗��−i∗ ] and �′ = [�′

i∗��−i∗ ] such that ψc�b[�′](i∗) = ψc�b[�](i∗). Let h∗ be the house
i∗ obtains, and let s be the round he leaves submitting �i∗ and let s′ be the time he leaves
submitting �′

i∗ . We refer to cycles formed under � as �-cycles, and to cycles formed

under �′ as �′-cycles, and we use the σs−1[�] notation introduced in Appendix A.42

By symmetry, it is enough to consider the case s ≤ s′. So as to show that ψc�b[�](i) =
ψc�b[�′](i) for all i ∈ I, we prove the following stronger statement.

Inductive hypothesis: If a cycle h1 → i1 → h2 → ·· · → hn → in → h1 of length n ∈
{1�2� � � �} forms and is removed at round r under preference profile �, then under pref-
erence profile �′ at least one of the following three possibilities obtains:

(i) The same cycle h1 → i1 → h2 → ·· · → hn → in → h1 forms.

(ii) We have n= 2 and two cycles form:

• We have h1 → i2 → h1, or else g→ i2 → h1 → i→ g for some agent i 
= i2 and
some house g 
= h1, and

• We have h2 → i1 → h2, or else h→ i1 → h2 → j→ h for some agent j 
= i1 and
some house h 
= h2.

(iii) We have n= 1 and the cycle h→ i1 → h1 → j→ h forms for some agent j 
= i1 and
house h 
= h1.

By Lemma 3, our hypothesis is true for all r < s. The proof for r ≥ s proceeds by
induction over round r.

Initial step. Consider r = s. Under �, some house h1∗ points to agent i∗ = i1∗ who
points to house h∗ = h2∗ that points to some agent i2∗ that points to � � � that points to
some agent in∗ that points to house h1∗, and the cycle h1∗ → i1∗ → h2∗ → · · · → hn∗ → in∗ → h1∗
is removed at round s. By Lemma 3 all agents from Iσs[�] − {i1∗� � � � � in∗} are matched by
σs[�′] in the same way as in σs[�]. If n = 1, then i∗ is the owner of h∗ under � and, by
Lemma 3, under �′; under both profiles he leaves with it in a single-agent cycle. If n≥ 2,
then Lemma 3 implies that the chain h∗ = h2∗ → · · · → hn∗ → in∗ → h1∗ → i1∗ = i∗ forms at
round s under �′, and Lemma 4 yields the inductive hypothesis.

Inductive step. Take any round r > s such that σr[�] − σr−1[�] is nonempty, and
assume that the inductive hypothesis is true for all rounds up to r − 1. Take any cycle
that forms in round r under �, say h1 → i1 → h2 → ·· · → hn → in → h1, where n ≥ 1,

42Recall that in cycles of length n the superscripts on houses and agents are modulo n, that is, in+1 = i1

and hn+1 = h1.
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i� ∈ I, and h� ∈H for � = 1� � � � � n. Since i∗ is matched before round r, agents i1� � � � � in

have the same preferences in both profiles � and �′.

Claim 1. (i) If agent j and house h are unmatched at submatchings σ , σ ′, and j controls
h at σ but not at σ ∪ σ ′, then j brokers h at σ . (ii) If, additionally, agent j′ and house h′
are unmatched at submatchings σ , σ ′, and, at σ ′, agent j controls h and agent j′ owns h′,
then j 
= j′, j′ owns h and h′ at σ ∪σ ′, and j brokers h at σ ′ and owns h′ at σ ∪σ ′ ∪ {(j′�h)}.

Proof. Part (i) follows from R4. To prove (ii), notice that R4 implies that j brokers h at
σ ′ and, hence, j 
= j′. R4 also implies that j′ owns h′ at all submatchings between σ ′ and
σ ∪ σ ′. Since j stops brokering h at a submatching between σ ′ and σ ∪ σ ′, R5 implies
that j′ owns h at σ ∪ σ ′, and R6 implies that j owns h′ at σ ∪ σ ′ ∪ {(j′�h)}. �

Claim 2. Under �′, all houses i� prefers over h�+1, except possibly h�, are matched with
agents other than i�. If i� is a σr−1(�)-owner, then there is no exception: under �′, all
houses i� prefers over h�+1 are matched with agents other than i�.

Proof. Consider the run of the algorithm under �′. If i� is a σr−1[�]-owner, then all
houses i� prefers over h�+1 are matched before round r under �. The inductive assump-
tion thus implies that they are also matched with agents other than i� under �′. Simi-
larly, if i� is a σr−1[�]-broker, then all houses i� prefers over h�+1, except possibly h�, are
matched before round r under �, and the inductive assumption yields the claim. �

Let t be the earliest round in which one of the houses h1� � � � �hn is matched under �′;
let h1 be a house matched in round t under �′, and let ν = σr−1[�]∪σt−1[�′]. By Claim 2,
all agents i1� � � � � in are unmatched at σt−1[�′] because all houses h1� � � � �hn are. Thus,
all these agents and houses are unmatched at ν.

Claim 3. Agent i1 cannot own h1 at one of the submatchings σr−1[�] or σt−1[�′] and
broker this house at the other.

Proof. Suppose i1 owns h1 at σr−1[�] and brokers it at σ1[�′]. Then there exist some
agent j and house h such that h→ j → h1 → i1 is part of the cycle occurring in round t
under �′. Because h1 is unmatched under σr−1[�], so is j by the inductive assumption.
Thus, the inductive assumption also implies that h is unmatched under σr−1[�] and, by
R1, j owns h at all submatchings between σt−1[�′] and ν. Since i1 loses brokerage of h1

between σt−1[�′] and ν, R5 and R4 imply that j owns h1 at ν; a contradiction. The proof
that i1 cannot own h1 at σt−1[�′] and broker it at σr−1[�] is analogous.43 �

Let j1 be the agent controlling house h1 at σt−1[�′]. We may assume that j1 
= i1.
Indeed, suppose j1 = i1, that is, i1 controls h1 at σt−1[�′], and consider three cases:

43Except that we do not need to work to show that one of the owners in the cycle of h1 under � is un-
matched at σt−1[�′].
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• If n= 1, then i1 owns h1 at σr−1[�] and, by R4, at ν as well. By Claim 3, i1 owns h1

at σt−1[�′] and, by Claim 2, he points to h1 and is matched with it. Part (i) of the
inductive hypothesis is thus satisfied.

• If n ≥ 2 and i1 prefers h2 over h1, then, by Claim 2, he points to it at σt−1[�′] (he
cannot broker it since he controls h1) and house h1 is matched in a cycle that con-
tains h1 → i1 → h2 → ·· · .

• If n≥ 2 and i1 prefers h1 over h2, then i1 is the broker of h1 at σr−1[�]. By Claim 3,
i1 brokers h1 at σt−1[�′]. By Claim 2, i1 points to h2 (as he cannot point to h1) and
house h1 is matched in a cycle that contains h1 → i1 → h2 → ·· · .

Thus if j1 = i1, then either part (i) of the inductive hypothesis is satisfied or the cycle
of h1 at �′ contains h1 → i1 → h2 → ·· · . In the latter case, we define j2 to be the agent
controlling h2 at σt−1[�′] and repeat the above procedure for h2. In this way, either we
prove that part (i) of the inductive hypothesis is satisfied or we find k such that ik 
= jk.
In the latter case, given the symmetry, we can shift the names so that k= 1 and, hence,
i1 
= j1 as required. To conclude the proof, consider two cases.

Case i1 owns h1 at σr−1[�]. By R4, he then owns h1 at ν. Suppose all agents in the �′-
cycle of h1 are unmatched at σr−1[�]; the inductive assumption implies that all houses
in this cycle are also unmatched at σr−1[�]. By R4, agent j1 is the broker of h1 at σt−1[�′]
and loses this right between σt−1[�′] and ν. Hence, there is another agent j0 
= j1 and
a house h0 such that h0 → j0 → h1 → j1 is part of the cycle of h1 under �′. By R4 and
R5, there can be at most one other agent in this cycle because j1 loses brokerage rights
over h1 while all agents and houses in this cycle remain unmatched. Thus, the cycle is
h0 → j0 → h1 → j1 → h0. By R5 and R4 again, j0 owns h1 at ν; hence j0 = i1. Thus i1 gets
h1 under �′ in round t. However, as i1 is both a σr−1[�]-owner and a σt−1[�′]-owner,
Claim 2 implies that he would point to h2, not h1, under �′ in round t, a contradiction.

Thus, at least one agent in the �′-cycle of h1 is matched at σr−1[�]. By the inductive
assumption, n ∈ {1�2} and the �′-cycle of h1 contains one or two agents. The cycle of h1

under �′ cannot be h1 → j1 → h1 as then the inductive assumption would imply that j1

and h1 were matched at σr−1[�]. Thus, there is an agent j0 
= j1 and house h0 
= h1 such
that h0 → j0 → h1 → j1 → h0 is the cycle of h1 under �′ . By the inductive assumption,
agent j0 cannot be matched at σr−1[�]; hence agent j1 and house h0 are. By R6, j0 owns
h1 at σt−1[�′] ∪ {(j1�h0)} ⊂ ν. Since j0 is unmatched at ν, R4 implies he owns h1 at ν. As
i1 also owns h1 at ν, we conclude j0 = i1. Thus, h0 → i1 → h1 → j1 → h0 is the cycle of h1

under �′. If n= 2, then being a σr−1[�]-owner, i1 prefers h2 over h1. As h2 is unmatched
at σt−1[�′], we conclude that i1 brokers h2 at this submatching. Thus, h0 = h2, a contra-
diction as h0 is matched and h2 is unmatched at σr−1[�]. We can conclude that n = 1
and part (iii) of the inductive hypothesis is satisfied.

Case i1 brokers h1 at σr−1[�]. In particular, n≥ 2, and agent i2 is the σr−1[�]-owner
of h2.

First, consider how h1 is matched under �′. Let h0 → j0 → h1 → j1 be part of the
cycle of h1 in round t under �′; this is without loss of generality as we allow h0 = h1

and j0 = j1. By the inductive assumption, j0 is unmatched at σr−1[�]. The following
subcases are possible.



310 Pycia and Ünver Theoretical Economics 12 (2017)

• All houses and agents in the cycle of h1 under �′ are unmatched at σr−1[�].
First, suppose j1 brokers h1 at σt−1[�′]. Then j0 
= j1, h0 
= h1, and j0 owns house

h0 at σt−1[�′]. Either j1 or i1 exits brokerage between σt−1[�′] or σr−1[�], respec-
tively, and ν, as both of them cannot broker it at ν. Depending on whether j1 or
i1 loses brokerage rights, by R5 there are only two agents in the cycle of h1 under
�′ or �, respectively, and j0 or in owns h1 at ν, respectively. However, then neither
j1 nor i1 can broker h1 at ν, implying that both lose brokerage rights and, hence,
h1 is owned by both j0 and in at ν. Thus, j0 = in and n= 2. We conclude that i2 is
matched with h1 under �′, and the cycle he gets matched in has two agents, i.e.,
h0 → i2 → h1 → j1 → h0.

Second, suppose j1 owns h1 at σt−1[�′]. Then R4 implies that j1 owns h1 at ν.
Thus, i1 loses his brokerage right between σr−1[�] and ν. By R5, there could be
at most one σr−1[�]-owner still not matched at ν. Hence, n = 2 and in = i2 is the
remaining owner. By R4 and R5, h1 is owned by i2 at ν. Because h1 is also owned
by j1 at ν, we have j1 = i2. By Claim 2, h1 is the best house that i2 can get under �′.
Therefore, the cycle of h1 in round t under �′ is h1 → i2 → h1.

• At least one agent or house in the cycle of h1 under �′ is matched at σr−1[�]. By
the inductive assumption, n= 2, j1 and h0 are matched at σr−1[�] while j0 and h1

are not, and the cycle of h1 under �′ is h0 → j0 → h1 → j1 → h0. R6 implies that j0

owns h1 at σt−1[�′] ∪ {(j1�h0)} and, hence, by R4, at ν. Then i1 leaves brokerage of
h1 between σr−1[�] and ν. As i2 owns h2 at σr−1[�], R5 and R4 imply that i2 owns
h1 at ν. Thus, i2 = j0, and the cycle of h1 at �′ is h0 → i2 → h1 → j1 → h0.

In all subcases, n = 2 and the second part of the inductive hypothesis is satisfied for i1

and h2.
Second, consider how h2 is matched under �′. Because i1 brokers h1 and i2 owns

h2 at σr−1(�), R6 implies that i1 owns h2 at σr−1[�] ∪ {(i2�h1)} and, hence, by R4, at
ν ∪ {(i2�h1)}. Let t2 ≥ t be the round in which h2 is matched under �′. Because h1 is
matched with i2 under �′, Claim 2 implies that i1 is unmatched at t2. Suppose j′ → h2 →
j2 is part of the cycle of h2 under �′. Let ν2 = σr−1[�] ∪ σt2−1[�′] ∪ {(i2�h1)}. Because
h2 is unmatched at σr−1[�] and j′ matches with h2 under �′, the inductive assumption
implies that j′ is unmatched at σr−1[�] and, hence, at ν2. Since ν2 ⊇ ν, R4 implies that i1

owns h2 at ν2. The following subcases are possible.

• i1 = j2. If i1 brokers h2 at σt
2−1[�′], then i1 
= j′ and j′ is an owner at σt

2−1[�′].
Since i1 loses brokerage rights over h2 between σt

2−1[�′] and ν2 (as he owns it at
ν2), R5 and R4 imply that j′ owns h2 at ν2, contradicting that i1 does. We conclude
that i1 owns h2 at σt

2−1[�′]. Because h1 is matched with i2 and not i1 under �′,
Claim 2 implies that h2 is matched in the cycle h2 → i1 → h2 under �′.

• i1 
= j2 and all houses and agents in the cycle of h2 under �′ are unmatched at
σr−1[�]. As i1 owns h2 at ν2, R4 implies that j2 is the broker of h2 at σt

2−1[�] and
j′ 
= j2. Broker j2 loses his brokerage right between σt

2−1[�′] and ν2, and, by R5, j′
is the only owner in the cycle of h2 under �′. By R5 and R4, j′ owns h2 at ν2 and,
hence, j′ = i1 . Thus, the cycle of h2 under �′ is h′ → i1 → h2 → j2 → h′.
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• i1 
= j2 and at least one agent or house in the cycle of h2 under �′ is matched at
σr−1[�]. By the inductive hypothesis, the cycle of h2 under �′ is h′ → j′ → h2 →
j2 → h′, j′ is unmatched (because so is h2), and j2 is matched with h′ at σr−1[�].
By R6, j′ owns h2 at σt

2−1[�′] ∪ {(j2�h′)} ⊂ ν2 and, by R4, he owns it at ν2. Because
i1 owns h2 at ν2, we conclude that i1 = j′, and the cycle of h2 under �′ is h′ → i1 →
h2 → j2 → h′.

In all subcases, the second part of the inductive hypothesis is satisfied for i1 and h2.

Appendix C: Proof that group strategy-proof and Pareto-efficient

mechanisms are TC

Let ϕ be a group strategy-proof and Pareto-efficient mechanism. We are to prove that ϕ
may be represented as a TC mechanism. We first construct the candidate control-rights
structure (c�b) and then show that the induced TC mechanism ψc�b is equivalent to ϕ.

We use the following notation in our construction. Let i ∈ I, σ ∈ M, n ≥ 0, and
h1�h2� � � � �hn ∈Hσ . Pi[σ�h1� � � � �hn] is the set of preferences �i of agent i such that the
following statements hold:

• If i ∈ Iσ , then σ(i)�i g for all g ∈H − {σ(i)}.

• If i ∈ Iσ , then h1 �i h2 � · · · �i hn �i g �i g′ for all g ∈Hσ −{h1� � � � �hn} and g′ ∈Hσ .

If i is not matched at σ , then Pi[σ�h1� � � � �hn] is the set of preferences that rank h1� � � � �hn

in this order and above other houses unmatched at σ , and that rank unmatched houses
above houses matched at σ . If i matched at σ , then Pi[σ�h1� � � � �hn] is the set of prefer-
ences that rank agent i’s σ-match above all other houses. A generic preference profile
in P[σ�h1� � � � �hn] is denoted �σ;h1�����hn ; when σ is fixed, we may suppress it in this no-
tation and write �h1�����hn . Also, when σ is fixed, we may write 〈h1� � � � �hn� � � �〉 instead
of Pi[σ�h1� � � � �hn]. The profile domain P[σ�h1� � � � �hn] ⊆ P is the Cartesian product of
Pi[σ�h1� � � � �hn] over all i ∈ I, and P∗[σ�h] = ⋃

h′∈Hσ−{h} P[σ�h�h′] is the subset of P[σ�h]
in which unmatched agents rank the same house as their second choice.

Using this notation, we state formally the following key concepts introduced in the
main body of the paper. A house h ∈Hσ is an owned* house at σ ∈ M if ϕ[�]−1(h) = i

for fixed i ∈ Iσ and all � ∈ P[σ�h]; we refer to i as the owner* of h at σ . A house e ∈Hσ is
a brokered* house at σ ∈ M if there exist some � and �′ ∈ P∗[σ�e] such that ϕ[�]−1(e) 
=
ϕ[�′]−1(e). Agent k is the broker* of e at σ if e is a brokered* house at σ and house
ϕ[�](k) is the second choice of k in �k for all � ∈ P∗[σ�e]. Observe that a house cannot
be both owned* and brokered* at the same submatching.44

Pápai (2000) studied the following natural concept of envy: agent j envies i at � if
ϕ[�](i)�j ϕ[�](j). She proved the following lemma.

Lemma 5 (Pápai 2000). For all i� j ∈ I, all � ∈ P, and all �∗
j ∈ Pj , if j envies i at � and

ϕ[�∗
j ��−j](i) 
= ϕ[�](i), then ϕ[�](i)�i ϕ[�∗

j ��−j](i).
44It may appear from the definitions that there is a third option for an unmatched house besides being

owned* and brokered* at a submatching. However, Theorem 2, proven below, shows that these are the only
two options.
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Pápai also proved that for all i� j ∈ I, � ∈ P, and �∗
j ∈ Pj , if j envies i at � and

ϕ[�∗
j ��−j](i) 
= ϕ[�](i), then there exists �∗

i ∈ Pi such that ϕ[�∗
i ��∗

j ��−{i�j}](i) =
ϕ[�](j). We use this insight to obtain the following lemma.

Lemma 6. For all i� j ∈ I, all � ∈ P, and all �∗
j ∈ Pj , if j envies i at �, then ϕ[�∗

j ��−j](i)�i
ϕ[�](j).

Proof. If ϕ[�∗
j ��−j](i)= ϕ[�](i), then Pareto efficiency of ϕ(�) implies that i does not

envy j, and the lemma follows. If ϕ[�∗
j ��−j](i) 
= ϕ[�](i), then the lemma follows from

the insight of Pápai stated above and the strategy-proofness of ϕ. �

C.1 Proof of Theorem 2: The starred control-rights structure is well defined

Theorem 2 tells us that any house is either owned* or brokered* and, hence, the starred
control rights are defined for each house. We prove this result through several lemmas.

Lemma 7. If σ ∈ M, i ∈ Iσ h ∈Hσ , and � ∈ P[σ�h], then, ϕ[�](i)= σ(i).

Proof. Suppose that an agent in i ∈ Iσ does not get σ(i) at ϕ[�]. Then we can create
a new matching by assigning all agents in Iσ who get a house in Hσ a house in Hσ that
was assigned to an agent in Iσ , all other agents j in Iσ the house ϕ[�](j), and all agents j
in Iσ the house σ(j). Because each agent in Iσ ranks houses inHσ lower than houses in
Hσ , and each agent in Iσ ranks his σ-house as his first choice, this new matching Pareto
dominates ϕ[�], contradicting that ϕ is Pareto efficient. �

Lemma 8. If σ ∈ M, e�h ∈Hσ , and h 
= e, then there exists some agent i ∈ Iσ such that
ϕ[�](i)= e for all � ∈ P[σ�e�h].

Proof. By way of contradiction, suppose that ���′ ∈ P[σ�e�h] are such that ϕ[�](i)=
e 
= ϕ[�′](i) for some agent i ∈ Iσ . Without loss of generality, we assume that � and
�′ differ only in the preferences of a single agent j ∈ Iσ . Let g = ϕ[�](j). By strategy-
proofness for j, we have j 

= i and g 
= e. Moreover, by Maskin monotonicity, if it were
true that g = h, then ϕ[�′] = ϕ[�] would be true, contradicting that ϕ[�′] 
= ϕ[�]. Thus,
g 
= h. We may further assume that �i ∈ 〈e�h�g� � � �〉 ⊆ Pi[σ�e�h], because Maskin mono-
tonicity for i implies that ϕ(�) does not depend on how i ranks houses below e, and
strategy-proofness for i implies that we still have e 
= ϕ[�i��′

−i](i)= ϕ[�′](i).
Let g′ = ϕ[�′](j). By nonbossiness, g′ 
= g, and by strategy-proofness, g′ 
= e�h.

Maskin monotonicity for j allows us also to assume that �j ∈ 〈e�h�g�g′� � � �〉 and �′
j ∈

〈e�h�g′� g� � � �〉.
Let i′ ∈ Iσ be the agent who gets e at �′ and let k ∈ Iσ be the agent who gets h at �.

Notice that such agents exist because of Pareto efficiency. Because neither i nor j gets
e at �′, we have i′ 
= i� j. Furthermore, we saw above that j does not get h at �, and
Lemma 5 implies that neither i nor i′ gets h at �. Thus k 
= i� i′� j.

Claim 1. (i) Under �, ϕ[�](i)= e, ϕ[�](j)= g, and ϕ[�](k)= h.
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(ii) Under �′, ϕ[�′](i′)= e, ϕ[�′](j)= g′, ϕ[�′](i)= g, and ϕ[�′](k)= h.

Proof. The first five equalities were proved or assumed above and are listed for con-
venience only. The last two equalities require an argument. First, we show that
ϕ[�′](i)= g. Because agent j envies i at � and ϕ[�](j)= g, Lemma 6 implies that i gets
at least g at �′ = (�−j��′

j). Hence, ϕ[�′](i) ∈ {h�g}. Furthermore, Lemma 5 tells us that
j cannot envy i at �′. Hence, ϕ[�′](i)= g.

Second, we show that ϕ[�′](k) = h. Consider an auxiliary preference ranking �̃k ∈
〈e�h�g� � � �〉 that agrees with �k except possibly for the relative ranking of g. Maskin
monotonicity implies that ϕ[�̃k��−k] = ϕ[�]. Thus, agent j envies k at [�̃k��−k]
and ϕ[�̃k��−k](j) = g, and Lemma 6 implies that ϕ[�̃k��−k�j��′

j](k) �k g. Strategy-
proofness for k implies that k cannot get e at [�̃k��−{k�j}��′

j]. To prove that k gets h
it is thus enough to show that i gets g at [�̃k��−{k�j}��′

j]. The proof is analogous to
the proof of the equality ϕ[�′](i) = g above: i gets at least g at [�̃k��−{k�j}��′

j], and,
because j cannot envy i at [�̃k��−{k�j}��′

j] (by Lemma 5), we must have ϕ[�̃k��−{k�j}�
�′
j](i) = g. We have thus shown that ϕ[�̃k��−{k�j}��′

j](k) = h and, by Maskin mono-
tonicity, ϕ[�̃k��−{k�j}��′

j] = ϕ[�k��−{k�j}��′
j] = ϕ[�′]. Thus, ϕ[�′](k)= h and the claim

is proved. �

The above claim and Maskin monotonicity allow us to assume that �k ∈ 〈e�h�g� � � �〉.
We fix three additional auxiliary preference rankings: �∗

i ∈ 〈h�e�g� � � �〉, �∗
i′ ∈ 〈h�e� � � �〉,

and �∗
k ∈ 〈e�g�h� � � �〉.

Claim 2. (i) We have ϕ[�∗
i ��−i](i)= h and ϕ[�∗

i′��′
−i′ ](i′)= h.

(ii) We have ϕ[�∗
i ��−i](j)= g.

Proof. (i) By strategy-proofness for i, ϕ[�∗
i ��−i](i) �∗

i e. Everybody else in Iσ ranks e
over h. Thus, by Lemma 7 and Pareto efficiency, i should get h at [�∗

i ��−i]. The sym-
metric argument yields ϕ[�∗

i′��′
−i′ ](i′)= h.

(ii) By Maskin monotonicity for i, ϕ[�∗
i ��′

−i] = ϕ[�′].45 Thus, j gets g′ at [�∗
i ��′

−i].
By strategy-proofness for j, agent j gets at least g′ and no house better than g at [�∗

i ��−i]
(recall that between �−i and �′

−i only j changes preferences)� Thus, to prove the claim
that j gets g at [�∗

i ��−i], it is enough to show that he cannot get g′ at [�∗
i ��−i]. Assume

to the contrary that j gets g′ at [�∗
i ��−i]. Then nonbossiness would imply that i gets h at

[�∗
i ��′

−i]. By strategy-proofness for i, he gets at least h at �′. But then j envies i both at
� and �′ = [�′

j��−j], and, by Lemma 5, i must get the same house at these two profiles.
This contradiction proves Claim 2. �

Claim 3. (i) We have ϕ[�∗
k��−k](k)= g.

(ii) We have ϕ[�∗
k��′

−k] = ϕ[�∗
k��−k].

45In more detail, ϕ[�′](i) �′
i a implies ϕ[�′](i) �∗

i a for all houses a; hence, [�∗
i ��′

−i] is a ϕ-monotonic
transformation of �′, and the Maskin monotonicity of ϕ gives ϕ[�∗

i ��′
−i] = ϕ[�′].
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Proof. (i) Because k gets h at �, strategy-proofness implies that k cannot get e and
gets at least h at [�∗

k��−k]. Thus, k gets h or g at [�∗
k��−k]. Everybody else in Iσ ranks h

over g. Thus, by Lemma 7 and Pareto efficiency, agent k should get g at [�∗
k��−k].

(ii) Profiles [�∗
k��′

−k] and [�∗
k��−k] differ only in the preferences of agent j who

ranks g above g′ at �j and the other way at �′
j . We established in part (i) that j does

not get g at [�∗
k��−k]. Maskin monotonicity for j implies ϕ[�∗

k��′
−k] = ϕ[�∗

k��−k]. �

Claim 4. We have ϕ[�∗
k��−k](i)= e and ϕ[�∗

k��−k](i′)= h.

Proof. Because agent k envies agent i at �, Lemma 6 implies that i gets at least h =
ϕ[�](k) at [�∗

k��−k]. Hence ϕ[�∗
k��−k](i) ∈ {e�h}. Analogously, because agent k envies

agent i′ at �′, Lemma 6 implies that i′ gets at least h = ϕ[�′](k) at [�∗
k��′

−k]. Hence
ϕ[�∗

k��′
−k](i′) ∈ {e�h}. By Claim 3(ii), ϕ[�∗

k��−k](i′) ∈ {e�h}. Thus,

{
ϕ[�∗

k��−k](i)�ϕ[�∗
k��−k](i′)

} = {e�h}�

This equality implies that to prove the claim it is enough to show that ϕ[�∗
k�

�−k](i) = h and ϕ[�∗
k��−k](i′) = e cannot both be true. Suppose they are. By Maskin

monotonicity for i, ϕ[�∗
k��−k] = ϕ[�∗

k��∗
i ��−{k�i}]. This equivalence and Claim 3(i)

give ϕ[�∗
k��∗

i ��−{k�i}](k) = g. By strategy-proofness, agent k gets at least g and not e
at [�∗

i ��−i]. By Claim 2(i), we must thus have ϕ[�∗
i ��−i](k) = g. But this contradicts

Claim 2(ii). �

Claim 5. (i) We have ϕ[�∗
k��−k] = ϕ[�∗

k��∗
i′��−{k�i′}] = ϕ[�∗

k��∗
i′��′

j��−{k�i′�j}].
(ii) We have ϕ[�∗

k��∗
i′�′

−{k�i′}](k)= g.

Proof. The first equality of part (i) follows from Maskin monotonicity for i′ and Claim 4.
To prove the second equality of part (i), notice that at preference profile (�∗

k��−k) agent
j does not get e or h (by Claim 4), and he does not get g by Claim 3(i). Thus the second
equality follows from Maskin monotonicity for j. Now, part (ii) of the claim follows from
part (i) and Claim 3(i). �

Claim 6. We have ϕ[�∗
i′��′

−i′ ](i)= e.

Proof. Strategy-proofness for k and Claim 5(ii) imply that agent k gets at least g at
(�∗

i′��′
−i′) but does not get e. By Claim 2(i), k gets g at (�∗

i′��′
−i′). By nonbossiness for k

and part (ii) of Claim 5,

ϕ[�∗
i′��′

−i′ ] = ϕ[�∗
k��∗

i′��′
−{k�i′}]�

This equality and part (i) of Claim 5 imply that

ϕ[�∗
i′��′

−i′ ] = ϕ[�∗
k��−k]�

This equation and Claim 4 give us ϕ[�∗
i′��′

−i′ ](i)= e. �
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Claim 7. We have ϕ[�∗
i′��′

−i′ ](i) 
= e.

Proof. We first prove that ϕ[�∗
{i�i′}��′

−{i�i′}](i) 
= h. Suppose not. Then Maskin mono-
tonicity for i′ gives ϕ[�∗

i ��′
−i] = ϕ[�∗

{i�i′}��′
−{i�i′}] and, in particular, ϕ[�∗

i ��′
−i](i)= h. By

strategy-proofness for i, ϕ[�′](i)�i h, contradicting that ϕ[�′](i′)= e and ϕ[�′](k)= h,
and proving the required inequality.

Because �i pushes down the ranking of h in �∗
i , the just-proven inequality and

Maskin monotonicity for i give

ϕ[�∗
{i�i′}��′

−{i�i′}] = ϕ[�∗
i′��′

−i′ ]�

A symmetric argument implies that ϕ[�∗
{i�i′}��−{i�i′}](i′) 
= h and

ϕ[�∗
{i�i′}��−{i�i′}] = ϕ[�∗

i ��−i]�

Contrary to the claim we are proving, suppose that ϕ[�∗
i′��′

−i′ ](i) = e. Then the first
of the above-displayed equalities implies ϕ[�∗

{i�i′}��′
−{i�i′}](i) = e and, hence, j en-

vies i at [�∗
{i�i′}��′

−{i�i′}] = [�∗
{i�i′}��−{i�i′�j}��′

j]. This, however, leads to a contradiction
with Lemma 5, because Claim 2 and the second above-displayed equality imply that
ϕ[�∗

{i�i′}��−{i�i′�j}��j](i)= h. Thus, we have shown that ϕ[�∗
i′��′

−i′ ](i) 
= e. �

The contradiction between Claims 6 and 7 shows that the initial assumption
ϕ[�](i)= e 
= ϕ[�′](i) cannot be correct. �

Lemma 9 (The existence and uniqueness of a broker* for each brokered* house). Let
σ ∈ M and e be a brokered* house at σ . Then there exists an agent k ∈ Iσ who is the
unique broker* of e at σ .

Proof. Let σ ∈ M and e be a brokered* house at σ . We start with the following prepara-
tory claim.

Claim 1. If h�h′ ∈ Hσ − {e}, h′ 
= h, and ���′ ∈ P[σ�e�h�h′], then ϕ[�′]−1(h) =
ϕ[�]−1(h).

Proof. By Lemma 8� ϕ[�′]−1(e)= ϕ[�]−1(e). Let i = ϕ[�]−1(e). Also let �∗ and �′∗ be
monotonic transformations of � and �′, respectively, such that i ranks e first, all agents
in Iσ rank e below all houses in Hσ − {e}, and the relative rankings of all other houses
at �∗, � and �′∗, �′ are, respectively, the same. By Maskin monotonicity, ϕ[�∗′] = ϕ[�′]
and ϕ[�∗] = ϕ[�]. Also �∗��′∗ ∈ P[σ ∪ {(i� e)}�h�h′]. Thus, by Lemma 8, ϕ[�∗]−1(h) =
ϕ[�∗′]−1(h). Hence, ϕ[�′]−1(h)= ϕ[�′∗]−1(h)= ϕ[�∗]−1(h)= ϕ[�]−1(h). �

Claim 2. If h�h′ ∈ Hσ − {e}, h′ 
= h, � ∈ P[σ�e�h], �′ ∈ P[σ�e�h′�h], and ϕ[�′]−1(e) 
=
ϕ[�]−1(e), then ϕ[�′](k′)= h′ for agent k′ = ϕ−1[�](h).
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Proof. Let k′ = ϕ[�′]−1(h′) and �∗ ∈ P[σ�e�h′�h] be such that the only difference
between �∗ and � is the relative ranking of house h′. By Claim 1, ϕ[�∗]−1(h′) =
ϕ[�′]−1(h′)= k′ and Maskin monotonicity gives

ϕ[�∗
k′��−k′ ] = ϕ[�∗]�

In particular, ϕ[�∗
k′��−k′ ](k′) = h′. By strategy-proofness for k′, we have ϕ[�](k′) ∈

{h�h′}. By Lemma 8,

ϕ[�∗]−1(e)= ϕ[�′]−1(e)�

The two displayed equalities imply that ϕ[�∗
k′��−k′ ]−1(e)= ϕ[�′]−1(e). By the assump-

tion of the claim, ϕ[�]−1(e) 
= ϕ[�′]−1(e)= ϕ[�∗
k′��−k′ ]−1(e). By nonbossiness, agent k′

changes his own allocation while switching between the two profiles � and [�∗
k′��−k′ ],

implying that ϕ[�](k′)= h. �

Claim 3. If h�h′ ∈ Hσ − {e}, h 
= h′, � ∈ P[σ�e�h], and �′ ∈ P[σ�e�h′�h], then
ϕ[�′](k′)= h′ for agent k′ = ϕ−1[�](h).

Proof. If ϕ[�]−1(e) 
= ϕ[�′]−1(e), then Claim 3 reduces to Claim 2. Assume that
ϕ[�]−1(e) = ϕ[�′]−1(e). Because e is brokered* at σ , there exists some available out-
come h′′ 
= e at σ such that for some �′′ ∈ P[σ�e�h′′], we have ϕ[�′′]−1(e) 
= ϕ[�]−1(e)=
ϕ[�′]−1(e). By Lemma 8, h′′ 
= h, and we may assume that �′′ ∈ P[σ�e�h′′�h]. By Claim 2,
for k′ = ϕ[�]−1(h) we have ϕ[�′′](k′) = h′′. Claim 2 and ϕ[�′′](k′) = h′′ hence give us
ϕ[�′](k′)= h′. �

Claim 4. If h ∈Hσ − {e} and �, �′ ∈ P[σ�e�h], then ϕ[�]−1(h)= ϕ[�′]−1(h).

Proof. By Lemma 8, ϕ[�]−1(e) = ϕ[�′]−1(e). Because e is brokered* at σ , there exists
some available outcome h′′ 
= e at σ such that for some �′′ ∈ P[σ�e�h′′],

ϕ[�′′]−1(e) 
= ϕ[�]−1(e)= ϕ[�′]−1(e)�

By Lemma 8, h′′ 
= h, and by the same lemma, we may assume �′′ ∈ P[σ�e�h′′�h]. By
Claim 3, for k′ = ϕ[�]−1(h), ϕ[�′′](k′)= h′′, and as ϕ[�′′](k′)= h′′ we have ϕ[�′](k′)= h
by Claim 3 again. �

To complete the proof of the lemma, notice that e being brokered* implies that there
are at least two houses in Hσ − {e}. Let h�h′ ∈Hσ − {e}, h′ 
= h, be any two such houses.
Take �∗ ∈ P[σ�e�h�h′] and let k′ = ϕ[�∗]−1(h). Claim 3 implies that ϕ[�′](k′) = h′ for
all �′ ∈ P[σ�e�h′], and Claim 4 implies that k′ = ϕ[�]−1(h) for all � ∈ P[σ�e�h]. Thus, k′
obtains his second choice at any profile in P∗[σ�e] and, hence, this agent is the unique
broker* of e at σ . �

Lemma 10. Let σ ∈ M, i ∈ Iσ , and h ∈Hσ . If ϕ[�](i)= h for all � ∈ P∗[σ�h], then i owns*
h at σ .
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Proof. We start with two preparatory claims.

Claim 1. Suppose σ ∈ M, houses g and h ∈ Hσ are different, and agent i ∈ Iσ . If
ϕ[�′](i) = h for all �′ ∈ P[σ�h�g]. Then ϕ[�∗

i ��−i](i) = g for all �∗
i ∈ 〈g� � � �〉 and all

�−i ∈ P−i[σ�h].

Proof. Let �−i ∈ P−i[σ�h]. Take any �i ∈ 〈h�g� � � �〉. If ϕ[�](i) = h, then Pareto effi-
ciency and strategy-proofness imply that ϕ[�∗

i ��−i](i) = g for all �∗
i ∈ 〈g�h� � � �〉 and,

furthermore, by strategy-proofness, for all �∗
i ∈ 〈g� � � �〉. It remains to consider the case

ϕ[�](i) 
= h.
Take �′ ∈ P[σ�h�g] such that �′ and � coincide except for how the unmatched

agents rank house g. We have ϕ[�′](i) = h by the hypothesis of the claim. Two cases
are possible: ϕ[�](i) = g and ϕ[�](i) 
= g. If ϕ[�](i) = g, then by strategy-proofness,
ϕ[�∗

i ��−i](i) = g and we are done. Thus, in the remainder assume that there exists
some agent k = ϕ[�]−1(g) 
= i. By Maskin monotonicity, ϕ[�′

{i�k}��−{i�k}](i) = h and
ϕ[�′

{i�k}��−{i�k}](k)= g.
Let �∗

i ∈ 〈g�h� � � �〉. By strategy-proofness, agent i gets at least h at [�∗
i ��′

k��−{i�k}];
thus, by Pareto efficiency, agent i gets g. Recall that ϕ[�](i) ≺i g and ϕ[�](k) = g.
Thus, ϕ[�∗

i ��′
k��−{i�k}](k) 
= h because otherwise agents i and k could jointly improve

upon their ϕ[�] allocation by submitting [�∗
i ��′

k] at �, contradicting group strategy-
proofness. Thus, g �′

k ϕ[�∗
i ��′

k��−{i�k}](k) and, furthermore, Maskin monotonicity im-
plies that ϕ[�∗

i ��′
k��−{i�k}] = ϕ[�∗

i ��−i]. In particular, ϕ[�∗
i ��−i](i)= g. �

Claim 2. Suppose σ ∈ M, houses g and h ∈Hσ are different, and ϕ[�′]−1(h)= i ∈ Iσ for
all �′ ∈ P[σ�h�g]. If � ∈ P[σ�h] and there is some �′ ∈ P[σ�h�g] such that �k ∈ 〈h�g� � � �〉
for k= ϕ[�′]−1(g), then ϕ[�](i)= h.

Proof. By way of contradiction, suppose � ∈ P[σ�h] and there is some �′ ∈ P[σ�h�g]
such that �k ∈ 〈h�g� � � �〉 for k = ϕ[�′]−1(g) and yet ϕ[�](i) 
= h. By strategy-proofness,
we can choose �i ∈ 〈h�g� � � �〉. Furthermore, we can choose � and �′ so that they only
differ in the preferences of a single agent j ∈ Iσ and in how house g is ranked by the
agents.

Let �∗ ∈ P[σ�h] be the unique profile, such that �∗ and � differ only in the prefer-
ences of agent j, and �∗ and �′ differ only in how house g is ranked by the agents. No-
tice that j 
= k as otherwise Maskin monotonicity would imply that i gets h at �. Thus,
�∗
k ∈ 〈h�g� � � �〉, and Maskin monotonicity implies that ϕ[�∗](i)= h.

Let �′′ be the unique profile in P[σ�h�g] such that �′′ and � differ only in how house
g is ranked by agents. Let h′ be the house that j gets at �. Since j 
= k, it follows that
h′ 
= g. By strategy-proofness, h′ 
= h. Thus, Maskin monotonicity allows us to assume
that �′′

j ∈ 〈h�g�h′� � � �〉.
By Claim 1 and strategy-proofness, ϕ[�′′

j ��−j](i) equals either h or g. At the same
time, strategy-proofness implies that ϕ[�′′

j ��−j](j) equals either g or h′. In either
case, agent j prefers the allocation of agent i at [�′′

j ��−j]. If ϕ[�′′
j ��−j](i) = g, this

would be a contradiction of Lemma 3, as j could improve the allocation of i by switch-
ing from [�′′

j ��−j] to [�∗
j ��−j] = �∗. Hence, ϕ[�′′

j ��−j](i) = h and, by nonbossiness,
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ϕ[�′′
j ��−j](j)= g. However, k 
= j gets g at �′ and, by strategy-proofness, j cannot get it

at [�′′
j ��′

−j]. This is a contradiction because [�′′
j ��−j] = [�′′

j ��′
−j]. �

We are ready to finish the proof of the lemma. Fix σ ∈ M. We proceed by way of
contradiction. Let i ∈ Iσ be such that ϕ[�′](i) = h for all �′ ∈ P∗[σ�h]. Let � ∈ P[σ�h]
be such that ϕ[�]−1(h) 
= i. For all unmatched houses g 
= h at σ , define �h�g to be the
unique profile in P[σ�h�g] that differs from � only in how agents rank g.

Take a house g1 
= h unmatched at σ , and let k1 be the agent who gets g1 at �h�g1 . By
Claim 2, agent i gets h at any profile in P[σ�h] at which k1 ranks g1 second. Hence, by
Maskin monotonicity, i also gets h at any profile in P[σ�h] at which k1 gets g1.

Let g2 = ϕ[�](k1) and let k2 be the agent who gets g2 at �h�g2 . Because i does not get
h at �, the previous paragraph yields g2 
= g1 and k2 
= k1. As in the previous paragraph,
Claim 2 and Maskin monotonicity imply that i gets h at any profile in P[σ�h] at which k2
gets g2 or ranks g2 second.

Furthermore, we show that i gets h at any profile �′ ∈ P[σ�h] at which k2 ranks g1
second. Indeed, suppose �′

k2
∈ 〈h�g1� � � �〉 and i does not get h at �′. Let �′′

i ∈ 〈h�g1� � � �〉.
By Claim 1 and strategy-proofness, agent i gets g1 at [�′′

i ��′
−i]. By the previous paragraph

and strategy-proofness, k2 does not get h at [�′′
i ��′

−i], and thus k2 envies i at [�′′
i ��′

−i].
However, by the previous paragraph, k2 can improve the outcome of agent i, contrary to
Lemma 5. Thus, i gets h at any profile in P[σ�h] at which k2 ranks g1 second.

Let g3 be the house that k2 gets at � and let k3 be the agent who gets g3 at �h�g3 . As
above, we can show that i gets h at any profile in P[σ�h] at which k3 ranks g3 or g2 or g1
second.

Since the number of houses is finite, by repeating the procedure we arrive at an agent
kn who ranks one of the houses g1� � � � � gn second at �. That means that i gets h at �,
a contradiction that concludes the proof. �

The proof of Theorem 2 is a direct corollary of Lemmas 9 and 10 and the definitions
of owned* and brokered* houses.46

Lemmas 9 and 10 also imply the following theorem.

Theorem 6. If there is exactly one agent who owns* houses at σ , then there are no bro-
kered* houses at σ .

While there are no brokers* at submatchings with a single owner*, in R1–R6 we allow
such a possibility. For any control rights obeying R1–R6, there is another one in which
there are brokers only at submatchings with two or more owners. To construct such an
equivalent control-rights structure, simply set the control rights to be equal to the orig-
inal ones at all submatchings, except possibly submatchings in which there is exactly
one owner; in the latter submatchings make this unique owner the owner of all houses.
R6 guarantees that if there is a broker in a submatching with a single owner in the orig-
inal control-rights structure, then in the submatching that matches this single owner
with the originally brokered house, both the original and the equivalent control rights
give the original broker the ownership right over the remaining houses.

46The proof so far did not rely on the assumption that |H|> |I|.
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C.2 The starred control-rights structure satisfies R1–R6

Before proving R1–R6, we state and prove one more auxiliary result.

Lemma 11 (Relationship between brokerage* and ownership*). Let σ ∈ M, agent k bro-
ker* house e at σ , h ∈Hσ − {e}, and � ∈ P[σ�e�h]. Then there is an agent i ∈ Iσ − {k} such
that ϕ[�](i)= e, and either (i) i is the owner* of h at σ or (ii) |Hσ | = 3, and there exists a
third agent in Iσ who brokers* h at σ and i brokers* the remaining third house at σ .47

Proof. By Pareto efficiency, for any � ∈ P[σ�e�h] there is an agent i ∈ Iσ −{k} such that
i= ϕ[�]−1(e).

Claim 1. For all �e�h ∈ P[σ�e�h], ϕ[�e�h](i)= e and ϕ[�e�h](k)= h.

The first claim follows from Lemma 8, and the second from Lemma 9.
Because k brokers* e at σ , Claim 1 implies that there exist agents i� j ∈ Iσ and houses

g�h ∈Hσ such that j 
= i and g 
= h, as well as ϕ[�e�h](i) = e for all �e�h ∈ P[σ�e�h] and
ϕ[�e�g](j) = e for all �e�g ∈ P[σ�e�g]. Furthermore, ϕ[�e�h](k) = h and ϕ[�e�g](k) = g.
The pairs (i�h) and (j� g) play symmetric roles.

Claim 2. For all �h�ei and �e�h−i , ϕ[�h�ei ��e�h−i ](i)= h.

Proof. By strategy-proofness of ϕ, since ϕ[�e�h](i) = e, agent i gets at least e at [�h�ei �

�e�h−i ], and because all other agents in Iσ prefer e over h, the Pareto efficiency ofϕ implies

that ϕ[�h�ei ��e�h−i ](i)= h. �

Claim 3. For all �h�ek and �e�h−k , ϕ[�h�ek ��e�h−k ] = ϕ[�e�h].

Proof. Because ϕ[�e�h](k) = h, profile [�h�ek ��e�h−k ] is a monotonic transformation of

�e�h; thus, by Maskin monotonicity of ϕ, we have the desired result. �

Claim 4. For all �h�e{i�k} and �e�h−{i�k}, ifϕ[�h�e{i�k}��e�h−{i�k}](i)= h, thenϕ[�h�e{i�k}��e�h−{i�k}](k) 
= e.

Proof. For an indirect argument, suppose that ϕ[�h�e{i�k}��e�h−{i�k}](i) = h and ϕ[�h�e{i�k}�
�e�h−{i�k}](k) = e for some �h�e{i�k} and �e�h−{i�k}. Then ϕ[�h�ei ��e�h−i ](k) = e by the strategy-
proofness of ϕ. Because e is a brokered* house at σ , there exists some available out-
come g /∈ {e�h} at σ and some preference profile �e�g such that ϕ[�e�g](j)= e for some
available agent j /∈ {i�k} at σ . By Lemma 8, we may assume that each agent i′ ∈ Iσ ranks
outcomes other than g and h in the same way at �e�gi′ and �e�hi′ and that �e�g = �e�g�h
for some profile �e�g�h. Because k is the broker* of e at σ , we have ϕ[�e�g�h](k)= g. By

Maskin monotonicity, ϕ[�e�g�h] = ϕ[�e�g�h{i�k} ��e�h−{i�k}]. Now i gets a house weakly worse

than h at [�e�g�h{i�k} ��e�h−{i�k}]. However, if i and k manipulated and submitted �h�e{i�k} instead

47Case (ii) in Lemma 11 cannot happen when |H|> |I|. Case (ii) is relevant when we relax this assump-
tion in the Supplement.
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of �e�g�h{i�k} , they would get h and e, respectively, at [�h�e{i�k}��e�h−{i�k}]. Both agents weakly
improve, while k strictly improves. This contradicts the fact that ϕ is group strategy-
proof. �

Claim 5. For all �h�e{i�k} and �e�h−{i�k}, ϕ[�h�e{i�k}��e�h−{i�k}](i)= h.

Proof. By way of contradiction, suppose ϕ[�h�e{i�k}��e�h−{i�k}](i) 
= h. By Claim 3, ϕ[�h�ek �

�e�h−k ](i) = ϕ[�e�h](i) = e, and by strategy-proofness of ϕ, ϕ[�h�e{i�k}��e�h−{i�k}](i) = e. The

nonbossiness of ϕ and Claim 3 imply that ϕ[�h�e{i�k}��e�h−{i�k}] = ϕ[�h�ek ��e�h−k ] = ϕ[�e�h].
By Claim 1, ϕ[�h�e{i�k}��e�h−{i�k}](k) = h, and by Maskin monotonicity of ϕ and Claim 1,

ϕ[�h�e](k)= h. Hence, h is either owned* by k or brokered*.
Suppose h is owned* by k. As k also brokers* e, there exists some available out-

come g 
= h�e at σ and agent j ∈ Iσ − {i�k} such that for all �e�g�h, ϕ[�e�g�h](j) = e and

ϕ[�e�g�h](k)= g. By Maskin monotonicity, ϕ[�e�g�hk ��h�ei ��e�h−{i�k}] = ϕ[�e�g�h]. Because k

owns* h, Maskin monotonicity and strategy-proofness for k give ϕ[�h�ei ��e�h−i ](k)�e�hk h.

By Claim 2, ϕ[�h�ei ��e�h−i ](i)= h and, thus, ϕ[�h�ei ��e�h−i ](k)= e. By Maskin monotonicity,

ϕ[�e�g�hk ��h�ei ��e�h−{i�k}] = ϕ[�h�ei ��e�h−i ]. Thus, ϕ[�e�g�h] = ϕ[�h�ei ��e�h−i ], but the argument
also shows that k gets different houses under these two profiles; a contradiction.

Suppose h is brokered* and consider the three possible subcases:

• Agent i brokers* h. Then there exists a house g′ 
= h�e and an agent j′ 
= k� i

such that for all �h�g′�e, we have ϕ[�h�g′�e](i) = g′ and ϕ[�h�g′�e](j′) = h. Thus,

e �h�g′�e
k ϕ[�h�g′�e](k). However, both i and k improve, and at least one of them

strictly improves if they report �h�e{i�k}, since ϕ[�h�e{i�k}��h�g
′�e

−{i�k}](i) = h and ϕ[�h�e{i�k}�
�h�g′�e

−{i�k}](k)= e. This is a contradiction to group strategy-proofness of ϕ.

• Agent k brokers* h. Then ϕ[�h�e](k)= e, contradicting ϕ[�h�e](k)= h.

• Some j′ 
/∈ {i�k} brokers* h. Then ϕ[�h�e](j′) = e for all �h�e. But ϕ[�h�e{i�k}�
�e�h−{i�k}](i) = e and ϕ[�h�e{i�k}��e�h−{i�k}](k) = h (see the beginning of the proof of

Claim 5). By Maskin monotonicity of ϕ, ϕ[�h�e] = ϕ[�h�e{i�k}��e�h−{i�k}], contradicting

ϕ[�h�e](j′)= e. �

Claim 6. For all �h�e�g{i�k} and �e�h�g−{i�k}, ϕ[�h�e�g{i�k} ��e�h�g−{i�k}](i) = h, ϕ[�h�e�g{i�k} ��e�h�g−{i�k}](k) = g,

and ϕ[�h�e�g{i�k} ��e�h�g−{i�k}](j)= e.

Proof. Claim 5 implies that ϕ[�h�e�g{i�k} ��e�h�g−{i�k}](i)= h. By way of contradiction, suppose

the other parts of Claim 6 are not true. Claim 4 then implies ϕ[�h�e�g{i�k} ��e�h�g−{i�k}](k) 
= e.

Thus, g �h�e�gk ϕ[�h�e�g{i�k} ��e�h�g−{i�k}](k) and e �e�h�gj ϕ[�h�e�g{i�k} ��e�h�g−{i�k}](j), where at least one

preference is strict. Thus, k and j can jointly misreport �e�g{k�j} and secure ϕ[�h�e�gi �

�e�g{k�j}�e�h�g−{i�j�k}](j) = e and ϕ[�h�e�gi ��e�g{k�j}�e�h�g−{i�j�k}](k) = g. This is a contradiction to the
group strategy-proofness of ϕ. �
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Claim 7. For all �h�e{i�j} and �′ ∈ P[σ], ϕ[�h�e{i�j}��′
−{i�j}](i)= h and ϕ[�h�e{i�j}��′

−{i�j}](j)= e.

Proof. The strategy-proofness for j and Claim 6 (i.e., ϕ[�h�e�g{i�k} ��e�h�g−{i�k}](j)= e) together
with Maskin monotonicity imply that

ϕ[�h�e�g{i�j�k}��′
−{i�j�k}](j) ∈ {e�h}�

Also ϕ[�h�e�gi ��e�h�g−i ](i) ∈ {h�e} because i can get e by reporting �e�h�gi . If now ϕ[�h�e�gi �

�e�h�g−i ](i) = e, then by reporting �e�h�gi , agent i does not change his assignment, and

by nonbossiness, everybody else’s assignment is unchanged and, therefore, ϕ[�h�e�gi �

�e�h�g−i ](k) = h. But this would contradict the above-displayed statement. Hence,

ϕ[�h�e�gi ��e�h�g−i ](i) = h and the above-displayed statement implies that ϕ[�h�e�g{i�j�k}�
�′

−{i�j�k}](j)= e. By Maskin monotonicity, the claim follows. �

Claim 7 implies that i and j are the only agents who can get e when agents report
some profile �e�g′

. Indeed, if not, then there would be a j′ for whom Claim 7 would also
be true (in place of j), which is not possible. Claim 7 also implies that either i owns* h or
j brokers* h at σ .

If i owns* h at σ , then the first case of the lemma obtains. Suppose thus that j bro-
kers* h at σ . By symmetry, all claims hold for j and g instead of i and h. In particular,
Claim 7 implies that j owns* g or i brokers* g. To conclude the proof let us first show that
j (who brokers* h) cannot own* g. By way of contradiction, suppose that j does. Then by
Maskin monotonicity, j gets g at [�gj �� −j] for all � ∈ P[σ]. Let j∗ 
= j be such that he gets

h at �h�g and let j′′ 
= j� j∗ be such that he gets h at �h�g′
for some house g′ 
= g; because

h is brokered* by j, Claim 1 (applied to j and h instead of k and e) implies that such
agents j∗ and j′′ exist. Now, Claim 7 applied to agents j, j∗, j′′ and houses h, g instead

of agents k, i, j and houses e, h (respectively) implies that ϕ[�g�h{j∗�j′′}��−{j∗�j′′}](j∗)= g for

all � ∈ P[σ]. This is a contradiction as j 
= j∗ gets g at all profiles [�gj ��−j] and this set of

profiles contains all [�g�h{j∗�j′′}��−{j∗�j′′}]. Therefore, i brokers* g.
Since k brokers* e and, in the case now considered, j brokers* h and i brokers* g,

it is enough to show that |Hσ | = 3 to prove that the second part of the lemma obtains.
By way of contradiction, suppose that there exists some other house g′ ∈Hσ \ {e�g�h}.
Because j′ ∈ {i� j} is the agent who gets e when everybody reports �e�g′

, either j′ owns*
g′ or j′′ ∈ {i� j} \ {j′} brokers* g′. We just showed that both i and j are brokers*. By the
above argument for why j cannot own* while simultaneously brokering*, i cannot own*
any houses either. We next show that neither of i or j can broker* any additional house.
There are two agents i′ 
= i′′ different from i such thatϕ[�g�g′ ](i′′)= g andϕ[�g�g′′ ](i′)= g
for a house g′′ ∈ Hσ − {g�g′} (as i brokers* g at σ). Then one of i′ or i′′ owns* or bro-
kers* g′. Because each house has a unique owner* or broker*, i cannot broker* g′. A sim-
ilar argument, using h instead of g, shows that j cannot broker* g′. This is a contradiction
to the existence of such a house g′. Hence, |Hσ | = 3 and the second case of the lemma
obtains. �
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The following six lemmas show that the starred control-rights structure satisfies
R1–R6.

Lemma 12 (R1, uniqueness of a brokered* house). Let σ ∈ M. There is at most one bro-
kered* house at σ .

Proof. Suppose e is a brokered* house at σ . By Lemma 9, house e has a broker* at σ .
Because |H|> |I|, Lemma 11 implies that each house h ∈ Iσ − {e} is owned*. �

Lemma 13 (R2, last unmatched agent is an owner). Let σ ∈ M be such that there exists a
unique agent i unmatched at σ . Then i owns* all unmatched houses at σ ∈ Iσ .

Proof. Let � ∈ P[σ�h] for h ∈Hσ . By Pareto efficiency of ϕ, ϕ[�](i)= h, implying that i
owns* h at σ . �

Lemma 14 (R3, broker* does not own*). Let σ ∈ M. If agent k is the broker* of house e at
σ , then he cannot own* any houses at σ .

Proof. Suppose that k owns* a house h 
= e at σ . By Lemma 8, there exists some agent
i 
= kwho gets e at all profiles in P[σ�e�h]. Thus, by Lemma 11, i gets h at all � ∈ P∗[σ�h],
a contradiction as k 
= i owns* h. �

Lemma 15 (R4, persistence of ownership*). Let i own* h at some σ ∈ M. If σ ′ � σ , and i
and h are unmatched at σ ′, then i owns* h at σ ′.

Proof. Imagine to the contrary that i gets h at all � ∈ P[σ�h], but there is some �′ ∈
P[σ ′�h] such that some agent j ∈ Iσ ′ −Iσ−{i} gets h at �′. Take � ∈ P[σ�h] such that each
agent k ∈ Iσ ′ − Iσ ranks σ ′(k) as his second choice, and �k = �′

k for agents k /∈ Iσ ′ − Iσ .
Each k ∈ Iσ ′ − Iσ gets σ ′(k) under �′ by Lemma 7, and he gets the same house under
� by the Pareto efficiency of ϕ and the fact that ϕ[�](i) = h. Thus, these agents are
indifferent between � and �′. This contradicts group strategy-proofness of ϕ because
�′ = � for agents not in Iσ ′ − Iσ and because j is strictly better off under �′. �

Lemma 16 (R5, part 1, limited persistence of brokerage*). Let σ�σ ′ ∈ M be such that
σ ′ � σ . Suppose that agent k is the broker* of house e at σ , agent i is the owner* of house
h at σ , and agent i′ 
= i is the owner* of house h′ at σ . If k, i, i′, e, h, h′ are unmatched
at σ ′, then k brokers* e at σ ′.

Proof. By Lemma 11, agent i gets e at all � ∈ P[σ�e�h], agent i′ gets e at all � ∈
P[σ�e�h′], and agent k gets h and h′, respectively. Take �h ∈ P[σ�e�h] and �h′ ∈
P[σ�e�h′] such that each agent j ∈ Iσ ′ − Iσ has σ ′(j) as his third choice and each agent
j ∈ I−Iσ ′ ranks each house unmatched atσ ′ above all houses matched atσ ′ at both pref-
erence profiles. Let profile �′h be obtained from �h by moving σ ′(j) for all j ∈ Iσ ′ − Iσ up
to be the first choice of j. Let �′h′

be obtained analogously from �h′
. By Maskin mono-

tonicity, ϕ[�′h]−1(e) = i 
= i′ = ϕ[�′h′ ]−1(e). Because �′h��′h′ ∈ P∗[σ ′� e], house e is a
brokered* house at σ ′.
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We complete the proof by way of contradiction. Suppose that k is not the broker* of
e at σ ′. Then, by Lemma 9, there exists some other agent k′ 
= kwho brokers* e at σ ′. Let
�′ ∈ P[σ ′� e�h] be arbitrary. Notice that

ϕ[�′](k′)= h�
because k′ 
= k brokers* e at σ ′. Let � ∈ P[σ�e�h] be such that each agent j in Iσ ′ − Iσ
lists σ ′(j) as his third choice at �, each agent in I − Iσ ′ lists houses in Hσ ′ lower than
houses inHσ ′ −Hσ at �, and the rest of the relative rankings of the houses are the same
in � and �′. Because k brokers* e at σ and i owns* h at σ , by Lemma 11, ϕ[�](k)= g and
ϕ[�](i)= e. Then, by Pareto efficiency, ϕ[�′](j)= σ ′(j) for all j ∈ Iσ ′ − Iσ , and by Maskin
monotonicity, ϕ[�′] = ϕ[�]. Thus, ϕ[�′](k)= h, which contradicts the above-displayed
equation. �

Lemma 17 (R5, part 2, brokered*-to-owned* house transition). Let σ ∈ M, k� j� i ∈ Iσ ,
and e�g�h ∈Hσ be such that k 
= j and e 
= g, k brokers* e at σ but not at σ ′ = σ ∪ {(j� g)},
and i owns* h at σ . Then i owns* e at σ ′.

Proof. By Lemmas 10 and 11 and Maskin monotonicity, for all profiles � ∈ P[σ] such
that �i ∈ 〈e� � � �〉 and �k ∈ 〈e�h� � � �〉, we have ϕ[�](i) = e and ϕ[�](k) = h. Thus, Theo-
rem 2 implies that either i owns* e at σ ′ or k brokers* e at σ ′. By assumption, the latter
is not true; hence i owns* e at σ ′. �

Lemma 18 (R6, consolation for lost control rights*). Let σ ∈ M, i� j ∈ Iσ , and g�h ∈Hσ
be such that i 
= j and g 
= h, i owns* h, and j controls* g at σ . Then j owns* h at σ ′ =
σ ∪ {(i� g)}.

Proof. Take any � ∈ P[σ ′�h]. We need to show that ϕ[�](j) = h. By Lemma 7 and
Maskin monotonicity, we may assume that �i ∈ 〈g�h� � � �〉. There are two cases.

Case j owns* g at σ . Let �′ be such that j ranks g second and otherwise all agents
rank the houses as in �. Because at any �′′ ∈ P[σ] at which i ranks h at the top and j
ranks g at the top, they receive these houses, the group strategy-proofness and Pareto
efficiency of ϕ imply that ϕ[�′](j) = h, and, by Maskin monotonicity, ϕ[�](j) = h as
required.

Case j brokers* g at σ . Let �′ be such that i ranks h second, all agents unmatched at
σ ′ put g at the top, and otherwise all agents rank houses as in �. Lemma 11 implies that
ϕ[�′](i)= g and ϕ[�′](j)= h. By Maskin monotonicity, ϕ[�](j)= h as required. �

C.3 The TC mechanism defined by the starred control-rights structure equals ϕ

We showed that the starred control-rights structure (c�b) is well defined and satisfies
R1–R6. To close the proof of Theorem 1, we now show that the resulting TC mechanism,
ψc�b, maps preferences to outcomes in the same way as ϕ does.

Fix � ∈ P. For each agent i, let hi be the unique house that points to him and is
removed in the same cycle as i under ψc�b[�]. The auxiliary preference profile �∗ is
defined as follows.



324 Pycia and Ünver Theoretical Economics 12 (2017)

• If ψc�b[�](i)= hi, then �∗
i = �i.

• Ifψc�b[�](i) 
= hi and if no agent j 
= i in the cycle of i is assigned a brokered house,
then we construct �∗

i from �i by moving hi just after ψc�b[�](i).48

• If some agent j 
= i in the cycle of i is assigned a brokered house e, then we con-
struct �∗

i from �i by moving e just after ψc�b[�](i) and by moving hi just after e.

• If iwas removed as a broker, then we construct �∗
i from �i by moving hj just below

ψc�b[�](i), where j is the agent in the cycle of i who was assigned the brokered
house.

By Maskin monotonicity, ψc�b[�] = ψc�b[�∗] and ϕ[�∗] = ϕ[�]. Thus, to show that
ϕ[�] = ψc�b[�], it is sufficient to prove that ψc�b[�∗] = ϕ[�∗]. Denoting by Is the set
of agents removed in round s of ψc�b[�∗], we can restate this equality as

ϕ[�∗](i)=ψc�b[�∗](i) ∀i ∈
⋃

s≤r
Is�∀r = 0�1�2� � � � � (1)

The claim is empty and true for r = 0, and we prove it by induction on rounds r of
ψc�b[�∗].

Fix r ≥ 1 and let σr−1 be the submatching fixed before round r (in particular, σ0 =∅).
For the inductive step, assume that ϕ[�∗](i)=ψc�b[�∗](i) for all i ∈ ⋃

s≤r−1 I
s = Iσr−1 .

Claim 1. We have ϕ[�∗](i) �∗
i hi for i ∈ Ir who own hi in round r of ψc�b[�∗].

Proof. Let �′ ∈ P[σr−1�hi] be a preference profile such that the relative ranking of all
houses in Hσr−1 − {hi} in �′

j is the same as in �∗
j for all j ∈ I, and let �′′ ∈ P[σr−1] be a

preference profile such that the relative ranking of all houses in Hσr−1 in �′′
j is the same

as in �∗
j for all j ∈ I.

By the inductive assumption, Lemma 7, and Maskin monotonicity,

ϕ[�∗] = ϕ[�′′
I
σr−1−{i}��′

I
σr−1

��∗
i ]�

Because hi is owned by i at σr−1 under ψc�b, the construction of the control-rights
structure (c�b) implies that hi is owned* by i at σr−1 in ϕ, and, hence,

ϕ[�′](i)= hi�

and at �′ agents from Iσr−1 do not obtain hi and, by Lemma 7, they do not obtain any
houses fromHσr−1 either. Thus, Maskin monotonicity implies that

ϕ[�′] = ϕ[�′′
I
σr−1−{i}��′

I
σr−1∪{i}]�

48Note that i might be assigned the brokered house. We do not change the ranking of houses other
than hi .
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The first-displayed equation of this proof, the strategy-proofness of ϕ, and the third-
and second-displayed equations give us

ϕ[�∗](i) = ϕ[�′′
(I−I

σr−1 )−{i}��′
I
σr−1

��∗
i ](i) �∗

i ϕ[�′′
(I−I

σr−1 )−{i}��′
I
σr−1∪{i}](i)

= ϕ[�′](i)= hi� �

Claim 2. If i ∈ Ir and no brokered house was removed in the same cycle as i in ψc�b(�∗),
then ϕ[�∗](i)=ψc�b[�∗](i).

Proof. The inductive assumption implies that all houses better than ψc�b[�∗](i) are
already given to other agents; hence, ψc�b[�∗](i) �∗

i ϕ[�∗](i). By way of contradic-
tion, suppose ϕ[�∗](i) 
= ψc�b[�∗](i). Then Claim 1 and the construction of �∗ im-
ply that ϕ[�∗](i) = hi. Let hi → i → hi2 → i2 → ·· · → hin → in → hi be the cycle
in which i is removed under ψc�b[�∗]. From ϕ[�∗](i) = hi = ψc�b[�∗](in), we con-
clude that ϕ[�∗](in) 
= ψc�b[�∗](in), and Claim 1 and the construction of �∗ imply that
ϕ[�∗](in)= hin = ψc�b[�∗](in−1). As we continue iteratively, we obtain ϕ[�∗](j)= hj for
all j ∈ {i� in� � � � � i2}. Hence, the matching obtained by assigningψc�b[�∗](j) to each agent
j ∈ {i� i2� � � � � in} and ϕ[�∗](j) to each agent j ∈ I − {i� i2� � � � � in} Pareto dominates ϕ[�∗]
at �∗, contradicting Pareto efficiency of ϕ[�∗]. �

Claim 3. If i ∈ Ir and a brokered house was removed in the same cycle as i, then
ϕ[�∗](i)=ψc�b[�∗](i).

Proof. Let e be the brokered house and let k≡ in+1 ≡ i0 be the broker at σr−1. Let

hi1 → i1 → hi2 → ·· · → in → e→ k→ hi1

be the cycle in which they are removed in round r of ψc�b[�∗]. By the inductive assump-
tion, for each i�, �= 1� � � � � n, all houses better than hi�+1 are given to other agents before
round r. Hence, the inductive assumption and Claim 1 imply that

ϕ[�∗](i�) ∈ {hi�+1� e�hi�}� �= 1� � � � � n� (2)

We continue in two steps.
Step 1. ϕ[�∗](in) = e. Suppose not. Then (2) gives us ϕ[�∗](in) = hin . Note that

ϕ[�∗](i�) 
= e as otherwise agents in and in−1 would be better off by swapping their al-
locations, contrary to Pareto efficiency. Thus, (2) gives us ϕ[�∗](i�)= hi� . Iterating this
argument, we show that ϕ[�∗](i�)= hi� for �= n�n− 1� � � � �1.

Let �′ ∈ P[σr−1] rank houses from Hσr−1 the same way as �∗, except that i1 ranks
h2 below all other houses from Hσr−1 . By our assumptions, k is the broker of e and
i1 is the owner of h1 at σr−1. By construction of the control-rights structure (c�b),
agent k brokers* e and agent i1 owns* h1 at σr−1 in ϕ. Because �′

k ∈ Pk[σr−1�hi1� � � �] ∪
Pk[σr−1� e�hi1� � � �] and �′

i1
∈ Pk[σr−1� e�hi1� � � �], we conclude that ϕ[�′](i1)= e. The in-

ductive assumption and the conclusion of the first paragraph of this step imply that �′
is a ϕ-Maskin-monotone transformation of �∗, and, hence, ϕ[�∗](i1)= e. But we have
shown above that ϕ[�∗](i1)= h1 
= e. This contradiction proves the claim of Step 1.
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Step 2. ϕ[�∗](i�)= hi�+1 =ψc�b[�∗](i�) for all �= 0� � � � � n−1. By way of contradiction,
suppose there is m ∈ {0� � � � � n − 1} such that ϕ[�∗](im) 
= him+1 . Then, (2) and Step 1
imply that ϕ[�∗](im) = him . Thus, ϕ[�∗](im−1) 
= hi(m−1)+1 . Iterating this argument, we
show that ϕ[�∗](i�)= hi� for �=m�m− 1� � � � �1.

Let �′ ∈ P[σr−1] rank houses from Hσr−1 the same way as �∗, except that k ≡ i0

ranks h1 below all other houses from Hσr−1 . By our assumptions, k is the broker of e
and i1 is the owner of h1 at σr−1. By construction of the control-rights structure (c�b),
agent k brokers* e and agent in owns* hn at σr−1 in ϕ. Because �′

k ∈ Pk[σr−1�hin� � � �] ∪
Pk[σr−1� e�hin� � � �] and �′

i1
∈ Pk[σr−1� e�hin� � � �], we get ϕ[�′](k) = hin . The conclu-

sion of the first paragraph of the current step implies that ϕ[�∗](k) 
= hi1 ; given the
inductive assumption �′ is a ϕ-Maskin-monotone transformation of �∗ and, hence,
ϕ[�∗](k) = hin as well. As a result, (2) and Step 1 imply that ϕ[�∗](in−1) = hin−1 . Thus,
ϕ[�∗](in−2) 
= hin−1 . Iterating this argument, we conclude that ϕ[�∗](i�) = hi� for � =
n−1� n−2� � � � �1. Together with Step 1, this conclusion implies thatϕ[�∗] is Pareto dom-
inated by the allocation in which each agent im, m = 0� � � � � n− 1, gets house hm+1 and
all other agents get their ϕ[�∗] houses. This contradiction proves Step 2 and Claim 3. �

Claims 2 and 3 show that ϕ[�∗](i) = ψc�b[�∗](i) for all i ∈ Ir . This completes the
inductive proof of (1) and, hence, of the theorem.
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