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This paper examines the interplay between career concerns and market structure.
Ability and effort are complements: effort increases the probability that a skilled
agent achieves a one-time breakthrough. Wages are based on assessed ability and
on expected output. Effort levels at different times are strategic substitutes and,
as a result, the unique equilibrium effort and wage paths are single-peaked with
seniority. Moreover, for any wage profile, the agent works too little, too late. Com-
mitment to wages by competing firms mitigates these inefficiencies. In that case,
the optimal contract features piecewise constant wages and severance pay.
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tion.
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1. Introduction

Career concerns are an important driver of incentives. This is particularly so in
professional-service firms, such as law and consulting, but applies more broadly to en-
vironments in which creativity and originality are essential for success, including phar-
maceutical companies, biotechnology research labs, and academia. Market structure
differs across those industries, and so do labor market arrangements. Our goal is to un-
derstand how market structure (in particular, firms’ commitment power) affects career
concerns, and the resulting patterns of wages and performance. As we show, commit-
ment leads to backloading of wages and effort, relative to what happens under spot
contracting.
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Our point of departure from nearly all the existing literature on career concerns,
starting with Holmström (1982/1999), involves the news process. The ubiquitous as-
sumption that rich measures of output are available throughout is at odds with the struc-
ture of learning in several industries. To capture the features of research-intensive and
creative industries, we assume that success is rare and informative about the worker’s
skill. Breakthroughs are defining moments in a professional’s career. In other words,
information is coarse: either an agent reveals himself to be talented through a (first)
breakthrough or he does not. Indeed, in many industries, there is growing evidence that
the market rewards “star” professionals.1

Our assumption on the contracting environment follows the literature on career
concerns. Explicit output-contingent contracts are not used. While theoretically attrac-
tive, innovation bonuses in research and development (R&D) firms are hard to imple-
ment due to complex attribution and timing problems. Junior associates in law and
consulting firms receive fixed stipends. In the motion pictures industry, most contracts
involve fixed payments rather than profit-sharing (see Chisholm 1997).2

In our model, information about ability is symmetric at the start.3 Skill and out-
put are binary, and effort is continuous. Furthermore, skill and effort are complements:
only a skilled agent can achieve a high output, or breakthrough. The breakthrough time
follows an exponential distribution, whose intensity increases with the worker’s unob-
served effort. Hence, effort increases not only expected output, but also the rate of learn-
ing, unlike in the additive Gaussian setup. When a breakthrough obtains, the market
recognizes the agent’s talent and that is reflected in future earnings. The focus is on the
relationship until a breakthrough occurs.4 Throughout, the market is competitive. We
contrast the equilibrium when firms can commit to long-term wage policies and when
they cannot.

1Prominent examples include working a breakthrough case in law or consulting, signing a record deal,
or acting in a blockbuster movie. See Gittelman and Kogut (2003) and Zucker and Darby (1996) for evidence
on the impact of “star scientists,” and Caves (2003) for a discussion of A-list vs. B-list actors and writers. For
a different example, consider a local politician who seeks to establish a reputation for “getting things done”
by securing congressional funding for a major public good.

2It is not our purpose to explain why explicit contracts are not used. As an example that satisfies both
features, consider the biotechnology and pharmaceutical industries. Uncertainty and delay shroud prof-
itability. Scientific breakthroughs are recognized quickly, commercial ones not so. Ethiraj and Zhao (2012)
find a success rate of 1�7% for molecules developed in 1990. The annual report by the Pharmaceutical Re-
search and Manufacturers of America (PhRMA) (2012) shows even higher attrition rates. Because the Food
and Drug Administration (FDA) drug approval and molecule patenting are only delayed and noisy metrics
of a drug’s profitability, they are rarely tied explicitly to a scientist’s compensation (see Cockburn et al. 2004).
Likewise, few biotechnology companies offer variable pay in the form of stock options (see Stern 2004).

3One could also examine the consequences of overoptimism by the agent. In many applications, how-
ever, symmetrical ignorance appears to be the more plausible assumption. See Caves (2003).

4In Section 4.1, we turn to the optimal design of an up-or-out arrangement, i.e., a deadline. A proba-
tionary period is a hallmark of many occupations (law, accounting, and consulting firms, etc.). Though
alternative theories have been put forth (e.g., tournament models), agency theory provides an appealing
framework (see Fama 1980 or Fama and Jensen 1983). Gilson and Mnookin (1989) offer a vivid account
of associate career patterns in law firms, and the relevance of the career concerns model as a possible
explanation.
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Spot contracts

Under spot contracts, the agent is paid his full expected marginal product at each mo-
ment in time. Therefore, the agent’s compensation depends on the market’s expectation
about his talent and effort. In turn, this determines the value of incremental reputation,
and hence his incentives to exert effort so as to establish himself as high skilled.5 In
equilibrium, both the agent’s effort level and wage are single-peaked functions of time.

A key driver of the equilibrium properties is the strategic substitutability effect be-
tween incentives at different stages in a worker’s career. Suppose the market expects
the agent to exert high effort at some point. Failure to generate a success would lead
the market to revise its belief downward and lower future wages. This provides strong
incentives for effort. However, competitive wages at that time must reflect the resulting
increased productivity. In turn, this depresses the agent’s incentives and compensa-
tion at earlier stages, as future wages make staying on the current job relatively more
attractive.

Strategic substitutability does not arise in Holmström’s additively separable model
or in the two-period model of Dewatripont et al. (1999a, 1999b), because career con-
cerns disappear in the last period. Instead, the strategic complementarity between ex-
pected and realized effort in the first period generates equilibrium multiplicity.

Despite the complementarity between skill and effort, equilibrium is unique in our
model, yielding robust yet sharp welfare predictions. In particular, effort underprovision
and delay obtain very generally. Because output-contingent payments are impossible,
competition among employers calls for positive flow wages even after prolonged failure.
As a result, career concerns provide insufficient incentives for effort independently from
any particular equilibrium notion. For any wage path, the total amount of effort exerted
is inefficiently low. In addition, effort is exerted too late: a social planner constrained to
the same total amount of effort exerts it sooner.6 As we shall see, these properties also
hold under competition with long-term contracts.

The most striking prediction of our model in terms of observable variables—single-
peaked real wages—cannot be explained by the existing models (Holmström, and De-
watripont, Jewitt, and Tirole). Because successful agents are immediately promoted,
single-peaked wages refer to wages conditional on prolonged failure. This prediction is
borne out by the data in the two papers by Baker et al. (1994a, 1994b), arguably the most
widely used data set on internal wage policy in the organizational economics literature.7

5This is in contrast with Holmström, where the marginal benefit from effort is history-independent. This
implies that reputation incentives evolve deterministically, decreasing over time as learning occurs, while
wages decrease stochastically.

6Characterizing the agent’s best reply to exogenous wages has implications for the agent’s behavior fol-
lowing one of his own deviations. In particular, it helps clarify the effect of the agent’s private beliefs.

7Baker et al. (1994a) describe the data as containing “personnel records for all management employees of
a medium-sized U.S. firm in a service industry over the years 1969–1988.” While the data set is confidential
(and hence we cannot relate the properties of the industry to the parameters of our model), the population
of employees is restricted to “exempt” management positions, i.e., those for whom career concerns are
most salient.
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Their data show that both the dynamics of real wages and the timing of promotions
are heterogeneous across agents. Overall, Baker et al. (1994b) suggest that such hetero-
geneity is indicative of a “common underlying factor, such as ability, driving both wage
increases and promotions.” At the aggregate level, yearly real wages decrease on aver-
age, conditional on no promotion. However, this is not true at all tenure levels.8 Baker
et al. (1994b) provide more detail about the wage and promotion patterns of employees
in the lowest two levels of the firm’s hierarchy. Arguably, these are the employees with
the strongest potential for establishing a reputation.

Baker et al. (1994b) show that the pattern of real wages is inverse-U-shaped for em-
ployees who are not promoted to the next level within 8 years. In other words, wages
increase at first for all employees and then decline until the employee is promoted to
the next level in the firm’s hierarchy (if ever). In Section 3.4, we compare this pattern to
our equilibrium wages.

There are, of course, alternative explanations: a combination of symmetric learning
and accumulation of general human capital would suggest that, for a particular choice
of technology, a worker’s expected productivity may increase at first only to quickly de-
cline in the absence of sufficiently positive signals. Yet our model matches the out-
comes described in the data quite well, relying only on hidden talent and a lumpy output
process.

Long-term contracts

The flexibility of our model allows us to study reputation incentives under market struc-
tures that are not tractable in the Gaussian framework. In particular, we consider long-
term contracts. In many sectors, careers begin with a probationary period that leads to
an up-or-out decision, and wages are markedly lower and more rigid before the tenure
decision than after. Specifically, we allow firms to commit to a wage path, but the agent
may leave at any time. To avoid “poaching,” the contract must perpetually deliver a con-
tinuation payoff above what the agent can get on the market. This constraint implies
that one must solve for the optimal contract in all possible continuation games, as the
offers of competing firms must themselves be immune to further poaching.

Long-term contracts can mitigate the adverse consequences of output-independent
wages because the timing of payments affects the optimal timing of the agent’s effort.
Because future wages paid in the event of persistent failure depress current incentives,
it would be best to pay the worker his full marginal product ex ante. This payment being
sunk, it would be equivalent, in terms of incentives, to no future payments for failure at
all. Therefore, if the worker can commit to a no-compete clause, a simple signing bonus
is optimal.

In most labor markets workers cannot commit to such clauses. It follows that firms
do not offer signing bonuses, anticipating the worker’s incentive to leave right after cash-
ing them in. Lack of commitment on the worker’s side prevents payments coming before
the corresponding marginal product obtains. Surprisingly, as far as current incentives

8See Table VI in Baker et al. (1994a).
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are concerned, it is then best to pay him as late as possible. This follows from the value of
learning: much later payments discriminate better than imminent ones between skilled
and unskilled workers. Because effort and skill are complements, a skilled worker is
likely to succeed by the end. Hence, payments made in the case of persistent failure are
tied more to the agent’s talent than to his effort. This mitigates the pernicious effect of
future wages on current incentives. Backloading payments also softens the no-poaching
constraint, as the worker has fewer reasons to quit.

To summarize, long-term contracts backload payments and frontload effort, relative
to spot contracts. Backloading pay and severance payments (as well as signing bonuses
and no-compete clauses) are anecdotally common in industries with one-sided com-
mitment, such as law or consulting. In other words, several regularities observed in
practice arise as optimal labor-market arrangements when firms compete with long-
term contracts.

Related literature

The most closely related papers are Holmström (1982/1999), as mentioned, as well as
Dewatripont et al. (1999a, 1999b). In Holmström, skill and effort enter linearly and ad-
ditively into the mean of the output that is drawn in every period according to a normal
distribution. Wages are as in our baseline model: the worker is paid upfront the expected
value of the output. Our model shares with the two-period model of Dewatripont, Jewitt,
and Tirole some features that are absent from Holmström’s. In particular, effort and tal-
ent are complements. We shall discuss the relationship between the three models at
length.

Our paper can also be viewed as combining career concerns and experimenta-
tion. As such, it relates to Holmström’s original contribution in the same way as the
exponential-bandits approach of Keller et al. (2005) does to the strategic experimenta-
tion framework introduced by Bolton and Harris (1999).

As in Gibbons and Murphy (1992), our paper examines the interplay of implicit
incentives (career concerns) and explicit incentives (termination penalty). It shares
with Prendergast and Stole (1996) the existence of a finite horizon, and thus, of com-
plex dynamics related to seniority. See also Bar-Isaac (2003) for reputational incen-
tives in a model in which survival depends on reputation. The continuous-time model
of Cisternas (2016) extends the Gaussian framework to nonlinear environments, but
maintains the additive separability of talent and action. Ferrer (2015) studies the ef-
fect of lawyers’ career concerns on litigation in a model with complementarity between
effort and talent. Jovanovic (1979) and Murphy (1986) provide models of career con-
cerns that are less closely related: the former abstracts from moral hazard and fo-
cuses on turnover when agents’ types are match-specific; the latter studies executives’
experience–earnings profiles in a model in which firms control the level of capital as-
signed to them over time. Finally, Klein and Mylovanov (2016) analyze a career-concerns
model of advice, and provide conditions under which reputational incentives over a long
horizon restore the efficiency of the equilibrium.

The binary setup is reminiscent of Mailath and Samuelson (2001), Bergemann and
Hege (2005), Board and Meyer-ter-Vehn (2013), and Atkeson et al. (2015). However, in
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Bergemann and Hege (2005), the effort choice is binary and wages are not based on
the agent’s reputation, while Board and Meyer-ter-Vehn (2013) let a privately informed
agent control the evolution of his type through his effort. In (the regulation model with
reputation of) Atkeson et al. (2015), firms control their types through a one-time initial
investment. Here instead, information is symmetric and types are fixed.9

Finally, several papers have already developed theories of wage rigidity and back-
loading with long-term contracts, none based on career concerns (incentive provision
under incomplete information), as far as we know. These are discussed in Section 5.

Structure

The paper is organized as follows: Section 2 describes the model; Section 3 analyzes the
case of spot contracts; Section 4 introduces probationary periods and discusses what
happens when the agent is impatient or when even a low-ability agent might succeed
with positive probability; Section 5 explores long-term contracts; Section 6 discusses
the case of observable effort; and Section 7 briefly describes other extensions.

2. The model

2.1 Setup

We consider the incentives of an agent (or worker) to exert hidden effort (or work). Time
is continuous, and the horizon (or deadline) is finite: t ∈ [0�T ], T > 0. Most results carry
over to the case T = ∞, as shall be discussed.

There is a binary state of the world. If the state is ω = 0, the agent is bound to fail,
no matter how much effort he exerts. If the state is ω = 1, a success (or breakthrough)
arrives at a time that is exponentially distributed, with an intensity that increases in the
instantaneous level of effort exerted by the agent. The state can be interpreted as the
agent’s ability, or skill. We will refer to the agent as a high- (resp., low-) ability agent if the
state is 1 (resp., 0). The prior probability of state ω= 1 is p0 ∈ (0�1).

Effort is a nonnegative measurable function of time. If a high-ability agent exerts ef-
fort ut over the time interval [t� t+dt), the probability of a success over that time interval
is (λ+ut)dt. Formally, the instantaneous arrival rate of a breakthrough at time t is given
by ω · (λ + ut), with λ ≥ 0. Note that, unlike in Holmström’s model, but as in the model
of Dewatripont, Jewitt, and Tirole, work and talent are complements.

The parameter λ can be interpreted as the luck of a talented agent. Alternatively, it
measures the minimum effort level that the principal can force upon the agent by direct
oversight, i.e., the degree of contractibility of the worker’s effort. Either interpretation
might require some adjustment: as minimum effort, it is then important to interpret the
flow cost of effort as net of this baseline effort, and to be aware of circumstances in which
it would not be in either party’s interest to exert this minimum level.10 Fortunately, this

9Board and Meyer-ter-Vehn (2014) study the Markov-perfect equilibria of a game in which effort affects
the evolution of the player’s type both under symmetric and asymmetric information.

10As a referee pointed out, too low an effort level may be undesirable from the agent’s point of view,
whose effort “bliss point” need not be zero.
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issue does not arise for the equilibrium analysis under either commitment assumption.
As for the luck interpretation, it is then arguably extreme to assume that luck correlates
with ability, so that a low-ability agent is bound to fail. In Section 4.2 we provide a dis-
cussion and numerical simulations of what happens when an agent of low ability is less
likely to succeed for a given effort level, yet might do so nonetheless.

As long as a breakthrough has not occurred, the agent receives a flow wage wt . For
now, think of this wage as an exogenous (integrable, nonnegative) function of time. Later
on, equilibrium constraints will be imposed on this function, and this wage will reflect
the market’s expectations of the agent’s effort and ability, given that the market values a
success. The value of a success is normalized to 1.

In addition to receiving this wage, the agent incurs a cost of effort: exerting effort
level ut over the time interval [t� t + dt) entails a flow cost c(ut)dt. We assume that
c is increasing, thrice differentiable, and convex, with c(0) = 0, limu→0 c

′(u) = 0 and
limu→∞ c′(u) = ∞.

After a breakthrough occurs, the agent is known to be of high ability, and can expect
a flow outside wage of v > 0 until the end of the game at T . In line with the interpretation
of wages throughout the paper, we think of this wage as the (equilibrium) marginal prod-
uct of the agent in the activity in which he engages after a breakthrough. Thus the wage
v is a (flow) opportunity cost that is incurred as long as no success has been achieved,
which must be accounted for, not only in the worker’s objective function, but also in the
objective of the social planner.11 Note that this flow opportunity cost lasts only as long
as the game does, so that its impact fades away as time runs out.

The outside option of the low-ability agent is normalized to 0. There is no discount-
ing.12 We discuss the robustness of our results to the introduction of discounting in
Section 4.2.

The worker’s problem can then be stated as follows: to choose u : [0�T ] → R+, mea-
surable, to maximize his expected sum of rewards, net of the outside wage v,

Eu

[∫ T∧τ

0
[wt − vχω=1 − c(ut)]dt

]
�13

where Eu is the expectation conditional on the worker’s strategy u and τ is the time at
which a success occurs (a random time that is exponentially distributed, with instanta-
neous intensity at time t equal to 0 if the state is 0 and to λ+ut otherwise). The indicator
of event A is denoted by χA. Ignoring discounting is analytically convenient, but there
is no discontinuity.

Of course, at time t effort is only exerted and the wage wt collected, conditional on
the event that no success has been achieved. We shall omit saying so explicitly, as those

11In many applications, there is an inherent value in employing a “star,” a possible interpretation for v, as
suggested by a referee. Another natural case is that in which v equals the flow value of success conditional
on ω = 1 and no effort by the agent. In Section 3.1, we establish that if successes worth 1 arrive at rate
λ ≥ 0, then v = λ. In Section 3.2, we show that stronger results obtain for the case v = λ; other results can be
generalized, but not interior effort and equilibrium uniqueness.

12At the beginning of the Appendix, we explain how to derive the objective function from its discounted
version as discounting vanishes. Values and optimal policies converge pointwise.

13Stating the objective as a net payoff ensures that the program is well defined even when T = ∞.
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histories are the only nontrivial ones. Given his past effort choices, the agent can com-
pute his belief pt that he is of high ability by using Bayes’ rule. It is standard to show
that, in this continuous-time environment, Bayes’ rule reduces to the ordinary differen-
tial equation

ṗt = −pt(1 −pt)(λ+ ut)� p0 = p0� (1)

Observing that

P[τ ≥ t] = P[ω = 0 ∩ τ ≥ t]
P[ω = 0|τ ≥ t] = P[ω = 0]

P[ω = 0|τ ≥ t] = 1 −p0

1 −pt
� (2)

the problem simplifies to the maximization of∫ T

0

1 −p0

1 −pt
[wt − c(ut)− v]dt�14 (3)

given w, over all measurable u : [0�T ] →R+, subject to (1).
Consider this last maximization. If the wage falls short of the outside option (i.e., if

wt − v is negative), the agent has an incentive to exert high effort to stop incurring this
flow deficit. Achieving this is more realistic when the belief p is high, so that this incen-
tive should be strongest early on, when he is still sanguine about his talent. This suggests
an effort pattern that is a decreasing function of time, as in Holmström. However, this
ignores that, in equilibrium, the wage reflects the agent’s expected effort. As a result, we
shall show that this intuition is incorrect: equilibrium effort might be increasing, and in
general is a single-peaked function of time.

2.2 The social planner

Before solving the agent’s problem, we start by analyzing the simpler problem faced by a
social planner. Recall that the value of a realized breakthrough is normalized to 1. But a
breakthrough only arrives with instantaneous probability pt(λ+ ut), as it occurs at rate
λ + ut only if ω = 1. Furthermore, the planner internalizes the flow opportunity cost
v incurred by the agent as long as no breakthrough is realized. Therefore, the planner
maximizes ∫ T

0

1 −p0

1 −pt
[pt(λ+ ut)− v− c(ut)]dt� (4)

over all measurable u : [0�T ] → R+, given (1). As for most of the optimization programs
considered in this paper, we apply Pontryagin’s maximum principle to get a charac-
terization. The proof of the next lemma and of all formal results can be found in the
Appendix.

14We have replaced ptv by the simpler v in the bracketed term inside the integrand. This is because∫ T

0

pt

1 −pt
vdt =

∫ T

0

v

1 −pt
dt − vT�

and we can ignore the constant vT .
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Lemma 1. The optimum exists. At any optimum, effort u is monotone in t. It is decreasing
if and only if the deadline exceeds some finite length.

Because the belief p is decreasing over time, note that the marginal product is de-
creasing whenever effort is decreasing, but the converse need not hold (as we will see
in equilibrium). Monotonicity of effort can be roughly understood as follows. There are
two reasons why effort can be valuable: because it helps reduce the time over which the
waiting cost v is incurred and because it helps avoid reaching the deadline without a
breakthrough. The first effect encourages early effort, and the second effect encourages
later effort. When the deadline is short (and the final belief is high), terminal effort is
high, and the efficient effort level is increasing throughout.

The effort level exerted at the deadline depends on how pessimistic the planner is at
that point. By standard arguments (see Appendix A.1), the social planner exerts an effort
level that solves

pT = c′(uT )� (5)

This states that the expected marginal social gains from effort (i.e., success) should equal
the marginal cost. Note that the flow loss v no longer plays a role at that time.

2.3 Exogenous wages

We now consider the agent’s best response to an entirely exogenous wage path. This
allows us to provide an analysis of reputation incentives that is not tied to any particular
equilibrium notion. In addition, it will guide our analysis of off-path behavior.

Consider an arbitrary exogenous (integrable) wage path w : [0�T ] → R+. The agent’s
problem given by (3) differs from the social planner’s in two respects: the agent disre-
gards the expected value of a success (in particular, at the deadline), which increases
with effort, and he takes into account future wages, which are less likely to be pocketed
if more effort is exerted. We start with a technical result stating there is a unique solu-
tion (uniqueness is stated in terms of the state variable p, from which it follows that the
control u is also essentially unique, e.g., up to a zero measure set of times).

Lemma 2. There exists a unique trajectory p that solves the maximization problem (3).

What determines the instantaneous level of effort? Transversality implies that, at the
deadline, the agent exerts no effort:

c′(uT ) = 0�

Relative to the social planner’s trade-off in (5), the agent does not take into account the
lump-sum value of success. Hence his effort level is nil for any pT .

It follows from Pontryagin’s theorem that the amount of effort exerted at time t solves

c′(ut) = max
{
−

∫ T

t
(1 −pt)

ps

1 −ps
[ws − c(us)− v]ds�0

}
� (6)
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The left-hand side is the instantaneous marginal cost of effort. The marginal benefit
(right-hand side) can be understood as follows. Conditioning throughout on reaching
time t, the expected flow utility over some interval ds at time s ∈ (t�T ) is

P[τ ≥ s](ws − c(us)− v)ds�

From (2), recall that

P[τ ≥ s] = 1 −pt

1 −ps
= (1 −pt)

(
1 + ps

1 −ps

)
;

that is, effort at time t affects the probability that time s is reached only through the
likelihood ratio ps/(1 −ps). From (1), we obtain

ps

1 −ps
= pt

1 −pt
e− ∫ s

t (λ+uτ)dτ�

and so a slight increase in ut decreases the likelihood ratio at time s precisely by
−ps/(1 −ps). Combining, the marginal impact of ut on the expected flow utility at time
s is given by

−(1 −pt)
ps

1 −ps
[ws − c(us)− v]ds�

and integrating over s yields the result.
Equation (6) establishes that increasing the wedge between the future rewards from

success and failure (v − ws) encourages high effort, ceteris paribus. Higher wages in
the future depress incentives to exert effort today, as they reduce this wedge. In par-
ticular, when future wages are very high, the agent may prefer not to exert any effort,
in which case the corner solution ut = 0 applies. That being said, throughout this sec-
tion we restrict attention to wage functions wt for which the agent’s first-order condition
holds. In Section 3, we shall establish that the corner solution ut = 0 is never played in
equilibrium.

The trade-off captured by (6) illustrates a key feature of career concerns in this
model. Because information is coarse (either a success is observed or it is not), the
agent can only affect the probability that the relationship terminates. It is then intuitive
that incentives for effort depend on future wage prospects (with and without a break-
through).15 This is a key difference with Holmström’s model, where future wages adjust
linearly in output and incentives are therefore independent of the wage level itself. In
our model (see Section 3), the level of future compensation does affect incentives to
exert effort in equilibrium.

In particular, higher wages throughout reduce the agent’s instantaneous effort level
pointwise, because the prospect of foregoing higher future wages depresses incentives
at all times. However, the relationship between the timing of wages and the agent’s op-
timal effort is more subtle. In particular, as we shall see in Section 5, it is not true that

15Note also that, although learning is valuable, the value of information cannot be read off first-order
condition (6) directly: the maximum principle is an “envelope theorem,” and as such does not explicitly
reflect how future behavior adjusts to current information.
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pushing wages back, holding the total wage bill constant, necessarily depresses total ef-
fort. As is clear from (6), higher wages far in the future have a smaller effect on current-
period incentives for two reasons: the relationship is less likely to last until then and,
conditional on reaching these times, the agent’s effort is less likely to be productive (as
the probability of a high type then is very low).

To understand how effort is allocated over time, let us differentiate (6). (See the proof
of Proposition 1 for the formal argument.) We obtain

pt · c(ut+dt)︸ ︷︷ ︸
cost saved

+ pt(v −wt)︸ ︷︷ ︸
wage premium

+ c′′(ut)u̇t︸ ︷︷ ︸
cost smoothing

= pt(λ+ ut)︸ ︷︷ ︸
pr. of success at t

· c′(ut)� (7)

The right-hand side captures the gains from shifting an effort increment du from the
time interval [t� t+dt) to [t+dt� t+2 dt) (backloading ): the agent saves the marginal cost
of this increment c′(ut)du with instantaneous probability pt(λ + ut)dt, i.e., the proba-
bility with which this additional effort will not have to be carried out. The left-hand side
measures the gains from exerting this increment early instead (frontloading ): the agent
increases by pt du the probability that the cost of tomorrow’s effort c(ut+dt)dt is saved.
He also increases at that rate the probability of getting the “premium” (v −wt)dt an
instant earlier. Last, if effort increases at time t, frontloading improves the workload bal-
ance, which is worth c′′(u)dudt. This yields the arbitrage equation (7) that is instructive
about effort dynamics.16 The next proposition formalizes this discussion.

Proposition 1. If w is decreasing, u is a quasi-concave function of time; if w is nonde-
creasing, u is strictly decreasing.

Hence, even when wages are monotone, the worker’s incentives need not be so. Not
surprisingly then, equilibrium wages, as determined in Section 3, will not be either.

2.4 Comparison with the social planner

The social planner’s arbitrage condition would coincide with the agent’s if there were no
wages, although the social planner internalizes the value of possible success at future
times. This is because the corresponding term in (4) can be “integrated out,”∫ T

0

1 −p0

1 −pt
pt(λ+ ut)dt = −(1 −p0)

∫ T

0

ṗt

(1 −pt)2 dt = (1 −p0) ln
1 −pT

1 −p0
�

so that it only affects the final belief, and hence the transversality condition. But the
agent’s and the social planner’s transversality conditions do not coincide, even when
ws = 0. As mentioned, the agent fails to take into account the value of a success at the
last instant. Hence, his incentives at T , and hence his strategy for the entire horizon,
differ from the social planner’s. The agent works too little, too late.

16Note that all these terms are “second-order” terms. Indeed, to the first order, it does not matter whether
effort is slightly higher over [t� t + dt) or [t + dt� t + 2 dt). Similarly, while doing such a comparison, we can
ignore the impact of the change on later payoffs, which is the same under both scenarios.
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Proposition 2 formalizes this discussion. Given w, let p∗ denote the belief trajectory
solving the agent’s problem, and let pFB denote the corresponding trajectory for the
social planner.

Proposition 2. Fix T > 0 and w> 0.

(i) The agent’s aggregate effort is lower than the planner’s, i.e., p∗
T > pFB

T . Furthermore,
instantaneous effort at any t is lower than the planner’s, given the current belief p∗

t .

(ii) Suppose the planner’s aggregate effort is constrained so that pT = p∗
T . Then the

planner’s optimal trajectory p lies below the agent’s trajectory, i.e., for all t ∈ (0�T ),
p∗
t > pt .

The first part states that both aggregate effort and instantaneous effort are too low,
given the agent’s belief. Nonetheless, as a function of calendar time, effort might be
higher for the agent at some dates, because the agent is more optimistic than the social
planner at that point. Figure 1 illustrates this phenomenon.

The second part of the proposition states that, even fixing the aggregate effort, this
effort is allocated too late relative to the first-best: the prospect of collecting future wages
encourages “procrastination.”17

3. Equilibrium

This section “closes” the model by considering equilibrium wages. Suppose that the
wage is set by a principal (or market) without commitment power. This is the type of
contracts considered in the literature on career concerns. The market does not observe
the agent’s past effort, only the lack of success. Noncommitment motivates the assump-
tion that wage equals expected marginal product, i.e.,

wt = Et[pt(λ+ ut)]�

where pt and ut are the agent’s belief and effort, respectively, at time t, given his private
history of past effort (as long as he has had no successes so far), and the expectation
reflects the principal’s beliefs regarding the agent’s history (in case the agent mixes).18

Given Lemma 2, the agent will not use a chattering control (i.e., a distribution over mea-
surable functions u), but rather a single function. Therefore, we may write

wt = p̂t(λt + ût)� (8)

17Procrastination might be reminiscent of Bonatti and Hörner (2011), but the driving forces have little in
common: in Bonatti and Hörner (2011), procrastination is due to the agent’s incentives to free-ride on the
effort of other agents. Here, there is only one agent.

18In discrete time, if T < ∞, noncommitment implies that wage is equal to marginal product in equilib-
rium. This follows from a backward induction argument, assuming that the agent and the principal share
the same prior. Alternatively, this is the outcome if a sequence of short-run principals (at least two at every
instant), whose information is symmetric and no worse than the agent’s, compete through wages for the
agent’s services. We shall follow the literature by directly assuming that wage is equal to marginal product.
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where p̂t and ût denote the belief and anticipated effort at time t, as viewed from the
market.

In equilibrium, expected effort must coincide with actual effort. Note that if the
agent deviates, the market will typically hold incorrect beliefs.

Definition 1. An equilibrium is a measurable function u and a wage path w such that
the following statements hold:

(i) Effort u is a best reply to wages w given the agent’s private belief p, which he
updates according to (1).

(ii) The wage equals the marginal product, i.e., (8) holds for all t.

(iii) Beliefs are correct on the equilibrium path, that is, for every t,

ût = ut�

and therefore, also, p̂t = pt at all t ∈ [0�T ].

3.1 The continuation game

Here we start by briefly discussing the continuation game in which information is com-
plete so that the belief is identically 1. We have so far assumed that the agent receives
an exogenous wage v until the end of the game at T . However, there is no particular
reason to assume a bounded horizon for the agent’s career, before or after a success. For
instance, in Section 4.1, we consider up-or-out arrangements where the agent earns a
perpetual wage v if he obtains a breakthrough before the end of the probationary pe-
riod T . The agent’s objective (3) is unchanged. Moreover, the unique equilibrium payoff
v in the continuation game does not depend on the interpretation for our model. While
there might good reasons to treat this continuation payoff after a success as an exoge-
nous parameter (after all, the agent may be assigned to another type of task once he has
proved himself), it is easy to endogenize it by solving for the continuation equilibrium.

Lemma 3. Both in the finite and in the infinite continuation game when ω= 1 is common
knowledge, the unique equilibrium payoff is v = λ, and the agent exerts no effort.

The result is clear with a fixed horizon, since the only solution consistent with back-
ward induction specifies no effort throughout. It is more surprising that no effort is
possible in equilibrium with an infinite continuation, even without restricting attention
to Markov (or indeed public) equilibria. As we show in the Appendix, this reflects both
the fact that the market behaves myopically and that, in continuous time, the likelihood
ratio of the signal that must be used as a trigger for punishment is insensitive to effort.19

19Yet this is not an artifact of continuous time: the same holds in discrete time if the frequency is high
enough, as an immediate application of Fudenberg and Levine’s (1994) algorithm. Conversely, if it is low
enough, multiple equilibria can be constructed. The same holds in Holmström’s (1982/1999) model, but
this issue is somewhat obfuscated by his implicit focus on Markov equilibria.
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This result is reminiscent of Abreu et al. (1991), but the relationship is superficial, as
their result relies on the lack of identifiability in the monitoring. Here, all signals reflect
the worker’s effort only. Closer is the analysis of Faingold and Sannikov (2011) under
complete information, where volatility in the Brownian noise prevents any effort to be
sustained in their model.

3.2 The equilibrium with incomplete information

We now return to the game in which the agent’s type is unknown, and use v as a contin-
uation payoff, if only to distinguish it from the arrival rate of a breakthrough. To under-
stand the structure of equilibria, consider the following example, illustrated in Figure 1.
Suppose that the principal expects the agent to put in the efficient amount of effort,
which decreases over time in this example. Accordingly, the wage paid by the firm de-
creases as well. The agent’s best-reply, then, is quasi-concave: effort first increases, and
then decreases (see left panel). The agent puts in little effort at the start, as he has no
incentive “to kill the golden goose.” Once wages come down, effort becomes more at-
tractive, so that the agent increases his effort, before fading out as pessimism sets in.
The market’s expectation does not bear out: marginal product is single-peaked. In fact,
it would decrease at the beginning if effort was sufficiently flat.

Eventually the agent exerts more effort than the social planner would, because the
agent is more optimistic at those times, having worked less in the past (see right panel).
Effort is always too low given the actual belief of the agent, but not always given calendar
time.

As this example makes clear, effort, let alone wage, is not monotone in general. How-
ever, it turns out that the equilibrium structure, illustrated in Figure 2, remains simple
enough.

Theorem 1. Assume λ > 0.

(i) A unique equilibrium exists.

Figure 1. Agent’s best reply and beliefs.
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Figure 2. Effort and wages with convex costs.

(ii) Equilibrium (on path) effort ut is strictly positive for all t ∈ [0�T ), continuous, and
single-peaked.

(iii) If 3c′′(u)+ c′′′(u) ≥ 0 for all u, the equilibrium wage is single-peaked.

The proof is given in Appendix A.2. A sketch for uniqueness is as follows: From
Lemma 2, the agent’s best reply to any wage yields a unique path p. Given the value
of the belief pT , we argue there is a unique path of effort and beliefs consistent with the
equilibrium restriction on wages. We then look at the time it takes, along the equilib-
rium path, to drive beliefs from p0 to pT and show that it is strictly increasing. Thus,
given T , there exists a unique value of pT that can be reached in equilibrium.20

How does the structure depend on parameters? Fixing all other parameters, if ini-
tial effort is increasing for some prior p0, then it is increasing for higher priors. Thus,
growing pessimism plays a role in turning increasing into decreasing effort.

Numerical simulations suggest that the payoff is single-peaked (with possibly inte-
rior mode) in p0. This is a recurrent theme in the literature on reputation: uncertainty is
the lever for reputational incentives. (Recall however that the payoff is net of the outside
option, which is not independent of p0; otherwise, it is increasing in p0.)

Finally, note that we have not specified the worker’s equilibrium strategy entirely, as
we have not described his behavior following his own (unobservable) deviations. The
worker’s optimal behavior off path is the solution of the optimization problem studied
before, for the belief that results from the agent’s history, given the wage path. In partic-
ular, it can be shown that (a) the agent never reverts to the equilibrium path of beliefs,
(b) long deviations can be profitable, but (c) “diverging” deviations are never profitable,
i.e., the agent’s belief eventually returns closer to the equilibrium path p∗

t .

20The uniqueness result contrasts with the multiplicity found in Dewatripont, Jewitt, and Tirole. Al-
though Holmström does not discuss uniqueness in his model, his model admits multiple equilibria.
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3.3 Discussion

The key driver behind the equilibrium structure, as described in Theorem 1, is the strate-
gic substitutability between effort at different dates, conditional on lack of success. If
more effort is expected tomorrow, wages “tomorrow” will be higher in equilibrium,
which depresses incentives, and hence effort “today.” Substitutability between effort
at different dates is also a feature of the social planner’s solution, because higher effort
tomorrow makes effort today less useful, but wages create an additional channel.

This substitutability appears to be new to the literature on career concerns. As we
have mentioned, in the model of Holmström, the optimal choices of effort today and
tomorrow are entirely independent, and because the variance of posterior beliefs is de-
terministic with Gaussian signals, the optimal choice of effort is deterministic as well.
Dewatripont, Jewitt, and Tirole emphasize the complementarity between expected ef-
fort and incentives for effort (at the same date): if the agent is expected to work hard,
failure to achieve a high signal will be particularly detrimental to tomorrow’s reputation,
which provides a boost to incentives today. Substitutability between effort today and to-
morrow does not appear in their model, because it is primarily focused on two periods,
and at least three are required for this effect to appear. With two periods only, there are
no reputation-based incentives to exert effort in the second (and final) period anyhow.

Conversely, complementarity between expected and actual effort at a given time is
not discernible in our model, because time is continuous. It does, however, appear in
discrete time versions of it, and three-period examples can be constructed that illus-
trate both contemporaneous complementarity and intertemporal substitutability of ef-
fort levels.

As a result of this novel effect, effort and wage dynamics display original features.
Both in Holmström’s and in Dewatripont, Jewitt, and Tirole’s models, the wage is a su-
permartingale. Here instead, effort and wages can be first increasing, then decreasing.
These dynamics are not driven by the horizon length.21 Neither are they driven by the
fact that with two types, the variance of the public belief need not be monotone.22 The
same pattern emerges in examples with an infinite horizon, and a prior p0 < 1

2 that guar-
antees that this variance only decreases over time.

As (6) makes clear, the provision of effort is tied to the capital gain that the agent
obtains if he breaks through. Viewed as an integral, this capital gain is too low early on,
it increases over time, and then declines again, for a completely different reason. Indeed,
this wedge depends on two components: the wage gap, and the impact of effort on the
(expected) arrival rate of a success. High initial wages depress the former component,
and hence kill incentives to exert effort early on. The latter component declines over
time, so that eventually effort fades out.23

21This is unlike for the social planner, for whom we have seen that effort is nonincreasing with an infinite
horizon, while it is monotone (and possibly increasing) with a finite horizon.

22Recall that in Holmström’s model, this variance decreases (deterministically) over time, which plays an
important role in his results.

23We have assumed—as is usually done in the literature—that the agent does not know his own skill. The
analysis of the game in which the agent is informed is simple, as there is no scope for signaling. An agent
who knows that his ability is low has no reason to exert any effort, so we focus on the high-skilled agent.
Because of the market’s declining belief, the same dynamics arise, and this agent’s effort is single-peaked.
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Figure 3. Equilibrium wages and Figure IV in Baker et al. (1994b).

Similarly, one might wonder whether the possibility of nonincreasing wages in this
model is driven by the fact that effort and wage paths are truly conditional paths, inas-
much as they assume that the agent has not succeeded. Yet it is not hard to provide
numerical examples that illustrate the same phenomenon for the unconditional flow
payoff (v in case of a past success), although the increasing cumulative probability that
a success has occurred by a given time leads to higher payoffs (at least if wt < v) and
dampens the downward tendency.

3.4 Evidence

Cases abound in which compensation suffers from recurrent failure.24 In Figure 3 we
contrast the equilibrium wage dynamics of our model with the data from Baker et al.
(1994a, 1994b) on managerial employees at one firm. These data uncover similar pat-
terns in the wages of unsuccessful employees. In particular, the wages of those employ-
ees who receive a promotion late in their career (if ever) are nonmonotone over time.

Our model is too stylized to capture the nuanced properties of the observed wage
patterns. For one, in equilibrium, wages need not increase upon a promotion. This is
because all career concerns cease after the first breakthrough. A richer model where
the agent has incentives to exert some positive effort ũ after a breakthrough (so that
w = λ + ũ) would clearly fit the data better. Second, as pointed out by Baker, Gibbs,
and Holmström, wages tend to increase even before a promotion, suggesting that infor-
mation is not as coarse as modeled. Finally, human-capital accumulation and explicit
incentive payments tend to increase wages over time. Nevertheless, our model offers a
parsimonious mechanism through which nonmonotone patterns emerge upon recur-
rent failure.

4. Robustness

Undoubtedly, our model has stylized features: careers have a fixed length, the low-ability
agent cannot achieve a breakthrough, and there is no discounting. In this section, we

24For instance, the income of junior analysts is proportional to the number of job assignments they
are being given, so that struggling analysts end up earning lower wages. Similar patterns arise in the art,
entertainment, and sports industries.
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briefly consider several variations of our baseline model, and we argue that none of
these features is critical to our main findings.

4.1 Probationary periods

A probationary period is a distinguishing feature of several professional-services indus-
tries. To capture the effect of up-or-out arrangements on reputational incentives, we al-
low for a fixed penalty of k≥ 0 for not achieving a success by the deadline T . This might
represent diminished future career opportunities to workers with such poor records. Al-
ternatively, consider an interpretation of our model with two phases of the agent’s ca-
reer: one preceding and one following the “clock” T , which lasts until an exogenous
retirement time T ′ > T . Thus, the penalty k represents the difference between the wage
the agent would have earned had he succeeded, and the wage he will receive until his
eventual retirement. Our baseline model with no penalty (k = 0) constitutes a special
case.

Given a wage function wt , the agent’s problem simplifies to the maximization of∫ T

0

1 −p0

1 −pt
[wt − c(ut)− v]dt − 1 −p0

1 −pT
k� (9)

Considering the maximization problem (9), there appear to be two drivers of the
worker’s effort. First, if the wage falls short of the outside option (i.e., if wt − v is neg-
ative), he has an incentive to exert high effort to stop incurring this flow deficit. As in
the baseline model, this is more realistic when the belief p is high. Second, there is an
incentive to succeed so as to avoid paying the penalty. This incentive should be most
acute when the deadline looms close, as success becomes unlikely to arrive without ef-
fort. Taken together, this suggests an effort pattern that is a convex function of time.
However, this ignores that, in equilibrium, the wage reflects the agent’s expected effort.
Equilibrium analysis shows that the worker’s effort pattern is, in fact, the exact opposite
of what this first intuition suggests.

In particular, the transversality condition now reads

c′(uT ) = pT · k�
as the agent is motivated to avoid the penalty and will exert positive effort until the
deadline. However, the arbitrage equation (7) is unaffected by the transversality con-
dition. Hence, equilibrium effort is single-peaked for the same reasons as in Theorem 1.
Clearly, for a high enough penalty k, equilibrium effort may be increasing throughout.
One might wonder whether the penalty k really hurts the worker. After all, it endows
him with some commitment. It is, in fact, possible to construct examples in which the
optimal (i.e., payoff-maximizing) termination penalty is strictly positive.

4.2 Additive technology and positive discounting

Here, we allow a low-skilled agent to succeed. We do not provide a complete analysis,
limiting ourselves to the interaction before the first breakthrough, and considering a
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Figure 4. Additive and discounted cases.

fixed continuation wage v. We assume the arrival rate of a breakthrough is given by

u+ λ ·ω�

This technology eliminates the contemporaneous complementarity between antici-
pated and actual effort, and allows us to focus on the intertemporal trade-offs.25 In
particular, future wages drive a wedge in the agent’s capital gains from achieving a break-
through. As a result, the equilibrium effort level is again single-peaked. Despite a qual-
itatively similar equilibrium effort pattern under spot contracts, the additive and multi-
plicative technologies have different implications vis-à-vis the effect of wages on effort
at different times. We shall return to the role of complementarity between talent and
effort when characterizing the effect of long-term contracts in Section 5.

To conclude, the single-peaked patterns of effort and wages are not artifacts of our
undiscounted model. In other words, the quasi-concavity property of u and w is strict,
and all the conclusions of Theorem 1 hold for sufficiently low discount rates r. Figure 4
shows the equilibrium effort and wage for the additive case and for several values of the
discount rate.

4.3 The linear case

We now consider the case of linear cost of effort, c(u) = α ·u, where α ∈ (0�1) and 0 ≤ u≤
ū < ∞. While the linear case is not a special case of our baseline model, it yields similar
results and allows for illustrations and sharper characterizations.

In particular, a more precise description of the overall structure of the equilibrium
can be given in the case of linear cost. Effort is first nil, then interior, then maximum,
and finally nil. Therefore, in line with the results on convex cost, effort is single-peaked.
Depending on parameters, any of these time intervals might be empty. Figure 5 provides

25It is immediate to see that the evolution of beliefs is exogenous, leading to the equilibrium wage

wt = p0

1 −p0 +p0eλt
+ ut �
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Figure 5. Equilibrium effort with linear cost.

an illustration, and the reader is referred to the Appendix to a formal description (see
Proposition 4).

We use the linear-cost specification in the two major extensions of Sections 5 and 6.

5. Long-term contracts

So far, we have assumed spot contracts, i.e., the wage is equal to the marginal product.
This is a reasonable premise in a number of industries in which lack of transparency or
volatility in the firm’s revenue stream might inhibit commitment by the firm to a partic-
ular wage scheme. Alternatively, it is sometimes argued that competition for the agent’s
services leads to a similar outcome. Our model does not substantiate such a claim: if
the principal can commit to a wage path, matters change drastically, even under com-
petition. Throughout this section, we maintain linear costs of effort and a positive ter-
mination penalty k, but we no longer constrain the continuation payoff v to be equal
to λ.

In particular, if the principal could commit to a breakthrough-contingent wage
scheme, the moral hazard problem would be solved: under competition, the principal
would offer the agent the value of a breakthrough, 1, whenever a success occurs, and
nothing otherwise.

If the principal could commit to a time-contingent wage scheme that involved pay-
ments after a breakthrough, the moral hazard would also be mitigated. This can be
achieved, for example, through an escrow account, with payments depending on the
agent staying with the firm, but not on the realization of output. If promised payments
at time t in the case of no breakthrough are also made if a breakthrough has occurred,
all disincentives due to wages are eliminated.

Here, we examine a weaker form of commitment. The agent cannot be forced to stay
with a principal (he can leave at any time). Once a breakthrough occurs, the agent moves
on (e.g., to a different industry or position), and the firm is unable to retain him in this
event. The principal can commit to a wage path that is conditional on the agent working
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for her firm. Thus, wages can only be paid in the continued absence of a breakthrough.
Until a breakthrough occurs, other firms, who are symmetrically informed (they observe
the wages paid by all past employers), compete by offering wage paths. The same dead-
line applies to all wage paths, i.e., the tenure clock is not reset. For instance, the deadline
could represent the agent’s retirement age, so that switching firms does not affect the
horizon.

We write the principal’s problem as that of maximizing the agent’s welfare subject to
constraints. We take it as an assumption that competition among principals leads to the
most preferred outcome of the agent, subject to the firm breaking even.

Formally, we solve the following optimization problem P .26 The principal chooses
u : [0�T ] → [0� ū] and w : [0�T ] → R+, integrable, to maximize W (0�p0), where, for any
t ∈ [0�T ],

W (t�pt) := max
w�u

∫ T

t

1 −pt

1 −ps
(ws − v − αus)ds − k

1 −pt

1 −pT
�

such that, given w, the agent’s effort is optimal,

u = arg max
u

∫ T

t

1 −pt

1 −ps
(ws − v− αus)ds − k

1 −pt

1 −pT
�

and the principal offers as much to the agent at later times than the competition could
offer at best, given the equilibrium belief,

∀τ ≥ t:
∫ T

τ

1 −pτ

1 −ps
(ws − v − αus)ds − k

1 −pτ

1 −pT
≥W (τ�pτ); (10)

finally, the firm’s profit must be nonnegative,

0 ≤
∫ T

t

1 −pt

1 −ps
(ps(λ+ us)−ws)ds�

Note that competing principals are subject to the same constraints as the principal un-
der consideration: because the agent might ultimately leave them as well, they can offer
no better than W (τ�pτ) at time τ, given belief pτ. This leads to an “infinite regress”
of constraints, with the value function appearing in the constraints themselves. To be
clear, W (τ�pτ) is not the continuation payoff that results from the optimization prob-
lem, but the value of the optimization problem if it started at time τ.27 Because of the
constraints, the solution is not time consistent, and dynamic programming is of little

26We are not claiming that this optimization problem yields the equilibrium of a formal game, in which
the agent could deviate in his effort scheme, leave the firm, and competing firms would have to form beliefs
about the agent’s past effort choices, etc. Given the well known modeling difficulties that continuous time
raises, we view this merely as a convenient shortcut. Among the assumptions that it encapsulates, note that
there is no updating based on an off-path action (e.g., switching principals) by the agent.

27Harris and Holmström (1982) impose a similar condition in a model of wage dynamics under incom-
plete information. However, because their model abstracts from moral hazard, constraint (10) reduces to a
nonpositive continuation profit condition.
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help. Fortunately, this problem can be solved, as shown in Appendix A.3, at least as long
as ū and v are large enough. Formally, we assume that

ū≥
(

v

αλ
− 1

)
v− λ and v ≥ λ(1 + k)�28 (11)

Before describing its solution, let us provide some intuition. Future payments do
depress incentives, but their timing is irrelevant if ω = 0, as effort makes no difference
in that event anyhow. Hence, the impact on incentives can be evaluated conditional on
ω = 1. However, in that event, remote payments are unlikely to be collected anyhow, as
a success is likely to have occurred by then. This dampens the detrimental impact of
such payments on incentives. The benefit from postponing future payments as much
as possible comes from this distinction: the rate at which they are discounted from the
principal’s point of view is not the same as the one used by the agent when determining
his optimal effort, because of this conditioning.

More precisely, recall the first-order condition (6) that determines the agent’s effort.
Clearly, the lower the future total wage bill, the stronger the agent’s incentives to exert
effort, which is inefficiently low in general. Now consider two times t < t ′: to provide
strong incentives at the later time t ′, it is best to frontload any promised payment to
times before t ′, as such payments will no longer matter at that time. Ideally, the princi-
pal would pay what he owes up front, as a “signing bonus.” Of course, this violates the
constraint (10), as an agent left with no future payments would leave right after cashing
in the signing bonus.

From the perspective of incentives at the earlier time t, however, backloading
promised payments can be beneficial. To see this formally, note that the coefficient of
the wage ws , s > t, in (6) is the likelihood ratio ps/(1 −ps), as explained before. Up to the
factor (1 −pt), we obtain

(1 −pt)
ps

1 −ps
= P[ω = 1|τ ≥ s]P[ω = 1] = P[ω = 1 ∩ τ ≥ s];

that is, effort at time t is affected by wage at time s > t inasmuch as time s is reached and
the state is 1: otherwise effort plays no role anyhow.

In terms of the firm’s profit, the coefficient placed on the wage at time s (see (10)) is

P[τ ≥ s]�
i.e., the probability that this wage is paid (or collected). Thus, if the firm wishes to back-
load payments and break even, the nominal value of those payments must be increased,
as a breakthrough might occur until then, which would void them; but the probability
that these payments must be made decreases in the same proportion. Thus, what mat-
ters for incentives is not the probability that time s is reached, but the fact that reaching
those later times is indicative of state 0.

In particular, because players grow more pessimistic over time, the coefficient on
future wages in the agent’s first-order condition (6) decreases faster than in the firm’s

28We do not know whether these assumptions are necessary for the result.
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profits. Hence, later payments depress current incentives less than earlier payments:
backloading payments is good for incentives at time t.

To sum up: from the perspective of time t, backloading payments is useful; from the
point of view of t ′ > t, it is detrimental, but frontloading is constrained by (10). Note that,
as T → ∞, the planner’s solution tends to the agent’s best response to a wage of w = 0.
Hence, the firm can approach first best by promising a one-time payment arbitrarily far
in the future (and wages equal to marginal product thereafter). This would be almost
as if w = 0 for the agent’s incentives, and would induce efficient effort. The lump-sum
payment would then be essentially equal to p0/(1 −p0).

Note finally that, given the focus on linear cost, there is no benefit in giving the agent
any “slack” in his incentive constraint at time t; otherwise, by frontloading slightly future
payments, incentives at time t would not be affected, while incentives at later times
would be enhanced. Hence, the following result should come as no surprise.

Theorem 2. The following statement is a solution to the optimization problem P , for
some t ∈ [0�T ]. Maximum effort is exerted up to time t, and zero effort is exerted after-
ward. The wage is equal to v− αλ up to time t, so that the agent is indifferent between all
levels of effort up to then, and it is 0 for all times s ∈ (t�T ); a lump sum is paid at time T .29

The proof is given in Appendix A.3, and it involves several steps: we first conjecture
a solution in which effort is first full (and the agent is indifferent), then nil; we relax the
objective in program P to maximization of aggregate effort, and relax constraint (10)
to a nonpositive continuation profit constraint; we verify that our conjecture solves the
relaxed program, and finally that it also solves the original program. In the last step we
show that (a) given the shape of our solution, maximizing total effort implies maximizing
the agent’s payoff, and (b) the competition constraint (10) is slack at all times t > 0.

Hence, under one-sided commitment, high effort might be exerted throughout. This
happens if T is short and k > 0. When ū is high enough (precisely, when (11) holds),
the agent produces revenue that exceeds the flow wage collected as time proceeds: the
liability recorded by the principal grows over time, shielding it from the threat of com-
petition. This liability will eventually be settled via a lump-sum payment at time T that
can be interpreted as severance pay. If the horizon is longer or k = 0, the lump sum
wipes out incentives close to the deadline, and effort is zero in a terminal phase. Thus, a
phase with no effort exists if and only if the deadline is long enough. The two cases are
illustrated in Figure 6.

As mentioned, all these results are proved for the case of linear cost. It is all the
more striking that the result obtains in this “linear” environment. Indeed, rigidity and
severance pay are usually attributed to risk aversion by the agent (see Azariadis 1975,
Holmström 1983, Harris and Holmström 1982, Thomas and Worrall 1988).30 Our model

29The wage path that solves the problem is not unique in general.
30In Thomas and Worrall (1988), there is neither incomplete information nor moral hazard. Instead,

the spot market wage is treated as an exogenous independent and identically distributed (i.i.d.) pro-
cess (though Thomas and Worrall do not require risk aversion; with market power and commitment,
backloading improves incentives). Holmström (1983) is a two-period example. As mentioned above,
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Figure 6. Wages and effort under commitment for two horizon lengths.

with commitment and competition provides an alternative rationale. To sum up, with
a long horizon, commitment alleviates the unavoidable delay in effort provision that
comes with compensating a worker for persistent failure by backloading compensation.

6. Observable effort

The inability to contract on effort might be attributable to the subjectivity in its mea-
surement rather than to the impossibility of monitoring it. To understand the role of ob-
servability of effort, we assume here that effort is observed. Because effort is monitored,
the firm and agent beliefs coincide on- and off-path. The flow wage is given by

wt = pt(λ+ ût)�

where pt is the belief and ût is expected effort. We assume linear cost. The agent
maximizes

V (p0�0) :=
∫ T

0

1 −p0

1 −pt
[pt(λ+ ût)− αut − v]dt − k

1 −p0

1 −pT
�

In contrast to (3), the firm’s revenue is no longer a function of time only, as effort affects
future beliefs, thus wages. Hence, effort is a function of both t and p. We focus on
equilibria in Markov strategies

u : [0�1] × [0�T ] → [0� ū]�
such that u(p� t) is upper semicontinuous and the value function V (p� t) is piecewise
differentiable.31

Harris and Holmström (1982) has incomplete information about the worker’s type, but no moral hazard.
Hence, the logic of rigidity and backloading that appears in these models is very different from ours, driven
by optimal incentive provision under incomplete information.

31That is, there exists a partition of [0�1] × [0�T ] into closed Si with nonempty interior, such that V

is differentiable on the interior of Si, and the intersection of any Si, Sj is either empty or a smooth one-
dimensional manifold.
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Lemma 4. Fix a Markov equilibrium. Suppose the agent exerts strictly positive effort at
time t (givenp). Then the equilibrium specifies strictly positive effort at all times t ′ ∈ (t�T ].

Thus, in any equilibrium involving extremal effort levels only, there are at most two
phases: the worker exerts no effort and then full effort. This is the opposite of the socially
optimal policy, which frontloads effort (see Lemma 1). The agent can only be trusted to
put in effort if his “back is to the wall,” so that effort remains optimal at any later time,
no matter what he does; if the market paid for effort, yet the agent was expected to let
up later on, then he would gain by deviating to no effort, pocketing the high wage in
the process; because such a deviation makes everyone more optimistic, it would only
increase his incentives to exert effort (and so his wage) at later times.

This does not imply that the equilibrium is unique, as the next theorem establishes.

Theorem 3. Given T > 0, there exists continuous, distinct, nonincreasing
¯
p� p̄ : [0�T ] →

[0�1] (with
¯
pt ≤ p̄t with equality if t = T ) such that the following statements hold:

(i) All Markov equilibria involve maximum effort if pt > p̄t .

(ii) All Markov equilibria involve no effort if pt ≤
¯
pt .

(iii) These bounds are tight: there exists a Markov equilibrium in which effort is either
0 or ū if and only if p is below or above

¯
p (resp., p̄).

The proof of Theorem 3 provides a description of these belief boundaries. These
boundaries might be as high as 1, in which case effort is never exerted at that time: in-
deed, there is t∗ (independent of T ) such that effort is zero at all times t < T − t∗ (if
T > t∗). The threshold

¯
p is decreasing in the cost α, and increasing in v and k. Con-

sidering the equilibrium with maximum effort—the agent works more—the more de-
sirable success is.32

 Figure 7 illustrates these dynamics. In any extremal equilibrium,
wages decrease over time, except for an upward jump when effort jumps up to ū. In the
interior-effort equilibrium described in the proof (in which effort is continuous through-
out), wages decrease throughout. Further comparative statics are given in the Appendix.

Equilibrium multiplicity has a simple explanation. Because the firm expects effort
only if the belief is high and the deadline is close, such states (belief and times) are desir-
able for the agent, as the higher wage more than outweighs the effort cost. Yet low effort
is the best way to reach those states, as effort depresses beliefs: hence, if the firm expects
the agent to shirk until a high boundary is reached (in (p� t) space), the agent has strong
incentives to shirk to reach it; if the firm expects shirking until an even higher boundary,
this would only reinforce this incentive.33

32While the equilibria achieving the result in part (iii) of Theorem 3 (say, ¯σ and σ̄) provide upper and
lower bounds on equilibrium effort (in the sense of parts (i) and (ii)), these equilibria are not the only ones.
Other equilibria exist that involve only extremal effort, with a switching boundary in between

¯
p and p̄; there

are also equilibria in which interior effort levels are exerted at some states.
33Non-Markov equilibria exist. Defining them in our environment is problematic, but it is clear that

threatening the agent with reversion to the Markov equilibrium σ̄ provides incentives for effort extending
beyond the high-effort region defined by ¯σ—in fact, beyond the high-effort region in the unobservable
case. The planner’s solution remains out of reach, as punishments are restricted to beliefs below

¯
p.
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Figure 7. Effort and wages in the observable case.

Let us turn to a comparison with the case of nonobservable effort, as described in
Section 3. Along the equilibrium path, the dynamics of effort look very different when
one compares the social planner’s solution to the agent’s optimum under either observ-
ability assumption. Yet effort can be ranked across those cases. To do so, the key is to
describe effort in terms of the state (p� t), i.e., the public belief and calendar time. In all
equilibria, effort is lower under observability. In the following theorem, maximum effort
region refers to the range of parameters (p� t) over which maximum effort is prescribed
by some (Markov) equilibrium (as defined in Theorem 3), and similarly in the case in
which effort is not observable (recall that the equilibrium is essentially unique then).

Proposition 3. The maximum effort region for the observable case is contained in the
maximum effort region(s) for the nonobservable case.

This confirms that observability depresses incentives: the highest-effort equilibrium
with observability entails less effort than without. In addition, whatever effort is exerted
in the observable case, it is exerted later than in the unobservable case. (Formally, the
equilibrium belief paths pt in the two cases cannot cross.) Because effort costs are linear,
it follows that social surplus is lower with observability than without. In turn, recall from
Proposition 2 that the aggregate equilibrium effort is lower than the social planner’s.34

7. Concluding remarks

Endogenous deadlines

Suppose the worker decides when to quit the profession and assume he has no commit-
ment power. Upon quitting, the agent suffers a fixed penalty k > 0. The principal antic-
ipates the quitting decision, and takes this into account while determining the agent’s

34The same deleterious effect of observability on incentives is present in Holmström (1982/1999). The
comparison of aggregate effort in equilibrium and in the planner’s solution extends to the case of linear
cost. See the working paper (Bonatti and Hörner 2013) for details.
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equilibrium effort and, therefore, the wage he should be paid. For simplicity, we adopt
passive beliefs. That is, if the agent is supposed to drop out at some time but fails to
do so, the principal does not revise his belief regarding past effort choices, ascribing the
failure to quit to a mistake (i.e., he expects the agent to quit at the next instant).

It is easy to show that endogenous deadlines do not affect the pattern of effort and
wage: the wage is decreasing at the end (but not necessarily at the beginning); effort and
wages are single-peaked. Furthermore, the belief at the deadline is too high relative to
the social planner’s at the first-best deadline.35 How about if the worker could commit
to the deadline (but still not to effort levels)? The optimal deadline with commitment is
set so as to increase aggregate effort and therefore wages. Numerical simulations sug-
gest this requires decreasing the deadline, so as to provide stronger incentives through
a larger penalty, i.e., to make high effort levels credible.

Multiple breakthroughs

Suppose that one success does not resolve all uncertainty. Specifically, there are three
states and two consecutive projects. The first project can be completed if and only if
the agent is not bad (i.e., if he is good or great). If the first project is completed, an
observable event, the agent tackles the second, which can be completed only if the agent
is great. Such an extension can be solved by backward induction. Once the first project is
completed, the continuation game reduces to the game of Section 3. The value function
of this problem then serves as a continuation payoff to the first stage. While this value
function cannot be solved in closed form, it is easy to derive the solution numerically.
The same pattern as in our baseline model emerges: effort is single-peaked, and, as a
result, wages can be first decreasing and then single-peaked.

Furthermore, effort at the start of the second project is also single-peaked as a func-
tion of the time at which this project is started (the later it is started, the more pessimistic
the agent at that stage, though his belief has obviously jumped up given the success).

Learning by doing

Memorylessness is a convenient but stark property of the exponential distribution. It
implies that past effort plays no role in the probability of instantaneous breakthrough.
In many applications, agents learn from the past not only about their skill levels, but
about the best way to achieve a breakthrough. While a systematic analysis of learning
by doing is beyond the scope of this paper, we can gain some intuition from numerical
simulations. We assume the evolution of human capital is given by

żt = ut − δzt� z0 = 0�

while its productivity is

ht = ut + ρz
φ
t �

35Having the worker quit when it is best for him (without commitment to the deadline) reinforces our
comparison between observable and nonobservable effort. See the working paper (Bonatti and Hörner
2013) for details.



452 Bonatti and Hörner Theoretical Economics 12 (2017)

Not surprisingly, simulations suggest that the main new feature is a spike of effort at the
beginning, whose purpose is to build human capital. This spike might lead to decreasing
initial effort, before it becomes single-peaked, though this need not be the case. Beyond
this new twist, features from the baseline model appear quite robust.

Appendix

Throughout this appendix, we shall use the log-likelihood ratio

xt := ln
1 −pt

pt

of state ω = 0 vs. ω = 1. We set x0 := ln(1 −p0)/p0. Note that x increases over time and,
given u, follows the ordinary differential equation (O.D.E.)

ẋt = λ+ ut�

with x0 = x0. We shall also refer to xt as the belief, hoping that this will create no
confusion.

We start by explaining how the objective function can be derived as the limit of a
discounted version of our problem. Suppose that Wt is the value of a success at time
t, corresponding to earning the flow wage v until the end of the game at T . Given the
discount rate r, we have

Wt = v

r
(1 − e−r(T−t))�

and hence the agent’s ex ante payoff V0 is given by

V0 =
∫ T

0
e−rt 1 + e−xt

1 + e−x0

(
ẋt

1 + ext
Wt +wt − c(ut)

)
dt�

Integrating the first term by parts, we obtain

V0 − 1
1 + ex0

v

r
(1 − e−rT ) =

∫ T

0
e−rt 1 + e−xt

1 + e−x0

(
wt − c(ut)− v

1 + ext

)
dt�

so that as r → 0, we obtain

(1 + e−x0)V0 − e−x0vT =
∫ T

0
(1 + e−xt )

(
wt − c(ut)− v

1 + ext

)
dt�

Similarly, one can show the social planner’s payoff is given by

(1 + e−x0)V0 − e−x0(vT + 1)= −
∫ T

0
(1 + e−xt )

(
c(ut)+ v

1 + ext

)
dt − e−xT �
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A.1 Proofs for Section 2

Proof of Lemma 1. Existence and uniqueness of a solution follow as a special case of
Lemma 2, when w = 0 identically (the transversality condition must be adjusted). To see
that the social planner’s problem is equivalent to this, note that the “revenue” term of
the social planner’s objective satisfies∫ T

0
(1 + e−xt )

λ+ ut

1 + ext
dt =

∫ T

0
ẋte

−xt dt = e−x0 − e−xT �

and so this revenue only affects the necessary conditions through the transversality con-
dition at T .

The social planner maximizes∫ T

0
(1 + e−xt )

(
λ+ ut

1 + ext
− c(ut)− v

)
dt� s.t. ẋt = λ+ ut�

We note that the maximization problem cannot be abnormal, since there is no restric-
tion on the terminal value of the state variable. See Seierstad and Sydsæter (1987,
Chapter 2, Note 5). The same holds for all optimization problems considered below.
From now on, it will be understood that statements about derivatives only hold almost
everywhere.

Let γt be the costate variable. The Hamiltonian for this problem is

H(x�u�γ� t) = e−xt (λ+ ut)− (1 + e−xt )(v + c(ut))+ γt(λ+ ut)�

Applying Pontryagin’s theorem (and replacing the revenue term by its expression in
terms of xt and x0, as explained above) yields as necessary conditions

γ̇t = −e−x(c(u)+ v)� γt = (1 + e−xt )c′(ut)�

Differentiate the second expression with respect to time, and use the first one to obtain

u̇ = (λ+ u)c′(u)− c(u)− v

c′′(u)(1 + ex)
� (12)

in addition to ẋ= λ+ u (time subscripts will often be dropped for brevity). Let

φ(u) := (λ+ u)c′(u)− c(u)− v�

Note that φ(0) = −v < 0, and φ′(u) = (λ+u)c′′(u) > 0, and so φ is strictly increasing and
convex. Let u∗ ≥ 0 be the unique solution to

φ(u∗)= 0�

and so φ is negative on [0�u∗] and positive on [u∗�∞). Accordingly, u < u∗ ⇒ u̇ < 0,
u = u∗ ⇒ u̇ = 0, and u > u∗ ⇒ u̇ > 0. Given the transversality condition

(1 + exT )c′(uT ) = 1�
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we define

xT (x
0)= 1

λ+ u∗

[
ln

(
1

c′(u∗)
− 1

)
− x0

]
�

and so effort is decreasing throughout if xT > xT (x
0), increasing throughout if

xT < xT (x
0), and equal to u∗ throughout otherwise.

Finally, we establish that the belief xT at the deadline is increasing in T . Note that
the necessary conditions define a vector field (u̇� ẋ), with trajectories that only depend
on the time left before the deadline and the current belief. Because trajectories do not
cross (in the plane (−τ�x), where τ is time to go and x is the belief), and belief x can
only increase with time, if we compare two trajectories starting at the same level x0, the
one that involves a longer deadline must necessarily involve as high a terminal belief x
as the other (as the deadline expires). �

Proof of Lemma 2. We address the two claims in turn.
Existence. Note that the state equation is linear in the control u, while the objective’s

integrand is concave in u. Hence the set N(x�U� t) is convex (see Seierstad and Sydsæter
1987, Chapter 2, Theorem 8). Therefore, the Filippov–Cesari existence theorem applies
(see Cesari 1983).

Uniqueness. We can write the objective, up to constant terms, as∫ T

0
(1 + e−xt )(wt − v − c(ut))dt�

or, using the likelihood ratio lt := pt/(1 −pt) > 0,

J(l) :=
∫ T

0
(1 + lt)(wt − v − c(ut))dt�

Suppose that there are two distinct optimal trajectories l1 and l2, with associated
controls u1 and u2. Assume without loss of generality that

l1�t < l2�t for all t ∈ (0�T ]�

We analyze the modified objective function

J̃(l) :=
∫ T

0
(1 + lt)(wt − v − c̃t (ut))dt�

in which we replace the cost function c(ut) with

c̃t (u) :=
{
αtu if u ∈ [min{u1�t � u2�t}�max{u1�t � u2�t}]
c(u) if u /∈ [min{u1�t � u2�t}�max{u1�t � u2�t}],

where

αt := max{c(u1�t)� c(u2�t)} − min{c(u1�t)� c(u2�t)}
max{u1�t � u2�t} − min{u1�t � u2�t} �
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(If u1�t = u2�t =: ut for some t, set αt equal to c′(ut).) Because c̃t (u) ≥ c(u) for all t, u, the
two optimal trajectories l1 and l2, with associated controls u1 and u2, are optimal for the
modified objective J̃(l) as well. Furthermore, J̃(l1) = J(l1) and J̃(l2) = J(l2).

We construct a feasible path lt and its associated control ut ∈ [min{u1�t � u2�t}�
max{u1�t � u2�t}] that attains a higher payoff J̃(l) and therefore a strictly higher payoff J(l).
Suppose ut ∈ [u1�t � u2�t] for all t. Letting gt := wt − v + αλ − α̇t , we rewrite the modified
objective as ∫ T

0
ltgt dt −

∫ T

0
α̇t ln lt dt + αT lT + αT ln lT + constant�

We now consider a continuous function εt ≥ 0 and two associated variations on the
paths l1 and l2:

l′1�t := (1 − εt)l1�t + εtl2�t

l′2�t := (1 − εt)l2�t + εtl1�t �

Because l1 and l2 are optimal, for any εt it must be the case that

J̃(l1)− J̃(l′1) ≥ 0

J̃(l2)− J̃(l′2) ≥ 0�

We can write these payoff differences as∫ T

0
εt(l1�t − l2�t)gt dt +

∫ T

0
α̇tεt

l2�t − l1�t
l1�t

dt

+ αTεT (l1�T − l2�T )− αTεT
l2�T − l1�T

l1�T
+ o(‖ε‖)≥ 0

∫ T

0
εt(l2�t − l1�t)gt dt +

∫ T

0
α̇tεt

l1�t − l2�t
l2�t

dt

+ αTεT (l2�T − l1�T )− αTεT
l1�T − l2�T

l2�T
+ o(‖ε‖)≥ 0�

Letting

ρt := l1�t/ l2�t < 1 for all t > 0�

we can sum the previous two conditions (up to the second-order term). Finally, inte-
grating by parts, we obtain the condition,∫ T

0

[
ε̇t

εt

(
2 − ρt − 1

ρt

)
+ ρ̇t

1 − ρ2
t

ρ2
t

]
αtεt dt ≥ 0�

which must hold for all εt . Using the fact that ρ̇= ρ(u2 − u1) we have∫ T

0

[
− ε̇t

εt
(1 − ρt)+ (u2�t − u1�t)(1 + ρt)

]
αtεt

1 − ρt

ρt
dt ≥ 0� (13)
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We now identify bounds on the function εt so that both variations l′1 and l′2 are feasi-
ble and their associated controls lie in [min{u1�t � u2�t}�max{u1�t � u2�t}] for all t. Consider
the identities

l̇′1 = −l′1�t(λ+ ut)≡ ε̇t(l2�t − l1�t)− λl′1�t − (1 − εt)u1�t l1�t − εtu2�t l2�t

l̇′2 = −l′2�t(λ+ ut)≡ ε̇t(l1�t − l2�t)− λl′2�t − εtu1�t l1�t − (1 − εt)u2�t l2�t �

We therefore have the expressions for the function ε̇/ε associated with each variation:

ε̇t

εt
= (u1�t − ut)

1−εt
εt

l1�t + l2�t(u2�t − ut)

l2�t − l1�t
(14)

ε̇t

εt
= (u1�t − ut)l1�t + 1−εt

εt
l2�t(u2�t − ut)

l1�t − l2�t
� (15)

In particular, whenever u2�t > u1�t , the condition

ε̇t

εt
∈

[
−1 − εt

εt

l2�t(u2�t − u1�t)

l2�t − l1�t
�
l1�t(u2�t − u1�t)

l2�t − l1�t

]

ensures the existence of two effort levels ut ∈ [u1�t � u2�t] that satisfy conditions (14) and
(15) above. Similarly, whenever u1�t > u2�t , we have the bound

ε̇t

εt
∈

[
− l1�t(u1�t − u2�t)

l2�t − l1�t
�

1 − εt

εt

l2�t(u2�t − u1�t)

l2�t − l1�t

]
�

Note that ε̇t/εt = 0 is always contained in both intervals.
Finally, because ρ0 = 1 and ρt < 1 for all t > 0, we must have u1�t > u2�t for t ∈ [0� t∗)

with t∗ > 0. Therefore, we can construct a path εt that satisfies

(u2�t − u1�t)
1 + ρt

1 − ρt
<

ε̇t

εt
< 0 ∀t ∈ [0� t∗)�

with ε0 > 0 and εt ≡ 0 for all t ≥ t∗. Substituting into condition (13) immediately yields a
contradiction. �

Proof of Proposition 1. Applying Pontryagin’s theorem yields (7). It also follows that
the effort and belief (x�u) trajectories satisfy

c′′(u)(1 + ex)u̇ = (λ+ u)c′(u)− c(u)+wt − v (16)

ẋ= λ+ u�

with boundary conditions

x0 = x0

uT = 0� (17)



Theoretical Economics 12 (2017) Career concerns with exponential learning 457

Differentiating (16) further, we obtain

(c′′(u)(1 + ex))2u′′
t

= ((λ+ u)c′′(u)u′
t +w′

t )c
′′(u)(1 + ex)

− ((λ+ u)c′(u)+wt − c(u)− v)(c′′′(u)u′
t (1 + ex)+ ex(λ+ u)c′′(u))�

Thus, when u′
t = 0, we obtain

c′′(u)(1 + ex)u′′
t =w′

t �

Combined with the transversality condition (17) and our assumption that the first-order
condition holds at all times, this immediately implies the conclusion. �

Proof of Proposition 2. From (12) we obtain the expression

u′(x) = (λ+ u)c′(u)− c(u)− v

c′′(u)(1 + ex)(λ+ u)
�

which must hold for the optimal trajectory (in the (x�u) plane) for the social planner.
Denote this trajectory xFB. The corresponding law of motion for the agent’s optimum
trajectory x∗ given w is

1
x′(u)

= (λ+ u)c′(u)− c(u)+wt − v

c′′(u)(1 + ex)(λ+ u)
�

(Note that, not surprisingly, time matters.) This implies that (in the (x�u) plane) the
trajectories xFB and x∗ can only cross one way, if at all, with x∗ being the flatter one. Yet
the (decreasing) transversality curve of the social planner, implicitly given by

(1 + exT )c′(uT ) = 1�

lies above the (decreasing) transversality curve of the agent, which is defined by uT = 0.
Suppose now that the trajectory xFB ends (on the transversality curve) at a lower be-

lief xFBT than x∗: then it must be that effort u was higher throughout along that trajectory
than along x∗ (since the latter is flatter, xFB must have remained above x∗ throughout).
But since the end value of the belief x is simply x0 + ∫ T

0 us ds, this contradicts xFBT < x∗
T .

It follows that for a given x, the effort level u is higher for the social planner.
The same reasoning implies the second conclusion: if xFBT = x∗

T , so that total effort
is the same, yet the trajectories can only cross one way (with x∗ being flatter), it follows
that x∗ involves lower effort first, and then larger effort, i.e., the agent backloads effort. �

A.2 Proofs for Section 3

First, we describe and prove the omitted characterization in the case of linear cost.
Proposition 4 describes the equilibrium in the linear case

Proposition 4. With linear cost, any equilibrium path consists of at most four phases,
for some 0 ≤ t1 ≤ t2 ≤ t3 ≤ T :
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(i) During [0� t1], no effort is exerted.

(ii) During (t1� t2], effort is interior, i.e., ut ∈ (0� ū).

(iii) During (t2� t3], effort is maximal.

(iv) During (t3�T ], no effort is exerted.

Any of these intervals might be empty.36

Proof of Proposition 4. We prove the following statements:

1. If there exists t ∈ (0�T ) such that φt > 0, then there exists t ′ ∈ [t�T ] such that us = ū

for s ∈ [t� t ′] and us = 0 for s ∈ (t ′�T ].
2. If there exists t ∈ (0�T ) such that φt < 0, then either us = 0 for all s ∈ [t�T ] or us = 0

for all s ∈ [0� t].
This implies the desired decomposition. For the first part, note that either us = ū for
all s > t or there exists t ′′ such that both φt ′′ > 0 (so in particular ut ′′ = ū) and φ̇t ′′ < 0.
Because pt decreases over time and us ≤ ut ′′ for all s > t ′′, it follows that ws < wt ′′ , and so
φ̇s < φ̇t ′′ < 0. Hence φ can cross 0 only once for values above t, establishing the result.
For the second part, note that either us = 0 for all s ≥ t or there exists t ′′ ≥ t such that
φt ′′ < 0 (so in particular ut ′′ = 0) and φ̇t ′′ > 0. Because pt decreases over time and us ≥ ut ′′

for all s < t ′′, it follows that ws ≥wt ′′ , and so φ̇s > φ̇t ′′ > 0. For all s < t ′′, φs < 0 and φ̇s > 0.
Hence, us = 0 for all s ∈ [0� t]. �

Proof of Lemma 3. We can apply the continuous-time average cost optimality equa-
tion for multichain processes (see, e.g., Theorem 5.7 of Guo and Hernández-Lerma
2009). To verify their Assumption 5.4, we introduce a discount rate r (or a sequence
thereof, tending to 0). Assume a public randomization device, which, given the neg-
ative result, is irrelevant. This is a game between a long-run player—the worker—
and a sequence of short-run players—the market. Monitoring has a product structure,
since wages are perfectly observed while the occurrence of breakthroughs relies on the
worker’s action only. It follows that attention can be restricted to strategies that depend
on the public history only. Hence, there is a well defined highest and lowest equilibrium
payoff for the agent, independent of the entire history. Let us denote by v̄ ≥ ¯v the corre-
sponding average values. Given the randomization device, attention can be restricted to
the strategies that achieve these values. Note that ¯v = λ: never exerting any effort is an
option, and guarantees λ as a payoff; conversely, if the market never expects any effort,
not exerting any is a best reply. To achieve v̄, it is best to promise v̄ as continuation utility
if a breakthrough occurs, and threaten with reversion to ¯v if no such breakthrough ob-
tains with the minimum probability necessary to induce the desired level of effort. Let γ
denote the rate at which reversion occurs in the absence of breakthroughs. It must hold

36Here and elsewhere, the choices at the extremities of the intervals are irrelevant, and our specification
is arbitrary in this respect.
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that γ = O(dt), because the probability that a breakthrough occurs is of order dt. Hence,
γ is at most zdt, for some z > 0, but then it holds that

v̄ = max
u≥0

{
r dt(w̄− c(u))+ (1 − r dt)

(
v̄ − (1 − (λ+ u)dt)zdt · (v̄ − ¯v)

)} + o(dt)�

where w̄ is the wage paid to the worker (equal to his expected output in the best equilib-
rium). Clearly the optimum effort is 0, as the impact of effort on the probability of pun-
ishment is of second order, while the cost is of first order. Verification of Theorem 5.7 of
Guo and Hernández-Lerma (2009) is immediate. �

Proof of Theorem 1. We start by establishing that equilibrium effort and wages are
strictly positive (for t < T ) and single-peaked. We then use these properties to prove
uniqueness and existence.

Positive effort. We know from transversality that uT = 0. Furthermore, the arbitrage
equation (7) implies that whenever ut = 0 in equilibrium, the derivative of effort is given
by

c′′(ut)u̇t = ptλ(pt − 1) < 0�

Because ut is continuous on [0�T ], it then follows that ut > 0 for all t < T .
Single-peakedness. Single-peakedness of effort is almost immediate. Substituting

the equilibrium expression wt = (λ + ut)/(1 + ext ) in the boundary value problem (16).
Differentiating u′

t further, we obtain

u′
t = 0 ⇒ c′′(u)(1 + e−x)u′′

t = −(wt)
2�

which implies that the function u is at most first increasing then decreasing.
We now argue that the wage is single-peaked. In terms of x, the wage is given by

w(x) = λ+ u(x)

1 + ex
� and so

w′(x) = u′(x)
1 + ex

− λ+ u(x)

(1 + ex)2 e
x�

so that w′(x) = 0 is equivalent to

u′(x) = w(x)ex�

As in the proof of Lemma 1, when w′(x) = 0, we have

w′′(x) = u′′(x)− u′(x)
1 + ex

�

Furthermore, we know that

u′(x) = (λ+ u)c′(u)− c(u)+ λ+u
1+ex − v

c′′(u)(1 + ex)(λ+ u)
�
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Mimicking the proof of Lemma 1, we conclude that w′(x) = 0 implies

u′′(x)− u′(x) = −u′(x)(3c′′ + (λ+ u)c′′′)ex

c′′(1 + ex)
< 0�

if, as we have assumed, c′′ + (λ + u)c′′′ > 0. Therefore, we also have single-peaked (at
most increasing, then decreasing) wages. (More generally, if c′′′ < 0 but 3c′′ + (λ + u)c′′′
is increasing in u, then the wage can be increasing on at most one interval.)

Uniqueness. Assume an equilibrium exists, and note that, given a final belief xT ,
the pair of differential equations for u and x (along with the transversality condition)
admits a unique solution, pinning down, in particular, the effort exerted by and the wage
received by the agent. Therefore, if two (or more) equilibria existed for some values
(x0�T ), it would have to be the case that each of them is associated with a different
terminal belief xT . However, we shall show that, for any x0, the time it takes to reach a
terminal belief xT is a continuous, strictly increasing function T(xT ); therefore, no two
different terminal beliefs can be reached in the same time T .

To prove this claim, fix the horizon T . The two differential equations obeyed by the
(x�u) trajectory are

ẋ = λ+ u

u̇ = (λ+ u)c′(u)�−c(u)+ λ+u
1+ex − v

c′′(u)(1 + ex)
�

Therefore, the equilibrium effort u(x) satisfies

du

dx
=: f (u�x) = (λ+ u)c′(u)− c(u)− v + λ+u

1+ex

(λ+ u)c′′(u)(1 + ex)
� (18)

with u(xT ) = 0. We now define

φ(u) := v + c(u)− (λ+ u)c′(u)�

(To simplify notation, we do not yet impose the equilibrium restriction v = λ.) Note that
φ(u) is strictly decreasing (because c is convex) and that f (u�x) < 0 ⇒φ(u) > 0. We can
also write

(λ+ u(x))c′′(u(x))(1 + ex)u′(x) = λ+ u

1 + ex
−φ(u(x))�

which means that the composite function φ(u(x)) is strictly positive. By definition (and
convexity of c) it is increasing in x whenever u′(x) ≤ 0 and it is decreasing in x whenever
u′(x) > 0. Because u(x) is single-peaked, this implies φ(u(x)) is positive everywhere.

The time required to reach a terminal belief xT is given by

T(xT ) :=
∫ xT

x0

1
λ+ u(x�xT )

dx�
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where u(x�xT ) refers to the solution to the differential equation (18) with the boundary
condition at xT . Differentiating with respect to xT , we obtain

T ′(xT )= 1
λ

−
∫ xT

x0

1
(λ+ u(x�xT ))2

∂u(x�xT )

∂xT
dx�

To obtain an expression for ∂u(x�xT )/∂xT , rewrite u(x�xT ) as

u(x�xT ) = −
∫ xT

x
f (u(s�xT )� s)ds;

therefore

∂u(x�xT )

∂xT
= −f (0�xT )−

∫ xT

x

∂f (u(s�xT )� s)

∂u

∂u(s�xT )

∂xT
ds�

Now, we let

g(x�xT ) := ∂u(x�xT )

∂xT
�

and note that g(x�xT ) satisfies the differential equation

∂g(x�xT )

∂xT
= ∂f (u(x�xT )�x)

∂u
g(x�xT )�

with boundary condition g(xT �xT )= −f (0�xT ). This implies

∂u(x�xT )

∂xT
= −f (0�xT )e− ∫ xT

x ∂f (u(s�xT )�s)/∂uds�

We now rewrite the integrand as

∂f (u�x)

∂u
= A(u�x)+ 1

1 + ex
− c′′′(u)f (u�x)

c′′(u)
�

A(u�x) := φ(u)

(λ+ u)2c′′(u)(1 + ex)
�

Using the definition of f (u�x) to compute f (0�xT ), we have

∂u(x�xT )

∂xT
= − −v+ λ

1+exT

λc′′(0)(1 + exT )

1 + e−xT

1 + e−x

c′′(0)
c′′(u(x�xT ))

e− ∫ xT
x A(u(s�xT )�s)ds

= (v/λ− 1)e−xT + v/λ

1 + exT

1
(1 + e−x)c′′(u(x�xT ))

e− ∫ xT
x A(u(s�xT )�s)ds

= (v/λ− 1)e−xT + v/λ

1 + exT

(λ+ u(x�xT ))
2ex

φ(u(x�xT ))
A(u(x�xT )�x)e

− ∫ xT
x A(u(s�xT )�s)ds�

Therefore, plugging into the expression for T ′(xT ), we obtain

T ′(xT ) = 1
λ

− (v/λ− 1)e−xT + v/λ

1 + exT

∫ xT

x0

exA(u(x�xT )�x)

φ(u(x�xT ))
e− ∫ xT

x A(u(s�xT )�s)ds dx�
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Integrating by parts and substituting v = λ, we obtain

T ′(xT ) = 1
λ(1 + exT )

+ 1
1 + exT

ex0A(u(x0�xT )�x0)

φ(u(x0�xT ))
e
− ∫ xT

x0
A(u(s�xT )�s)ds

+ 1
1 + exT

∫ xT

x0

∂(ex/φ(u(x�xT )))

∂x
e− ∫ xT

x A(u(s�xT )�s)ds dx�

Note that the first two terms are positive, and that the derivative inside the last term
simplifies to

∂

∂x

ex

φ(u(x�xT ))
= 1

(1 + e−x)

1
φ(u(x�xT ))

(
λ+ u(x�xT )

(1 + ex)φ(u(x�xT ))
+ ex

)
�

which is also positive since φ(u(x�xT )) > 0 for all x. This establishes the result.
Existence. We have established that the time necessary to reach the terminal belief is

a continuous and strictly increasing function. Therefore, the terminal belief reached in
equilibrium is itself given by a strictly increasing function

xT (T) : R+ → [x0�∞)�

Since there exists a unique path consistent with optimality for each terminal belief,
given a deadline T , we can establish existence by constructing the associated equilib-
rium outcome and, in particular, the equilibrium wage path. Existence and uniqueness
of an optimal strategy for the worker, after any (on- or off-path) history, follow then from
Lemma 2. �

A.3 Proofs for Section 5

Proof of Theorem 2. The proof is divided into several steps. Consider the maximiza-
tion program P in the text: we begin by conjecturing a full-zero (or FO) solution, i.e.,
a solution in which the agent first exerts maximum effort, then no effort; we show that
this solution solves a relaxed program; and finally we verify that it also solves the original
program.

Candidate solution. Consider the following compensation scheme: pay a wage
wt = 0 for t ∈ [0� t0] ∪ [t1�T ], a constant wage wt = v − αλ for t ∈ [t0� t1], and a lump sum
L at t = T . The agent exerts maximal effort for t ≤ t1 and zero thereafter. Furthermore,
the agent is indifferent among all effort levels for t ∈ [t0� t1].

For short enough deadlines, there exists a payment scheme of this form that induces
full effort throughout, i.e., t0 > 0 and t1 = T , and leaves the agent indifferent between
effort levels at T . Whenever this is the case, we take this to be our candidate solution.
The conditions that pin down this solution are given by indifference at T and by zero
profits at t = 0. Recall the definition of φt from the proof of Proposition 1. The conditions
are then given by

φT = (k− α−L)e−xT − α = 0 (19)∫ t0

0
(1 + e−xs )

λ+ u

1 + exs
ds +

∫ T

t0

(1 + e−xs )

(
λ+ ū

1 + exs
− v+ αλ

)
ds − (1 + e−xT )L = 0� (20)
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As T increases, t0 → 0. Let T ∗ denote the longest deadline for which this solution
induces full effort throughout. The threshold T ∗ is the unique solution to (19) and (20)
with xT = x0 + (λ+ ū)T and t0 = 0.

Lemma 5. The candidate solution is the unique compensation scheme that induces full
effort on [0�T ∗].

Proof. Delaying any payment from t to t ′ would induce the agent to shirk at t ′ because
he is now indifferent for t ≤ t1. Anticipating payments while preserving zero profits ex
ante would lead the agent to shirk at t. To see this, notice that if the firm wants to hold
the ex ante profit level constant and shift wages across time periods, it can do so by
setting

�w1 = −1 + e−x2

1 + e−x1
�w2�

Then by construction,

�w1 +�w2 = −(e−x1�w1 + e−x2�w2)�

Therefore, by delaying payments (in a profit-neutral way and without affecting effort),
incentives at time t can be increased. Consider the function

φt =φT −
∫ T

t
e−xs (ws − v + αλ)ds

and two times t1 and t2. Indeed, if �w2 > 0, then �w1 < 0 and �w1 + �w2 > 0, which
increases φ1. Conversely, anticipating payments reduces incentives φ1. �

For T > T ∗, we cannot obtain full effort throughout. Our candidate solution is then
characterized by t0 = 0, t1 < T , indifference at t = T , and zero profits at t = 0. The final
belief is given by xT = xt +λ(T − t)+ ū(t1 − t). It is useful to rewrite our three conditions
in beliefs space. We have

(k− α−L)e−xT − α+ (v/λ− α)(e−x1 − e−xT )= 0 (21)

e−x0 − e−xT − v − αλ

λ+ ū
(e−x0 − e−x1 + x1 − x0)− (1 + e−xT )L = 0 (22)

xT − x1

λ
+ x1 − x0

λ+ ū
− T = 0� (23)

which determine the three variables (L�x1�xT ) as a function of x0 and T . To compute
the solution, we can solve the second one for L and the third for xT , and obtain one
equation in one unknown for x1.

We can now compute the agent’s payoff under this compensation scheme. Namely,

W̃ (x0�T ) =
∫ t1

0
(1 + e−xs )(v − αλ− αū− v)ds −

∫ T

t1

(1 + e−xs )vds + (1 + e−xT )(L− k)

= −
∫ x1

x0

(1 + e−x)αdx−
∫ xT

x1

(1 + e−x)
v

λ
dx+ (1 + e−xT )(L− k)�
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where (L�x1�xT ) are the solution to (21)–(23) given (x0�T ). Plugging in the value of L
from (20), we can rewrite payoffs as

W̃ (x0�T ) = −
∫ x1

x0

(
v − αλ

λ+ ū
+ e−x

(
v + ūα

ū+ λ
− 1

))
dx

−
∫ xT

x1

(
v

λ
+ e−x v − λ

λ

)
dx− (1 + e−xT )k�

Now fix x0 and T . We denote by J(x) the payoff under an offer that follows our can-
didate solution to an agent who holds belief x. This requires solving the system (21)–(23)
as a function of the current belief and the residual time. In particular, we have J(x) =
W̃ (x�T − (x− x0)/(λ+ ū)) when x < x1(x0�T ) and J(x) = W̃ (x�T − (x1 − x0)/(λ+ ū)−
(x− x1)/λ) when x≥ x1(x0�T ).

Finally, we denote by Y(x) the agent’s continuation payoff at x under the original
scheme. Notice that the bound in (11) ensures that

λ+ ū

1 + ext
≥ v − αλ

for all t ≤ t1 and for all T . This means the firm is running a positive flow profit when
paying v − αλ during a full effort phase, hence effort at t contributes positively to the
lump sum L. In other words, the firm does not obtain positive profits when the agent’s
continuation value is Y(x). The details on how to derive this bound can be found in the
working paper.

Original and relaxed programs. Consider the original program P , and rewrite it in
terms of the log-likelihood ratios xt , up to constant terms:

W (t�xt) = max
w�u

∫ T

t
(1 + e−xs )(ws − v − αus)ds − ke−xT

s.t. u = arg max
u

∫ T

t
(1 + e−xs )(ws − v − αus)ds − ke−xT

∀τ ≥ t:
∫ T

τ
(1 + e−xs )(ws − v − αus)ds − ke−xT ≥W (τ�xτ) (24)

0 ≤
∫ T

0
(1 + e−xt )

(
λ+ ut

1 + ext
−wt

)
dt� (25)

We first argue that the nonnegative profit constraint (25) will be binding. This is
immediate if we observe that constraint (24) implies the firm cannot make positive
profits on any interval [t�T ], t ≥ 0. If it did, the worker could be poached by a com-
petitor who offers, for example, the same wage plus a signing bonus. We now con-
sider a relaxed problem in which we substitute (24) and (25) with the nonpositive profit
constraint:

W (t�xt)= max
w�u

∫ T

0
(1 + e−xt )(wt − v − αut)dt − ke−xT
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s.t. u= arg max
u

∫ T

0
(1 + e−xt )(wt − v − αut)dt − ke−xT

0 ≥
∫ T

τ
(1 + e−xt )

(
λ+ ut

1 + ext
−wt

)
dt for all τ ≤ T�

We then use the following result to further relax this program.

Lemma 6. Let T > T ∗ and consider our candidate solution described in (21)–(23). If an-
other contract generates a strictly higher surplus W (0�x0), then it must yield a strictly
higher xT .

Proof. We use the fact that our solution specifies maximal frontloading of effort, given
xT . Notice that we can rewrite the social surplus (which is equal to the agent’s payoff at
time 0) as

−(1 + k− α)e−xT − αxT −
∫ T

0
(1 + e−xt )(v − αλ)dt + constant� (26)

Therefore, for a given xT , surplus is maximized by choosing the highest path for xt ,
which is obtained by frontloading effort. Furthermore, (26) is strictly concave in xT . Be-
cause T > T ∗, we know from Proposition 2 that under any nonnegative payment func-
tion w, the agent works strictly less than the social planner. Since the agent receives the
entire surplus, his ex ante payoff is then strictly increasing in xT . �

We therefore consider the even more relaxed problem P ′, which is given by

max
w�u

xT

s.t. u = arg max
u

∫ T

0
(1 + e−xt )(wt − v − αut)dt − ke−xT

0 ≥
∫ T

τ
(1 + e−xt )

(
λ+ ut

1 + ext
−wt

)
dt for all τ ≤ T�

In Lemma 7, whose proof is omitted, we prove that our candidate solves the relaxed
program. We also show that the agent’s continuation value under the original contract is
higher than the value of the best contract offered at a later date, and hence that we have
found a solution to the original program P .

Lemma 7. Let T > T ∗. The candidate solution described in (21)–(23) solves the relaxed
program P ′. Furthermore, under the candidate solution, constraint (24) in the original
program never binds (except at t = 0). �

A.4 Proofs for Section 6

Proof of Lemma 4. Suppose that the equilibrium effort is zero on some open set �.
Consider the sets �t ′ = {(x� s) : s ∈ (t ′�T ]} such that the trajectory starting at (x� s) inter-
sects �. Suppose that u is not identically zero on �0 and let τ = inf{t ′ : u = 0 on �t ′ }. That
is, for all t ′ < τ, there exists (x� s) ∈ �t ′ such that u(x� s) > 0. Suppose first that we take
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(x�τ) ∈�τ . According to the definition of τ and �τ , there exists (xk�k) ∈� such that the
trajectory starting at (x�τ) intersects � at (xk�k) and along the path the effort is zero.
We can write the payoff

V (x�τ) =
∫ xk

x

1 + e−s

1 + e−x

(
λ

1 + es
− v

)
1
λ

ds + 1 + e−xk

1 + e−x
V (xk�k)

or, rearranging,

(1 + e−x)V (x�τ) = −(e−xk − e−x)

(
1 − v

λ

)
− v

λ
(xk − x)+ (1 + e−xk)V (xk�k)�

where V (xk�k) is differentiable. The Hamilton–Jacobi–Bellman (HJB) equation (a func-
tion of (x�τ)) can be derived from

V (x�τ) = λ+ û

1 + ex
dt − vdt + max

u

[
−αudt +

(
1 − λ+ u

1 + ex
dt + o(dt)

)

× (V (x�τ)+ Vx(x�τ)(λ+ u)dt + Vt(x�τ)dt + o(dt))
]
�

which gives, taking limits,

0 = λ+ û

1 + ex
− v + max

u∈[0�ū]

[
−αu− λ+ u

1 + ex
V (x�τ)+ Vx(x�τ)(λ+ u)+ Vt(x�τ)

]
�

Therefore, if u(x�τ) > 0,

−V (x�τ)

1 + ex
− α+ Vx(x�τ) ≥ 0� or (1 + e−x)Vx(x�τ)− e−xV (x�τ) ≥ α(1 + e−x)

or, finally,

∂

∂x
[(1 + e−x)V (x�τ)] − α(1 + e−x)≥ 0�

Notice, however, by direct computation, that because low effort is exerted from (x�τ) to
(xk�k), for all points (xs� s) on this trajectory, s ∈ (τ�k),

∂

∂x
[(1 + e−xs )V (xs� s)] − α(1 + e−xs ) = −e−xs

(
1 + α− v

λ

)
+ v

λ
− α ≤ 0�

so that because x < xs and 1 + α− v/λ > 0,

∂

∂x
[(1 + e−x)V (x�τ)] − α(1 + e−x) < 0�

a contradiction to u(x�τ) > 0.
If instead u(x�τ) = 0 for all (x�τ) ∈ �τ , then there exists (x′� t ′) → (x�τ) ∈ �τ ,

u(x′� t ′) > 0. Because u is upper semicontinuous, for every ε > 0, there exists a neigh-
borhood N of (x�τ) such that u < ε on N . Hence

lim
(x′�t ′)→(x�τ)

∂

∂x
[(1 + ex

′
)V (x′� t ′)] − α(1 + ex

′
) = ∂

∂x
[(1 + e−x)V (x�τ)] − α(1 + e−x) < 0�

a contradiction. �
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Proof of Theorem 3. We start with (i). That is, we show that u(x� t) = ū for x < ¯xt in
all equilibria. We first define ¯x as the solution to the differential equation(

λ(1 + α)− v + (λ+ ū)αe¯x(t) + ū− ((1 + k)(λ+ ū)− (v + αū))e−(λ+ū)(T−t)
)

(27)

×
(

¯x
′(t)

λ+ ū
− 1

)
= −ū

subject to ¯x(T) = x∗. This defines a strictly increasing function of slope larger than λ+ ū,
for all t ∈ (T − t∗�T ], with limt↑t∗ ¯x(T − t) = −∞.37 Given some equilibrium, and an initial
value (xt� t), let u(τ;xτ) denote the value at time τ ≥ t along the equilibrium trajectory.
For all t, let

x̃(t) := sup{xt : ∀τ ≥ t : u(τ;xt) = ū in all equilibria}�
with x̃(t) = −∞ if no such xt exists. By definition the function x̃ is increasing (in fact,
for all τ ≥ t, x̃(τ) ≥ x̃(t) + (λ + ū)(τ − t)), and so it is a.e. differentiable (set x̃′(t) = +∞
if x jumps at t). Whenever finite, let s(t) = x̃′(t)/(x̃′(t) − λ) > 0. Note that, from the
transversality condition, x̃(T ) = x∗. In an abuse of notation, we also write x̃ for the set
function t → [limt ′↑t x̃(t ′)� limt ′↓t x̃(t ′)].

We first argue that the incentives to exert high effort decrease in x (when varying
the value x of an initial condition (x� t) for a trajectory along which effort is exerted
throughout). Indeed, recall that high effort is exerted if and only if

∂

∂x
(V (x� t)(1 + e−x)) ≥ α(1 + e−x)� (28)

The value V H(x� t) obtained from always exerting (and being paid for) high effort is
given by

(1 + e−x)V H(x� t) =
∫ T

t
(1 + e−xs )

[
λ+ ū

1 + exs
− v − αū

]
ds − k(1 + e−xT )

= (e−x − e−xT )

(
1 − v + αū

λ+ ū

)
− (T − t)(v + αū)− k(1 + e−xT )�

(29)

where xT = x+ (λ+ ū)(T − t). Therefore, using (28), high effort is exerted if and only if

k−
(

1 + k− v + αū

λ+ ū

)
(1 − e−(λ+ū)(T−t)) ≥ α(1 + ex)�

37The differential equation for ¯x can be implicitly solved, which yields

ln
k− α

α
= (¯xt + (λ+ ū)(T − t))+ ū

λ(1 + α)+ ū− v
ln(k− α)ū(λ+ ū)

− ū

λ(1 + α)+ ū− v
ln

(
e(λ+ū)(T−t)(λ(1 + α)+ ū− v)(λ(1 + α)− v + α(λ+ ū)e¯xt )

− (λ(1 + α)− v)(λ(1 + α)+ ū− v + (k− α)(λ+ ū))
)
�
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Note that the left-hand side is independent of x, while the right-hand side is increasing
in x. Therefore, if high effort is exerted throughout from (x� t) onward, then it is also
from (x′� t) for all x′ < x.

Fix an equilibrium and a state (x0� t0) such that x0 + (λ + ū)(T − t0) < x∗. Note that
the equilibrium trajectory must eventually intersect some state (x̃t � t). We start again
from the formula for the payoff:

(1 + e−x0)V (x0� t0) =
∫ t

t0

[
e−xs (λ+ u(xs� s))− (1 + e−xs )(v + αu(xs� s))

]
ds

+ (1 + e−x̃t )V H(x̃t� t)�

Let W (x̃t) = V H(x̃t� t) (since x̃ is strictly increasing, it is well defined). Differentiating
with respect to x0 and taking limits as (x0� t0) → (x̃t � t), we obtain

lim
(x0�t0)→(x̃t �t)

∂(1 + e−x0)V (x0� t0)

∂x0

= [e−x̃t λ− (1 + e−x̃t )v] s(x̃t)− 1
λ

+ s(x̃t)[W ′(x̃t)(1 + e−x̃t )−W (x̃t)e
−x̃t ]�

If less than maximal effort can be sustained arbitrarily close to, but before the state (x̃t � t)

is reached, it must be that this expression is no more than α(1 + e−x̃t ) in some equilib-
rium, by (28). Rearranging, this means that(

1 −W (x)+ (1 + ex)

(
W ′(x)− v

λ

))
s(x)+

(
v

λ
− α

)
ex ≤ 1 + α− v

λ

for x = x̃t . Given the explicit formula for W (see (29)) and since s(x̃t) = x̃′
t/(x̃

′
t − λ), we

can rearrange this to obtain an inequality for x̃t . The derivative x̃′
t is smallest, and thus

the solution x̃t is highest, when this inequality binds for all t. The resulting ordinary
differential equation is precisely (27).

Next, we turn to (ii). That is, we show that u(x� t) = 0 for x > x̄t in all equilibria. We
define x̄ by

x̄t = ln
[
k− α+

(
v + ūα

λ+ ū
− (1 + k)

)
(1 − e−(λ+ū)(T−t))

]
− lnα� (30)

which is well defined as long as k−α+ ((v + ūα)/(λ+ ū)− (1+k))(1−e−(λ+ū)(T−t)) > 0.
This defines a minimum time T − t∗ mentioned above, which coincides with the asymp-
tote of ¯x (as can be seen from (27)). It is immediate to check that x̄ is continuous
and strictly increasing on [T − t∗�T ], with limt↑t∗ x̄T−t = −∞, xT = x∗, and, for all
t ∈ (T − t∗�T ), x̄′

t > λ+ ū.
Let us define W (x� t) = (1 + e−x)V (x� t), and re-derive the HJB equation. The payoff

can be written as

W (x� t) = [
(λ+ u(x� t))e−x − (1 + e−x)(v + αu)

]
dt +W (x+ dx� t + dt)�
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which gives

0 = (λ+ u(x� t))e−x − v(1 + e−x)+Wt(x� t)+ λWx(x� t)+ max
u∈[0�ū]

(Wx(x� t)− α(1 + e−x))u�

As we already know (see (28)), effort is maximum or minimum depending on Wx(x� t)≶
α(1 + e−x). Let us rewrite the previous equation as

v − αλ−Wt(x� t) = ((1 + α)λ− v + u(x� t))e−x + λ(Wx(x� t)− α(1 + e−x))

+ (Wx(x� t)− α(1 + e−x))+ū�

Given Wx, Wt is maximized when effort u(x� t) is minimized: the lower is u(x� t), the
higher is Wt(x� t), and hence the lower is W (x� t − dt) = W (x� t) − Wt(x� t)dt. Note also
that along any equilibrium trajectory, no effort is ever strictly optimal (by (iv)). Hence,
Wx(x� t) ≥ α(1 + e−x), and, therefore, again u(x� t) (or W (x� t − dt)) is minimized when
Wx(x� t) = α(1 + e−x): to minimize u(x� t) while preserving incentives to exert effort, it is
best to be indifferent whenever possible.

Hence, integrating over the equilibrium trajectory starting at (x� t),

(v − αλ)(T − t)+ k(1 + e−xT )+W (x� t)

=
∫ T

t
u(xs� s)e

−xs ds

+
∫ T

t

[
((1 + α)λ− v)e−xs + (λ+ ū)(Wx(xs� s)− α(1 + e−xs ))+

]
ds�

We shall construct an equilibrium in which Wx(xs� s) = α(1 + e−xs ) for all x > ¯xt . Hence,
this equilibrium minimizes ∫ T

t
u(xs� s)e

−xs ds

along the trajectory, and since this is true from any point of the trajectory onward, it also
minimizes u(xs� s), s ∈ [t�T ]; the resulting u(x� t) will be shown to be increasing in x and
equal to ū at x̄t .

Let us construct this interior effort equilibrium. Integrating (28) over any domain
with nonempty interior, we obtain that

(1 + ex)V (x� t) = ex(αx+ c(t))− α (31)

for some function c(t). Because the trajectories starting at (x� t) must cross ¯x (whose
slope is larger than λ+ ū), value matching must hold at the boundary, which means that

(1 + e¯xt )V H(¯xt� t) = e¯xt (α¯xt + c(t))− α�

which gives c(t) (for t ≥ T − t∗). From (31), we then back out V (x� t). The HJB equation
then reduces to

v − αλ = λ+ u(x� t)

1 + ex
+ Vt(x� t)�
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which can now be solved for u(x� t). That is, the effort is given by

λ+ u(x� t) = (1 + ex)(v − αλ)− ∂

∂t
[(1 + ex)V (x� t)]

= (1 + ex)(v − αλ)− exc′(t)�

It follows from simple algebra (c′ is detailed below) that u(x� t) is increasing in x. There-
fore, the upper end x̄t cannot exceed the solution to

λ+ ū= (1 + ex̄)(v − αλ)− ex̄c′(t)�

and so we can solve for

ex̄ = λ(1 + α)− v + ū

v− αλ− c′(t)
�

Note that from totally differentiating the equation that defines c(t),

c′(t) = ¯x
′(t)e−¯x(t)

[(
W ′(¯x(t))− α

)
(e¯x(t) + 1)−W (¯x(t))

]
= v − αλ+ e−¯x(t)(v − (1 + α)λ)�

where we recall that ¯x is the lower boundary below which effort must be maximal, and
W (¯x) = V H(¯xt� t). This gives

ex̄ = e¯x
λ(1 + α)− v + ū

λ(1 + α)− v
� or e¯x = λ(1 + α)− v

λ(1 + α)− v + ū
ex̄�

Because (27) is a differential equation characterizing ¯x, we may substitute for x̄ from the
last equation to obtain a differential equation characterizing x̄, namely

ū

1 − x̄′(t)
λ+ū

+ ((1 + k)(λ+ ū)− (v + αū))e−(λ+ū)(T−t)

= λ(1 + α)+ ū− v + α(λ+ ū)(λ(1 + α)− v)

λ(1 + α)− v + ū
ex̄�

with boundary condition x̄(T ) = x∗. It is simplest to plug in the formula given by (30)
and verify that it is indeed the solution of this differential equation.

Finally, we prove (iii). The same procedure applies to both, so let us consider σ̄ , the
strategy that exerts high effort as long as x < x̄t (and no effort above). We shall do so by
“verification.” Given our closed-form expression for V H(x� t) (see (29)), we immediately
verify that it satisfies the constraint (35) for all x ≤ x̄t (remarkably, x̄t is precisely the
boundary at which the constraint binds; it is strictly satisfied at ¯xt when considering ¯σ).
Because this function V H(x� t) is differentiable in the set {(x� t) : x < x̄t}, and satisfies
the HJB equation as well as the boundary condition V H(x�T) = 0, it is a solution to the
optimal control problem in this region (remember that the set {(x� t) : x < x̄t} cannot
be left under any feasible strategy, so that no further boundary condition needs to be
verified). We can now consider the optimal control problem with exit region � := {(x� t) :
x = x̄t} ∪ {(x� t) : t = T } and salvage value V H(x̄t� t) or 0, depending on the exit point.



Theoretical Economics 12 (2017) Career concerns with exponential learning 471

Again, the strategy of exerting no effort satisfies the HJB equation, gives a differentiable
value on R× [0�T ] \�, and satisfies the boundary conditions. Therefore, it is a solution
to the optimal control problem. �

Comparative statics for the boundary. We focus on the equilibrium that involves the
largest effort region.

Proposition 5. The boundary of the maximal effort equilibrium
¯
p(t) is nonincreasing

in k and v, and nondecreasing in α and λ.

This proposition follows directly by differentiating expression (30) for the frontier
x̄(t).

The effect of the maximum effort level ū is ambiguous. Also, one might wonder
whether increasing the penalty k increases welfare for some parameters, as it helps re-
solve the commitment problem. Unlike in the non-observable case, this turns out never
to occur, at least in the maximum-effort equilibrium: increasing the penalty decreases
welfare, though it increases total effort. The proof is available from the authors. Sim-
ilarly, increasing v increases effort (in the maximum-effort equilibrium), though it de-
creases the worker’s payoff. �

Proof of Proposition 3. (i) The equation defining the full effort frontier in the unob-
servable case x2(t) is given by

(k− α)e−x2−(λ+u)(T−t) − α−
∫ x2+(λ+u)(T−t)

x2

e−x

(
1

1 + ex
− v − αλ

λ+ ū

)
dx� (32)

Plug the expression for x̄(t) given by (30) into (32) and notice that (32) cannot be equal
to zero unless x̄(t) = x∗ and t = T , or x̄(t) → −∞. Therefore, the two frontiers cannot
cross before the deadline T , but they have the same vertical asymptote.

Now suppose that φ′(x∗|ū) > 0 so that the frontier x2(t) goes through (T�x∗). Con-
sider the slopes of x2(t) and x̄(t) evaluated at (T�x∗). We obtain

[x̄′(t)− x′
2(t)]t=T ∝ (ū+ λ)(k− α) > 0�

so the unobservable frontier lies above the observable one for all t.
Next suppose φ′(x∗|ū) < 0, so there is no mixing at x∗ and the frontier x2(t) does not

go through (T�x∗). In this case, we still know the two cannot cross, and we also know
that a point on x2(t) is the pre-image of (T�x∗) under full effort. Since we also know the
slope x̄′(t) > λ + ū, we again conclude that the unobservable frontier x2(t) lies above
x̄(t).

Finally, consider the equation defining the no effort frontier x3(t),

(k− α)e−x3−λ(T−t) − α−
∫ x3+λ(T−t)

x3

e−x

(
1

1 + ex
− v − αλ

λ

)
dx= 0� (33)

Totally differentiating with respect to t shows that x′
3(t) < λ (might be negative). There-

fore, the no effort region does not intersect the full effort region defined by x̄(t) in the
observable case.
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(ii) To compare the effort regions in the unobservable case and the full effort region
in the social optimum, consider the planner’s frontier xP(t), which is given by

xP(t) = ln((1 + k− v/λ)e−λ(T−t) − (α− v/λ))− lnα�

The slope of the planner’s frontier is given by

x′
P(t) = λ

(1 + k− v/λ)e−λ(T−t)

(1 + k− v/λ)e−λ(T−t) + v/λ− α
∈ [0�λ]�

In the equilibrium with unobservable effort, all effort ceases above the frontier x3(t)

defined in (33) above, which has slope

x′
3(t) = λ

((1 + ex3+λ(T−t))−1 + k− v/λ)e−λ(T−t)

((1 + ex3+λ(T−t))−1 + k− v/λ)e−λ(T−t) + v/λ− α− (1 + ex3)−1 �

We also know x3(T) = x∗ and xP(T) = ln((1 + k − α)/α) > x∗. Now suppose toward a
contradiction that the two frontiers crossed at a point (t�x). Plugging in the expression
for xP(t) in both slopes, we obtain

x′
3(t) =

(
1 + v/λ− α− s(t)

(1 + k− v/λ+ (1 − s(t)))e−λ(T−t)

)−1

>

(
1 + v/λ− α

(1 + k− v/λ)e−λ(T−t)

)−1
= x′

P(t)�

with

s(t) = 1/(1 + exP(t)) ∈ [0�1]�
meaning the unobservable frontier would have to cross from below, a contradiction. �
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