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We generalize the standard revealed preference exercise in economics, and prove
a sufficient condition under which the revealed preference formulation of an eco-
nomic theory has universal implications and when these implications can be re-
cursively enumerated. We apply our theorem to two theories of group behavior:
the theory of group preference and the theory of Nash equilibrium.
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1. Introduction

Economic theories have observable and unobservable components, and one can say
that an observable data set is consistent with the theory if there exists some specification
of the unobservables that is consistent with the theory. The statement that observables
are consistent if there exists unobservables that are consistent with the theory is the “as
if” or “revealed preference” formulation of the theory. However, the revealed preference
formulation of a theory may not be useful as an empirical test of the theory.

For example, consider the theory of utility maximization. One can observe the
choices made by an agent, and ask if there exists some utility function (unobservable)
that is consistent with the choices and with the theory of utility maximization. To actu-
ally use this formulation as a test, one would have to check all possible utility functions
and see if they can explain the data. This is a problem because there are infinitely many
utility functions. After one has checked any finite set of utilities and verified that none of
them can explain the data, one cannot conclude that the data are inconsistent with the
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theory. Another example is profit maximization in a model of industrial organization:
one may observe production and pricing decisions, and ask if there is some specifica-
tion of firm technologies such that the observations are consistent with Nash equilib-
rium. Again, this revealed preference formulation does not give a practical (or effective)
test of the theory because there are infinitely many possible technologies.

The contribution of our paper is to give a sufficient condition on a theory, under
which the revealed preference formulation of the theory enables a practical test. The
existence of a test will translate into a “universal” formulation of the theory. “Practical”
will translate into “effective.” We shall discuss these two terms.

The first is universality. We said that observable data are consistent with the theory if
there exists some specification of the unobservables that makes the data consistent with
the theory. This formulation of the revealed preference question is existential because it
starts with “there exists.” Because it is existential, no finite number of utility functions
that fail to explain the data constitute evidence that the data are inconsistent with the
theory.

A testable formulation will instead start with “for all,” and therefore be a universal
formulation. The following examples from Popper (1959) illustrate the basic ideas. Sup-
pose that theory E claims, “There is a black swan,” while theory U says, “All swans are
white.” Theory E, an existential theory, is not falsifiable because no matter how many
finite data sets of non-black swans we find, it is still possible that there is a black swan
somewhere. Theory U, a universal theory, is falsifiable because the observation of a
single non-white swan contradicts the theory.

The second term is effectiveness. For universal theories, effectiveness means that
there has to be an algorithm that detects, after a finite number of steps, whether a data
set is inconsistent with the theory. An effective test comes with an algorithm that one
can run on a data set and that will stop after a finite number of steps when the data
are incompatible with the theory. Later (see Example 12) we provide an example of a
universal theory that is not effective in this sense. For such a theory, even if a data set is
inconsistent with the theory, there may not be a way to demonstrate the inconsistency.

Our paper provides a very general result on revealed preference theory. Our result
says that whenever an economic model has a certain kind of axiomatization, its revealed
preference formulation can be translated into a universal and effective test for the the-
ory. Essentially our result says the following. Consider the theory, with its observable
and unobservable components. An axiomatization of the theory can talk about observ-
able and unobservable components. Whenever the theory has a universal and effective
axiomatization, then there is a “projection” of the axiomatization onto the theory’s ob-
servable components. The projection gives a universal and effective test for the theory.
Moreover, as we illustrate in this paper, this condition on a theory is widely applicable
in economics.

In fact, many papers in revealed preference theory set out to accomplish universal
and effective tests for particular economic models. One of the best known examples
is Brown and Matzkin (1996), who show that there exists a test for general equilibrium
theory. There are many other papers with a similar agenda, but no general result that
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encompasses all of them. Our main theorem gives a general result that is applicable to
all economic environments studied in the revealed preference literature.

We proceed to illustrate our framework and our result by considering the example of
utility maximization in more detail. The idea is that there is a theoretical object (a pref-
erence or a utility) that is not observable, but that places restrictions on observable data.
The theory was originally developed for consumer choice (Samuelson 1938, Houthakker
1950): the restrictions placed on data by the theory are captured by the strong axiom of
revealed preference (SARP). SARP is the universal and effective test we are talking about.
In principle, one needs to check all utility functions before one decides that a data set
is inconsistent with the theory of utility maximization, but the result of Samuelson and
Houthakker means that one can check SARP instead of checking all possible utility func-
tions. The purpose of our paper is to give a general result, in the same spirit as Samuel-
son and Houthakker’s, establishing the existence of universal and effective tests for the
revealed preference formulation of an economic theory.

We use a simple and abstract formulation of the problem of consumer choice
(Richter 1966). Assume that one can observe the binary comparisons (weak and strict)
between objects made by an agent. Let us refer to the observed comparisons as R and P :
R is a binary relation, often called a revealed weak preference, and P is a revealed strict
preference.

The theory of preference maximization says that the agent has a weak order (com-
plete and transitive relation) governing these comparisons (what economists call a ra-
tional preference). Each weak order ≤ is associated with its strict part, <. Thus, we posit
that there exists a pair of binary relations ≤ and <, which are theoretical (and hence not
directly observable) for which the following axioms are satisfied:

Axiom 1 (Completeness). ∀x∀y(x ≤ y ∨ y ≤ x).

Axiom 2 (Transitivity). ∀x∀y∀z(x ≤ y ∧ y ≤ z → x≤ z).

Axiom 3 (< strict part of ≤). ∀x∀y(x < y)↔ (x ≤ y)∧ ¬(y ≤ x).

Axiom 4 (The R-rationalization). ∀x∀y(x R y → x≤ y).

Axiom 5 (The P-rationalization). ∀x∀y(x P y → x < y).

We wish to emphasize that the theory hypothesizes the existence of unobservable ≤
and < for which the axioms in the list are satisfied, and that all of Axioms 1–5 are uni-
versal. The first point means that the theory does not directly provide a test of when
observed revealed preference relations R and P are inconsistent with preference max-
imization. There are infinitely many weak orders ≤. So for any ≤ that cannot explain
R and P , there may exist a different weak order that can explain it. In other words, this
formulation of the theory does not provide a proof that an inconsistent pair R and P is
indeed inconsistent with preference maximization.

The second point to emphasize is that all of Axioms 1–5 are universal: This is clear
as they begin with the universal quantification ∀. Following Popper, then, if one could
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observe ≤ and <, so that all of R, P , ≤, and < were observable entities, then the the-
ory described by Axioms 1–5 (the axioms of rationalization with weak order) would be
universal and, therefore, falsifiable.

Now, what does revealed preference theory say about Axioms 1–5? It says that R and
P are consistent with Axioms 1–5 for some weak order ≤, if and only if R and P jointly
satisfy the following countably infinite list of axioms:

The Strong Axiom of Revealed Preference (SARP). We have that

∀x1 � � �∀xk ¬
k∧
i=1

(xi Si x(i+1)mod k
)

for every k and every S1� � � � � Sk, where S1 = P and Si ∈ {R�P} for all i ∈ {2� � � � �k}.

Here we wish to again emphasize several points. First of all, the strong axiom (for-
mally, a countably infinite collection of axioms) is also universal, but unlike Axioms 1–5,
it does not refer to the unobservable objects ≤ or <. It is a statement only about the ob-
servable R and P . Second, there is an algorithm that decides whether an observable data
set satisfies the strong axiom of revealed preference. So the strong axiom constitutes a
universal and effective axiomatization of the theory of utility maximization.1

The purpose of our paper is to generalize these results beyond utility maximization.
We prove that if a theory hypothesizes the existence of a collection of unobservable re-
lations, but it does so in such a way that the theory would have a universal and effective
axiomatization were these relations observable, then the theory has an equivalent uni-
versal and effective axiomatization purely in terms of observables. Put differently, if the
theory has a universal and effective axiomatization when unobservable relations are as-
sumed to be observable, then there is a universal and effective axiomatization that only
refers to observables.

One such equivalent universal axiomatization consists of all the logical conse-
quences of the original theory that are universal and refer only to observables. As in the
case of preference maximization and SARP, it is straightforward to establish that the uni-
versal consequences referring only to observables must be satisfied by the theory. The
converse, that if all universal consequences are satisfied, then there exists unobservable
relations such that the original universal axiomatization is satisfied, relies on the axiom
of choice.

This result is not trivial; it is possible to write down theories involving unobserv-
ables whose projection onto observables has no axiomatization whatsoever. For exam-
ple, consider a theory claiming that every man in the universe can be matched to exactly
one woman. We can describe the revealed preference formulation of the theory as in-
volving statements about who is a man, who is a woman, and who is matched to whom.

1We could repeat the exercise assuming only that revealed weak preference R were observable, and seek
rationalization by a linear order (complete, transitive, and antisymmetric). This would involve introducing
only one new symbol, ≤, which would be required to satisfy antisymmetry. Further, the requirement of P-
rationalization would be dropped. The resulting version of the strong axiom would be similar, except that
all instances of Si would be P .
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Suppose now that the matching itself is not observable. Given that the universe of men
and women is infinite, there is no axiom we could write down that would preclude the
set of men and women from each being infinite, but of different cardinalities. And this
could never be observed with finite data. The reason our result would fail in this case is
because if the matching function were observable, then the theory would hypothesize
existential statements; that for each man, there exists a unique woman to whom he is
matched. We discuss this in more detail in Remark 5.

After laying out the formal structure of the model, and presenting the main result
(Theorem 1), we demonstrate applications for two economic approaches to collective
decision making. We first discuss an application to preference aggregation in which
group preferences are assumed to be some function of individual preferences. Then we
turn to a framework in which group choice is modeled as the outcome of strategic inter-
action between the agents, and discuss the testable implications of Nash equilibrium.

Section 6 describes the meaning of our results for testing and falsifying data sets.

2. Main results

2.1 Preliminary definitions

Our results are about axiomatizations of possible data. We use model theory to study
these ideas. The framework used here is developed in more detail in Chambers et al.
(2014), where it is used for a different purpose. At the end of this paper, we discuss the
relation to Chambers et al. (2014) in more detail.

The following presentation of results is terse, but (we hope) fairly self-contained. In
Section 6, we take stock and interpret our findings.

We collect the symbols that we need into a language. The language is a primitive,
and specifies the properties and relations (both observable and unobservable) that one
can make statements about. A relational first-order language L is given by a set R of
relation symbols and a positive integer nR, the arity of R, for every R ∈ R. For example, if
we wish to talk about preference, we may use a language with a single binary symbol R.
We can then write axioms and make sense of when a set X and a specific binary relation
on X satisfy these axioms. The example in the Introduction used the language 〈R�≤〉,
in which the arity of R and ≤ is 2 (both are binary relation symbols). The statements
Axioms 1–5 in the Introduction are axioms in language 〈R�≤〉.

A structure is a universe of possible objects (called a domain) and an interpretation
of the relation symbols of the language in that universe. An L-structure M is given by
a nonempty set M called the domain of M, and for every n-ary relation symbol R ∈ R,
an n-ary relation,2 the interpretation RM over M of R. When the language L is under-
stood, we refer to an L-structure simply as a structure. Structures provide the appropri-
ate framework for interpreting the symbols in the language. For example, when L = 〈�〉
has a single binary relation, then one possible structure is (R�≥); the structure of the
real numbers with the usual greater-than binary relation. Another example is (2X�⊇),
the power set of X with set containment.

2An n-ary relation RM over M is a subset RM ⊆ Mn.
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Suppose that M and N are L-structures with universes M and N , respectively. Then
M and N are isomorphic if there exists a bijective map η : M → N that preserves the
interpretations of all relation symbols, i.e., such that

(m1� � � � �mn) ∈RM ↔ (
η(m1)� � � � �η(mn)

) ∈RN

for every n-ary relation symbol R of L and m1� � � � �mn ∈M .
Given a language L, we can write sentences using the relation symbols in L. In ad-

dition to the relation symbols specified by L, we shall use certain logical symbols. These
symbols are fixed, and we are allowed to use them regardless of the language under con-
sideration. The logical symbols are the quantifiers “exists” (∃) and “for all” (∀), “not”
(¬), the logical connectives “and” (∧) and “or” (∨), a countable set of variable symbols
x� y� z�u� v�w� � � � , parentheses ( and ), and the equality symbol =. Certain strings of
symbols can be put together to form sentences, or axioms. Rules for forming sentences
are given in, for example, Marker (2002). Such rules are intuitive and immediately rec-
ognizable: The string ∀x∃y x R y is a legitimate sentence; the string ∀y∃Rx is not. We
refer to rules of forming legitimate sentences as rules of syntax.

In a given structure, sentences can be either true or false. Again we skip the formal
definition of what it means for a sentence to be true in a structure since it is intuitively
clear: The sentence ∀x∃y xR y is true in the structure (R�≥): For every x ∈ R there exists
y ∈ R such that x ≥ y. The same sentence is false in the structure with domain X =
{1�2�3} when the relation symbol R is interpreted as >: it is not true that for every x ∈ X

there exists y ∈X such that x > y.

2.2 Main result

The objects we study in this paper are classes of structures (over some language) that
are closed under isomorphism. Such a class of structures captures our idea of a the-
ory. For example, the theory of preference maximization encompasses all structures
M = (M�RM) for which the observed RM can be extended to a linear order over all
elements of M . We caution that the term “theory” is somewhat misleading because it
means something else in model theory. For this reason, we do not use the term “theory”
in our formal definitions.

We say that a class of structures T over some language is (formally) axiomatized by a
collection of sentences � if T consists exactly of the structures for which each sentence
in � is valid. Given two classes of structures, T and T ′, where T ⊆ T ′, we say that T is
(formally) axiomatized by a collection of sentences � with respect to T ′ if T consists of
exactly those structures in T ′ for which each sentence in � is valid.

A universal sentence is a sentence that includes only universal quantifiers.3 The ax-
ioms of reflexive, complete, transitive, and antisymmetric relations in the Introduction
are all universal sentences in the language with two binary relation symbols ≤�R. A uni-
versal axiomatization is an axiomatization that consists entirely of universal sentences.

3These quantifiers can only come at the very beginning of the sentence.
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Finally, a set � of sentences is called recursively enumerable (r.e.) if there exists a
Turing machine that enumerates over the elements of �. If a recursively enumerable
� axiomatizes a class of structures T , we say that T admits an effective axiomatization.
A Turing machine is a formalization of the intuitive idea of algorithm or effective pro-
cedure, without any requirements about computational resources. So when we say that
there is a Turing machine that enumerates over the elements of �, we mean that there is
a procedure that outputs an exhaustive list ϕ1�ϕ2� � � � of all the elements of �. This also
means that if ϕ ∈ �, then there is a way to demonstrate this membership. In Section 6,
we argue that existence of effective axiomatization captures our idea of falsifiability of a
theory. For example, the collection of axioms in SARP is a r.e. set of sentences. See Sipser
(2012) for formal definitions.

Let F = 〈R1� � � � �RN 〉 and L = 〈R1� � � � �RN�Q1� � � � �QK〉 be languages, where all the
Rn and Qk are relation symbols. Note that F ⊆ L. The languages F and L capture the
difference between observable and unobservable objects. The relations Rn are assumed
to be observable in the data, while the relations Qk are unobservable. In our applications
below, we choose F and L with this interpretation in mind.

Let T be a class of L-structures, closed under isomorphism. Define F(T) to be the
class of F-structures (X∗�R∗

1� � � � �R
∗
N) for which there exist relations Q∗

1� � � � �Q
∗
K such

that (X∗�R∗
1� � � � �R

∗
N�Q∗

1� � � � �Q
∗
K) ∈ T . That is, F(T) is the projection of T onto the lan-

guage F .4

We are now in a position to state our theorem.

Theorem 1. Let T be a class of structures that is closed under isomorphism. If T admits
a formal universal axiomatization, then F(T) admits a formal universal axiomatization.
Moreover, if T admits a universal effective axiomatization, then F(T) admits a universal
effective axiomatization.

As an example of Theorem 1, recall the revealed preference example in the Intro-
duction. In that example, F = 〈R�P〉, which consists of the observed relation and
L = 〈R�P�≤�<〉, and also includes the unobserved preference relation of the agent as
well as its strict part. The class of structure T , which represents the theory of preference
maximization, is axiomatized by Axioms 1–5 in the Introduction. The class F(T) is ax-
iomatized by the strong axiom of revealed preference, which is in fact a r.e. sequence of
axioms. The following corollary, which follows immediately from Theorem 1, extends
the theorem to the case of axiomatization of a class of structures with respect to a larger
class.

Corollary 2. Let T be a class of L-structures and let T ′ be a class of F-structures that are
closed under isomorphism. If T admits a formal universal axiomatization, then F(T)∩T ′

4If T has a finite first-order axiomatization, then F(T) is an example of an existential second-order theory
for language F in that it allows existential quantification over relations. That is, if σ is a first-order L-axiom
axiomatizing a class of structures T , then F(T) is axiomatized by

∃Q1 � � �∃QKσ�



500 Chambers, Echenique, and Shmaya Theoretical Economics 12 (2017)

admits a formal universal axiomatization with respect to T ′. Moreover, if T admits a uni-
versal effective axiomatization, then F(T) ∩ T ′ admits a universal effective axiomatiza-
tion with respect to T ′.

3. Proof of Theorem 1

3.1 Preliminaries

We recall some terminology from model theory used in the proof. An atomic formula
over a language L is a string of the form P(x1� � � � � xn), where P is an n-ary relation sym-
bol in L and x1� � � � � xn are variable symbols. As usual, when n = 2, we sometimes write
x P y for P(x� y). A quantifier-free formula is a string of symbols that is composed of
atomic formulas and the connective symbols ¬�∨�∧�→ under the rule of syntax. For
example the string ¬(x � y) → (y � z) is a quantifier-free formula with variables x� y� z

in the language with a binary predicate �. Every universal sentence can be written in
the form ∀x1 � � �∀xn ϕ(x1� � � � � xn), where ϕ(x1� � � � � xn) is a quantifier-free formula with
variables x1� � � � � xn.

If ϕ(x1� � � � � xn) is a quantifier-free formula in a language L, and M is an L-structure
with domain M , then for every m1� � � � �mn ∈ M , there is a well defined sense in which
the expression ϕ(m1� � � � �mn), obtained by substituting the elements mi for the vari-
ables xi, is true in M. Again we provide an example instead of formal definition: if
ϕ(x� y� z) = (x � y)∧(y � z), then ϕ(4�3�1) is true in the structure (R�≥) (since 4 ≥ 3 and
3 ≥ 1) but ϕ(1�7�5) is false. In particular, for atomic formulas, P(m1� � � � �mn) is true in
M if and only if (m1� � � � �mn) ∈ PM. With this notation, a universal sentence ∀x1 � � �∀xn
ϕ(x1� � � � � xn), where ϕ(x1� � � � � xn) is a quantifier-free formula with variables x1� � � � � xn,
is true in M if and only if ϕ(m1� � � � �mn) is true in M for every m1� � � � �mn ∈M .

Let F be a relational language and let M be an L-structure with domain M . A sub-
structure M′ of M is a structure M ′ whose domain satisfies M ′ ⊆M and such that

RM′ = {
(m1� � � � �mn) ∈M ′n|(m1� � � � �mn) ∈RM}

for every n-ary relation symbol R.
We use the following theorem of Tarski (1954).

Theorem 3. Let F be a relational language and let T be a class of structures of F . Then
T admits a universal axiomatization if and only if the following conditions are satisfied.

(i) The class T is closed under isomorphism.

(ii) The class T is closed under substructure.

(iii) For every F-structure M, if M′ ∈ T for all finite substructures M′ of M, then
M ∈ T .

The proof uses basic ideas from sentential logic.5 A sentential logic is given by a set
S of sentence symbols. A (well founded) formula of S is a string built from sentence

5For more on this, see, e.g., Chapter 1 of Enderton (2001).
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symbols and the connective symbols ¬�∨�∧�→, using the rules of syntax. For exam-
ple, if p, q, and r are sentence symbols, then (p → q) ∧ r is a well founded formula.
A truth assignment v for S is a function v : S → {T�F} (where T stands for TRUE and F

stands for FALSE). Every such assignment can be extended uniquely to a truth assign-
ment v̄ defined over all formulas. For example, if v(p) = v(q) = F and v(r) = T , then
v̄(p ∨ q ∨ r) = T . A set � of formulas is satisfiable if there exists some truth assignment
such that v̄(γ) = T for every γ ∈ �. The compactness theorem for sentential logic, which
is equivalent to the axiom of choice, asserts that a set � of formulas is satisfiable if every
finite subset of � is satisfiable.

Proof of Theorem 1. We prove that F(T) satisfies the conditions of Tarski’s theorem.
Closure of F(T) under isomorphism and substructure follows from the corresponding
properties of T . We show that condition (iii) holds.

Let M be an F-structure and assume that M′ ∈ F(T) for all finite substructures M′
of M. To show that M ∈ F(T), we have to provide interpretations QM in M of the
unobservable relation symbols Q ∈ L such that the axioms in � are satisfied.

Let S be the sentential logic whose set of sentence symbols are all formal expres-
sions of the form P(m1� � � � �mn), where P ∈ L and m1� � � � �mn ∈ M . Let � be the set of
all formulas of S of the form ϕ(m1� � � � �mk) for some axiom ∀x1 � � �∀xk ϕ(x1� � � � � xk) ∈ �

with a quantifier-free ϕ and some m1� � � � �mk ∈ M . We claim that there exists a truth
assignment v : S → {F�T } such that the following statements hold:

(i) For every observable relation P ∈ F , it holds that

v
(
P(m1� � � � �mn)

) = T if and only if P(m1� � � � �mn) is true in M�

(ii) For every γ ∈ �, v̄(γ) = T , where v̄ is the extension of v to formulas of S .

By the compactness theorem of sentential logic, it is sufficient to show that this can
be done for every finite subset of �. Let �′ be a finite subset of � and let M′ be the
finite substructure of M whose domain consists of all elements of M that appear in
some formula of �′. Since M′ ∈ F(T), there exist interpretations QM′

of the unobserv-
able relation symbols Q in M′ such that all axioms of � are satisfied in the augmented
L-structure M′. In particular ϕ(m1� � � � �mk) is true in M′ for every axiom ∀x1 � � �∀xk
ϕ(x1� � � � � xk) ∈ � and every m1� � � � �mk ∈ M ′. Therefore, if we set the truth value of the
sentential symbol Q(m1� � � � �mn) of S to be the truth value of Q(m1� � � � �mn) in M′ (i.e.,
v(Q(m1� � � � �mn)) = T if and only if Q(m1� � � � �mn) is true in M′), then all formulas in �′
are satisfied, as desired.

We showed that F(T) admits a universal axiomatization. In particular, the set of all
universal F-sentences that are true in all structures of F(T) is such an axiomatization.
Since the projection from T to F(T) preserves truthfulness of F-sentences, it follows
that these are the universal F-sentences that are true in all structures of T . Since �

axiomatizes T , these are the universal F-sentences that are the semantic implications
of �, i.e., the set of all sentences that are true in every structure in which all the axioms
of � are true. Since the set of semantic implications of a recursively enumerable set is
recursively enumerable, the second statement in the theorem follows. �
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Remark 4. The existence of formal axiomatization in Theorem 1 also follows from an
unpublished result of van Benthem (1975); see, e.g., Swijtink (1976).

Remark 5. For readers who are familiar with model theory, we note that Theorem 1
remains valid when the language F also includes constant and function symbols. How-
ever, the unobservable symbols Q1� � � � �QK must be relation symbols. As an example of
what might go wrong with unobservable functions, assume that L = 〈R�f 〉 and F = 〈R〉,
where R is an unary relation symbol and f is a function symbol, and let T be the class of
L-structures M with the effective universal axiomatization

∀x f
(
f (x)

) = x�

∀x (
R(x) → ¬R

(
f (x)

)) ∧ (¬R(x) →R
(
f (x)

))
�

Then F(T) is the class of structures (X�R∗) for which the sets R∗ and (R∗)c have the
same cardinality. This class of structures is not even formally axiomatizable. In par-
ticular, this example is related to the example from the Introduction of existence of a
bijective matching.

Remark 6. By a theorem of Craig (1953), T admits a universal r.e. axiomatization if and
only if it admits a universal recursive axiomatization.6 Therefore, in Theorem 1 “univer-
sal r.e. axiomatization” can be replaced by “universal recursive axiomatization.” We use
r.e. axiomatization because this is the concept that captures our idea of falsifiability.

Remark 7. Regarding the assumption of universality, Sneed (1971, p. 54) offers an ex-
ample, attributed to Dana Scott, in which F(T) has no formal axiomatization when T

is not universally axiomatizable (Tuomela 1973, pp. 60–61, establishes that there is no
axiomatization of F(T), infinite or otherwise).

3.2 Example: Individual rational choice

As an illustration of Theorem 1, consider the revealed preference formulation of the the-
ory of individual rational choice.

When choice is primitive, the application of our theorem is a bit involved. This is
because we need to be able to describe budget sets, and we require symbols for stan-
dard set-theoretic operations. To this end, we define the language of choice as F =
〈A�B�∈�C〉. The relations A and B are unary relations: A(x) stands for “x is an al-
ternative”; B(x) stands for “x is a budget set.” The relations ∈ and C are binary, ∈ is
the typical set-theoretic relation, and C is a binary relation, where C(x� y) means “x is
chosen from y.”

The theory of choice, TC , consists of the class of all structures for which there is
some global set of alternatives X , some family of sets B ⊆ 2X \ {∅} (the budgets), and a
nonempty choice function c : B → 2X \ {∅} (satisfying the usual properties) for which all
relations are interpreted properly and all structures isomorphic to these.

6In fact, Craig’s theorem is not stated for universal axiomatization, but his argument can be adapted to
universal sentences.
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Define the theory of rationalizable choice, TR, to be the subtheory of TC where, for
each structure M, the associated choice function is rationalizable by a weak order.7

That is, there exists a weak order R on the global set of alternatives X for which c(B) =
{x ∈ B : ∀y ∈ B�x R y}.

The following theorem is well known (for example, see Richter (1966)), but we estab-
lish it here using our framework. In the proof of the theorem, TR = F(T) ∩ TC , where T

is a theory in an augmented language to which we apply Theorem 1 (and Corollary 2).

Proposition 8. The theory TR is universally and r.e. axiomatizable with respect to TC .

Proof. Introduce the language L = 〈A�B�∈�C�R〉, where all relations A, B, ∈, and C

are as in F , and R is a binary relation. Consider the L-theory T axiomatized by the
sentences

(i) ∀x∀y∀z(∈(x� z)∧ ∈(y� z)∧C(x�z)) → R(x�y),

(ii) ∀x∀y∀z(∈(x� z)∧ ∈(y� z)∧R(x�y)∧C(y� z)) → C(x�z),

(iii) ∀x∀y(A(x)∧A(y)) → (R(x� y)∨R(y�x)),

(iv) ∀x∀y∀z(A(x)∧A(y)∧A(z)) → ((R(x� y)∧R(y� z) →R(x�z))).

Note that any structure M ∈ TC is a member of TR if and only if there exists a binary
relation R on the global set of alternatives for which, for all budgets B ∈ B, x ∈ c(B) →
∀y ∈ B x R y, and ∀x ∈ B, if y ∈ c(B) and x R y, then x ∈ c(B). To see this, note that if R
rationalizes c, then clearly the preceding two conditions are satisfied for R. Alternatively,
suppose these conditions are satisfied for some R. We claim that R rationalizes c. To see
this, note that if B ∈ B, x� y ∈ B, and x ∈ c(B), then clearly x R y. Alternatively, suppose
that x R y for all y ∈ B. Then because c is nonempty, there exists y∗ ∈ c(B). Then in
particular x R y∗. Conclude x ∈ c(B).

Now note that TR = F(T) ∩ TC . Since T is universally axiomatizable, it follows from
Corollary 2 that TR is universally and r.e. axiomatizable with respect to TC . �

4. Rationalizing group preferences

In this section, we assume a fixed set of agents N . We observe a social ranking, and want
to test whether that social ranking is consistent with the hypothesis that the individ-
uals have preferences that are linear orders and aggregate using some specified social
choice rule. For the example of Pareto rule with two agents, axiomatizations are known
(see, in particular, Section 3.2 of Trotter 2001 and the references therein; also Baker et al.
1972).8 Other rules, such as majority rule, are less well understood; most results assume
a variable set of agents (McGarvey 1953, Deb 1976, Shelah 2009).

We work with neutral preference aggregation rules that satisfy independence of ir-
relevant alternatives. By working with such preference aggregation rules, we need not

7A weak order is complete and transitive.
8Sprumont (2001) considers a related question in an economic environment.
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specify what the global set of alternatives is in advance. A set of agents N = {1� � � � � n}
is fixed and finite. A preference aggregation rule is, therefore, defined to be a mapping
f carrying any set of alternatives X and any n vector of linear orders9 (termed a prefer-
ence profile) over those alternatives (≥1� � � � �≥n) to a binary relation over X . We write
f (≥1� � � � �≥n) for the binary relation that results (suppressing notation for dependence
on X). We assume the following property.

Definition 9 (Neutrality and independence of irrelevant alternatives). For all sets X

and Y , for all A ⊆ X and B ⊆ Y for which |A| = |B|, for all bijections σ : A → B, and
all preference profiles (≥1� � � � �≥n) over X and (≥′

1� � � � �≥′
n) over Y , if for all i ∈ N and

x� y ∈ A, x ≥i y ↔ σ(x) ≥′
i σ(y), then x f(≥1� � � � �≥n) y ↔ σ(x) f (≥′

1� � � � �≥′
n) σ(y) for all

x� y ∈ A.

Our assumption embeds the standard hypotheses of neutrality and independence of
irrelevant alternatives. Neutrality means that social rankings should be independent of
the names of alternatives, while independence of irrelevant alternatives means that the
social preference between a pair of alternatives should depend only on the individual
preferences between that pair.

Given a preference aggregation rule f , we will say that a binary relation R on a set
X is f -rationalizable if there exists a profile of linear orders (≥1� � � � �≥n) for which R =
f (≥1� � � � �≥n).

Let F = 〈R〉 be a language involving one binary relation symbol. Given f , a structure
(X�RX) is f -rationalizable if RX is f -rationalizable. Call the class of such F-structures
the theory of f -rationalizable preference, or Tf .

Proposition 10. For any preference aggregation rule f satisfying neutrality and inde-
pendence of irrelevant alternatives, Tf is universally and r.e. axiomatizable.

Proof. Since f is neutral and satisfies independence of irrelevant alternatives, we can
conclude that there is a collection of sets Nf ⊂ 2N for which for any set X , any profile of
linear orders (≥1� � � � �≥n) over X , and any pair x�y ∈X for which x �= y, x f(≥1� � � � �≥n) y

if and only if

{i ∈N|x≥i y} ∈ Nf �
10

By neutrality and independence of irrelevant alternatives, it follows that either for
every (≥1� � � � �≥n), f (≥1� � � � �≥n) is reflexive or for every ≥1� � � � �≥n, f (≥1� � � � �≥n) is ir-
reflexive.11

Consider the language L = 〈R�≥1� � � � �≥n〉, the L-theory T axiomatized by univer-
sal sentences that assert the completeness, transitivity, and antisymmetry of each ≥i,

9A linear order is complete, transitive, and antisymmetric.
10To see why there is such a collection Nf , let X be any binary set {x� y}. Define ≥E to be the preference

profile for which for all i ∈ E, x≥i y , and for all i /∈ E, ¬(x ≥i y). Define Nf = {
E ⊂ 2N : x f(�E) y

}
. Finally, by

neutrality and independence of irrelevant alternatives, the characterization holds across preference profiles
and sets X .

11A binary relation R is reflexive if for every x ∈ X , x R x, and is irreflexive if for every x ∈ X , ¬(x R x).
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and the following sentence that asserts f -rationalizability. We consider the two possible
cases: the case where f always outputs a reflexive relation, and the case where it always
outputs an irreflexive relation,

∀x∀y R(x� y) ↔
∨

E∈Nf

(∧
i∈E

(x ≥i y)∧
∧
i /∈E

(¬x ≥i y)

)
∨ (x = y)

in the reflexive case and

∀x∀y R(x� y) ↔ ¬(x= y)∧
∨

E∈Nf

(∧
i∈E

(x≥i y)∧
∧
i /∈E

(¬x≥i y)

)

in the irreflexive case.
Finally, note that Tf = F(T), so the result follows by Theorem 1. �

5. Rationalizing strategic group behavior

In this section, we look at Nash equilibrium behavior. We assume that we observe a col-
lection of game forms and a choice made from each game form. We ask whether there
could exist strict preferences for a collection of agents over those game forms that gen-
erate the observed choices as Nash equilibrium behavior. We show, using Theorem 1,
that this theory has a universal axiomatization.

We first have to set up our framework. Instead of focusing on Nash equilibrium
specifically, we work with a general collection of theories of group choice. Nash equi-
librium, strong Nash equilibrium, and Pareto optimal choice are special cases. We fix a
finite set of agents N = {1� � � � � n} and a collection �⊆ 2N \ {∅}. The elements of � are the
sets of agents that can deviate from a profile of strategies.

A game form is a tuple (S1� � � � � Sn) of nonempty sets, where we think of Si as the set of
strategies available to agent i. For each profile of preferences (≥1� � � � �≥n) over

∏
i∈N Si,

a game form (S1� � � � � Sn) defines a normal-form game

(S1� � � � � Sn�≥1� � � � �≥n)�

We define a �-Nash equilibrium of a game (S1� � � � � Sn�≥1� � � � �≥n) to be s ∈ ∏
i∈N Si

for which for all γ ∈ � and all s′ ∈ ∏
i∈N Si, if there exists j ∈ γ for which (s′γ� s−γ)�j s, then

there exists k ∈ γ for which s �k (s′γ� s−γ). If we think of � as a collection of “blocking”
coalitions, a �-Nash equilibrium s is a strategy profile whereby no group γ ∈ � is willing
to jointly deviate, where at least one agent i ∈ γ strictly wants to deviate.

The following cases are special:

• Nash equilibrium results when �= {{i} : i ∈N}.

• Pareto optimality results when �= {N}.

• Strong Nash equilibrium results when �= 2N \ {∅}.
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Other kinds of theories are permissible. For example, by setting �= {G : |G|> |N|/2},
we get a kind of majority rule core.

We imagine that we observe a collection of game forms, and some strategy profiles
that are chosen from each. We do not necessarily observe the entire collection of strategy
profiles that could potentially be chosen.

We ask when the strategy profiles are rationalizable by a list of preference relations;
obviously, if we make no restriction on preferences, then every strategy profile is ratio-
nalizable by complete indifference. To this end, we require that preferences be strict
over strategy profiles.

Define the language of group choice F to include the following relations:

• For each i ∈ N , one unary relation Si, where Si(y) is intended to mean that y is a
set of strategies for i.

• For each i ∈N , one unary relation si, where si(x) means that x is a strategy for i.

• The typical set theoretic binary relation ∈, meant to signify membership in a set.

• A 2n-ary relation R, where R(y1� � � � � yn�x1� � � � � xn) means that (x1� � � � � xn) is ob-
served as being chosen from game form (y1� � � � � yn).

The theory of group choice TG is the class of all structures for the preceding language
constructed in the following way. For each agent i ∈ N , there is a global strategy space
Si �= ∅ for which the following objects are the elements of the universe:

• Each nonempty Si ⊆ Si.

• Each si ∈ Si.

The relations Si, si, and ∈ are all interpreted properly. Finally, for each game form∏
i S

∗
i and strategy profile (s∗1� � � � � s

∗
n), R(S∗

1� � � � � S
∗
n� s

∗
1� � � � � s

∗
n) implies that Si(S∗

i ), si(s∗i )
and, last, that s∗i ∈ S∗

i . This latter requirement means that only strategy sets can go in
the first n places in R, and that only strategies can go in the last n places. The phrase
R(S∗

1� � � � � S
∗
n� s

∗
1� � � � � s

∗
n) means that strategy profile (s∗1� � � � � s

∗
n) is chosen from game form

(S∗
1� � � � � S

∗
n)—this explains the requirement that s∗i ∈ S∗

i .
The theory of �-rationalizable choice T� ⊆ TG is the theory of group choice for which

for each i ∈ N , there exists a linear order ≥i over
∏

i∈N Si for which, for all game forms
(S∗

1� � � � � S
∗
n), R(S∗

1� � � � � S
∗
n� s

∗
1� � � � � s

∗
n) implies that (s∗1� � � � � s

∗
n) is a �-Nash equilibrium of

the normal-form game (S∗
1� � � � � S

∗
n�≥1� � � � �≥n).

Proposition 11. The theory of �-rationalizable choice is universally and r.e. axiomati-
zable with respect to the theory of group choice.

Proof. Consider the language L that includes all relations in F , but also includes, for
each agent i, a 2n-ary relation ≥i.
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Consider the class of structures T axiomatized by the following sentences: For each
γ ∈ � and k ∈ γ,

∀x1 � � �∀xn∀y1 � � �∀yn∀z1 � � �∀zn∧
i∈γ

∈(zi� yi)∧
∧
i∈N

∈(xi� yi)∧ ¬
∧
i∈γ

(xi = zi)∧R(y1� � � � � yn�x1� � � � � xn)∧ ≥k

(
(zγ�x−γ)�x

)

→
∨

i∈γ\{k}
≥i

(
x� (zγ�x−γ)

)

and the universal axioms that express that ≥k is a linear order (complete, transitive, re-
flexive, and antisymmetric). As T has a universal axiomatization, so does F(T). Since
the axiomatization of T is finite, F(T) has a recursively enumerable universal axiom by
Theorem 1, and T� = F(T)∩TG. So by Corollary 2, T� has a r.e. universal axiomatization
within TG. �

6. Discussion

The notions of universal and r.e. universal axiomatization capture the idea of falsifia-
bility of a theory in the following way: Suppose that a scientist postulates a theory T

by providing a universal axiomatization � for T . Suppose that we observe the elements
a1� � � � � an of some structure M, and the relationships between them. We call these ob-
servations a data set. If there exists some universal axiom ∀x1� � � � �∀xn ϕ(x1� � � � � xn) ∈ �

such that ϕ(a1� � � � � an) is not true, then T has been falsified. Thus, a violation of an
axiom of the theory can be demonstrated by presenting a data set. The fact that the the-
ory is given by a universal axiomatization means that any violation of the theory can be
demonstrated. In the terminology introduced in Chambers et al. (2014), such a theory
is identical to its empirical content.12

If, in addition, � is recursively enumerable, then the scientist can describe � by pro-
viding the algorithm (or Turing machine) that generates �. In this case, if a data set
falsifies the theory, then this falsification can be demonstrated by pointing to the index
of the axiom that is violated in the recursive enumeration of the axioms. The following
example illustrates this issue.

Example 12. Consider a language with a single binary relation symbol L, where x L y

is supposed to represent the relationship x loves y. A love cycle of size k is a sequence of
people x1� � � � � xk such that, for every 1 ≤ i� j ≤ k, it holds that xi loves xj if and only if
j = (i + 1) mod k. Let C ⊆ N. Suppose that a scientist postulates the theory that there
are no love cycles of size k for any k ∈ C. Such a theory has a universal axiomatization.
If C is recursively enumerable, then the scientist can describe the theory by providing a
computer program that enumerates over C. If the theory is incorrect, i.e., if there exists
a love cycle of size k for some k ∈ C, then an antagonist can demonstrate this violation
and falsify the theory by pointing to a data set that violates the theory (i.e., to a love

12Under a caveat that in the current paper we assume that absence of relationship can be observed. See
Section 4.3 in Chambers et al. (2014).
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cycle of size k for some k ∈ C) and, by pointing to the index of k in the enumeration
of C to show that k ∈ C. If, however, C is not recursively enumerable,13 then, while the
scientist’s theory has a universal axiomatization, he has no way to formally describe the
theory. An antagonist who has an access to a love cycle of size k for some k ∈ C may not
be able to demonstrate that k ∈ C. ♦

Example 12 shows that a theory may have a universal axiomatization, but the abil-
ity of a theory to be falsified in practice depends on the existence of an effective or re-
cursively enumerable axiomatization. However, if a data set is consistent with the the-
ory, then this consistency cannot necessarily be effectively demonstrated, since such a
demonstration requires checking that the countably infinite list of axioms is satisfied.
Consider Example 12 again. If C is recursively enumerable but not recursive, then the
fact that a given data set is consistent with the theory cannot necessarily be demon-
strated since if C is not recursive, the researcher has no way to effectively demonstrate
for a given love cycle of size k that k /∈ C. Note that, by Remark 6, the theory also admits
a recursive axiomatization, but this additional feature does not seem to be related to fal-
sifiability. In particular, as the example shows, it does not mean that the researcher can
demonstrate that a given data set is consistent with the theory.

Thus, recursively enumerable universal theories have the property that any violation
of the theory can be demonstrated. In logical terminology, if a sentence ϕ is an element
of �, then there exists a formal deduction (a proof) for this fact. Gradwohl and Shmaya
(2015) go one step further and require in addition that this proof be short.

Consider now the case in which a theory T admits a finite universal axiomatization.
This is the case of the consumer choice example discussed in the Introduction, as well
as the applications to group choice and Nash equilibrium developed above, and to all
the other natural economic applications of which we are aware.

In this case, there is a way to check whether a given data set is consistent with the
theory (and, a fortiori, to demonstrate consistency of the data set with the theory): go
over all the axioms and check that they are all satisfied. Moreover, in the framework of
Section 2.2, if T is an L theory that admits a finite and universal axiomatization, then
there is a way to check whether a given finite data set is consistent with F(T): one has to
go over all possibilities for the unobserved relations Q1� � � � �QK and check whether it is
possible to define them in a way that is consistent with all of the axioms. In logical termi-
nology, if T has a finite universal axiomatization, then the set of semantic implications
of F(T) is recursive.

Summing up, for the case in which T has a finite universal axiomatization (which it
does in all our examples), there is a way to check whether a finite data set is consistent
with the theory F(T), and Theorem 1 implies that if the theory is incorrect, then one can
point to a finite data set that is not consistent with it.

7. Relation to previous literature

One relevant antecedent to our paper is Brown and Matzkin (1996). These authors ex-
ploit a famous model-theoretic result, the Tarski–Seidenberg theorem (Tarski 1951), to

13For example, if C is the set of codes of computer programs that do not halt.
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study the empirical restrictions placed by the competitive equilibrium hypothesis on
observable data. Roughly, they use Afriat’s theorem to show that testing the consistency
of data with the theory of Walrasian equilibrium boils down to verifying whether there
exists a solution to a finite collection of polynomial inequalities. The Tarski–Seidenberg
theorem establishes that the existence of a solution to this set of inequalities is equiv-
alent to the satisfaction of another set of polynomial inequalities (which can be algo-
rithmically determined) in which no theoretical variables appear. The second system
of inequalities only depends on data. What we accomplish is similar in spirit to what
Brown and Matzkin do in their paper, but our techniques are different (our result fol-
lows from Tarski’s theorem on universal axiomatization, not on the theory of quantifier
elimination in systems of real polynomials).

Many papers in revealed preference theory are interested in the specific form of the
axiomatization of F(T), but there are also many studies that are primarily interested in
the existence of a test. We have already mentioned Brown and Matzkin (1996), but there
are many other papers based on developing so-called Afriat inequalities. Two recent
developments are Quah (2012) and Polisson and Quah (2013), which seek to show that
certain economic theories are falsifiable by establishing what in our papers would be
universal axiomatizations of F(T).

Our paper is also related to a model-theoretic literature that studies when a theory
can be given an axiomatization using additional relations. See, for example, Craig and
Vaught (1958), who provide conditions under which a class of structures is of the form
F(T) for some finitely axiomatizable T . The work also contains a finite model-theoretic
result related to Theorem 1.

The type of issues we discuss here have previously been studied by philosophers of
science. Without going into full detail, Ramsey (1931) was one of the first to discuss the
elimination of “theoretical” terms from scientific theories. Various authors give different
interpretation to the notion of “Ramsey elimination.”

Herbert Simon wrote a sequence of papers on falsifiability and empirical content.
For example, Simon (1985) discusses some of the issues we discuss here: Simon argues
that the theory of rational choice is falsifiable, even though its usual formulation ex-
istentially quantifies over unobservables (what he calls theoretical). As Simon (1985)
states, “although existential quantification of an observable is fatal to the falsifiability of
a theory, the same is not true when the existentially quantified term is a theoretical one.”

While this may seem obvious, it has led to a large degree of confusion among
economists. For example, Boland (1981) argued that the theory of rational choice is not
falsifiable precisely because of its existential formulation over unobservables. Mongin
(1986) counters this argument. He observed that if T has universal F-implications, then
F(T) has universal F-implications and, hence, satisfies the logical condition for falsifi-
ability. Our result establishes that all of its implications are falsifiable in the full sense of
falsifiability, not only the logical one.

In Chambers et al. (2014), we have used a similar framework as here to investigate
the notion of empirical content. That paper looks at the syntactic counterpart to the se-
mantic notion of empirical content. Here we have instead focused on conditions under
which a theory has a universal axiomatization.
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