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One-dimensional mechanism design

Hervé Moulin
Adam Smith Business School, University of Glasgow and Higher School of Economics, St. Petersburg

We prove a general possibility result for collective decision problems where in-
dividual allocations are one-dimensional, preferences are single-peaked (strictly
convex), and feasible allocation profiles cover a closed convex set. Special cases
include the celebrated median voter theorem (Black 1948, Dummett and Far-
quharson 1961) and the division of a nondisposable commodity by the uniform
rationing rule (Sprumont 1991).

We construct a canonical peak-only rule that equalizes, in the leximin sense,
individual gains from an arbitrary benchmark allocation: it is efficient, group-
strategyproof, fair, and (for most problems) continuous. These properties leave
room for many other rules, except for symmetric nondisposable division prob-
lems.
Keywords. Single-peaked preferences, strategyproof mechanisms, leximin or-
dering, voting, rationing.

JEL classification. D63, D71, D82.

1. Introduction and the punchline

Single-peaked preferences played an important role in the birth of social choice theory
and mechanism design. Black observed in 1948 that the majority relation is transitive
when candidates are aligned and preferences are single-peaked (Black 1948): this result
inspired Arrow to develop the social choice approach with arbitrary preferences. Dum-
mett and Farquharson noted in 1961 that the median peak (the majority winner) defines
an incentive compatible voting rule (Dummett and Farquharson 1961); they also conjec-
tured that no voting rule is incentive compatible under general preferences, which was
proven true 12 years later by Gibbard and by Satterthwaite (Gibbard 1973, Satterthwaite
1975).

Two decades and many more impossibility theorems later, single-peaked prefer-
ences reappeared in the problem of allocating a single nondisposable commodity (e.g.,
a workload) when the aggregate demand may be above or below the amount to be di-
vided. Inspired by Benassy’s earlier observation (Benassy 1982) that uniform rationing
of a single commodity prevents the strategic inflation of individual demands, Sprumont
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(1991) characterized the uniform rationing rule by combining the three perennial goals

of prior-free mechanism design: efficiency, strategyproofness, and fairness.

This striking “if and only if” result is almost alone of its kind in the literature on pri-

vate goods allocation mechanisms (briefly reviewed in Section 3). By contrast, in the

voting model with single-peaked preferences over a line, there are many efficient, strat-

egyproof, and fair voting rules, known as the generalized median rules (Moulin 1980).

We define a family of collective decision problems encompassing voting, nondis-

posable division, its many variants and extensions (see Section 3), and much more. Each

participant is interested in a one-dimensional “personal” allocation, his/her preferences

are single-peaked (strictly convex) over this allocation, and some abstract constraints

limit the set X of feasible allocation profiles. The feasible set X is a line in the voting

model, and a simplex in the nondisposable division model; in general it is any closed

convex set. Our main result is that we can always design allocations rules that are ef-

ficient, group-strategyproof (hence prior-free incentive compatible), and fair. Loosely

speaking, in convex economies where each agent consumes a single commodity, the

mechanism designer hits no impossibility wall.

The proof constructs such a rule (in fact, a family of them) with the help of the lex-

imin ordering, an important concept in post-Rawls welfare economics. Recall that the

welfare profilew beats profilew′ for this ordering if the smallest coordinate is larger inw

than in w′, or when these are equal, if the second smallest coordinate is larger in w than

in w′, and so on. In our model we fix a benchmark allocation ω that is fair in the sense

that it respects the symmetries of the set of feasible allocation profiles. Then we equal-

ize, as much as permitted by feasibility, individual benefits away fromω in the direction

of individual peaks: that is, the profile of actual benefits maximizes the leximin ordering.

In addition to meeting the three basic goals, the corresponding rule is continuous in the

profile of peaks for almost all shapes of X (more on this in the next section). We call it

the uniform gains rule to stress its similarity with the uniform rationing rule. Indeed in

the nondisposable division problem, the two rules coincide.

A natural question is to describe the entire set of rules efficient, group-strategyproof,

and fair. We do not answer this question for general feasible sets, but we have some

precise answers when the set X is fully symmetric, i.e., invariant by any permutation of

the agents. In that case the dimension of X can only be 1, n − 1, or n (where n is the

number of agents). Loosely put, our results are as follows.

IfX is of dimension 1, we have a voting problem, where the rules in question are the

generalized median rules, described by n− 1 free parameters.

If X is of dimension n− 1, the sum of individual allocations is constant, which gen-

eralizes nondisposable division. The only symmetric allocation ω is equal split: the

corresponding uniform gains rule generalizes Sprumont’s uniform rationing rule, and

remains the only rule efficient, group-strategyproof, and fair.

IfX is of dimension n, the set of such rules is of infinite dimension (except for n= 2),

so the mechanism designer faces an embarrassment of riches.
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2. Overview of the results

After reviewing the literature in Section 3, we define the model in Section 4. A one-
dimensional problem consists of the setN of agents and the setX of feasible allocation
profiles: it is a closed convex subset of RN . Agent i has single-peaked preferences over
the projectionXi ofX onto his coordinate.

Two standard notions of prior-free incentive compatibility are defined in Sec-
tion 5: strategyproofness (SP) prevents individual strategic misreport, while strong
group-strategyproofness (SGSP) rules out coordinated moves by a group of agents and
guarantees nonbossiness to boot. Under single-peaked preferences we expect a group-
strategyproof revelation rule to be also peak-only: it only elicits individual peak alloca-
tions and ignores preferences across the peak. This is true in our general model provided
the rule is continuous in the reports (Lemma 1).

The well known fixed priority mechanisms are, as usual, both efficient and SGSP.
Therefore, the point of our main result is to provide a fair mechanism that achieves
these properties. We define three fairness requirements in Section 6. Symmetry (hori-
zontal equity) says that the rule must respect the symmetries between agents: if a per-
mutation σ of the agents leaves X invariant, then relabeling agents according to σ will
simply permute their allocations. Next, no envy says that if X is invariant by permut-
ing i and j, then i weakly prefers her own allocation xi to j’s allocation xj . Finally, given
any benchmark allocation ω in X , the ω-guarantee property requires each agent i to
weakly prefer her allocation xi toωi. As long asω respects the symmetries ofX , all three
requirements are compatible.

We state the main result in Section 7. Given any symmetric allocation ω in X , we
define the uniform-gains rule fω that selects the allocation in X where the profile of
gains fromωi toward the peak pi maximizes the leximin ordering. This peak-only direct
revelation mechanism is efficient, SGSP, symmetric, envy-free, and guarantees ω; it is
also continuous if X is either a polytope (a finite intersection of half-spaces) or strictly
convex and of dimension n.

Sections 8 and 9 provide some insights into the structure of the set of efficient sym-
metric rules meeting SGSP: we call such rules focal. In particular, we ask whether the set
of rules fω uncovered in the Theorem 1 exhausts all focal rules. With the exception of
two-person problems and of a family of problems generalizing Sprumont’s model, the
answer is “no.”

In Section 8 we consider fully symmetric problems, i.e., such that X is invariant by
all permutations of the agents. This impliesX is of dimension 1, n− 1, or n.

Voting problems are those where X is of dimension 1. The uniform gains rule fω is
but one of many more generalized median rules,1 i.e., the most strongly biased in favor
of the status quo outcome ω: so as to elect another outcome, all individual peaks must
be to the right of ω (or all to its left), and then the rule selects the peak closest to ω
(Proposition 1).

1Such a rule is defined by n− 1 arbitrary fixed ballots: it selects the median of the n “live” plus the n− 1
fixed ballots. In the rule fω the fixed ballots are n− 1 copies of ω.
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When X is symmetric and of dimension n− 1 the sum
∑
N xi must be constant so

we can interpret X as a generalized division problem: the original nondisposable divi-
sion model is the instance where the only additional constraint is the nonnegativity of
shares. There is only one symmetric allocation ω, and the uniform gains rule fω is the
unique continuous focal rule (Proposition 2). This result applies to a much larger class
of problems than Sprumont’s characterization (Sprumont 1991, Ching 1994). However,
it requires more properties: SGSP in lieu of SP, and continuity.

If X is of dimension n, the set of focal rules is of infinite dimension if n ≥ 3, but
if n= 2, it coincides with the one-dimensional family fω parametrized by ω (Proposi-
tion 3).

Finally Section 9 explains why, when the setX of feasible allocations is not fully sym-
metric, we expect the set of focal rules (they must still respect the partial symmetries
of X) to be extremely large even if X is of dimension 2. We use a very simple three-
person workload division problem to make this point. Workers i= 1�2 each bring some
amount xi of input, and worker 3 must process the total output; the feasibility constraint
is x3 = x1 + x2. Symmetry rules out discrimination between workers 1 and 2, but it im-
poses no restriction to the relative treatment of 3 versus 1 and 2. We describe three quite
different subfamilies of focal rules, corresponding to sharply different power distribu-
tions between the players. Even in such a simple problem, the full menu of focal rules is
worthy of further research.

After some concluding comments in Section 10, Section 11 collects the proofs of the
Theorem 1 and Propositions 2 and 3.

3. Related literature

There is a folk impossibility result about the design of (prior-free) strategyproof mecha-
nisms: in economies where agents consume two or more commodities, a strategyproof
mechanism must be either inefficient, grossly unfair, or both. To mention only a few
salient contributions to this theme, Hurwicz conjectured (Hurwicz 1972) and then Zhou
proved (Zhou 1991) that the strategyproof and efficient allocation of private goods can-
not guarantee “voluntary trade” (everyone weakly improves upon his initial endow-
ment ωi: see the ω-guarantee axiom in Section 6); it cannot treat agents symmetrically
either (Serizawa 2002). In abstract quasi-linear economies, no strategyproof mecha-
nism can be efficient (Green and Laffont 1977); ditto in public good economies (Barberà
and Jackson 1994). And the related, more general, concept of ex post implementation
hits similar impossibility walls when individual allocations are of dimension 2 or more
(Jehiel et al. 2006).

By contrast we show a broad possibility result in economies where each agent
consumes a unique divisible commodity, possibly a different commodity for different
agents.

After the Gibbard–Satterthwaite theorem, a substantial literature on voting rules
looked for restrictions to the domain of preferences eschewing the impossibility. The
single-peaked domain was extended in a variety of ways. If outcomes are arranged on
a tree, the Condorcet winner still defines a focal voting rule (Demange 1982). If out-
comes are a product of lines, there is a natural extension of single-peakedness in which
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coordinate-wise majority still yields a strategyproof and symmetric rule, though effi-
ciency is replaced by the much weaker unanimity property2 (Barberà et al. 1991, 1993,
1997b), another instance of the “no rule is perfect in dimension 2 or more” result. Trees
and products of lines are special cases of abstract convex sets, where we have a general
characterization of strategyproof rules (Nehring and Puppe 2007a, 2007b).

Still in the voting context, recent results provide an endogenous characterization of
(a generalization of) single-peaked domains by the fact that we can find strategyproof
peak-only voting rules that are symmetric and unanimous (Bogomolnaia 1998, Chatterji
et al. 2013, Chatterji and Massó 2015).

Following Sprumont’s result, the nondisposable division problem received much at-
tention as well. On the one hand, if viewed as a fair division method, it can be axioma-
tized in a variety of ways without invoking its incentive compatibility properties; see, for
instance, Schummer and Thomson (1997), Thomson (1994), and Thomson (1997). On
the other hand, it can be adapted and generalized to a variety of alternative models; for
instance, to the random distribution of indivisible units (Hatsumi and Serizawa 2009) or
the balancing of supply and demand in one-dimensional economies (Klaus et al. 1998).
A good survey of the literature on strategyproof voting and nondisposable division rules
up to 2001 is Barberà (2001).

More recently the rationing model has been extended to allow multiple resources
and bipartite constraints (Bochet et al. 2013), and so has the supply and demand bal-
ancing model (Bochet et al. 2012, Chandramouli and Sethuraman 2011).

If we drop the fairness requirement in Sprumont’s nondisposable division prob-
lem, there is an infinite dimensional set of efficient and strategyproof division rules:
Barberà et al. (1997a), Moulin (1999), Ehlers (2002). See also the discussion of asymmet-
ric rules in the bipartite rationing (Flores-Szwagrzak 2017) and supply–demand (Flores-
Szwagrzak 2012) models. The same is true in our general model. However the strength
of our Proposition 3 is that we find an infinite dimensional set of fair (symmetric) rules
even when the feasible set is fully symmetric.

In modern welfare economics the leximin ordering was introduced by Sen (Sen 1970)
as a tool to implement Rawls’ egalitarian program. Maximizing this ordering is some-
times called practical egalitarianism, as it guarantees efficiency while deviating as lit-
tle as possible from the ideal of full equality of welfares. This ordering was axioma-
tized first as a social welfare ordering (Hammond 1976, d’Aspremont and Gevers 1977)
and then as an axiomatic bargaining solution (Imai 1983, Thomson and Lensberg 1989,
Chun and Peters 1989). It also plays a key role in the recent design of good mecha-
nisms for two problems: the assignment of objects when preferences are dichotomous3

(Bogomolnaia and Moulin 2004), and the fair division of multiple divisible commodities
when all agents have Leontief preferences (Ghodsi et al. 2011, Li and Xue 2013). See also
the generalization of these two results in Kurokawa et al. (2015).

2Outcome x is elected if it is the peak of all voters.
3Each agent wants at most one indivisible object and partitions objects into two indifference classes;

allocations are random.
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4. The model and some examples

The finite set of agents is N and n = |N|. An allocation profile is x = (xi)i∈N ∈ RN . The
set of feasible allocations is a closed subset X of RN . The projection Xi of X on the
ith coordinate is the set of agent i’s feasible allocations; the cartesian product of these
closed sets isXN = ∏

i∈N Xi.
Agent i’s preferences �i are single-peaked over Xi if (i) there is some pi ∈ Xi—the

peak—that �i ranks strictly above any other, (ii) �i increases strictly with xi on Xi ∩
]−∞�pi] and decreases strictly on Xi ∩ [pi�+∞[, and (iii) �i is continuous. Note that
in all our results the set Xi is convex, and in that case single-peakedness simply means
that �i is strictly convex and continuous.

We write SP(Xi) for the set of such preferences, and write the domain of preferences
profiles as SP(XN)= ∏

i∈N SP(Xi). A preference profile is � = (�i)i∈N ∈ SP(XN), and
p= (pi)i∈N ∈XN is a profile of individual peaks.

Definition 1. A one-dimensional allocation problem is a triple (N�X��) where X is
closed in RN and � ∈ SP(XN).

Definition 2. Fixing the pair (N�X), a rule (aka a revelation mechanism) is a (single-
valued) mapping F choosing a feasible allocation for each allocation problem

F : SP(XN)→X written as F(�)= x�

A rule F is peak-only if it is described by a (single-valued) mapping

f :XN →X written as f (p)= x

such that for all � ∈ SP(XN) with profile of peaks p ∈XN we have F(�)= f (p).

A peak-only rule is a particularly simple direct revelation mechanism because par-
ticipants only need to report their peak, so an agent does not even need to figure out
how she compares allocations across her peak.

Example 1 (Voting). Here the feasible set is a closed interval of the diagonal � = {x ∈
RN |xi = xj for all i� j ∈N}. ♦

Example 2 (Nondisposable division (Sprumont 1991)). The feasible set is the simplex
X = {x ∈RN |x≥ 0 and

∑
i∈N xi = 1}. ♦

Example 2∗ (Bipartite rationing (Bochet et al. 2013, Flores-Szwagrzak 2017)). Here we
have a set A of partially heterogenous resources and we must distribute the amount ra
of resource a among agents in N . Compatibility constraints prevent some agents from
consuming certain resources: for instance, a is a type of job requiring certain skills and
agent i’s skills allow him to do only some of the jobs (see Bochet et al. 2013 for more
examples). Formally agent i can only consume a subset θ(i) of the resources (and each



Theoretical Economics 12 (2017) One-dimensional mechanism design 593

resource can be consumed by at least one agent). If yia is how much i consumes of
resource a, the feasibility constraints are

yia > 0 =⇒ a ∈ θ(i) and
∑
i

yia = ra for all a� (1)

All resources that agent i can consume are perfect substitutes for her: she cares only
about her total share xi = ∑

a yia, over which her preferences are single-peaked. The
constraints (1) generate a convex compact set of matrices [yia], so the corresponding set
of vectors (xi)i∈N covers a convex compactX ⊂ RN . ♦

Example 3 (Balancing demand and supply). This is the problem, closely related to Ex-
ample 2, where each agent i can be a supplier or a demander of the nondisposable com-
modity. Normalizing initial endowments at zero and ignoring bankruptcy constraints,
we get the feasible setX = {x ∈RN |∑i∈N xi = 0}. Ifpi < 0 (resp. pi > 0), agent iwishes to
be a net supplier (resp. demander) of the commodity. Here the familiar voluntary trade
requirement corresponds to the ω-guarantee axiom below where ω = 0 is the no-trade
outcome. ♦

Example 3∗ (Bipartite demand–supply (Bochet et al. 2012, Flores-Szwagrzak 2012)).
This is a variant of Example 3 where transfers between two given agents may or may
not be feasible, and such constraints are described by an arbitrary graph with agents on
the vertices. We omit the formal description for brevity. ♦

Example 4 (Bilateral workload). We have a fixed partition of N as L ∪ R, and we set
X = {x ∈ RN |x≥ 0 and

∑
i∈L xi =

∑
j∈R xj}. We think of two teams L and R who choose

individual workloads xk and must coordinate the total workload across the two teams
(as in a production chain where R is upstream of L). If R consists of a single “man-
ager,” this is a moneyless version of the principal–agent problem, where the principal
wishes to adjust total output to his own target level, while the workers’ individual targets
should also be taken into account (the manager is no dictator). This modifies Example 3
because the role of agents as suppliers or demanders is fixed exogenously; moreover,
voluntariness of trade is not assumed. As a result, we show in Section 9 that the set of
focal rules becomes much larger. ♦

Our last example is one where the feasible set is of dimension n.

Example 5 (Location). Initially the agents live at 0; they wish to locate somewhere on
the real line. The stand alone cost of moving agent i to location xi is x2

i , and in addition
there are externalities—positive or negative—to locate xi near xj . The agents share a
total relocation budget of 1. Formally,

x ∈X def⇐⇒
∑
i∈N

x2
i −π

∑
i�j∈N

xixj ≤ 1�

where −2/(n− 1) < π < 2 ensures thatX is convex and compact. ♦
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The externality factor π is positive if there are economies of scale in building two
nearby homes; it is negative if two nearby homes must be isolated from one another,
e.g., for privacy.

If π = 0, we interpret 0 as the default level of the parameter xi, which is costly to
adjust up or down, and there is a cap on total expense: think of temperature in a row of
offices, or the carbon dioxide (CO2) emissions of the different plants of the firm.

5. Efficiency and incentives

Definition 3. The rule F at (N�X) is efficient (EFF) if for any � ∈ SP(XN), the alloca-
tion x= F(�) is Pareto optimal at �.4

The rule F at (N�X) is continuous (CONT) if F is continuous for the topology of the
closed convergence5 in SP(XN).

We let the reader check that if F is peak-only and represented by f , it is continuous
if and only if f is continuous in RN .

Next we define three increasingly more demanding versions of incentive compati-
bility. Fixing (N�X), a profile of preferences � ∈ SP(XN), and a coalitionM ⊆N , we say

that M can misreport at � if there is some �′
[M]

def= (�′
i)i∈M ∈ SP(XM) such that x′

i �i xi
for all i ∈M , where x= F(�) and x′ = F(�′

[M]��[N�M]). We say that M can weakly mis-
report at � if under the same premises we have x′

i �i xi for all i ∈M and at least one is a
strict preference.

Definition 4. The rule F is strategyproof (SP) if no single agent can misreport at any
profile in SP(XN).

The rule F is group-strategyproof (GSP) if no coalition can misreport at any profile
in SP(XN).

The rule F is strongly group-strategyproof (SGSP) if no coalition can weakly misre-
port at any profile in SP(XN).

In general GSP (or SGSP) is considerably stronger than SP, the voting problem being
an exception.6 We recall two well known facts that are useful below.

Lemma 1. Fix (N�X) and a rule F at (N�X) strongly group-strategyproof and contin-
uous. Then F is peak-only; moreover, the mapping p → f (p) representing F is weakly
increasing and “uncompromising”: for all p ∈XN and all i ∈N ,

fi(p) = xi < pi (resp. xi > pi) =⇒
f
(
p′
i�p−i

) = f (p) for all p′
i ≥ xi

(
resp. p′

i ≤ xi
)
�

4There is no y ∈X such that yi �i xi for all i, with at least one strict preference.
5See Hildenbrand (1974) Section 1.2, p. 96.
6See Barberà et al. (2010) for a detailed discussion of the connections between the two concepts in do-

mains more general than single-peaked.
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Proof. For peak-onlyness we fix i ∈ N and �[N�i] ∈ SP(XN�i). We assume �1
i ��2

i ∈
SP(Xi) have the same peak pi but x1

i = Fi(�1
i ��N�i) �= x2

i = Fi(�2
i ��N�i) and derive a

contradiction. By SP the peakpi must be strictly between x1
i and x2

i , else agent i can mis-
report at one of (�1

i ��[N�i]) or (�2
i ��[N�i]). Now CONT implies that the range of �i −→

xi = Fi(�i��[N�i]) is connected so it contains pi and this yields a profitable misreport
at both (�1

i ��[N�i]) and (�2
i ��[N�i]). We have shown Fi(�1

i ��N�i)= Fi(�2
i ��N�i), i.e.,

an agent’s allocation depends only upon her own reported peak.
Now assume Fj(�1

i ��N�i)= x1
j �= x2

j = Fj(�2
i ��N�i) for some j �= i: by the previous

argument and SGSP, agent j is indifferent between these two allocations; therefore, the
peak pj is in ]x1

j � x
2
j [. Now we can move continuously from �1

i to �2
i while keeping the

same peak pi; the range of xj contains pj so that coalition {i� j} can weakly misreport at
(�1

i ��N�i) (and at (�2
i ��N�i)). This is a contradiction of SGSP so we conclude F(�1

i �

�N�i)= F(�2
i ��N�i). Peak-onlyness is now clear.

Next to uncompromisingness. The standard proof that fi(p′
i�p−i)= fi(p) under the

premises of the implication is omitted for brevity. Just as above, we go from there to
f (p′

i�p−i)= f (p) by SGSP. �

It is a folk result that a fixed priority rule (also called serial dictatorship) is both effi-
cient and group-strategyproof. In our model define the slice of X at x̃[M] as X [̃x[M]] =
{x[N�M] ∈ RN�M |(x̃[M]�x[N�M]) ∈ X}: it is closed and possibly empty. Given the pri-
ority ordering 1�2� � � � , the rule gives peak p1 to agent 1 (this is feasible by definition of
X1), then gives to agent 2 his best allocation x2 in (the projection on the second coordi-
nate of)X[p1], then next gives to agent 3 her best allocation x3 in (the projection on the
third coordinate of) X[(p1�x2)], and so on. If X is convex each step is well defined as
we maximize a single-peaked preference in a closed real interval. The rule is peak-only,
efficient, and strongly group-strategyproof (instead of just GSP). It is continuous as well
if X is either a polytope or strictly convex and of full dimension (the proof is similar to
that in Steps 8, 9, and 10 in Section 11.1).7

The strength of our Theorem 1 is to achieve all the properties in Definitions 3 and 4
by a rule treating the participants fairly.

6. Fairness

In our model the feasible set X may not treat all agents symmetrically, so the familiar
horizontal equity property needs to be adjusted with the help of a few definitions.

Let S(N) be the set of all permutations σ of N . Permuting coordinates according to
σ changes x to xσ = (xσ(i))i∈N and � to �σ = (�σ(i))i∈N . We call σ ∈ S(N) a symmetry of
X if Xσ =X , and write their set S(N�X). We call ω a symmetric element of X if ω ∈X
and ωσ =ω for all σ ∈ S(N�X). We say thatX is fully symmetric if S(N�X)= S(N).

In Examples 1, 2, 3, and 5, the set X is fully symmetric; in Example 4, S(N�Z) con-
tains the permutations leaving bothL andR unchanged, but not those swapping agents

7We can of course define the mechanism when X is not convex: it retains the properties EFF and GSP,
but is not necessarily SGSP, peak-only, or continuous.
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between the two groups. Similarly in Examples 2∗ and 3∗, the set S(N�X) corresponds
to the symmetries of the bipartite graph of compatibilities.

Of special interest are the simple permutations τij exchanging i and j while leaving
all other coordinates constant. If τij is a symmetry of X , we think of agents i and j as
having identical opportunities inX , and the no envy test where i compare his allocation
to j’s allocation is meaningful.

Definition 5. Given (N�X), the rule F meets symmetry (SYM) if we have F(�)= x=⇒
F(�σ)= xσ for every σ ∈ S(N�X).

Given (N�X), the rule F meets no envy (NE) if whenever τij ∈ S(N�X) and F(�)= x
we have xi �i xj .

Given an allocationω ∈X , the rule F meetsω-guaranteed (ω-G) if F(�)= x implies
xi �i ωi for all i.

As in axiomatic bargaining, theω-G property viewsω as a default option (e.g., status
quo ante) that each agent can revert to.

The three fairness axioms are not logically connected to one another. They have
most bite when the problem (N�X) is fully symmetric: all agents have the same feasible
setXi and no envy applies to every pair of agents.

The affine subspace H[X] spanned by X is the set of vectors λx + (1 − λ)y, where
x� y ∈X and λ ∈ R. If X is fully symmetric, so is H[X], and if X is not a singleton, H[X]
is of dimension at least 1. It is easy to check that there are only three types of fully sym-
metric affine subspaces:

• The (one-dimensional) diagonalD of RN (Example 1).

• A(n− 1)-dimensional subspace orthogonal toD (Examples 2 and 3).

• The full space RN (Example 5).

As usual the dimension ofX is defined as that ofH[X].

7. Main result: The uniform gains rules

We pick an arbitrary ω in X , not necessarily symmetric. So as to define the uniform
gains rule fω, we need a couple of definitions and some notation.

Recall that the leximin ordering �lxmin of RN is a symmetric version of the lexico-
graphic ordering �lexic of Rn. For any x� y ∈ RN we set

x�lxmin y
def⇐⇒ x∗ �lexic y

∗� (2)

where x∗ ∈ Rn has the same set of coordinates as x (including possible repetitions) re-
arranged increasingly: minN xi = x∗1 ≤ x∗2 ≤ · · · ≤ x∗n = maxN xi. It is well known that
�lxmin is an ordering (complete, transitive) of RN with convex upper contours, but is
discontinuous and cannot be represented by a utility function. Over a compact set its
maximum always exists but may not be unique; however, its maximum over a convex
compact set is unique.8

8See Lemma 1.1 in Moulin (1988). The simple argument is in Step 1 in Section 11.1.
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In RN we use the notation [a�b] def= {x|min{ai� bi} ≤ xi ≤ max{ai� bi} for all i} and
|a| = (|ai|)i∈N . Given a profile of peaks p, the rule fω chooses an allocation x in [ω�p].
The vector |x−ω| is the profile of gains from the benchmark ω, when we measure each
ordinal welfare gain as |xi −ωi|. The rule equalizes gains across agents as much as per-
mitted by feasibility,

fω(p)= x def⇐⇒
{
x ∈X ∩ [ω�p] and |x−ω| = arg max

�(ω�p)
�lxmin

}
� (3)

where

z ∈ �(ω�p) def⇐⇒ {
z = |x−ω| for some x ∈X ∩ [ω�p]}�

The allocation fω(p) is well defined because �(ω�p) is convex and compact, so the
maximum of �lxmin exists and is unique. We write F ={fω} for the set of rules thus con-
structed.

Theorem 1. Fix (N�X) and a symmetric allocation ω inX . IfX is closed and convex in
RN the (peak-only) uniform gains rule fω ∈ F is efficient, symmetric, envy-free, strongly
group-strategyproof, and ω-guaranteed.

This rule is also continuous if n= 2 or if n≥ 3 and eitherX is a polytope, orX is strictly
convex and of dimension n.

The proof is given in Section 11.1. There we show first that for any choice of ω, sym-
metric or not, fω meets EFF and SGSP, and obviously ω-G. It is then easy to check SYM
whenω is symmetric inX , and NE when τij is a symmetry ofX . The proof of continuity
when X is a polytope or is strictly convex and full dimensional takes more work: see
Steps 8 and 9 of the proof. In Step 10 we also provide an example whereX is convex and
fω is discontinuous. Note that Theorem 1 implies that fω is continuous for all examples
in Section 4.

The convexity of X is a sufficient condition for the existence of a focal rule (non-
envious as well), but it is by no means a necessary condition. Remark 3 in Section 8.3
gives a two-person example of a focal rule whereX is not convex in R2.

Remark 1. Alternatively, for some nonconvex setsXeven efficiency, strategyproofness,
and continuity are incompatible. Figure 1 explains this in a two-person example. As-
sume such a rule F exists and fix a profile � = (�1��2) with profile of peaks p. If
agent 1 reports �′

1 with peak c1 instead of p1, while agent 2 reports �2, then EFF im-
plies F(�′

1��2) = c. Thus agent 1 can achieve c1 as well as d1 by a similar argument.
Set F1(�) = x1and assume x1 > p1: then there is a preference �∗

1 with peak p1 rank-
ing c1 above x1. But by SP and CONT an agent’s allocation depends only on her own
reported peak;9 therefore F1(�∗

1��2)= x1 while F1(�′
1��2)= c1 and agent 1 can misre-

port. Inequality x1 < p1 is similarly impossible, so we conclude F1(�) = p1. The same
argument for agent 2 gives F2(�)= p2 and we reach a contradiction.

9See the first part in the proof of Lemma 1 that only requires SP and CONT.
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(a) (b)

Figure 1. Proof of Remark 1.

Remark 2. The rule fω measures all individual welfare gains as |xi − ωi|. If we are
not imposing either SYM or NE, we can use a different cardinalization for each i, for
instance, λi|xi − ωi| (where λi > 0) and get a rule meeting EFF, SGSP, and CONT (the
latter with the same qualifications as in the theorem). In the proof of Proposition 3
(Section 11.3) we use a more subtle alternative cardinalization respecting SYM and NE,
where “gains” (xi −ωi > 0) and “losses” (xi −ωi < 0) are treated differently. This is how
we show that F is typically much smaller than the set G of focal rules.

In the next section, we focus on the comparison of F and G whenX is fully symmet-
ric, hence of dimension 1, n−1, or n. If dim(X)= 1, F is a one-dimensional subset of the
(n− 1)-dimensional G (Proposition 1). If dim(X)= n− 1, F and G coincide and contain
a single rule (Proposition 2). If dim(X) = n, G is of infinite dimension while F remains
one-dimensional (Proposition 3).

8. Application to fully symmetric problems

8.1 Voting: dim(X)= 1

This is Example 1. Let X0 be the set of individual allocations common to all agents:
a peak-only rule f is simply a mapping from XN

0 into X0. Any allocation ω ∈X ⊆D is
symmetric: ωi = ω0 ∈ X0 for all i. To read definition (3), fix a profile of peaks p ∈ XN

0
and some x ∈ X ∩ [ω�p] such that xi = x0 for all i. If there are agents i, j such that
pi ≤ω0 ≤ pj , then x=ω because x ∈ [ω�p] implies pi ≤ xi ≤ω0 ≤ xj ≤ pj . If ω0 ≤ pi for
all i, then ω0 ≤ x0 ≤ p∗1 and x0 −ω0 is maximal at fω(p) = p∗1; similarly if pi ≤ ω0 for
all i, we have fω(p)= p∗n. We just proved the following proposition.
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Proposition 1. Given (N�X0) and ω0 ∈X0, the uniform gains rule fω defined by (3) is

fω(p)= median
{
p∗1�p∗n�ω0

}
�

We have known for decades that a voting rule in (N�X0) is efficient, symmetric, and
strategyproof if and only if it is a generalized median rule (Moulin 1980, Sprumont 1995).
Such a rule is defined by the choice of (n−1) arbitrary parameters qk inX0, 1 ≤ k≤ n−1,
interpreted as fixed ballots.10 It picks the median of the fixed and the live ballots:

f (p)= median{pi� i ∈N;qk�1 ≤ k≤ n− 1}�

(It also meets SGSP and CONT.) The rule fω is the instance where all n− 1 fixed ballots
qk are the status quo ω0.

Note that if n= 2, every generalized median rule is also a uniform gains rule; there-
fore, the family of uniform gains rules {fω|ω0 ∈X0} is characterized by the combination
of efficiency, symmetry, and strategyproofness.11 This is no longer true for n≥ 3, where
the set G of generalized median rules is of dimension (n−1)while F is one dimensional.

8.2 Dividing: dim(X)= n− 1

Here H[X] is orthogonal to the diagonal D of RN and X takes the form X = {∑N xi =
β}∩C, where β is a real number and C is convex, closed, fully symmetric, and of dimen-
sion n. Equal split is the only symmetric point inX : ωi = (1/n)β for each i.

Example 6 (Nondisposable division,X = {x≥ 0�
∑
N xi = 1}). Here fω is precisely Spru-

mont’s uniform rationing rule ϕ, a fact that requires some explanation because the orig-
inal definition in Sprumont (1991) of the rule ϕ is different. ♦

The key fact is that an efficient allocation must be “one-sided.” Assume excess de-
mand at p, i.e.,

∑
N pi > 1: then the allocation x ∈ X is efficient if and only if xi ≤ pi

for all i. And ϕ(p) is the most egalitarian efficient allocation; it is the only one in X that
can be written as ϕi(p) = min{λ�pi} for all i, for some parameter λ ∈ [0�1]. To check
ϕ(p) = fω(p) (where ωi = 1/n for all i), we partition N as N− ∪N+, where pi ≤ 1/n in
N− and pi ≥ 1/n in N+ (assigning agents such that pi = 1/n arbitrarily). Then excess
demand implies

δ=
∑
N−

∣∣∣∣pi − 1
n

∣∣∣∣ ≤
∑
N+

∣∣∣∣pi − 1
n

∣∣∣∣�
Therefore, the maximum z of �lxmin in �(ω�p) has zi = |pi − 1/n| in N− and zj =
min{μ� |pj−1/n|} inN+ for someμ≥ 0. The corresponding feasible allocation x= fω(p)
is xi = min{μ+ 1/n�pi} for all i, and ϕ(p)= fω(p) follows.

10Note that qk could be ±∞ ifX0 is unbounded.
11If we drop symmetry, the combination of efficiency, continuity, and strategyproofness characterizes a

two-dimensional family described in the concluding remarks, Section 10.
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Next assume excess supply:
∑
N pi < 1. The allocation x ∈X is efficient if and only

if xi ≥ pi for all i and the argument for ϕ(p)= fω(p) is similar.
This new interpretation of the uniform rule stresses the fact that an agent requesting

her fair share of the resources (pi = 1/n) is guaranteed to receive exactly that much.

Example 2∗ (Bipartite rationing). Recall that allocation x is feasible if and only if xi =∑
A yia for some matrix of transfers [yia] such that yia > 0 =⇒ a ∈ θ(i) and

∑
i yia = ra for

all a. A fully egalitarian allocation (xi = xj for all i, j) is typically not feasible, but there
is a canonical “most egalitarian” allocation ω that Lorenz dominates any other feasible
allocation x: ω∗1 ≥ x∗1, ω∗1 +ω∗2 ≥ x∗1 + x∗2, and so on.12 Clearly ω is symmetric and
fω is the most natural choice of a uniform gains rule. ♦

Mimicking the original definition of uniform rationing, we can also choose for each
profile of peaks p the allocation ϕ(p) that Lorenz dominates every other efficient allo-
cation x: this rule is defined and axiomatized in Bochet et al. (2013). It turns out that ϕ
guarantees ω as well however, unlike in the simple model of Example 6, the rules ϕ and
fω are in general different.

Here is a three-person two-resource example: N = {A�B�C}, Q = {a�b}; f (A) =
f (B) = {a}, f (C) = {a�b}, ra = 6, rb = 5. The egalitarian allocation is ω = (3�3�5) and
it is chosen by both ϕ and fω whenever it is efficient. Now for p= (1�6�11) the alloca-
tion x is efficient if and only if xA = 1, xB + xC = 10, and xC ≥ 5. Then ϕ(p) = (1�5�5)
while fω(p)= (1�4�6).

Example 7 (Balancing demand and supply, X = {x ∈ RN |∑N xi = 0}). Here the sym-
metric default allocation isω= 0 and f 0 is the well known rule that serves the short side
while rationing uniformly the long side. That is, given p we let N+ = {i ∈ N|pi > 0} be
the set of agents with positive demand, and let N− = {i ∈ N|pi < 0} be the set of those
with positive supply. If

∑
N+ pi >

∑
N− |pi|, we have excess demand, and each i ∈N− (as

well as any with pi = 0) gets xi = pi while agents inN+ use the uniform rationing rule to
divide

∑
N− |pi|. And a similar definition applies in case of excess supply. ♦

In the bipartite demand–supply model of Example 3∗, the compatibility constraints
ruling out transfers between certain agents complicate the description of feasible and
efficient allocations: in particular, the agents who must be rationed at a given profile of
peaks may contain both demanders and suppliers. But because trade must be volun-
tary, the default allocation is still ω= 0 and the rule axiomatized in Bochet et al. (2012)
equalizes the net gains of agents who must be rationed. Therefore it is precisely the
rule f 0.

Our next result characterizes the uniform gains rule in all symmetric division prob-
lems.

12The recursive definition of ω is as follows. Let N1 be the largest solution of λ1 = minS⊆N
∑
a∈θ(S) ra

|S| : then

xi = λ1 for all i ∈ N1; next N2 is the largest solution of λ2 = minS⊆N�N1

∑
a∈θ(S)�θ(N1)

ra

|S| and xi = λ2 for all
i ∈N2; and so on. See Bochet et al. (2013) for details.
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Proposition 2. Fix a fully symmetric division problem (N�X), where X = {∑N xi =
β} ∩C and C is either a polytope or strictly convex and of dimension n. Then the uniform
gains rule fω where ωi = β/n for all i is the unique continuous focal rule (i.e., EFF, SYM,
CONT, and SGSP).

The proof is given in Section 11.2. This result is closely related—but not logically
comparable—to the characterization of the uniform rationing rule in Example 2 by the
combination of EFF, SYM, and SP (Sprumont 1991, Ching 1994). The proof of that re-
sult uses critically the fact that efficient allocations must be one-sided as explained in
Example 2 above. One-sidedness no longer holds in a general symmetric division prob-
lem, which explains why Proposition 2 uses the stronger requirement SGSP and adds
CONT.13

Here is an example where four partners divide 100 shares in a joint venture under
the constraint that no two partners own more than 2/3 of the shares:

X =
{
x ∈R4+|

4∑
1

xi = 100 and xi + xj ≤ 66 for all i �= j
}
�

At the profile of peaks p= (10�15�35�40), the allocation x= (17�17�30�36) is efficient.
Another related result in Klaus et al. (1998) is about Example 7 discussed just before

Proposition 2. The uniform gains rule f 0 is characterized by EFF, voluntary trade (i.e.,
0-G), and SP: efficient allocations are one-sided so that the proof in Ching (1994) can be
adapted. Proposition 2 is an alternative characterization of f 0 where voluntary trade is
replaced by symmetry plus continuity, and SP is replaced by SGSP.

8.3 Full dimension: dim(X)= n
Proposition 3. (i) Assume n = 2 and the closed, convex subset X of RN is symmetric

and of dimension 2. The uniform gains rule fω with ω symmetric in X is the only
continuous focal rule (i.e., EFF, SYM, CONT, and SGSP).

(ii) Assume n ≥ 3 and the closed, convex subset X of RN is symmetric and of dimen-
sion n. The set of envy-free focal rules is of infinite dimension (while the set of sym-
metric uniform gains rules fω is of dimension 1).

We prove here statement (i) in one instance of Example 5 with two agents, and we
explain in Section 11.3 how the argument applies to any full dimensional two-person
problem. For statement (ii) we take again a simple three-person instance of Example 5
and construct a new one-dimensional family of continuous focal rules that are simple
variants of, and different from, the uniform gains rules. The proof that we can simi-
larly generate an infinite dimensional set of rules meeting all the required axioms is in
Section 11.3.

13Yet a plausible conjecture is that Proposition 2 holds when SGSP is replaced by SP.
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Figure 2. A uniform gains rule with two agents.

Statement (i) Consider the two-person problem

X =
{
x2

1 + x2
2 − 8

5
x1x2 ≤ 1

}
� (4)

Figure 2 represents the feasible set X , where Xi = [−5/3�5/3] for i = 1�2. Also repre-
sented are the symmetric point ω = (1/3�1/3) and the four boundary points a, b, c, d
of X critical to the construction of fω. By EFF we only need to describe fω(p) when p
is outside X . Suppose p is to the Northeast (NE) of a. Outcome a is efficient at p and
inside [ω�p]; it also equalizes the benefits |ai −ωi|; therefore fω(p) = a. Similar argu-
ments show that fω(p)= b for p in the Northwest (NW) of b, fω(p)= c if p is Southwest
(SW) of c, and fω(p) = d if it is Southeast (SE) of d. Now take p SE of ω but SW of d
shown in Figure 2: at outcome x the vector (|x1 −ω1|� |x2 −ω2|)= (|p1 −ω1|� |x2 −ω2|)
is leximin optimal for x ∈ [ω�p]; thus fω(p) = x. Thus we see that for any p outside X
that is West of d, East of c, and South of ω, agent 1 gets her peak allocation and, con-
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ditional on this, x2 is best for agent 2. Similar arguments in the three other remaining
regions complete the description of fω.

Clearly fω is continuous: in fact for any two-agent problem (N�X) with X convex
and closed, all rules fω are continuous. We omit the easy proof for brevity.

We show now that, conversely, any continuous focal rule F is precisely fω for someω
in the diagonal ofX . The proof works by focusing on the choice of F at the four corners
of X12 namely A = (5/3�5/3) in the NE corner, B = (−5/3�5/3) in the NW, and so on.
By Lemma 1, F is peak-only so we write it as f . By EFF and SYM, we have f (A) = a,
f (C)= c. Now by EFF, f (B) is some point b on the NW frontier ofX , and by SYM, f (D)=
d obtains from b by exchanging its coordinates. Callω the intersection of the line bd and
the diagonal: we show that f = fω.

Consider first the rectangle [B�b]: by uncompromisingness (Lemma 1), f (p1�B2)=
b for any p1 ∈ [B1� b1]: f (p)= b along the top edge of [B�b]. Repeating this argument we
see that f (p)= b holds along its left edge and then inside [B�b] as well. Similarly f = fω
in the three rectangles [A�a], [C�c], and [D�d]. Now consider the point p in Figure 2
that is neither inX nor in any of these four rectangles. By EFF, f (p)= z is on the frontier
of X between y and x. We assume z1 < x1 = p1 and derive a contradiction. By uncom-
promisingness, we get f (5/3�p2) = f (p) = z; but (5/3�p2) ∈ [D�d] so f (5/3�p2) = d, a
contradiction. We conclude that f and fω coincide in the triangular region bordered
by [D�d] and the SE frontier of X . Finally we repeat this argument in the seven other
triangular regions.

Statement (ii) Consider the three-person problem

X = {
x2

1 + x2
2 + x2

3 ≤ 1
}
�

We define a variant of the uniform gains rule f 0 where we discount losses (from zero)
relative to gains (from zero). For any positive λ and real number y, we set |y|λ = y if y ≥ 0,
|y|λ = −y/λ if y ≤ 0, and, for z ∈R3, |z|λ is the profile of |zi|λ, i= 1�2�3. Then we define

fλ(p)= x def⇐⇒
{
x ∈X ∩ [0�p] and |x|λ = arg max

�λ(p)
�lxmin

}
�

where �λ(p) = {|x|λ� for x ∈X ∩ [0�p]}. Note that fλ is symmetric in the sense of Defi-
nition 5. Also f1 is simply the uniform gains rule f 0. But for λ �= 1, the rule fλ is clearly
different than f1, and fλ(0)= 0 implies that it is different than any rule fω with ω �= 0.

Remark 3. Figure 3 shows a nonconvex feasible set Xwhere the same construction as
in the proof of Statement (i) above delivers the rule fω (still defined by (3)). It goes to
show that convexity is not a necessary condition for the existence of a rule meeting all
properties in Theorem 1. Note that, unlike in Figure 1, all horizontal and vertical slices
(cross sections) ofX are convex. A challenging open question is how to characterize the
geometric properties of X for which focal rules exist. The difficulty is to ensure that in
(3) the leximin ordering has a unique maximum in �(ω�p). For instance, take n= 2 and
X = ([0�1]× [0�2])∪ ([0�2]× [0�1]) (the union of two rectangles). Vertical and horizontal
slices of X are all convex, yet the leximin ordering has two maxima in �(ω�p) for any
symmetric feasible ω and any pi > 1, i= 1�2.
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Figure 3. A uniform gains rule with non convex setX .

9. General problems: An embarrassment of riches

For general feasible sets X where SYM may have no bite at all, there are very few cases
where can we characterize the entire set of continuous focal rules.

One well known case is when X is of dimension 1: barring trivial cases where some
agents are dummies, all sets Xi are isomorphic to X and we can interpret the model
as a voting problem, to which the general characterization in Moulin (1980) applies (it
requires only SP in lieu of SGSP); the set of rules in question can then be of dimension
as large as 2n − 2.

Another simple case is two-person problems, n= 2. Assuming for simplicity that X
is compact and not symmetric in the agents, the three properties EFF, CONT, and SGSP
characterize a four-dimensional family of rules, constructed by adapting the proof of
statement (i) in Proposition 3. The four parameters are the values of the rule at the four
corners of the rectangle X12. In the typical instance (4) of Example 5, we can choose
f (A) = a′ anywhere on the Northeast frontier of X in Figure 2, f (B) = b′ anywhere on
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its NW frontier, and so on. As in Figure 2, the rule f maps the entire rectangle [a′�A]
to a′, the rectangle [b′�B] to b′, etc.; then the pattern of horizontal and vertical arrows is
exactly as in Figure 2. Generalization to any shape ofX and to unbounded sets is easy.

Now we show by an example that already for n= 3 and dim(X)= 2, we can expect a
complex and interesting set of focal rules. This makes a different point than statement
(ii) in Proposition 3, where we construct a large set of focal rules that are mere variants
of the canonical uniform gains rule. Here we find instead a menu of genuinely different
power-sharing scenarios between the three participants.

Consider the the bilateral workload problem in Example 4, with two agents on one
side and one on the other: L = {1�2} and R = {3}. Thus X = {x ∈ R3+|x1 + x2 = x3} is a
two-dimensional polytope and the problem (N�X) treats agents 1 and 2 symmetrically.
Let f be a continuous focal rule. We derive the general structure of f before describing
appealing subfamilies.

Fixing p3 for a while, consider the two-person allocation rule (p1�p2)→ f−3(p) =
(x1�x2). It meets SGSP, SYM, and CONT. Suppose x1 < p1 ≤ p2: by Lemma 1, we have
f−3(p2�p2) = (x1�x2) so by SYM x1 = x2. Similarly if one of x1, x2 is outside [p1�p2],
we get x1 = x2. Next x1�x2 ∈ ]p1�p2[ is ruled out by EFF because we can push each xi
toward pi by the same small amount and keep their sum x3 constant. Thus the only
possible configurations are

x1 = x2 /∈ [p1�p2] or pi = xi ≥ xj > pj or pi ≥ xi ≥ xj = pj� (5)

Let gt be the two-person uniform gains rule in Proposition 2 applied to Z(t) =
{(x1�x2)|xi ≥ 0 and x1 + x2 = t}. It is extended to any profile (p1�p2) in R2+ as
gt(min{p1�1}�min{p2�1}), which we simply write as gt(p1�p2). We let the reader check
that for any (p1�p2), the allocation (x1�x2) = gt(p1�p2) is the only one in Z(t) meet-
ing (5). Therefore we can write the three-person rule f as

f (p)= (
gx3(p1�p2)�x3

)
� where x3 = f3(p) for all p ∈R3+�

In this way the real-valued function p→ f3(p) determines f entirely.
Symmetry of f means that f3 is symmetric in p1, p2. Efficiency amounts to f3(p) ∈

[p1 +p2�p3]: indeed if x3 is outside this interval and for instance x3 < t < p1 +p2�p3, the
allocation (gt(p1�p2)� t) Pareto dominates (gx3(p1�p2)�x3); for fixedp1,p2 the mapping
p3 → f3(p) must ensure agent 3’s truthfulness, which means that it is the projection of
p3 on an interval independent ofp3. Putting these facts together we get the general form

f3(p)= median
{
p3� J−(p1�p2)� J+(p1�p2)

}
� (6)

where J± are symmetric, continuous functions such that

0 ≤ J−(p1�p2)≤ p1 +p2 ≤ J+(p1�p2)� (7)

Of course SGSP imposes some further constraints on J±. We describe three families of
rules where SGSP holds, keeping in mind that they do not exhaust all focal rules f in this
very simple allocation problem.
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First family of focal rules

Say we want to guarantee the benchmark allocation ω = (α�α�2α) ∈ X . This is a a
supply–demand model similar to Example 3 between demanders 1 and 2, and supplier
3 where ω is the profile of initial endowments. Then

f3(p)= median{p1 +p2�p3�2α} (8)

is the rule giving its peak to the short side and rationing the long side (here J−(p1�p2)=
min{p1 + p2�2α} and J+(p1�p2) = max{p1 + p2�2α}). We let the reader check the ω-G
property.

The canonical rule fω also guarantees ω, but proves to be more complicated than
the rule (8). Straightforward computations from definition (3) give the following J− and
J+ in (6):

J−(p1�p2) = p1 +p2 if 2p1 +p2�p1 + 2p2 ≤ 3α

= α+ 1
2

min{p1�α} + 1
2

min{p2�α} otherwise

and

J+(p1�p2) = p1 +p2 if 2p1 +p2�p1 + 2p2 ≥ 3α

= α+ 1
2

max{p1�α} + 1
2

max{p2�α} otherwise.

Thus fω coincides with (8) if p1�p2 ≤ α and if α ≤ p1�p2. But for instance if p3 <

2α < p1 + p2 and p1 < α < p2, then f3(p) is smaller with fω than under rule (8), which
may or may not favor agent 3 or agent 1.

Second family of focal rules

We now run a vote between the three agents to determine f3(p): thus agent i = 1�2
reports 2pi, because if f3(p) = 2pi the uniform rationing rule guarantees xi = pi. The
simplest rule is majority voting:

f3(p)= median{2p1�2p2�p3} = median
{
2p∗1�2p∗2�p3

}
� (9)

More generallyp→ f3(p) can be any three-person strategyproof voting rule respect-
ing the symmetry between 1 and 2 and ensuring efficiency (7). Such rules take the form

f3(p)= median
{
min

{
2p∗1�α

}
�max

{
2p∗2�β

}
�p3

}
for some constants α, β such that α ≤ β. Note that agent 3 can enforce any x3 in [α�β]
while agents 1 and 2 together can only force f3(p) below β or above α.

A variant closer to the spirit of the first family is the rule

f3(p)= median
{
min{p1 +p2�2α}�max{p1 +p2�2β}�p3

}
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with α ≤ β. Here agent 3 can also force x3 anywhere in [2α�2β], while if agent i = 1�2
reports pi ∈ [α�β], she guarantees only that xi is somewhere in [α�β].

Conversely, if β≤ α, then f3(p)= p1 +p2 if p1 +p2 ∈ [2α�2β], while the report p3 ∈
[2α�2β] only guarantees x3 ∈ [2α�2β].

Third family of focal rules

We fix γ�δ≥ 0 and apply the general formula (6) with the functions

J−(p1�p2) = min
{
p1� (p2 + γ)} + min

{
(p1 + γ)�p2

}
�

J+(p1�p2) = max
{
p1� (p2 − δ)} + max

{
(p1 − δ)�p2

}
�

For γ = δ = 0, this is the simple majority rule (9). For general parameters γ, δ, the
rule gives full power to agents 1 and 2 if their peaks are not too different: f3(p) =
p1 +p2 if |p1 −p2| ≤ min{γ�δ}; but if p1 ≥ p2 + max{γ�δ}, then f3(p)= median{2p1 − δ�
2p2 + γ�p3}.

10. Conclusion

Allocation problems with one-dimensional individual allocations and single-peaked
preferences allow much flexibility to the mechanism designer, even under the simul-
taneous constraints of efficiency, prior-free incentive compatibility, and fairness. Our
results make two rather different points about the flexibility in question.

First, Theorem 1 says that Sprumont’s uniform rationing rule is a template for con-
structing a focal rule in any one-dimensional problem provided the feasible set is convex
and closed (continuity holds for many sets as well).

Second, the example developed in Section 9 shows that, as soon as X is not fully
symmetric, even focal rules respecting its symmetries form a much richer set than the
uniform gains rules and their variants (in statement (ii) of Proposition 3).

11. Proofs

11.1 Main theorem

Step 1: The leximin ordering. The leximin ordering �lxmin of RN is defined by (2) in
Section 7. It is a separable ordering, which means that for any x� y ∈RN and any i ∈N ,

{x�lxmin y and xi = yi} =⇒ x−i �lxmin y−i

(where the second inequality is in RN�i). Check now that �lxmin has a unique max-
imum over any convex and compact set C of RN . Suppose instead that x and y are
two such maximizers so that x∗1 = y∗1 = a (recall that x∗ rearranges the coordinates
of x increasingly). Compare S = {i ∈ N|xi = a} with T = {j ∈ N|yj = a}: if they are dis-
joint for all k ∈ N , we have a ≤ min{xk� yk} and a < max{xk� yk} for all k; this implies
mink∈N(xk + yk)/2 > a and contradicts the optimality of x. Thus there is an agent la-
beled 1 in S ∩ T such that x1 = y1 = a. By separability, x−1 and y−1 maximize �lxmin in
the slice C[a[1]] and we can proceed by induction on |N|.
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The upper contour sets of �lxmin are convex (proof omitted) and, in particular, for all
u�v ∈RN ,

u�lxmin v =⇒ (
λu+ (1 − λ)v) �lxmin v for all λ�0 ≤ λ≤ 1� (10)

Throughout the rest of the proof we fix (N�X) withX convex and closed.
Step 2: Efficient allocations. Let T be the set of ordered partitions τ = (S0� S+� S−)

of N , where up to two components of τ can be empty (if all three are nonempty, τ is a
partition of N). The signature τ = s(y) of y ∈ RN is given by S0 = {i ∈N|yi = 0}, S+ = {i ∈
N|yi > 0}, and S− = {i ∈N|yi < 0}. We define a transitive but incomplete ordering � on
T by

τ2 � τ1 def⇐⇒ {
S2

0 ⊇ S1
0� S

2+ ⊆ S1+� S2− ⊆ S1−
}

and � is the strict component of �.
Fixing τ ∈ T , we define the τ-boundary ofX as

∂τ(X)= {
x ∈X| for all y

{
y �= x and s(y − x)� τ} =⇒ y /∈X}

�

Lemma 2. Fix a problem (N�X��)with corresponding profile of peaks p ∈XN . If p ∈X ,
then x= p is the only Pareto optimal allocation. If p /∈Xthen x ∈X is Pareto optimal for
every profile � ∈ ∏

i∈N SP(Xi)with peaks p if and only if x ∈ ∂s(p−x)(X).

Proof. The first statement is clear. Next we fix p /∈ X and pick x ∈ X such that x /∈
∂s(p−x)(X). There exists y ∈X�x such that s(y − x)� s(p− x). This implies yi = xi for
each i such that xi = pi, and for all j,

yj > xj =⇒ pj > xj and yj < xj =⇒ pj < xj�

From y �= x we see that not both S+ and S− are empty at y − x; therefore for ε > 0 small
enough, εy + (1 − ε)x stays inX and is a Pareto improvement of x.

Conversely, with p /∈X still fixed, we pick x ∈X that is Pareto inferior to y ∈X at a
profile � with those peaks p. Then xi = pi =⇒ yi = xi and yj > xj =⇒ pj > xj ; similarly
yj < xj =⇒ pj < xj , so we conclude x /∈ ∂s(p−x)(X). �

Step 3: Defining fω. Recall the notation |a| = (|ai|)i∈N and [a�b] = {x|min{ai� bi} ≤
xi ≤ max{ai� bi}}. We fix ω ∈X and define, for all p ∈RN ,

�(ω�p) = {
y ∈RN |y = |z−ω| for some z ∈X ∩ [ω�p]}�

fω(p) = x
def⇐⇒

{
x ∈X ∩ [ω�p] and |x−ω| = arg max

�(ω�p)
�lxmin

}
�

This allocation is well defined: for any x ∈ [ω�p] we have s(x−ω)� s(p−ω) so in
[ω�p] each |xi−ωi| is either xi−ωi orωi−xi and the mapping x→ |x−ω| is linear and
invertible inX ∩ [ω�p]; thus its image �(ω�p) is convex and compact. By Step 1, �lxmin

has a unique maximum y in �(ω�p), which comes from a unique x inX ∩ [ω�p].
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Step 4: fω is efficient. Fix p and set x= fω(p). If p ∈X , then the maximum of �lxmin

on �(ω�p) is clearly |p−ω|; therefore x= p as desired. Assume next p /∈X : by Lemma 2
we must check x ∈ ∂s(p−x)(X). Assume to the contrary there exists y ∈ X�x such that
s(y − x) � s(p − x). Then yi = pi whenever xi = pi; moreover xi < pi =⇒ xi ≤ yi and
xi > pi =⇒ xi ≥ yi. Therefore, for ε small enough, y ′ = (1 − ε)x+ εy stays in X ∩ [ω�p].
For all iwe have |y ′

i −ωi| = |y ′
i −xi|+ |xi−ωi| ≥ |xi−ωi|, with a strict inequality if yi �= xi

(which does happen). We conclude that |y ′ −ω| �lxmin |x−ω|, a contradiction.
Step 5: fω is SGSP. We fix ω and show first that fω meets a coalitional form of un-

compromisingness (Lemma 1). For any p�p′ ∈XN with x= fω(p) we have

p′ ∈ [x�p] =⇒ fω
(
p′) = x� (11)

Together x ∈ [ω�p] and p′ ∈ [x�p] imply x ∈ [ω�p′]. Now |x−ω| maximizes (uniquely)
�lxmin over �(ω�p), and is in �(ω�p′) ⊆ �(ω�p): hence |x−ω| maximizes �lxmin over
�(ω�p′) as well.

Next we fix p ∈XN with x= fω(p), and consider a coalition M ⊆N changing all its
reports to p′

[M] (so p′
i �= pi for all i ∈ M), and such that everyone in M weakly prefers

x′ = fω(p′
[M]�p[N�M]) to x. We claim that this implies x′ = x. Hence M , as well as any

coalition larger thanM , cannot weakly misreport at p and we are done.
To prove the claim, consider first an agent i such that pi = ωi. By definition of

fω we have xi = pi, hence x′
i = xi as well, because agent i’s welfare does not decrease

at x′. So at profile (p′
[M]�p[N�M]) agent i’s allocation is xi �= p′

i and uncompromising-
ness (11) implies that everyone’s allocation is unchanged if i reports instead xi = pi:
fω(p′

[M]�p[N�M])= fω(p′
[M�i]�p[(N�M)∪i]). Therefore we need only to prove the claim

when pi �=ωi for all i ∈M .
For easier reading we assume, without loss of generality, pi > ωi for all i, so that

ωi ≤ xi ≤ pi for all i. Next we consider i such that p′
i ≤ωi: as i weakly prefers x′

i to xi (at
pi), this implies x′

i = xi = ωi and we can again ignore those coordinates and prove the
claim when p′

i > ωi for all i.
We must have p′

i ≥ xi for all i ∈ M ; otherwise x′
i ≤ p′

i < xi implies that i is strictly
worse off at x′. Thus we can partition M as M+ ∪M− where p′

i > pi ≥ xi in M+, while
pi > p

′
i ≥ xi inM− (one setM+�− could be empty).

The coordinate-wise minimum of p and (p′
[M]�p[N�M]) is q = (p[M+]�p′

[M−]�
p[N�M]). From q ∈ [x�p] and (11) we have x = fω(q). From �(ω�q) ⊆ �(ω� (p′

[M]�
p[N�M])) and the definition of fω we get (x′ − ω) �lxmin (x − ω). Applying property
(10) to u= x′ −ω, v= x−ω, and λ= ε, we deduce ((εx′ + (1 − ε)x)−ω)�lxmin (x−ω).
Now we claim that for ε positive and small enough, the profile εx′ +(1−ε)x is in�(ω�q).
As x= fω(q), this gives εx′ + (1 − ε)x= x and the desired conclusion x′ = x.

To prove the claim, observe that for all i /∈M+ we have ωi ≤ xi�x′
i ≤ qi by definition

of q. Next for i ∈M+ such that xi < pi = qi, we have xi ≤ x′
i (because i weakly prefers

x′ to x) so the inequalities ωi ≤ εx′
i + (1 − ε)xi ≤ qi hold for ε strictly positive and small

enough; and for i ∈M+ such that xi = pi = qi, we have x′
i = pi (again because i weakly

improves from x to x′) so that εx′
i + (1 − ε)xi = xi.
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Step 6: fω is symmetric if ω is symmetric in X . Check that a symmetric point always
exists. The set S(N;X) of all symmetries of X is a group for the composition of permu-
tations. For an arbitrary element x ofX , we setω= (1/|S(N;X)|)(∑σ∈S(N;X) xσ): it is in
X because it is convex, and it is symmetric inX by the group properties.

We check that fω is symmetric if (and only if)ω is symmetric. For any profilep ∈XN ,
we must show fω(pσ)= fω(p)σ whenever σ ∈ S(N;X). As �lxmin is a symmetric order-
ing, we have arg maxBσ �lxmin= (arg maxB �lxmin)

σ for any set B where the maximum is
unique; moreover if xσ = x, then �(ω�pσ)= �(ω�p)σ .

Step 7: fω is envy-free. Assume τij ∈ S(N�X). The desired property xi �i xj is clear if
pi and pj are on both sides of ωi =ωj because for agent i, allocation xi is on the “good”
side of ωi while xj is on the “bad” side. Now assume pi and pj are on the same side
of ωi, say pi�pj ≥ ωi, and that agent i envies xj : then pi > xi ≥ ωi and xj > xi (xj may
be larger or smaller than pi). We consider several allocations where coordinates other
than i, j stay as in x, and for brevity we only mention these two coordinates: e.g., x is
simply (xi�xj). By the symmetry assumption, x′ = (xj�xi) is in X , and by convexity,
so is x′′ = ((1 − λ)xi + λxj�λxi + (1 − λ)xj). For λ small enough (in particular below
1/2), the allocation (|x′′

i −ωi|� |x′′
j −ωj|) is in �(ω�p) (recall xi < pi) and the shift from

(|xi−ωi|� |xj −ωj|) to (|x′′
i −ωi|� |x′′

j −ωj|) is a Pigou–Dalton transfer; hence it improves
the leximin ordering.

Step 8: fω is continuous if n = 2 or n ≥ 3 and X is a polytope or is strictly convex
and of dimension n. We apply repeatedly a simple version of Berge’s maximum the-
orem. Let a, b vary in two metric spaces A, B; fix a real-valued function a → g(a)

and a compact-valued function b → �(b) from B into A. If g is continuous and � is
hemicontinuous (both upper and lower hemicontinuous), then the real-valued function
γ(b)= max{g(a)|a ∈ �(b)} is continuous as well.

For any (q�p) ∈ (RN+ )2 we set �(q�p) = X ∩ [q�p] and we postpone to Step 9 the
proof of the following fact: if n= 2 or n≥ 3 and X is a polytope or is strictly convex and
of dimension n, the convex-compact-valued function (q�p)→�(q�p) is hemicontinuous
on the closed convex subset of (RN+ )2 where it is nonempty. Then we show in Step 10 that
fω may not be continuous when n ≥ 3 and X is of dimension n but neither a polytope
nor strictly convex.

Define an orthant � of RN by fixing the sign of each coordinate: � is described by
n inequalities xi ≤ 0 or xi ≥ 0, one for each coordinate i. It is enough to show that fω

is continuous when p−ω varies in such an orthant, because the orthants are 2n closed
sets covering RN . Without loss of generality we focus on the orthant � = RN+ , i.e., we
prove continuity for the set of profiles p such that p ≥ ω. Here fω(p) − ω maximizes
�lxmin over (X −ω)∩ [0�p−ω]. Using the normalizationω= 0, this is simply written as

fω(p)= arg max
X∩[0�p]

�lxmin�

We prove first that the mapping p→ f ∗(p) is continuous. Observe that x→ x∗ is
continuous. Then check that the first coordinate of f ∗,

f ∗1(p)= max
{
x∗1|x ∈�(0�p)}�
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is continuous in p: Berge’s theorem applies because x → x∗1 is continuous and p →
�(0�p) is hemicontinuous. With the notation eS for the vector (eS)i = 1 if i ∈ S and 0
otherwise, we write f ∗2 as

f ∗2(p)= max
{
x∗2|x ∈�(

f ∗1(p)eN�p
)}
�

It is continuous by Berge’s theorem because x→ x∗2 is continuous and �(f ∗1(p)eN�p)

is hemicontinuous. Next we write

f ∗3(p)= max
{
x∗3

∣∣∣x ∈
⋃
i∈N

�
(
f ∗1(p)ei + f ∗2(p)eN�i�p

)}
�

Here again �(f ∗1(p)ei + f ∗2(p)eN�i�p) is hemicontinuous and hemicontinuity is pre-
served by union, so the same argument applies. We define similarly f ∗4(p) in terms of
the sets �(f ∗1(p)ei + f ∗2(p)ej + eN�{i�j}�p) and so on. We omit the details.

Thus f ∗ is continuous and we show now that f is too. Fix p ∈ RN+ and let pt ,
t = 1�2� � � � , be a sequence converging to p: if w is a limit point of the sequence f (pt)
(i.e., the limit of one of its subsequences), then w ∈ �(0�p) because the graph of � is
closed. Moreover f ∗(pt) converges to w∗ and to f ∗(p), by continuity of x → x∗ and
of f ∗, respectively. Thus w∗ = f ∗(p); hence w maximizes �lxmin in �(0�p) and by Step 1
this unique maximum is f (p).

Step 9: �(q�p)= [q�p]∩X is hemicontinuous if n= 2 or n≥ 3 and X is a polytope or
is strictly convex and of dimension n. Upper hemicontinuity is clear because the graph
of � is closed. We let the reader check lower hemicontinuity when n = 2. Next we as-
sume that X is a polytope and invoke an auxiliary result from the linear programming
literature. Consider a polytope-valued function b → H(b) = {x ∈ Rm2 |Ax ≤ b}, where
b ∈ Rm1 and A is a fixed m1 ×m2 matrix. This function is hemicontinuous where it is
nonempty (Theorem 14 in Wets 1985). If X is an intersection of half-spaces, the map-
ping (q�p)→ [q�p] ∩X takes the form b→H(b) for b= (−q�p�b0), where b0 is a con-
stant vector. Therefore � is hemicontinuous as desired.

Finally we assume that X is strictly convex and of dimension n. We fix (q�p), an
allocation x ∈ [q�p] ∩ X , and a sequence (qt�pt) converging to (q�p) and such that
�(qt�pt) �= ∅ for all t, and we must construct a sequence xt ∈ [qt�pt] ∩X converging
to x.

Each limit point of an arbitrary sequence in [qt�pt] ∩ X is in [q�p] ∩ X ; therefore
the desired conclusion holds if [q�p] ∩ X reduces to {x}. Assume from now on that
[q�p] ∩X contains z� z �= x, and set D= ‖z − x‖∞ (the supremum norm). Fix ε > 0 and
consider y = (ε/2D)z + (1 − (ε/2D))x, also in [q�p] ∩X : we have ‖y − x‖∞ ≤ ε/2, and
by the full dimensionality ofX there is some η, 0<η≤ ε/2, such that ‖y ′ − y‖∞ ≤ η=⇒
y ′ ∈X . For each i the interval [qti�pti] converges to [qi�pi] � yi; hence for t large enough,
[qti�pti] ∩ [yi −η�yi +η] �= ∅: we choose y ′

i in this intersection for all i and we see that

y ′ ∈ [
qt�pt

] ∩X and
∥∥y ′ − x∥∥∞ ≤ ε (12)

holds for all t large enough. The construction of the desired sequence is now clear.
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Step 10: An example where fω is discontinuous. We have N = {1�2�3} and X is the
cone with origin a= (1�1�2) and for base, we have the two-dimensional disk

B= {
x ∈R3|x2

1 + (x2 − 1)2 ≤ 1 and x3 = 1
}
�

That is, x ∈X if and only if x= a+ θ(b− a) for some b ∈ B and θ≥ 0. It is easy to check
thatX is also represented by the inequalities

x3 ≤ 2 and (x1 + 1)2 + (x2 − 1)2 + 2(1 − x1)x3 ≤ 4�

We choose ω = 0 and check that fω is discontinuous at p = a.14 By EFF, fω(a) = a.
Consider next pδ = ((1 − δ2)1/2�1 − δ�2) converging to p for small positive δ. As the
segment from ω to (1�1�1) stays in X and 1 − δ≤ (1 − δ2)1/2 ≤ 2, we get fω2 (p

δ)= 1 − δ.
Next the segment from (1 − δ�1 − δ�1 − δ) to ((1 − δ2)1/2�1 − δ� (1 − δ2)1/2) stays in X ,
implying fω1 (p

δ)= (1 − δ2)1/2. Finally ((1 − δ2)1/2�1 − δ�1) is on the boundary ofX and
raising x3 any more takes us outsideX ; hence fω3 (p

δ)= 1. We conclude limδ→0 f
ω(pδ)=

(1�1�1) �= a.

11.2 Proposition 2

Fix X = {∑N xi = β} ∩ C, where C is fully symmetric, closed, and either a polytope or
strictly convex and of dimension n. Recall the only symmetric ω divides β equally.

Step 1. We know from Theorem 1 that fω meets EFF, SYM, and SGSP. It is also contin-
uous if C is a polytope because X is one too. If C is strictly convex and of dimension n,
the set X is strictly convex but certainly not of dimension n so the continuity of fω re-
quires checking. We can use the argument in Step 8 of the proof of Theorem 1 provided
(q�p)→X ∩ [q�p] is hemicontinuous.

To check the latter we adapt the argument in the second half of Step 9: we fix (q�p),
x ∈ [q�p] ∩X , (qt�pt)→t (q�p), and we construct xt ∈ [qt�pt] ∩X converging to x. As
above we can assume there is some z �= x in [q�p] ∩X , and we construct y = (ε/2D)z +
(1−(ε/2D))x that is in [q�p]∩X at distance ε/2 or less from x. By the full dimensionality
of C there is some η, 0<η≤ ε/2, such that for all y ′,{∑

N

y ′
i = β and

∥∥y ′ − y∥∥∞ ≤ η
}

=⇒ y ′ ∈ C�

We claim now that for t large enough we can find y ′ in [qt�pt] such that
∑
N y

′
i = β and

‖y ′ − y‖∞ ≤ η. Then (12) holds and we are done as in Step 9 above.
To prove the claim we partitionN asN =N+ ∪N− ∪N0, where

i ∈N+ =⇒ pti ≤ yi; i ∈N− =⇒ yi ≤ qti; i ∈N0 =⇒ qti ≤ yi ≤ pti�
Note that up to two of these sets can be empty, and if, say, yi = qti , agent i can be placed
inN− orN0.

14Given our choices of ω and p, the fact that X is unbounded from below is irrelevant: for instance,
X ∩R3+ works just as well.
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From pti →t pi and yi ≤ pi we see that for t large enough we have yi −pti ≤ η/n, and
similarly qti − yi ≤ η/n. Now consider y: yi = pti for i ∈N+; yi = qti for i ∈N−; yi = yi for
i ∈N0.

We assume first
∑
N yi < β and construct y ′ with the help of the fact∑

N+
yi +

∑
N−∪N0

min
{
yi +η�pti

} ≥ β� (13)

Indeed if pti ≤ yi + η for all i ∈ N− ∪ N0 this follows because [qt�pt] ∩ X �= ∅ implies∑
N p

t
i ≥ β. And if yi +η≤ pti for some i, then∑

N−∪N0

min
{
yi +η�pti

} ≥ η+
∑

N−∪N0

yi ≥ η+
∑

N−∪N0

yi

while ∑
N+
yi ≥

∑
N+
yi − n+

η

n
≥

∑
N+
yi −η�

By inequality (13) we can raise (e.g., uniformly) yi for each i ∈ N− ∪ N0 up to y ′
i ≤

min{yi + η�pti} such that
∑
N+ yi +

∑
N−∪N0

y ′
i = β. Setting y ′

i = yi in N+ completes the
definition of y ′ in [qt�pt] ∩ X and at distance at most η from y, as announced in the
claim. The case

∑
N yi > β is treated similarly by lowering yi in N+ ∪N0 so as to meet

the equality constraint.
In the rest of the proof we fix a continuous focal rule F , i.e., meeting EFF, SYM, CONT,

and SGSP. By Lemma 1, F is peak-only so we write it as f .
Step 2. For any p ∈XN such that x= f (p), and any two agents labeled 1, 2 such that

p1 ≥ p2, we claim that there is exactly three possible configurations of their allocations
x1, x2:

p1 ≥ p2 > x1 = x2 or x1 = x2 >p1 ≥ p2 or p1 ≥ x1 ≥ x2 ≥ p2�

Assume p1 ≥ p2 > x1. By uncompromisingness (Lemma 1) f (p2�p2�p−1�2) = x; hence
by SYM, x1 = x2. Then if p1 ≥ p2 > x2, we use f (p1�p1�p−1�2) = x and the cases xi >
p1 ≥ p2 are similar.

The remaining case is x1�x2 ∈ [p1�p2]: we assume the configuration p1 ≥ x2 > x1 ≥
p2 and derive a contradiction. By SYM the allocation (x2�x1�x−1�2) is in X and by con-
vexity of X so is ((x1 + x2)/2� (x1 + x2)/2�x−1�2): the latter is Pareto superior to f (p), a
contradiction.

Step 3. We fix an arbitrary profile p and define N− = {i ∈ N|pi < xi}, N0 =
{i ∈ N|pi = xi}, and N+ = {i ∈ N|pi > xi}. By Step 2 and SYM, all i in N− (resp. N+)
have the same allocation α− (resp. α+). Again by Step 2 and SYM for j ∈N0 and i ∈N−,
inequality pj < α− is impossible: so α− ≤ pj for all j ∈ N0. A similar argument gives
pj ≤ α+ for j ∈N0.

We claim that x ∈ X ∩ [ω�p]. From α− ≤ xj ≤ α+ for all j ∈ N0 and
∑
N xi = β, we

see that α− ≤ωi = β/n ≤ α+; therefore pi < α− = xi ≤ωi in N−, and similarly ωi ≤ xi =
α+ <pi inN+. Finally xi = pi inN0.
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Thus the allocation x is entirely described by the two numbers α+, α−, where −∞ ≤
α− ≤ β/n ≤ α+ ≤ +∞. That is, if pi > α+, agent i gets α+, she gets α− if pi < α−, and
she gets pi if α− ≤ pi ≤ α+. Note that α+ = +∞ (resp. α− = −∞) only if N+ = ∅ (resp.
N− = ∅).

Now the equality
∑
N xi = β reduces to

ψ(α+) = ∣∣{i : α+ <pi}
∣∣ ×

(
α+ − β

n

)
+

∑
i:βn≤pi≤α+

(
pi − β

n

)
(14)

= ∣∣{i : pi < α−}∣∣ ×
(
β

n
− α−

)
+

∑
i:α−≤pi≤β

n

(
β

n
−pi

)
= χ(α−)

and (α+�α−) ∈ [β/n�+∞[ × ]−∞�β/n] is a solution of this equation.
If p∗n ≤ β/n, we have ψ≡ 0 on [β/n�+∞[ so the solutions are α− = β/n and any α+

in [β/n�+∞[; the corresponding allocation is x=ω. Similarly if β/n≤ p∗1, the solutions
are α+ = β/n, any α− in ]−∞�β/n], and the allocation x=ω again.

If p∗1 < β/n < p∗n, then ψ increases strictly from 0 on [β/n�p∗n] after which it is
constant; and χ is constant up to p∗1, then decreases strictly to 0 on [p∗1�β/n].

Step 4. We fix p and compare x= f (p) and z = fω(p). By Step 1, fω is a continuous
focal rule just like f . Therefore by Steps 2 and 3 above, the allocation z is described
just like x by two numbers γ+, γ− solving equation (14). If p∗n ≤ β/n or β/n ≤ p∗1, the
solution is unique and we are done. If p∗1 < β/n < p∗n and z �= x, the monotonicity
properties of ψ and χ imply {γ+ > α+ and γ− < α−} or {γ+ < α+ and γ− > α−}. In the
former case, z is Pareto superior to x and vice versa in the latter case. This is impossible
because both rules are efficient.

11.3 Proposition 3

Statement (i). We let the reader check that the argument detailed for example (4) applies
as well to any convex, compact X symmetric and of dimension 2; the shape of X inside
X12 is the same, except when some of the four corners are actually feasible, but those
cases are easy. A similar proof applies to the case whereX is unbounded.

Statement (ii). Here we choose a function θ0 from R into R+ = [0�+∞[ such that
its restriction θ− to R− is a decreasing bijection to R+, and its restriction θ+ to R+ is
an increasing bijection to R+. The canonical example used in the construction of fω is
θ0(x) = |x|; in the example after Proposition 3 we used θ0(x) = x if x > 0 and θ0(x) =
−x/λ if x < 0.

We construct a family of focal allocation rules for any choice of θ0. We write θ(z)=
(θ0(zi))i∈N for z ∈ RN . Fixing (N�X), a symmetric allocation ω ∈X , and θ0, we define a
new rule fω�θ as

fω�θ(p) = x
def⇐⇒

{
x ∈X ∩ [ω�p] and θ(x−ω)= arg max

�θ(ω�p)
�lxmin

}
�

y ∈ �θ(ω�p) def⇐⇒ {
y = θ(x−ω) for some x ∈X ∩ [ω�p]}�
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When θ−(z) = θ+(−z) this definition is exactly the same as (3). Not so otherwise, be-
cause θ treats differently a move above the default ωi and one below it.

Then we follow step by step the proof of Theorem 1 to show that fω�θ meets precisely
the same properties as fω. The desired conclusion follows because the set of functions
θ such that θ− is not the mirror image of θ+ is of infinite dimension.

As the range of X ∩ [ω�p] by x → θ(x − ω) is a compact set, �lxmin reaches its
maximum in �θ(ω�p). To prove uniqueness (despite the fact that this range may
not be convex) we mimic the argument in Step 1 of the Theorem 1 proof, and use
the same notation. Assume that x, y are two maximizers and that S, T are disjoints,
and set a = θ(x)∗1 = θ(y)∗1: then for all k ∈ N , we have a ≤ min{θ0(xk)�θ0(yk)} and
a < max{θ0(xk)�θ0(yk)}, implying mink∈N θ0((x + y)/2)k > a and contradicting the op-
timality of x, y. Therefore S and T must intersect and by the separability of �lxmin we
can drop this coordinate; the induction proceeds as before.

The proofs of EFF, SGSP, SYM, and NE are exactly as in the proof of Theorem 1, so we
do not repeat them.

Continuity is not much harder. We restrict attention first to an arbitrary orthant �
and to the vectors p such that p−ω ∈�. Because θ treats differently positive and neg-
ative deviations from ω, we keep � an arbitrary orthant; alternatively, normalizing ω to
zero is without loss of generality. We set h(p)= θ(f 0�θ(p)) and prove first that h∗ is con-
tinuous. As θ(x)∗1 is continuous, Berge’s theorem tells us that h(p)∗1 = max{θ(x)∗1|x ∈
�(0�p)} is continuous as well. For the next coordinate we can write

h(p)∗2 = max
{
θ(x)∗2|x ∈�(0�p) and θ(x)≥ h(p)∗1eN

}
= max

{
θ(x)∗2|x ∈�(

θ−1
0

(
h(p)∗1)�p)}

�

where Berge theorem applies again, so h∗2 is continuous. And so on as in Step 8 of the
proof of Theorem 1.

Once we know that h∗ is continuous, we take a converging sequence pt → p as be-
fore and w a limit point of f (pt), i.e., w= limt ′ f (pt

′
) for some subsequence t ′ of t (omit-

ting the superscripts in f ). Then θ(f (pt
′
))∗ → θ(w)∗ because θ and x → x∗ are con-

tinuous, and θ(f (pt))∗ → θ(f (p))∗ by the continuity of h∗. Thus θ(f (p))∗ = θ(w)∗ and
w ∈�(0�p) by the hemicontinuity of�. We conclude thatw= f (p) as was to be proved.
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