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In many markets, sellers advertise their good with an asking price. This is a price at
which the seller will take his good off the market and trade immediately, though it
is understood that a buyer can submit an offer below the asking price and that this
offer may be accepted if the seller receives no better offers. We construct an envi-
ronment with a few simple, realistic ingredients and demonstrate that, by using an
asking price, sellers both maximize their revenue and implement the efficient out-
come in equilibrium. We provide a complete characterization of this equilibrium
and use it to explore the implications of this pricing mechanism for transaction
prices and allocations.

Keywords. Asking prices, posted prices, auctions, competing mechanisms, com-
petitive search.

JEL classification. C78, D44, D82, D83, R31.

1. Introduction

In this paper, we consider an environment in which a trading mechanism that we call
an asking price emerges as an optimal way to cope with certain frictions. In words, an
asking price is a price at which a seller commits to taking his good off the market and
trading immediately. However, it is understood that a buyer can submit an offer below
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the asking price and this offer could potentially be accepted if the seller receives no bet-
ter offer.1 Though asking prices are prevalent in a variety of markets, they have received
relatively little attention in the academic literature. We construct an environment with
a few simple, realistic ingredients and demonstrate that using an asking price is both
revenue-maximizing and efficient, i.e., sellers optimally choose to use the asking price
mechanism and, in equilibrium, the asking prices they select implement the solution
to the planner’s problem. We provide a complete characterization of this equilibrium
and explore the implications of this pricing mechanism for transaction prices and allo-
cations.

At first glance, one might think that committing to an asking price would be sub-
optimal from a seller’s point of view. After all, the seller is not only placing an upper
bound on the price that a buyer might propose, he is also committing not to meet with
any additional prospective buyers once the asking price has been offered. Hence, when
a buyer purchases the good at the asking price, the seller has forfeited any additional
rents that either this buyer or other prospective buyers were willing to pay. And yet, an
asking price seems to play a prominent role in the sale of many goods (and services).
Hence, a natural question is, “How and why can this mechanism be optimal?”

Loosely speaking, our answer requires two ingredients. First, the sellers in our envi-
ronment compete to attract buyers. In particular, in contrast to the large literature that
studies the performance of various trading mechanisms (e.g., auctions) when the num-
ber of buyers is fixed, we assume that there are many sellers, each one posts (and com-
mits to) the process by which their good will be sold, and buyers strategically choose to
visit only those sellers who promise the maximum expected payoff. Thus, in our frame-
work, the number of buyers at each seller is endogenous and responds to the mecha-
nism that the seller posts. The second ingredient is that the goods for sale are inspec-
tion goods and inspection is costly: though all sellers’ goods appear ex ante identical, in
fact each buyer has an idiosyncratic (private) valuation for each good that can only be
learned through a process of costly inspection.

Intuitively, when buyers have to incur a cost to learn their valuation and trade, a nat-
ural tension arises. Ceteris paribus, a seller wants to maximize the number of buyers
who inspect his good and the offers that these buyers make. However, without any de-
vice to limit the number of buyers or the offers they make, buyers might be hesitant to
approach such a seller, as the cost of inspecting the good could outweigh the potential
benefits of discovering their valuation and trying to outbid the other buyers. Instead,
buyers would only incur the up-front costs of inspection if they are assured a reasonable
chance of actually acquiring the good at a reasonable price.

We show that, by setting an asking price, sellers can provide buyers with this assur-
ance. For one, an asking price implements a stopping rule, allocating the good to the

1What we call an asking price goes by several other names as well, including an “offering price” (as in the
sale of a company), a “list price” (as in the sale of houses and cars), or a “buy-it-now” or “take-it” price (as in
certain online marketplaces). In many classified advertisements, what we call an asking price often comes
in the form of a price followed by the comment “or best offer.” Though the terminology may differ across
these various markets, along with the fine details of how trade occurs, we think our analysis identifies an
important, fundamental reason that sellers might find this basic type of pricing mechanism optimal.
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first buyer who has a sufficiently high valuation, and sparing the remaining potential
buyers from inspecting the good “in vain.” In this sense, the asking price mechanism in
our model serves as a promise by sellers not to waste the buyers’ time and energy when
they have only a small chance of actually getting the good. Moreover, by committing
to sell at a particular price, a seller who uses an asking price is also assuring potential
buyers that they will receive some gains from trade in the event that they discover a high
valuation. For these reasons, sellers have a strong incentive to use an asking price when
they are selling inspection goods.

However, in the absence of competition, sellers also have a strong incentive to
charge buyers a fee to inspect their good, extracting all of the additional surplus they
created by eliminating inefficient inspections. This is where our second ingredient is
important: we show that, in an environment in which sellers compete to attract buyers,
the optimal fee is, in fact, zero. Thus, in an environment with these two ingredients,
sellers maximize profits by posting a simple mechanism, composed of one asking price
for all buyers and no fees, side payments, or other rarely observed devices. Moreover,
the asking price that sellers choose ultimately maximizes the expected surplus that they
create, so that equilibrium asking prices implement the planner’s solution.

Having provided the rough intuition, we now discuss our environment and main re-
sults in greater detail. As we describe explicitly in Section 2, we consider a market with
a measure of sellers, each endowed with one indivisible good, and a measure of buyers
who each have unit demand. Though goods appear ex ante identical, each buyer has
an idiosyncratic valuation for each good and this valuation can only be learned through
a costly inspection process. We assume that sellers have the ability to communicate ex
ante (or “post”) how their good is going to be sold, and buyers can observe what each
seller posts and visit the seller who offers the highest expected payoff. The search pro-
cess, however, is frictional: each buyer can only visit a single seller and he cannot coor-
dinate this decision with other buyers. As a result, the number of buyers to arrive at each
seller is a random variable with a distribution that depends on what the seller posted.

As a first step, in Section 3 we characterize the solution to the problem of a so-
cial planner who maximizes total surplus, subject to the frictions described above—in
particular, the search frictions and the requirement that a buyer’s valuation is costly to
learn. The solution has three properties. First, the planner instructs buyers to randomize
evenly across sellers. Second, once a random number of buyers arrive at each seller, the
planner instructs buyers to undergo the costly inspection process sequentially, preserv-
ing the option to stop after each inspection and allocate the good to one of the buyers
who have learned their valuation. Finally, we characterize the optimal stopping rule for
this strategy and establish that it is stationary; that is, it depends on neither the number
of buyers who have inspected the good nor the realization of their valuations.

Next, we move on to our main contribution: we consider the decentralized economy
where sellers use an asking price mechanism, characterize the equilibrium, and study its
efficiency properties. Given the nature of the planner’s optimal trading protocol, the ask-
ing price mechanism is a natural candidate to implement the efficient outcome. First,
since buyers’ valuations are privately observed, the asking price provides sellers a chan-
nel to elicit information about these valuations. Second, since the asking price triggers
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immediate trade, it implements a stopping rule, thus preventing additional buyers from
incurring the inspection cost when the current buyer draws a sufficiently high valuation.
Finally, since the seller also allows bids below the asking price, he retains the option to
recall previous offers in which there was a positive match surplus.

These features are captured by the following game, which we study in Section 4.
First, sellers post an asking price, which all buyers observe. Given these asking prices,
each buyer then chooses to visit the seller (or mix between sellers) offering the maximal
expected payoff. Once buyers arrive at their chosen seller, they are placed in a random
order. Buyers are told neither the number of other buyers who have arrived nor their
place in the queue.2 The first buyer incurs the inspection cost, learns his valuation, and
can either purchase the good immediately at the asking price or submit a counteroffer.
If he chooses the former, trade occurs and all remaining buyers at that particular seller
neither inspect the good nor consume. If he chooses the latter, the seller moves on to
the second buyer (if there is one) and the process repeats until either the asking price
is offered or the queue of buyers is exhausted, in which case the seller can accept the
highest offer he has received.

We derive the optimal bidding behavior of buyers and the optimal asking prices set
by sellers, characterize the equilibrium, and show that it coincides with the solution to
the planner’s problem. The fact that our asking price mechanism can implement the
efficient allocation is surprising for a number of reasons, as we discuss at the end of
Section 4. Chief among them, implementing the planner’s allocation requires achieving
efficiency along two margins: the allocation of the good after buyers arrive, along with
the number of buyers who arrive to begin with. However, our asking price mechanism
affords sellers only a single instrument that controls both margins; the asking price de-
termines both the ex post allocation of the good (by implementing a stopping rule) and
the ex ante expected number of buyers (by specifying the division of the expected sur-
plus).

After establishing that the asking price mechanism implements the solution to the
planner’s problem, we ask whether sellers would indeed choose to use the asking price
mechanism, or if there exists an alternative mechanism that could potentially increase
sellers’ profits. To address this question, in Section 5 we consider a similar environment
to the one described above, but we allow sellers to select from a more general set of
mechanisms. In doing so, we are essentially providing sellers with the option to choose
a trading protocol from a large set of extensive form games, in which they are free to
make different specifications about the sequence of events, the strategies available to
buyers under various contingencies, and even the information that buyers have when
they select from these strategies.3 In this more general environment, we establish that

2As we discuss below, we consider the information made available to buyers to be an endogenous feature
of the pricing mechanism.

3Indeed, the mechanisms that are available to sellers range from “plain vanilla” pricing schemes—such
as auctions, price-posting with rationing, multilateral bargaining games, etc.—to much more complicated
games, in which the rules and sequence of play, as well as the information made available to the players,
could depend on the number of buyers who arrive at a seller, an individual buyer’s place in the queue, the
behavior of other buyers, and so on. In short, perhaps the only relevant type of trading mechanism that we
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the asking price mechanism we study in Section 4 maximizes a seller’s payoff, regard-
less of the mechanisms posted by other sellers. As a consequence, there always exists an
equilibrium in which all sellers use the asking price mechanism described above. More-
over, while other equilibria can exist, they are all payoff-equivalent; in particular, sellers
can do no better than they do in the equilibrium with asking prices. Finally, we show
that any mechanism that emerges as an equilibrium in this environment will resemble
the asking price mechanism along most important dimensions. Therefore, though we
cannot rule out potentially complicated mechanisms that also satisfy the equilibrium
conditions, the fact that asking prices are both simple and commonly observed suggests
that they offer a compelling way to deal with the frictions in our environment.

In Section 6, we flesh out just a few of the model’s implications for a variety of ob-
servable outcomes. In particular, we study how the asking prices set by sellers, and the
corresponding distribution of transaction prices that occur in equilibrium, depend on
features of the environment, such as the ratio of buyers to sellers, the degree of ex ante
uncertainty in buyers’ valuations, and the costs of inspecting the good.

In Section 7, we discuss a few key assumptions and potential extensions of our
framework. One particularly noteworthy exercise is showing that a simple variation of
our asking price mechanism would produce a distribution of transaction prices that oc-
cur below the asking price, a mass point of transactions that occur at the asking price,
and additional transactions that occur above the asking price. This variation, which pre-
serves all of the normative properties reported above, could be an important step toward
understanding, e.g., real estate transactions, which sometimes occur above the asking
price. Section 8 concludes, and the Appendix contains all proofs.

Related Literature. We contribute to the literature along two dimensions. The first is
normative: we show that our asking price mechanism is both revenue-maximizing and
efficient in an environment with two simple ingredients. The second contribution is
positive: we provide a rationale for the use of asking prices and explore the implications
for equilibrium prices and allocations. Below, we compare our normative and positive
results, respectively, with the existing literature.

As mentioned above, implementing the planner’s allocation requires achieving ef-
ficiency along two margins. First, a seller’s mechanism has to induce socially efficient
search behavior by buyers; this requires that each buyer’s ex ante expected payoff is
equal to his marginal contribution to the expected surplus at that seller. Second, a
seller’s mechanism must maximize the surplus after buyers arrive; that is, the mecha-
nism must ensure that the ex post allocation of the good is efficient. These two margins
have been studied extensively in separate literatures.

The first margin is a critical object of interest in the literature on competitive (or di-
rected) search, such as Moen (1997), Burdett et al. (2001), Acemoglu and Shimer (1999),
and Julien et al. (2000), to name a few. While these papers find that the market equi-
librium decentralizes the planner’s solution, their results do not extend to our environ-
ment. The reason is that, in these papers, the size of the surplus after buyers arrive at

do not allow are those that depend on the trading mechanisms posted by other sellers, which is standard
in this literature; such collusive behavior would seem to violate the competitive spirit that motivates our
analysis.
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a seller is independent of the pricing mechanism. Hence, a simple mechanism (e.g.,
a single price) can control the division of the expected surplus in an arbitrarily flexi-
ble way without any ramifications for ex post efficiency. Therefore, within this litera-
ture, the papers that are most related to our work are McAfee (1993), Peters and Severi-
nov (1997), Burguet (1999), Eeckhout and Kircher (2010), Virâg (2010), Kim and Kircher
(2015), Albrecht et al. (2012), and Lester et al. (2015), who consider environments where
the pricing mechanism that is posted does effect the size of the surplus after buyers ar-
rive. However, in these papers the ex post efficient allocation of the good is typically
fairly trivial, and hence can be implemented with a simple, simultaneous mechanism
(like an auction with no reserve price). In contrast, our model—where buyers incur
a cost to learn their valuation—requires that we consider a competitive search model
where sellers post sequential mechanisms; to the best of our knowledge, this is the first
paper to do so.

Sequential mechanisms have received much more attention in the literature that fo-
cuses on the second margin highlighted above but abstracts from the first margin, i.e.,
the literature that studies the allocation of a good when a monopolist seller faces a fixed
number of buyers who can learn their valuation at a cost. Within this literature, the
paper that is closest to ours is Crémer et al. (2009). Indeed, in our environment, the
problem that each seller faces after buyers arrive is analyzed as a special case in their
paper (Section 3.3). They show that, in this setting, the seller optimally selects a sequen-
tial mechanism that requires a series of different take-it-or-leave-it offers and participa-
tion fees, both of which may vary according to the number and realizations of previous
bids (also see Burguet, 1996).4 In a similar environment, Bulow and Klemperer (2009)
ignore the optimal mechanism and instead focus on two “plain vanilla” mechanisms:
a simultaneous auction and a simple sequential mechanism. Choosing between these
two mechanisms, they show, involves a trade-off between revenue-maximization and
efficiency.5

In contrast to these papers, the mechanism we consider is relatively simple, and yet
the trade-off in Bulow and Klemperer (2009) does not arise; the asking price is both
revenue-maximizing and efficient.6 The reason for this difference is twofold. First, it
turns out that the information made available to buyers has important effects on the
structure of the optimal mechanism. Crémer et al. (2009) and Bulow and Klemperer
(2009) assume that prospective buyers observe the behavior of previous bidders who
have entered the mechanism, which implies that the optimal mechanism offers differ-
ent asking prices (and charges different fees) to each buyer who inspects the good. We

4Crémer et al. (2009) also consider richer environments, with various types of heterogeneity. As we dis-
cuss below, our asking price mechanism remains optimal after introducing some, but not all, types of het-
erogeneity. For example, if buyers had different inspection costs, as in the general case studied by Crémer
et al. (2009), then sellers would want to use additional devices so as to influence the order in which different
types of buyers inspect the good.

5See also Schmitz (2003).
6Interestingly, the asking price mechanism in our model convexifies, in a way, the binary choice between

these two pricing schemes; as we discuss below, one can interpret our mechanism in such a way that the
asking price determines the probability of having an auction (after all buyers have inspected the good) as
opposed to a sequential sale.
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allow the sellers in our model to control what information is available to buyers, and
they choose not to reveal information about previous bidders. This change alone im-
plies that sellers would set the same asking price for all buyers, albeit with an admission
fee attached. The second reason our results are different is that the number of buy-
ers who can potentially inspect a seller’s good is exogenous in the papers cited above,
whereas in our model it is the endogenous outcome of a game in which sellers compete
for buyers. In this competitive setting, as we noted earlier, admission fees are driven to
zero in equilibrium.7

Turning to the positive results, our explanation is obviously not the only reason why
asking prices might be useful.8 For one, if buyers are risk averse, an asking price can
reduce the uncertainty an individual buyer faces in certain types of auctions, and hence
introducing this mechanism can increase a seller’s revenues; see Budish and Takeyama
(2001), Mathews (2004), or Reynolds and Wooders (2009). A second explanation for ask-
ing prices, which also assumes that buyers incur a cost to learn their valuation, is pro-
posed by Chen and Rosenthal (1996) and Arnold (1999). In these papers, a holdup prob-
lem emerges when a buyer and seller bargain over the price after the buyer incurs the
inspection cost. An asking price is treated as a ceiling on the bargaining outcome and
thus partially solves the holdup problem, providing an ex ante guarantee that the buyer
will receive some rents. Our paper is similar in that we also study how a seller’s commit-
ment to a pricing mechanism can induce buyers to inspect when they otherwise would
not. However, there are a number of important differences, too: in our model, a seller’s
pricing decision also affects the number of buyers who arrive to inspect the good and the
allocation of the good after inspections occur. Moreover, we show that an asking price is
optimal for sellers given almost any mechanism one could imagine, while it is not clear
in Chen and Rosenthal (1996) whether the mechanism they consider is the best way to
solve the holdup problem they describe.9

A trading mechanism that bears some resemblance to an asking price can also
emerge if it is costly for sellers to meet with each buyer, as in McAfee and McMillan
(1988). In this case, a seller’s asking price serves as a commitment device to keep meeting
with buyers until a sufficiently high bid has been received, despite an incentive ex post
to stop earlier. This price is playing the opposite role that the asking price plays in our

7In a different environment, Peters (2001) also finds that sellers who would charge positive admission
fees in a monopolistic setting choose not to charge fees in a competitive setting. A similar insight emerges
from models that study the problem of a single seller who selects a mechanism, and a large number of
buyers who can choose to participate in the mechanism at a cost; see, e.g., Engelbrecht-Wiggans (1987),
McAfee and McMillan (1987), and Levin and Smith (2015). The only difference is that the “cost” to a buyer
from visiting a seller in a competitive search model is the opportunity cost of not visiting other sellers, which
is an equilibrium object, while the cost of participating in these models with one seller is an explicit entry
cost, which is exogenous.

8Lester (2015) provides a more detailed discussion of existing explanations for asking prices.
9More generally, the various theories described above all consider the problem of a seller in isolation.

Therefore, though each one certainly captures a significant component of what asking prices do, they also
abstract from something important: the fact that buyers can observe and compare multiple asking prices
at once is not only realistic in many markets, but also seems to be a principal consideration when sellers
are determining their optimal pricing strategy.
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model; according to our explanation, asking prices serve as a promise to stop sampling
after a sufficiently high bid, despite an incentive ex post to continue.10

Finally, asking prices may serve as a device to signal sellers’ private information. For
example, in Albrecht et al. (2016), sellers with heterogeneous reservation values use ask-
ing prices to signal their type, which allows for endogenous market segmentation. We
view this line of research as complementary to our own; certainly the ability of asking
prices to signal a seller’s private information, which we ignore, is important.11

2. The environment

Players. There is a measure θb of buyers and a measure θs of sellers, and � = θb/θs de-
notes the ratio of buyers to sellers. Buyers each have unit demand for a consumption
good, and sellers each possess one, indivisible unit of this good. All agents are risk-
neutral and ex ante homogeneous.

Search. Buyers can visit a single seller in attempt to trade. As is standard in the litera-
ture, frictions arise because buyers must use symmetric strategies. As a result, the num-
ber of buyers to arrive at each seller, n, will be distributed according to a Poisson distri-
bution.12 As is customary in the literature on directed (or competitive) search, we refer
to the expected number of buyers to arrive at a particular seller as the “queue length,”
which we denote by λ. As we describe in detail below, the queue length at each seller
will be an endogenous variable, determined by the equilibrium behavior of buyers and
sellers.

Preferences. All sellers derive utility y from consuming their own good, and this val-
uation is common knowledge. A buyer’s valuation for any particular good, however, is
not known ex ante. Rather, once buyers arrive at a particular seller, they must inspect the
seller’s good to learn their valuation, which we denote by x. We assume that each buyer’s
valuation is an independent and identically distributed (iid) draw from a distribution
F(x) with support in the interval [x�x], and that the realization of x is the buyer’s private
information. We assume, for simplicity, that y ∈ [x�x]. This is a fairly weak assumption;
the probability that a buyer’s valuation x is smaller than y can be driven to zero with-
out any loss of generality. Moreover, much of the analysis remains similar when y < x,
though the algebra is slightly more involved.

10To be more precise, McAfee and McMillan (1988) consider a procurement auction in which a buyer
meets with a sequence of sellers and each meeting is costly to the buyer; this is equivalent to our environ-
ment with the seller incurring the cost of each meeting. Switching which party bears the inspection cost
not only changes the entire rationale for an asking price, as described above, but it also changes the na-
ture of the revenue-maximizing mechanism; the solution to our model with this alternative cost structure
is available upon request.

11Menzio (2007), Delacroix and Shi (2013), and Kim and Kircher (2015) also study the signalling role
of prices in directed search equilibria. However, in papers like Albrecht et al. (2016) and Menzio (2007),
asking prices are not uniquely determined, and hence these models are somewhat limited in their ability
to draw positive implications about the relationship between asking prices, transaction prices, and market
conditions.

12The restriction to symmetric strategies is often motivated by the observation that coordination among
agents in a large market seems fairly implausible. Under these restrictions, the number of buyers to arrive
at a particular seller follows a binomial distribution when the number of agents is finite, and converges to
the Poisson distribution as the number of buyers and sellers tends to infinity. See, e.g., Burdett et al. (2001).
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Inspection Costs. After a buyer arrives at a seller, we assume that he must pay a cost
k to learn his valuation x. Such costs come in many forms, both explicit (i.e., paying for
an inspection) and implicit (i.e., the time it takes to learn one’s valuation); we use k to
capture all of these costs.13

We restrict our attention to the region of the parameter space in which the cost of
inspecting the good does not exhaust the expected gains from trade. In particular, we
assume that

k<

∫ x

y
(x− y)f (x)dx� (1)

Note that the inequality in (1) does not necessarily imply that a buyer would always
choose to inspect the good. In what follows, we assume that a buyer indeed does have
incentive to inspect the good before attempting to purchase it, and in Section 7, we de-
rive a sufficient condition to ensure that this is true in equilibrium.

Gains from Trade. When n buyers arrive at a seller, the trading protocol in place de-
termines how many buyers i ≤ n will have the opportunity to inspect the good before ex-
change (potentially) occurs. We normalize the payoff for a buyer who does not inspect,
and thus does not trade, to zero. Therefore, if a buyer with valuation x acquires the good
after the seller has met with i buyers, the net social surplus from trade is x − y − ik.
Alternatively, if the seller retains the good for himself after i inspections, the net social
surplus is simply −ik.

3. The planner’s problem

In this section, we characterize the decision rule of a (constrained) benevolent planner
whose objective is to maximize net social surplus, subject to the constraints of the phys-
ical environment. These constraints include the frictions inherent in the search process,
as well as the requirement that buyers’ valuations are costly to learn.

The planner’s problem can be broken down into two components. First, the plan-
ner has to assign queue lengths of buyers to each seller, subject to the constraint that
the sum of these queue lengths across all sellers cannot exceed the total measure of
available buyers, θb. Second, the planner has to specify the trading rules for agents to
follow after the number of buyers that arrives at each seller is realized. We discuss these
specifications in reverse order.

Optimal Trading Protocol. Suppose n buyers arrive at a seller. As is well known in the
literature (see, e.g., Lippman and McCall, 1976; Weitzman, 1979; Morgan and Manning,
1985), it is optimal in this case for the planner to let buyers inspect the good sequentially,

13For example, suppose the goods are houses that are roughly equivalent along easily describable dimen-
sions (size, neighborhood, and so on). However, each home has idiosyncratic features that make it more
or less attractive to prospective buyers, and these features are only revealed upon inspection; e.g., a family
with young children may want to see if the owners of nearby homes also have young children. Quite often,
learning one’s true valuation requires more than a quick tour; e.g., an individual who needs to build a home
office may hire an architect to estimate how much it will cost. All of these activities are costly, either because
they take time or because they require explicit expenditures. Similar costs—of various magnitudes—exist
for purchasing a car, renting an apartment, or even hiring an accountant.
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and to assign the good immediately whenever a buyer’s valuation exceeds a cutoff, x∗,
which equates the marginal cost of an additional inspection with the marginal benefit.
Importantly, note that the cutoff does not depend on the total number of buyers n, the
number of buyers who have inspected the good so far i, or the history of valuations
(x1� � � � � xi). The following lemma formalizes this result.

Lemma 1. Suppose n ∈N buyers arrive at a seller. Letting x∗ satisfy

k=
∫ x

x∗

(
x− x∗)f (x)dx� (2)

the planner maximizes social surplus by implementing the following trading rule:

(i) If n > 1 and i ∈ {1�2� � � � � n − 1}, the seller should stop meeting with buyers and
allocate the good to the agent with valuation x̂i ≡ max{y�x1� � � � � xi} if, and only if,
x̂i ≥ x∗. Otherwise, the seller should meet with the next buyer.

(ii) If n=1 or i = n, the seller should allocate the good to the agent with valuation x̂n.

Optimal Queue Lengths. We now turn to the optimal assignment of queue lengths
across sellers, given the optimal trading protocol once buyers arrive. Notice immedi-
ately that the planner’s cutoff x∗ is not only independent of the number of buyers, n, but
also independent of λ, which governs the distribution over n. The reason is that the op-
timal stopping rule, on the margin, balances the costs and expected gains of additional
meetings, conditional on the event that there are more buyers in the queue. The proba-
bility of this event, per se, is irrelevant: since the seller neither incurs additional costs nor
forfeits the right to accept any previous offers if there are no more buyers in the queue,
the probability distribution over the number of buyers remaining in the queue—and
thus λ—does not affect the planner’s choice of x∗.

Let S(xp�λ) denote the expected surplus generated at an individual seller whom the
planner assigns a cutoff xp and a queue length λ. To derive this function, it is convenient
to define

qi(x;λ) = λi
(
1 − F(x)

)i
i! e−λ(1−F(x))�

In words, qi(x;λ) is the probability that a seller is visited by exactly i buyers, all of whom
happen to draw a valuation greater than x (when all buyers’ valuations are learned). In
what follows, we suppress the argument λ for notational convenience.

The net surplus generated at a particular seller is equal to the gains from trade, less
the inspection costs. To derive the expected gains from trade at a seller with cutoff xp

and queue length λ, first suppose that n buyers arrive at this seller. There are three rele-
vant cases. First, with probability F(y)n all n buyers draw valuation x < y, in which case
there are no gains from trade. Second, with probability F(xp)n − F(y)n, the maximum
valuation among the n buyers is a value x ∈ (y�xp), in which case the gains from trade
are x− y. Note that the conditional distribution of this maximal valuation x has density
[nF(x)n−1f (x)]/[F(xp)n −F(y)n]. Finally, with probability 1 −F(xp)n, at least one buyer
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has valuation x ≥ xp. In this case, the seller trades with the first buyer he encounters
with a valuation that exceeds xp; this valuation is a random drawn from the conditional
distribution f (x)/[1 − F(xp)]. Taking expectations across values of n, the gains from
trade at a seller with cutoff xp and queue length λ, in the absence of inspection costs,
are

∞∑
n=1

e−λλn

n!
{∫ xp

y
(x− y)nF(x)n−1f (x)dx+ [

1 − F
(
xp

)n]∫ x

xp
(x− y)

f (x)

1 − F
(
xp

) dx}
=

∫ xp

y
(x− y)λq0(x)f (x)dx+ [

1 − q0
(
xp

)]∫ x

xp
(x− y)

f (x)

1 − F
(
xp

) dx�
Now consider the expected inspection costs incurred by buyers at a seller with cutoff

xp and queue length λ. If a buyer arrives at a seller along with n other buyers, he will
occupy the (i + 1)th spot in line, for i ∈ {0� � � � � n}, with probability 1/(n + 1). In this
case, he gets to meet with the seller only when all buyers in spots 1� � � � � i draw x < xp,
which occurs with probability F(xp)i. Taking expectations over n implies that the ex
ante probability that each buyer gets to meet with a seller with queue length λ, given a
planner’s cutoff of xp, is

∞∑
n=0

e−λλn

n!

{
n∑

i=0

F
(
xp

)i 1
n+ 1

}
= 1 − q0

(
xp

)
λ
[
1 − F

(
xp

)] � (3)

Note that this probability approaches 1 as xp goes to x̄ from below. Moreover, since the
expected number of buyers to arrive at this seller is λ, the total expected inspection cost
incurred by all buyers is simply ([1 − q0(x

p)]/[1 − F(xp)])k.
Using the results above, the expected surplus generated by a seller with queue length

λ and stopping rule xp can be written as

S
(
xp�λ

) =
∫ xp

y
(x− y)λq0(x)f (x)dx+ 1 − q0

(
xp

)
1 − F

(
xp

) [∫ x

xp
(x− y)f (x)dx− k

]
� (4)

Given the optimality of xp = x∗ for any λ, the objective of the planner is then to choose
queue lengths at each seller, λj for j ∈ [0� θs], to maximize total surplus

∫ θs
0 S(x∗�λj)dj

subject to the constraint that
∫ θs

0 λj dj = θb. In the following lemma, we establish an
important property of the surplus at a particular seller when the optimal trading rule is
in place.

Lemma 2. The expected surplus S(x∗�λ) is strictly concave with respect to λ.

Two factors contribute to the concavity of S(x∗�λ) in λ. First, as is standard in models
of directed search, the probability that a seller trades is concave in the queue length.
This force alone typically implies that the planner assigns equal queue lengths across
(homogeneous) sellers. However, in our environment there is an additional force, since
the ex post gains from trade are also concave in the number of buyers that arrive: each
additional buyer is less likely to meet the seller and, conditional on meeting, is less likely
to have a higher valuation than all previous buyers.
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The Solution to the Planner’s Problem. Taken together, Lemmas 1 and 2 are sufficient
to establish that the planner maximizes total surplus by assigning equal queue lengths
across all sellers, so that λj = � for all j. The following proposition summarizes the plan-
ner’s solution.

Proposition 1. The unique solution to the planner’s problem is to assign equal queue
lengths � to each seller. After buyers arrive, the planner lets buyers inspect the good se-
quentially and assigns the good immediately whenever a buyer’s valuation exceeds x∗.
When all valuations are below x∗ and the queue is exhausted, the planner assigns the
good to the agent with the highest valuation.

4. The decentralized equilibrium

In this section, we introduce a method of price determination that we call an asking
price mechanism. We characterize the equilibrium when sellers use this mechanism,
establish that this decentralized equilibrium coincides with the solution to the planner’s
problem, and discuss our results.

Asking Price Mechanism. An asking price mechanism (APM) has two components:
an asking price and a specific protocol that occurs after an arbitrary number of buyers
arrive. Suppose a seller has posted an asking price a and n buyers arrive. The APM
dictates that the seller will meet buyers one at a time, with each successive buyer being
chosen randomly from the set of remaining buyers, until one buyer bids the asking price
or all buyers are met. During a meeting, a buyer incurs the inspection cost k, learns his
valuation x, and submits a bid b. Importantly, when a buyer bids, he knows neither the
number of other buyers at the seller, n− 1, nor his place in the queue.14

If the buyer bids b ≥ a, his bid is accepted immediately and trade ensues; the asking
price a is the price at which the seller commits to selling his good immediately (and
subsequently stops meeting with other buyers). If b < y, then the bid is rejected and
the seller moves to the next buyer. Finally, if b ∈ [y�a), then the bid is neither rejected
nor immediately accepted. Instead, the seller registers the bid and proceeds to meet the
next buyer in line (if there is one). Again, the next buyer incurs the cost k, learns her
valuation x, and submits a bid b.

The process described above repeats itself until either the seller receives a bid b ≥ a

or until he has met with all n buyers. In the latter case, he sells the good to the highest
bidder at a price equal to the highest bid, as long as that bid exceeds his own valuation y.
A seller who trades at price b receives a payoff equal to b, while a seller who does not
trade receives payoff y. The payoff to a buyer who trades at price b is x− b− k. A buyer
who meets with a seller but does not trade obtains a payoff −k. Finally, the payoff of a
buyer who does not meet with a seller is equal to zero.

A Buyer’s Strategy and Payoffs. Given an arbitrary distribution of asking prices posted
by sellers, we now describe buyers’ optimal search and bidding strategies. We work

14Note that the information available to the buyers should be viewed as a feature of the mechanism.
Since we establish below that this mechanism is optimal, it follows that sellers have no incentive ex ante to
design a mechanism in which buyers can observe either n or their place in the queue.
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backward, first deriving buyers’ optimal behavior and payoffs conditional on meeting
a seller who posted an asking price a and attracted a queue λ. Then, given these pay-
offs, we derive the buyers’ optimal search behavior, which determines the queue length
λ that corresponds to each asking price a.

To derive the buyers’ behavior and payoffs after arriving at a seller, it is helpful to
note that the APM described above is equivalent to a mechanism in which buyers are
randomly placed in line; each buyer is sequentially offered the opportunity to purchase
the good at the asking price a, in which case trade occurs immediately; and if no buyer
chooses to pay the asking price, the good is allocated according to a first-price sealed-
bid auction, where buyers are not told how many other buyers are also participating in
the auction. As we will see, this alternative interpretation is helpful because it allows us
to draw upon well known results in the auction theory literature.15

We conjecture, and later confirm, that there exists a cutoff, which we denote xa, such
that buyers with valuation xa are exactly indifferent between paying the asking price
and waiting to (perhaps) participate in an auction. Therefore, if a buyer draws valuation
x≥ xa, he pays a and trades immediately. Otherwise, if x < xa, he declines and takes his
chances with the auction.

To derive this cutoff, consider a buyer who has incurred the (sunk) cost k and dis-
covered that his private valuation is x at a seller who has posted an asking price a and
has an expected queue length λ, when all other buyers are using a cutoff x̃a. To decide
whether to accept the asking price or not, the buyer needs to form beliefs about both the
probability that the auction will take place and the number of other buyers that will be
bidding. Note that when the buyer is asked to inspect, he updates his beliefs regarding
both probabilities.16 In particular, conditional on the buyer meeting the seller (and not
paying a), the probability that an auction will take place is

λ
(
1 − F

(
x̃a

))
1 − q0

(
x̃a

) q0
(
x̃a

)
� (5)

To understand this expression, recall that the probability that a buyer gets to meet a
seller is given by (3) and that an auction takes place if, and only if, none of the buyers in
the queue draws a valuation above x̃a, which happens with (ex ante) probability q0(x̃

a).
Applying Bayes’ rule then yields the expression in (5).

Similar logic can be used to calculate the distribution over the number of competi-
tors that the buyer faces should an auction occur. The total number of buyers at the
seller follows a Poisson distribution with mean λ. The auction will take place if all of

15This observation is also helpful because it implies that we can replace the first-price auction with any
revenue-equivalent auction without changing any of the substantive results below. In most markets, we
think the first-price auction most closely resembles the actual method of price determination. However, in
Section 7, we explore the implications of using a second-price (ascending bid) auction instead, and argue
that this alternative can help rationalize transaction prices above the asking price.

16In other words, the very act of meeting the seller and inspecting the good is informative, since inspect-
ing the good requires that no previous buyer drew a valuation above x̃a. In particular, after inspecting the
good, a buyer’s posterior belief that many buyers arrived at the seller falls, and he believes it is more likely
that he will be competing against relatively few other buyers.
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them have a valuation below x̃a, which happens with probability F(x̃a)n. Hence, condi-
tional on reaching an auction, the number of competitors equals n with probability

e−λ λ
n

n!
F

(
x̃a

)n
q0

(
x̃a

) = e−λF(x̃a)

(
λF

(
x̃a

))n
n! �

In Lemma 3, below, we use these probabilities to characterize the buyer’s optimal bid-
ding strategy and expected payoff should he choose not to pay the asking price, condi-
tional on the asking price a, the queue length λ, and the cutoff x̃a being chosen by other
buyers. To do so, it will be helpful to define the bidding strategy

b̂(x) = x−

∫ x

y
q0

(
x′)dx′

q0(x)
� (6)

Lemma 3. Consider a buyer who arrives at a seller with asking price a and queue length λ,
and suppose all other buyers bid b̂(x) if x ≤ x̃a and pay the asking price a if x > x̃a, for
some x̃a ∈ [y�x]. If the buyer discovers a valuation x ∈ [y�x] and chooses not to pay the
asking price, the optimal bidding strategy is b̂(x) for all x ≤ x̃a and b̂(x̃a) for all x > x̃a.
The ex ante expected payoff from following this strategy is

u
(
x; x̃a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ
(
1 − F

(
x̃a

))
1 − q0

(
x̃a

) ∫ x

y
q0

(
x′)dx′ if x≤ x̃a�

λ
(
1 − F

(
x̃a

))
1 − q0

(
x̃a

) [∫ x̃a

y
q0

(
x′)dx′ + q0

(
x̃a

)(
x− x̃a

)]
if x > x̃a�

(7)

Note that since q0(x) is a function of λ, so too are b̂(x) and u(x; x̃a); we have only sup-
pressed λ for notational convenience. Also note that u(x; x̃a) is continuous and strictly
increasing in x, which confirms our conjecture that buyers follow a threshold strategy.

An equilibrium where buyers play symmetric strategies is thus a threshold xa such
that u(xa;xa) = xa − a. From (7), then, xa can be defined by the implicit function

a = xa − λ
(
1 − F

(
xa

))
1 − q0

(
xa

) ∫ xa

y
q0(x)dx� (8)

In the Appendix, we confirm that—as long as the asking price is neither too low nor too
high—there exists a unique xa ∈ (y�x) that satisfies (8), with ∂xa/∂a > 0.

Hence, given any a and λ, the buyer’s optimal bidding function is completely char-
acterized by

b(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < y�

b̂(x) if y ≤ x < xa�

a if xa ≤ x�

where b̂(x) is given by (6) and xa is determined by (8).
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Given a buyer’s optimal behavior conditional on meeting the seller, we can calculate
the ex ante expected utility that a buyer receives from visiting a seller who has posted an
asking price a and attracted a queue length λ,

U(a�λ)= 1 − q0
(
xa

)
λ
(
1 − F

(
xa

))[∫ xa

y
u
(
x;xa)dF(x)+

∫ x

xa
(x− a)dF(x)− k

]
�

where, in a slight abuse of notation, xa ≡ xa(a�λ) is the implicit function defined in (8).
Given U(a�λ), the optimal search behavior of buyers is straightforward: given the set

of asking prices that have been posted, along with the search decisions of other buyers,
an individual buyer should visit a seller (or mix between sellers) that maximizes U(a�λ).
More formally, for an arbitrary distribution of posted asking prices, let U denote the
highest level of utility that buyers can obtain; as is common in this literature, we refer to
U as the market utility. Then, for any asking price a that has been posted, given the buy-
ers’ optimal threshold and bidding strategy described above, the queue length λ(a) ≥ 0
must satisfy

U
(
a�λ(a)

) ≤U� with equality if λ(a) > 0� (9)

According to (9), buyers will adjust their search behavior in such a way to make them-
selves indifferent between any seller that they visit with positive probability.17

A Seller’s Strategy and Payoffs. Given the optimal behavior of buyers, we can now
characterize the profit-maximizing asking price set by sellers. As a first step, we use the
results above to derive the expected revenue of a seller who has set an asking price a and
attracted queue length λ:

R(a�λ) = q0(y)y +
∫ xa

y
b̂(x)dq0(x)+ (

1 − q0
(
xa

))
a� (10)

Again, note that xa ≡ xa(a�λ) denotes the optimal cutoff for buyers characterized in (8)
and b̂(x) denotes the optimal bidding function characterized in (6). This expression
captures the three possible outcomes for a seller: no buyers arrive with valuation x > y,
in which case the seller consumes his own good; no buyers arrive with valuation x > xa,
but at least one buyer has valuation x > y, in which case the seller accepts the bid placed
by the buyer with the highest valuation; or at least one buyer has a valuation x ≥ xa, in
which case the seller receives a payoff a.

Sellers want to maximize expected revenue, taking into account that their choice
of the asking price a will affect the expected number of buyers that will visit them, λ,
through the relationship defined in (9), i.e., U(a�λ) = U . This relationship is akin to a
typical demand function: for a given level of market utility, it defines a downward slop-
ing relationship between the asking price a seller sets and the number of customers he
receives (in expectation). The seller’s problem can thus be interpreted as a choice over

17Following the convention in the literature, if, for some a, there exist multiple values of λ such that
U(a�λ) = U , we assume that a seller can post an equilibrium selection device that yields him the greatest
profit; see, e.g., McAfee (1993) and Eeckhout and Kircher (2010). Note that the equilibrium we characterize
below in Proposition 2 survives even if we relax this assumption; see the proof for additional discussion.
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both the asking price and the queue length to maximize revenue, subject to (9). The
corresponding Lagrangian can be written18

L(a�λ�μ)=R(a�λ)+μ
[
U(a�λ)−U

]
� (11)

Equilibrium. In general, an equilibrium is a distribution G(a�λ) and a market utility
U such that (i) every pair in the support of G is a solution to (11), given U , and (ii) aggre-
gating queue lengths across all sellers, given the distribution G and the mass of sellers θs,
yields the total measure of buyers, θb. However, as we establish in the proposition below,
in fact there is a unique solution to (11), and hence G is degenerate. Furthermore, this
solution coincides with the planner’s solution, i.e., the equilibrium is efficient.

Proposition 2. Given assumption (1), the decentralized equilibrium is characterized by

a= a∗ ≡ x∗ − λ
(
1 − F

(
x∗))

1 − q0
(
x∗) ∫ x∗

y
q0(x)dx�

xa = x∗, and λ = � at all sellers, with buyers receiving market utility U
∗ ≡ U(a∗��).

Hence, the decentralized equilibrium coincides with the solution to the planner’s prob-
lem.

Asking Prices and Constrained Efficiency. Before proceeding, we offer a brief discus-
sion of the result in Proposition 2. Notice immediately that the asking price mechanism
we describe has all the right ingredients to implement the efficient allocation at each
seller: it elicits buyers’ private valuations sequentially, it implements a stationary cutoff
rule, and it allows for the seller to trade with any buyer who has inspected the good (i.e.,
it allows for perfect recall).

What is less clear is whether the asking price that sellers choose in equilibrium will
implement the efficient cutoff, x∗. The reason is that the choice of a affects two margins:
the expected number of buyers who arrive at the seller, λ, and the stopping rule after
buyers arrive, xa. One way to understand these two margins more clearly is to use the
relationship

R(a�λ) = S
(
xa(a�λ)�λ

) − λU(a�λ)

to rewrite the Lagrangian (11), where xa(a�λ) is defined in (8). Taking first-order condi-
tions and substituting the constraint, (9), we get that profit maximization requires

∂λ

∂a

[
∂S

∂λ
− Ū

]
+ ∂S

∂xa
dxa

da
= 0� (12)

The first term in (12) represents the seller’s marginal revenue from increasing a,
holding the threshold xa constant. In particular, note that the marginal revenue from

18As long as U is sufficiently small, the solution will be interior and hence the first-order conditions of
the Lagrangian are necessary. Sufficiency follows from the fact that the unique solution coincides with the
planner’s allocation, as we prove below.
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an additional buyer, in expectation, is equal to the additional surplus this buyer cre-
ates, ∂S/∂λ, less the “cost” of acquiring this buyer, U . The second term represents the
seller’s marginal revenue from increasing a, holding the queue length λ constant. Profit
maximization, of course, just requires that the sum of the two terms in (12) is equal to
zero. Constrained efficiency, on the other hand, requires that each of the two terms in
(12) is equal to zero: implementing the solution to the planner’s problem requires both
maximizing the surplus after buyers arrive and inducing the right number of buyers to
arrive in the first place. The former requirement demands that ∂S/∂xa = 0, so that the
asking price implements the stopping rule xa = x∗. The latter demands that, in equi-
librium, ∂S/∂λ = Ū , which is a standard condition for the ex ante efficient allocation
of buyers across sellers: it implies that each buyer receive (in expectation) his marginal
contribution to the match.19

A priori, there is no reason to think that one value of a will ensure that both of
these conditions are satisfied. Indeed, since one instrument is affecting two margins,
one could easily imagine a seller being forced to trade off ex post efficiency—so that
∂S/∂xa 	= 0—so as to influence ex ante demand.20 And yet, this does not happen. In-
stead, the asking price that implements the efficient stopping rule also delivers to each
buyer his expected marginal contribution to the match surplus.

Before explaining why, it is helpful to note that a similar result emerges in an envi-
ronment with no inspection costs, i.e., with k = 0. In this case, the efficient allocation
can be implemented with a standard (first- or second-price) auction with a reserve price
equal to y, which also happens to yield each buyer his expected marginal contribution
to the match surplus.21

In our environment, with k > 0, the connection between the asking price mecha-
nism, the efficiency of the stopping rule, and the buyers’ ex ante expected payoffs is
much more complicated. To understand why the asking price that implements x∗ also
yields each buyer his expected marginal contribution to the match surplus, it is helpful
to consider the possible valuations realized by a marginal buyer.

First, suppose the buyer has a valuation x < x∗. In this case, the buyer only con-
tributes to the match surplus if his valuation is the maximum among all buyers, in which
case the marginal contribution is the difference between his valuation and the next high-
est valuation. Since the good is allocated through an auction when the maximum valua-
tion is less than x∗, the logic above (when k= 0) implies that this buyer’s payoffs coincide
with his marginal contribution to the surplus.

19See, e.g., Mortensen (1982), Hosios (1990), and Moen (1997).
20If the seller had two instruments at his disposal—say, an asking price to implement a stopping rule and

a fee (or subsidy) to transfer rents at will—clearly the seller would choose an asking price to implement x∗
and a fee or subsidy to independently influence the queue length λ. What is interesting here is that such
fees or subsidies are not necessary.

21This is a well known result in auction theory. To convey the intuition most clearly, it is easiest to con-
sider a second-price auction, where a buyer is rewarded the good when he has the maximal valuation and
his payoff is exactly the difference between his own valuation and the maximum valuation that would be
realized in his absence. By standard revenue equivalence results, the same is true in expectation in a first-
price auction.
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Second, suppose the buyer has a valuation x = x∗. By accepting the asking price a∗,
this buyer affects the social surplus in two different ways. First, in the event that no other
buyer has a valuation greater than x∗, this buyer increases the maximum valuation from
E[̂x|λ� x̂ < x∗] to x∗, where x̂ denotes the maximum valuation among n buyers and n is
drawn from a Poisson distribution with mean λ. Second, by accepting the asking price,
this buyer prevents other buyers from inspecting the good, which has both costs and
benefits: it saves some buyers from incurring the cost k and discovering a low valuation
x < x∗, but prevents other buyers from discovering a high valuation x > x∗ and poten-
tially acquiring the good. However, recall that x∗ is exactly the threshold that offsets
these costs and benefits, leaving only the first effect on the social surplus. This effect is
easily identifiable in the payoff of a buyer with valuation x∗, which can be written

x∗ − a∗ = λ
[
1 − F

(
x∗)]q0

(
x∗)

1 − q0
(
x∗) ∫ x∗

y

q0
(
x′)

q0
(
x∗) dx′�

The first factor on the right-hand side is the probability that no other buyer has valuation
x ≥ x∗; the second factor is equal to x∗ − E[̂x|λ� x̂ < x∗]. Hence, this buyer’s payoffs
coincide exactly with his marginal contribution to the surplus.

Similar logic holds when the buyer’s valuation is x > x∗. Again, since the thresh-
old is x∗, the costs and benefits of preventing later buyers from inspecting the good
exactly offset, leaving only the effect of this buyer increasing the maximum valuation
from E[̂x|λ� x̂ < x∗] to x. Since accepting the asking price yields a payoff x − a∗ =
(x∗ − a∗) + (x − x∗), this buyer receives the share of the surplus that a buyer with valu-
ation x∗ receives, x∗ − a∗, plus the additional surplus he creates, x − x∗. Hence, again,
this buyer’s payoffs coincide exactly with his marginal contribution to the surplus.

5. General mechanisms

Proposition 2 characterizes the equilibrium that arises when sellers compete by posting
asking prices, and establishes that the equilibrium coincides with the solution to the
social planner’s problem. However, it remains to be shown that sellers would in fact
choose to utilize the asking price mechanism if we expanded their choice set to include
more general mechanisms.

In this section, we establish several key results. First, even when sellers are free to
post arbitrary mechanisms, the behavior described in proposition 2—in which all sell-
ers post an asking price mechanism with a = a∗—remains an equilibrium. Moreover,
while other equilibria can arise, all of these equilibria are payoff-equivalent to the equi-
librium with optimal asking prices; in particular, there is no equilibrium in which sellers
earn higher payoffs than they do in the equilibrium with optimal asking prices. Finally,
any mechanism that emerges as an equilibrium in this environment will resemble the
asking price mechanism along several important dimensions: any equilibrium mecha-
nism will require that the seller meets with buyers sequentially, that meetings continue
until a buyer draws a valuation x∗, and that the (expected) payment by a buyer with val-
uation x ≥ x∗ is equal to a∗. Hence, though we cannot rule out potentially complicated
mechanisms that satisfy these properties, the fact that asking prices are both simple and
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commonly observed suggests that they offer a compelling way to deal with the frictions

in our environment.

Mechanisms. Consider a seller who receives n buyers. In general, a mechanism is

going to specify an extensive form game that determines, for each i ∈ {1� � � � � n}, the fol-

lowing functions, subject to standard feasibility and aggregate consistency constraints:

(i) A probability φi�n : X i−1 → [0�1] that the ith buyer inspects the good conditional

on the messages (x̃1� � � � � x̃i−1) ∈ X i−1 reported by previous buyers, where X =
{∅} ∪ [x�x] is the space of messages available to buyers, x̃ = ∅ ∈ X denotes the

event that buyer i did not inspect the good, and X 0 = {∅} by convention.

(ii) A disclosure rule σi�n : X i−1 → 
 that specifies the signal that the ith buyer re-

ceives conditional on the vector of reports from previous buyers, (x̃1� � � � � x̃i−1) ∈
X i−1, where 
 is the space of signals that can be disclosed.22

(iii) A decision rule δ : 
→ [0�1] that specifies the probability that a buyer will inspect

the good conditional on receiving the signal σ ∈ 
.

(iv) A report x̃ : 
×X → X that the buyer sends to the seller conditional on receiving

a signal σ ∈ 
 and either not inspecting or discovering a valuation x ∈ [x�x].
(v) An allocation rule αn : X n → {0�1� � � � � n} that specifies that the good is allocated

to either the ith buyer in the queue, for i ∈ {1� � � � � n}, or the seller (i = 0), condi-

tional on the set of messages (x̃1� � � � � x̃n).

(vi) Transfers τn : X n → R
n that specify the transfers to/from each of the n buyers,

conditional on the set of messages (x̃1� � � � � x̃n).

We restrict attention to the set of all mechanisms M that satisfy individual rational-

ity and incentive compatibility. In particular, for every m ∈ M, a buyer’s expected pay-

off when instructed to inspect the good is nonnegative, given the information available

to him, and truthfully reporting his valuation x (at least weakly) dominates reporting

any x′ 	= x.23 In very similar environments, Crémer et al. (2009) and Pancs (2013) show

that these two additional restrictions—namely, that buyers are both obedient when in-

structed to inspect and truthful in reporting their type—are essentially without loss of

22The set of potential signals is quite vast. For one, the seller could disclose the buyer’s exact place in
line, some information about his place in line (i.e., whether he is among the first n buyers), or no informa-
tion about his place in line. Similarly, the seller could disclose all of the valuations reported by previous
buyers, no information about previous buyers, or various statistics summarizing the reports that have been
received, such as the maximum valuation reported or whether any buyers had reported a valuation above
some threshold.

23We are also implicitly assuming truthful disclosure, i.e., the seller does not report false information to
the buyers.
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generality.24 Given these implicit restrictions, a mechanism m ∈ M can simply be sum-
marized by the inspection probabilities and rules for disclosure, allocations, and trans-
fers described above.

Payoffs. Let the ex ante expected payoff of a seller who posts a mechanism m ∈ M
and attracts a queue λ be denoted by R(m�λ), and let the expected payoff of each buyer
in his queue be denoted by U(m�λ). The total payoffs (net of y) cannot exceed the
amount of surplus S(m�λ) generated by the seller’s chosen mechanism, which in turn
cannot exceed the surplus created by the mechanism that implements the planner’s so-
lution, S∗(λ)≡ S(x∗�λ). That is, for all m and λ,

R(m�λ)+ λU(m�λ)− y ≤ S(m�λ)≤ S∗(λ)� (13)

Clearly, Pareto optimality requires that the surplus be divided between the seller and the
buyers, so we restrict attention to mechanisms that satisfy the first condition in (13) with
equality. We call a mechanism that satisfies the second condition in (13) with equality
surplus-maximizing.

Equilibrium. An equilibrium in this more general environment is a distribution of
mechanisms m ∈ M and queue lengths λ ∈ R+ across sellers, along with a market util-
ity U , such that (i) given U , each pair (m�λ) maximizes profits R(m�λ) subject to the
constraint U(m�λ) = U , and (ii) aggregating queue lengths across all sellers yields the
total measure of buyers, θb. Given this definition, we now establish that a mechanism
m ∈ M is an optimal strategy if, and only if, it creates the same surplus and the same ex-
pected payoffs as the asking price mechanism described in the previous section, where
the asking price a is set to implement the cutoff x∗.

Proposition 3. Take any candidate equilibrium with market utility 0 < U <
∫ x
y (x −

y)f (x)dx − k. Let m∗
a denote the asking price mechanism that implements the cutoff x∗,

and let λa satisfy U(m∗
a�λa) = U . A mechanism m ∈ M, which attracts a queue length λ,

maximizes a seller’s expected profits if, and only if, S(m�λ) = S∗(λ), R(m�λ) = R(m∗
a�λa),

and λ= λa.

The intuition behind Proposition 3 is illustrated in Figure 1. Consider a candidate
equilibrium with market utility U in which a seller posts a mechanism m1 and receives a
queue λ1 satisfying U = U(m1�λ1), yielding expected profits R(m1�λ1)− y = S(m1�λ1)−
λ1U1.

The first result is that m1 must be surplus-maximizing. To see why, suppose
S(m1�λ1) < S∗(λ1), corresponding to point 1 in Figure 1. This seller’s expected prof-
its correspond to the intersection of the vertical axis with the line through point 1 with
slope U . Clearly this cannot be consistent with equilibrium behavior: the seller could
deviate to a surplus-maximizing mechanism m2 that attracts the same queue length λ1

24There are, however, two implicit restrictions on the mechanism space that are worth noting, though
both are standard in the literature on competing mechanisms (see, e.g., Eeckhout and Kircher, 2010). First,
we do not allow mechanisms to condition on buyers’ ex ante identities; identical buyers must be treated
symmetrically. Second, we do not allow mechanisms to condition on the trading mechanisms posted by
other sellers.
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Figure 1. Optimal mechanisms.

but yields a larger surplus S(m2�λ1) = S∗(λ1), corresponding to point 2.25 Since this de-
viation increases the size of the surplus while holding the buyers’ market utility constant,
it strictly increases the seller’s profits, i.e., R(m2�λ1) > R(m1�λ1).

In general, a seller can obtain an even higher payoff. As the figure shows, profits
are maximized at point 3. That is, not only must any equilibrium mechanism lie on the
surplus-maximizing frontier S∗(λ), it must also induce a queue length λ3 such that26

dS∗(λ)
dλ

∣∣∣∣
λ=λ3

= U� (14)

Equation (14) is a typical requirement for profit-maximizing behavior: the left-hand side
is the marginal benefit of attracting a longer queue length, while the right-hand side is
the marginal cost.

Importantly, the asking price mechanism that implements x∗ satisfies this condi-
tion, as we have demonstrated in the previous section. Hence, for any market utility U ,
a seller (weakly) maximizes his revenue if he posts a surplus-maximizing asking price
mechanism. In other words, irrespective of the behavior of other sellers, it is always op-
timal for an individual seller to post an asking price mechanism that implements x∗.
Note that—out of equilibrium—the asking price that achieves this may not be equal
to a∗, since that requires U =U

∗
.

Finally, any profit-maximizing mechanism must attract a queue length equal to the
queue length at a seller who posts m∗

a. Intuitively, since the queue length λa equates
the marginal benefit of attracting more buyers with the more marginal cost, any other
queue length would yield the seller strictly lower profits. Therefore, in equilibrium, all
sellers must attract the same queue length, so that λ = �. The following corollary is an
immediate consequence of the results in Proposition 3.

25Such a deviation could be achieved by setting an asking price that implements the cutoff x∗, along with
a fee (or subsidy) that ensures the expected payoff to buyers—and hence λ1—is unchanged.

26Recall that S∗(λ) = S(x∗�λ) is strictly concave in λ.
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Corollary 1. Given the mechanism space M, an equilibrium exists in which all sellers
post the optimal asking price mechanism m∗

a and attract a queue length �.

Therefore, even when sellers are free to post arbitrary mechanisms, posting an ask-
ing price mechanism with a = a∗ is consistent with equilibrium behavior. Now, it is true
that other mechanisms could also be utilized in equilibrium, but Proposition 3 implies
that any such mechanism will be similar to the asking price mechanism along several
important dimensions. To start, since any equilibrium mechanism must be surplus-
maximizing, and thus implement an allocation that coincides with the unique solution
to the planner’s problem, the mechanism must feature sequential meetings between
the seller and the buyers, with a stopping rule x∗. Moreover, since the ex ante probabil-
ity that each buyer gets to meet with the seller must be equal in any equilibrium, and
any mechanism that arises in equilibrium must also be payoff-equivalent to the equi-
librium with optimal asking prices, it follows that the expected payment by buyers with
valuation x ∈ [x∗�x] must equal the optimal asking price. Therefore, even when sellers
utilize an alternative mechanism in equilibrium, the expected transfer from a buyer who
“stops” the sequential inspection process will, indeed, equal a∗. The following corollary
summarizes.

Corollary 2. Any equilibrium strategy m ∈ M must specify that the seller meet with
buyers sequentially, that these meetings stop if, and only if, either the buyer draws a valu-
ation x ≥ x∗ or the end of the queue is reached, and that the expected payment for a buyer
who draws valuation x ≥ x∗ is equal to a∗.

6. Comparative statics

In this section, we study the equilibrium allocation and distribution of prices, and an-
alyze how they change with features of the economic environment, such as the ratio of
buyers to sellers, the cost of inspecting the good, and the degree of ex ante uncertainty
in buyers’ valuations.

Figure 2 below plots a typical cumulative distribution function (CDF) of transac-
tion prices, where b = 0 represents sellers who do not trade.27 Notice that a fraction
q0(y) = e−�[1−F(y)] of sellers do not trade, either because no buyers arrive, which oc-
curs with probability q0(x) = e−�, or because n ≥ 1 buyers arrive but their valuations do
not exceed the seller’s valuation y, which occurs with probability q0(y) − q0(x). A frac-
tion q0(x

∗)− q0(y) of sellers ultimately accept a bid b that is strictly less than the asking
price. Letting x̂(b) = b̂−1(x), where b̂(x) is defined in (6), the (cumulative) distribution
of winning bids b ∈ [y� b̂(x∗)) is simply q0(x̂(b)). Finally, a fraction 1 − q0(x

∗) of sellers
trade at the asking price.

Notice that there is a mass point of transactions that occur at a∗ and a gap in the
distribution between b̂(x∗) and a∗. Intuitively, it cannot be optimal for a buyer to offer a
price arbitrarily close to the asking price; such a strategy would be dominated by offering

27For the sake of illustration, all numerical examples below have been generated with the assumption
that x is uniformly distributed, though all of the results are true for arbitrary distributions.
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Figure 2. Transaction price CDF.

b = a∗, which implies a discrete increase in the probability of trade at the cost of an
arbitrarily small increase in the terms of trade.

Figures 3–5 illustrate how equilibrium prices are affected by changes in the ratio of
buyers to sellers (�), changes in the inspection cost (k), and changes in the amount of
ex ante uncertainty about a buyer’s valuation (the support of the F), respectively.

Figure 3 illustrates that an increase in � causes a decrease in the fraction of sell-
ers who do not trade and an increase in the fraction of sellers who trade at the asking
price. Moreover, an increase in � causes an increase in the asking price and a first-order
stochastic dominant shift in the distribution of transaction prices. Hence, as in stan-
dard models of competitive search, an increase in the buyer–seller ratio leads to higher
prices in equilibrium. Notice, however, that the degree of dispersion in prices will be
nonmonotonic in �: though price dispersion exists for intermediate values of �, the
equilibrium price distribution becomes degenerate at b = y (b = x∗) as � converges to
zero (infinity).

Figure 4 illustrates that a decrease in the inspection cost k causes both the asking
price a∗ and the cutoff x∗ to increase. However, the buyers’ bidding function b̂(x) is
unaffected, and hence the lower tail of the equilibrium price distribution is unaffected.
As a result, a decrease in k leads to fewer transactions at the asking price. Finally, as k

converges to zero, the optimal x∗ converges to x and the pricing mechanism converges
to a standard first-price auction.

Last, Figure 5 illustrates the effect of decreasing ex ante uncertainty about a buyer’s
valuation: the figure plots the equilibrium distribution of prices when the distribution
of valuations F(x), with support [x�x], is replaced with the truncated distribution F ′
with support [x′�x], where x′ > x.28 Notice that an increase in the lower bound of the

28One interpretation of this exercise is that a new technology (e.g., the Internet) replaces an old tech-
nology (e.g., the newspaper), allowing buyers to learn more information about each seller’s good before
choosing a seller to visit. Given such a technology, buyers could avoid visiting sellers where they are sure to
draw a low valuation (e.g., x ∈ [x�x′]), and only visit sellers for which x ∈ [x′�x].
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Figure 3. Effect of an increase in the buyer–seller ratio. The solid line denotes the original equi-
librium; the dashed line denotes the equilibrium with higher �.

support of F implies that fewer sellers do not trade, even though equilibrium queue
lengths remain λ =� at each seller, since it is less likely for a seller to be visited by buyers
who have a valuation strictly less than y. Also notice that prices increase for several
reasons. For one, sellers set higher asking prices; on the margin, the expected gain from
meeting with an additional buyer is larger since the truncated distribution F ′ first-order
stochastically dominates the original distribution F . Moreover, since other buyers are
more likely to draw a high valuation, there is more competition among buyers. This puts
upward pressure on the bidding function, further increasing transaction prices. Given
these two forces, clearly sellers’ profits increase. Buyers, however, are more likely to
trade, but at less favorable prices.

7. Assumptions and extensions

In this section, we discuss several of our key assumptions, along with a few potentially
interesting extensions of our basic framework.

Transactions Above the Asking Price. In the equilibrium characterized in Section 4,
no transaction takes place at a price that exceeds the asking price. While this prediction
rings true in some markets, it is perhaps less desirable for the analysis of other mar-
kets, such as housing, where transactions sometimes occur above the asking price. It
is therefore important to emphasize that our model can easily explain such transaction
prices.29 Recall that one can interpret our asking price mechanism as a two-stage pro-
cess in which the seller first sequentially offers the good to each buyer at a price a∗ and
then organizes a first-price auction if no buyer accepts this offer. Given Proposition 3
and standard revenue-equivalence results, an alternative, optimal mechanism would
be to replace the first-price auction with a second-price auction in the second stage of
the game.

29We would like to thank Rob Shimer for pointing out this feature of our model.
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Figure 4. Effect of a decrease in the inspection cost. The solid line denotes the original equilib-
rium; the dashed line denotes the equilibrium with lower k.

Figure 5. Effect of technological improvement. The solid line denotes the original equilibrium;
the dashed line denotes the equilibrium with more information.

Note that such a mechanism has a natural interpretation in the context of a housing
market. It corresponds to a scenario in which a seller, after getting a number of offers
that are all below the asking price, contacts the buyers again, informs them of the com-
peting bids, and asks them whether they would like to increase their offer. In that case,
a “bidding war” ensues until a single buyer remains, implementing the outcome of a
second-price auction.

While this mechanism yields the same expected payoffs as our (first-price) asking
price mechanism, the distributions of realized transaction prices will differ. Figure 6
shows a typical CDF of transaction prices, where again we use a price equal to 0 to rep-
resent sellers who do not trade. As buyers bid their valuation in a second-price auction, a
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Figure 6. Transaction prices above the asking price.

transaction price above the asking price arises when at least two buyers have a valuation
above a but below xa (or otherwise one of them would end the game by paying the ask-
ing price in the first stage). As we report in Lemma 4 below, the probability of this event is
strictly positive because a < xa. Hence, this modification yields a micro-founded model
in which a positive mass of transactions occur at the posted asking price, while other
transactions occur both below and above the asking price.

Lemma 4. Suppose all sellers post a two-stage mechanism consisting of an asking price
in the first stage, followed by a second-price auction. The probability that a transaction
takes place at a price exceeding the asking price then equals

e−λ(1−F(xa)) − e−λ(1−F(a)) − λe−λ(1−F(a))
(
F

(
xa

) − F(a)
)
> 0�

Commitment. Throughout our analysis, we also assume that sellers can commit to
carrying out the mechanism that they post. In particular, when a seller posts an asking
price, we assume that he commits to trading with the first buyer who offers to pay this
price, even though ex post he would prefer to renege and meet with all buyers.

Though this assumption is strong, we believe there are a number of ways to enforce
this type of behavior. Some are technological. For example, online auction sites like
eBay and Amazon allow sellers to pre-commit to an asking price (what they call a “buy-
it-now” or “take-it” price, respectively) in which the auction immediately stops once this
price offer is received. In other cases, there are institutions that make it costly to renege
on an asking price. For example, as Stacey (2012) points out, real estate agents can serve
as commitment devices in the U.S. housing market, since sellers are typically required to
pay their agent’s commission if they receive a bona fide offer at the asking price, whether
or not the offer is accepted.30 Finally, even without such technologies or institutions, it

30Indeed, in other countries—such as France—a seller is legally required to accept a full price offer. We
thank an anonymous referee for pointing this out.
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is well known that reputation can sustain commitment in markets with repeated inter-
actions. For all of these reasons, we think that the assumption of full commitment is a
reasonable approximation of the way goods are sold in certain markets.

Endogenous Inspection. Throughout the text we assumed that buyers inspect the
good and learn their valuation before submitting a bid. One interpretation of this as-
sumption is that it is a technological constraint: a buyer simply must go and meet with
the seller to make an offer (say, he needs to sign certain documents), and this process is
costly. However, for many applications it may be more appropriate to treat the decision
to inspect the good as endogenous. In such an environment, if the inspection cost k is
too large, there may be circumstances under which the buyer (or the planner) prefers to
forgo inspection and place a bid (or trade) without knowing the valuation. The following
lemma derives a condition on k to ensure that this is never the case.

Lemma 5. The planner always instructs buyers to inspect the good upon meeting a seller
and, in the decentralized equilibrium, buyers always choose to inspect the good before
submitting a bid if and only if

k<

∫ y

x
(y − x)f (x)dx� (15)

Hence, the analysis in Sections 3 and 4 is consistent with an environment in which
the decision to inspect the good is endogenous, but k is sufficiently small to satisfy (15).
In words, this inequality implies that inspection is always optimal if the cost of inspect-
ing is smaller than the costs associated with inefficient trade, which occurs when the
seller values the good more than the buyer who receives it. For many goods that are sold
with asking prices—such as houses or cars—the assumption that the inspection cost k
is small relative to the potential gains (or losses) from trade seems to be appropriate.
However, it is worth noting that, in large regions of the parameter space, buyers will still
almost always inspect the good before bidding even if (15) is violated.

Information Structure. In the asking price mechanism we consider, sellers choose
not to reveal a buyer’s place in line or the number of other buyers that has arrived. This
turns out to be exactly the right amount of information to reveal to the buyer so as to
ensure that such a simple, stationary mechanism can implement the optimal stopping
rule.

To see this, suppose we replace our asking price mechanism with a standard (sealed-
bid) auction. In this case, since buyers bid simultaneously, they have no information
about the valuations of other buyers, and one can show that too many buyers ultimately
inspect the good. Now suppose that we allow each buyer to observe the bids of those
who have inspected the good before him, as in Bulow and Klemperer (2009). Then, in
the simple sequential mechanism they study, each buyer has an incentive to place a
bid that inefficiently preempts further participation. Therefore, if buyers have too much
information, then too few buyers will ultimately inspect the good.31

31This is precisely why Crémer et al. (2009) find that the optimal mechanism must include asking prices
and fees that vary with each buyer in the queue, which can be used to correct the distortions in the simple
mechanism of Bulow and Klemperer (2009).
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With the equilibrium asking price, a buyer who is about to inspect the good is able
to infer just enough: namely, that no other buyer has had a valuation high enough to
bid the asking price, making it worthwhile to pay the inspection cost.32 However, he is
not able to infer more, which eliminates the strategic motive to bid higher in an attempt
to dissuade future entrants. In this sense, the equilibrium asking price is essentially a
“jump bid” that does preempt entry, but precisely when it is efficient to do so.

Heterogeneity. Before concluding, we discuss the robustness of our results to the
introduction of various types of heterogeneity. To start, if the goods for sale are hetero-
geneous, and this heterogeneity is observable ex ante, then our results are essentially
unchanged.33 To be more precise, suppose there are I types of goods. It could be that
buyers value each type of good differently: in the context of our model, buyers could
draw a valuation x from Fi(x) for each i ∈ {1� � � � � I}. Alternatively, it could be that sell-
ers value each type of good differently: in the context of our model, sellers could have
a valuation yi for a good of type i ∈ {1� � � � � I}. As long as the differences across goods
are verifiable ex ante, then our asking price mechanism is still an equilibrium, and the
equilibrium is efficient.

If buyers are ex ante heterogeneous, however, the optimal mechanism would likely
have more moving parts. For example, if buyers had different inspection costs—say,
k1 	= k2—then the optimal mechanism would have two asking prices and a fee. This
would ensure that buyers with lower inspection costs could inspect first, in exchange
for a fee, and then buyers with higher inspection costs would inspect second (as long as
no buyer in the first group paid the initial asking price). Within each group of buyers,
however, a single asking price would play exactly the same role that it plays in our model.

Finally, if sellers (or their goods) are ex ante heterogeneous and this is unobservable
ex ante, then the mechanisms that are posted—including an asking price—can poten-
tially signal information about the type of the seller or his good. We view this signalling
role as quite distinct, though complementary, to the role that asking prices play in our
model.

8. Conclusion

In most economic models, it is assumed that either (i) nonnegotiable prices are set by
sellers, (ii) prices are the outcome of a bargaining game, or (iii) prices are determined
through an auction. However, many goods (and services) are sold in a manner that is not
consistent with any of these three pricing mechanisms, but rather seems to combine el-
ements of each. First, sellers announce a price, as in models with price-posting, at which
they are willing to sell their good or service immediately. However, as in bargaining the-
ory, buyers can submit a counteroffer that will also be considered by the seller. Finally,
in the event that no buyer offers the asking price within a certain period of time, the
set of counteroffers that the seller has received are aggregated, as in an auction, and the

32In a related environment with two bidders, Pancs (2013) also finds that partial disclosure is optimal for
the seller. McAdams (2015) also studies optimal disclosure in an environment where buyers choose when
to enter a mechanism.

33For a formal proof, see the working paper version Lester et al. (2013).
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object is awarded to the buyer with the best counteroffer. Despite the prevalence of this
pricing scheme in many markets, it has received little attention in the academic litera-
ture. In this paper, our objective was to construct a sensible economic model to help us
understand how and why this type of pricing mechanism can be an efficient way to sell
goods and services. Combining two simple, realistic ingredients—namely, competition
and costly inspection—we showed that asking prices emerge as the mechanism that is
both revenue-maximizing and efficient. As a result, the framework developed here pro-
vides a theory of asking prices that is both micro-founded and tractable, offers a variety
of testable predictions, and lends itself easily to various extensions.

Appendix: Proofs

Proof of Lemma 1

Proving Lemma 1 requires establishing optimality of both the sequential search strat-
egy and the stopping rule with constant cutoff x∗. Both are well known results in the
literature, so we sketch the intuition below and refer the reader to, e.g., Lippman and
McCall (1976), Weitzman (1979), and Morgan and Manning (1985) for a more rigorous
treatment.

Optimality of Sequential Search. To see that it can never be optimal to learn the val-
uation of more than one buyer at a time, suppose n ≥ 2 buyers arrive at a seller, and
consider the planner’s decision of whether to learn the valuations of the first two buyers
sequentially or simultaneously. Let Zi(x̂i)−y denote the net expected surplus from con-
tinuing to learn buyers’ valuations (under the optimal policy) given that the maximum
valuation of the seller and the i buyers sampled so far is x̂i ≡ max{y�x1� � � � � xi}.

The net social surplus from learning the first two buyers’ valuations simultaneously
is then

−2k− y + max
{
x̂2�Z2(x̂2)

}
� (16)

whereas the surplus from learning these valuations sequentially is

−k− y + max
{
x̂1�−k+ max

{
x̂2�Z2(x̂2)

}}
(17)

= −2k− y + max
{
x̂1 + k� x̂2�Z2(x̂2)

}
�

Clearly, the expression in (17) is weakly larger than (16) for any x1 and x2, and strictly
larger for some x1 and x2. Taking the expectation over all possible realizations there-
fore implies that a planner would want to learn these valuations sequentially ex ante.
It is straightforward to extend this argument to learning the valuations of j > 2 buyers
simultaneously after any number i ≤ n− j of buyers have already inspected the good.

Optimality of the Stopping Rule. Suppose the seller is visited by n ∈ N buyers. Let
Zi(x̂i) denote the expected surplus from sampling the (i + 1)th buyer, for i < n, and let
Vi(x̂i) = max{̂xi − y�Zi(x̂i)}. To derive the optimal stopping rule, we utilize an induction
argument. We begin with the first step. If the seller has met with all n buyers, the decision
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is trivial: the good is allocated to the agent (either one of the buyers or the seller) with
valuation x̂n. The expected surplus is Vn(x̂n)= x̂n − y.

Working backward, consider the planner’s problem when the seller has met with
only n− 1 of the n buyers. If the planner instructs the seller to stop meeting with buyers,
again the good is allocated to the agent with valuation x̂n−1, yielding surplus x̂n−1 −y. Al-
ternatively, if the seller meets with the next buyer, the expected surplus is Zn−1(x̂n−1)−y,
where

Zn−1(x̂)− y = −k+
∫ x

x
max

{
Vn(x̂)�Vn(x)

}
f (x)dx�

so that

Zn−1(x̂) = −k+ x̂F(x̂)+
∫ x

x̂
xf (x)dx�

Notice immediately that Zn−1(x
∗) = x∗ and Z′

n−1(x̂) = F(x̂) ∈ (0�1), so that clearly
x∗ is the optimal cutoff after meeting with n− 1 buyers, and

Vn−1(x̂) =
{
x̂− y for x̂≥ x∗

Zn−1(x̂)− y for x̂ < x∗�

Now consider the planner’s problem after the seller has met with n − 2 buyers. We
establish three important properties of Zn−2(x̂): (i) Zn−2(x̂) = Zn−1(x̂) for all x̂ ≥ x∗; (ii)
Zn−2(x̂) > x̂ for all x̂ < x∗; (iii) limx̂→x∗ Zn−2(x̂) =Zn−1(x

∗)= x∗. Given these three prop-
erties, along with the fact that Z′

n−2(x̂) = Z′
n−1(x̂) = F(x̂) ∈ (0�1) for x ≥ x∗, it follows

immediately that x̂ ≥ Zn−2(x̂) if, an only if, x̂ ≥ x∗, and hence x∗ is the optimal cutoff
again.

After meeting with n − 2 buyers, the expected surplus from another meeting when
x̂n−2 = x̂ is

Zn−2(x̂)− y = −k+ Vn−1(x̂)F(x̂)+
∫ x

x̂
Vn−1(x)f (x)dx�

If x̂ ≥ x∗, then Vn−1(x̂) = x̂− y and thus Zn−2(x̂) = Zn−1(x̂). Alternatively, if x̂ < x∗, then
Vn−1(x̂) =Zn−1(x̂)− y > x̂− y and

Zn−2(x̂) = −k+Zn−1(x̂)F(x̂)+
∫ x∗

x̂
Zn−1(x)f (x)dx+

∫ x

x∗
xf(x)dx

> −k+ x̂F(x̂)+
∫ x∗

x̂
xf (x)dx+

∫ x

x∗
xf(x)dx =Zn−1(x̂) > x̂�

Finally, note that

lim
x̂→x∗ Zn−2(x̂) = −k+Zn−1

(
x∗)F(

x∗) +
∫ x

x∗
xf(x)dx

= −k+ x∗F
(
x∗) +

∫ x

x∗
xf(x)dx =Zn−1

(
x∗) = x∗�

Therefore, the optimal cutoff after meeting with n− 2 buyers is x∗.



Theoretical Economics 12 (2017) Competing with asking prices 761

To summarize, we have established that the following statements are true for j′ =
2: (i) Zn−j′(x̂) = Zn−j′+1(x̂) for all x̂ ≥ x∗, (ii) Zn−j′(x̂) > x̂ for all x̂ < x∗, and (iii)
limx̂→x∗ Zn−j′(x̂) =Zn−j′+1(x

∗)= x∗. It follows that

Vn−j′(x̂)=
{
x̂− y for x̂ ≥ x∗�
Zn−j′(x̂)− y for x̂ < x∗�

Now, suppose this is true for all j′ ∈ {2�3� � � � � j}. We will establish that it is also true for
j + 1. After meeting with n − j − 1 buyers, the expected surplus from another meeting
when x̂n−j−1 = x̂ is

Zn−j−1(x̂)− y = −k+ Vn−j(x̂)F(x̂)+
∫ x

x̂
Vn−j(x)f (x)dx�

If x̂ ≥ x∗, then Vn−j(x̂) = x̂ − y and thus Zn−j−1(x̂) = Zn−1(x̂). Moreover, given the first
assumption in the induction step, Zn−j(x̂)= Zn−1(x̂), so that Zn−j−1(x̂)= Zn−j(x̂).

Alternatively, if x̂ < x∗, then

Zn−j−1(x̂) = −k+Zn−j(x̂)F(x̂)+
∫ x∗

x̂
Zn−j(x)f (x)dx+

∫ x

x∗
xf(x)dx

> −k+ x̂F(x̂)+
∫ x

x̂
xf (x)dx =Zn−1(x̂) > x̂�

Finally, note that

lim
x̂→x∗ Zn−j−1(x̂) = −k+Zn−j

(
x∗)F(

x∗) +
∫ x

x∗
xf(x)dx

= Zn−1
(
x∗) = x∗�

Therefore, we have that the optimal cutoff after meeting with n− j − 1 buyers is x∗.

Proof of Lemma 2

Substituting (2) into (4) and integrating by parts yields

S
(
x∗�λ

) = x∗ − y −
∫ x∗

y
q0(x)dx�

Since x∗ is independent of λ, the second derivative of S(x∗�λ) with respect to λ then
equals

d2S

dλ2 = −
∫ x∗

y

(
1 − F(x)

)2
q0(x)dx < 0�



762 Lester, Visschers, and Wolthoff Theoretical Economics 12 (2017)

Proof of Proposition 1

Given Lemma 1, clearly a stopping rule of x∗ is optimal at all sellers. Then, given
Lemma 2, it follows that total surplus is maximized by assigning the same queue length
λ =� to all sellers.

Proof of Lemma 3

When the buyer declines to pay the asking price, he realizes that the auction will take
place if and only if all other buyers visiting the same seller have a valuation below x̃a. In
the auction, the buyer will face a number of competitors that follows a Poisson distribu-
tion with mean λF(x̃a). Their valuations will be distributed according to F(x)/F(x̃a).

Consider the case in which the buyer’s valuation x is weakly below x̃a. Standard
arguments then imply that the expected payoff for the buyer from participating in the
auction equals the integral of his trading probability.34 That is,∫ x

y
e
−λF(x̃a)(1− F(x′)

F(x̃a)
)
dx′ =

∫ x

y

q0
(
x′)

q0
(
x̃a

) dx′� (18)

where the integrand represents the probability that no other buyer has a valuation
above x′, conditional on all valuations being below x̃a. Multiplying this payoff by (5)
yields the desired expression for u(x; x̃a). To derive the buyer’s optimal bidding func-
tion b̂(x) in the first-price auction, note that (18) should be equal to the product of the
probability that the buyer wins the auction and his payoff conditional on winning. That
is,

q0(x)

q0
(
x̃a

)(
x− b̂(x)

) =
∫ x

y

q0
(
x′)

q0
(
x̃a

) dx′�

where the first factor on the left-hand side represents the probability that no other buyer
has a valuation above x, conditional on all valuations being below x̃a. Solving for b̂(x)
gives the desired result.

Next, consider the case in which the buyer’s valuation x strictly exceeds x̃a. When
the buyer declines to pay the asking price, he maximizes his payoff in the auction by
submitting a bid b̂(x̃a). The expected payoff from this strategy is x − b̂(x̃a) multiplied
by the probability (5) that the auction will take place. Substitution of b̂(x̃a) yields the
desired expression for u(x; x̃a).

Proof of a unique symmetric xa

Consider a buyer with valuation x at a seller with asking price a and queue λ. Accepting
the asking price gives the buyer a payoff x − a, while rejecting it yields u(x; x̃a). From

34See Peters (2013) for a detailed discussion. Peters and Severinov (1997) explicitly analyze the case with
a Poisson number of buyers.
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(7), it readily follows that 0 < (∂u(x; x̃a)/∂x) < 1 since

∂u
(
x; x̃a)
∂x

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ
(
1 − F

(
x̃a

))
1 − q0

(
x̃a

) q0(x) if x≤ x̃a�

λ
(
1 − F

(
x̃a

))
1 − q0

(
x̃a

) q0
(
x̃a

)
if x > x̃a�

(19)

For given a, λ, and x̃a, the buyer should therefore accept the asking price above a certain
cutoff, which we denote—with a slight abuse of notation—by xa ≡ xa(a�λ� x̃a). If there
is an interior cutoff, it is uniquely determined by

xa − a = u
(
xa; x̃a); (20)

otherwise, if a is too small or too large, respectively, the cutoff is xa = y or xa = x. Focus-
ing on interior solutions, one can show that the cutoff is increasing in a, as the implicit
function theorem and (19) imply

∂xa

∂a
=

[
1 − ∂u

(
xa; x̃a)
∂xa

]−1
> 0� (21)

Given symmetric strategies, xa = x̃a needs to hold in equilibrium. To prove that a
unique solution to this fixed point problem exists, consider how the (interior) cutoff xa

varies with x̃a. Applying the implicit function theorem once more implies

∂xa

∂x̃a
= ∂u

(
xa; x̃a)
∂x̃a

[
1 − ∂u

(
xa; x̃a)
∂xa

]−1
�

By (19), the sign of this expression is determined by ∂u(xa; x̃a)/∂x̃a. Evaluated at xa = x̃a,

∂u
(
xa; x̃a)
∂x̃a

|xa=x̃a = −λf
(
x̃a

)1 − q0
(
x̃a

) − q1
(
x̃a

)(
1 − q0

(
x̃a

))2

∫ x̃a

y
q0

(
x′)dx′ < 0�

Hence, the system of equations xa = x̃a and (20) has a unique solution for every a and λ.
By (21), this solution is increasing in a.

Proof of Proposition 2

Since the relation between a and xa is one to one, given λ, the seller’s maximization
problem can be rewritten as a choice over xa and λ, which turns out to be more conve-
nient analytically.35 Define R̂(xa�λ) as the revenue of a seller with asking price a, queue
λ, and cutoff xa ≡ xa(a�λ). Substituting a and b̂(x) into R(a�λ), as given in (10), yields

R̂
(
xa�λ

) = xa − (1 + λ)

∫ xa

y
q0(x̂)dx̂+ λ

∫ xa

y
F(x)q0(x)dx�

35As noted in the text, a potential complication occurs if, for some deviation, there are multiple values
of (xa�λ) such that Û(xa�λ) = U . The current formulation implicitly assumes that the seller calculates his
payoffs from deviating using the most profitable pair (xa�λ). Naturally, if the deviation is not profitable for
this pair, it is not profitable for any pair (xa�λ) such that Û(xa�λ)= U .



764 Lester, Visschers, and Wolthoff Theoretical Economics 12 (2017)

One can derive Û(xa�λ), i.e., the expected payoff of a buyer visiting this seller, in a simi-
lar fashion:

Û
(
xa�λ

) = 1
λ

(
1 − q0

(
xa

)(
1 − F

(
xa

))[∫ x

xa

(
x− xa

)
dF(x)− k

]
+ λ

∫ xa

y

(
1 − F(x)

)
q0(x)dx

)
�

The partial derivatives of R̂(xa�λ) are equal to

∂R̂

∂xa
= 1 −Q1

(
xa

)
> 0�

∂R̂

∂λ
= λ

∫ xa

y

(
1 − F(x)

)2
q0(x)dx > 0�

while the partial derivatives of Û(xa�λ) are

∂Û

∂xa
= −1 −Q1

(
xa

)
λ

(
1 − f

(
xa

)(
1 − F

(
xa

))2

[∫ x

xa

(
x− xa

)
dF(x)− k

])
< 0�

∂Û

∂λ
= − 1 −Q1

(
xa

)
λ2(1 − F

(
xa

))[∫ x

xa

(
x− xa

)
dF(x)− k

]
−

∫ xa

y
q0(x)

(
1 − F(x)

)2
dx�

since Q1(x
a) ≡ q0(x

a) + q1(x
a) < 1. Therefore, the first-order conditions of the La-

grangian with respect to xa, λ, and μ, respectively, equal

0 = (
1 −Q1

(
xa

))(
1 − μ

λ

(
1 − f

(
xa

)(
1 − F

(
xa

))2

[∫ x

xa

(
x− xa

)
dF(x)− k

]))
� (22)

0 = λ

∫ xa

y
q0(x)

(
1 − F(x)

)2
dx

(
1 − μ

λ

)
(23)

− μ

λ2

1 −Q1
(
xa

)(
1 − F

(
xa

))[∫ x

xa

(
x− xa

)
dF(x)− k

]
�

0 = 1 − q0
(
xa

)
λ
(
1 − F

(
xa

))[∫ x

xa

(
x− xa

)
dF(x)− k

]
+

∫ xa

y

(
1 − F(x̂)

)
q0(x̂)dx̂−U�

Solving (22) implies

μ

λ
=

(
1 − f

(
xa

)(
1 − F

(
xa

))2

[∫ x

xa

(
x− xa

)
dF(x)− k

])−1
�

so that (23) can be written as

0 =
[∫ x

xa

(
x− xa

)
dF(x)− k

]

× μ

λ

{
−
λf

(
xa

)∫ xa

y
q0(x)

(
1 − F(x)

)2
dx(

1 − F
(
xa

))2 − 1 −Q1
(
xa

)
λ
(
1 − F

(
xa

))}
�
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Since the term in brackets on the second line of this equation is strictly negative, it must
be that the unique solution for xa satisfies

∫ x
xa(x − xa)dF(x) = k. From this, it immedi-

ately follows that xa = x∗ and μ = λ = �. Hence, the equilibrium is unique and it coin-
cides with the solution to the planner’s problem. Given xa = x∗ and λ = �, the optimal
asking price follows from (8).

Proof of Proposition 3

Consider a candidate equilibrium with market utility 0 <U <
∫ x
y (x− y)f (x)dx−k. Now

take an arbitrary mechanism m1 that one or more sellers post in this equilibrium, which
attracts a queue λ1 > 0 that satisfies U(m1�λ1) = U . This mechanism yields the seller a
payoff R(m1�λ1) and generates a surplus S(m1�λ1) = R(m1�λ1)+ λ1U(m1�λ1)− y.

Now consider an asking price mechanism m∗
a that implements the cutoff x∗ and at-

tracts a queue length λa > 0 that satisfies U = U(m∗
a�λa).36 From our results in Proposi-

tion 2 and the discussion that follows, we know that S(m∗
a�λa) = S∗(λa) and

∂S∗(λ)
∂λ

∣∣∣∣
λ=λa

= U� (24)

Since m1 was chosen when m∗
a was feasible, it must be that

S∗(λa)− λaU + y = R
(
m∗

a�λa
) ≤ R(m1�λ1)= S(m1�λ1)− λ1U + y�

Next let λ∗ = arg maxλ S∗(λ)− λU . Since S∗(λ) is strictly concave, we are assured of a
unique solution that will satisfy

∂S∗(λ)
∂λ

∣∣∣∣
λ=λ∗

=U�

From (24), it must be that λ∗ = λa. Moreover, since S(m1�λ1)≤ S∗(λ1), we can write

R(m1�λ1) = S(m1�λ1)− λ1U + y ≤ S∗(λ1)− λ1U + y

≤ S∗(λ∗) − λ∗U + y

= S∗(λa)− λaU + y = R
(
m∗

a�λa
)
�

Hence, for any equilibrium mechanism m1, it must be that R(m1�λ1) = R(m∗
a�λa).

Moreover, it must also be that λ1 = λa = λ∗. Otherwise, for any λ1 	= λ∗, R(m1�λ1) ≤
S∗(λ1) − λŪ + y < S(λ∗) − λ∗Ū + y = R(m∗

a�λ
∗). This concludes the proof of Proposi-

tion 3.
Finally, since these results hold for all sellers, it must be that λ∗ = � in equilib-

rium. Therefore, for any m1 offered in equilibrium, we must have λ1 = �, U(m1�λ) =
U(m∗

a��)= U
∗

and R(m1�λ1) = R(m∗
a��)= S∗(�)−�Ū + y; this is the result reported in

Corollary 2.

36Note that λa depends on U . However, in what follows, we suppress this implicit relationship for nota-
tional convenience.
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Proof of Lemma 4

Consider a seller with n buyers. The sale price will be above asking price if i ∈ {2� � � � � n}
buyers draw a valuation between a and xa while the remaining n− i buyers draw a valu-
ation below a. The probability of this event is

n∑
i=2

n!
i!(n− i)!

(
F

(
xa

) − F(a)
)i
F(a)n−i = F

(
xa

)n − n
(
F

(
xa

) − F(a)
)
F(a)n−1 − F(a)n�

Taking the expectation over n yields the desired expression.

Proof of Lemma 5

For the planner’s problem, the proof proceeds by induction, much like the proof of
Lemma 1. Suppose that n buyers visit a seller, the first n − 1 buyers learn their valua-
tion, and no trade has taken place because x̂n−1 ≡ max{y�x1� � � � � xn−1} < x∗. In this case,
the planner has two options: either let buyer n incur the inspection cost k and base the
ensuing trading decision on x̂n, or avoid the inspection cost by instructing the seller to
trade with buyer n without knowing his valuation.37

In the former case, expected surplus generated by the match is Zn−1(x̂n−1)−y, where

Zn−1(x̂)= −k+ x̂F(x̂)+
∫ x

x̂
xf (x)dx�

while the latter case yields an expected surplus equal to
∫ x
x xf (x)dx− y. Clearly, inspec-

tion is preferred if and only if Zn−1(x̂n−1)− y >
∫ x
x xf (x)dx− y or, equivalently,

k<

∫ x̂n−1

x
(x̂n−1 − x)f (x)dx�

This condition needs to hold for any feasible value of x̂n−1 so as to guarantee inspection
by the last buyer. Since the right-hand side is strictly increasing in x̂n−1, (15) is a neces-
sary and sufficient condition. The final step is then to show that this condition implies
that inspection is also optimal after meeting with n − j − 1 buyers for j ∈ {1� � � � � n − 1}.
This follows immediately from Zn−j−1(x̂)≥Zn−1(x̂) for all x̂ and j, as shown in the proof
of Lemma 1.

Next we analyze the market equilibrium described in Section 4. Consider a deviating
buyer who does not inspect the good and therefore does not know his valuation. This
deviant has three options: (i) submit a bid below y, which will be rejected; (ii) submit
a bid between y and a∗; (iii) bid the asking price and trade immediately. The optimal
choice is to behave like a buyer who has a valuation equal to the unconditional expec-
tation of x, which we denote by xe = EF [x] ≡ ∫ x

x xf (x)dx. That is, he should submit a

37The planner can of course also instruct the seller to immediately trade with the agent with valuation
x̂n−1, but, as shown in Lemma 1, this is dominated by learning the valuation of the last buyer since x̂n−1 <

x∗.
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bid below y if xe < y and should bid b̂(xe) if xe ∈ [y�x∗). Note that the remaining case,
xe ∈ [x∗�x], cannot occur under (15), since it implies

xe = −
∫ x∗

x

(
x∗ − x

)
f (x)dx+ k+ x∗

< −
∫ y

x
(y − x)f (x)dx+ k+ x∗ < x∗�

To see whether the deviant benefits from not inspecting the good, define an auxiliary
distribution F̃(x) that resembles F(x), except that the mass below y and above x∗ is
concentrated as mass points at y and x∗, respectively. That is,

F̃(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < y�

F(x) if y ≤ x≤ x∗�
1 if x∗ < x�

Let x̃e = EF̃ [x] denote the expectation of x under this modified distribution. Under (15),
it then follows that x̃e > xe, since

x̃e − xe =
∫ y

x
(y − x)dF(x)−

∫ x

x∗

(
x− x∗)dF(x)

=
∫ y

x
(y − x)dF(x)− k> 0�

The fact that u(x;x∗) is an increasing function of x then implies that u(xe;x∗) <
u(x̃e;x∗), while the convexity of u(x;x∗) in x implies that u(x̃e;x∗) < EF̃ [u(x;x∗)] by
Jensen’s inequality. Note, however, that EF̃ [u(x;x∗)] exactly equals the payoff from in-
spection, since

EF̃

[
u
(
x;x∗)] = u

(
y;x∗)F̃(y)+

∫ x∗

y
u
(
x;x∗)dF̃(x)+ (

1 − F̃
(
x∗))u(

x∗;x∗)
=

∫ x∗

y
u
(
x;x∗)dF(x)+ (

1 − F
(
x∗))u(

x∗;x∗)
= λ

(
1 − F

(
x∗))

1 − q0
(
x∗) [∫ x∗

y

∫ x

y
q0(x̃)dx̃dF(x)+ (

1 − F
(
x∗))∫ x∗

y
q0(x̃)dx̃

]
�

Hence, the payoff from inspection is strictly higher than the payoff from not inspecting.
To show that (15) is also necessary, consider the limit � → 0, such that a buyer who

meets with a seller knows that, with probability 1, he does not face competition from
other buyers. The optimal bid in that case is y and it follows immediately that inspection
is better only if (15) holds.
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