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This paper offers a resolution to an extensively studied question in theoretical eco-
nomics: which measure spaces are suitable for modeling many economic agents?
We propose the condition of “nowhere equivalence” to characterize those mea-
sure spaces that can be effectively used to model the space of many agents. In
particular, this condition is shown to be more general than various approaches
that have been proposed to handle the shortcoming of the Lebesgue unit inter-
val as an agent space. We illustrate the minimality of the nowhere equivalence
condition by showing its necessity in deriving the determinateness property, the
existence of equilibria, and the closed graph property for equilibrium correspon-
dences in general equilibrium theory and game theory.
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1. Introduction

A typical economic model starts with an agent space. When a model considers a fixed
finite number of agents, the most natural agent space is the set {1�2� � � � � n} for some
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positive integer n. One may also need to model the interaction of many agents so as
to discover mass phenomena that do not necessarily occur in the case of a fixed finite
number of agents. A well known example is the Edgeworth conjecture that the set of
core allocations shrinks to the set of competitive equilibria as the number of agents goes
to infinity, though the former set is, in general, strictly larger than the latter set for an
economy with a fixed finite number of agents.1

To avoid complicated combinatorial arguments that may involve multiple steps of
approximations for a large but finite number of agents, it is natural to consider eco-
nomic models with an infinite number of agents. The mathematical abstraction of an
atomless (countably additive) measure space of agents provides a convenient idealiza-
tion for a large but finite number of agents.2 The archetype space in such a setting is the
Lebesgue unit interval. However, a number of desirable properties fail to hold in various
situations when the underlying agent space is the Lebesgue unit interval. We focus on
the following three problems in this paper. The first is the determinateness problem in
general equilibrium theory and game theory; that is, two economies (games) with iden-
tical distributions on the space of characteristics may not have the same set of distribu-
tions of equilibria, as shown in Examples 1 and 3 of Section 2. The second problem is
the nonexistence of pure-strategy Nash equilibria in games with many agents. The third
problem is the dissonance between an idealized economy (game) and its discretized ver-
sions. Namely, the equilibria in a sequence of economies (games) converging to a limit
economy (game) may fail to converge to an equilibrium of the limit economy (game);
see Examples 2 and 4 in Section 2.

A basic and natural question arises: which measure spaces are most suitable for
modeling many economic agents? The key point is that an economic agent with a given
characteristic often has multiple optimal choices. Various equilibrium properties may
require different agents with the same characteristic to select different optimal choices
(see Remark 4 below). To allow such heterogeneity, one needs to distinguish the agent
space from the subspace generated by the mapping specifying the individual character-
istics (i.e., the “characteristic type space” in Section 3).3 For this purpose, we introduce
the condition of “nowhere equivalence” to characterize those measure spaces that can
be effectively used to model many agents. This condition requires that for any non-
trivial collection of agents, when the agent space and the characteristic type space are
restricted to such a collection, the former contains the latter strictly in terms of measure
spaces.

We demonstrate that the nowhere equivalence condition can be used to handle the
shortcoming of the Lebesgue unit interval, especially for the three problems as dis-
cussed above. To resolve the same or related problems with the Lebesgue unit interval,
various approaches have been proposed, such as distributional equilibria, standard rep-
resentations, hyperfinite agent spaces, saturated probability spaces, and agent spaces

1See, for example, Debreu and Scarf (1963), Hildenbrand (1974), Anderson (1978), and McLean and
Postlewaite (2005).

2For some classical references, see, for example, Milnor and Shapley (1961), Aumann (1964),
Hildenbrand (1974), and Hammond (1979).

3The shortcoming of the Lebesgue unit interval is due to the possible identity of the spaces of agents and
their characteristic types.
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with the condition of “many more agents than strategies.” It is shown that our condition
is more general than all these approaches. More importantly, we demonstrate the min-
imality of the nowhere equivalence condition by showing its necessity in resolving the
three problems mentioned earlier, which is discussed below in more details.

We first consider the determinateness problem in general equilibrium theory. As
pointed out in Kannai (1970, p. 811), Gérard Debreu remarked that there exists a serious
difficulty with large economies in the sense that large economies with the same distribu-
tion on agents’ characteristics need not have the same set of distributions for core allo-
cations (i.e., Walrasian allocations). Kannai (1970, p. 811) presented a concrete example
illustrating that point using the Lebesgue unit interval as the underlying agent space; see
Example 1 below for details. It was then conjectured by Robert Aumann that the closure
of the sets of distributions for the core allocations are the same for large economies with
the same distribution on agents’ characteristics; see Kannai (1970, p. 813). This con-
jecture was resolved in Hart et al. (1974). To show that the distribution of agents’ char-
acteristics is a concise and accurate description of a large economy, Hart et al. (1974)
proposed the approach of “standard representation,” which assumes the agent space to
be the product of the space of characteristics and the Lebesgue unit interval.4 Based
on this approach, they obtained the determinateness property for large economies in-
stead of the “same closure property” in Aumann’s conjecture. It is easy to show that
the nowhere equivalence condition is sufficient for the validity of such determinateness
property. What is surprising is that our condition is also necessary for this property to
hold. Both results are stated in Theorem 1 below.

Next, we move to games with many agents. Example 3 presents a simple game and its
variation to illustrate a similar determinateness problem in the setting of large games.
Khan and Sun (1999, p. 472) presented a rather difficult example of two large games
(based on the Lebesgue agent space) with the same distribution on agents’ character-
istics, where one has a Nash equilibrium while the other does not. It implies that the
respective sets of distributions for the Nash equilibria in these two large games do not
have the same closure, in contrast to the “same closure” conjecture of Aumann for the
case of large economies.5  Khan and Sun (1999) resolved the existence and determinate-
ness issues of large games by working with a hyperfinite agent space.6 Motivated by the
consideration of social identities as in Akerlof and Kranton (2000) and Brock and Durlauf
(2001), Khan et al. (2013) introduced a more general class of large games in which agents
have names and social types/biological traits.7 Corresponding to Theorem 1, Theorem 2

4The construction of a standard representation leads to a continuum of agents with each characteris-
tic, which allows a natural distinction between the spaces of agents and their characteristic types. Indeed,
Lemma 1 shows that the nowhere equivalence condition is satisfied by the approach of standard represen-
tation.

5In the large economies considered here, one needs to work with the aggregate demand in a finite-
dimensional commodity space. In contrast, the example in Khan and Sun (1999) involves the infinite-
dimensional space of all the distributions on the action space [−1�1].

6Lemma 3 shows that the nowhere equivalence condition is always satisfied by a hyperfinite agent space.
Thus, the shortcoming of the Lebesgue unit interval can be avoided.

7The large games considered in Khan and Sun (1999) can be viewed as large games with a single trait.
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considers the sufficiency and necessity of the nowhere equivalence condition for the de-
terminateness property and existence of Nash equilibria in large games (with or without
traits).

Finally, we consider the fundamental issue of whether an economy with an atomless
probability space of agents is, in general, a good proxy for large finite-agent economies.
Example 2 presents a sequence of finite-agent economies converging to a limit large
economy with the Lebesgue agent space. However, a converging sequence of equilibria
corresponding to the given sequence of finite-agent economies fails to converge to an
equilibrium of the limit economy. Theorem 1 demonstrates that the nowhere equiva-
lence condition is not only sufficient but also necessary for modeling the agent space
in a large limit economy. Similar issues arise in large games. Example 4 provides a sim-
ple game and its discretizations to show that the Nash equilibria in a sequence of finite-
agent games, converging to a limit large game with the Lebesgue agent space, fail to con-
verge to a Nash equilibrium of the limit game.8 We show in Theorem 2 that the nowhere
equivalence condition is also necessary and sufficient for the closed graph property to
hold in large games.9

The rest of the paper is organized as follows. Section 2 presents several examples
in general equilibrium theory and game theory to illustrate the shortcoming of the
Lebesgue unit interval as an agent space. In Section 3, we introduce the nowhere equiv-
alence condition for agent spaces, and then show that this condition is necessary and
sufficient for obtaining the determinateness property, the existence of equilibria, and
the closed graph property for equilibrium correspondences in general equilibrium the-
ory and game theory. In Section 4, we show that the nowhere equivalence condition is
more general than various earlier approaches proposed to handle the shortcoming of
the Lebesgue unit interval. All the proofs are collected in the Appendix.

2. Examples

In this section, we present five examples in general equilibrium theory and game the-
ory to illustrate the shortcoming of the Lebesgue unit interval as an agent space.10

We first consider the determinateness problem and the closed graph property in large
economies in Section 2.1. Similar issues in large games together with the relevant pu-
rification problem are then discussed in Section 2.2. The proofs of the claims in these
examples are given in Appendix A.2.

8A rather involved example provided by Qiao and Yu (2014) shows the existence of a convergent se-
quence of exact Nash equilibria in a sequence of finite-agent games such that the idealized limit game of
the sequence does not have any Nash equilibrium.

9Khan et al. (2013) and Qiao and Yu (2014) considered the existence issue of pure-strategy Nash equilib-
ria and the closed graph property in large games with traits via a saturated agent space; for details about
saturated agent spaces, see Section 4.5. More generally, the nowhere equivalence condition allows the pos-
sibility to work with both saturated and nonsaturated agent spaces and unifies various earlier approaches
(including the distributional approach, the standard representation, and the saturated probability spaces).

10Some regularity properties (such as convexity, compactness, purification, and upper hemicontinuity)
of the distribution of correspondences also fail to hold when the underlying measure space is the Lebesgue
unit interval; see Examples 1–3 of Sun (1996).
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Figure 1. Indifference curves and budget lines.

2.1 Examples on large economies

The following example, taken from Kannai (1970), demonstrates the determinateness
problem of large economies: the set of distributions of the Walrasian allocations is not
completely determined by the distribution of agents’ characteristics in terms of their
preferences and endowments.

Example 1. Consider two economies E1 and E2 with two goods. The agent space for
each of the economies E1 and E2 is the Lebesgue unit interval (I�B�η), where I = [0�1],
B is the Borel σ-algebra, and η is the Lebesgue measure. In both economies, all the
agents have the same preference, and the corresponding indifference curves are parallel
as shown in Figure 1. For � = 1�2, the line segment D� is represented by y = x + 3

2 − �

for x ∈ [(2� + 1)/4� (2� + 5)/4] with the endpoints A� = ((2� + 1)/4� (7 − 2�)/4) and
A′
� = ((2� + 5)/4� (11 − 2�)/4). The set of endowments is represented by the line seg-

ment W : y = x for x ∈ [1�2] with the endpoints L= (1�1) and H = (2�2). Let p∗ = (1�1).
The parallel dashed lines Bl(p∗) and Bh(p∗) are perpendicular to the parallel line seg-
mentsD1 andD2. The angle θ is chosen to be sufficiently small so that the preference is
monotonic.11

The endowments of the economies E1 and E2 are, respectively, given by

e1(i)= (1 + i�1 + i)� and e2(i)=
⎧⎨
⎩
(1 + 2i�1 + 2i) if i ∈

[
0� 1

2

)
�

(2i�2i) if i ∈
[

1
2 �1

]
�

11It suffices if θ is less than 45 degrees. For a formal definition of monotonic preferences, see Section 3.2.
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Since all the agents in these two economies have the same preference and their endow-
ments generate the same distribution (i.e., η ◦ e−1

1 = η ◦ e−1
2 ), the two economies have

the same distribution of agents’ characteristics. For �= 1�2, let DW (E�) be the set of dis-
tributions of all the Walrasian allocations in the economy E�.12 Then a basic observation
in Kannai (1970) is the following claim.

Claim 1. We have DW (E1) �= DW (E2); in particular, the uniform distribution μ onD1 ∪
D2 is in DW (E2), but not in DW (E1).

The above claim means that the set of distributions of all the Walrasian allocations
is not completely determined by the distribution of agents’ characteristics.

In the second example, we construct a sequence of finite-agent economies such
that (i) each economy has a Walrasian equilibrium, (ii) the sequence of distributions
of agents’ characteristics in those economies converges weakly to the distribution of
agents’ characteristics in the economy E1 as defined in Example 1, and (iii) the weak
limit of the sequence of distributions of the Walrasian allocations in the finite-agent
economies cannot be induced by any Walrasian allocation in the limit economy E1. This
means that the closed graph property for the Walrasian equilibrium correspondence
may fail for large economies.

Example 2. Let E1 be the economy as defined in Example 1, which will be discretized to
generate a sequence of finite-agent economies {E k1 }k∈Z+ , where Z+ is the set of positive
integers. For each k ∈ Z+, we take the probability space (�k�Fk�Pk) to be the agent
space of the economy E k1 , where�k = {1�2� � � � �2k}, Fk is the power set of�k, and Pk is
the counting probability measure over Fk. For each economy E k1 (k ∈ Z+), all the agents
have the same preference as in Example 1 while the endowment for agent j ∈�k is given
by ek1 (j)= (1 + j/(2k)�1 + j/(2k)). For each k ∈ Z+ and j ∈�k, let

fk1 (j)=

⎧⎪⎪⎨
⎪⎪⎩

(
3
4

+ j

2k
�

5
4

+ j

2k

)
if j is odd�(

5
4

+ j

2k
�

3
4

+ j

2k

)
if j is even�

Claim 2. For each k ∈ Z+, (fk1 �p∗) is a Walrasian equilibrium of the economy E k1 , where
p∗ = (1�1).

It is easy to see that the sequence of endowment distributions {Pk ◦ (ek1 )−1}k∈Z+
on the line segment W converges weakly to the endowment distribution η ◦ (e1)

−1 of
the economy E1. Since all the agents in the relevant economies have the same prefer-
ence, the distribution of agents’ characteristics for the economy E k1 converges weakly
to the distribution of agents’ characteristics for the economy E1 as k goes to infinity.
Furthermore, it is clear that the sequence {Pk ◦ (fk1 )−1}k∈N+ of distributions of the Wal-
rasian allocations converges weakly to the uniform distribution μ onD1 ∪D2. However,

12See Section 3.2 for the formal definition of Walrasian allocations.
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Claim 1 shows that the economy E1 does not have a Walrasian allocation with the dis-
tribution μ. This means that the limit distribution of the Walrasian allocations in a se-
quence of finite-agent economies may not be induced by any Walrasian allocation in the
limit economy.

2.2 Examples on large games

As in the survey by Khan and Sun (2002), a large game with an atomless probability
space of agents and a common compact metric action spaceA is a measurable mapping
from the agent space to the space C(A×M(A)) of real-valued continuous functions on
A × M(A) endowed with the sup-norm topology, where M(A) is the space of Borel
probability measures on A with the topology of weak convergence of measures. Hence,
the payoff function of an individual agent as an element of C(A× M(A)) depends on
her action a ∈A and a societal action distribution ν ∈ M(A). In this subsection, we con-
sider the determinateness problem and the failure of the closed graph property together
with the relevant purification problem in the setting of large games.

We first consider the determinateness problem of large games in the sense that the
set of distributions of pure-strategy Nash equilibria may not be completely determined
by the distribution of agents’ characteristics in terms of their payoff functions.

Example 3. Consider two games G1 and G2. In each game, the agent space is the
Lebesgue unit interval (I�B�η) as in Example 1, and the common action space is
A = [−1�1]. The payoffs for the games G1 and G2 are defined as follows. For agent
i ∈ [0�1], action a ∈A, and societal action distribution ν ∈ M(A),

G1(i� a� ν)= −(a+ i)2 · (a− i)2 and G2(i� a� ν)=
⎧⎨
⎩
G1(2i� a� ν) if i ∈

[
0� 1

2

)
�

G1(2i− 1� a� ν) if i ∈
[

1
2 �1

]
�

It is clear thatG1 andG2 are measurable from (I�B�η) to C(A×M(A)) and induce the
same distribution. Hence the two games have the same distribution of agents’ charac-
teristics. For �= 1�2, let D(G�) be the set of distributions of pure-strategy Nash equilib-
ria in the gameG�.13 Then we have the following claim.

Claim 3. We have D(G1) �= D(G2); in particular, the uniform distribution μ on A is in
D(G2), but not in D(G1).

The above claim means that the set of distributions of pure-strategy Nash equilibria
in a game is not completely determined by the distribution of agents’ characteristics.

In the next example, we construct a sequence of finite-agent games such that (i) each
game has a pure-strategy Nash equilibrium, (ii) the sequence of distributions of agents’
characteristics in those games converges weakly to the distribution of agents’ character-
istics in the game G1 as defined in Example 3, and (iii) the weak limit of the sequence

13See Section 3.2 for the formal definition of pure-strategy Nash equilibria in large games.
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of distributions of the pure-strategy Nash equilibria in the finite-agent games cannot be
induced by any pure-strategy Nash equilibrium in the limit game G1. This means that
the closed graph property for the Nash equilibrium correspondence may fail for large
games.

Example 4. Let G1 be the game as defined in Example 3, which will be discretized to
generate a sequence of finite-agent games {Gk1 }k∈Z+ . For each k ∈ Z+, we take the proba-
bility space (�k�Fk�Pk) to be the agent space of the gameGk1 , where�k = {1�2� � � � �2k},
Fk is the power set of �k, and Pk is the counting probability over Fk. The payoff func-
tion for agent j ∈�k in the gameGk1 is

Gk1 (j� a� ν)= −
(
a+ j

2k

)2
·
(
a− j

2k

)2

for her own action a ∈A and societal action distribution ν ∈ M(A). For each k ∈ Z+ and
j ∈�k, let

fk1 (j)= (−1)j
j

2k
�

For each agent j ∈�k in the game Gk1 , fk1 (j) is a dominant action, which means that f k1
is a pure-strategy Nash equilibrium of the game Gk1 for each k ∈ Z+. It is easy to verify
that the sequence {Pk ◦ (Gk1 )−1}k∈Z+ of distributions of agents’ characteristics converges
weakly to the distribution of agents’ characteristics η ◦G−1

1 in the game G1. Further-
more, the sequence of equilibrium distributions {Pk ◦ (f k1 )−1}k∈Z+ converges weakly to
the uniform distribution μ on A. However, by Claim 3, the uniform distribution μ can-
not be induced by any pure-strategy Nash equilibrium of the limit gameG1. That is, the
closed graph property for the Nash equilibrium correspondence fails.

The last example of this section demonstrates the purification problem of large
games.14

Example 5. LetG1 be the game as defined in Example 3. Define a measurable mapping
g1 from (I�B�η) to M(A) by letting

g1(i)= 1
2δi + 1

2δ−i

for i ∈ I, where δi and δ−i are the Dirac measures on A at the points i and −i, respec-
tively. Because i and −i are the two dominant actions for each agent i ∈ I, g1 is clearly
a mixed-strategy Nash equilibrium of the game G1. For notational simplicity, denote
C(A × M(A)) by U . Let τ be the joint distribution on U × A induced by (G1� g1) in
the sense that τ(C)= ∫

I(δG1(i) ⊗ g1(i))(C) dη(i) for any measurable subset C of U ×A.
A measurable mapping f1 from (I�B�η) to A is said to be a purification of g1 if the joint
distribution η ◦ (G1� f1)

−1 is τ; suppose that such a purification f1 exists. It is then clear
that for η-almost all i ∈ I, f1(i) is i or −i. As above, since i and −i are the two dominant

14We thank an anonymous referee for the suggestion to add such an example.
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actions for each agent i ∈ I, f1 is a pure-strategy Nash equilibrium of the game G1. It
is easy to see that the marginal of τ on A is the uniform distribution μ, which is also
the distribution induced by f1 on A. It implies that μ ∈ D(G1), which is impossible by
Claim 3.

3. Main results

3.1 Nowhere equivalence

In a typical economic model, each agent is described by some characteristics, such
as the strategy/action set, payoff, preference, endowment/income, information, social
types/biological traits. The mapping from the agent space to the space of characteris-
tics generates a sub-σ-algebra on the agent space, which can be seen as the preimage
of Borel measurable sets in the space of characteristics. Thus, it is natural to restrict our
attention to a sub-σ-algebra that is to be used in modeling agents’ characteristics. The
corresponding restricted probability space on such a sub-σ-algebra is called the char-
acteristic type space. In this subsection, we introduce the condition of nowhere equiv-
alence to characterize the relationship between the agent space and the characteristic
type space.

Let (��F�P) be an atomless probability space with a complete countably additive
probability measure P ,15 and let G be a sub-σ-algebra of F . The probability spaces
(��F�P) and (��G�P) are used to model the agent space and the characteristic type
space, respectively.16

For any nonnegligible subset D ∈ F , i.e., P(D) > 0, the restricted probability space
(D�GD�PD) is defined as follows: GD is the σ-algebra {D ∩ D′ : D′ ∈ G} and PD is the
probability measure rescaled from the restriction of P to GD; the restricted probability
space (D�FD�PD) is defined similarly.

Let X and Y denote Polish (complete separable metrizable topological) spaces, let
B(X) denote the Borel σ-algebra on X , and let M(X) denote the space of Borel prob-
ability measures on X with the topology of weak convergence of measures. Note that
M(X) is again a Polish space; see Theorem 15.15 in Aliprantis and Border (2006). For
any μ ∈ M(X ×Y), let μX and μY be the marginals of μ onX and Y , respectively.

Now we are ready to present the following definition.

Definition 1. A σ-algebra F is said to be nowhere equivalent to a sub-σ-algebra G
if for every nonnegligible subset D ∈ F , there exists an F-measurable subset D0 of D
such that P(D0 
D1) > 0 for any D1 ∈ GD, where D0 
D1 is the symmetric difference
(D0 \D1)∪ (D1 \D0).

15A probability space (��F�P) (or its σ-algebra) is atomless if for any nonnegligible subset E ∈ F , there
is an F-measurable subset E′ of E such that 0<P(E′) < P(E).

16Here G can be viewed as the σ-algebra induced by a mapping from the agent space to the space of
characteristics. For example, consider a large economy E with the space of payoff functions U and the space
of endowments E. Let B(U) and B(E) be the corresponding Borel σ-algebras on U and E, respectively. The
mapping E from I to U × E assigns for each agent a payoff function and an initial endowment. Then G is
the σ-algebra generated by E ; that is, G is the preimage of B(U)⊗B(E) of the function E .
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Let (��F�P) and (��G�P) model the respective spaces of agents and characteristic
types. For any given nonnegligible group D of agents, FD is the collection of subgroups
of agents in D, while GD represents the set of all characteristic-generated subgroups
of agents in D. The condition that F is nowhere equivalent to G means that for any
nonnegligible groupD of agents, FD is always strictly richer than GD.

The following lemma provides a simple example to demonstrate how to restore the
nowhere equivalence condition if it fails to hold. The idea is similar to that of the stan-
dard representation in Section 4.3.17 Its proof is left to Appendix A.1.

Lemma 1. Suppose that (��F�P) and (��G�P)model the respective spaces of agents and
characteristic types. Let �′ = � × I, F ′ = F ⊗ B, G′ = G ⊗ {∅� I}, and P ′ = P ⊗ η on F ′,
where (I�B�η) is the Lebesgue unit interval. Then F ′ is nowhere equivalent to G′ under P ′.

The above lemma implies that when the Lebesgue unit interval models both the
spaces of agents and characteristic types, the nowhere equivalence condition can al-
ways be achieved by using the Lebesgue unit square as an extended agent space. In
particular, each agent name ω ∈ � corresponds to a continuum of agents in the form
(ω� t), t ∈ [0�1] with the same characteristic. This is a continuum version of the classi-
cal sequential replica model as in Debreu and Scarf (1963). However, such a formula-
tion may not be appropriate when the characteristics are meant to capture individual
idiosyncrasies.

3.2 Applications

In this subsection, we present several applications to illustrate the usefulness of the
nowhere equivalence condition. Our first aim is to show that the nowhere equivalence
condition can be used to handle the shortcoming of the Lebesgue unit interval. In par-
ticular, we focus on the following results from general equilibrium theory and game the-
ory: (i) the determinateness in large economies, (ii) the closed graph property in large
economies, (iii) the determinateness in large games with traits, (iv) the existence of pure-
strategy Nash equilibria in large games with traits, and (v) the closed graph property in
large games with traits. More importantly, we point out that the nowhere equivalence
condition is minimal in the sense that it is necessary to derive these desirable economic
results.

We follow the notation in the previous subsection, and use (��F�P) and (��G�P)
to model the respective spaces of agents and characteristic types. We assume that G is
a countably generated sub-σ-algebra of F throughout this subsection.18 The proofs of
the results in this subsection are given in Appendixes A.3 and A.4.

Large economies Let R�+ be the commodity space and let Pmo be the space of mono-
tonic preference relations on R

�+. We endow the space Pmo with the metric of closed

17We thank the editor for suggesting this lemma.
18A probability space (or its σ-algebra) is said to be countably generated if its σ-algebra can be generated

by countably many measurable subsets together with the null sets.
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convergence.19 Let B(Pmo ×R
�+) be the Borel σ-algebra on Pmo ×R

�+. A large economy
is a G-measurable mapping E from the agent space (��F�P) to the space of character-
istics Pmo ×R

�+ such that for eachω ∈�, E (ω)= (�ω�e(ω)), and the mean endowment∫
� e dP is finite and strictly positive, where (��G�P) represents the characteristic type

space.20

An integrable function f from the agent space (��F�P) to the commodity space R
�+

is called a Walrasian allocation for the economy E : (��G�P)→ Pmo × R
�+ if there is a

nonzero price vector p ∈R
�+ such that the following statements hold:

(i) For P-almost all ω ∈ �, f(ω) ∈D(p��ω�e(ω)), where D(p��ω�e(ω)) is the set of
all maximal elements for �ω in the budget set {x ∈R

�+ : p · x ≤ p · e(ω)}.

(ii) We have
∫
� f dP = ∫

� e dP .

Here, (f�p) is called a Walrasian equilibrium and p is called a Walrasian equilibrium
price. LetW F (E ) and DW F (E ) denote the respective sets of all F-measurable Walrasian
allocations in the economy E and of their distributions.

The first issue we address is the determinateness problem in large economies. As
shown in Example 1, the set of distributions of Walrasian allocations is not completely
determined by the distribution of agents’ characteristics. That is, there exist two atom-
less economies E1 and E2 with the same distribution of agents’ characteristics, and a
Walrasian allocation f2 of E2 such that the distribution of f2 cannot be induced by any
Walrasian allocation of E1.

We also consider the closed graph property for the Walrasian allocations in the set-
ting of large economies. The basic idea of this property is quite clear: it simply asserts
that any converging sequence of Walrasian allocations of a sequence of economies con-
verging (in some sense) to a limit economy converges to a Walrasian allocation of the
limit economy. Here is the formal definition. Let E be a G-measurable economy from the
agent space (��F�P) to the space of characteristics Pmo × R

�+. Let {(�k�Gk�Pk)}k∈Z+
be a sequence of probability spaces where �k is finite, Gk is the power set of �k, and
supω∈�k Pk(ω)→ 0 as k goes to infinity. For each k ∈ Z+, let a finite-agent economy E k

be a mapping from (�k�Gk�Pk) to Pmo × R
�+. The Walrasian equilibrium correspon-

denceW F is said to have the closed graph property for the economy E if

(i) for any sequence of finite-agent economies {E k}k∈Z+ which converges weakly to
E in the sense that {Pk ◦ (E k)−1}k∈Z+ converges weakly to P ◦ E −1 and

∫
�k ek dPk

converges to
∫
� e dP , and

(ii) for any sequence of Walrasian allocations {fk}k∈Z+ (fk is a Walrasian allocation in
E k for each k ∈ Z+) such that {Pk ◦ (fk)−1}k∈Z+ converges weakly to a distribution
μ on R

�+,

19The lemma on Hildenbrand (1974, p. 98) shows that the space Pmo with the metric of closed conver-
gence is a Gδ set in a compact metric space. By the classical Alexandroff lemma (see Aliprantis and Border
2006, p. 88), Pmo is a Polish space.

20Another popular model for large economies is the model of replica economies; see, for example,
Debreu and Scarf (1963), Hildenbrand (1974), and McLean and Postlewaite (2002).
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there exists a Walrasian allocation f : (��F�P) → R
�+ in the economy E such that P ◦

f−1 = μ.21
 Example 2 shows the failure of the closed graph property for large economies

in general.
The following theorem demonstrates that the nowhere equivalence condition is

both sufficient and necessary for the determinateness and the closed graph property
to hold in large economies.

Theorem 1 (Large economy). The following statements are equivalent.

(i) The σ-algebra F is nowhere equivalent to its sub-σ-algebra G.

(ii) For any two G-measurable large economies E1 and E2 with the same distribution
of agents’ characteristics, DW F (E1) and DW F (E2) are the same, where DW F (Ei)
denotes the set of distributions of all the F-measurable Walrasian allocations in
the economy Ei for i= 1�2.

(iii) The correspondence W F of F-measurable Walrasian allocations has the closed
graph property for any G-measurable economy E .22

Remark 1. Recall that in Example 1, F is the Borel σ-algebra B on [0�1]. However, the
sub-σ-algebra G, which is generated by E1, is also the Borel σ-algebra B. Thus, state-
ment (i) in Theorem 1 is not satisfied (B is not nowhere equivalent to itself) and the
determinateness problem could occur.

Theorem 1(iii) states the closed graph property for large economies only in terms of
a sequence of finite-agent spaces {(�k�Gk�Pk)}k∈Z+ . In fact, the proof in the Appendix
for the implication (i) ⇒ (iii) in Theorem 1 does not rely on the finiteness of �k. Thus,
the closed graph property holds when one removes the restriction that �k is finite for
each k ∈ Z+, which also implies that DW F (E ) is closed.

Large games Large games and their applications have been extensively studied.23 Mo-
tivated by the consideration of social identities as in Akerlof and Kranton (2000) and
Brock and Durlauf (2001), Khan et al. (2013) provided a treatment of large games in
which individual agents have names as well as traits, and an agent’s dependence on
society is formulated as a joint probability measure on the space of actions and traits.

The agent space of a large game with traits is modeled by an atomless probability
space (��F�P). Let A be a compact metric space that serves as the common action
space for all the agents, and let T be a Polish space representing the traits of agents

21The main purpose of introducing a large economy is to model economies with large but finitely many
agents. The closed graph property as defined here relates the limit economy to the relevant large finite
economies.

22Kannai (1970) considered a similar convergence problem in which a sequence of continuous repre-
sentations of finite-agent economies converges to a limit economy almost surely, while Hildenbrand (1974)
adopted the distributional approach without explicit agent spaces. Thus, their approaches do not provide
a direct relationship between the limit economy and the relevant large finite economies.

23See, for example, the survey by Khan and Sun (2002). For some recent applications of large games, see
Angeletos et al. (2007), Guesnerie and Jara-Moroni (2011), Peters (2010), and Rauh (2007).
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endowed with a Borel probability measure ρ. Let M(T ×A) be the space of Borel prob-
ability distributions on T ×A, and let Mρ(T ×A) be the subspace of M(T ×A) such
that for any ν ∈ Mρ(T ×A), its marginal probability νT (on T ) is ρ. The set Mρ(T ×A)
is the space of societal responses. The space of agents’ payoff functions V , which can be
regarded as the set of agents’ characteristics, is the space of all continuous functions on
the product spaceA×Mρ(T ×A) endowed with its sup-norm topology.

A large game with traits is a G-measurable function G= (α�v) from the agent space
(��F�P) to T × V such that P ◦ α−1 = ρ, where (��G�P) is the characteristic type
space.24 A pure-strategy Nash equilibrium of the large game with traits G is an F-
measurable function g : (��F�P)→A such that for P-almost all ω ∈�,

vω
(
g(ω)�P ◦ (α�g)−1) ≥ vω

(
a�P ◦ (α�g)−1) for all a ∈A�

where vω represents the function v(ω� ·).25 Let NEF (G) and DF (G) be the respective
sets of F-measurable pure-strategy Nash equilibria in the gameG and of their distribu-
tions.

In Example 3, we have shown that the set of distributions of Nash equilibria is not
completely determined by the distribution of agents’ characteristics. Namely, for two
large gamesG1 andG2 with P ◦G−1

1 = P ◦G−1
2 , the sets of distributions of Nash equilibria

of games G1 and G2 could be different. Khan and Sun (1999) provided an example of
two large games G1 and G2 with the same distribution of agents’ characteristics such
that G1 has a Nash equilibrium, but G2 does not. As a result, the closures of the sets of
distributions for the Nash equilibria in their example are never equal, which indicates
that the determinateness property may fail more severely for large games.

Rath et al. (1995) presented a large game (without traits) with an uncountable action
space in which a pure-strategy Nash equilibrium does not exist. Khan et al. (2013) pro-
vided a large game with finite actions and an uncountable trait space, which does not
have a pure-strategy Nash equilibrium either.

Let G be a G-measurable large game with traits from (��F�P) to T × V . We follow
Section 5 in Khan et al. (2013). Let T be compact, and let Ṽ be the space of all bounded
continuous functions on the product space A × M(T ×A). Let {(�k�Gk�Pk)}k∈Z+ be
a sequence of probability spaces where �k is finite, Gk is the power set of �k, and
supω∈�k Pk(ω) → 0 as k goes to infinity. For each k ∈ Z+, let a finite-agent game
Gk = (αk� vk) be a mapping from (�k�Gk�Pk) to T × Ṽ . The Nash equilibrium corre-
spondenceNEF is said to have the closed graph property for the gameG if

(i) for any sequence of finite-agent games {Gk}k∈Z+ which converges weakly to G in
the sense that {Pk ◦ (Gk)−1}k∈Z+ converges weakly to P ◦G−1, and

(ii) for any sequence of Nash equilibria {f k}k∈Z+ (fk is a pure-strategy Nash equilib-
rium of Gk for each k ∈ Z+) such that {Pk ◦ (f k)−1}k∈Z+ converges weakly to a
distribution μ onA,

24When the trait space is a singleton, we simply call such a large game with traits as a large game.
25Hereafter, the term “Nash equilibrium” refers to a pure-strategy Nash equilibrium when there is no

confusion.
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there exists a pure-strategy Nash equilibrium f : (��F�P)→A in the gameG such that
P ◦ f−1 = μ. Example 4 shows the failure of the closed graph property for large games in
general.

As an analog of Theorem 1, Theorem 2 below shows that if we distinguish the agent
space (��F�P) from the characteristic type space (��G�P), then we are able to fully
characterize the determinateness property, the equilibrium existence, and the closed
graph property in the setting of large games with traits via the nowhere equivalence con-
dition.26

Theorem 2 (Large game). The following statements are equivalent.

(i) The σ-algebra F is nowhere equivalent to its sub-σ-algebra G.

(ii) For any two G-measurable large games with traitsG1 andG2 with the same distri-
bution of agents’ characteristics, DF (G1) and DF (G2) are the same, where DF (Gi)
denotes the set of distributions of all the F-measurable pure-strategy Nash equilib-
ria in the gameGi for i= 1�2.

(iii) Any G-measurable large game with traits G has an F-measurable pure-strategy
Nash equilibrium g.

(iv) The correspondence NEF of F-measurable Nash equilibria has the closed graph
property for any G-measurable large game with traitsG.27

In the setting of large games (with or without traits), Keisler and Sun (2009) and
Khan et al. (2013) considered the necessity result for the existence of Nash equilibria,
and Khan et al. (2013) and Qiao and Yu (2014) studied the necessity result for the closed
graph property. All these papers worked with saturated agent spaces, which exclude the
Lebesgue unit interval. Our Theorem 2 shows that the nowhere equivalence condition
is also necessary for the existence of Nash equilibria and the closed graph property in
large games with traits. Such results not only extend the earlier work, but also allow the
possibility to work with nonsaturated agent spaces (by Lemma 5).28

Remark 2 (Necessity for the existence of Nash equilibria in large games). Since large
games form a subclass of large games with traits, the existence of Nash equilibria in large
games under the nowhere equivalence condition follows from Theorem 2. Furthermore,
we also prove the necessity of nowhere equivalence for the existence of Nash equilibria
in large games that goes beyond Theorem 2; see Remark 5 in Appendix A.4.

26The determinateness and existence problems in large games were resolved in Khan and Sun (1999) by
working with a hyperfinite agent space; see Section 4.4 for more discussions.

27The closed graph property for large games with traits was shown in Khan et al. (2013) and Qiao and
Yu (2014) by working with a saturated agent space, while Green (1984) considered a similar property based
on the distributional approach without specifying the finite-agent spaces. Similar to Remark 1, our closed
graph property for large games still holds when one removes the restriction that�k is finite for each k ∈ Z+,
which also implies that DF (G) is closed.

28To prove the necessity of the nowhere equivalence condition for the other statements of Theorems 1
and 2, we need to construct new large economies/games that are substantially more complicated than
those in Examples 1–5; see Remark 6 for more details.
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4. Unification

As discussed in Introduction, the condition of nowhere equivalence unifies various ap-
proaches that have been proposed to handle the shortcoming of the Lebesgue unit in-
terval as an agent space. In this section, we discuss the unification in detail.

4.1 Equivalent conditions

In the following paragraphs, we introduce three equivalent conditions to nowhere
equivalence, which are useful for discussing the unification of various previous ap-
proaches. We follow the notation in Section 3.

Definition 2. (i) Theσ-algebra F is conditional atomless over G if for everyD ∈ F with
P(D) > 0, there exists an F-measurable subset D0 of D such that on some set of
positive probability,

0<P(D0 | G) < P(D | G)�

(ii) The σ-algebra F is said to be relatively saturated with respect to G if for any Polish
spaces X and Y , any measure μ ∈ M(X ×Y), and any G-measurable mapping g
from � to X with P ◦ g−1 = μX , there exists an F-measurable mapping f from �

to Y such that μ= P ◦ (g� f )−1.

(iii) The sub-σ-algebra G admits an atomless independent supplement in F if there
exists another sub-σ-algebra H of F such that (��H�P) is atomless, and for any
C1 ∈ G and C2 ∈ H, P(C1 ∩C2)= P(C1) · P(C2).

Condition (i), which is simply called “F is atomless over G” in Definition 4.3 of
Hoover and Keisler (1984), is a generalization of the usual notion of atomlessness. In
particular, if G is the trivial σ-algebra, then F is atomless over G if and only if F is atom-
less. The concept of “relative saturation” refines the concept of “saturation” used in
Corollary 4.5(i) of Hoover and Keisler (1984); see Section 4.5 for the formal definition
of saturation. Condition (iii) simply indicates the abundance of events in F but inde-
pendent of G. The following lemma shows that all four of its conditions are equivalent if
G is countably generated.

Lemma 2. Let (��F�P) be an atomless probability space and let G be a sub-σ-algebra
of F . If G is countably generated,29 then the following statements are equivalent:30

(i) The σ-algebra F is nowhere equivalent to G.

29The implication (iii) ⇒ (iv) may not be true without the condition that G is countably generated. For
example, if G is saturated and F = G, the statement (iii) holds while the statement (iv) is certainly false.
Other implications are still true even though G is not countably generated.

30We thank an anonymous referee for pointing out an additional equivalent condition as follows. For
every D ∈ F with P(D) > 0, there exists some ε > 0 and an F-measurable subset D0 of D such that P(D0 

D1)≥ ε for anyD1 ∈ GD.
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(ii) The σ-algebra F is conditional atomless over G.

(iii) The σ-algebra F is relatively saturated with respect to G.

(iv) The sub-σ-algebra G admits an atomless independent supplement in F .

4.2 Distributional equilibria

In the standard approach, a large economy/game is described by a measurable map-
ping from the agent space to the space of characteristics, and an equilibrium alloca-
tion/strategy profile is a measurable mapping from the agent space to the commod-
ity/action space. In Hildenbrand (1974), the distributional approach was introduced
in terms of the distribution of agents’ characteristics without an explicit agent space,
and the notion of Walrasian equilibrium distribution was proposed as a probability
distribution on the product space of characteristics and commodities. The same idea
was used in Mas-Colell (1984) for the notion of Nash equilibrium distribution in large
games. Note that the joint distribution of a large economy/game and its equilibrium
allocation/strategy profile automatically gives an equilibrium distribution. In the fol-
lowing discussion, we illustrate the point that given any large economy/game F as in
Hildenbrand (1974) and Mas-Colell (1984), any equilibrium distribution τ associated
with the corresponding distribution of F can be realized as the joint distribution of F
and f , where f is an equilibrium allocation/strategy profile for the large economy/game
F .31 Throughout this subsection, we follow the definitions and notation in Section 3.2.
All the proofs are given in Appendix A.5.

4.2.1 Distributional approach in large economies Let D(p���e) be the demand corre-
spondence when the price vector, preference, and endowment are p, �, and e, respec-
tively. Define a subset Ep of Pmo ×R

�+ ×R
�+ as

Ep = {
(��e�x) ∈ Pmo ×R

�+ ×R
�+ : x ∈D(p���e)

}
�

Definition 3. A distribution economy with the preference space Pmo and the endow-
ment space R

�+ is a Borel probability measure μ on the space of agents’ characteristics
Pmo ×R

�+.
A Walrasian equilibrium distribution of a distribution economy μ is a Borel proba-

bility measure τ on (Pmo ×R
�+)×R

�+ with the following properties:

(i) The marginal distribution of τ on the space of characteristics Pmo ×R
�+ is μ.

(ii) There exists a nonzero price vector p ∈R
�+ such that τ(Ep)= 1.

(iii) We have
∫
Pmo×R

�+ e dμ= ∫
R
�+ x dν, where ν is the marginal distribution of τ on the

space of consumption (the second R
�+ in (Pmo × R

�+) × R
�+); i.e., mean supply

equals mean demand.

31For some additional references on the distributional approach and its applications, see Daron and
Wolitzky (2011), Eeckhout and Kircher (2010), Green (1984), and Noguchi and Zame (2006). The idea to ob-
tain a measurable equilibrium allocation/strategy profile as described above also applies to the equilibrium
distributions considered in all these papers.
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The economy E2 and its Walrasian allocation f2 in Example 1 can induce a joint dis-
tribution τ on (Pmo ×R

�+)×R
�+. As the economies E1 and E2 have the same distribution

on agents’ characteristics, they have the same set of Walrasian equilibrium distributions;
see Hildenbrand (1974, p. 159). As a result, τ is also a Walrasian equilibrium distribution
in the economy E1. Let μ be the marginal distribution of τ on the commodity space.
We have shown that the economy E1 does not have a Walrasian allocation f1 such that
η ◦ f−1

1 = μ; this implies that τ cannot be realized as the joint distribution of E1 and any
Walrasian allocation.

The “only if” part of the following corollary is a direct consequence of the relative
saturation property.32 Suppose that E is a G-measurable economy from the agent space
(��F�P) to the space of agents’ characteristics Pmo × R

�+. Under the nowhere equiv-
alence condition, every Walrasian equilibrium distribution τ of the induced distribu-
tion economy P ◦ E −1 can be realized by an F-measurable Walrasian allocation f in the
sense that τ is the joint distribution of (E � f ). The “if” part follows from the implication
(ii) ⇒ (i) in Theorem 1.

Corollary 1. The σ-algebra F is nowhere equivalent to G if and only if for any G-
measurable economy E : (��F�P)→ Pmo × R

�+ and any Walrasian equilibrium distri-
bution τ of the induced distribution economy P ◦ E −1, there exists an F-measurable Wal-
rasian allocation f such that P ◦ (E � f )−1 = τ.

4.2.2 Distributional approach in large games LetA be a compact metric space and let
U be the space of all continuous functions on the product space A × M(A) endowed
with the sup-norm topology.

Definition 4. A measure game with the action space A is a Borel probability measure
κ ∈ M(U).

A Nash equilibrium distribution of a measure game κ is a Borel probability measure
τ ∈ M(U ×A) such that τU = κ and

τ
({
(u�x) : u(x�τA)≥ u(a�τA) for all a ∈A}) = 1�

where τU and τA are the marginal distributions of τ on U andA, respectively.

The following result, which is a corollary of Theorem 2, is a parallel result of Corol-
lary 1 in the setting of large games.

Corollary 2. The σ-algebra F is nowhere equivalent to G if and only if for any G-
measurable game G : (��F�P)→ U , any Nash equilibrium distribution τ ∈ M(U ×A)

of the induced measure game P ◦G−1, there exists an F-measurable Nash equilibrium
g : �→A such that P ◦ (G�g)−1 = τ.

32Recall that the relative saturation property is equivalent to the nowhere equivalence condition, as
shown in Lemma 2.
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Remark 3. In Example 5, the failure of purification in a particular sense is discussed:
given a large game G and a mixed-strategy profile g, one may not be able to find a
pure-strategy profile f such that (G�f ) and (G�g) have the same distribution. If F is
nowhere equivalent to G, Lemma 2 implies that for any G-measurable large gameG and
any mixed-strategy profile g, there exists an F-measurable pure-strategy profile f such
that G and f induce the same joint distribution as G and g. The converse direction of
this claim is also true. That is, F is nowhere equivalent to G if for any G-measurable large
gameG and mixed-strategy profile g, there exists an F-measurable pure-strategy profile
f such that (G�f ) and (G�g) induce the same distribution.33

4.2.3 A principal–agent model with labor coercion In this subsection, we provide a
concrete example that shows how the nowhere equivalence condition is used to extract
a pure-strategy Nash equilibrium from a given Nash equilibrium distribution.

Consider the principal–agent model of Daron and Wolitzky (2011), which contains
coercive activities by employers. They proved in Proposition 12 the existence of a Nash
equilibrium distribution, while pure-strategy Nash equilibria are used extensively in
their context. Below, we show that a pure-strategy Nash equilibrium can be easily ob-
tained via the nowhere equivalence condition.

Example 6. There is a population of mass 1 of producers, and a population of mass
L< 1 of (identical) agents. At the initial stage, each producer is randomly matched with
a worker with probability L. A successfully matched producer with productivity x will
then choose a level of guns g ≥ 0 at the cost m(g) and offer a contract specifying an
output-dependent wage-punishment pair (wy�py) ≥ 0 for y ∈ {h� l}, corresponding to
high (x) and low (0) output, respectively.

• If the agent rejects the contract, then the producer receives a payoff 0 and the
agent receives a payoff ū− g, where ū is the outside option of the agent and −g is
the punishment enforced by the principal before the agent escapes.

• If the agent accepts the contract offer, then she chooses an effort level a ∈ [0�1] at
private cost c(a). Given output y, the producer’s payoff is P · y−wy −m(g) and the
agent’s payoff is wy −py − c(a), where P is the market price.

It is shown in Daron and Wolitzky (2011, Section 2.2) that the market price P and the
outside option ū are functions of the distribution of efforts a and the aggregate level of
coercion g, respectively. Suppose that the functions P , ū, and m are all continuous, and
that c is twice differentiable.

To establish the existence of an equilibrium contract, Daron and Wolitzky (2011) re-
formulated the model as a large game and adopted the distributional approach.34 The

33Indeed, we prove a stronger result in the above Corollary 1: to derive the nowhere equivalence condi-
tion, one can focus on purification of mixed-strategy Nash equilibria instead of purification of all mixed-
strategy profiles.

34See Appendix A of Daron and Wolitzky (2011). For more discussions, see Section 2.2 and Proposition 1
therein.
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name space is I = [x� x̄] (x > 0) endowed with Borel σ-algebra B(I) and uniform distri-
butionη, where x ∈ I is the productivity of some producer. A producer with productivity
x chooses (q�g) from the common action spaceA= [0� x̄]×[0� ḡ] to maximize the payoff
function

π(x)(q�g�Q�G) = q · P(Q)− q

x

[(
1 − q

x

)
· c′

(
q

x

)
+ c

(
q

x

)
+ ū(G)− g

]
+

−
(

1 − q

x

)[
−q
x

· c′
(
q

x

)
+ c

(
q

x

)
+ ū(G)− g

]
+

−m(g)�

where (Q�G) is the aggregation of all producers’ actions, and [z]+ = max{z�0}.
In Proposition 12 of Daron and Wolitzky (2011), they showed that a Nash equilib-

rium distribution exists. We prove the existence of a pure-strategy Nash equilibrium
under the nowhere equivalence condition. One can extend the name space (I�B(I)�η)
to (I�F�η′) such that B(I) is a sub-σ-algebra of F , η′ coincides with η when restricted
on B(I), and F is nowhere equivalent to B(I) under η′. Therefore, given a Nash equi-
librium distribution, a corresponding F-measurable pure-strategy Nash equilibrium f

can be obtained via Corollary 2.

4.3 Standard representation

Hart et al. (1974) modeled the agent space as the product of the space of characteristics
and the Lebesgue unit interval to obtain the exact determinateness property for large
economies. Let � be a distribution of agents’ characteristics. Define an atomless econ-
omy E � as the “standard representation” of � as follows. The atomless probability space
of agents is given by (Pmo ×R

�+)×I with the product measure P = �⊗η, where (I�B�η)
is the Lebesgue unit interval. The mapping E � is the projection from the agent space to
the space of characteristics such that

E �(��e� i)= (��e) for every (��e� i) ∈ Pmo ×R
�+ × I�

Hart et al. (1974) showed that (i) the closure of the sets of distributions for all the Wal-
rasian allocations is the same, provided that the distributions of two large economies
are the same, and (ii) in a standard representation, the set of distributions of all the
Walrasian allocations is closed. Thus, the determinateness problem was resolved via
standard representations.

In the construction of a standard representation, the σ-algebra induced by E � is
B(Pmo × R

�+) ⊗ {I�∅}, which admits an atomless independent supplement {Pmo ×
R
�+�∅} ⊗ B in B(Pmo × R

�+) ⊗ B. Hence, B(Pmo × R
�+) ⊗ B is nowhere equivalent to

B(Pmo ×R
�+)⊗ {I�∅}. Let F = B(Pmo ×R

�+)⊗ B. By Remark 1, DW F (E �) is closed for
the large economy E �.

Next, we consider a related result in Noguchi (2009, Corollary 1) that used the idea of
standard representation in the setting of large games. Suppose thatA is a compact met-
ric action space and that U is the space of all continuous functions on the product space
A×M(A) endowed with the sup-norm topology and the resulting Borelσ-algebra B(U).
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Let κ ∈ M(U) be a measure game and let τ be a Nash equilibrium distribution of κ as in
Definition 4. Let π be the projection from U × I to U , where (I�B�η) is the Lebesgue unit
interval. It was shown in Corollary 1 of Noguchi (2009) that there exists a pure-strategy
Nash equilibrium f from U × I toA such that (κ⊗η)(π�f )−1 = τ. This result is a special
case of our Corollary 2 by taking �= U × I, F = B(U)⊗B, and G = B(U)⊗ {∅� I}.

4.4 Hyperfinite agent space

Khan and Sun (1999) argued that hyperfinite Loeb counting probability spaces35 are par-
ticularly valuable for modeling situations where individual players are strategically neg-
ligible. In particular, such agent spaces allow one to go back and forth between exact re-
sults for the ideal case and approximate results for the asymptotic large finite case.36 Hy-
perfinite Loeb counting probability spaces also have a nice property called homogene-
ity.37 In particular, a probability space (��F�P) is said to be homogeneous if for any two
random variables x and y on � with the same distribution, there is a bijection h from �

to� such that both h and its inverse are measure-preserving, and x(ω)= y(h(ω)) for P-
almost allω ∈�. Based on the homogeneity property, we can prove the following simple
lemma, which shows that the σ-algebra in a hyperfinite Loeb counting probability space
is nowhere equivalent to any of its countably generated sub-σ-algebras.

Lemma 3. Let (��F�P) be a hyperfinite Loeb counting probability space, and let G be a
countably generated sub-σ-algebra of F . Then G admits an atomless independent sup-
plement H in F and, hence, F is nowhere equivalent to G.

Proof. Since G is countably generated, there exists a mapping g : � → ([0�1]�B) that
generates G, where B is the Borelσ-algebra on [0�1]. Letμ= P ◦g−1. By the atomlessness
property of (��F�P), there exists a mapping (g′� f ′) : � → [0�1] × [0�1] such that P ◦
(g′� f ′)−1 = μ⊗ η, where η is the Lebesgue measure on [0�1]. Note that g and g′ share
the same distribution on F . By the homogeneity property, there is an F-measurable and
measure-preserving bijection h on � such that g= g′ ◦ h P-almost surely. Let f = f ′ ◦ h.
Then (g� f ) induces the distribution μ⊗ η and, hence, the sub-σ-algebra H generated
by f is independent of G. �

Rauh (2007) developed an equilibrium sequential search model that can accommo-
date heterogeneity in buyers’ search costs and demand functions, and firms’ cost func-
tions (with general demand and cost functions). The existence of pure-strategy Nash
equilibria is proved by assuming the name space of firms to be a hyperfinite Loeb count-
ing probability space. Below, we show that the existence of a pure-strategy Nash equilib-
rium can still be obtained when the nowhere equivalence condition is imposed on the
agent space; such a result extends the theorem of Rauh (2007).

35Such probability spaces were introduced by Loeb (1975). For the construction, see Loeb and Wolff
(2015).

36See Brown and Robinson (1975), Brown and Loeb (1976), and the references in Anderson (1991) for the
use of hyperfinite agent spaces in different contexts.

37See Proposition 9.2 of Keisler (1984).
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Example 7. Let the agent space be a hyperfinite Loeb counting probability space
(J�J �μJ). The space of feasible prices is a compact set P = [0� p̄] ∪ {p̃}, where p̄ > 0
is the price above which buyers do not pay and p̃ < 0 is the shutdown price chosen by
firms that elect not to operate. Let D be the set of all cumulative distribution functions
(abbreviated as cdf henceforth) with support contained in P . The set P is compact; so is
the set D.

Let C be the set of all continuous functions from [0� ȳ] to R+ endowed with the sup-
norm topology, where ȳ is the upper bound of the demand. The supply side of the mar-
ket is then characterized by a measurable function S : J → C, which assigns a cost func-
tion to each firm. If firm j charges the price p, then its expected demand is D(p | F),
where F ∈ D is the cdf induced by the prices of other firms. Let π : P ×D × C →R be

π(p�F�C)=
{
p ·D(p | F)−C(

D(p | F)) if p ∈ [0� p̄]�
0� if p= p̃�

Let P be the space of all continuous functions from P ×D to R endowed with the sup-
norm topology and let � : J → P be defined by �(j)= π(·� ·� S(j)). It is shown in Rauh
(2007, Proposition 4) that π is continuous and � is J -measurable.

A search market equilibrium is a J -measurable price profile f : J → P such that for
μJ-almost all j ∈ J, �(j)(f (j)�F) ≥ �(j)(p�F) for all p ∈ P , where F ∈ D is the cdf in-
duced by f . Rauh (2007) proved that a search market equilibrium exists. To reflect the
dependence of � on the mapping S, we use �S to denote �.

We replace the agent space (J�J �μJ) by an atomless probability space (��F�Q)
with a sub-σ-algebra G such that F is nowhere equivalent to G. Consider any new G-
measurable game�S′ : �→ P with a G-measurable cost function profile S′ : �→ C such
that �S′(ω) = π(·� ·� S′(ω)). Since the hyperfinite Loeb counting agent space (J�J �μJ)
is atomless, one can always find a J -measurable cost function profile S : J → C with
the same distribution as that of S′, which implies that Q ◦�−1

S′ = μJ ◦�−1
S . Since Rauh

(2007) showed the existence of a search market equilibrium f : J → P , the relative satu-
ration property implies the existence of an F-measurable function g : �→ P such that
Q ◦ (�S′� g)−1 = μJ ◦ (�S� f )−1. By similar arguments as in the proof for (i) ⇒ (ii) of
Theorem 2, g is a pure-strategy Nash equilibrium of the game �S′ .

4.5 Saturated agent space

The following concept of a saturated probability space was introduced in Hoover and
Keisler (1984).

Definition 5. An atomless probability space (S�S�Q) is said to have the saturation
property for a probability distribution μ on the product of Polish spaces X and Y if for
every random variable f : S→X , which induces the distribution as the marginal distri-
bution of μ overX , there is a random variable g : S→ Y such that the induced distribu-
tion of the pair (f�g) on (S�S�Q) is μ.

A probability space (S�S�Q) is said to be saturated if for any Polish spacesX and Y ,
(S�S�Q) has the saturation property for every probability distribution μ onX ×Y .
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As noted in Hoover and Keisler (1984), any atomless hyperfinite Loeb counting space
is saturated. It is pointed out in Keisler and Sun (2009) that one can usually transfer a
result on hyperfinite Loeb counting spaces to a result on saturated probability spaces
via the saturation property.

The following statement is an obvious corollary of Lemma 2.

Corollary 3. Let (��F�P) be an atomless probability space. Then the following state-
ments are equivalent:38

(i) The set (��F�P) is saturated.

(ii) The σ-algebra F is nowhere equivalent to any countably generated sub-σ-algebra.

(iii) The σ-algebra F is conditional atomless over any countably generated sub-σ-
algebra.

(iv) The σ-algebra F is relatively saturated with respect to any countably generated
sub-σ-algebra.

(v) Any countably generated σ-algebra admits an atomless independent supplement
in F .

Theorem 2 together with Remark 2 shows that any G-measurable large game
with/without traits has an F-measurable Nash equilibrium if and only if F is nowhere
equivalent to G. The following result clearly follows from this characterization and
Corollary 3; see also Keisler and Sun (2009) and Khan et al. (2013) in the settings of
large games and large games with traits, respectively.

Corollary 4. Let (��F�P) be an atomless agent space. Any large game with/without
traitsG has a Nash equilibrium if and only if (��F�P) is saturated.

It is well known that the Lebesgue unit interval is countably generated and, hence,
not saturated (see Keisler and Sun (2009)). However, one can extend the Lebesgue unit
interval (I�B�η) to a saturated probability space (I�F�η′) as in Kakutani (1944). Since
B is countably generated, B admits an atomless countably generated independent sup-
plement H in F . Thus, for any B-measurable large game, Theorem 2 implies that there
always exists a σ(B ∪ H)-measurable Nash equilibrium. Note that σ(B ∪ H) is again
countably generated. Example 3 of Rath et al. (1995) shows the nonexistence of Nash
equilibrium for a large game with the Lebesgue unit interval as the agent space. Khan
and Zhang (2012) present a countably generated Lebesgue extension as the agent space
such that the large game in Rath et al. (1995, Example 3) has a Nash equilibrium. Their
result is a special case of our Theorem 2 since their countably generated Lebesgue ex-
tension includes an atomless independent supplement of B.

38Condition (iii) is called ℵ1-atomless in Hoover and Keisler (1984), and the equivalence between (i) and
(iii) is shown in Corollary 4.5(i) therein. For additional equivalent conditions, see Fact 2.5 in Keisler and Sun
(2009).
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4.6 Many more players than strategies

Rustichini and Yannelis (1991) proposed the following “many more players than strate-
gies” condition, which aims to solve the convexity problem of the Bochner integral
of a correspondence from a finite measure space to an infinite-dimensional Banach
space.39

 Yannelis (2009) used this condition to prove the existence of equilibria in large
economies with asymmetric information.

For any given atomless agent space (��F�P), let L∞(P) be the Banach space of all
essentially bounded functions endowed with the norm ‖ · ‖∞, and let L∞

E (P) be the sub-
space of L∞(P) with the elements that vanish off E. Let card(K) be the cardinality of
a set K and let dim(Y) be the cardinality of a Hamel basis in a vector space Y (i.e., the
algebraic dimension of the vector space Y ).

Assumption (Many more players than strategies). LetZ be an infinite-dimensional Ba-
nach space. For each E ∈F with P(E) > 0, we assume that dim(L∞

E (P)) > dim(Z).

The following lemma shows that the above assumption implies the nowhere equiv-
alence condition.

Lemma 4. Let (��F�P) be an atomless agent space, let (��G�P) be a space of character-
istic types, and let Z be an infinite-dimensional Banach space. Suppose that the assump-
tion “many more players than strategies” holds for (��F/G�P) andZ. Then F is nowhere
equivalent to G.

Proof. As discussed in Remark 4 of Rustichini and Yannelis (1991), an infinite-
dimensional Banach space cannot have a countable Hamel basis. The condition
of many more players than strategies implies that for each E ∈ F with P(E) > 0,
dim(L∞

E (P)) is uncountable and, hence, the subspace (E�FE�PE) is not countably gen-
erated. Thus, F is nowhere equivalent to its countably generated sub-σ-algebra G. �

Appendix

A.1 Proofs of Lemmas 1 and 2

Proof of Lemma 2. (i) ⇒ (ii). Suppose that F is not conditional atomless over G. Then
there exists a subset D ∈ F with P(D) > 0 such that for any F-measurable subset D0
of D, we have P(D0 | G) = 0 or P(D0 | G) = P(D | G) for P-almost all ω ∈ �. For such
an F-measurable set D0, let E = {ω : P(D0 | G) = P(D | G)}. Then we have E ∈ G and
P(D0 | G)= P(D | G) · 1E = P(D∩E | G) for P-almost all ω ∈�, where 1E is the indicator
function of E. Thus, we can obtain

P(D0)=
∫
�

1D0 dP =
∫
�
P(D0 | G) dP =

∫
�
P(D∩E | G) dP

=
∫
�

1D∩E dP = P(D∩E)�

39For further discussions on the relevance of this condition in general equilibrium theory, see Tourky
and Yannelis (2001).
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Next, we have

P
(
D0 ∩Ec) =

∫
�
P
(
D0 ∩Ec | G)

dP =
∫
�

1EcP(D0 | G) dP

=
∫
�

1Ec · P(D | G) · 1E dP = 0�

Let D′
0 = D0 ∩ Ec . Then D′

0 is a P-null set and (D0 \D′
0) ⊆ D ∩ E. Thus, P(D0 \D′

0) =
P(D∩E) and P(D0 
 (D∩E))= 0. This means that for any F-measurable subset D0 of
D, there exits a set D1 = D ∩ E in GD such that P(D0 
D1) = 0, which contradicts the
assumption that F is nowhere equivalent to G.

(ii) ⇒ (i). Suppose that F is not nowhere equivalent to G. Then there exists a subset
D ∈ F withP(D) > 0 such that for any F-measurable subsetD0 ofD, there exists a subset
E ∈ G with P(D0 
 (E ∩D))= 0. Thus, we have P(D0 | G)= P(E ∩D | G)= 1E · P(D | G)
for P-almost allω ∈�, which contradicts the assumption that F is conditional atomless
over G.

(i) ⇒ (iii). Suppose that F is nowhere equivalent to G. Since g is G-measurable, F is
also nowhere equivalent to σ(g), where σ(g) denotes the σ-algebra generated by g. By
(i) ⇒ (ii), F is conditional atomless over σ(g). The claim then holds by referring to the
proof of Corollary 4.5(i) in Hoover and Keisler (1984) (g and f here are x1 and x2 therein).

(iii) ⇒ (iv). Since G is countably generated, there exists a mapping g from � to [0�1]
such that the σ-algebra G is generated by g. Let η be the Lebesgue measure on [0�1]
and let μ = (P ◦ g−1)⊗ η. Since F is relatively saturated with respect to G, there exists
an F-measurable mapping f from � to [0�1] such that P ◦ (g� f )−1 = μ. It is clear that
f is independent of g and generates an atomless σ-algebra. Therefore, the σ-algebra
generated by f is atomless and independent of G.

(iv) ⇒ (ii). This is exactly Lemma 4.4(iv) of Hoover and Keisler (1984). �

Proof of Lemma 1. The σ-algebra G′ = G ⊗ {∅� I}, which admits an atomless inde-
pendent supplement {��∅} ⊗ B in F ′ = F ⊗ B under P ′. By Lemma 2, F ′ is nowhere
equivalent to G′ under P ′. �

The following lemma shows that for any atomless probability space, we can always
find an atomless sub-σ-algebra to which the original σ-algebra is nowhere equivalent.
This means that the condition of nowhere equivalence can be generally satisfied.

Lemma 5. Let (��F�P) be an atomless probability space. Then there exists an atomless
and countably generated sub-σ-algebra G ⊆ F such that F is nowhere equivalent to G.

Proof. Consider the product space (I× I�B⊗B�η⊗η) of two Lebesgue unit intervals,
where I = [0�1], B is the Borel σ-algebra, andη is the Lebesgue measure. Since (��F�P)
is atomless, there exists a measurable mapping f = (h�g) from � to [0�1] × [0�1] that
induces η⊗η. Then h and g are independent and generate atomless sub-σ-algebras H
and G of F , respectively. It is clear that G is countably generated and admits an atomless
independent supplement H in F . By Lemma 2, F is nowhere equivalent to G. �
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Figure 2. Indifference curves and budget lines.

A.2 Proofs of Claims 1–3 in Section 2

Proof of Claim 1. For the convenience of the reader, we provide the detailed proof of
the claim, which is not included in Kannai (1970).

Let p∗ = (1�1) and

f2(i)=
⎧⎨
⎩

(
2i+ 3

4 �2i+ 5
4

)
if i ∈

[
0� 1

2

)
�(

2i+ 1
4 �2i− 1

4

)
if i ∈

[
1
2 �1

]
�

We verify that (f2�p∗) is a Walrasian equilibrium in the economy E2. For the price p∗ =
(1�1), the best response for agent imust be the intersection of her budget line and the set
D1 ∪D2. If i ∈ [0� 1

2), then f2(i) · (1�1)= 4i+2 = e2(i) · (1�1); if i ∈ [ 1
2 �1], then f2(i) · (1�1)=

4i = e2(i) · (1�1). Thus, f2(i) is on the budget line of agent i. Furthermore, if i ∈ [0� 1
2),

then (2i+ 5
4)− (2i+ 3

4)= 1
2 ; that is, f2(i) ∈D1. If i ∈ [ 1

2 �1], then (2i− 1
4)− (2i+ 1

4)= − 1
2 ;

that is, f2(i) ∈D2. Thus, f2(i) ∈D1 ∪D2 for any i ∈ [0�1].
The distribution of f2 is the uniform distribution μ on the two darkened line seg-

ments D1 ∪ D2 in Figure 2. Thus, the uniform distribution on D1 ∪ D2 is in the set
DW (E2).

Next, fix any Walrasian allocation f1 in the economy E1. Assume that f1 induces the
uniform distributionμ on the setD1 ∪D2 with the corresponding Walrasian equilibrium
price p′. We show that p′ = p∗ = (1�1).

Suppose that p′ = (a�b) with a > b > 0 (since the preference is monotonic, the equi-
librium price for each good must be positive). For the agent i ∈ I with initial endowment
L= (1�1), denote her budget line by Bl(p′) as shown in Figure 2.
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It is clear from Figure 2 that there is a subsegment of D1 with positive length such
that every point on this subsegment is in the interior of the budget set. Thus, the proba-
bility measure induced by any Walrasian allocation under the price p′ assigns zero prob-
ability on this subsegment of D1, which implies that η ◦ f−1

1 cannot be the uniform dis-
tribution on the set D1 ∪D2. Similar arguments also apply to the case p′ = (a�b) with
b > a > 0. Therefore, we must have p′ = p∗ = (1�1).

As discussed in the first paragraph of the proof of this claim, the best response of
agent i ∈ I is the intersection of the budget line and the set D1 ∪D2. That is, the best
response correspondence is

F(i)=
{(
i+ 3

4 � i+ 5
4

)
�
(
i+ 5

4 � i+ 3
4

)}
for each i ∈ I�

Since f1 is a Walrasian allocation in the economy E1, we have f1(i) ∈ F(i) for η-almost
all i ∈ I. For j = 1�2, let Cj = f−1

1 (Dj); we have f1(Cj) ⊆ Dj . Since f1 induces the μ on
the set D1 ∪ D2, we know that μ(f1(Cj)) = η(Cj). Now consider the case j = 1. Since
μ is the uniform distribution on D1 ∪ D2 and f1(i) = (i + 3

4 � i + 5
4) for any i ∈ C1, we

can obtain μ(f1(C1))= η(C1)/2. Similarly, we have μ(f1(C2))= η(C2)/2. Therefore, for
each j = 1�2, η(Cj) = η(Cj)/2, which implies that η(Cj) = 0. This is a contradiction.
Therefore, the uniform distribution on D1 ∪ D2 is not in the set DW (E1) and, hence,
DW (E1) �= DW (E2). �

Remark 4. For any i ∈ [0� 1
2), agents i and 1

2 +i have the same characteristics (preference
and endowment) in E2. However, their equilibrium consumptions as given by f2 are
(2i+ 3

4 �2i+ 5
4) and (2i+ 5

4 �2i+ 3
4), respectively, which are different. In fact, it is easy to

see that a stronger result holds as follows.
Let g2 be any Walrasian allocation in the economy E2 that induces the uniform dis-

tributionμ onD1 ∪D2, and let J be the set of all agents j ∈ [0� 1
2) such that agent j ∈ J and

agent 1
2 + j choose the same consumption. Suppose that η(J) > 0. As in Proof of Claim 1

above, the equilibrium price must be p∗ = (1�1), and for any j ∈ [0� 1
2), agents j and 1

2 + j
have the same set of optimal consumptions G(j) = {(2j + 3

4 �2j + 5
4)� (2j + 5

4 �2j + 3
4)}.

Since g2 is a Walrasian allocation, there is a subset J̄ of J with η(J \ J̄)= 0 such that for
all j ∈ J̄, g2(j) is (2j+ 3

4 �2j+ 5
4) or (2j+ 5

4 �2j+ 3
4). Let J̄1 = {j ∈ J̄ : g2(j)= (2j+ 3

4 �2j+ 5
4)}

and J̄2 = {j ∈ J̄ : g2(j) = (2j + 5
4 �2j + 3

4)}. Without loss of generality, assume that
η(J̄1) > 0. Since for any j ∈ J̄1, agents j and 1

2 + j choose the same consumption, the
set {(2j + 5

4 �2j + 3
4) : j ∈ J̄1} has measure zero under the distribution induced by g2 but

positive measure under the uniform distribution μ onD1 ∪D2, which is a contradiction.
Therefore,η(J)= 0. That is, except for a null set of agents, different agents with the same
characteristics have to select different optimal choices. A similar result also holds for the
gameG2 in Claim 3.

Proof of Claim 2. For any fixed k ∈ Z+, we consider the economy E k1 with finite agent
space �k. For the price p∗ = (1�1), the best response for agent j ∈�k must be the inter-
section of her budget line and the setD1 ∪D2. For any agent j ∈�k, since(

3
4

+ j

2k

)
+

(
5
4

+ j

2k

)
= 2 + j

k
�
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fk1 (j) is on her budget line. Moreover, when j is an odd number, we have

(
5
4

+ j

2k

)
−

(
3
4

+ j

2k

)
= 1

2
�

which implies that fk1 (j) ∈D1; when j is an even number, we have

(
3
4

+ j

2k

)
−

(
5
4

+ j

2k

)
= −1

2
�

which implies that fk1 (j) ∈D2.

The total supply of the first good in the market is 2k+∑2k
j=1 j/(2k). The total demand

of the first good in the market is

k ·
(

3
4

+ 5
4

)
+

2k∑
j=1

j

2k
= 2k+

2k∑
j=1

j

2k
�

Thus, the total demand and the total supply of the first good are the same. Similarly,
one can check that the market clearing condition is also satisfied for the second good.
Therefore, (fk1 �p∗) is a Walrasian equilibrium in the economy E k1 . �

Proof of Claim 3. Let

f2(i)=
⎧⎨
⎩

2i if i ∈
[
0� 1

2

)
�

1 − 2i if i ∈
[

1
2 �1

]
�

It is clear that f2 is a pure-strategy Nash equilibrium of the game G2 and it induces the
uniform distribution μ onA= [−1�1].

For any pure-strategy Nash equilibrium f1 of the game G1, we must have f1(i) ∈
{i�−i} for η-almost all i ∈ [0�1], which means that f1(i) = i on a Borel measurable set
C ⊆ [0�1], and f1(i)= −i on [0�1] \C. LetD= {−i | i ∈ [0�1] \C}. Then we have

(
η ◦ f−1

1 (C)�η ◦ f−1
1 (D)

) = (
η(C)�1 −η(C))

�=
(
η(C)

2
�

1 −η(C)
2

)

= (
μ(C)�μ(D)

)
�

That is, there does not exist a pure-strategy Nash equilibrium f1 of G1 such that f1 and
f2 have the same distribution. �

A.3 Proof of Theorem 1

We divide the proof of Theorem 1 into five parts. In the first two parts, we prove the
directions (i) ⇒ (ii) and (i) ⇒ (iii). In Part 3, we present two lemmas and one example
that are used for the proof of (ii) ⇒ (i) and (iii) ⇒ (i) in Parts 4 and 5, respectively.
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Part 1: Proof of (i) ⇒ (ii) Let E1 = (�1�e1) and E2 = (�2�e2) be two G-measurable
economies with the same distribution. Then we have P ◦ e−1

1 = P ◦ e−1
2 , which im-

plies that the two economies E1 and E2 have the same mean endowment. That is,∫
� e1 dP = ∫

� e2 dP .
Next, let f1 be a Walrasian allocation of E1 with the corresponding equilibrium

price p. Then we have
∫
� f1 dP = ∫

� e1 dP . Because F is nowhere equivalent to G, F
is relatively saturated with respect to G by Lemma 2. Since P ◦E −1

1 = P ◦E −1
2 , there exists

an F-measurable mapping f2 : �→ R
�+ such that P ◦ (E1� f1)

−1 = P ◦ (E2� f2)
−1. Hence,

P ◦ f−1
1 = P ◦ f−1

2 , which implies that
∫
� f1 dP = ∫

� f2 dP . Therefore,
∫
� f2 dP = ∫

� e2 dP .
As in the distributional approach for large economies in Section 4.2, define a set Ep

such that

Ep = {
(��e�x) ∈ Pmo ×R

�+ ×R
�+ : x ∈D(p���e)

}
�

where D(p���e) is the demand correspondence for the price vector p, preference �,
and endowment e. Since P ◦ (E1� f1)

−1(Ep)= 1, we have P ◦ (E2� f2)
−1(Ep)= 1. Thus, the

set H = {ω ∈� : (E2(ω)� f2(ω)) ∈ Ep} has probability 1 under P . This means that for any
ω ∈H, f2(ω) ∈D(p�E2(ω)). Hence, f2 is a Walrasian allocation in E2 with the equilibrium
price p.

Since P ◦ f−1
2 = P ◦ f−1

1 , the arbitrary choice of f−1
1 implies that DW F (E1)⊆ DW F (E2).

By symmetry, we also have DW F (E2) ⊆ DW F (E1), which implies that DW F (E1) =
DW F (E2).

Part 2: Proof of (i) ⇒ (iii) For any k ∈ Z+, let τk = Pk ◦ (E k� fk)−1 and μk = Pk ◦ (fk)−1.
Assume that μk converges weakly to some μ ∈ M(R�+) as k goes to infinity. Since Pk ◦
(E k)−1 converges weakly to P ◦ E −1, Lemma 2.1 in Keisler and Sun (2009) implies that
there exists a subsequence of {τk}k∈Z+ (say itself), which converges weakly to some τ ∈
M(Pmo ×R

�+ ×R
�+). It is clear that the respective marginals of τ on Pmo ×R

�+ and R
�+

are P ◦ E −1 and μ. Since F is nowhere equivalent to G, there exists an F-measurable
function f : �→ R

�+ such that P ◦ (E � f)−1 = τ. It is obvious that P ◦ f−1 = μ. Theorem 3
in Hildenbrand (1974, p. 159) shows that τ is a Walrasian equilibrium distribution (as
defined on p. 158 of Hildenbrand (1974)) corresponding to P ◦ E −1. As shown in the
proof of (i) ⇒ (ii), f is a Walrasian allocation in economy E .

Part 3: The preparation for proving the necessity of nowhere equivalence The result in
the following lemma is well known.40 Here we give a simple and direct proof.

Lemma 6. If (�����) is an atomless probability space and� is countably generated, then
there exists a measure-preserving mapping ψ from (�����) to the Lebesgue unit interval
(I�B�η) such that for any E ∈ �, there exists a set E′ ∈ B such that �(E 
ψ−1(E′))= 0.

Proof. Since � is countably generated, Theorem 6.5.5 in Bogachev (2007) implies that
there is a measurable mapping ψ1 from � to I such that ψ1 could generate the σ-
algebra�. The induced measure�◦ψ−1

1 on I is atomless since (�����) is also atomless.

40This result plays a key role in obtaining the necessity of saturation in Keisler and Sun (2009). See
Fremlin (1989) for a general result.
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Moreover, by Theorem 16 (p. 409) in Royden (1988), (I�B�� ◦ψ−1
1 ) is isomorphic to the

Lebesgue unit interval (I�B�η); denote this isomorphism by ψ2. Let ψ= ψ2 ◦ψ1. Then
ψ satisfies the requirement. �

As in Section 3.1, for a given D ∈ F with P(D) > 0, GD denotes the σ-algebra
{D ∩D′ : D′ ∈ G} while P|D and PD represent, respectively, the restriction of P to D and
the probability measure rescaled from the restriction of P to D. Recall that the prob-
ability space (��F�P) is assumed to be atomless, but (��G�P) may not be atomless.
There exist two disjoint G-measurable subsets �1 and �2 such that �1 ∪ �2 = �, and
(�1�G�1�P|�1) and (�2�G�2�P|�2) are, respectively, atomless and purely atomic.41 Let
P(�1)= γ. If γ = 0, then (��G�P) is purely atomic and the nowhere equivalence condi-
tion is automatically satisfied. Thus, we only need to consider the case 0< γ ≤ 1.

Lemma 6 shows that there exists a measure-preserving mapping

φ : (
�1�G�1�P|�1

) → ([0�γ)�B[0�γ)�η1
)

(1)

such that for anyE ∈ G�1 , there exists a subsetE′ ∈ B[0�γ) with P(E
φ−1(E′))= 0, where
η1 is the Lebesgue measure on B[0�γ).

The following lemma provides another characterization of the nowhere equivalence
condition.

Lemma 7. Let Z̄+ be an infinite subset of the set Z+ of positive integers. If for each n ∈ Z̄+,
there exists an F-measurable partition {E1�E2� � � � �En} of�1 such that P�1(Ej)= 1/n and
Ej is independent of G�1 under P�1 for j = 1�2� � � � � n, then F is nowhere equivalent to G
under P .

Proof. We prove this result by contradiction. Suppose that F is not nowhere equivalent
to G under P . Then there exists a nonnegligible subsetD ∈ F such that for any L1 ∈ FD,
there exists a subset L2 ∈ GD with P(L1 
L2)= 0. If P(�2 ∩D)> 0, then G�2∩D is purely
atomic while F�2∩D is atomless, which is a contradiction. Thus, we can assume that D
is a subset of �1. Choose a sufficiently large integer n ∈ Z̄+ so that 1/n < 1

2P
�1(D). Let

E1�E2� � � � �En be n subsets satisfying the assumption of this lemma.
For P�1 -almost all ω ∈�1, we have

P�1
(
Ej ∩D | G�1

) ≤ P�1
(
Ej | G�1

) = P�1(Ej)= 1
n
<

1
2
P�1(D)

for j = 1�2� � � � � n. Denote E = {ω ∈ �1 : P�1(D | G�1) > 1
2P

�1(D)}. Then it is clear that
E ∈ G�1 and P�1(E) > 0. For each j, there exists a set Cj ∈ G�1 such that P((Ej ∩D)

(Cj ∩D))= 0. Thus, for P�1 -almost all ω ∈�1, we have

1Cj · P�1
(
D | G�1

) = P�1
(
Cj ∩D | G�1

) = P�1
(
Ej ∩D | G�1

)
<

1
2
P�1(D)�

which implies that P�1(Cj ∩ E)= 0. As usual, 1Cj denotes the indicator function of the
set Cj .

41A measure space is purely atomic if it has no atomless part.
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Next, we have

P�1

(
D∩

(
n⋃
j=1

Cj

))
=

∫
�1

P�1

(
D∩

(
n⋃
j=1

Cj

) ∣∣∣ G�1

)
dP�1

=
∫
�1

P�1

(
D∩

(
n⋃
j=1

Ej

) ∣∣∣ G�1

)
dP�1

=
∫
�1

P�1
(
D | G�1

)
dP�1

= P�1(D)

and, hence, P�1(D \ (⋃n
j=1Cj))= 0. Moreover,

P�1(D∩E)=
∫
�1

P�1
(
D∩E | G�1

)
dP�1 =

∫
�1

1E · P�1
(
D | G�1

)
dP�1

>
1
2
P�1(D) · P�1(E) > 0�

Thus, we have P�1((
⋃n
j=1Cj) ∩ E) > 0, which contradicts the fact that P�1(Cj ∩ E) = 0

for j = 1�2� � � � � n. Therefore, F is nowhere equivalent to G under P . �

In the following illustration, we construct an example for proving the necessity of
nowhere equivalence in the next two parts.

Example 8. Fix an integer n ≥ 1. Consider the following two economies E1 and E2
with two goods. The agent space for each of the economies E1 and E2 is the prob-
ability space (��F�P). In both economies, all the agents have the same preference,
and the corresponding indifference curves are parallel as shown in Figure 3. For i =
1�2� � � � �2n, the ith line segment Di is represented by y = x + 1 − (2i − 1)/(2n) for
x ∈ [(2n+ 2i− 1)/(4n)� (6n+ 2i− 1)/(4n)].

The set of endowments is represented by the line segmentW : y = x for x ∈ [1�2] with
endpoints L= (1�1) andH = (2�2). Let p∗ = (1�1). The parallel dashed lines Bl(p∗) and
Bh(p∗) are perpendicular to the line segment Di for each i. The angle θ is chosen to be
sufficiently small so that the preference is monotonic.

The endowment in the economy E1 is given by

e1(ω)=

⎧⎪⎨
⎪⎩

(
1 + φ(ω)

γ
�1 + φ(ω)

γ

)
ifω ∈�1�

(0�0) ifω ∈�2�

and the endowment in the economy E2 is given by

e2(ω)=

⎧⎪⎨
⎪⎩

(
1 + 2n

(
φ(ω)

γ
− i− 1

2n

)
�1 + 2n

(
φ(ω)

γ
− i− 1

2n

))
ifω ∈�i1�

(0�0) ifω ∈�2�
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Figure 3. Indifference curves and budget lines.

where �i1 = {ω ∈ �1 : φ(ω) ∈ [(i − 1)/(2n)γ� i/(2n)γ)} for i = 1�2� � � � �2n and φ has
been defined in (1). Since the mapping φ is measure-preserving, the distributions of
economies E1 and E2 are the same in the sense that P ◦ e−1

1 = P ◦ e−1
2 .42

Part 4: Proof of (ii) ⇒ (i) We prove this direction based on Lemma 7 and Example 8.
It is clear that both economies in Example 8 are G-measurable. Since the distri-

butions of economies E1 and E2 are the same, statement (ii) in Theorem 1 says that
DW F (E1)= DW F (E2).

We first show that (f2�p∗) is a Walrasian equilibrium of economy E2, where p∗ = (1�1)
and

f2(ω)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
2n+ 2i− 1

4n
+ 2n

(
φ(ω)

γ
− i− 1

2n

)
�

6n− 2i+ 1
4n

+ 2n
(
φ(ω)

γ
− i− 1

2n

))
ifω ∈�i1�

(0�0) ifω ∈�2

for i= 1�2� � � � �2n.
For the price vector p∗, the best response for agent ω ∈�1 must be the intersection

of her budget line and the set
⋃2n
i=1Di.

42Example 1 is a special case of Example 8 when n= 1 and (��F�P) is the Lebesgue unit interval.
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For agent ω ∈�i1, since f2(ω) · p∗ = e2(ω) · p∗, f2(ω) is on her budget line. Moreover,
we have(

6n− 2i+ 1
4n

+ 2n
(
φ(ω)

γ
− i− 1

2n

))
−

(
2n+ 2i− 1

4n
+ 2n

(
φ(ω)

γ
− i− 1

2n

))
= 1 − 2i− 1

2n

and, hence, f2(ω) ∈ Di. Thus, the measure induced by f2 on Di is uniform with total
measure γ/(2n) for each i= 1�2� � � � �2n.

The total supply of the first good in the economy E2 is

2n∑
i=1

∫
�i1

(
1 + 2n

(
φ(ω)

γ
− i− 1

2n

))
dP(ω)= γ+ α�

where α= ∑2n
i=1

∫
�i1

2n(φ(ω)/γ− (i− 1)/(2n)) dP(ω). The total demand of the first good

as given by f2 in E2 is

2n∑
i=1

∫
�i1

(
2n+ 2i− 1

4n
+ 2n

(
φ(ω)

γ
− i− 1

2n

))
dP(ω)= γ

2n

2n∑
i=1

2n+ 2i− 1
4n

+ α= γ+ α�

Thus, the total demand and the total supply of the first good are the same. Similarly,
one can check that the market clearing condition is also satisfied for the second good.
Hence, (f2�p∗) is a Walrasian equilibrium in the economy E2. Note that P ◦ f−1

2 = γμ+
(1−γ)δ(0�0), whereμ is the uniform distribution on the set

⋃2n
i=1Di and δ(0�0) is the Dirac

measure at the point (0�0).
Since DW F (E1)= DW F (E2), economy E1 has an F-measurable Walrasian allocation

f1 with the same distribution as f2. Thus, there exist 2n disjoint F-measurable subsets
E1�E2� � � � �E2n of �1 such that f1(ω) ∈Di for ω ∈ Ei, i= 1�2� � � � �2n. Let h be a mapping
from the set

⋃2n
i=1Di to [0�γ)× {1�2� � � � �2n} such that

h(x� y)=
(
γ

(
x− 2n+ 2i− 1

4n

)
� i

)

if (x� y) ∈Di for some i = 1�2� � � � �2n. Then 1/γP ◦ f−1
1 ◦ h−1 is the uniform distribution

on the set [0�γ)× {1�2� � � � �2n}.
Next, let p′ = (a�b) be the corresponding equilibrium price of the Walrasian alloca-

tion f1 in economy E1. We show that p′ = p∗ = (1�1). Suppose that a > b > 0 (since the
preference is monotonic, the equilibrium price for each good must be positive). For the
agentωL ∈�1 with the initial endowment L= (1�1), denote her budget line by Bl(p′) as
shown in Figure 3. It is clear from Figure 3 that there is a subsegment of D1 with pos-
itive length such that every point on this subsegment is in the interior of ωL’s budget
set. Since the preference is monotonic, every point on this subsegment cannot be a best
response for the agent ωL and, hence, cannot be a best response for any agent ω ∈�1.
This means that f1(ω) does not belong to this subsegment ofD1 for P-almost allω ∈�1,
which contradicts the fact that P ◦ f−1

1 = P ◦ f−1
2 = γμ+ (1 − γ)δ(0�0), where μ is uniform

on the set
⋃2n
i=1Di. Similar arguments also apply to the case b > a> 0.
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We can now focus on the Walrasian equilibrium price p∗ = (1�1) in E1. As discussed
above, for agent ω ∈�1, the set of optimal consumptions within her budget is the inter-
section of her budget line and the set

⋃2n
i=1Di:{(

2n+ 2i− 1
4n

+ φ(ω)

γ
�

6n− 2i+ 1
4n

+ φ(ω)

γ

)}2n

i=1
�

Then we have h ◦ f1(ω) ∈ {(φ(ω)� i)}2n
i=1.

For any C ∈ G�1 , Lemma 6 implies that there exists a subset C1 ∈ B[0�γ) such that
P(C 
φ−1(C1))= 0. Then we have

P(Ej ∩C)= P(
Ej ∩φ−1(C1)

) = P(
h ◦ f1 ∈ (

C1 × {j}))
= 1

2n
η(C1)= 1

2n
P(φ ∈ C1)= 1

2n
P(C)

and

P(Ej)= P(Ej ∩�1)= 1
2n
P(�1)�

and, hence, P�1(Ej)= P(Ej)/P(�1)= 1/(2n). Thus, Ej is independent of G�1 under P�1

for j = 1�2� � � � �2n. By Lemma 7, F is nowhere equivalent to G under P .

Part 5: Proof of (iii) ⇒ (i) Fix an integer n ≥ 1. Let E1 be the economy as defined
in Example 8,43 which is discretized to generate a sequence of finite-agent economies
{E k1 }k∈Z+ . For each k ∈ Z+, we take the probability space (�k�Gk�Pk) to be the agent
space of the economy E k1 , where �k = {1�2� � � � �2nk− 1�2nk}, Gk is the power set of �k,
and Pk is the counting probability measure. For each economy E k1 , all the agents have
the same preference; the indifference curves are shown in Figure 3. The endowment in
the economy E k1 is given by ek1 (j)= (1 + j/(2nk)�1 + j/(2nk)) for j = 1�2� � � � �2nk.

Let p∗ = (1�1) and

fk1 (j)=
(

1
2

+ 2i− 1
4n

+ j

2nk
�

3
2

− 2i− 1
4n

+ j

2nk

)

for j = 2nm + i, where m = 0�1� � � � �k − 1 and i = 1�2� � � � �2n. We claim that for each
k ∈ Z+, (fk1 �p∗) is a Walrasian equilibrium of the economy E k1 .

For the price p∗, the best response for the agent j ∈ �k must be the intersection of
her budget line and the set

⋃2n
i=1Di. Consider an agent j = 2nm+ i, m ∈ {0�1� � � � �k− 1}

and i ∈ {1�2� � � � �2n}. We have(
1
2

+ 2i− 1
4n

+ j

2nk

)
+

(
3
2

− 2i− 1
4n

+ j

2nk

)
= 2 + j

nk
�

Thus, fk1 (j) is on her budget line. Moreover, we have(
3
2

− 2i− 1
4n

+ j

2nk

)
−

(
1
2

+ 2i− 1
4n

+ j

2nk

)
= 1 − 2i− 1

2n
�

43For the sake of simplicity, we assume that γ = 1.
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which implies that fk1 (j) ∈Di. The total supply of the first good in the market is 2nk+∑2nk
j=1 j/(2nk). The total demand of the first good in the market is

k ·
2n∑
i=1

(
1
2

+ 2i− 1
4n

)
+

2nk∑
j=1

j

2nk
= 2nk+

2nk∑
j=1

j

2nk
�

Thus, the total demand and the total supply of the first good are the same. Similarly,
one can check that the market clearing condition is also satisfied for the second good.
Therefore, (fk1 �p∗) is a Walrasian equilibrium in the economy E k1 .

It is obvious that Pk ◦ (ek1 )−1 converges weakly to the uniform distribution on the
line segment W ; that is, E k1 converges weakly to E1. Clearly, we have that

∫
�k ek dPk =

1/(2nk)
∑2nk
j=1(1 + j/(2nk)) = 1 + (2nk − 1)/(4nk) approaches 3

2 = ∫
� e dP when k goes

to infinity. In addition, Pk ◦ (fk1 )−1 converges weakly to μ, where μ is the uniform dis-

tribution on the set
⋃2n
i=1Di. Since the Walrasian equilibrium correspondence of the

G-measurable large economy E1 has the closed graph property, there exists a Walrasian
allocation in the economy E1 that induces the distribution μ. As shown in the proof of
(ii) ⇒ (i), there exist 2n disjoint subsets {Ej}2n

j=1 such that P(Ej)= 1/(2n) and Ej is inde-
pendent of G under P for each j = 1�2� � � � �2n. By Lemma 7, F is nowhere equivalent
to G.

A.4 Proof of Theorem 2

We divide the proof of Theorem 2 into seven parts. In the first three parts, we prove the
directions (i) ⇒ (ii), (i) ⇒ (iii), and (i) ⇒ (iv). In Part 4, we present one lemma and one
example that are used for the proof of (iii) ⇒ (i) and (ii) ⇒ (i) in Parts 5 and 6, respectively.
The proof of (iv) ⇒ (i) is given in the last part.

Part 1: Proof of (i) ⇒ (ii) Let G1 = (α1� v1) and G2 = (α2� v2) be two G-measurable
games with the same distribution, and let f1 be an F-measurable mapping from � to
A such that f1 is a Nash equilibrium of G1. Denote λ = P ◦ f−1

1 . Since F is nowhere
equivalent to G, Lemma 2 implies that F is relatively saturated with respect to G.
As P ◦ G−1

1 = P ◦ G−1
2 , there is an F-measurable mapping f2 from � to A such that

P ◦ (G2� f2)
−1 = P ◦ (G1� f1)

−1.
Denote ν = P ◦ (α1� f1)

−1. Then P ◦ (α2� f2)
−1 = P ◦ (α1� f1)

−1 = ν. Define a set Bν
such that

Bν = {
(t� v�x) ∈ T × V ×A : v(x� ν)≥ v(a� ν) for all a ∈A}

�

Since P ◦ (G1� f1)
−1(Bν) = 1, we have P ◦ (G2� f2)

−1(Bν) = 1. Thus, the set H = {ω ∈
� : (G2(ω)� f2(ω)) ∈ Bν} has probability 1 under P . This means that for any ω ∈ H,
v2(ω�f2(ω)� ν)≥ v2(ω�a� ν) for any a ∈A. Hence, f2 is a Nash equilibrium of G2, which
means that λ= P ◦ f−1

2 ∈ DF (G2). Thus, DF (G1)⊆ DF (G2). By symmetry, we also have
DF (G2)⊆ DF (G1), which implies DF (G1)= DF (G2).
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Part 2: Proof of (i) ⇒ (iii) Assume that F is nowhere equivalent to G and that G =
(α�v) : �→ T ×V is a G-measurable game with traits. Pick a saturated probability space
(S�S�Q).44 Then there exists an S-measurable game with traits F = (β�u) from S to
T × V such thatQ ◦ F−1 = P ◦G−1. Since (S�S�Q) is saturated, Theorem 1 of Khan et al.
(2013) implies that F has a Nash equilibrium f from S to A. Define ν = Q ◦ (F� f )−1 ∈
M(T ×V ×A). Since F is relatively saturated with respect to G by Lemma 2, there exists
an F-measurable mapping g from � to A such that P ◦ (G�g)−1 = ν. As shown in the
proof of (i) ⇒ (ii), g is a Nash equilibrium of the gameG.

Part 3: Proof of (i) ⇒ (iv) For all k ∈ Z+, let τk = Pk ◦ (Gk� fk)−1 and μk = Pk ◦ (f k)−1.
Since Pk ◦(Gk)−1 converges weakly to P ◦G−1 andμk converges weakly toμ, Lemma 2.1
in Keisler and Sun (2009) implies that there exists a subsequence of {τk}k∈Z+ (say itself)
that converges weakly to some τ ∈ M(T × Ṽ ×A). It is obvious that the marginals of τ
on T × Ṽ and A are P ◦G−1 and μ, respectively. Since F is nowhere equivalent to G,
there exists an F-measurable function f : �→A such that P ◦ (G�f )−1 = τ. Following
the same argument in the last three paragraphs of the proof of Theorem 3 in Khan et al.
(2013), f is a Nash equilibrium ofG.

Part 4: The preparation for proving the necessity of nowhere equivalence As in the pre-
vious subsection, we assume that � = �1 ∪ �2, where �1 and �2 are disjoint and G-
measurable. Suppose that (�1�G�1�P|�1) and (�2�G�2�P|�2) are, respectively, atomless
and purely atomic. Let P(�1) = γ. If γ = 0, then (��G�P) is purely atomic and the
nowhere equivalence condition is automatically satisfied. Thus, we only need to con-
sider the case that 0 < γ ≤ 1. Lemma 6 shows that there exists a measure-preserving
mapping φ : (�1�G�1�P)→ ([0�γ)�B[0�γ)�η1) such that for any E ∈ G�1 , there exists a
subset E′ ∈ B[0�γ) with P(E 
φ−1(E′))= 0, where η1 is the Lebesgue measure on B[0�γ).

Fix an integer n≥ 2. LetA1 = [0�1],A2 = {0�1� � � � � n− 1}, andA0 =A1 ×A2 with the
standard metric in R

2. Let d(·� ·) be the Prohorov metric on M(A0). Define a probability
measure η2 on A0 as follows. For any Borel measurable subset E ⊆A1 and any j ∈A2,
η2(E × {j}) = 1/(nγ)η(E ∩ [0�γ)). Let η1 be a convex combination of η2 and the Dirac
measure concentrated at the point (1� n− 1): η1 = γη2 + (1 − γ)δ(1�n−1).

Let f : A0 × [0�1] →R be defined as follows. For any a1 ∈A1, a2 ∈A2 and b ∈ [0�1],

f
(
(a1� a2)�b

)

=

⎧⎪⎪⎨
⎪⎪⎩

0 if b= 0 or a1 = kb�(
δj

({a2}
) − 1

2

)
· min

{
a1 − (nk+ j)b� (nk+ j + 1)b− a1

}
if a1 ∈ (

(nk+ j)b� (nk+ j + 1)b
)

for some k ∈ N and j ∈A2, where N is the set of nonnegative integers. It is easy to show
that the function f is continuous onA0 ×[0�1]. Figures 4–7 illustrate the function f with
b= 1

8 and n= 4.

44For the definition of a saturated probability space, see Section 4.5.
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Figure 4. The graph of f ((a1�0)�b).

Figure 5. The graph of f ((a1�1)�b).

Figure 6. The graph of f ((a1�2)�b).

Figure 7. The graph of f ((a1�3)�b).

Define a mapping u from [0�γ) to the space of continuous functions onA0 ×M(A0)

as follows. For any i ∈ [0�γ), a1 ∈A1, a2 ∈A2, and ν ∈ M(A0),

u(i)
(
(a1� a2)� ν

) = f ((a1� a2)� f0(ν)
) − |i− a1|�

where f0(ν)= (1/n)d(η1� ν).
In the following paragraphs, we construct an example for proving the necessity of

nowhere equivalence in the next part.

Example 9. Fix an integer n ≥ 2. Let (��F�P) be the player space and let A =A0 be
the action space. Define a mappingG : �→ U as

G(ω)
(
(a1� a2)� ν

) =
{
u
(
φ(ω)

)(
(a1� a2)� ν

)
ifω ∈�1�

a1 + a2 ifω ∈�2

for any (a1� a2) ∈A and ν ∈ M(A).45

45The payoff function in our example for the case n = 2 is a variation of the payoff function used in
Example 3 of Rath et al. (1995).
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It is clear that u is a continuous mapping from [0�γ) to U under the sup-norm and
G is a constant function on �2. Thus,G is a G-measurable large game.

Lemma 8. Let g be an F-measurable Nash equilibrium for the above large gameG. Then
there exists an F-measurable partition {D̃0� D̃1� � � � � D̃n−1} of �1 such that for each j =
0�1� � � � � n− 1, (i) P�1(D̃j)= 1/n and (ii) D̃j is independent of G�1 under the probability
measure P�1 .

Proof. Let g = (g1� g2) be an F-measurable Nash equilibrium of the game G and let
ϑ= P ◦ g−1 ∈ M(A).46 We prove that ϑ= η1.

Suppose that ϑ �= η1. Denote b0 = (1/n)d(ϑ�η1). Then 0< b0 ≤ 1/n. For each agent
ω ∈�2, since the payoff function is a1 + a2, it is obvious that g(ω)= (1� n− 1). Next, fix
an agent ω ∈ �1 with φ(ω) �= kb0 for any k ∈ N. Let (a∗

1� a
∗
2) be a best response of this

agent. For any (x� j) ∈A with x �=φ(ω),

G(ω)
(
(x� j)�ϑ

) −G(ω)((φ(ω)� j)�ϑ)
= f ((x� j)� f0(ϑ)

) − ∣∣φ(ω)− x∣∣ − f ((φ(ω)� j)� f0(ϑ)
)
�

When a2 and b are fixed, f ((a1� a2)�b) is a Lipschitz function in terms of a1 with the Lip-
schitz constant 1

2 and, hence, the expression above is negative. Thus, g1(ω)= a∗
1 =φ(ω)

regardless of the value of a∗
2. There is a unique pair (k� j′) with k ∈ N and j′ ∈ A2

such that φ(ω) ∈ ((nk + j′)b0� (nk + j′ + 1)b0). For any j ∈ A2, G(ω)((φ(ω)� j)�ϑ) =
f ((φ(ω)� j)� f0(ϑ)), which is positive only if j = j′, and, hence, g2(ω) = a∗

2 = j′. There-
fore,

g(ω)=
{(
φ(ω)� j′

)
ifω ∈�1�

(1� n− 1) ifω ∈�2�

where j′ is such that φ(ω) ∈ ((nk+ j′)b0� (nk+ j′ + 1)b0) for some k ∈N.
We now show that d(ϑ�η1) is at most ε = (n − 1)b0. Since ϑ coincides with η1 on

[γ�1] ×A2, we only need to calculate d(ϑ�η1) on [0�γ)×A2.
Fix j = 0�1� � � � � n− 2; letW ×{j} be the support ofϑ on [0�γ)×{j}. The setW should

be a union of finite disjoint intervals; denote them byW1�W2� � � � �Wm in increasing order.
In particular, for each �= 1�2� � � � �m,W� is in the form of ((nk+ j)b0� (nk+ j+1)b0)with
or without its endpoints for some k ∈ N. The distance between W� and W�+1 is (n− 1)b0

for �= 1�2� � � � �m− 1. The length of W� is b0 for �= 1�2� � � � �m− 1 and the length of Wm
is at most b0.

Take a Borel subset E ⊆ [0�γ). Without loss of generality, we may assume that E
does not contain any endpoint of the subintervals {W�}m�=1. For � = 1�2� � � � �m − 1, let
E� =W� ∩E. Then the sets E��E�+b0� � � � �E�+ (n− 1)b0 are all disjoint subsets of [0�γ),
where E� + tb0 is the set {x+ tb0 : x ∈E�} for any integer t. Furthermore, (E� + tb0)× {j}
is included in (E × {j})ε for t = 0�1� � � � � n− 1, where (E × {j})ε is the ε-neighborhood of

46Without loss of generality, we assume that for any ω ∈�,Gω(g(ω)�ϑ)≥Gω(a�ϑ) for each a ∈A.
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E × {j}. Since η(Em) ≤ b0 and η1(D× {j})= (1/n)η(D) for any Borel subset D⊆ [0�γ),
we have

ϑ
(
E × {j}) =

m−1∑
�=1

ϑ
(
E� × {j}) +ϑ(

Em × {j})

=
m−1∑
�=1

η(E�)+η(Em)≤ n
m−1∑
�=1

η1(E� × {j}) + b0

=
m−1∑
�=1

(
η1(E� × {j}) +η1((E� + b0)× {j}) + · · ·

+η1((E� + (n− 1)b0
) × {j})) + b0

≤ η1((E × {j})ε) + b0�

For j = n−1, letW ′ ×{n−1} be the support ofϑ on [0�γ)×{n−1}. The setW ′ should
be a union of finite disjoint intervals; denote them byW ′

1�W
′

2� � � � �W
′
m in increasing order.

The distance between W ′
� and W ′

�+1 is (n− 1)b0 for � = 1�2� � � � �m− 1. In addition, the
distance between {0} andW ′

1 is also (n−1)b0. The length ofW ′
� is b0 for �= 1�2� � � � �m−1

and the length ofW ′
m is at most b0.

Take a Borel subset E′ ⊆ [0�γ). Without loss of generality, we may assume that E′
does not contain any endpoint of the subintervals {W ′

� }m�=1. For �= 1�2� � � � �m, let E′
� =

W ′
� ∩ E′. Then E′

��E
′
� − b0� � � � �E

′
� − (n− 1)b0 are all disjoint, and (E′

� − tb0)× {n− 1} is
included in (E′ × {n− 1})ε for t = 0�1� � � � � n− 1. We have

ϑ
(
E′ × {n− 1}) =

m∑
�=1

ϑ
(
E′
� × {n− 1})(E′

�

)

=
m∑
�=1

η= n
m∑
�=1

η1(E′
� × {n− 1})

=
m∑
�=1

(
η1(E′

� × {n− 1}) +η1((E′
� − b0

) × {n− 1}) + · · ·

+η1((E′
� − (n− 1)b0

) × {n− 1}))
≤ η1((E′ × {n− 1})ε \ {

(1� n− 1)
})
�

Fix any Borel subset C ⊆A. Then C = ⋃n−1
k=0(Ck × {k}), where C0�C1� � � � �Cn−1 ⊆A1.

Let C1
k =Ck ∩ [0�γ) and C2

k =Ck ∩ [γ�1] for k= 0�1� � � � � n− 1. We have

ϑ(C) =
n−1∑
k=0

ϑ
(
Ck × {k}) =

n−1∑
k=0

ϑ
(
C1
k × {k}) +

n−1∑
k=0

ϑ
(
C2
k × {k})

≤
n−2∑
k=0

[
η1((C1

k × {k})ε) + b0
] +η1((C1

n−1 × {n− 1})ε \ {
(1� n− 1)

})
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+
n−1∑
k=0

η1(C2
k × {k})

≤ η1(Cε) + (n− 1)b0 = η1(Cε) + ε�

Hence, d(ϑ�η1)≤ ε= (n− 1)b0 = (n− 1)/nd(ϑ�η1), which is a contradiction. Therefore,
we have proved ϑ= η1 as claimed in the beginning of the proof of this lemma.

From now on, we work with the case that ϑ = η1. Then f0(ϑ) = 0 and, hence,
f (a� f0(ϑ)) = 0 for any a ∈ A, which implies that G(ω)((a1� a2)�ϑ) = −|φ(ω) − a1| for
any ω ∈�1. The best response correspondence is

H(ω)=
{{(

φ(ω)�0
)
� � � � �

(
φ(ω)�n− 1

)}
ifω ∈�1�{

(1� n− 1)
}

ifω ∈�2�

By the definition of Nash equilibria, g(ω) ∈H(ω) for P-almost all ω ∈�.
For any C̃ ∈ G�1 , Lemma 6 implies that there exists an C̃1 ∈ B[0�γ) such that P(C̃ 


φ−1(C̃1)) = 0. Define D̃j = {ω ∈ �1 : g(ω) = (φ(ω)� j)} for j = 0�1� � � � � n − 1. Thus, we
have

P(D̃j ∩ C̃)= P(
D̃j ∩φ−1(C̃1)

) = P(
g ∈ (

C̃1 × {j}))
= η1(C̃1 × {j}) = 1

n
η(C̃1)= 1

n
P(φ ∈ C̃1)= 1

n
P(C̃)

and, hence, P�1(D̃j)= 1/n. Therefore, {D̃0� D̃1� � � � � D̃n−1} is an F-measurable partition
of �1 such that for each j = 0�1� � � � � n− 1, (i) P�1(D̃j)= 1/n and (ii) D̃j is independent
of G�1 under the probability measure P�1 . �

Part 5: Proof of (iii) ⇒ (i) Consider the game G in Example 9. Define a game with
traits G′ = (α�v) from � to T × V , where T is a singleton, α is a constant mapping, and
v(ω)(a� ν) = G(ω)(a� νA) for ω ∈ �. Then G′ is G-measurable. For the new game G′,
there exists an F-measurable Nash equilibrium g′ of the game G′ by statement (iii) of
Theorem 2. It is easy to see that g′ is also a Nash equilibrium of the game G because of
the construction of the payoff function v. Therefore, Lemma 8 implies the existence of
an F-measurable partition {E0�E1� � � � �En−1} of �1 such that for each j = 0�1� � � � � n− 1,
(i) P�1(Ej) = 1/n and (ii) Ej is independent of G�1 under the probability measure P�1 .
Then F is nowhere equivalent to G due to Lemma 7.

Remark 5. In Remark 2 we claimed that F is nowhere equivalent to G provided that any
G-measurable large game has an F-measurable Nash equilibrium. This result follows
from Lemmas 7 and 8.

Next we present another large game with traits F such that the action space is finite
and the trait space is uncountable. We show that (iii) ⇒ (i) can be also proved via this
game.
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Example 10. Fix an integer n ≥ 2. Let (��F�P) be the agent space, let T =A1 = [0�1]
be the trait space with the measure ρ= γη1 +(1−γ)δ1 (δ1 is the Dirac measure at 1), and
letA=A2 = {0�1� � � � � n− 1} be the action space. The large game with traits F = (α�v) is
defined as

α(ω)=
{
φ(ω) ifω ∈�1�

1 ifω ∈�2�

and

v(ω)(a� ν)=
{
f
(
φ(ω)�a� f0(ν)

)
ifω ∈�1�

a ifω ∈�2

for any a ∈A and ν ∈ Mρ(T ×A).

Lemma 9. Let f̃ be an F-measurable Nash equilibrium in the game F . Then there exists
an F-measurable partition {E0�E1� � � � �En−1} of �1 such that for each j = 0�1� � � � � n− 1,
(i) P�1(Ej)= 1/n and (ii) Ej is independent of G�1 under the probability measure P�1 .

Proof. Let f̃ be an F-measurable Nash equilibrium of F , ϑ= P ◦ (α� f̃ )−1 and let b0 =
(1/n)d(ϑ�η1).

Suppose that b0 > 0. Note that for any agent ω ∈�1 with φ(ω) �= kb0 for any k ∈ N,
the best response must be j′ such that φ(ω) ∈ ((nk + j′)b0� (nk + j′ + 1)b0) for some
k ∈ N. Thus, (α� f̃ ) = g for P-almost all ω, where g is the best response in the proof of
the case ϑ �= η1 in Lemma 8. As shown in the proof of Lemma 8, we must have b0 = 0,
which is a contradiction. Thus, ϑ= η1, which means that f0(ϑ)= 0. Then for any agent
ω ∈�1, any a ∈A is a best response. Furthermore, for any agent ω ∈�2, n− 1 is the best
response. We can regard (α� f̃ ) as the function g in the proof of Lemma 8 for the case
ϑ= η1. Then the rest is clear. �

Part 6: Proof of (ii) ⇒ (i) By Lemma 5, there is an atomless σ-algebra H1 on �1 such
that H1 ⊆ G�1 and G�1 is nowhere equivalent to H1 under the probability measure P�1 .
Let H = σ(H1 ∪ G�2), which is the σ-algebra generated by H1 and G�2 . Then F is
nowhere equivalent to H under P .

For any G-measurable large game G, since H�1 is atomless and H�2 coincides with
G�2 , there is an H-measurable gameG1 such that P ◦G−1

1 = P ◦G−1. Since F is nowhere
equivalent to H, G1 has an F-measurable Nash equilibrium g1. By the condition that
DF (G1) = DF (G), DF (G) is nonempty. Thus, the G-measurable large game G has an
F-measurable Nash equilibrium. By Remark 5, we know that F is nowhere equivalent
to G.

Part 7: Proof of (iv) ⇒ (i) For the sake of simplicity, we restrict our attention to the
case that (��G�P) is atomless. By Lemma 6, there exists a measure-preserving mapping
φ : (��G�P)→ ([0�1]�B�η) such that G =φ−1(B).
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Fix an integer n ≥ 2. Let A1 = [0�1] and A2 = {1�2� � � � � n}. Let μ be the uniform
distribution on A1 ×A2. Define a large game G with the player space � and the action
spaceA1 ×A2 as follows. For any ω ∈�, a1 ∈A1, a2 ∈A2, and ν ∈ M(A1 ×A2),

G(ω)(a1� a2� ν)= −(
φ(ω)− a1

)2
�

For each k ∈ Z+, let �k = {1�2� � � � � nk} and let Pk be the counting probability mea-
sure on�k. We define a gameGk with the player space�k and the action spaceA1 ×A2

as follows. For each m = 0�1� � � � �k− 1 and � = 1�2� � � � � n, given the action (a1� a2) and
the action distribution ν of all other players, player (mn+ �)’s payoff is

Gk(mn+ �)(a1� a2� ν)= −
(
m

k
− a1

)2
�

For player (mn+ �), define

fk(mn+ �)=
(
m

k
��

)
�

Sinceφ is measure-preserving,Gk converges weakly toG. In addition, it is clear that
fk is a pure-strategy Nash equilibrium of Gk for each k ∈ Z+ and that Pk ◦ (f k)−1 con-
verges weakly to the uniform distribution μ on the setA1 ×A2. Since the G-measurable
large gameG has the closed graph property, there exists an F-measurable Nash equilib-
rium f ofG such that P ◦ f−1 = μ.

Let f = (f1� f2) with f1 and f2 taking values in A1 and A2, respectively. Then f1 =φ.
For � = 1�2� � � � � n, let E� = f−1

2 (�). It is easy to show that {E1�E2� � � � �En} is an F-
measurable partition of � such that for each � = 1�2� � � � � n, (i) P(E�) = 1/n and (ii) E�
is independent of G under the probability measure P .47 By Lemma 7, F is nowhere
equivalent to G.

Remark 6. We have shown the necessity of the nowhere equivalence condition for
statements (ii)–(iv) in Theorem 2. If F is not nowhere equivalent to G, then there ex-
ists an F-measurable nonnegligible setD such that FD and GD are essentially the same.
IfD is G-measurable, then Lemma 6 says that there is a measure-preserving mapping ψ
from (��G�P) to the Lebesgue unit interval such that the restriction of ψ to D induces
an isomorphism between the restricted measure algebra on D and the measure alge-
bra on a subinterval with the Lebesgue measure. Such a mapping ψ allows one to con-
struct counterexamples by transferring Examples 1–5. Keisler and Sun (2009), Khan et al.
(2013), and Qiao and Yu (2014) proved their necessity results for saturated agent spaces
following such an approach. However, the set D is not necessarily G-measurable in our
setting. Hence, that approach is not applicable for proving (ii)/(iii) ⇒ (i) in Theorem 1
and (ii)/(iii)/(iv) ⇒ (i) in Theorem 2. To obtain the necessity of nowhere equivalence via
Lemma 7, we need to construct new large economies/games that are substantially more
complicated than those in Examples 1–5.

47Since the product measure μ is induced by (f1� f2), G = σ(f1) is independent of σ(f2).
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A.5 Proofs of Corollaries 1 and 2

Proof of Corollary 1. The “only if” part follows immediately from the relative satu-
ration. We only prove the “if” part.

Assume that E1 and E2 are two arbitrary G-measurable economies from (��F�P) to
Pmo × R

�+ with the same distribution. Suppose that E1 has a Walrasian allocation f1.
Since E1 and E2 have the same distribution, P ◦ (E1� f1)

−1 is a Walrasian equilibrium dis-
tribution of the distribution economy P ◦ E −1

2 ; see Hildenbrand (1974, p. 159).
By the assumption of the corollary, there exists an F-measurable Walrasian alloca-

tion f2 of the economy E2 such that P ◦ (E2� f2)
−1 = P ◦ (E1� f1)

−1 and, hence, P ◦ f−1
2 =

P ◦ f−1
1 . That is, the set of distributions of Walrasian allocations in E1 is a subset of the

set of distributions of Walrasian allocations in E2. Analogously, the latter is also a subset
of the former. Therefore, DW F (E1)= DW F (E2). By Theorem 1, F is nowhere equivalent
to G. �

Proof of Corollary 2. The “only if” part follows immediately from the relative satu-
ration. We only prove the “if” part.

Assume that G1 and G2 are two arbitrary G-measurable games from (��F�P) to U
with the same distribution. Suppose thatG1 has an F-measurable Nash equilibrium g1.
SinceG1 andG2 have the same distribution, P ◦ (G1� g1)

−1 is a Nash equilibrium distri-
bution ofG2.

By the assumption of the corollary, there exists an F-measurable Nash equilibrium
g2 of the game G2 such that P ◦ (G2� g2)

−1 = P ◦ (G1� g1)
−1. That is, the set of distri-

butions of Nash equilibria in G1 is a subset of the set of distributions of Nash equilib-
ria in G2. Analogously, the latter is also a subset of the former. Therefore, DF (G1) =
DF (G2). By Theorem 2, F is nowhere equivalent to G. �
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