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Improving matching under hard distributional constraints
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Distributional constraints are important in many market design settings. Promi-
nent examples include the minimum manning requirements at each Army branch
in military cadet matching and diversity considerations in school choice, whereby
school districts impose constraints on the demographic distribution of students
at each school. Standard assignment mechanisms implemented in practice are
unable to accommodate these constraints. This leads policymakers to resort to
ad hoc solutions that eliminate blocks of seats ex ante (before agents submit their
preferences) to ensure that all constraints are satisfied ex post (after the mecha-
nism is run). We show that these current solutions ignore important information
contained in the submitted preferences, resulting in avoidable inefficiency. We
then introduce new dynamic quotas mechanisms that result in Pareto superior
allocations while at the same time respecting all distributional constraints and
satisfying important fairness and incentive properties. We expect the use of our
mechanisms to improve the performance of matching markets with distributional
constraints in the field.
Keywords. Minimum quotas, floors, ceilings, affirmative action, school choice,
diversity, strategyproofness, deferred acceptance.
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1. Introduction

The theory of matching has been extensively developed and applied to solve a wide ar-
ray of practical allocation problems in recent years. Important formal settings include
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matching doctors to hospitals, elementary and high school students to school seats, and
military cadets to Army branches; less formally, similar problems arise in many other
areas, such as assigning groups of students to projects in a class or groups of employ-
ees to tasks in a firm. As the scope of applications has expanded, designers have in-
creasingly encountered various types of practical constraints that were not present in
the early analysis. In this paper, we study an important class of these constraints and
show that an intuitive and common way in which they are handled results in avoidable
inefficiencies. In addition, we propose new mechanisms, and show that they Pareto
dominate current ad hoc approaches without compromising key fairness or incentive
properties.

The constraints we consider are called distributional constraints, because they re-
late to the distribution of the final assignments of the agents across objects, projects, or
institutions. As an example, consider medical residency matching, in which hospitals
in rural areas commonly suffer doctor shortages relative to their urban counterparts.1

Many governments are concerned about access to health care in rural communities,
and try to implement policies to balance the distribution of doctors between urban and
rural areas. One policy instituted by the Japanese government is to reduce the capaci-
ties of the urban hospitals to ensure that more doctors are assigned to rural hospitals.
To produce the final assignment, they then run the very popular deferred acceptance
mechanism (which is widely used in many medical residency markets, including in the
United States) under these lower (“artificial”) capacities, a mechanism we call artificial
caps deferred acceptance (ACDA).2

As a second example of distributional constraints, consider the United States Mil-
itary Academy (USMA), which every year must assign newly graduated cadets to posi-
tions in Army branches (for example, aviation or infantry). An October 1, 2007 mem-
orandum from the Army Deputy Chief of Staff to the USMA titled “Branch Allocation
Methodology” describes the following three phase procedure: first, minimum and max-
imum quotas for the number of cadets who must be assigned to each branch—or,
“floors” and “ceilings,” respectively—are calculated based on the Army’s current staffing
needs; second, artificial caps are calculated such that any final assignment that obeys
these caps necessarily satisfies all of the true ceilings and floors as well; and third, the
matching algorithm is run under the artificial (rather than the true) capacities.3 The
memo states that the assignment is done in three phases because “there is no ex-ante

1For example, Talbott (2007) notes that the United States as a whole has 280 doctors per 100,000 people,
but the 18-county Mississippi delta area has only 103 doctors per 100,000 people. Similar doctor shortages
in rural areas are present in many countries (e.g., Nambiar and Bavas 2010 document such shortages in
Australia).

2More precisely, the Japanese government imposes regional maximum quotas that guarantees that no
more than a certain number of doctors are assigned to each region of the country. In practice, however, this
is implemented by simply reducing the individual capacities of the hospitals by some fixed percentage that
guarantees that, when aggregated, the regional quotas will not be violated. See Kamada and Kojima (2015)
for more details on this market.

3Sönmez and Switzer (2013) proposes new algorithms for the third (final) phase of the branching proce-
dure, but does not consider the problem of how the capacities themselves are determined (second phase).
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closed form algorithm that optimizes program participation subject to manning require-
ments” (emphasis added). Providing such algorithms and studying their properties are
precisely the goals of this paper.4

A final well known example of distributional constraints arises in school choice
mechanisms, which many cities have recently adopted to give parents more choice over
schools (examples include New York, Boston, Chicago, and Denver). An additional con-
sideration for many school districts when implementing school choice plans is achiev-
ing (demographic) diversity, which can be thought of as distributional constraints on
the demographic distributions of the students at the schools. Usually, this is done us-
ing socioeconomic status (SES) or some proxy for it. For example, Chicago classifies
students into four SES tiers and requires that all selective high schools enroll enough
students from each tier.5 To take another concrete example, consider Cambridge, MA,
which divides students into high and low SES. They then require that the percentage of
students at each school from each class must lie within a certain range; in other words,
there is both a floor and a ceiling for the number of students of each type at each school.6

Louisville, KY and White Plains, NY have very similar controlled choice plans.7

The common theme that ties all of these applications together is the presence of
floors, i.e., a minimum number of agents who must be assigned to each institution. (In
many cases, there are actually multiple floors at each institution, such as floors for each
socioeconomic class in school choice.) While the literature thus far has been extremely
successful at developing mechanisms that work very well in the field for markets with
ceiling constraints, most of these existing mechanisms are inadequate for the many in-
stitutions that also have floor constraints. For instance, the original school choice mech-
anisms found in the seminal paper of Abdulkadiroğlu and Sönmez (2003) would allow
a school to have (for example) a total capacity of 100 seats in addition to ceiling con-
straints of at most 50 high SES students and at most 50 low SES students. Note, however,
that an assignment of 50 high SES students would satisfy these constraints, yet would be
completely segregated, and thus would not satisfy the true diversity objectives of many
school districts.

4Military branching can also be thought of as a special case of a firm (the Army) that must assign em-
ployees to projects (the branches), with each project having a minimum staffing requirement. For example,
some technology firms in Silicon Valley use centralized mechanisms to assign new interns to positions. In
a similar vein, for many new medical residents, the first year after medical school is a transitional year in
which they rotate through various departments of a hospital. While the hospitals try to accommodate pref-
erences as much as possible, each department has a minimum staffing requirement. All of these problems
can also be modeled as a matching problem with floor constraints, and our mechanisms can be applied.

5See the website of the Chicago Public Schools Office of Access and Enrollment at http://www.cpsoae.
org/apps/news/show_news.jsp?REC_ID=184188.

6Each school is required to be within 10% of the districtwide average for each SES class, which translates
into ranges of approximately 25–45% for low SES students and 55–75% for high SES students (these num-
bers may vary slightly from year to year). See “Case studies of school choice and open enrollment in four
cities” (Cowen Institute for Public Education Initiatives 2011).

7Achieving socioeconomic diversity in schools is also an issue in many European countries. For ex-
ample, Sweden implements a school choice procedure, but is considering “restricting the ability of some
parents to choose their children’s schools by introducing ‘controlled choice schemes that supplement
parental choice to ensure a more diverse distribution of students in schools’” (Orange 2015). See http://
www.matching-in-practice.eu for more examples.

http://www.cpsoae.org/apps/news/show_news.jsp?REC_ID=184188
http://www.matching-in-practice.eu
http://www.matching-in-practice.eu
http://www.cpsoae.org/apps/news/show_news.jsp?REC_ID=184188


866 Fragiadakis and Troyan Theoretical Economics 12 (2017)

Suppose the school in the above example also imposed floors of 25 high and 25 low
SES students (in addition to the ceilings of 50). This ensures a minimum level of diversity
at the school. One convenient way the district can ensure that these floors are met is to
(i) lower the ceilings at other schools and then (ii) run an “off-the-shelf” mechanism
designed to handle only ceiling constraints. As mentioned above, we call this approach
artificial caps (and when the off-the-shelf mechanism is the deferred acceptance (DA)
mechanism of Gale and Shapley (1962), we obtain the artificial caps deferred acceptance
(ACDA) mechanism). It works by the simple intuitive principle that restricting someone
from one school results in their being assigned to another.

Artificial caps is in fact a commonly used approach, likely because it is so intuitive.
As described above, this is precisely how the Japan Residency Matching Program (JRMP)
guarantees enough doctors are assigned to rural hospitals, and how the USMA ensures
enough cadets are assigned to each Army branch.8 They first eliminate sufficiently many
positions ex ante (i.e., before preferences are submitted) to guarantee that all of desired
floors are satisfied ex post (i.e., when the final matching is reached).

In this paper, we first show that imposing artificial caps results in avoidable ineffi-
ciency. The reason is that, to satisfy all of the constraints, ACDA must eliminate posi-
tions aggressively. To understand why, note that in a given matching problem, only one
set of preferences, P , is submitted. It may be the case that the ceilings required for DA
to satisfy all floors under P are not as low as those that were imposed by ACDA (which
must be low enough to ensure that the floors are met ex post for any possible prefer-
ences that could have been submitted). This is problematic, since eliminating a seat at
a school makes every student weakly worse off. Accordingly, we introduce the idea of a
dynamic quotas (DQ) mechanism, where dynamic quotas deferred acceptance (DQDA)
runs as follows: Start with the original ceilings and run DA. If the matching is feasible
(i.e., meets all floors), end the algorithm. Otherwise, lower the ceiling at one school by 1.
This causes a rejection chain, where that school rejects a student, who then applies to
her next most preferred school, which then (may) reject a student, and so forth, until
a student applies to a school with an open seat. When this rejection chain ends, if the
matching is feasible, end the algorithm; if not, lower the ceiling of another school by 1,
and so forth. We show that if we choose the order in which ceilings are lowered care-
fully, DQDA (i) always produces a matching that satisfies all distributional constraints
and (ii) Pareto dominates artificial caps DA.

By construction, the final ceilings implemented depend on the submitted prefer-
ences. This is precisely how we obtain the efficiency gain over ACDA: by using infor-
mation contained in the submitted preferences to determine the final ceilings, we are

8The case of the Japan Residency Matching Program is slightly subtle because, while they do not have
explicit floors, it seems clear that the end goal of the artificial capacities they impose is not to limit the
number of doctors in urban areas per se; instead, artificial caps are likely used as a simple, ad hoc way to
increase the number of doctors in rural areas. Kamada and Kojima (2015) provide improvements to the
current JRMP mechanism if the regional maximum quotas are taken at face value as the true objective,
but their mechanisms cannot handle floors explicitly. If the true objectives are actually as-to-now implicit
floor constraints, then we argue it would be an improvement to model these constraints explicitly and use
the mechanisms provided in this paper. Doing so satisfies the actual distributional goals (the true floors
and ceilings), and, as we show, makes all doctors better off, compared to the current approach of imposing
regional caps and hoping that the resulting distribution of doctors turns out to be satisfactory.
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able to eliminate fewer seats at each school than artificial caps. A concern that arises
from this modification is that individuals now have the ability to change the ceilings by
submitting different preferences. This poses a potential incentive problem: perhaps an
individual can do better by misreporting her preferences than by stating them truthfully,
i.e., the mechanism may not be strategyproof. Non-strategyproof mechanisms are often
unattractive because they allow some agents to “game the system” and profit at the ex-
pense of less sophisticated players (this is especially true in school choice, where school
districts are often worried that some parents may not fully understand the mechanism
and will be harmed by not strategizing appropriately).9 Thus, before implementing a
dynamic quotas mechanism, it is crucial to fully understand its incentive properties.
While it may seem that allowing the final ceilings to depend on the preferences intro-
duces obvious avenues for manipulation, one of our main results is to show that this is
not the case. Indeed, we show that if the algorithm is constructed carefully, DQDA is in
fact strategyproof.

A final key concern is how to determine who is assigned where when demand ex-
ceeds supply. In school choice, many school districts create priority lists for each school,
giving students higher priority for neighborhood schools, sibling attendance, languages
spoken, or various other factors. The districts then wish to respect priorities in the fol-
lowing sense: if student i is assigned to school A but prefers the assignment of a stu-
dent j (e.g., school B) who is of the same socioeconomic status, then j must have a
higher priority at school B than i. Thus, i’s envy toward j is not justified. Eliminating
such justified envy concerns is often an important fairness consideration in other set-
tings as well. For example, in the military, cadets are ranked according to an Order of
Merit list, which combines academic, physical fitness, and leadership scores (among
others). To give good incentives for the cadets to achieve high scores, the Army desires
that higher ranking cadets be assigned their more preferred branches, i.e., they also want
to eliminate justified envy. We show that DQDA does indeed satisfy this property.

We would also like to note that the paper makes not only a practical contribution,
but a theoretical one as well. While the incredibly influential paper of Gale and Shapley
(1962) first introduced the now very popular deferred acceptance (DA) mechanism, it
did not study the mechanism’s incentive properties. It has since come to be widely ac-
cepted that good incentive properties are integral to success, not only in matching, but
in a broad array of economic contexts. With regard to DA, Dubins and Freedman (1981)
and Roth (1982) were the first to prove that it is strategyproof for the proposing side in
simple one-to-one matching models. As the potential applications of DA have rapidly
grown, an active topic of research in the literature has been trying to understand the
most general settings that are compatible with strategyproofness (Martínez et al. 2000,
Abdulkadiroğlu 2005, Hatfield and Milgrom 2005, Hatfield and Kominers 2011, 2012,
Hatfield and Kojima 2010). The presence of the floors makes our model quite different
from these papers in a technical sense. In particular, they often rely on the existence of

9Non-strategyproof mechanisms also make it much more difficult for participants to reach equilibrium
in practice, and so it is unclear whether real-world outcomes will conform to theoretical predictions of such
mechanisms. Additionally, the need to strategize creates additional costs to participants from participating
in the mechanism that are not present if it is in their best interest to simply report their true preferences.
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student-optimal stable matchings, a condition that fails in our setting. In addition, all
of the previous papers assume that the choice functions of the receiving side are fixed
throughout the algorithm. We are the first to show that dynamically adapting choice
functions are compatible with strategyproofness.10 In the Appendix, we study general
sufficient conditions on the evolution of the choice functions that guarantee good prop-
erties of DA. Interestingly, our conditions are related to the key substitutability condi-
tions in the model of Hatfield and Milgrom (2005) (see also Kelso and Crawford 1982 and
Roth and Sotomayor 1990). Both guarantee monotonicity of the corresponding cumu-
lative offer process, which is crucial in proving our main results. Besides being useful in
practice, these results deepen our understanding of the enormously successful deferred
acceptance mechanism.

Related literature

Early papers that discussed distributional constraints in matching focused on the ru-
ral hospital problem and obtained mostly negative results. Papers such as Gale and
Sotomayor (1985a, 1985b), Roth (1984, 1986), Martínez et al. (2000), and Hatfield and
Milgrom (2005) prove various versions of the “rural hospital theorem,” which says that
if a doctor or a position at a hospital is unmatched at some stable matching, then they
are unmatched at any stable matching.11 This suggests that the rural hospital problem
is difficult to solve without imposing any additional structure on the market, which is
what led the Japan Residency Matching Program (JRMP) to impose regional caps on
the number of doctors in urban areas, an issue studied in detail by Kamada and Kojima
(2015).

Since it is an important goal of many school districts, diversity constraints have been
much discussed in the school choice literature. Much of the work thus far has dealt with
upper quotas/ceilings. In their seminal paper on school choice from a mechanism de-
sign perspective, Abdulkadiroğlu and Sönmez (2003) show how type-specific ceilings
can be easily incorporated into standard matching mechanisms. Ceiling constraints do
not fully capture diversity constraints, however, since they can still result in completely
segregated schools. In addition, in a model with two types of students (majority and
minority), Kojima (2012) points out that simple ceiling constraints can actually make
all minority students (the supposed beneficiaries) worse off. Hafalir et al. (2013) cor-
rect this by proposing deferred acceptance with minority reserves, a mechanism fur-
ther generalized by Kominers and Sönmez (2016), who introduce slot-specific priorities.

10Our use of the word “dynamic” should not be confused with the strand of literature on “dynamic
matching markets” that introduces a time dimension and allows agents to enter/exit the market and
matches to change each period (as in Kennes et al. 2014a, 2014b, Kadam and Kotowski 2014, and Akbarpour
et al. 2016). In our model, agents play a static game where they submit their preferences once, at the start
of the game, and take no further action. Once lists are submitted, the quotas/choice functions of one side
of the market may change as the algorithm progresses, hence operating in a possibly dynamic manner, but
ultimately, a single final match is produced.

11Afacan (2013) studies whether hospitals can manipulate their preferences to change the number of
positions filled. Sönmez (1997) studies the complementary question of whether hospitals can manipulate
their capacities to obtain a more preferred assignment of doctors.
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Doğan (2016) notes that in the mechanism of Hafalir et al. (2013), stronger affirmative
action constraints may actually harm some minority students without helping others,
and proposes a modification to rectify this. Abdulkadiroğlu (2005), Erdil and Kumano
(2013), Aygün and Bó (2016), and Echenique and Yenmez (2015) study various general-
izations of school priorities over sets of students and how they can capture certain types
of diversity goals.12

The main difference between our model and the aforementioned works is that we
treat the ceilings and floors as hard constraints, i.e., constraints that must be satisfied at
any feasible matching. Most prior papers interpret floors as soft constraints; that is, the
constraints are more like “guidelines,” and they may end up being violated at the final
assignment. Working with hard constraints complicates the problem considerably, and
leads to the incompatibility of several important properties (non-wastefulness, elimina-
tion of justified envy and strategyproofness) that could be achieved simultaneously in
prior models.

Recently, there is a growing literature that has begun to deal with hard floor con-
straints.13

 Ehlers et al. (2014) start by looking at a school choice model with hard floors
and ceilings similar to that studied here. After noting the above impossibility results,
they advocate for a “soft” interpretation of the constraints where the floors and ceil-
ings can be violated, and provide new mechanisms in this context.14 While such a soft
bounds approach may be acceptable in certain settings, there are many situations in
which it is inadequate, such as medical markets suffering from the rural hospital prob-
lem, school districts with court-mandated desegregation guidelines, or the military,
where minimum manning requirements must be filled. Our paper provides a strate-
gyproof mechanism that ensures that all floors are filled, and so can be used in these
settings. Fragiadakis et al. (2015) also study a model with hard floor constraints. The
model here is more general, as the model in Fragiadakis et al. (2015) is restricted to the
case of aggregate floor constraints; for example, they would not allow a school to have
separate floors for different types of students. We must construct different solutions
in this paper so as to handle multiple types (diversity constraints), and the arguments
become more complex. In addition, we show that our mechanisms Pareto dominate
mechanisms that are used in practice. In a more recent paper, Kojima et al. (2014) ana-
lyze certain classes of distributional constraints using the tools of discrete convex anal-
ysis. While they are able to encompass many types of constraints (including the simpler
mechanisms of Fragiadakis et al. 2015), they note that they are unable to accommodate
the constraints we consider, because of the complexities introduced by type-specific
floors and ceilings. Allowing for more general constraint structures that accommodate
such goals introduces substantial complications in constructing appropriate mecha-
nisms and in proving important incentive and efficiency results. Given the importance

12See also Westkamp (2013), who proposes similar mechanisms in the context of German university
admissions, and Braun et al. (2014), who conduct an experimental analysis of these mechanisms.

13In the context of object allocation, Budish et al. (2013) study what types of constraints admit expected
assignments that can be implemented as lotteries over deterministic assignments.

14They also provide an algorithm for the hard constraints case but, unlike ours, their mechanism is not
strategyproof.
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of these types of constraints in real-world markets, we view this as one of the key contri-
butions of the current paper.

Finally, the problem of distributional constraints has also garnered interest from
computer scientists. For example, Biró et al. (2010) study college admissions in Hun-
gary, in which colleges are allowed to declare minimum quotas for their programs, and
Hamada et al. (2011) study hospital–resident matching with lower bounds. Both pa-
pers focus mainly on computational hardness results: the former shows that the prob-
lem of determining the existence of a stable matching is NP-complete, while the latter
shows that the same is true of finding a matching that minimizes the number of block-
ing pairs. These papers provide another perspective which says that introducing floors
into matching markets complicates the problem substantially.

2. Model

There is a set of agents I = {i1� � � � � in} and a set of objects to which they can be assigned,
S = {s1� � � � � sm}, each of which has total capacity Qs. The finite set of types for agents is
�= {θ1� � � � � θr}, and each agent is of exactly one type. The function τ : I →� gives the
type of each agent, and Iθ is the set of agents of type θ. Types are fixed and are publicly
observable (i.e., types cannot be misreported). In addition to a capacity Qs, each s ∈ S
has a type-specific floor Ls�θ (or lower quota) and a type-specific ceiling Us�θ (or upper
quota) for the number of agents of each type θ who can be assigned to it. We assume
0 ≤ Ls�θ ≤ Us�θ ≤ Qs for all (s�θ). Let Q = (Qs)s∈S be the vector of all capacities and let
L = (Ls�θ)s∈S�θ∈� and U = (Us�θ)s∈S�θ∈� be the matrices of all type-specific floors and
ceilings, respectively.

One application of the model is that I is a set of students and S is a set of schools.
Then � can be interpreted as a set of socioeconomic classes corresponding to the di-
versity constraints of the school district.15 Other potential applications include the mil-
itary assigning cadets to branches, residency programs assigning doctors to hospitals
(as in Japan), firms assigning workers to tasks, or business schools assigning students to
projects.16 For concreteness, from here on we mostly stick to the language of students

15School districts sometimes state diversity constraints in terms of percentages (rather than absolute
numbers) because they are simpler to communicate, but these percentages are usually converted into ab-
solute numbers of seats when actually running the algorithm. This is done in Cambridge, for example
(see http://www3.cpsd.us/video/controlled_choice_video for a video describing the implementation of the
Cambridge algorithm, targeted toward parents). From a technical perspective, the use of percentages in-
troduces complementarities, which leads to many impossibility results (see Echenique and Yenmez 2015),
and percentages likely do not truly capture a school district’s goals, since they also want the total popu-
lation of a school to lie in some range (for example, a school with one high SES student and one low SES
student would be “unsegregated,” but having so few students in a school would not be cost effective from
the school district’s perspective). For these reasons, most formal models use absolute numbers (e.g., Ehlers
et al. 2014 and Hafalir et al. 2013). When there is only a single type (e.g., in military cadet matching), this
distinction is immaterial.

16In fact, the true prevalence of these types of distributional constraints in the real world is likely to be
underestimated. This is because artificial caps may be set internally in such a way that they are unobserved
to outsiders. That is, before running an algorithm, capacities may be set so as to implicitly satisfy some
floors (as in the JRMP in Japan), but to an outside analyst, it would appear as if the artificial caps were

http://www3.cpsd.us/video/controlled_choice_video
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and schools, since this is a framework with which most readers are likely familiar and so
will ease the exposition.

Each student i has a strict preference relation Pi over S, while each school s has a strict
priority relation �s over I. Profiles of such relations, one for each agent, are denotedPI =
(Pi)i∈I and �S = (�s)s∈S . Let P denote the set of all individual preference relations, and
let Pn denote the set of all preference profiles PI . The student preferences are their own
private information. The priorities are fixed and known to all students. In school choice
applications, priorities are often set by law, and depend on such things as distance from
a school, whether a student has a sibling attending the school, or whether a student
speaks a certain language. In the context of the military, priorities are determined by
combinations of academic, physical fitness, and leadership scores, among other things.

A matching is a correspondence μ : I ∪ S→ I ∪ S that describes which students are
assigned to which schools. Formally, μ must satisfy (i) μ(i) ∈ S for all i ∈ I, (ii) μ(s) ⊆ I

for all s ∈ S, and (iii) μ(i) = s if and only if i ∈ μ(s). Let M denote the set of matchings.
For any μ ∈ M, we let μθ(s) be the set of type θ students assigned to school s under
matching μ. Matching μ is feasible if Ls�θ ≤ |μθ(s)| ≤ Us�θ and |μ(s)| ≤ Qs for all (s�θ).
In words, a feasible matching is one that satisfies all of the type-specific floors and ceil-
ings as well as the overall capacities. Let Mf ⊆ M denote the set of feasible matchings.
We assume throughout the paper that Mf �=∅; this is the (obviously necessary) require-
ment that the distributional constraints be consistent with the number of students of
each type actually present in the market.

A mechanism ψ : Pn → M is a function that maps preference profiles to match-
ings. If the students submit PI ∈ Pn, then ψ(PI) ∈ M is the resulting matching. We
write ψi(PI) for the school to which student i is assigned, and write ψs(PI) for the set of
students assigned to school s. We say that ψ is feasible if ψ(PI) ∈ Mf for all PI ∈ Pn.

Given two matchings μ�ν ∈ Mf , μ weakly Pareto dominates ν if μ(i)Riν(i) for all
i ∈ I; if, in addition, μ(i)Piν(i) for some i ∈ I, then we say μ Pareto dominates ν.17 If
μ ∈ Mf is not Pareto dominated by any other ν ∈ Mf , then we say that μ is Pareto
efficient.18

We say student i of type θ claims an empty seat at school s if (i) sPiμ(i), (ii) |μ(s)|<Qs
and |μθ(s)| < Us�θ, and (iii) |μθ(μ(i))| > Lμ(i)�θ. In words, a student claims an empty
seat if there is a school s she prefers that has an open seat for her type and leaving her
current school μ(i) would not violate feasibility by causing it to drop below one of its
floors. If no student claims an empty seat under matching μ, then μ is non-wasteful.

the “true” ceilings and there were no floors. The JRMP and military cadet matching are two cases where
artificial caps are quite explicitly used, but since the idea is an intuitive one that seems to naturally occur to
policymakers, it is not hard to imagine other cases in which they are imposed discreetly. Thus, we believe
that our mechanisms may be applicable to many markets that have up to now dealt with floors in such a
suboptimal manner simply for lack of a better option.

17We use Ri to denote the weak preference relation corresponding to Pi , i.e., s Ri s′ if and only if s Pi s′ or
s = s′.

18Only the welfare of the students is considered, which is consistent with the school choice mech-
anism design literature in which school seats are viewed as objects to be consumed by students (see
Abdulkadiroğlu and Sönmez 2003).
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In words, non-wastefulness means that whenever a student prefers a school s to her
current assignment, it is impossible to move her to s without violating feasibility.

A second property is a fairness requirement called elimination of justified envy.19

Student i ∈ μ(s) justifiably envies student i′ ∈ μ(s′) if (i) s′ Pi s, (ii) i �s′ i′, and (iii) there
exists an alternative matching ν ∈ Mf such that ν(i)= s′, ν(i′) �= s′, and ν(j)= μ(j) for all
j �= i� i′. If no student justifiably envies any other, then the matching eliminates justified
envy. In words, student i justifiably envies i′ if she prefers the school of student i′, has
higher priority than i′ at this school, and i and i′ can be reassigned without violating any
distributional constraints (and without altering the allocation of any other student).20

The above properties have counterparts for mechanisms. Mechanism ψ is non-
wasteful if ψ(PI) is a non-wasteful matching for all PI ∈ Pn, and ψ eliminates justified
envy if ψ(PI) is a matching that eliminates justified envy for all PI ∈ Pn. We say that the
mechanism ψ Pareto dominate mechanism ϕ if

for all PI� ψi(PI) Ri ϕi(PI) for all i ∈ I�
for some PI� ψi(PI) Pi ϕi(Pi) for some i ∈ I�

As for matchings, we say thatψweakly Pareto dominates ϕwhenever the first part holds.
Since the student preferences are their own private information, the last important

property we must discuss is the incentives for students to report these preferences truth-
fully to a mechanism. Mechanism ψ is strategyproof if ψi(PI) Ri ψi(P ′

i� P−i) for all i ∈ I,
PI ∈ Pn, and P ′

i ∈ P . In words, a mechanism is strategyproof if no student can ever gain
by misreporting her preferences, no matter what the other students report.

Strategyproofness is a strong form of incentive compatibility, and is viewed as an
important property for many reasons. First, strategyproof mechanisms advance the so-
called Wilson doctrine (Wilson 1987), which argues that to be successful, market designs
should not be sensitive to specific assumptions on agent beliefs (see also Bergemann
and Morris 2005). Strategyproof mechanisms satisfy the Wilson doctrine in its strongest
sense, since truthful reporting is optimal for any beliefs agents may have. Second, from
a practical perspective, policymakers in general (and school districts in particular) are
often interested in strategyproof mechanisms because they are strategically simple for
agents to play. Agents can be informed that all they must do is submit their true pref-
erences, and unsophisticated players who are unable to strategize effectively will not be

19For example, this was an important criterion to administrators of the Boston school district when they
were redesigning their school assignment mechanism (Abdulkadiroğlu et al. 2005). In the military, elimina-
tion of justified envy is an important normative criterion that ensures that higher performing cadets receive
their more preferred assignments.

20In two-sided matching models without distributional constraints, non-wastefulness and elimination
of justified envy are often combined into one definition called stability, which is usually then given a pos-
itive interpretation. We must separate the two definitions due to impossibility results caused by the intro-
duction of the floors (discussed below). In addition, in many school choice settings, these properties are
more usefully interpreted in a normative manner (see also Kamada and Kojima 2015, who use normative
justifications for alternative stability concepts in hospital residency matching in Japan, where the standard
(positive) notion of stability fails). Balinski and Sönmez (1999), Ehlers et al. (2014), and Fragiadakis et al.
(2015) use similar distinctions between non-wastefulness and elimination of justified envy as we do here.
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disadvantaged.21 For these reasons, many cities have opted for school choice mech-
anisms that are strategyproof (among them, New York City, Boston, and New Orleans).
Strong incentive constraints have been an important design consideration in other mar-
ket design settings as well, such as hospital–resident matching (Roth 1991, Roth and
Peranson 1999) and auction design.22

3. Deferred acceptance and artificial caps

When there are no floor constraints, a widely used solution to the assignment problem
is to use some variation of the deferred acceptance (DA) algorithm of Gale and Shap-
ley (1962). The following description is a simple generalization of Gale and Shapley’s
algorithm with ceiling constraints and type-specific reserves.

Deferred acceptance

Step 1. Each student applies to the first school on her preference list. Each school s
considers all students who have applied to it and tentatively accepts students
as follows:

(i) Type-specific seats: For each type θ, school s accepts the Ls�θ highest
ranked type θ students according to �s .

(ii) Open seats: For any students remaining in the applicant pool, school s
admits students one by one from the top of its priority order, unless either
some type-specific ceiling Us�θ would be violated or Qs − ∑

θ∈�Ls�θ open
seats have already been filled. All students not accepted are rejected.

Step k. Each student who was rejected in step k − 1 applies to her most preferred
school that has not yet rejected her. Each school s considers its new applicants
in step k jointly with the students tentatively admitted from step k − 1, and
again tentatively accepts students in its applicant pool in the same manner as
above. All students not accepted are rejected.

In this version of DA, each school reserves Ls�θ seats exclusively for students of type θ;
the remaining Qs − ∑

θ∈�Ls�θ seats are open seats, that can go to students of any type,
subject to the ceiling constraints Us�θ. When the floors are set to 0 at all schools, the
above algorithm reduces to that defined by Abdulkadiroğlu and Sönmez (2003), and
when there is only a single type, it reduces further to the algorithm of Gale and Shap-
ley (1962). In these simpler environments, DA is a very successful mechanism because
it is non-wasteful, eliminates justified envy, and is strategyproof.

21See Pathak and Sönmez (2008, 2013).
22Strategyproofness is of course not costless, as is shown in a recent strand of the school choice literature

started by Abdulkadiroğlu et al. (2011) that finds that non-strategyproof mechanisms may sometimes out-
perform strategyproof ones on welfare grounds, at least in equilibrium (see also Featherstone and Niederle
2014, Troyan 2012, and Akyol 2013). However, the equilibria of these mechanisms can be complex, and it
may be difficult for many agents to calculate best responses, which is what has often lead to the adoption
of strategyproof alternatives.
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Figure 1. Outcome of DA with ceilings of 15 for each type (represented by the thick horizontal
line). The solid bars represent the number of type h students at each school, while the striped
bars represent the number of type 
 students at each school.

However, while in the above mechanism the schools reserve Ls�θ students for each
type θ, these seats may not actually be filled at the end of the algorithm. Thus, under a
model of hard floor constraints, DA may produce a matching that is not feasible. This is
shown in the following example.

Example 1. Let there be three schools A, B, and C, each with a capacity of 20 seats.
There are 40 students, divided into two types: students h1� � � � �h20 are of high socioeco-
nomic status (type h), and students 
1� � � � � 
20 are of low socioeconomic status (type 
).
The distributional constraints are to have between 5–15 students of each type at each
school. Let the preferences of all of the h students be Phi : A�B�C and let the prefer-
ences of all of the 
 students be P
i : A�C�B. For simplicity, let the priorities of all schools
rank h1 �s h2 · · · �s h20 �s 
1 · · · �s 
20 (this can easily be generalized). DA using the true
ceilings of 15 for each type at each school produces the output shown in Figure 1.

The problem is that schools B and C are not meeting their floors. A simple and oft
used solution to this problem is to run DA under some lower ceilings, a mechanism
we call artificial caps deferred acceptance (ACDA). However, to guarantee that all of the
floors will be filled for any possible submitted preference profile, the artificial caps must
be quite strict. For example, consider running DA on the same preferences as above, but
set the ceilings for each type at each school to be 8 (left panel of Figure 2). The figure
shows that under the above preferences, even artificial caps of 8 still leave some floors
unfilled.

It is indeed possible to set the artificial caps in such a way that all floors will be filled,
no matter what preferences are submitted: for example, setting ceilings of 7 do just this
(right panel of Figure 2). The benefit of setting ceilings of 7 is that we can guarantee that
the final outcome will be feasible for any preference profile that is submitted. The cost
is that, for some preference profiles, such low ceilings may be unnecessarily stringent
and, hence, very wasteful. For example, consider an alternative preference profile in
which 10 type h students and 10 type 
 students have A as their first choice, 5 type h
students and 5 type 
 students have B as their first choice, and 5 type h students and 5
type 
 students have C as their first choice. An assignment that gave every student her
first choice would be feasible, but would violate the artificial caps of 7. Thus, if such
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Figure 2. Left panel: Artificial caps of 8 at each school leave schools B and C below their floors.
Right panel: Artificial caps of 7 ensure that all lower and upper quotas are satisfied. Again, the
solid bars represent the type h students and the striped bars represent the type 
 students.

rigid artificial caps were used, the resulting assignment will be inefficient. It is these
inefficiencies we hope to recover by designing a new mechanism. ♦

To define artificial caps DA formally, let Ū = (Ūs�θ)s∈S�θ∈� be some alternative type-
specific ceilings and let Q̄= (Q̄s)s∈S be some alternative total capacities that may be dif-
ferent from the primitive U and Q. We call any such (Ū� Q̄) artificial caps. We then for-
mally define the artificial caps deferred acceptance algorithm (ACDA) as the deferred ac-
ceptance algorithm using some (Ū� Q̄), not necessarily equal to the primitive (U�Q). We

denote the artificial caps deferred acceptance mechanism under (Ū� Q̄) by DA(Ū�Q̄)(·).
Under ACDA, the chosen (Ū� Q̄) will surely be satisfied (by definition), but if (Ū� Q̄)

are not picked carefully, the final outcome of ACDA may not be feasible, either because
some floors are not filled or because some students are unmatched. If, for any submitted
preference profile PI , running ACDA under (Ū� Q̄) produces a final matching such that
all students are assigned and all type-specific floors, type-specific ceilings, and overall
capacities are satisfied, then we say that (Ū� Q̄) ensures a feasible match. The following
theorem shows that such feasibility-ensuring choices of (Ū� Q̄) always exist.

Theorem 1. The set of (Ū� Q̄) that ensures a feasible match is nonempty.

The proof chooses some feasible μ ∈ Mf and sets Ūs�θ = |μθ(s)| and Q̄s = |μ(s)| for
all (s�θ). This corresponds to predetermining exactly the number of students of each
type θ who will be assigned to each school before students even submit their prefer-
ences.23 While the proof only provides one example, there are in general many choices
of (Ū� Q̄) that ensure a feasible match (the exact details depend on the specifics of the
market in question). Henceforth, we assume that ACDA is run under some (Ū� Q̄) that
ensures a feasible match.

Properties of ACDA

Without floors, it is well known that DA satisfies non-wastefulness, elimination of jus-
tified envy, and strategyproofness (Gale and Shapley 1962, Abdulkadiroğlu and Sönmez

23This of course implicitly depends on the assumption that the set of feasible matchings itself is
nonempty, an assumption that was discussed above.
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2003). In the presence of floors, however, an impossibility result obtains: matchings that
eliminate justified envy may not even exist (Ehlers et al. 2014). This is intuitive, since
floors are often used to give certain groups access to schools they would not be able to
obtain based on priority alone. This observation leads to a natural alternative fairness
criterion: a matching/mechanism eliminates justified envy among same types if no stu-
dent justifiably envies another student of her same type. This is a reasonable criterion,
because any remaining priority violations are caused by the distributional constraints,
which the market organizer finds inherently valuable.

Theorem 2. ACDA eliminates justified envy among same types and is strategyproof.

The strategyproofness and (same type) envy-freeness of ACDA are immediately in-
herited from the fact that DA is strategyproof and eliminates justified envy among same
types. ACDA is likely a popular mechanism because it satisfies these two properties,
while at the same time filling all floors and, crucially, being very easy to implement.
However, ACDA does have one significant drawback: the potential inefficiencies that
arise from setting rigid capacities that are too low (recall Example 1 or see Example 2
below). In the next section, we introduce our dynamic quotas DA mechanism to recover
these inefficiencies.

4. Dynamic quotas deferred acceptance

The major problem with ACDA is that its capacities are set once and for all from the
beginning of the mechanism, and have no ability to respond to information that is con-
tained in the submitted preferences. As we saw in Example 1 above, this can be impor-
tant, because while for some preference profiles, very low ceilings may be necessary to
ensure all floors are satisfied, for others, it may not be necessary to lower the ceilings
at all. This idea is what motivates our new dynamic quotas mechanism, which uses in-
formation contained in the submitted preferences to endogenously determine the final
ceilings and capacities in the course of running the algorithm and in so doing, prevents
too many seats from being eliminated.

One nice feature of using rigid artificial caps is that ACDA immediately (and triv-
ially) inherits the key strategyproofness property of DA. However, now that the submit-
ted preferences can alter the final capacities, the main issue we need to be concerned
with is strategyproofness: if a student’s submission can alter the final capacities in such
a way as to confer a strategic advantage from not reporting truthfully, one of the key
properties that is important to the success of DA (and ACDA) will be lost. We will see
that by designing the algorithm carefully, it is possible to retain strategyproofness.

To define our new algorithm, we first introduce the concept of a reduction sequence.

Definition 1. A reduction sequence is a sequence η = {(U1�Q1)� (U2�Q2)� � � � �

(UK�QK)} of ceiling–capacity pairs that satisfies the following statements:

(i) For all k, (Uk+1�Qk+1)≤ (Uk�Qk)≤ (U�Q).
(ii) The set (UK�QK) ensures a feasible matching.
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Definition 2. A reduction sequence is minimal if the following statements hold for
all k:

(i) For one (s�θ), Uk+1
s�θ =Uks�θ − 1 andQk+1

s =Qks − 1.

(ii) For all (s′� θ′) �= (s�θ), Uk+1
s′�θ′ =Uks′�θ′ .

(iii) For all s′′ �= s,Qk+1
s′′ =Qks′′ .

In words, a reduction sequence is simply a monotonically decreasing sequence of
ceiling–capacity pairs. Minimality means that in moving from stage k to k+1, we choose
a school-type pair (s�θ) and lower the type-θ ceiling at s and the capacity of s by exactly
one seat; the ceilings and capacities of the remaining schools are unchanged. To avoid
trivialities, we assume that for any feasibility-ensuring artificial caps (UK�QK), such a
nondegenerate reduction sequence exists.24

Dynamic quotas deferred acceptance

Let η= {(U1�Q1)� (U2�Q2)� � � � � (UK�QK)} be a reduction sequence.

Stage 1. Compute the outcome of standard DA (as defined in Section 2) under
(U1�Q1). If the resulting matching is feasible, end the algorithm and output
this matching. If not, proceed to stage 2.

Stage k for k≥ 2.

k.0. Lower the ceilings and capacities to (Uk�Qk). Divide each school s into
Ls�θ type-specific seats for each type θ andQks − ∑

θ Ls�θ open seats that
can be assigned to any type.

k�1. Beginning with an applicant pool equal to the set of students held at
the end of stage k − 1, school s tentatively fills the type-specific seats
for each type θ with the Ls�θ highest ranked type θ students according
to �s. If there are students remaining in the applicant pool, school s
tentatively admits students one by one from the top of its priority order
to the open seats, unless either some stage k type-specific ceiling Uks�θ
would be violated or Qks − ∑

θ Ls�θ open seats have already been filled.
All students not accepted are rejected.

24We say a reduction sequence is degenerate if for all k < K and all PI , DA(Uk�Qk)(PI) is feasible only if

DA(Uk�Qk)(PI) = DA(UK�QK)(PI). For an example of a market with only degenerate reduction sequences,
consider the special case where the sum of the floor constraints is exactly equal to the total number of stu-
dents. When this is true, the ceiling constraints are effectively irrelevant because the floors alone exactly
pin down the distribution of students across schools. Because there is no flexibility in the final distribu-
tion, the problem is trivial. Our model is only interesting when the primitives allow for some flexibility,
which is indeed the case in many real-world markets. Examples 1 and 2 both exhibit markets that admit
nondegenerate reduction sequences.
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k�j. Each student who was rejected in stage k�(j − 1) applies to her most
preferred school that has not yet rejected her. Each school s considers its
new applicants jointly with the students held at the end of stage k�(j−1),
and tentatively accepts students in the same manner as described in k�1.
All students not accepted are rejected.

Stage k continues until the substage k�j at which no students are rejected. If
the tentative matching at this point is feasible, end the algorithm and output
this matching. If not, proceed to stage k+ 1.

The basic idea behind DQDA is to start with high ceilings and capacities, and check
whether given the submitted preferences, the output of DA satisfies the floors as well.25

If so, the algorithm ends with the high ceilings. If not, only then do we lower the ceilings.
This initiates a rejection chain. The rejected students then apply to their next most pre-
ferred school, which rejects its lowest priority students, and so forth, continuing until no
further students are rejected. We continue gradually lowering the ceilings until all floors
are filled. The key is that the dynamic adjustment process of DQDA only lowers ceilings
after taking the submitted preferences of the students into account and stops as soon as
all floors are filled, which results in fewer seats being eliminated unnecessarily.

Example 2. The following example provides an illustration of the DQDA algorithm. Let
S = {s1� s2� s3� s4}, � = {
�h}, and I = {
1�h1�h2}. Consider the school quotas/priorities
and student preferences given in the following table. All floors are zero except for the
type h floor at s4.

Schools

Ls�
 Ls�h Us�
 Us�h Qs �s
s1 0 0 1 1 1 h1 �s1 h2 �s1 
1

s2 0 0 1 1 1 
1 �s2 h1 �s2 h2

s3 0 0 1 1 1 
1 �s3 h2 �s3 h1

s4 0 1 1 2 2 h1 �s4 h2 �s4 
1

Students
P
1 : s2� s3� s1� s4
Ph1 : s2� s1� s4� s3
Ph2 : s3� s4� s1� s2

The last object needed is a reduction sequence. Consider

η=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

1 1
1 1
1 1
1 2

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

1
1
1
2

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

1 0
1 1
1 1
1 2

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

0
1
1
2

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

1 0
1 0
1 1
1 2

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

0
0
1
2

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
�

In words, this reduction sequence starts with (U1�Q1) = (U�Q). At the beginning
of stage 2, we lower the capacity and type h ceiling at s1 by 1, while at the beginning of

25A potential concern of the reader may be that the DQDA algorithm does not produce a feasible as-
signment and/or may leave some students unmatched. Given our construction of the algorithm and the
reduction sequence, this is not an issue. In particular, we choose the reduction sequence such that the final
capacities (UK�QK) ensure a feasible match (and hence all students are assigned). We show that under
minimality, DQDA Pareto dominates DA under (UK�QK), and so these properties hold under DQDA as
well.
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stage 3, we lower the capacity and type h ceiling at s2 by 1. Note that the final entry,
(U3�Q3), ensures a feasible matching, while (U1�Q1) and (U2�Q2) do not.

The output of stage k= 1 is

μ1 =
(
s1 s2 s3 s4
h1 
1 h2 ∅

)
�

The type h floor at s4 is not satisfied, and so we must move to stage 2. At the be-
ginning of stage 2, Us1�h and Qs1 are lowered by 1, and so student h1 is rejected from s1,
beginning a rejection chain. When this rejection chain ends, the output at the end of
stage 2 is

μ2 =
(
s1 s2 s3 s4
∅ 
1 h2 h1

)
�

Matching μ2 satisfies all of the primitive floors and ceilings, and thus there is no need
to move to stage 3. The final output is μ2, which Pareto dominates the matching that
would have been implemented by ACDA under artificial caps of (Ū� Q̄)= (U3�Q3):

μACDA =
(
s1 s2 s3 s4
∅ ∅ 
1 {h1�h2}

)
�

Student h1 is indifferent between the two outcomes, but both 
1 and h2 strictly prefer
DQDA. ♦

There is an alternative way to define a dynamic quotas algorithm that is very natural.
At the end of each stage, rather than leaving everyone at their assigned schools and low-
ering the ceilings from (Uk−1�Qk−1) to (Uk�Qk), we could instead remove all students
from their assigned schools and run the entire deferred acceptance algorithm from the
beginning under the lower ceilings (Uk�Qk). We call this version of the algorithm se-
quential deferred acceptance (SDA).

Sequential deferred acceptance

Recall that DA(U ′�Q′)(·) denotes the DA mechanism using ceilings and capacities
(U ′�Q′). Given a reduction sequence η = {(U1�Q1)� (U2�Q2)� � � � � (UK�QK)}, the se-
quential deferred acceptance algorithm is defined as follows.

Stage 1. Compute DA(U1�Q1)(PI), the outcome of DA under (U1�Q1). If DA(U1�Q1)(PI)

is a feasible matching, end the algorithm and output this matching. If not,
proceed to stage 2.

In general, proceed as follows.

Stage k. Lower the ceilings and capacities to (Uk�Qk) and compute DA(Uk�Qk)(PI),

the outcome of DA under (Uk�Qk). If DA(Uk�Qk)(PI) is a feasible matching,
end the algorithm and output this matching. If not, proceed to stage k+ 1.
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While DQDA and SDA are similar, in general they are not equivalent mechanisms. How-
ever, there is an important class of reduction sequences where they in fact are equiva-
lent: minimal reduction sequences.

Theorem 3. Let η be a minimal reduction sequence. For any preferences PI , the match-
ing produced by DQDA under η is equivalent to that produced by SDA under η.

The important implication of Theorem 3 is that the final matching output by DQDA
is ex post equivalent to the matching that would have been produced by standard DA
under some (fixed) ceilings and capacities (Uk�Qk). This will be helpful in proving our
main result below. It is imperative to note, however, that ex ante, it is not known what
the final (Uk�Qk) will be, as this will be determined by the submitted preferences.

The main result

With these preliminary results in hand, we can now state and prove Theorem 4, the main
result.

Theorem 4. (i) Every ACDA mechanism is Pareto dominated by some DQDA mecha-
nism under a minimal reduction sequence η.

Further, for any minimal reduction sequence η, the following statements hold:

(ii) DQDA under η eliminates justified envy among same types.

(iii) DQDA under η is strategyproof.

Before discussing the intuition behind the proofs of these results, we first comment
on their interpretation. Note that DQDA takes the reduction sequenceη as an input, and
different reduction sequences lead to different DQDA mechanisms. DQDA under any
minimal η = {(U1�Q1)� � � � � (UK�QK)} Pareto dominates ACDA under (UK�QK), and
while DQDA under η may not Pareto dominate ACDA under some other (U ′�Q′), the
important point to note is that, given such a (U ′�Q′), there is an alternative reduction
sequence η′ ( �= η) that will Pareto dominate ACDA under (U ′�Q′).26 Thus, the upshot

26Given two different reduction sequences η and η′, DQDA under η and DQDA under η′ in general are
Pareto incomparable, as different students will have different preferences over the order in which quotas are
reduced. However, all students will prefer DQDA to the relevant artificial caps. As an analogy, consider the
serial dictatorship, a popular mechanism for allocating discrete objects when there are no priorities. The
serial dictatorship works by first fixing some ordering of the students, and then allowing the students to
pick their favorite schools according to this ordering. The formal definition of the serial dictatorship takes
the fixed student ordering as an input, similar to how DQDA takes η as an input, and different orderings
lead to different serial dictatorship mechanisms. Obviously, there will be no Pareto dominance relation
between serial dictatorships with different student orderings (each student will prefer the ordering that
allows her to choose first), just as there will be no Pareto dominance relation between DQDA mechanisms
with different choices for η. However, the importance of this result is that it is always possible to improve
on ACDA without compromising fairness or incentives. The key feature needed to retain strategyproofness
is that η be fixed ex ante, i.e., the submitted student preferences cannot affect the order in which ceilings
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of the theorem is that any choice of artificial caps (including those that are used in prac-
tice by institutions like the JRMP or the military) is inefficient in a strong sense: it is
always possible to achieve a Pareto improvement using a dynamic quotas mechanism.
The remaining parts of Theorem 4 show that, importantly, these Pareto improvements
can be achieved without harming the fairness or incentive properties of the algorithm.
Thus, there seems to be little reason for any market using an artificial caps mechanism
in practice not to consider switching to a dynamic quotas mechanism instead.

Intuition for Theorem 4 Next, we discuss the intuition for Theorem 4 (the full proof is
given in Appendix B). First, we note that Theorem 4 is actually a special case of a more
general result that we build in Appendix B.

Remark 1. While early hospital–resident and school choice matching models assume
simple linear preference/priority relations over individual agents on the other side of
the market (as we do in the main text here), as the theory has developed, this has been
continually expanded to accommodate other types of priority structures that do not
take this simple form. At the most general level, one can define abstract choice func-
tions Chs(·) for the schools, where Chs(I ′)⊆ I ′ returns the students school s admits from
any potential subset of applicants I ′ (see, for example, Hatfield and Milgrom 2005 or
Abdulkadiroğlu 2005). It is possible to generalize our model in a similar way and to de-
fine a generalized DQDA algorithm whereη is a sequence of choice functions. To ensure
the good properties from Theorem 4 hold in general, we must place additional structure
on the choice functions. The most important condition is monotonicity, which says that,
fixing the set of applicants at a school, the set of rejected students expands as we move
to later stages. This purpose of this condition is analogous to the substitutability condi-
tion of Hatfield and Milgrom (2005): both guarantee that as the algorithm progresses, a
school never wants to admit a student it has previously rejected. Our condition is differ-
ent, however, because of the dynamic nature of the choice functions in our generalized
algorithm: as the choice functions evolve from stage k to stage k+1, we must ensure that
they evolve in such a way that no school ever wants to admit a student it previously re-
jected in an earlier stage. Minimal reduction sequences are a special case of monotonic
choice functions. So as not to obscure the main insight of the paper, we refer interested
readers to Appendix A for details.

Part (i) For part (i), note that DQDA ends under some ceilings and capacities
(Uk�Qk) ≥ (UK�QK). At first glance, it may seem obvious that the final matching pro-
duced by DA under higher ceilings and capacities should be preferred by all students to
the outcome under lower ceilings and capacities. However, the full argument is more
subtle, as lower ceilings for one type of student may actually be beneficial to other types.
For example, consider a model with two types, � = {
�h}, and a school s with priority

are reduced. Within these constraints, policymakers may actively choose the ceiling that is to be reduced
at each stage so as to achieve some desirable policy goals; alternatively, at each stage k we can randomly
choose some pair (s�θ), subject to feasibility constraints (just as the random serial dictatorship randomly
chooses a student ordering and implements the serial dictatorship using this ordering).
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relation �s and upper quotas and capacities in stages k and k+ 1 as given by

Us�
 Us�h Qs

k 2 2 2
k+ 1 2 1 2

�s: h1�h2� 
1� � � � .

Note that the preceding table is not a minimal reduction sequence, because Us�h is
reduced, while Qs is not. If the set of students who apply to school s under the stage k
quotas is I ′ = {h1�h2� 
1}, the students admitted would be {h1�h2}. However, under the
stage k+ 1 quotas, the admitted students would be {h1� 
1}. So if 
1 prefers school s (if
s is the first choice for all students, for example), then 
1 will actually be strictly worse
off in stage k, under the “higher” capacities. This insight can be embedded into a full
market example to show that DQDA does not Pareto dominate DQDA for any arbitrary
reduction sequence.

The reason this occurs in the above example is because in both stages, school s has a
total capacity of 2, but in stage k, both of these seats can go to a type h student, while in
stage k+ 1, only one of these seats can go to a type h student. The higher ceiling for type
h students in stage k makes student 
1 worse off, because the type h students then pre-
vent her from getting a seat at s. Formally, to ensure the Pareto dominance result holds,
what is needed is that the set of students chosen from any given set of applicants must
be weakly larger (in the set inclusion sense) in earlier stages compared to later stages.
This is exactly the monotonicity assumption that was discussed in Remark 1. This is
not true in the above example; however, the assumption that η is a minimal reduction
sequence guarantees that this holds.

Part (ii) Part (ii) is the simplest part of the theorem: it follows from the fact that stan-
dard DA with type-specific ceilings eliminates justified envy among same types together
with the fact that, ex post, the final matching produced by DQDA is equivalent to stan-
dard DA for some (Uk�Qk) (of course, it is not known ex ante what the final stage k
will be, which is precisely why we need to run the dynamic quotas algorithm in the first
place).27

Part (iii) Parts (i) and (ii) can be shown by analyzing DA within each stage k separately.
Analyzing the incentive properties of DQDA is significantly more complicated, because

27Recall that there is an impossibility result that says that matchings that eliminate justified envy (across
types) may not even exist (see Section 3), and so the most we can hope to achieve is elimination of jus-
tified envy among same types. If, in addition, we require non-wastefulness, another impossibility result
obtains: matchings that simultaneously eliminate justified envy among same types and are non-wasteful
may also fail to exist (see Ehlers et al. 2014 and Fragiadakis et al. 2015). Thus, one of these properties must
be weakened. Markets that use ACDA are opting to keep elimination of justified envy among same types
and weaken non-wastefulness. However, as Theorem 4 shows, ACDA weakens non-wastefulness more than
necessary, as DQDA Pareto dominates ACDA while still satisfying elimination of justified envy among same
types and strategyproofness.
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they cannot be understood by looking at each stage independently. The submitted pref-
erences themselves have the potential to alter the final capacities, which may (poten-
tially) give the agents the ability to manipulate their preferences in such a way as to
change when the algorithm ends and make themselves better off.

To understand the intuition behind why DQDA is strategyproof, it is easiest to re-
strict to the case of a single type, so that each school has only one aggregate floor con-
straint and one aggregate capacity constraint. Then fix the preferences of all students
other than i at P−i. Let k be the final stage of DQDA if i submits her true preferences Pi.
The potential manipulations P ′

i that i can make can be classified into three types: con-
tractions (P ′

i causes DQDA to end at some k′ < k), extensions (P ′
i causes DQDA to end at

some stage k′ > k), and equivalences (P ′
i causes DQDA to end in stage k′ = k). The last

category is the easiest to rule out as being profitable: if both Pi and P ′
i cause DQDA

to end in stage k, then, since DQDA is equivalent to standard DA in stage k, strate-
gyproofness of DA implies that any such manipulation is not profitable. For extensions,
if P ′

i causes DQDA to continue beyond stage k, then there are less seats available for all
students. This makes every student worse off (by the same argument used for part (i)
above), and so extensions are never profitable.

The most difficult types of manipulations to rule out are contractions. Contractions
seem to have the most potential for profitability, because just as less seats tend to make
students worse off, more seats may have the potential to make students better off. The
question, though, is whether the algorithm allows student i to manipulate her prefer-
ences to end the algorithm under higher ceilings, and to do so in such a way that makes
her better off. The first part is true (it is possible for a student to manipulate to cause the
algorithm to end under higher ceilings), but the second is not (due to the way we have
constructed the algorithm, any false report she can submit to do so makes her weakly
worse off).

To understand why, consider a student i with preferences Pi: s1� s2� s3� � � � . Begin by
running DA on all students other than i,28 and assume after this is done that there is
only one floor seat left to be filled, at school s2. Now, DQDA ends the next time any
student applies to s2. One option available to student i is to lie and list school s2 as
her true first choice, thereby ending the algorithm immediately (a contraction) with her
receiving s2. If i instead submits her true preferences and first applies to s1, she may
initiate a chain of rejections that ends with some other student applying to s2, in which
case i receives s1, her true first choice. The key observation is that even if i is eventually
rejected from s1 (e.g., if a seat at s1 is eliminated at some point during the running of
the algorithm), she then simply applies to s2 and the algorithm ends. The seat at s2 is
always available until someone applies to it, at which point the algorithm ends and all
assignments are made permanent. Thus, there is no harm in i reporting her top choices
truthfully, because seats at lower ranked schools are always available to her. Note that
when there is a single type, monotonicity of the school choice functions (as discussed
above) holds trivially, since lowering the capacity at a school automatically eliminates

28The order in which students are allowed to apply is irrelevant, a result first shown by McVitie and Wil-
son (1971).
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the seat for all students, since everyone is the same type. More generally, with multiple
types, we may run into problems similar to those in the discussion of part (i) above. In
the general model in Appendix A, monotonicity of the choice functions is a key property
used in the proof of strategyproofness.29

Note that while Theorem 4 shows that DQDA Pareto dominates ACDA, it does not
say that DQDA always selects a Pareto efficient matching. This is unsurprising because,
even without floors, the DA outcome may not be Pareto efficient due to the fairness (no
justified envy) constraints. DA is still widely used, however, because fairness is consid-
ered an important property in many markets. Given this, it is natural to ask whether
DA and/or our DA-type mechanisms are constrained efficient. We say that a feasible
matching μ that eliminates justified envy among same types is constrained efficient if
there is no other feasible matching μ′ that eliminates justified envy among same types
and Pareto dominates μ.30 We say a mechanism ψ is constrained efficient if it always
selects a constrained efficient matching.

When there are no floor constraints, DA is strategyproof, eliminates justified envy,
and is constrained efficient (Gale and Shapley 1962, Abdulkadiroğlu and Sönmez 2003).
As we have seen, the introduction of floor constraints creates complications that lead
to the incompatibility of many of the good properties of DA in the standard model, and
this continues here: neither ACDA nor DQDA is a constrained efficient mechanism. This
follows from the following impossibility result, shown by Ehlers et al. (2014).

Proposition 1 (Ehlers et al. 2014). There is no feasible mechanism that is strategyproof,
eliminates justified envy among same types, and is constrained efficient.31

Since DQDA is strategyproof and eliminates justified envy among same types, it is
not constrained efficient. The impossibility result shows that this is a general problem
caused by the presence of floors, and so trade-offs are required between these three de-
sirable properties. Markets that currently make use of ACDA are choosing to prioritize
strategyproofness and elimination of justified envy, while weakening efficiency. What
we show is that ACDA weakens efficiency more than necessary, and we are the first to
provide a new mechanism that is more efficient without compromising important fair-
ness or incentive properties.

29An implicit, yet important, feature of the definition of DQDA is that the reduction sequence η be de-
termined exogenously to the submitted preferences, which is key in proving strategyproofness. In the Sup-
plemental Material (available in a supplementary file on the journal website, http://econtheory.org/supp/
2195/supplement.pdf), we define an alternative endogenous reduction DQDA (EDQDA) algorithm that al-
lows the reduction sequence to be determined endogenously. EDQDA is not strategyproof.

30We focus on eliminating justified envy among same types only because even with this weaker condi-
tion, there is an impossibility result (Proposition 1).

31Ehlers et al. (2014) actually show a stronger result, namely that there is no mechanism that is strate-
gyproof, eliminates justified envy among same types, and is constrained non-wasteful. Their definition of
constrained non-wastefulness is implied by constrained efficiency, and so there also is no mechanism that
is strategyproof, eliminates justified envy among same types, and is constrained efficient.

http://econtheory.org/supp/2195/supplement.pdf
http://econtheory.org/supp/2195/supplement.pdf
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5. General mechanisms with dynamic quotas

For most of this paper, we have focused specifically on deferred acceptance. However,
the main ideas behind artificial caps and dynamic quotas can easily be applied to any
mechanism that has inputs for ceiling constraints but not for floors. This includes most
standard mechanisms used in practice, such as the immediate acceptance mechanism,
the serial dictatorship, and top trading cycles.

Formally, we define a class of mechanisms called upper quota mechanisms. Up-
per quota mechanisms are indexed by vectors of ceilings and capacities (U ′�Q′), which
we refer to jointly as upper quotas. Let M(U ′�Q′) = {μ ∈ M : |μθ(s)| ≤ U ′

s�θ and
|μ(s)| ≤ Q′

s for all (s�θ)} be the set of all matchings that respect (U ′�Q′). An upper
quota mechanism is a function ψ(U

′�Q′) : Pn → M such that ψ(U
′�Q′)(PI) ∈ M(U ′�Q′)

for all PI ∈ Pn. A collection of mechanisms, one for each (U ′�Q′), is denoted � :=
{ψ(U ′�Q′)}(U ′�Q′). We refer to � as a class of upper quota mechanisms. As an example,
� could be the class of DA mechanisms as defined in Section 2: � = {DA(U ′�Q′)}(U ′�Q′).
Note that upper quota mechanisms always satisfy the given ceilings and capacities
(U ′�Q′), but again need not be feasible, for reasons similar to those discussed for DA
in Section 2. If (Ū� Q̄) are such that ψ(Ū�Q̄)(PI) is feasible for all PI , then we call ψ(Ū�Q̄)

an artificial caps mechanism. For example, when� is the class of DA mechanisms, then
ψ(Ū�Q̄) is ACDA under artificial caps (Ū� Q̄).

Definition 3. Let (U ′�Q′) and (U ′′�Q′′) be such that (U ′�Q′) ≤ (U ′′�Q′′) and∑
θ∈�(U ′′

s�θ −U ′
s�θ)≤Q′′

s −Q′
s for all s ∈ S. The class of mechanisms � is resource mono-

tonic if, for all such (U ′�Q′) and (U ′′�Q′′), ψ(U ′′�Q′′) weakly Pareto dominates ψ(U
′�Q′).

Resource monotonicity means that raising the ceilings and capacity of a school
makes all students weakly better off, provided that the type-specific ceilings are not
raised more than the capacity.32

We now generalize dynamic quotas to any class of mechanisms�.

Dynamic quotas� (DQ�)

Fix a sequence of ceiling–capacity vectors η = {(U1�Q1)� (U2�Q2)� � � � � (UK�QK)} such
that (i) (Uk+1�Qk+1) ≤ (Uk�Qk) ≤ (U�Q) for all k and (ii) ψ(U

K�QK)(PI) is feasible for
all PI . The algorithm then proceeds in a series of stages.

Stage 1. Calculate ψ(U
1�Q1)(PI). If ψ(U

1�Q1)(PI) is a feasible matching, end the algo-
rithm and output this matching. If not, proceed to stage 2.

32Resource monotonicity has been used as an important axiom in many allocation settings (see, for ex-
ample, Ehlers and Klaus 2004, Kesten 2006, and Thomson 2010). The previous works do not have type-
specific ceilings, and prior notions of resource monotonicity say that raising just the capacity of a school
makes all agents better off (in a Pareto sense). This is implied by Definition 3, but for our purposes, we want
to allow the type-specific ceilings to be raised as well. However, we must do this in a “controlled” manner:
raising the type-specific ceilings by more than the number of capacity seats may make students of other
types whose ceilings were not raised worse off (see the discussion after Theorem 4).



886 Fragiadakis and Troyan Theoretical Economics 12 (2017)

In general, proceed as follows.

Stage k. Calculate ψ(U
k�Qk)(PI). If ψ(U

k�Qk)(PI) is a feasible matching, end the algo-
rithm and output this matching. If not, proceed to stage k+ 1.

We define dynamic quotas � as the function DQ� : Pn → M that produces, for each
input, the matching at the end of the above algorithm.

Theorem 5. Assume that � is resource monotonic and η is a minimal reduction se-
quence. Then the dynamic quotas mechanism DQ� weakly Pareto dominates the arti-
ficial caps mechanism ψ(U

K�QK).

DQDA is a special case of DQ� when� is the set of deferred acceptance mechanisms
and η is a minimal reduction sequence (by Theorem 3). Dynamic quotas can also be
applied to many other choices of �. Besides DA, common upper quota mechanisms
used in practice include the serial dictatorship (SD), immediate acceptance (IA), and top
trading cycles (TTC).33 Versions of immediate acceptance are used in the Cambridge,
MA and Minneapolis, MN school districts, and the algorithm has previously been used
in Seattle, WA and Boston, MA. Versions of TTC are currently used in school districts in
San Francisco, CA and New Orleans, LA.

Since these are popular mechanisms, they are all natural candidates for use in the
presence of floor constraints as well. Again, by imposing sufficiently strict artificial caps,
it is possible to ensure a feasible matching. However, doing so results in the same ineffi-
ciencies as with deferred acceptance, because artificial caps still eliminates seats ex ante,
ignoring important information contained in the student preferences. We thus argue
that any market that uses artificial caps SD/IA/TTC would be better served by switch-
ing to dynamic quotas SD/IA/TTC. Because SD and IA are indeed resource monotonic,
dynamic quotas SD/IA will Pareto dominate artificial caps SD/IA. TTC, alternatively, is
not resource monotonic (Kesten 2006), and so, the Pareto dominance of dynamic quotas
over artificial caps will not hold for TTC. However, it is still be true that the final match-
ing implemented under dynamic quotas have higher ceilings than artificial caps, which
intuitively makes the students better off on average. We thus suggest that policymakers
may want to consider dynamic quotas over artificial caps, even if resource monotonicity
does not hold formally.

6. Conclusion

This paper shows that a common approach used in many matching markets with distri-
butional constraints may result in avoidable inefficiencies. We introduce a new class of
mechanisms based on a concept of dynamically adapting quotas. By using agents’ sub-
mitted preferences to allocate positions more flexibly given the reported demand, we

33The serial dictatorship is a simple mechanism where students are ordered and then one at a time,
choose their favorite school that has space remaining. Immediate acceptance (also known as the Boston
mechanism) and TTC (first defined by Shapley and Scarf 1974) are mechanisms that are common in the
field and are well known in the literature, and so we refer the reader to other papers for their full definitions
and analysis. A good introduction can be found in Abdulkadiroğlu and Sönmez (2003).
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are able to recover these inefficiencies. A key feature of our dynamic quotas approach
is its straightforward and intuitive nature, which is essential for practical implementa-
tion in market design settings where the mechanism used must be easily communicable
to participants. We also provide a rigorous theoretical analysis with respect to crucial
properties such as incentives and efficiency. We show that it is possible to improve upon
the existing approaches in a Pareto sense without compromising fairness or incentives,
suggesting that market participants would benefit from implementing our mechanisms.
Methodologically, we identify conditions under which the popular deferred acceptance
remains strategyproof even using dynamic quotas, and, in showing this result, intro-
duce techniques that may be helpful in designing strategyproof mechanisms for other
settings as well.

Our theoretical results have applications to a potentially wide array of market de-
sign contexts, including hospital–resident matching, school choice, and military cadet
branching, as well as a variety of less formal settings such as a firm assigning employees
to projects, each of which must have at least a certain number of workers assigned to
it. We take no position on the merits of imposing distributional constraints in any of
these contexts: the Army does so out of necessity, medical residency programs may do
so out of a concern over access to health care in rural areas, and many school districts
believe there are social benefits to diverse educational environments. While debating
the merits of such constraints is undoubtedly necessary, equally important is the de-
termination of the precise mechanism by which they will actually be implemented in
practice. This paper contributes to the latter research by extending the market design
approaches advocated by Roth (2002) to settings with hard constraints. We then provide
practical mechanisms within the framework of such constraints that have the poten-
tial to be successful in real-world applications. We do argue, however, that markets that
impose artificial caps as a way to satisfy some “implicit” floor constraints (such as the
Japan Residency Matching Program or other markets in which the true distributional
constraints are not publicly stated) should consider modeling their goals more explicitly
and switching to a dynamic quotas mechanism similar to those provided in this paper.
As we have shown, doing so improves welfare without compromising fairness, incen-
tives, or the true underlying distributional goals.

Appendix A: A general model of matching under distributional constraints

In this section, we define a model that allows for more general choice functions and
feasibility constraints. We then introduce some conditions on choice functions and pre-
liminary theorems that will be useful in the proof of strategyproofness (found in the
next section), though they also may be of independent interest. To simplify the flow of
the argument, the proofs of some lemmas are to be found in Appendix C.

A.1 Primitives

The primitives of the general model once again consist of a set of agents I = {i1� � � � � in}
and objects S = {s1� � � � � sm}, which, for consistency, we continue to refer to as students
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and schools, respectively. Each student has a strict preference relation Pi on S. How
schools determine which students to admit is now described differently. For any set
X , let 2X denote the power set of X . For each school s, we define a choice function
Chs : 2I → 2I , where, for every I ′ ∈ 2I , Chs(I ′)⊆ I ′ denotes the set of students admitted
to school s when its choice set is I ′. This setup is similar to the model of Hatfield and
Milgrom (2005).34 In the baseline model, Chs(I ′)would be the highest priority subset of
students in I ′ subject to the floors and ceilings (see Section 2). Corresponding to each
choice function is a rejection function Rejs(I

′)= I ′ \ Chs(I ′). Let Ch := {Chs1� � � � �Chsm}
denote a vector of choice functions, one for each school.

The following two conditions on choice functions were identified by Hatfield and
Milgrom (2005) as key for strategyproofness of DA in a model without floor constraints.

Definition 4. Choice function Chs is substitutable if I ′ ⊆ I ′′ implies Rejs(I
′)⊆ Rejs(I

′′).

Definition 5. Choice function Chs satisfies the law of aggregate demand if I ′ ⊆ I ′′ im-
plies |Chs(I ′)| ≤ |Chs(I ′′)|.

We assume that all choice functions defined from here forward satisfy both substi-
tutability and the law of aggregate demand.

Let I(s)= {I ′ ⊆ I : I ′ = Chs(I ′′) for some I ′′ ∈ 2I}.35 In words, I(s) is a set consisting
of all possible assignments for school s, obtained by considering every potential set of
applicants I′′ that s may have the opportunity to choose from.

The Chs functions above describe the primitive choice functions of the individual
schools. Beyond this, we allow the school district to impose additional distributional
constraints at the district level. In the main text, these are the type-specific floors and
ceilings, and the district can declare any matching that does not satisfy them as infea-
sible. In this more general setting, we assume for each school s that the school district
defines a priori a subset If (s)⊆ I(s) of feasible assignments.36 The set of feasible match-
ings Mf is then defined as

Mf = {
μ ∈ M : μ(s) ∈ If (s) for all s ∈ S}�

Note that the definition of If (s) and IRS (footnote 34) imply that if μ ∈ Mf , then
Chs(μ(s)) = μ(s) for all s. As in the main text, we continue to assume that the set of
feasible matchings is nonempty.

34Aygün and Sönmez (2013) point out a technical ambiguity in the model of Hatfield and Milgrom (2005),
noting that to ensure the choice functions are derived from a well defined underlying priority relation �s
over sets of students, one must assume a condition called irrelevance of rejected students (IRS), which, in
our setting, says that if Chs(I ′′) ⊆ I ′ ⊆ I ′′, then Chs(I ′) = Chs(I ′′). We assume below that all of our choice
functions satisfy substitutability and the law of aggregate demand, which Aygün and Sönmez (2013) show
implies IRS, and so we are justified in working directly with the choice functions, rather than the underlying
priority relation. See also Fleiner (2003), who discusses similar points.

35Note that by IRS (footnote 34), I ′ ∈ I(s) implies that I ′ = Chs(I ′).
36In the main text, If (s) consists of all assignments that satisfy a school’s type-specific floor and ceiling

constraints and capacities. In the standard school choice model (e.g., Abdulkadiroğlu and Sönmez 2003),
If (s)= I(s).
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In this context, a reduction sequence is now a sequence of vectors of choice func-
tions η = {Ch1� � � � �ChK}, where each Chk = (Chks )s∈S is a vector of choice functions

(one for each school) such that (i) Chs(Chks (I
′))= Chks (I

′) for all s ∈ S, k= 1� � � � �K and
all I ′ ∈ 2I , and (ii) deferred acceptance under choice function vector ChK always results
in a feasible match for any preference profile PI .37 Assumption (i) guarantees that the
reduction sequence never violates each school’s primitive choice function (e.g., by ac-
cepting too many students such that the school’s capacity would be violated) and (ii) is
the same assumption made for artificial caps DA that ensures, under restrictive enough
choice functions, we always obtain a feasible match. As discussed above, we continue
to assume that all Chks (·) are substitutable and satisfy the law of aggregate demand.

Definition 6. Reduction sequence η = {Ch1� � � � �ChK} is monotonic if Rejk
′
s (I

′) ⊆
Rejk

′′
s (I

′) for all s ∈ S, I′ ⊆ I, and k′′ ≥ k′.

Remark 2. If η is monotonic and Chks is substitutable for all s and k, we say η is mono-
tonically substitutable. Note that if η is monotonically substitutable, then I ′ ⊆ I ′′ and
k′ ≤ k′′ =⇒ Rejk

′
s (I

′)⊆ Rejk
′′
s (I

′′).38

Definition 7. Reduction sequence η is minimal if the following statements hold for
all k: (i) for exactly one s, 0 ≤ |Chks (I

′)| − |Chk+1
s (I ′)| ≤ 1 for all I ′ ⊆ I and (ii) for all

remaining s′ �= s, Chk+1
s′ (·)= Chks′(·).

Minimality guarantees that when moving from stage k to k+ 1, at most one student
will be rejected. Lemma 2 below shows that any (quota) reduction sequence (as defined
in Section 4) that is minimal in the sense of Definition 2 induces a choice function re-
duction sequence that is monotonic and minimal (in the sense of Definitions 6 and 7),
and each Chks (·) satisfies substitutability and the law of aggregate demand for all k and
all s.

A.2 Generalized DQDA

We now define a generalized version of the DQDA algorithm that takes as an input a re-
duction sequence of choice functions. The description of the algorithm makes use of
the cumulative offer process of Hatfield and Milgrom (2005) (see also Hatfield and Ko-
jima 2009). As the cumulative offer process progresses, schools continually accumulate
applications from students, and at each point, hold on to their most preferred set stu-
dents among all of those who have cumulatively applied to it. Students who are not
currently held by any school make new applications to their most preferred school that

37As in the main text, it is always possible to find such feasibility-ensuring choice functions: simply take

any feasible match μ and set ChKs (I
′)= μ(s)∩ I ′ for all I ′. This is of course very restrictive, and there are in

general many less restrictive ways to achieve this. In addition, a (quota) reduction sequence as defined in
Definition 1 induces a (choice function) reduction sequence in the natural way.

38Rejk
′
s (I

′) ⊆ Rejk
′
s (I

′′) ⊆ Rejk
′′
s (I

′′), where the first inclusion is by substitutability and the second is by
monotonicity.
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has not yet rejected them. As a matter of notation, we use Aks (t) to denote the cumula-
tive set of students who have applied to school s, up to and including stage k, step t of
the algorithm (i.e., Aks (t) includes all students who ever made an application to s in the
algorithm, up to and including stage k, step t).

Generalized dynamic quotas deferred acceptance (GDQDA) Fix a reduction sequence
η= {Ch1� � � � �ChK}.

Stage 1. Step 0. Set A1
s (0)=∅ for all s ∈ S.

Step 1. Choose some student i1 who applies to her favorite school, s1.39 Let
A1
s1
(1) = {i1} and A1

s (1) = A1
s (0) for all other s ∈ S. Each school s ∈ S

tentatively accepts the students in Ch1
s (A1

s (1)) and rejects the rest.

Step t. Choose a student it who is not tentatively accepted by any school,
and let her apply to her most preferred school st that has not yet
rejected her. Let A1

st
(t) = A1

st
(t − 1) ∪ {it} and A1

s (t) = A1
s (t − 1)

for all s �= st . Each school s ∈ S tentatively accepts the students in
Ch1

s (A1
s (t)) and rejects all other students.

Stage 1 terminates when every student is either tentatively accepted by some school
s ∈ S or has applied to all schools and been rejected.40 This happens in a finite number
of steps T 1. Let the resulting matching be ν1, where ν1(s)= Ch1

s (A1
s (T

1)) for all s ∈ S. If
ν1 ∈ Mf , end the algorithm and output matching ν1. If not, proceed to stage 2.

In general, proceed as follows.

Stage k. Step 0. Set Aks (0) = Ak−1
s (Tk−1) for all s ∈ S, and let each school tentatively

accept Chks (Aks (0)) and reject all remaining students.

Step 1. Choose a student i1 who is not tentatively accepted by any school,
and let her apply to her most preferred school s1 that has not yet re-
jected her (in this stage or any previous stages). Let Ak

s1
(1)= Ak

s1
(0)∪

{i1} and Aks (1)= Aks (0) for all other s ∈ S. Each school s ∈ S tentatively
accepts the students in Chks (Aks (1)) and rejects the rest.

Step t. Choose a student it who is not tentatively accepted by any school,
and let her apply to her most preferred school st that has not yet
rejected her (in this stage or any previous stages). Let Ak

st
(t) =

Ak
st
(t − 1) ∪ {it} and Aks (t)= Aks (t − 1) for all other s ∈ S. Each school

s ∈ S tentatively accepts the students in Chks (Aks (t)) and rejects the
rest.

Stage k terminates when every student is tentatively accepted by some
school s ∈ S or has applied to all schools and been rejected. This happens

39It is well known that the order in which students are allowed to apply is irrelevant (see, e.g., McVitie
and Wilson 1971 or Hatfield and Kojima 2010).

40Note that in this definition, we allow the possibility that a student applies to and is rejected from every
school, in which case she is unmatched at the end of the algorithm. Under suitable choice functions that
ensure feasible matchings, this is not an issue.
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in a finite number of steps Tk. Let the resulting matching be defined by
νk(s)= Chks (Aks (Tk)) for all s ∈ S. If νk ∈ Mf , end the algorithm and output
matching νk. If not, proceed to stage k+ 1.

Note that, as it stands, using the cumulative offer process, there is no assumption of
consistency imposed on the algorithm, since some student could be assigned to more
than one school or no school at all. However, we show below that under our conditions
on η, this is not an issue.

Recall that in the main text, we introduced a second way to run a dynamic version of
DA that we call sequential deferred acceptance. It is also possible to define a generalized
sequential deferred acceptance (GSDA) algorithm in the context of the general model.

Generalized sequential deferred acceptance Fix a reduction sequence η = {Ch1� � � � �

ChK}, and let DACh′ : Pn → M denote the deferred acceptance algorithm under choice
function vector Ch′.

Stage 1. Starting with the empty matching, compute DACh1
(PI). If DACh1

(PI) ∈ Mf ,
end the algorithm and output this matching. If not, proceed to stage 2.

In general, proceed as follows.

Stage k. Starting with the empty matching, compute DAChk(PI). If DAChk(PI) ∈ Mf ,
end the algorithm and output this matching. If not, proceed to stage k+ 1.

Theorem 6. Let νk be the matching at the end of stage k of the GDQDA algorithm, and
let μk be the matching at the end of stage k of the GSDA algorithm. Assume that η is
monotonic and minimal, and that Chks (·) satisfies substitutability and the law of aggre-
gate demand for all k and s. Then νk = μk for all k, and μk (and hence νk) assigns each
student to at most one school.

Proof. As in the definition of the algorithm above, let Aks (t) denote the cumulative offer
set of school s at step t of stage k under GDQDA. For each stage k, let Tk denote the final
step of stage k.

Now consider GSDA. Within a stage k, we are simply running DA under choice func-
tions Chk. We can define an analogous within-stage cumulative offer process. Let Bks (t)
denote the cumulative set of applicants to school s through step t of the within-stage
cumulative offer process. Because GSDA starts each stage k from the empty matching,
Bks (0) = ∅ for all s and k. Let T̂ k denote the last step of stage k. Hatfield and Milgrom
(2005) show that the matching produced by this cumulative offer process is equivalent
to deferred acceptance, i.e., μk(s)= Chks (Bks (T̂ k)) for all s ∈ S and all k.

The following lemma, which is proved in Appendix C, is key to the argument.

Lemma 1. For all k and all s, Aks (Tk)= Bks (T̂ k).

Note that, in general, Tk �= T̂ k, but the result says that the cumulative applicant sets
at the end of each stage k are still the same. With this lemma, the result follows eas-
ily: μk(s)= Chks (B(T̂ k))= Chks (Aks (Tk))= νk(s) for all k and s, where the first and third
equalities are by definition, and the second is by Lemma 1.
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That μk assigns each student to at most one school follows from substitutability:
assume not, i.e., assume that i ∈ μk(s) and i ∈ μk(s′). Without loss of generality, assume
s �i s′. Then, by definition of μk(s′), we have i ∈ Bks′(T̂ k), which means that i applied to

s and was rejected at some earlier step t < T̂ k: i ∈ Rejks (Bks (t)). But Bks (t)⊆ Bks (T̂ k), and
so substitutability implies i ∈ Rejks (Bks (T̂ k)), which contradicts that i ∈ μk(s). �

The following result is an immediate corollary of Theorem 6.

Corollary 1. If η is monotonic and minimal, and Chks (·) satisfies substitutability and
the law of aggregate demand for all k and all s, then the final matching produced by
GDQDA under η is equivalent to the final matching produced by GSDA under η.

The next theorem is a more general statement of the result that dynamic quotas DA
Pareto dominates artificial caps. Part (i) of Theorem 4 follows from this theorem.

Theorem 7. Letη= {Ch1� � � � �ChK} be monotonic and minimal, and assume that Chks (·)
satisfies substitutability and the law of aggregate demand for all k and all s. Then all
students weakly prefer the outcome of GDQDA under η to DA under ChK .

Proof. By Corollary 1, the final matching produced by GDQDA is equivalent to the
matching produced by DA under choice functions Chk

′
for some k′ ≤ K. The out-

come of DA in stage k is equivalent to the outcome of the cumulative offer process
under Chk (Hatfield and Milgrom 2005, Hatfield and Kojima 2010). By monotonicity,
ChKs (I

′)⊆ Chk
′
s (I

′) for all I ′ ⊆ I. We then apply Lemma 1 of Kamada and Kojima (2015)
to obtain the result. �

Corollary 2. Assume that η = {Ch1� � � � �ChK} is monotonic and minimal, and that
Chks (·) satisfies substitutability and the law of aggregate demand for all k and all s. Let νk

be the tentative matching at the end of stage k of the GDQDA algorithm (and hence, by
Theorem 6, νk is also the tentative matching at the end of stage k of GSDA). No student is
unmatched under νk for any k= 1� � � � �K.

Proof. By the same argument used to show Theorem 7, νk Pareto dominates νK . The
matching under ChK , denoted νK , leaves no student unmatched (since ChK ensures a
feasible match), so νK(i) �= ∅ for all i ∈ I. Assume that νk(i)= ∅ for some i ∈ I. Because
all students prefer every school to being unmatched, we have νK(i) Pi νk(i). However,
this contradicts that νk Pareto dominates νK . �

Appendix B: Proofs from the main text

Proofs of any lemmas not given here can be found in Appendix C.

Proof of Theorem 1

Consider any feasible matching μ ∈ Mf , and define Q̄s = |μ(s)| and Ūs�θ = |μθ(s)| for
all (s�θ). Note that

∑
s′∈S Q̄s′ = n,

∑
s′∈S Ūs′�θ = |Iθ|, and

∑
θ′∈� Ūs�θ′ = Q̄s for all s and
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all θ. We show that (Ū� Q̄) ensures a feasible match. Let PI be an arbitrary profile of
preferences, and let ν denote the final assignment produced by DA under preferencesPI .
It is obvious that |νθ(s)| ≤ Ūs�θ ≤Us�θ and |ν(s)| ≤ Q̄s ≤Qs by definition. What remains to
be shown is that every student is assigned a school (i.e., no student is unmatched) and
|νθ(s)| ≥Ls�θ.

First, assume that some student i is unmatched. An equivalent way to run the de-
ferred acceptance algorithm is to use the cumulative offer process of Hatfield and Mil-
grom (2005) (see the description of GDQDA in Appendix A). As shown in the proof of
Lemma 2 below, the school choice functions for each school induced by (Ū� Q̄), de-
noted Chs(·), are substitutable and satisfy the law of aggregate demand. By definition,
ν(s)= Chs(As(T )), where As(T ) denotes the cumulative set of offers received by school
s at the end of the cumulative offer process.

Let τ(i) = θ, and for all θ′, let νopen
θ′ (s) be the number of type θ′ students who are

assigned to a school s through its open seats. Since we assume that i is unmatched, we
have i ∈ As(T ) for all s (i.e., i has applied to every school) and i /∈ ν(s) for all s. Since i
is not chosen by any school, one of the following (or both) must hold at every school s:
(i) |νθ(s)| = Ūs�θ or (ii) the type θ seats at s are all filled withLs�θ other type θ students and
the open seats of s are filled with Q̄s−∑

θ′∈�Ls�θ′ students of any type (i.e.,
∑
θ′ ν

open
θ′ (s)=

Q̄s − ∑
θ′∈�Ls�θ′ ). Note first that it cannot be true that |νθ(s)| = Ūs�θ for all s. If this were

to hold, then
∑
s∈S |νθ(s)| = ∑

s∈S Ūs�θ = |Iθ|, but since i is not matched, at most |Iθ| − 1
type θ students are assigned under ν. Therefore, there must be at least one school for
which (i) does not hold and, therefore, (ii) does hold.

Thus, let ŝ be such a school, where
∑
θ′ |νopen

θ′ (ŝ)| = Q̄ŝ − ∑
θ′∈�Lŝ�θ′ holds but

|νθ(ŝ)| < Ūŝ�θ. By construction, at school ŝ, for every type θ′, |νopen
θ′ (ŝ)| ≤ Ūŝ�θ′ − Lŝ�θ′ .

Because
∑
θ′∈� Ūs�θ′ = Q̄s, the only way for the Q̄ŝ − ∑

θ′∈�Lŝ�θ′ open seats at ŝ to be

filled is if |νopen
θ′ (ŝ)| = Ūŝ�θ′ − Lŝ�θ′ for all θ′.41 If Ūŝ�θ > Lŝ�θ, then |νθ(ŝ)| = Ūŝ�θ (because

all type θ floor seats must be assigned before any open seats can go to type θ students).
If Ūŝ�θ = Lŝ�θ, then once again, |νθ(ŝ)| = Ūŝ�θ (because otherwise, one of the type θ floor
seats would be empty and iwould have been accepted to s). In either case, |νθ(ŝ)| = Ūŝ�θ,
which is a contradiction.

Now that we know all students are matched to a school under ν, we can show that all
floors are satisfied. Assume not, i.e., assume there is some pair (s�θ) such that |νθ(s)|<
Ls�θ. Then

∑
s′∈S |νθ(s′)|<∑

s′∈S Ūs′�θ = |Iθ|.42 But this implies that under ν, there exists
some student i of type θ who is not assigned to any school, which is a contradiction to
what we just showed in the preceding paragraph.

Proof of Theorem 2

Lemma 2 below shows that for any stage k of DQDA, the induced within-stage choice
functions of the schools satisfy substitutability and the law of aggregate demand. Since

41If |νopen
θ′ (ŝ)| < Ūŝ�θ′ − Lŝ�θ′ for some θ′, then we can sum over θ′ to get

∑
θ′ |νopen

θ′ (ŝ)| <∑
θ′(Ūŝ�θ′ −Lŝ�θ′)= Q̄s − ∑

θ′ Lŝ�θ′ , which contradicts that the open seats are filled.
42The first inequality follows from the fact that

∑
s′∈S\{s} |νθ(s′)| ≤ ∑

s′∈S\{s} Ūs′�θ (because ν respects

(Ū� Q̄) by construction) and that |νθ(s)|<Ls�θ ≤ Ūs�θ .
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ACDA is equivalent to DA using the stage K choice functions, strategyproofness follows
from Hatfield and Milgrom (2005), who show that substitutability and the law of aggre-
gate demand are sufficient for strategyproofness.

To show that ACDA eliminates justified envy among same types, note that ACDA
is equivalent to DA under (UK�QK). Denote the matching produced by DA under
(UK�QK) as μ. Assume that some student i envies another student j of her same type:
μ(j) Pi μ(i) and τ(i) = τ(j) = θ. Let step t be the step of the DA algorithm at which i is
rejected from μ(j). In step t, i is rejected because the type θ specific seats are filled with
Lμ(j)�θ students of type θ ranked higher than i according to �μ(j), and the open seats are
filled with either (i) UKμ(j)�θ −Lμ(j)�θ students of type θ ranked higher than i according to

�μ(j) or (ii) QKμ(j) − ∑
θ∈�Lμ(j)�θ students of any type ranked higher than i according to

�μ(j). As the algorithm progresses, a student accepted in step t can be rejected from the
type θ specific seats only if a higher ranked student of type θ applies, and the same is
true of the students at the open seats. Thus, at the end of the algorithm, all students as-
signed to μ(j) through either the type θ specific seats or the open seats must be ranked
higher than i. Since τ(j)= θ as well, this implies that j �μ(j) i, i.e., i does not justifiably
envy j.43

Proof of Theorem 3

We first note the following lemma, which is proved in Appendix C. With slight abuse
of notation, let η = {Ch1� � � � �ChK} be the sequence of choice functions induced by a
reduction sequence {(U1�Q1)� � � � � (UK�QK)} as in Definition 1.

Lemma 2. The reduction sequence η = {Ch1� � � � �ChK} is monotonic, and Chks (·) satis-
fies substitutability and the law of aggregate demand for all k and s. If, in addition,
{(U1�Q1)� � � � � (UK�QK)} is minimal in the sense of Definition 2, then η= {Ch1� � � � �ChK}
is minimal in the sense of Definition 7.

Given Lemma 2, Theorem 3 then is a special case of Corollary 1.

Proof of Theorem 4

Consider an ACDA mechanism with corresponding caps denoted (UK�QK), and con-
sider any nondegenerate reduction sequence {(U1�Q1)� � � � � (UK�QK)} that is minimal
(in the sense of Definition 2).44 Let η= {Ch1� � � � �ChK} be the reduction sequence of in-
duced choice functions. Note that by Lemma 2, η is monotonic, is minimal (in the sense
of Definition 7), and Chks (·) satisfies substitutability and the law of aggregate demand
for all k and s.

43Of course, there may be students of other types θ′ �= θwhom i envies and has higher priority over, since
these students could be assigned through the type θ′ specific seats.

44Recall that our model considers only markets where such nondegenerate reduction sequences exist.
When they do not, the problem is trivial and uninteresting (see footnote 24).
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Part (i). That all students weakly prefer the outcome of DQDA under η to ACDA
under (UK�QK) for all PI follows from Lemma 2 and Theorem 7. It is simple to construct
a preference profile that exhibits a strict improvement for some student under DQDA.

Part (ii). By Corollary 1, the final matching produced by DQDA is equivalent to SDA,
which in turn is equivalent to DA under Chk for some k≤K. That DA under Chk elimi-
nates justified envy among same types can be shown using the same argument as in the
proof of Theorem 2.

Part (iii). Fix the reports of the other students at P−i, and let i’s true preferences
be Pi. We show that there is no report P ′

i that gives i a better assignment than reporting
the truth.

In the proof, we move back and forth between the GDQDA and GSDA algorithms,
which, by Corollary 1, are equivalent. We begin by working with GSDA, and make use of
the fact that the DA algorithm within each stage k is equivalent to the cumulative offer
process of Hatfield and Milgrom (2005). It is well known (McVitie and Wilson 1971; see
also Dubins and Freedman 1981 or Hatfield and Kojima 2010) that the order in which
students are allowed to apply does not matter, as any such order will lead to the same
final matching. Consider an ordering in which student i applies last. In stage k of the
GSDA algorithm, let B̃ks denote the cumulative set of applicants that school s receives in
the cumulative offer process under Chk on all students other than i.

Now, let i enter the market. This causes a rejection chain, which simply records the
action of the algorithm:45

Step Action Cumulative offer sets
0 None Bk

ŝ
(0)= B̃k

ŝ
for all ŝ

1 Student i applies to school s
Bks (1)= Bks (0)∪ {i}

Bk
ŝ
(1)= Bk

ŝ
(0) for all ŝ �= s

2 s rejects i′ Bk
ŝ
(2)= Bk

ŝ
(1) for all ŝ

3 i′ applies to s′ Bks′(3)= Bks′(2)∪ {i′}
Bk
ŝ
(3)= Bk

ŝ
(2) for all ŝ �= s′

���
���

���

The rejection chain in stage k ends at the first step T̂ k for which some student i′
applies to some school s′ and s′ does not reject a student. At this point, the applicant
pools for each school are Bks (T̂ k) and, as described above, the stage k output μk is de-
fined by μk(s) = Chks (Bks (T̂ k)). Note that by substitutability, if i ∈ Rejks (Bks (t)) for some
step t, then i ∈ Rejks (Bks (t ′)) for all t ′ ≥ t. In particular, i ∈ Rejks (Bks (T̂ k)), which implies
that under μk, each student is assigned to exactly one school (by Corollary 2, no student
is unmatched). Also, note that the law of aggregate demand guarantees at each rejection
step, at most one student is rejected, which implies that in each application step, there
is a unique student i′ who applies to the next school on his preference list s′.

45In the above description of the cumulative offer process, both the application and the rejection phases
occurred in the same step. Here, we have broken the steps up into rejection steps and application steps
for clarity. This changes the numbering of the steps, but does not affect the algorithm or the results in any
other way.
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For any school s and applicant pool B ⊆ I, define δs(B)= ∑
θ∈�max{Ls�θ−|B∩Iθ|�0}.

In words, δs(B) is the number of floor seats unfilled at s when its applicant pool is B.46

Let �k = ∑
s∈S δs(B̃ks ). In words, �k is the total number of floor seats unfilled at all

schools in stage k after all students but i have applied.

Lemma 3. The following statements hold for all k:

(i) If �k = 0, then DAChk(P ′
i� P−i) ∈ Mf for all P ′

i ∈ P .

(ii) If �k > 1, then DAChk(P ′
i� P−i) /∈ Mf for all P ′

i ∈ P .

(iii) We have �k ≥ �k+1 ≥ �k − 1.

If�1 = 0, then all floor seats have been filled before i enters the market in stage 1, and
the GDQDA algorithm ends in stage 1 for any report P ′

i of agent i. Therefore, from the

perspective of agent i, the mechanism is equivalent DACh1
which is known to be strat-

egyproof, and so she has no profitable manipulation. So assume that �1 ≥ 1. Lemma 3,
part (iii) then implies that there is some critical stage k∗ for which �k

∗ = 1 and �k
′
> 1

for all k′ < k∗. By Lemma 3, part (ii), the algorithm does not end in stage k′ < k∗ for any
report of student i. By the construction of GSDA, we can ignore the first k∗ − 1 stages of
the algorithm, and begin at stage k∗ using choice functions Chk

∗
.

From here forward we switch from GSDA and work with the GDQDA algorithm def-
inition. Starting at k∗, let {Ãk∗

s }s∈S be the cumulative offer sets of the schools after run-
ning DA under Chk∗ on all students other than i.47 Then let i enter the market with
some reported preferences P ′

i . As above, her entering again causes a rejection chain, an
example of which is

Stage Step Action Cumulative offer sets
k∗ 0 None Ak∗

ŝ
(0)= Ãk∗

ŝ
for all ŝ

1 Student i applies to school s
Ak∗
s (1)= Ak∗

s (0)∪ {i}
Ak∗
ŝ
(1)= Ak∗

ŝ
(0) for all ŝ �= s

2 s rejects i′ Ak∗
ŝ
(2)= Ak∗

ŝ
(1) for all ŝ

3 i′ applies to s′
Ak∗
s′ (3)= Ak∗

s′ (2)∪ {i′}
Ak∗
ŝ
(3)= Ak∗

ŝ
(2) for all ŝ �= s′

k∗ + 1 1 Choice functions become Chk
∗+1 Ak∗+1

ŝ
(0)= Ak∗

ŝ
(3) for all ŝ

2 School s′′ rejects student i′′ Ak∗+1
ŝ

(1)= Ak∗+1
ŝ

(0) for all ŝ
���

���
���

46Recall that at every stage k, each school s always reserves Ls�θ seats for students of type θ, and so if
|B ∩ Iθ| ≤Ls�θ, then all type θ students will be chosen, while if |B ∩ Iθ|>Ls�θ , at least Ls�θ students of type θ
will be chosen.

47These are equivalent to {B̃k∗
s }s∈S , the cumulative offer sets of standard DA under choice functions Chk

∗

(by Lemma 1) on all students other than i. We switch the notation from B to A to emphasize the switch from
GSDA to GDQDA and to remain consistent with the notation used above in their respective definitions.
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As before, the rejection chain simply records the action of the algorithm. However,
now note that because we are using the GDQDA algorithm, we include quota reductions
as part of the rejection chain (stage k∗ + 1, step 1 above).

There are several features to note about rejection chains. First, at stage k, step t of
the rejection chain, the set of applicants being tentatively held by school s is Chks (Aks (t)).
Second, monotonicity and substitutability guarantee that if at some stage and step (k� t)
we have i ∈ Rejks (Aks (t)), then i ∈ Rejk

′
s (Ak

′
s (t

′)) for all (k′� t ′) such that either (i) k′ >k or
(ii) k′ = k and t ′ ≥ t. This, together with the law of aggregate demand and minimality,
guarantees that at each step, there is at most one student who is not currently being
held by any school, and it is this student who makes the next application according to
her preferences.48 Third, within a stage, the school rejecting a student at some step is
the same as the last school to receive an application (since the cumulative offer sets
of the other schools have not changed). However, across stages, this may not be true
(because the school that (potentially) must reject a student at the beginning of a stage is
determined by the reduction sequence). For example, at stage k∗, step 3, s′ receives an
application. When the choice functions become Chk

∗+1, school s′′ rejects a student, but
it may be that s′′ �= s′.

At stage k∗, �k
∗ = 1 (by definition of k∗), which means that δy(Ãk

∗
y ) = 1 for some

school y and δs(Ãk
∗
s )= 0 for all s �= y. By definition of δs(·), it must be that |Ãk∗

y ∩ Iφ| =
Ly�φ − 1 for some type φ ∈ �, and |Ãk∗

s ∩ Iθ| ≥ Ls�θ for all (s�θ) �= (y�φ). In words, this
means that every school has enough students in its choice set to fill all type-specific
floors except for school y, which is one student short of filling its type φ floor.

We next note the following important fact about rejection chains:

The GDQDA algorithm ends the next time a type φ student applies to y. (1)

This is an “if and only if” statement: the algorithm ends at the next stage step (k� t)
at which a type φ student applies to y, and cannot end earlier.49

The next part of the proof is inspired by the scenario lemma of Dubins and Freed-
man (1981). Define a scenario Si as a sequence of applications for agent i, i.e., a partial
rank ordering over S for student i. So a scenario could be Si = {s�u� v}, which means that
i first applies to s, then to u, then to v. The list need not include all schools. Since the
preferences of the other students are fixed at P−i, each scenario induces a correspond-
ing rejection chain. We use R(Si) to denote the rejection chain corresponding to sce-
nario Si. The rejection begins with i applying to the first school in Si, and then records
all subsequent applications, rejections, and quota reductions. The rejection chain for
any scenario Si ends in one of two ways:

48The law of aggregate demand guarantees this within a stage, while minimality guarantees it across
stages.

49The algorithm obviously cannot end before (1) occurs. To see that it ends immediately once (1) occurs,
note that by definition of the school choice functions, once a school s fills a type-specific floor, it never
drops below it, because all schools s always reserve Ls�θ seats for each type θ. Thus, once (1) occurs, the
current stage ends (because no further student is rejected from s), and all floors are filled at all schools, so
the algorithm ends.
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(i) Some student j of type φ applies to school y:

Stage Step Action Cumulative offer sets

k t j applies to y
Aky (t)= Aky (t − 1)∪ {j}

Ak
ŝ
(t)= Ak

ŝ
(t − 1) for all ŝ �= s

(ii) Agent i is rejected by the last school in Si:

Stage Step Action Cumulative offer sets
k t i is rejected by v Aks (t)= Aks (t − 1) for all s

The following lemma is key to the remainder of the proof.

Lemma 4. Consider two scenarios Si and Ŝi such that every school in Ŝi is also named in
Si (order is immaterial), and assume that in R(Si), student i applies to every school in Si.
Then every step in R(Ŝi) also occurs at some point in R(Si).

With this lemma in hand, we can continue the proof. Suppose, without loss of gen-
erality, that i’s true preferences are Pi: s1� s2� � � � � sm. Say that if i submits her true pref-
erences, she receives school sh, and suppose that there is some scenario Ŝi = {u� � � � � v},
where i gets some school v such that v Pi sh. Then rejection chain R(Ŝi) must end with
some student j of type φ applying to y, while i is assigned to v.

Case (i): s Pi v for all s ∈ Ŝi \ {v}. Compare Ŝi to a scenario Si = {s1� � � � � sh−1}. By
assumption, Ŝi ⊆ Si, and in R(Si), i makes every application in Si.50 In particular, the
last step of R(Si) is “sh−1 rejects i.”

By Lemma 4, every application in R(Ŝi) is also made in R(Si). In particular, j must
also apply to y in R(Si), which contradicts the fact that R(Si) ends with i being rejected
by sh−1.

Case (ii): v Pi s for at least one s ∈ Ŝi. Delete all schools s ∈ Ŝi such that v Pi s to create

a smaller scenario ˆ̂Si ⊂ Ŝi. By case (i), R( ˆ̂Si) must end with i rejected by v. Since ˆ̂Si ⊂ Ŝi,
Lemma 4 implies that i must also be rejected by v in R(Ŝi), which is a contradiction.

Proof of Theorem 5

Since (UK�QK) ensures a feasible match under �, we know that DQ� ends no later
than stage K for every PI ; that is, DQ�(PI) = ψ(U

k�Qk)(PI) for some k ≤ K. Since η is
a minimal reduction sequence,

∑
θ∈�(Uks�θ −UKs�θ) ≤ Qks −QKs for all s ∈ S. By resource

monotonicity, DQ�
i (PI) = ψ

(Uk�Qk)
i (PI)Riψ

(UK�QK)
i (PI) for all i ∈ I. Since this holds for

all PI , the result follows.

Appendix C: Omitted proofs of lemmas

Proof of Lemma 1

We first start with two sub-lemmas.

50This follows because i receives sh when he submits his true preferences.
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Lemma 5. If k′ ≥ k, then Bks (T̂ k)⊆ Bk′
s (T̂

k′
) for all s.

Proof. By monotonicity, Chk
′
s (I

′) ⊆ Chks (I
′) for all s ∈ S and all I ′ ⊆ I. The statement

then follows from Lemma 1, part (2) of Kamada and Kojima (2015).51 �

The next sub-lemma makes use of the following definition of stability. Note that this
is only a technical definition used to prove the results below and is not related to the
justified envy definitions used in the main text. Let Ch′ := {Ch′

s1
� � � � �Ch′

sm
} be a vector of

choice functions (which again need not be equal to the primitive Ch).

Definition 8. A matching μ is stable with respect to Ch′ if the following statements
hold:

(i) We have μ(s)= Ch′
s(μ(s)) for all s ∈ S.

(ii) There exists no pair (i� s) such that s Pi μ(i) and i ∈ Ch′
s(μ(s)∪ {i}).

Part (i) says that a school does not unilaterally reject any student assigned to it. The
corresponding “individual rationality” property holds for students automatically, be-
cause we assume that all students find all schools acceptable. Given this definition, we
have the following lemma.

Lemma 6. Under νk, each student is assigned to at most one school, and νk is stable with
respect to Chk.

Proof. For the first part, note that within a stage k, substitutability implies
Rejks (Aks (t − 1))⊆ Rejks (Aks (t)) for all t = 1� � � � �Tk, and across stages, monotonicity en-
sures that Rejk−1

s (Ak−1
s (Tk−1)) ⊆ Rejks (Aks (0)) for all s. Thus, if i is rejected by a school

s at some step t of some stage k, then i is rejected in all later steps and stages, implying
that no student is assigned to more than one school. For stability, first note that by ir-
relevance of rejected students (see footnote 34), Chks (Aks (Tk))= νk(s)= Chks (ν

k(s)). For
the second part, if sPiνk(i), then i was at some point rejected from s. This implies that
i ∈ Aks (Tk) but i /∈ νk(s). This means that νk(s) = Chks (Aks (Tk)) ⊆ νk(s) ∪ {i} ⊆ Aks (Tk),
which, together with irrelevance of rejected students, implies that Chks (ν

k(s) ∪ {i}) =
νk(s), i.e., i /∈ Chks (ν

k(s)∪ {i}). Therefore, νk is stable with respect to Chk. �

We now use induction to show that

Aks
(
Tk

) = Bks
(
T̂ k

)
for all s ∈ S (2)

holds for all k. Since stage 1 of both algorithms is just the cumulative offer process start-
ing with the empty matching and using choice functions Ch1, (2) holds fork= 1. Assume
the inductive hypothesis that (2) holds for 1� � � � �k−1. We show that this implies it holds
for k as well.

51See also the “capacity lemma” of Konishi and Ünver (2006) for a related result.
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First, note that since stage k of GSDA is simply the DA algorithm under Chk, we know
that μk is the student-optimal stable match with respect to Chk (Hatfield and Milgrom
2005). Further, by Lemma 6, νk is some match that is stable with respect to Chk. This
implies that μk(i) Ri νk(i) for all i ∈ I. This implies that Bks (T̂ k)⊆ Aks (Tk) for all s ∈ S.52

Last, we must show that Aks (Tk)⊆ Bks (T̂ k) for all s ∈ S. Assume to the contrary, i.e.,
that there exists some s such that Aks (Tk)� Bks (T̂ k), and let t ′ be the first step of stage k
of GDQDA such that Aks (t)⊆ Bks (T̂ k) for all t < t ′ and all s ∈ S, but Aks (t ′)� Bks (T̂ k).53 Let
i be the student who applies to s at step t ′. This means that i is rejected from μk(i) (the
school she is matched to under GSDA) in some step of stage k of GDQDA; let the earliest
of these steps be t ′′, so that i ∈ Rejk

μk(i)
(Ak

μk(i)
(t ′′)).54 Further, note that t ′′ < t ′, which, by

the definition of t ′, implies that Ak
μk(i)

(t ′′) ⊆ Bk
μk(i)

(T̂ k). Substitutability of the choice

functions within stage k then implies that Rejk
μk(i)

(Ak
μk(i)

(t ′′)) ⊆ Rejk
μk(i)

(Bk
μk(i)

(T̂ k)),

which means i ∈ Rejk
μk(i)

(Bk
μk(i)

(T̂ k)), which contradicts the fact that i is assigned to

school μk(i) under GSDA in stage k.

Proof of Lemma 2

Substitutability. Consider a school s, stage k, and set of students I ′ such that i ∈ Rejks (A′),
and another set of students A′′ such that A′ ⊆ A′′. Let τ(i) = θ. When the set of appli-
cants is A′, student i is rejected because the type θ specific seats are filled with Ls�θ
higher ranked type θ students, and the open seats are filled with either (i) Uks�θ − Ls�θ

higher ranked type θ students or (ii)Qks − ∑
θ∈�Ls�θ higher ranked students of any type.

In either case, since all students in A′ are also in A′′, when school s is choosing from A′′,
the type θ specific seats are once again filled with Ls�θ higher ranked type θ students,
and either condition (i) or (ii) also still holds. So i ∈ Rejks (A′′) as well.

Monotonicity. If s′ is not the school whose quotas are reduced in moving from stage
k to k + 1, then Rejks′(A) = Rejk+1

s′ (A) trivially. So let s be the school whose capacity

is reduced in moving from stage k to k + 1, Qk+1
s = Qks − 1 and Uk+1

s�θ = Uks�θ − 1, while

Uk+1
s�θ′ =Uks�θ′ for all other θ′ �= θ.

We want to show that Rejks (A)⊆ Rejk+1
s (A) for all k and all A ⊆ I. To do so, we show

the contrapositive:

i ∈ Chk+1
s (A) =⇒ i ∈ Chks (A)�

Assume not, and let i be the highest ranked student according to �s such that i ∈
Chk+1

s (A), but i /∈ Chks (A) (equivalently, i ∈ Rejks (A)). Let τ(i) = θ′, which may or may

52If this were not the case, then there exists some s such that Bks (T̂ k)�Ak
s (T

k). This means that in GSDA
in stage k, some student i is rejected from νk(i) (her match under GDQDA). But this contradicts the fact that
μk(i) Ri ν

k(i).
53Such a t ′ exists because Ak

s (0)= Ak−1
s (Tk−1)= Bk−1

s (T̂ k−1)⊆ Bks (T̂ k) for all s ∈ S, where the first equal-
ity is by definition, the second is by the inductive hypothesis, and the set inclusion is by Lemma 5.

54Note that i must be rejected at some step t ′′ of stage k (and not in an earlier stage). To see this, assume

that i was rejected from μk(i) in some earlier stage k′ of GDQDA. This implies that μk(i) Pi νk
′
(i). Since

k′ < k, Lemma 1, part (1) of Kamada and Kojima (2015) implies that μk
′
(i) Ri μ

k(i). By combining these
two inequalities, we conclude that μk

′
(i) Pi ν

k′
(i), which contradicts the inductive hypothesis.
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not be equal to θ. If i is admitted through the type θ′ specific seats in stage k+ 1, then
she is one of the Ls�θ′ highest ranked type θ′ students in A, and so she will be admitted
in stage k as well. So i must be admitted through an open seat in stage k+ 1. Therefore,
when i’s application is considered in stage k + 1, the following statements both hold:
(a) at most Uk+1

s�θ′ − Ls�θ′ − 1 higher ranked type θ′ students have been accepted to the

open seats and (b) at mostQk+1
s −∑

θ∈�Ls�θ− 1 students in total have been accepted to
the open seats. Define J = {j ∈ Rejk+1

s (A) : j �s i}. Note that (b) implies that for all j ∈ J,
the type-specific ceiling Uk+1

s�τ(j) is reached before j’s application is considered in stage
k+ 1, which, in particular, means that τ(j) �= θ′ for all j ∈ J.

Since Qks = Qk+1
s + 1, for i to be rejected under stage k quotas, there must be two

j1� j2 ∈ J such that j1� j2 ∈ Chks (A); without loss of generality, let j1 �s j2 �s i. Since j1 ∈
Chks (A), it must be that τ(j1) = θ.55 Then, after j1 is admitted, the Uks�θ ceiling is now

binding (since Uks�θ =Uk+1
s�θ + 1 and all j �s j1 who are admitted under stage k+ 1 quotas

are also admitted under stage k quotas by the assumption that i is the highest ranked
such student for which this is not the case). So when j2’s application is considered, she
will be rejected, which is a contradiction.56

Minimality. As for monotonicity, we only need consider the school s whose quotas
are reduced in moving from k to k+ 1. Let s be the school such that Qk+1

s =Qks − 1 and
Uk+1
s�θ =Uks�θ − 1 for some θ, while Uk+1

s�θ′ =Uks�θ′ for all θ′ �= θ. Consider a set of applicants

A ⊆ I, with Chks (A) the set that is admitted in stage k. There are four cases.
Case (i): |Chks (A)|<Qks and |Chks (A) ∩ Iθ|< Uks�θ. In this case, Chk+1

s (A)= Chks (A),
which implies |Chks (A)| − |Chk+1

s (A)| = 0.
Case (ii): |Chks (A)| = Qks and |Chks (A) ∩ Iθ| < Uks�θ. Let i′ be the lowest ranked stu-

dent admitted through the open seats in stage k. Then Chk+1
s (A)= Chks (A) \ {i′}, which

implies |Chks (A)| − |Chk+1
s (A)| = 1.

Case (iii): |Chks (A)| <Qks and |Chks (A) ∩ Iθ| = Uks�θ. Let i′ be the lowest ranked type

θ student admitted through the open seats in stage k. Then Chk+1
s (A) = Chks (A) \ {i′},

which implies |Chks (A)| − |Chk+1
s (A)| = 1.

Case (iv): |Chks (A)| = Qks and |Chks (A) ∩ Iθ| = Uks�θ. Let i′ be the lowest ranked type

θ student admitted through the open seats in stage k. Then Chk+1
s (A) = Chks (A) \ {i′},

which implies |Chks (A)| − |Chk+1
s (A)| = 1.

Law of aggregate demand. Within a stage, school s admits students one by one until
either some type-specific ceiling Uks�θ or overall capacity Qks has been reached. More
students in the applicant pool clearly weakly increases the number of students admitted,
and the law of aggregate demand is satisfied.

55If τ(j1) �= θ, thenUks�τ(j1) =Uk+1
s�τ(j1)

. Then, since all j �s j1 such that j ∈ Chk+1
s (A) also satisfy j ∈ Chks (A)

(by the assumption that i is the highest ranked student for which this is not the case), the ceiling for type
τ(j1) students will already have been reached in stage k when j1’s application is considered, and j1 will be
rejected.

56If τ(j2)= θ, this follows from the previous sentence. If τ(j2) �= θ, it follows from the same argument as
in footnote 55.
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Proof of Lemma 3

We use the following facts about δs:

(a) We have B ⊆ B′ =⇒ δs(B′)≤ δs(B).
(b) If δs(B ∪ {i}) < δs(B) =⇒ Rejks (B ∪ {i})= Rejks (B) for all k.

Fact (a) follows immediately from the definition of δ. Fact (b) follows because
δs(B ∪ {i}) < δs(B) implies that student i is of some type θ such that |B ∩ Iθ| < Ls�θ.
But this means that when the applicant pool at school s is B ∪ {i}, student i is accepted
through one of the type θ seats. This does not affect the students accepted by the type
θ′ seats for θ′ �= θ or the open seats, and thus Chks (B ∪ {i}) = Chks (B) or, equivalently,
Rejks (B ∪ {i})= Rejks (B).

Part (i). Since �k = 0, the set B̃ks contains at least Ls�θ students of type θ for all
schools s. Let Bks (T̂ k) be the cumulative set of applicants to school s at the end of stage k.
Since B̃ks ⊆ Bks (T̂ k) for any submitted preferences of student i, Chk(Bks (T̂ k)) is a feasible
assignment for school s, and the algorithm ends in stage k.

Part (ii). We can have �k > 1 in two ways: either δs(B̃ks ) > 1 for some school or
δs(B̃ks )≥ 1 for multiple schools. First, consider δs(B̃ks ) > 1 for some school s. This means
that there are at least two floor seats at s that are not yet filled because not enough stu-
dents have applied to s. When student i enters the market in stage k, he causes a re-
jection chain. As described in the proof of Theorem 4, the rejection chain is such that
in each application step, only one student makes an application. So stage k ends the
first time a school gets an application from a student i′ and does not reject an additional
student. Since any time a floor seat is filled, no further student is rejected, at the end of
stage k, at most one of the unfilled floor seats at s can be filled, and so the assignment of
school s will still not be feasible.

The case where δs(B̃ks )≥ 1 for multiple schools is argued similarly.
Part (iii). By Theorem 6, B̃k+1

s can equivalently be computed by starting with B̃ks and
then reducing the choice functions to Chk+1. Doing so causes a rejection chain that
ends the first time a student i′ applies to a school s′ and s′ does not reject a student.
Since B̃ks ⊆ B̃k+1

s , we have δs(B̃k+1
s ) ≤ δs(B̃ks ), which implies that �k ≥ �k+1. To see that

�k+1 ≥ �k−1, note that in the rejection chain, the first time a student applies to a school
and fills a floor, no further student is rejected (by fact (b)) and the rejection chain ends.
Thus, at the end of the rejection chain, at most one floor seat that was not filled under
μ̃k can be filled under μ̃k+1, and so �k+1 ≥ �k − 1.

Proof of Lemma 4

We use the notation (k� t) to denote the line corresponding to stage k, step t of a rejec-
tion chain (note that we calculate the algorithm by starting at k∗, so in the remainder
of this proof k ≥ k∗ holds). Let Aks (t) denote the cumulative offer set of school s at line
(k� t) of R(Si), and let Âks (t) denote the corresponding set at line (k� t) of R(Ŝi). Simi-
larly, let tk denote the final step of stage k under scenario Si, and let t̂k denote the final
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step of stage k under scenario Ŝi. Last, let kend denote the last stage of R(Si) and let k̂end

denote the last stage of R(Ŝi).
We prove the result by induction on the line index (k� t). Line (k∗�1) of R(Ŝi) is

“i applies to s,” and this step occurs somewhere in R(Si) by assumption. So make the
inductive assumption that all lines up to (k� t − 1) of R(Ŝi) also occur in R(Si). Then
consider the next line in R(Ŝi). There are three cases:

Case (i): The next line (k� t) is an application line. Line (k� t) then reads “i′ applies
to s′.” There are two cases. If i′ = i, then this application also occurs in R(Si) by assump-
tion. If i′ �= i, then let u be the school immediately before s′ on the preference list of i′.
Because (k� t) is an application line, (k� t − 1) must be a rejection line in which student
i′ is rejected by u. Since, by the inductive hypothesis, line (k� t− 1) occurs somewhere in
R(Si), student i′ must be rejected from u at some point in R(Si) and will then, according
to his preferences, apply to s′ in the following line.

Case (ii): The next line (k� t) is a rejection line. Line (k� t) then reads “s′ rejects i′.”
Thus, student i′ must have already applied to s′, either before i entered the market or
somewhere in rejection chain R(Ŝi). The choice function at s′ when i′ is rejected is Chks′
and the set of cumulative applicants is Âks′(t), which implies that i

′ ∈ Rejks′(Âks′(t)). By the
inductive hypothesis, all students in Âks′(t) also apply to s′ under scenario Si; in other

words, Âks′(t)⊆ Akend
s′ (Tkend). Further, the inductive hypothesis plus monotonic substi-

tutability imply that Rejks′(Âks′(t))⊆ Rejkend
s′ (Âks′(t))⊆ Rejkend

s′ (Akend
s′ (Tkend)).57 So, i′ must

be rejected from s′ at some point under scenario Si, i.e., line (k� t)must occur in R(Si).
Case (iii): The next line (k + 1�1) is a choice function reduction line. In this case,

line (k+ 1�1) reads “The choice functions become Chk+1.” Assume to the contrary that
this reduction does not occur under Si. Thus, R(Si) ends in stage k under Chk (by the
inductive hypothesis, R(Si) reaches at least stage k). By Theorem 6, an alternative way
to compute the outcome at the end of stage k under either scenario is to start with the
empty matching and run the cumulative offer process under Ŝi and Si. Recall that Ãks is
the cumulative set of applicants to school s before i enters the market (as before, since
the preferences of all agents −i do not change, this is the same under either case). Note
that δs(Ãks ) = 0 for all s �= y, and δy(Ãky ) = 1, where y has one type φ floor seat left to
be filled (if the latter did not hold, all school choice sets would be feasible even before i
enters, and the mechanism would not continue to stage k+ 1 under scenario Ŝi). Just
as above, we can write a rejection chain for each scenario corresponding to running
the cumulative offer process within stage k. Let Rk(Si) and Rk(Ŝi) denote these two
rejection chains.

Since R(Si) ends in stage k, Rk(Si)must end in one of two ways:

(i) School y gets an application from some student j of type φ:

Stage Step Action Offer sets

k t j applies to y
Aky (t)= Aky (t − 1)∪ {j}

Ak
ŝ
(t)= Ak

ŝ
(t − 1) for all ŝ �= s

57The inductive hypothesis implies that kend ≥ k, and so the first set inclusion follows by monotonicity;

the second follows by substitutability and Âk
s′(t)⊆ Akend

s′ (Tkend).
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(ii) Agent i is rejected by the last school in Si:

Stage Step Action Offer sets

k t i is rejected by s
Aks (t)= Aks (t − 1)

Ak
ŝ
(t)= Ak

ŝ
(t − 1) for all ŝ �= s

Alternatively, R(Ŝi) does not end in stage k. This means that Rk(Ŝi) must end
with

Stage Step Action Offer sets

k t Student i′ applies to school v
Âkv (t)= Âkv (t − 1)∪ {i′}

Âk
ŝ
(t)= Âk

ŝ
(t − 1) for all ŝ �= s

where either v �= y or i′ is not of type φ.

Now, by the scenario lemma of Dubins and Freedman (1981), Rk(Si) must also end
with a student applying to school v and not being rejected or filling the final floor seat.
But, this contradicts (1) and (2) above.
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Abdulkadiroğlu, Atila, Yeon-Koo Che, and Yusuke Yasuda (2011), “Resolving conflicting
preferences in school choice: The “Boston” mechanism reconsidered.” American Eco-
nomic Review, 101, 399–410. [873]
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