Theoretical Economics 12 (2017), 909-956 1555-7561/20170909

Magical thinking: A representation result

BRENDAN DALEY
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This paper suggests a novel way to import the approach of axiomatic theories of
individual choice into strategic settings and demonstrates the benefits of this ap-
proach. We propose both a tractable behavioral model as well as axioms applied
to the behavior of the collection of players, focusing first on prisoners’ dilemma
games. A representation theorem establishes these axioms as the precise be-
havioral content of the model, and that the model’s parameters are (essentially)
uniquely identified from behavior. The behavioral model features magical think-
ing: players behave as if their expectations about their opponents’ behavior vary
with their own choices. The model provides a unified view of documented behav-
ior in a range of often studied games, such as the prisoners’ dilemma, the battle
of the sexes, hawk-dove, and the stag hunt, and also generates novel predictions
across games.

Keyworbps. Magical thinking, axioms/representation theorem, prisoners’ dilem-
ma, coordination games.
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1. INTRODUCTION

This paper suggests a novel way to import the approach of axiomatic theories of indi-
vidual choice into game-theoretic settings. We propose a behavioral model of play in
symmetric 2 x 2 games, which features magical thinking: players behave as if they ex-
pect that choosing an action a increases the likelihood that their opponents also select
action a. We then provide axioms and a representation result that establishes the equiv-
alence between the axioms and the equilibrium play of the behavioral model, focusing
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first on behavior in prisoners’ dilemma (PD) games. Further, the model’s parameters are
(essentially) uniquely identified from behavior.

The novelty lies in the behavioral data to which our axioms apply. The axioms con-
cern players’ preferences over actions contingent on the payoffs of the (one-shot) game,
rather than preferences over outcomes. In addition, they restrict not only individual be-
havior, but also place a joint restriction on the behavior of a finite collection of players.
We motivate our axioms as simple and intuitive behavioral regularities across games and
individuals, without reference to any particular strategic model.

The contribution of the paper is therefore threefold. First, we provide a tractable and
empirically plausible theory of magical thinking, a phenomenon that has received atten-
tion in psychology and philosophy (discussed below), applied to strategic games. Most
importantly here, we demonstrate that our model provides a unified view of observed
behavior in a range of often studied games including the battle of the sexes, hawk-dove
(also known as chicken), and the stag hunt, in addition to the PD.

Second, distinct from typical work in applied or behavioral game theory, we present
a representation result that establishes equivalence between the model’s predictions
and a set of empirically plausible axioms. This result allows for the evaluation and em-
pirical testing of the model, and facilitates its comparison to alternative theories. Fur-
ther, the model’s parameters can be identified from behavior, which is both useful for
comparative statics and allows the analyst to traverse between the model and the ax-
ioms whenever convenient. For example, observed behavior satisfying the axioms on
PD games can be used to identify the parameters of the model, which can be used in
turn to generate predictions for (not yet observed) behavior in a different set of games.
All of this is important for applied work.

Third, a key component of our approach is that the axioms apply to players’ pref-
erences over actions (rather than outcomes). Axiomatizing this type of data has the fol-
lowing benefits, numbered B1-B3. (B1) The primitive of our axiomatic analysis is exactly
the type of data we aim to address, namely players’ preferences over their own actions,
across games and across players. (B2) This type of data is straightforward and common
to collect in experiments. (B3) We do not have to rely on auxiliary assumptions about
an equilibrium concept or on commonality of beliefs. Instead, as we discuss below, we
can derive these, as well as individual value functions, from the data. We hope that our
approach will prove useful in future research beyond this one application.

The domain of games

For several reasons, we begin our analysis on the set of PD games. PD games consti-
tute perhaps the most important class of games in applications, and cooperation in the
(one-shot) PD is a much discussed behavioral puzzle.! We demonstrate that our model

10f course, cooperation is easier to explain in the repeated PD, provided players are patient enough. For
finitely repeated versions, reputation models starting with Kreps et al. (1982) offer a potential explanation.
For infinitely repeated versions, cooperation is part of some subgame perfect Nash equilibria. Interestingly,
in an infinitely repeated, noisy version, Fudenberg et al. (2012) find substantial levels of cooperation (over
30% across all rounds) under parameters for which the unique equilibrium strategy is always defect.
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makes behavioral predictions distinct from other explanations of cooperative behavior
in PD games. Further, focusing on PD games helps build intuition for the workings of the
model. Most importantly though, we demonstrate that behavior in PD games provides
sufficient data to precisely characterize the behavioral model via axioms and to identify
its parameters. Isolating such a small, yet economically interesting, domain for both the
representation and identification results has the same advantages as it does in theories
of individual choice.?

We then apply the behavioral model to all symmetric 2 x 2 games, where its pre-
dictions continue to align with experimental evidence.® Hence, the model’s ability to
explain behavior is not tailored to PD games at the expense of descriptive accuracy in
other games in the class, but instead it provides a single account of observed play. Cor-
respondingly, the model generates novel predictions for how behavioral patterns should
correlate across games. Finally, we extend the model to allow for larger action sets, and
investigate the manner in which the connection between magical thinking and cooper-
ative behavior likewise extends.

Further extensions of the model are possible, but would require additional mod-
eling choices. At a very general level, the two key components are that players believe
their action choices have stochastic influence over the decisions of others and that equi-
librium beliefs are biased as a result (evidence for each is discussed in Section 4). In
principle, players could have arbitrary (magical) beliefs about how their choices affect
others. However, given the formulation of magical thinking (and related concepts) in
psychology and philosophy, we believe a natural starting point is for players to believe
they influence others to select the same action as they do. Although it is possible that
real-world context could imbue meaning into strategically irrelevant action labels, sym-
metric games provide a setting in which “the same action” is meaningful strategically.
Next, in games with more players, there would be the added modeling choice of which
other players i believes he is influencing and whether there is correlation in his per-
ceived influencing.* These modeling choices will likely need to be tailored to the setting
at hand, but the two key features would remain.

Summary of results

Within the model, each player i in the collection of players, 7, is endowed a type, «;, and
there is a cumulative distribution function (CDF) over types, F, from which players per-
ceive types to be independent and identically distributed (i.i.d.) draws. Given a game,

2First, it distills the behavioral implications of the psychological phenomenon (here magical thinking)
by abstracting from as many complications as possible. Second, the less data needed for identification
of the parameters, the better. Third, the model can be assessed by testing the individual axioms on the
small domain of interest (for example, see our comparison to alternative explanations of cooperation in PD
games in Section S.1 of the Supplement, available in a supplementary file on the journal website, http://
econtheory.org/supp/2099/supplement.pdf). In contrast, an axiomatization of the same model on a larger
domain might involve axioms that have less bite when restricted to the small domain, and can therefore
not serve as a checklist for testing the model on that domain.

3Extension of the axiomatic analysis is found in Section S.3 of the Supplement.

4For example, in a two-party voting game, player i might believe that turning out independently in-
creases the probability that others from his own party turn out, while not affecting the turnout of the op-

posing party.
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player i forms the following nonstandard beliefs. He assigns probability «; that the ac-
tion of his anonymous opponent, j, will correlate perfectly with his own, and probabil-
ity (1 — ;) that j’s action will be determined independently. In the latter case, i’s belief
about j’s behavior is consistent with j’s equilibrium strategy. We refer to «; as i’s de-
gree of magical thinking. A player with «; = 0 corresponds to a standard game-theoretic
agent—though, one who recognizes that he may be playing against a nonstandard op-
ponent. We characterize the equilibria of the model, and establish a necessary and suf-
ficient condition on F for the equilibrium to be unique in all PD games.

Turning to the axioms, as one would expect, some of them describe plausible regu-
larities of individual behavior. Specifically, we posit Monotonicity, which requires that a
player who is willing to defect in one PD does not prefer to cooperate in another PD with
greater payoffs from defection, as well as appropriate notions of Continuity, Convexity,
and Invariance to Positive Affine Payoff Transformations. In addition, we posit a novel
Interplayer Sensitivity Comparison axiom. Roughly, the idea behind the axiom is that the
behavior of a player who is more prone to defection is also more sensitive to changes in
the gains from defecting on a cooperating opponent. We will see that this pattern is
consistent with a player’s willingness to cooperate being responsive to the true cost of
doing so. In surveying the experimental literature, we find that our axioms are broadly
consistent with the available evidence and also offer new testable implications for future
studies.

Our representation theorem establishes that the axioms are equivalent to the behav-
ioral model with the condition on F that is necessary and sufficient for uniqueness of
the equilibrium in all PD games. Further, the collection of types («;);<; and the quantiles
(F(a;))ics are uniquely identified from behavior, which allows us to provide stronger
comparative statics in terms of those parameters.® Finally, note that in the represen-
tation, F is the common belief among players regarding the distribution that types are
drawn from. In the Supplement, Section S.2, we provide an axiomatic characterization
of this belief being empirically valid when the collection of players is arbitrarily large.

In addition to generating a positive degree of cooperation in PD games that de-
creases monotonically with the incentives for defection, the model comports with ob-
served behavior in other well known games. In hawk-dove games, our model predicts
that players will choose dove more often than is predicted by the symmetric (mixed-
strategy) Nash equilibrium of the standard model, in line with experimental evidence.
In battle of the sexes games, the prediction of our model matches the symmetric (mixed-
strategy) Nash equilibrium of the standard model, which also aligns with experimental
findings. Consider next coordination games with multiple symmetric Nash equilibria
that are Pareto ranked (e.g., the stag hunt game). Our model uniquely predicts coordi-
nation on the payoff-dominant Nash equilibrium only if it is also not “too risky,” in a
sense similar to the concept of risk dominance (Harsanyi and Selten 1988), and in line
with evidence. However, the prediction is more nuanced than risk dominance in that

5That is, because of identification, our comparative statics (Section 3) describe not only the implication
of changes in parameters for changes in behavior (as is common in applied game theory), but can establish
equivalence between them (as is standard in decision theory).
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whether the payoff-dominant Nash equilibrium is too risky depends on the (perceived)
distribution of types, F.

Note that the model’s ability to capture all of these findings does not owe to any flex-
ibility across different games. Our results show that play in PD games alone (essentially)
pins down the model, leaving no additional flexibility. Hence, the model also makes
predictions across classes of games that are often studied independently. For example,
collections with higher rates of cooperation in PD games also have a larger set of coor-
dination games in which the payoff-dominant Nash equilibrium is uniquely selected in
our model.

Of course, alternative explanations of nonstandard behavior in games—most no-
tably models based on other-regarding preferences—have been studied and shown to
align with important experimental findings. However, in both PD games as well as other
prominent games in our domain, there remains significant evidence of nonstandard be-
havior that is not explained by these theories, but is consistent with our model of magi-
cal thinking, as we discuss in Sections 4, 5.1, and S.1 in the Supplement.

Magical thinking

Psychologists have collected evidence that is consistent with individuals exhibiting mag-
ical thinking. Starting first with inanimate “opponents,” the term illusion of control was
coined by Langer (1975) to describe subjects who acted as if their choices had influence
over physical outcomes. For example, subjects placed higher bets on a coin about to be
flipped than on a coin already flipped, but whose outcome was still unknown.®

Section 4 discusses evidence suggestive of magical thinking in strategic settings. Pre-
senting one example here may be useful. Shafir and Tversky (1992) had subjects play a
standard PD with the twist that in some treatments the game was played sequentially,
such that one player knew the other’s action before choosing his own. They observed
that second-movers cooperate significantly less often in the sequential PD—even fol-
lowing cooperation by the first-mover—than in the standard, simultaneous-move ver-
sion of the game. This finding is inconsistent with standard forms of other-regarding
preferences (such as reciprocity), but can be explained by players believing that their
actions directly influence their opponents’ not-yet-chosen action, but cannot influence
those that have already been taken.

Throughout, we refer to magical thinking as the belief that one’s action choice influ-
ences one’s opponent to choose the same action. A related notion is found in a norma-
tive debate in philosophy that concerns Newcomb’s paradox (Nozick 1969) and extends
to the PD if one presumes a notion of self-similarity.” Evidentiary decision theorists ar-
gue that one’s opponent is probably similar to one’s self, and hence one should believe
that the other player will go through the same deliberations and come to a similar con-
clusion as one’s self (Lewis 1979, Jeffrey 1983). They conclude from this that cooperation

6The interpretation that a decision-maker’s beliefs about random states of nature vary with his own
choice is also common in the theory of ambiguity aversion (see, for example, Gilboa and Schmeidler 1989).

“Such as described by Rubinstein and Salant (2016) (and citations therein) as the belief that others are
likely to make similar judgements and choices as one’s self.
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is the optimal choice. Hence, while their psychological mechanism is slightly different,
evidentiary decision theorists advocate for a player to behave as if his choice influences
his opponent’s choice, and the notion is observationally equivalent to magically think-
ing on our domain. In contrast, causal decision theorists argue that one should not be-
lieve that one’s own action affects the other player’s action, as the simultaneous-move
game leaves no room for a causal explanation (Joyce 1999).

We mention this debate not because we will participate in it—the nature of the be-
havioral data we consider presupposes that magical thinking is a cognitive error—but to
highlight that a number of intelligent, serious individuals have reasoned in such a man-
ner.® Finally, a similar idea is apparent in common casual reasoning, such as, “I con-
tribute/recycle/volunteer because if I did not, then how could I believe that others are
doing it?”

The remainder of the paper is organized as follows. For PD games, Section 2 presents
our model, axioms, and representation theorem. Section 3 presents comparative statics,
and Section 4 compares our theory to experimental evidence and alternative theories of
play. Section 5 first applies the model to all symmetric 2 x 2 games and then extends it
to allow for larger action sets. Section 6 provides extended discussion including a com-
parison of our axiomatic methodology to alternative approaches. Proofs are given in the
Appendix. The Supplement comprises Sections S.1- S.3, which contain extended formal
results.

2. A THEORY OF MAGICAL THINKING

We begin with the class of prisoners’ dilemma games as shown in Figure 1, where r > p
and x, y > 0, which we refer to as PD? (the reason for the superscript will become ap-
parent shortly).9 In each game, two players, i and j, can each choose to defect (d) or
to cooperate (c). Often r + x is denoted as ¢t and p — y is denoted as s, but the above
parametrization will be more convenient for our purposes. Note that x captures the
benefit from defecting on a cooperating opponent, while y is the benefit from defect-
ing on a defector. We refer to an arbitrary game as g € PD? or, if it is useful to be more
explicit about its payoffs, as (r, p, x, y). We consider a finite collection of players, in-
dexed by I :={1, ..., n}, and each player i’s preferred action for each possible game in
PD’ when played as a one-shot game against an anonymous opponent, as is typical in
experimental settings.

We present the behavioral model, or representation, first and then present the ax-
ioms in Section 2.2. Compared to axiomatic theories of individual choice, the most
notable procedural difference is the necessity to conduct equilibrium analysis (Sec-
tion 2.1.1) so as to apply our representation.'®

8Experimental evidence suggestive of evidentiary reasoning is found in Quattrone and Tversky (1984).

9Throughout, we interpret game payoffs in monetary terms to facilitate comparison with experimental
findings. However, there is no formal sense in which our theory relies on this interpretation rather than
the interpretation of game payoffs as von Neumann-Morgenstern (vNM) utilities, as is customary in game
theory. (See the discussion of methodology in Section 6 for more.)

10This can be viewed as a generalization of the single-agent exercise. There the prototypical result is
the equivalence between axioms and a decision-maker acting as if he maximizes a certain utility function.
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Player j
c d
Playeri ¢ rr p—y,r+x
d|r+x,p—y P, P

FIGURE 1. An arbitrary prisoners’ dilemma in PD°.

2.1 The behavioral model

For the set of atomless probability distributions each with support [0, 1] and differen-
tiable CDE let F be the corresponding set of CDFs. In the behavioral model, each player
i € I is privately endowed with a type «; € [0, 1]. In addition, there is a common prior
that types are drawn i.i.d. from a distribution with CDF F € F. For each g € PD’, player
i evaluates the expected payoff of action a; € {c, d} as

Viey=ai-r+ (A —a)[Pi-(p—y)+A—P)-r],
Vid)y=aj- p+ (1 —a)[P;- p+ (1 —P)(r+x)],

(D

where P; is the probability i assigns to being defected on in game g, conditional on a;
and a; being determined independently. That is, i evaluates options as if he thinks that
there is probability «; that his opponent will match whatever action choice i makes,
and probability 1 — «; that his opponent determines a; uninfluenced by a;. This is the
sense in which player i exhibits magical thinking, and the degree to which he does so is
measured by «;.

Given a game g € PDY, a strategy for player i (denoted o;) is completely characterized
by the probability with which he selects a € {c, d} if his type is «; (denoted o;(a|a;) €
[0, 1]), and his interim expected payoff from strategy o; is o;(c|a;)V;(c) + oy(d|a;)Vi(d). 't
Throughout, we consider only symmetric equilibria, defined as follows.

DeriNITION 1. Fix any CDF F and g € PDY. An equilibrium is a pair (o, P), such that,
with V; as given by (1), the following statements hold:

(i) Foralliel, o;=o0.

However, each choice problem can be interpreted as a single-player game, with the notions of optimiza-
tion and equilibrium coinciding. Therefore, the standard result is identical to showing that the axioms are
equivalent to the decision-maker playing an equilibrium in every (single-player) game where payoffs are
defined by the utility representation.

There can be measurability issues for mixed strategies with uncountable type spaces (Aumann 1964).
We use a convenient formulation that handles those issues. A strategy is a function o5 : 4 x [0, 1] — [0, 1],
where 4 is the collection of all subsets of {c, d}, that satisfies two properties: (i) for every B € +, the func-
tion oy(B|-) : [0, 1] — [0, 1] is measurable, and (ii) for every «; € [0, 1], the function o;(:|e;) : A — [0, 1] is a
probability measure. In a slight abuse of notation, then, we write o;({a}|«;) as o;(ala;), and if o;(ala;) =1,
we say that player i chooses/selects/plays action a when his type is «;. See Milgrom and Weber (1985) for
further details and equivalence between this and other notions of mixing with uncountable type spaces.
Finally, while the formula for interim expected payoff is standard (taking (1) as given), it implies that the
bias in a player’s beliefs depends only on his type and ultimate action choice, and not on o;(-|e;) directly.
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(ii) ForallieI anda,d €{c,d}, o(ala;) >0 = Vi(a) > Vi(d).

(ii) Foralliel, P;=P = [; o(d|a)dF(a).

The first two requirements are standard: the first is the symmetry condition; the
second states that the strategy assigns positive probability only to actions that yield the
highest expected payoff, given a player’s type and beliefs. The third requires that any
player’s belief conditional on not influencing his opponent is consistent with his oppo-
nent’s equilibrium strategy. If «; = 0, player i corresponds to a standard game-theoretic
agent in that he assigns probability zero to directly influencing his opponent, and his
belief about his opponent’s behavior is consistent with his opponent’s equilibrium strat-
egy. If o; > 0, player i’s belief is a convex combination of this belief and the belief that i’s
opponent will match the action played by i.!?

2.1.1 Equilibrium analysis We now characterize the equilibrium properties of the be-
havioral model. First, we observe that the set of equilibria is invariant to positive affine
transformations of the payoffs.

LeMmwmA 1. If (o, P) is an equilibrium of the game (r, p, x,y) € PDY, then it is also an equi-
librium of thegame k(r + §, p+ &, x,y) € pDY forallk >0and ¢ e R.

All proofs are located in the Appendix. From the lemma, the set of equilibria is iden-

tical in games (r, p, x, y) and (1, 0, %, %), the latter being the positive affine transfor-
mation of the former with k = r}p > 0and £ = —p. Let PD c PD' denote the subset of
games in which r and p are normalized to 1 and 0, respectively, with (x, y) € PD being an
arbitrary element. Given Lemma 1, it is sufficient to characterize equilibrium behavior

for games in PD, which we focus on for the remainder of Section 2.1.

DEFINITION 2. An equilibrium (o, P) is a cutoffequilibrium if o is of the form o (d|a) = 1
if o < * and o(d|a) =0 if a > a*, for some o* € [0, 1].

ProposiTioN 1. Forany F € F and (x, y) € PD, (i) any equilibrium is a cutoff equilib-
rium with a* € (0, 1), (ii) «* is an equilibrium cutoff if and only if it is a solution to (2)
below, and (iii) an equilibrium exists.

Fixing any (x, y) € PD, the cutoff nature of the equilibrium is immediate: for any
(common) equilibrium belief P; = P, V;(c) — V;(d) is strictly increasing in «;. Then, in
equilibrium, P; = P = F(«a*), and the cutoff type, «*, is indifferent between ¢ and d. So

12Because players in the model seek to maximize their expected payoff (albeit, with nonstandard beliefs),
one could obviously employ an alternative, reduced-form assumption that a player simply receives a direct
utility gain from selecting c. In Section 4 we discuss how this modeling choice would require a counterintu-
itive form of dependence on the payoff parameters to emulate our model (which is only exacerbated when
we extend to games beyond PD’) and be at odds with additional experimental evidence.
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the set of equilibria is identical to the set of solutions to the equation'?
Vi(clai=a*)=a*- 1+ (1 - a*)[F(oz*) (=) + (1-F(a¥)) - 1]

=a* -0+ (1 — a*)[F(oz*) -0+ (1 —F(a*)) (1 +)C)] = Vi(d|ai = a*). @

Noting that for «; = 0, Vi(cla; = a*) < Vi(d|a; = «*) and for «; = 1, Vi(cla; = a*) >
Vi(d|a; = o*), all solutions to (2) are interior and existence is guaranteed by the conti-
nuity of both the left- and right-hand sides. This leaves only the question of uniqueness.

ProposITION 2. Forany fixed F € F, there is a unique equilibrium cutoffin each (x, y) €
PD ifand only if 29 < L forall a € (0, 1) (hereafter referred to as Condition S).

Fla) — a—a?

Condition S restricts how steep F can be, by limiting its reverse hazard rate, in a man-
ner that depends on a. For example, the CDF F(«) = o!/¥, k > 1, satisfies the condition,
even though ’;((;")) — oo as a — 0. Note, then, that by taking k arbitrarily large, we can
generate arbitrarily close approximations of the standard model (in which F(«) =1 for
all « € [0, 1]), while continuing to satisfy Condition S.

To gain intuition for the potential multiplicity of equilibria, first note that for type
«a;, defection carries the cost of r — p = 1 with perceived probability «;, while the benefit
of defection is F(a*)y + (1 — F(a*))x with perceived probability 1 — «;. If x > y, then
the benefit of defection is decreasing in F(«*) (i.e., the probability that one’s opponent
defects if his choice is made independently), and the indifference equation (2) has a
unique solution.'* But if x < y, then the benefit of defection is increasing in F(a*). If F
is steep on some range this means that (in expectation) there are many players making
essentially the same calculation; so each is happy to cooperate if the equilibrium calls for
all of them to do so, but each prefers to defect if the equilibrium calls for them all to do so.
These types face a coordination problem. This problem is ameliorated if F is never too
steep. Not surprisingly, the most difficult games in which to maintain uniqueness are
those with the smallest x values, which are used to derive the tightness of Condition S
for uniqueness (see the proof in the Appendix).

2.2 The axioms

We now present the axioms, doing so without reliance on the model. The data we con-
sider are each player i's preferred action for each possible game in PD” when played as
a one-shot game against an anonymous opponent. The behavior of player i partitions
PDY into three sets: the set of games D? for which i strictly prefers d, the set of games
C? for which i strictly prefers c, and the set of games M? = PD’ \ (DY U C?) for which i

is indifferent in his choice of d or c. We denote by Dy = PD° \ CY and C)=pDO\ D! the
sets of games for which i weakly prefers d or ¢, respectively. The primitive of our analysis

13Definition 2 does not specify the behavior of the cutoff type, who is indifferent between ¢ and d. We do
not always distinguish equilibria that have the same cutoff, but in which the cutoff type behaves differently
since this type has measure zero and the distinction has no effect on payoffs.

For x =y, (2) has a unique solution, which is independent of F: o* = 5 = %



918 Daley and Sadowski Theoretical Economics 12 (2017)

is the collection of pairs (D?, C?) ier, which fully summarizes the behavior of all players
in 1.1°

Our first four axioms consider individual behavior. It can be noted that a player who
adheres to the standard prediction of always defecting, D? = PDY, satisfies all of these
axioms (and can never generate a violation of our fifth and final axiom).

Axiowm 1 (Invariance to Positive Affine Transformations). Forallie I, if (r, p,x,y) € D?,
thenk(r+ & p+&,x,y) € D? forall k > 0 and ¢ € R, and analogously for C?.

The axiom states that positive affine transformations of all game payoffs have no ef-
fect on individual behavior. For the dollar stakes used in the laboratory, evidence seems
to be consistent with the axiom, both in the prisoners’ dilemma and also in many other
games (see Section 4). The axiom has a flavor of risk neutrality (which we have already
seen is part of the behavioral model). One interpretation is that subjects themselves
treat strategic risk differently from environmental risk, focusing on the strategic aspects
of their choice rather than their attitude toward risk.!®

Axiom 1 implies that any player i behaves identically in games (7, p, x,y) and
(1,0, = 57 Y p)' Hence, under Axiom 1, it is sufficient to characterize behavior on the
subset PD ¢ PD". We pose the remainder of our axioms on PD, meaning that, on their
own, they are weaker than their obvious counterparts applying to PD. To do so, let
D; = D? NPD, and analogously for C;, M;, D;, and C;.

The remaining two payoff parameters, x and y, correspond to the two motives for
defection: the exploitative motive of gaining at the expense of a cooperating opponent
and reaping an extra payoff of x, and the defensive motive to avoid being the “sucker”
and losing y. Our remaining axioms describe the effects of changing x and y on behavior.

Axiom 2 (Continuity). Forallie€ I, D; and C; are open.

The axiom says that no individual has a jump from a strict preference for defection
to a strict preference for cooperation as the motives for defection vary continuously.

AxioMm 3 (Monotonicity). Foralliel, if(x,y) € D;, (x',y) > (x,y), and (x',y') # (x, y),
then (x',y") € D;.

The axiom requires that strengthening the motives for defection (at least one of
them strictly) will lead a player who initially weakly prefers to defect to strictly prefer
defection.

150ur primitive differentiates the games where i strictly prefers d or ¢ from those in which he is indif-
ferent. This is analogous to the standard assumption in axiomatic decision theory that the primitive is a
preference relation (not simply choice), which also distinguishes strict from weak preferences. Formally,
for every g € PDY, i ranks the actions in {d, c}. Each ranking is a complete binary relation >;f." . Our primitive
is (DY, C?);cs, where DY and C? are the subsets of PD” for which d £ ¢ and ¢ ~{ d, respectively.

160f course, the axiom is also consistent with the alternative interpretation of game payoffs as vNM
utilities as is customary in game theory. See the discussion of methodology in Section 6 for more.
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Axiowm 4 (Convexity). Forallie I, D; and C; are convex.

The intuition behind the axiom is that a larger change in the motives for defec-
tion should have a weakly larger effect on behavior than does a proportionally smaller
change. Suppose that player i strictly prefers to, say, defect in both (x, y) and (x/, y').
The change from (x, y) to (x', y") can be interpreted as trading off the two motives at
a rate, %, and a scale, normalized to 1. Comparatively, the change from (x, y) to
(yx + (1 = y)x',yy+ (1 — y)y), where y € (0, 1), is unambiguously smaller: it trades
off the two motives at the same rate, but on a smaller scale. Axiom 4 states that if the
larger change in payoffs does not alter i’s strict preference for d (or for c), then neither
should this smaller change in the payoffs.!”

While we allow different players to behave differently in a given game, we now pose
a new type of axiom that compares the behavior of any two players across games. In-
formally, the interplayer axiom says the following: Suppose that player i defects under
lower incentives for defection than does j. Then, when i is at the cusp of flipping be-
tween d or ¢, his choice is more sensitive to changes in x (the exploitative motive) than
is j’s choice when j is likewise at the cusp.

It seems natural that the interpretation of an interplayer axiom would be contin-
gent on at least some basic properties of individual behavior; in our case this will be
Monotonicity (Axiom 3). Intuitively, if a player cooperates in a given prisoners’ dilemma
game, he does so at a cost to his own game payoff. This cost depends on his opponent’s
behavior: specifically, the more likely the opponent is to cooperate, the greater is the
influence of x on this cost. Hence, if all players satisfy Axiom 3, then in games where
player i (who defects under lower incentives for defection) is on the cusp of flipping his
behavior it must be that the arbitrary opponent is more likely to be cooperating than in
games where player j (who defects only under higher incentives for defection) is simi-
larly on the cusp. If behavior is responsive to the true cost of cooperation, then player i’s
behavior should be more sensitive to changes in x than is player j’s. We now present the
formalisms.

DerINITION 3. For H, H' c PD we write H < H' if, for all (x,y) € H and (x',y’) € H',
x<x'andy<y'.

Axiom 5 (Interplayer Sensitivity Comparison). Forall {i,j:i+# j} CI and &,8 € Ry, if
@D {(x, ), (x+e&,y—0)} <{(x',y), (¥ +e,y —8)} (ii) (x,y) € D;, (iii) (x +&,y—6) € Cj,
and (iv) (x', y") € Cj, then (v) (x' + &,y" — 8) € C;.

The axiom is illustrated in Figure 2. To see that it captures the pattern described
above, note first that, in the context of Axiom 3, (i), (ii), and (iv) imply that player i in-
deed defects under lower incentives for defection than does player j in the four games.!8

171t may be useful to note that while reminiscent of the classic two-good consumer-preference diagram,
in our context the choice objects are ¢ and d, not (x, y) bundles; so M; is not an indifference curve, and D;
and C; are not better than/worse than sets, meaning Axiom 4 is not related to the standard convexity-of-
consumer-preferences assumptions (for example, Mas-Colell et al. 1995, Chapter 3.B).

18Let H denote the set of four games. To see that i is more prone to defection than j in H, note that
Axiom 3 implies that {(x', y'), (x' +¢&,y’ — 8)} C D; and that {(x, y), (x + &, y — 8)} C C;. Therefore, 5]- NHC
D,NH andC,ﬂHngﬂH.
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F1GURE 2. Depiction of Axiom 5. Notice that (i) holds, so (ii)—(iv) imply (v).

Second, (ii) and (iii) imply that i is willing to flip between choosing d or ¢ when moving
from (x, y) to (x + &, y — 8). Third, (iv) says that j is willing to cooperate in (x’, y"). Now,
clearly, the movements from (x, y) to (x + &,y — §) and from (x’,y’) to (x' + &,y — )
entail the same increase, ¢, in the exploitative motive and the same reduction, 8, in the
defensive motive. Hence, if, contrary to (v), j were willing to defect in (x' + &,y — §),
then j would have to be more sensitive to changes in x (relative to changes in y) than s i,
which violates the pattern described at the outset. Hence, Axiom 5 requires that (i)—(iv)
imply (v).

We note that insofar as one views both defection in more games and a greater re-
sponsiveness to the exploitative motive to be features of a more “aggressive disposition”
on the part of player i, the axiom is consistent with the view, and the motivation based
on objective incentives and Axiom 3 provides a microfoundation for this correlation.

Finally, as this type of interplayer axiom is novel to our approach, it may be worth
previewing the role it plays in the representation result. The intuition provided for the
axiom above refers to behavior being responsive to the true cost of cooperation. In the
representation, player i’s behavior is a response to the cost of cooperation as measured
by his perception of the distribution F, call it F. The axiom, then, disciplines the het-
erogeneity in this perception. As we will see, it ensures that F'(a;) < F/(a;) if and only if
a; < aj, which must hold if all players perceive the same F.!9

2.3 The representation theorem

Having studied the behavioral model and the axioms, we present the representation
result.

19Conversely, if the behavioral model were expanded to accommodate heterogenous perceptions of F,
and Fi(a;) > F/(;) despite a; < @, the implied behavior would violate Axiom 5.



Theoretical Economics 12 (2017) Magical thinking 921

DeFINITION 4. For I’ C I, the behavior of the players in I’, (DY, C?);cy/, can be explained
by the behavioral model [F, («;);c] if for all g € PDY there exists an equilibrium such
that, with 1} as defined by (1), the following statements hold:

(i) Foralliel,ge C? if and only if {c} = argmax, 4{Vi(c), Vi(d)}.

(i) Foralliel’, g e DY ifand only if {d} = argmax, 4{Vi(c), Vi(d)}.

THEOREM 1. The primitive (D?, C?)id satisfies Axioms 1-5 if and only if it can be ex-
plained by a behavioral model [F, (a;)ici], where F € F satisfies Condition S. Further-
more, foralli € I, a; and F(«a;) are unique.

Before sketching the proof, it is worth noting a few interesting features. First, a cen-
tral concern in representation results is the degree to which the parameters in the rep-
resentation, here F and («;);cs, are unique. Theorem 1 establishes that each player’s «;
(the degree to which he exhibits magical thinking) is uniquely determined by the primi-
tive and will, in fact, only depend on (D?, CIQ) as we sketch below. Further, the quantiles
of F at all ¢; in the collection are also unique.

Second is the interpretation of the magical-thinking component. Given the nature
of our primitive, we have taken the position that this is an error, and the choices of each
player are not directly influenced by the choices of any other player. In other words, our
assumptions about the nature of human agency are the standard ones, but we allow that
the players act as if they have nonstandard ones. There is also an important subtlety in
understanding the F in the representation: (it is as if) F is the CDF of the distribution
that all players perceive the a-types to be drawn from. This suggests an interpretation
in which the players conceive of a grand population of which 7 is a random sample. In
Section S.2, we provide an axiomatic characterization of this belief being empirically
valid when the collection is large.

Third, acommon concern in game-theoretic analysis is the issue of equilibrium mul-
tiplicity.?® A reader might therefore object to the terminology that a model can explain
behavioral data if the data are always consistent with one of the model’s equilibria (Def-
inition 4) as too permissive. The definition was chosen so that equilibrium uniqueness
is not forced into the very notion of representation. Nevertheless, this objection is easily
addressed. Notice that Theorem 1 includes the provision that F satisfies Condition S.
Under this provision, Proposition 2 (with Lemma 1) guarantees that the equilibrium
cutoff is unique for all g € PD" (and all equilibria are cutoff equilibria (Proposition 1)).
It is immediate, therefore, that the representation satisfies the more stringent defini-
tion of can explain attained if the requirements of Definition 4 must instead hold in all
equilibria.

20In single-player games/decision problems, the agent may be indifferent between multiple payoff-
maximizers, which can be interpreted as equilibrium multiplicity. However, in this scenario, the payoff to
all agents is equivalent across all equilibria (by hypothesis). In general, the same statement does not hold
for multiplayer games with multiple equilibria. This is one reason why the multiplicity issue is of perhaps
greater concern in game theory than in decision theory.
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int; int;

inty

int;

(a) Individual Behavior in PD if D;,C; # 0 (b) Behavior of four players in PD

FIGURE 3. (a) A player i’s behavior in PD, for whom D;, C; # @. (b) The M -lines for four distinct
players; note how they fan out.

A couple of notational definitions will simplify exposition for the remainder of the
paper. Let Fg denote the set of CDFs in F that satisfy Condition S. Let «_; denote an
arbitrary assignment of types to players in I\ {i} (i.e., (@})jen\(i))-

Sketch of proof of Theorem 1 It is clear that Lemma 1 is the precise behavioral content
of Axiom 1. Hence, we need only prove that Axioms 2-5 are equivalent to the behavioral
model on PD.

As is typical, showing that the representation implies the axioms is the easier di-
rection. First, extreme players, «; = 0, 1, either always defect or always cooperate, so
trivially satisfy our axioms. Next, recall that in the behavioral model, the unique equilib-
rium of any game (x, y) € PD is of cutoff form, where the cutoff, «*, is characterized by
(2). To find the set of games in PD for which i is indifferent between c and d, fix «; € (0, 1)
and solve (2) for y as a function of x to get

o only a; 1 —F(a)
1_{("’”6 ‘y‘u—ai)F(al-)_x( F(a;) >}

Note that M; is a downward sloping line in PD. The games D; and C; are the strict-
upper- and strict-lower-contour sets of M;, respectively (Figure 3(a)). Axioms 2—4 follow
immediately.

In addition, observe that (l_alam is weakly increasing and %{f‘)’) is strictly de-
creasing in «;; the former by Condition S, the latter by F € 7. This implies that if
0 < a; < aj <1, then M; and M; do not intersect in PD and, further, that they “fan
out” as x increases (Figure 3(b)). It is straightforward to verify that this property ensures
Axiom 5.

The proof that the axioms imply the representation has two main parts. In the first
part, we show that for any individual player i, if (D;, C;) satisfies Axioms 2-4, then
there exists a pair («;, F;) € [0, 1]* such that (D;, C;) can be explained by any model
[F, (a;, @_;)] satisfying F € F and F(«;) = F;. Further, «; and F; are unique. In other
words, the axioms on individual behavior are enough to establish that each individual is
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playing in accordance with our behavioral model—though not necessarily with agree-
ment among individuals about F. The second part of the proof establishes that there
is a common F € Fg that can simultaneously explain all of (D;, C;);c;. This relies on
Axiom 5.

To begin the first part suppose that (D;, C;) satisfies Axioms 2—4: Continuity, Mono-
tonicity, and Convexity. By Continuity, it is straightforward to show that either (i) D; =
PD, (ii) C; = PD, or (iii) M; # @. If (i), then (a;, F;) = (0,0), and if (ii), then («;, F;) =
(1,1). Suppose now that (iii) holds. Continuity and Monotonicity imply that there
is a continuous, strictly decreasing function y such that M; = {(x, y) € PD|y = y(x)},
Ci={(x,y) e PD|y < y(x)}, and D; = {(x, y) € PD|y > y(x)}. Finally, Convexity of D; and
C; means Yy is linear, so can be summarized by two scalars that we denote int; and slp;:
M;={(x,y) e PD|y=int; —slp; - x}.

Having established the linearity of M; from behavioral data, recall from the argu-
ment above that in the behavioral model,

M;={(x )ePD‘ - i N Rt ilCTY
S R YT A= anF(ay Fay JI
Inverting the bijection (int;, slp;) = (ﬁi)ﬂ, 1_Tf") establishes the first part of the proof.

For the second part, consider two players i and j, such that M;, M; # & and who sat-
isfy Axiom 5. This means int; < int; implies slp; > slp j.21 The translation of this condi-

Zl’((ll:z]’; The first
inequality means that there exists a strictly increasing CDF F that, together with («;);c;,
can simultaneously explain the behavior of all players (the inclusion of the «; = 0, 1 play-
ers is trivial). The second inequality is a discretized version of Condition S. It is then
straightforward, but cumbersome, to show that it is without loss of generality to take F
to be differentiable and to satisfy Condition S.

Finally, a comment on the properties of F in the representation. As made clear from
the sketch above, the axioms do not require F to have full support or to be differen-
tiable, but merely allow for these properties. This is because the data of a finite number
of players generate values for F at only a finite number of points (Section S.2 provides
an analysis with a continuum of players). These features are chosen to be part of the
representation because they are commonly assumed, appealing properties for applied
models that facilitate a tractable analysis (recall Section 2.1). For example, they allow
for a simple statement of Conditions S. It is not difficult to show that a larger class of
behavioral models satisfies the axioms, and that any primitive that satisfies the axioms
can be explained by another model [F, («;);cs], where F lacks full support and/or is not
everywhere differentiable. It is worth noting, however, that the unique identification of
parameters in Theorem 1 continues to hold across this larger class of models since, as
outlined above, these parameters are pinned down by individual behavior that satisfies
Axioms 1-4.

tion under the bijection yields that 0 < o; < @j < 1 implies F; < F; < F;

2179 see this, note that int; < int; implies that there are games (x, y), (x + &,y — 8), (¥, y), and (x' + ¢,
y' —8) thatsatisfy (i) {(x, y), (x + &,y = 8)} < {(x, ¥), (x' + &,y = 8)}, (i) (x, y) € M, (iii) (x+&,y—8) e M;,
and (iv) (x', y") € M;. Axiom 5 then implies that (x’ + &, ' — 8) € C; and, consequently, slp, > slp;.
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3. COMPARATIVE STATICS

In this section we illustrate how the predictions of the model vary with the parameters.
In light of Axiom 1/Lemma 1, we do so on the smaller set of games, PD, without loss.

DEerINITION 5. Let | 4| be the size of any finite set of players A. Consider two arbitrary
sets of players 4 and A such that | 4| =|A].

e We say that, in H C PD, the set of players A4 defects (weakly) more than A if
l{i € Al(x,y) € Di}| = |{j € Al(x, y) € Dj}| for each (x, y) € H.

o We say that the set of players A4 is (weakly) more mﬂuenced by x relative to y than
is A if A defects more than A in {(x,y)|x > y} and A defects more than A4 in

{(x, »)x <y}

The notion of defects more is straightforward. For singletons 4 = {i} and A= {j},itis
simply that in H C PD, player i defects (weakly) more than player jif D;NH Cc D; N H.
When convenient, we use the term cooperates (weakly) more for the obvious analog. The
notion of more influenced by x isolates the idea that players in set 4 are more driven to
defection than players in A when x is relatively large but without being more prone to
defection overall.

We begin with comparative static results that, as is typically done in applied work, in-
vestigate the effects of varying one parameter, assuming (rather than determining from
behavior) that all other parameters stay fixed. The cutoff feature of equilibria (Proposi-
tion 1) immediately gives us our first comparative static: for fixed F € Fg, a player of type
a cooperates more in PD than does a player of type « if and only if & > @. Intuitively, a
player who believes he has more influence over his opponent’s behavior cooperates in a
larger set of games.

Proposition 3 below explores how predictions change as the population becomes
more inclined toward magical thinking (in the sense of first-order stochastic domi-
nance). It shows the equivalence between a first-order stochastically ranked pair of dis-
tributions and properties of both choice behavior in the observable domain (i.e., (b)
and (d)) and their manifestations in the behavioral model (i.e., (c) and (e)). This may
also serve to illustrate the usefulness of the equivalence between the axioms and the
representation.

PROPOSITION 3. For any F, F € Fs, let I and I be independently drawn collections of
common size n from F and F, respectwely For any (x,y) € PD, let a} |, and a , be the
unique equilibrium cutoffs for F and F, and let the random variables ky,yand Ex, y be the
number of players cooperating in their respective collections. The following statements

are equivalent:

(a) The CDF F first-order stochastically dominates (f.o.s.d.) F (i.e., F(a) < F(a) Va €
[0, 1]).

(b) Forall (x,y) € PD, the distribution of k. f.0.s.d. the distribution ofEx,y.
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(c) Forall (x,y) €PD, F(a} ) < F(&: ).

(d) Foranya € [0, 1], a player of type « is more influenced by x relative to y when facing
F than when facing F.

(e) Forany (x,y) € PD, a;kc,y < Eij;’y ifandonly ifx < y.

Interpreting the proposition, (b) and (c) show specific manners in which greater de-
grees of population-wide magical thinking and of cooperation are synonymous. Notice
that (b) is only useful if the analyst either assumes the empirical validity of F and F (see
Section S.2), or if she is interested in understanding how much cooperation the players
themselves predict as their common belief about the distribution of a-types changes—
which does provide some useful intuition for the final two claims.

The final two statements are perhaps a bit more surprising. They can be interpreted
as answering the question, “How does the behavior of the player with magical-thinking
type « change if (the players believe that) the magical thinking of the population in-
creases/decreases?” The answer depends on the relative magnitudes of the two motives
for defection. From (b) and (c), F f.o.s.d. F means more cooperation from the F pop-
ulation than from the F population. As discussed following Proposition 2, when x < y,
players want to cooperate if enough others are cooperating, which (d) and (e) reflect.
However, when x > y, the gain from defecting on cooperators is relatively large, and the
a-type takes advantage of increased cooperation in the populace by defecting in more
games when facing F than when facing F.

In axiomatic theories of individual choice, customarily, the aim of comparative stat-
ics results is to disentangle the behavioral content of different parameters, relying cru-
cially on the separate identification of those parameters. Consider first the individual
types (a;)ics. If the analyst wishes to know if differences in the behaviors of two collec-
tions are atleast partially due to differences in individual types, she can leverage the facts
that in the model, equilibrium behavior is independent of F when x = y (Section 2.1.1),
and that any player’s type can be identified from play in such games. Intuitively, when
x = y any player’s incentive to defect is independent of what he believes about his oppo-
nent’s decision. This is formalized in Proposition 4(a) below.

For the commonly believed distribution of types, F, part (b) of the proposition cap-
tures the exact behavioral content of keeping the actual types in the collection fixed and
changing only these beliefs. Similar to Proposition 3(a) and (d), (the discretized ana-
log of) a first-order stochastic shift in beliefs is equivalent to players becoming more
influenced by x.

PROPOSITION 4. Consider two collections I and I such that || = |I~| = n, and whose be-
havior is described by [F, (a})je1] and [F, (a;) j61~], respectively, with F, F € Fg and each
collection ordered by increasing o values.

(@ In{(x,y)|lx =y}, playeri e I defects more than player j € I~if6md only if a; < a;.

(b) Collection I is more influenced by x relative to y than is I if and only if, for all i < n,
o = a,» and F(ap) < F(&,)
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4. EVIDENCE AND ALTERNATIVE THEORIES

In this section, we first discuss how the available experimental evidence aligns with our
axioms. We then discuss additional evidence, drawn from studies of manipulated vari-
ants of PD games, finding support for the magical-thinking interpretation of the behav-
ioral model.

The rationale for discussing both types of evidence is as follows. The utility of our
representation result is that it establishes (a) the (nonobvious) behavioral content of a
model built on a documented psychological phenomenon (see the Introduction), ap-
plied to a domain of economic interest, and (b) that empirically plausible axioms on
the domain of interest can be explained by a tractable model that is not obvious from
mere inspection of those axioms. Hence, the first set of evidence presented speaks to
the plausibility of the axioms as empirical regularities, while the second set speaks more
to the relevance of the psychological decision-making process.

Starting with Rapoport and Chammah (1965), experimentalists have investigated
how the payoffs in the prisoners’ dilemma affect observed levels of cooperation.??
For the stakes typically used in experiments, a positive affine transformation of the
game payoffs seems to have little effect on the level of cooperation in the prisoners’
dilemma (for example, Jones et al. 1968), or on play in games more generally (Camerer
and Hogarth 1999, Kocher et al. 2008), consistent with Axiom 1. For very significant
stakes, evidence from televised game shows where contestants play a one-shot pris-
oners’ dilemma (of course, without anonymity) paints a similar picture (List 2006,
Van de Assen et al. 2012). In fact, Axiom 1 is commonly assumed, and most experiments
do not even test it. Also, as in more familiar contexts, continuity (Axiom 2) is hard to
falsify empirically and should be thought of as a technically useful abstraction.

The main experimental finding for prisoners’ dilemma games is that a substantial
proportion of subjects choose to cooperate (see Dawes and Thaler 1988 for a survey),
and that cooperation monotonically decreases with the motives to defect: x and y. For
example, Charness et al. (2016) find that cooperation levels decrease monotonically
from 60% to 23% when varying (x, y) on an increasing path from (%, %) to (4,1) (mod-
ulo positive affine transformations). Monotonicity has also been verified within subject
(Ahn et al. 2001, Engel and Zhurakhovska 2016), giving strong support to Axiom 3. Any
theory that aims to explain observed play in PD games should account for this evidence.

Axiom 4 is testable, but the available evidence on play in the PD is too incomplete
to evaluate it directly. However, again starting with Rapoport and Chammabh (1965), var-
ious unidimensional indices have been proposed (though with little theoretical foun-
dation) to capture the magnitude of the incentive to defect, depending on the payoff
parameters, and then used to forecast the level of cooperation across different prison-
ers’ dilemma games. Empirically, the best validated of such indices are increasing in

Z1gnoring the possible differences in behavior between the one-shot game and its finitely repeated ver-
sion, early experimental works simply report aggregate behavior across rounds and subjects (for example,
Rapoport and Chammah 1965, Steele and Tedeschi 1967, Jones et al. 1968). More recent studies of the one-
shot game either randomly rematch subjects after every round of play (for example, Ahn et al. 2001), or use
the “strategy method” (Engel and Zhurakhovska 2016), or truly have each subject play just a single game
one time (Charness et al. 2016).
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% (see Steele and Tedeschi 1967, for example). This ratio is invariant to positive
affine transformations of game payoffs, consistent with Axiom 1, and becomes ﬁ in
PD. Therefore, these indices predict that the level curves of constant aggregate coop-
eration will be thin, linear, and downward sloping, as they are in our model, owing to
Axioms 1-4 and the fact that individual M; lines do not cross, an implication of Axiom 5.
The empirical support for these indices then provides indirect evidence in support of
Axioms 1-4, but not of the differing slopes of level curves that are also implied by Ax-
iom 5 (illustrated in Figure 3(b)), meaning our axioms/model provide a more nuanced
prediction.?3

Axiom 5 is a novel type of assumption that is central for our theory. It describes
the correlation of behavior across players and games. This correlation has not been a
focus of experimental investigation. Recall that if players are sensitive to the true cost of
cooperating, Axiom 3 implies Axiom 5. The strong support in favor of Axiom 3, therefore,
strengthens the empirical plausibility of Axiom 5. Ultimately, however, the validity of the
axiom is an empirical question, and in that sense our theory suggests a fruitful avenue
for future experiments.

Because the axioms distill the precise behavioral content of our theory, they fa-
cilitate comparison not only with the experimental evidence, but also with alterna-
tive models. In Section S.1, we formally demonstrate that canonical models with the
three most common forms of other-regarding preferences—altruism (Ledyard 1995,
Levine 1998), inequity aversion (Fehr and Schmidt 1999), and reciprocity (Rabin 1993)—
violate our axioms, and hence make different predictions on our domain.?* In McKelvey
and Palfrey’s (1995) notion of quantal-response equilibrium (QRE) each player chooses
every available action with positive probability, which can be interpreted as random er-
rors. Immediately then, QRE predicts a positive degree of cooperation in the prisoners’
dilemma. Further, given the distribution of opponent play, the probability of selecting
an action increases with the expected payoff from doing so, as is also true in our model.
However, despite the many degrees of freedom afforded QRE, its implications for ag-
gregate behavior differ from those of our model.?> More importantly though, instead

23We are unaware of studies that provide detailed enough data to test the predictions of our model
against the predictions based on these indices.

24A succinct intuition is that the most altruistic players in a population always fail Axiom 3 because,
in games where they (correctly) predict their opponent will defect with probability 1, increasing their op-
ponent’s payoff from doing so increases the altruistic player’s preference for cooperation. The models of
inequity aversion and reciprocity have a coordination feature to them: players are willing to cooperate if
and only if they believe cooperation by their opponent is sufficiently likely. This leads to equilibrium mul-
tiplicity: for every game, all players defecting is an equilibrium, but in some games cooperation by some
players occurs in other equilibria. Further, because of this coordination component, the set of games that
have equilibria with some cooperation end abruptly, as coordinated cooperation unravels due to a small
increase in the incentive to defect, leading to abundant violations of Axiom 2.

25For example, even though the expected payoff from defection is always larger than from cooperation,
(in expectation) the majority of individuals in our model will cooperate for small enough x and y, in line
with evidence (Charness et al. 2016), but in contrast to QRE. Also, beyond PD games, there are games for
which our model predicts that some actions are never played; for instance, any game where the socially
optimal action is also dominant (Proposition 5). See also Proposition 10 on games with larger action sets.
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of attributing differences in observed behavior to randomness, our axioms and model
speak directly to heterogeneity in individual behavior.

We now discuss evidence suggestive of magical thinking from games that are in nat-
ural extensions of our domain (which for brevity we do not formalize here):

(i) Most immediately, players in our model would have completely standard prefer-
ences over the domain of final game-payoff vectors (unlike altruistic or inequity-
averse players). Consistent with this, when the prisoners’ dilemma is modified to
have a passive opponent (so the unconstrained player is unilaterally selecting the
payoff vector), higher rates of “defection” are found (Ellingsen et al. 2012).

(ii) Shafir and Tversky’s (1992) observation that the level of cooperation by second-
movers is significantly lower in the sequential prisoners’ dilemma than in the
standard, simultaneous-move version of the game—even if the first-mover
cooperates—is highly suggestive of magical thinking, but inconsistent with stan-
dard forms of other-regarding preferences. Reciprocity, notably, predicts that
second-movers should be more likely to cooperate following cooperation than in
the simultaneous-move game.?%

(iii) In a similar vein, Morris et al. (1998) find that the temporal order of moves affects
cooperation even when the decision of the first-mover is not revealed. Consistent
with magical thinking being the belief that one may directly influence the (yet
unchosen) action of one’s opponent, they find greater cooperation when play-
ers move first compared to second. Other-regarding preferences (as well as the
evidentiary-reasoning interpretation of the beliefs in our model; see the Intro-
duction) provide no rationale for this discrepancy, as play should be invariant to
this strategically irrelevant difference in the games.

(iv) In a number of studies, experimental subjects played prisoners’ dilemma games
and were also asked to predict the behavior of their opponents. Subjects who
defected were more likely to predict that their opponents would defect.?” This
feature is implied by the interpretation of our model, but absent from models
with other-regarding preferences. While there may seem to be a sense in which it
is consistent with reciprocity—players are more likely to cooperate when they ex-
pect cooperation from others—it is clearly inconsistent with standard notions of

26In the sequential-move game almost no second-movers cooperated after observing defection by their
opponent. Perhaps more surprisingly, only about 15% of second-movers cooperated after observing coop-
eration. At the same time, and in line with other PD experiments (Dawes and Thaler 1988), 37% of subjects
cooperated in the standard, simultaneous-move PD. In the study only a small subset of the games each
subject played were prisoners’ dilemma games. There is some evidence that repeated play of the one-shot,
sequential prisoners’ dilemma can reverse their observation (Clark and Sefton 2001), possibly because eth-
ical considerations, like reciprocity, become more salient through frequent, uninterrupted repetition.

27See Dawes et al. (1977), Orbell and Dawes (1991), Engel and Zhurakhovska (2016), Rubinstein and
Salant (2014). Rubinstein and Salant (2014) suggest that players’ ex post reported beliefs will accurately
reflect the beliefs their choices were based upon in prisoners’ dilemma games (which feature a dominant
strategy), but that this may not be the case in games such as hawk-dove (where either action is a best
response to some belief).
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equilibrium, even if players care about reciprocity. Either the cooperators are too
optimistic or the defectors are too pessimistic about their opponents’ behavior.

Finally, it is clear that magical thinking introduces a perceived benefit from cooper-
ation. One could, of course, consider a reduced-form model in which each player may
have a direct utility gain from choosing ¢ over d. This gain might be interpreted as a form
of “warm glow” (as introduced by Andreoni 1989 in the context of public-good games).
As an alternative explanation for our data, such a model would have the following flaws.

First, to align with the expected-payoff calculations in our model on PD, this utility
gain would have to be independent of x and y, but increase proportionally when simul-
taneously scaling r and p. That is, even though the warm glow a player would obtain by
cooperating would have to vary across games, it would not depend on how strong were
the motives for defection that he overcame—including them being arbitrarily small. The
reduced-form model would give the analyst no intuition for this seemingly curious form
of dependence. In contrast, our model provides a psychological mechanism, that of
magical thinking, which generates it. Second, this model of warm glow would be at
odds with the evidence in (i)-(iv) above. Third, in the next section we extend our model
beyond the prisoners’ dilemma to games in which it is unclear how to interpret as warm
glow the utility gain a player would need to receive from selecting one action over the
other so as to match the predictions of our model. For example, for any battle of the
sexes game there would need to be no warm glow attached to either action choice, but
there are two games, arbitrarily nearby, such that a player would need to receive a warm
glow from selecting his preferred meeting event (instead of his opponent’s) in one game
but the reverse in the other game.

5. BEYOND PRISONERS’ DILEMMA GAMES

We now extend our game-theoretic analysis beyond PD games. Section 5.1 takes the be-
havioral model characterized by Theorem 1 and investigates its predictions for all sym-
metric 2 x 2 games.?® Section 5.2 extends the model to accommodate arbitrary finite
action sets.

5.1 Symmetric2 x 2 games

Let S := {(r, p, x, y)|r > p}, with labels as in Figure 1, denote the set of all symmetric
2 x 2 games. As discussed in the Introduction, such games give strategic meaning to
the notion that magical thinkers believe they influence others to select the same action
as they do, without having to rely on arbitrary labels of actions. Therefore without loss,
¢ (respectively, d) still corresponds to the action leading to the weakly superior (infe-
rior) symmetric outcome, but outside the prisoners’ dilemma we no longer refer to it as
cooperate (defect).

We find that our model provides a unified explanation of the experimental evidence
in several of the most often studied games: hawk-dove/chicken, the stag hunt, and the

281n Section S.3, we explore the extension of the axiomatic component to this domain.
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FIGURE 4. Depiction of the set of symmetric 2 x 2 games in which r =1 and p =0.

battle of the sexes (in addition to the prisoners’ dilemma). We also compare the predic-
tions of our model to Nash equilibrium in the standard model (hereafter, simply Nash
equilibrium).?® We consider first the generic case in which r # p, followed by the non-
generic complement.

5.1.1 If symmetric outcomes are not payoff equivalent Let S% be the (generic) set of
games {(r, p, x, y)|r > p}, of which PDY is a subset. Lemma 1 remains valid, so we nor-
malize r = 1 and p =0, and again denote this normalized subset as S (represented as
the plane in Figure 4). It remains true that for any g € Sg, all equilibria are cutoff equi-
libria (Definition 2), and that a player of type « satisfies the indifference equation (2) if
and only if

o e (1-F@
gGM“'_{(x’y)‘y_(l—a)F(a) x( F(a) >}

Let B: R_ — R be the lower envelop of (Ma)ae(o,l) on the domain x < 0. Notice that
(i) B(0) = 0, (ii) B is decreasing and concave, and (iii) lim,_, _~, B(x) = co. Figure 4 de-
picts B (and four sample M -lines) for the case of F(a) = /a.

ProprosITION 5. For any g € Sg, an equilibrium exists, all equilibria are cutoff, and the
following statements hold:

e If x > 0, then the equilibrium cutoff «* is unique, interior (i.e., a* € (0, 1)), and
characterized by (2).

e Ifx <0, then o* =0 is an equilibrium cutoff. It is unique if and only if y < B(x).

The labeled quadrants of Figure 4 serve as a useful taxonomy for our discussion
of the games in Sg. Quadrant I corresponds to PD, which we have focused on up to

29We maintain our focus on symmetric equilibria (of both our model and the standard one). In a truly
symmetric, anonymous, one-shot setting, asymmetric equilibria seem implausible as neither player would
have any way of knowing if he were player 1 or player 2.
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now. We proceed clockwise. For brevity, we focus the discussion on the interiors of each
quadrant.

Quadrant IV. The defining feature of prisoners’ dilemma games is that there are strict
gains to a player for selecting d whether his opponent is playing d or ¢ (i.e., x, y > 0). The
games of quadrant IV retain the latter, meaning there are still gains from unilaterally
deviating away from the better symmetric outcome (c, c). A particularly well know ex-
ample of such games are hawk-dove (also known as chicken) games, where y € (-1, 0).
Action ¢ corresponds to dove and d to hawk.

Proposition 5 establishes that the equilibrium characterization results for PD (Sec-
tion 2.1) extend unchanged to these games, and it is straightforward to show that Propo-
sition 3 extends verbatim as well. In addition, we find the following result. Forany g € S%
with x > 0, let 7, be the probability with which a player selects d in the unique symmet-
ric Nash equilibrium of g. The corresponding probability in our behavioral model is
F (az,).

PRrROPOSITION 6. Forany g € S?; with x > 0, mg > F(ay). In addition, if x and y are held
fixed and (r — p) — 0 (or, more generally, if;Jr;l’;l — 0), then (g — F(ag)) — 0.

The result states that players are drawn to the action that produces the superior sym-
metric outcome more often than is predicted by the symmetric Nash equilibrium. This is
consistent with experimental findings in the hawk-dove game (for example, Rubinstein
and Salant 2014). However, as the difference between the symmetric outcomes disap-
pears so too does the difference in the two models’ predictions. Intuitively, as the dif-
ference between the symmetric outcomes disappears, the magical-thinking component
has a vanishing impact on any player’s ranking between ¢ and d (even though players
with different «-types still differ in their expectations over opponent play). Section 5.1.2
covers the limit case where r = p.

Quadrant III. In these games c is both the action leading to the better symmetric
outcome and a dominant strategy (even without magical thinking). It seems natural that
all players should then choose c—as they do in the unique equilibrium of our behavioral
model by Proposition 5.

Quadrant II. Quadrant II consists of coordination games, such as the stag hunt, in
which both symmetric outcomes constitute Nash equilibria, but (c, ¢) Pareto dominates
all other outcomes. The choice of d in such games seems empirically implausible if
the loss x < 0 of playing d rather than ¢ against an opponent playing c is large, and the
gain y > 0 of playing d rather than ¢ against an opponent playing d is small. Players
should find it natural to coordinate on ¢ in such a game. At the same time, if the gain y
of playing d against d is large compared to the loss x < 0 of playing d against ¢, then it
becomes risky to rely on the opponent to play ¢, and d also becomes a plausible choice.
These intuitions are supported by experimental evidence (for example, Straub 1995).

From Proposition 5, our behavioral model is consistent with all players selecting c,
and it uniquely predicts this behavior for a subset of those games where coordinating
on c is not “too risky” in the sense just described. This set is precisely characterized
as the strict-lower-contour set of B. Hence, our behavioral model generates a unique



932 Daley and Sadowski Theoretical Economics 12 (2017)

equilibrium prediction in more games than does the standard model. More generally,
the set of games for which our model makes a unique prediction is larger (in the sense
of set inclusion) with the more magical thinking there is in the population (in the sense
of a first-order stochastically dominant shift of 7). For games in the upper-contour set of
B, where the trade-off between the overall payoffs (higher under (c, ¢)) and riskiness is
more pronounced, our model does not make a unique prediction and can accommodate
a significant proportion of players selecting d.3°

The intuition we gave for the implausibility of selecting d when |x| is large compared
to y is reminiscent of the motivation for the risk dominance criterion (Harsanyi and Sel-
ten 1988). It is easy to verify that, in the standard model, (c, ¢) is risk dominant when
|x| >y and (d, d) is risk dominant when |x| < y. Our boundary, B, is more nuanced than
the fixed linear one implied by risk dominance, as it depends on the (perceived) distri-
bution of a-types. Our model, therefore, provides flexibility, though within constraints,
for explaining behavioral data in this quadrant of games by varying F, and at the same
time connects behavior in this quadrant to behavior in other games. For example, col-
lections with higher rates of cooperation in prisoners’ dilemma games also have a larger
set of quadrant-II coordination games in which the payoff-dominant Nash equilibrium
is uniquely selected in our model.

5.1.2 If symmetric outcomes are payoff equivalent Consider now the (nongeneric) set
of games S?V :={(r, p, x,y)|r = p}. In such games our model of magical thinking is not
behaviorally distinct from the standard model.

PROPOSITION 7. Forany g € Y, an equilibrium exists.

e If (o0, P) is an equilibrium (of our model), then there exists a symmetric Nash equi-
librium characterized by gy = P.

e If mg characterizes a symmetric Nash equilibrium, then there exists o such that
(0, ) is an equilibrium (of our model).3!

In line with the limit property established in Proposition 6, when there is no pay-
off difference between the symmetric outcomes, magical thinking does not influence
behavior in one direction or the other. Hence, the cutoff property is no longer a require-
ment for equilibrium, as there is no reason that players with higher «-types are more
drawn to c.

Though not always labeled as a symmetric game, battle of the sexes games are a
subset of S?V in which x > 0 > y, x # —y. In our theory, action labels are only for the
convenience of the analyst; it is the symmetry of the game that determines what “taking

30For (x, y), y > B(x), a € (0, 1) is an equilibrium cutoff if and only if (x, y) € M,. Hence, the number of
equilibria in (x, y) in which not all types select c is the number of M,-lines that pass through (x, y).

31More specifically, (i) if m, characterizes a weak Nash equilibrium, then any o such that
fol o(d|a) dF (a) = mg constitutes an equilibrium; (ii) if 7, characterizes a strict Nash equilibrium, then in
any equilibrium, o(d|a) = mg for all « € [0, 1), but o'(d|1) can be arbitrary since « = 1 players are indifferent
between c and d when r = p.
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the same action” means. In a battle of the sexes game then, ¢ and 4 do not correspond to
“go to the ballet/boxing match,” but to “go to my own/my opponent’s preferred event”
(with the labeling depending on the ranking of x and —y).

For a magical thinker i, therefore, both ¢ and d are self-defeating: by being “selfish”
and choosing his preferred event, i believes it more likely that his opponent j will like-
wise choose j’s preferred event, but also analogously if i tries to be “accommodating”
by choosing j’s preferred event. The magical-thinking component then has no effect on
preferences over actions, and equilibrium play is just as in the standard model.

Any battle of the sexes game has a unique symmetric Nash equilibrium, and hence
our behavioral model predicts the same distribution of observed behavior. Notably, this
common prediction is substantiated by the experimental studies of battle of the sexes
games.3? The ability to explain experimental findings across the well known games sur-
veyed in this paper serves as another key distinction between our model and models
of other-regarding preferences discussed in Section 4, each of which predict patterns of
play in the battle of the sexes that differ from the prediction of the standard model.33

5.2 Accommodating arbitrary finite action sets

Allowing arbitrary finite action sets requires the following additional notation. Let 4 :=
{0,1,..., K} and let v(k, k) be the (finite) game payoff a player receives from selecting
action k£ when his opponent selects k’. Define s(k) := v(k, k), and, without loss, order
the actions such that s(-) is nondecreasing in k. To avoid technicalities, we consider the
generic case in which s(k) < s(k + 1) forall k < K.3* Let I denote the set of such games.

In the extended behavioral model, each player i € I is still privately endowed with a
type «; € [0, 1] and there is a common prior that types are drawn i.i.d. from a distribution
with CDF F € F. For each game, player i evaluates the expected payoff of action a; =k €
A as

Vitk) = ajs(h) + (1 =) Y Pi(K')v(k, k'), 3)
k'eA

where P;(k’) is the probability i assigns to a; = k/, conditional on a; and a; being de-
termined independently. His strategy, o7, is again characterized by the probability with

32Camerer (2003, Chapter 7.2) summarizes the evidence and concludes, “Even if the subjects are not
deliberately randomizing, the data are consistent with the idea that, as a population, they are mixing in the
[symmetric Nash] equilibrium proportions.” Note that one could have imagined an alternative concept of
magical thinking in the battle of the sexes: by choosing to go to the ballet, for example, a player believes it
is more likely that his opponent will choose to go to the ballet as well. In addition to relying on strategically
irrelevant action labels, this alternative model would predict that players select their preferred event more
frequently than is found in the experimental evidence.

33This result is not difficult to demonstrate. We omit the analysis for the sake of brevity.

341f the ranking is not strict, our characterization (Proposition 8) holds only up to payoff equivalence: an
equilibrium exists and for any equilibrium there exists a payoff-equivalent increasing equilibrium. Also, if
s(1) = s(K), then Proposition 7 extends and the predictions of our model are not behaviorally distinct from
symmetric Nash equilibrium in the standard model.
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which he selects each k € A if his type is «; (denoted oi(k|e;)). The equilibrium notion
is the immediate extension of Definition 1.3°

When evaluating a potential action k, it is clear from (3) that the importance given to
s(k), the payoff generated by the symmetric profile (k, k), is increasing in «;. This leads
to the following increasing-in-type property of equilibrium.

DEFINITION 6. A strategy o is increasing if there exists aj=0<aj<---< a*KJrl =1such
that o(k|a) =1forall @ € (o, aZ_H).

ProposiTION 8. Forany F € F and g €I, an equilibrium (o, P) exists, and in all equi-
libria o is increasing.

5.2.1 Pure dilemma games Given that the bulk of our analysis has focused on PD
games, for brevity, we focus our remaining analysis on their natural extension, which
we refer to as pure dilemma games.

DEerINITION 7. A game g € I' is a pure dilemma if v(k, k') > v(k + 1, k") for all k, k'.

In terms of game payoffs then, there is always a strict individual incentive to play
a lower (indexed) action, but higher actions can be viewed as “more cooperative.” In
the standard model there is a unique Nash equilibrium: all players select a; = 0. By
comparison, in any equilibrium of our model, a positive measure of types select actions
other than 0. Hence, just as in PD games, magical thinking generates a positive degree
of cooperation, while the standard model predicts none.

Asin Section 3, we can investigate whether there are connections between notions of
more magical thinking and more cooperative behavior. Again, it is immediate from the
increasing property of equilibrium (Proposition 8) that in any pure dilemma, a player’s
cooperation level is increasing in type. What about increases in population-wide mag-
ical thinking, as measured by a first-order shift in F? The following proposition iden-
tifies a sufficient condition on the underlying game under which this change leads to
uniformly greater cooperation.

DerinITION 8. For pure dilemma game g € I', an increasing strategy o is more coopera-
tive than increasing strategy ¢ if o} < aj forall k.

ProPoSITION 9. Let g € I' be a supermodular pure dilemma game.3®

(i) For any F € F, there exists a most and a least cooperative equilibrium, denoted
(o-}y , Pﬁ’[ ) and (01%, Pﬁ), respectively.

35With P = (P(k))keq and requirement (iii) of the definition generalizing to P;(k) = P(k) =
fol o(kla)dF(a)foralli e I and k € A. This specification represents the literal extension of magical thinking
as “players believe they influence others to select the same action as they do,” as discussed in the Introduc-
tion. With more than two actions, one could envision more general notions of magical thinking that still
capture its essence: players believe they influence the opponent to select an action more similar to their
own action than the opponent otherwise would have. For simplicity, we consider only the literal extension.
38Thatis, forall k' > k and I’ > I, v(k’,I') — v(k, ") > v(k', 1) — v(k, ).
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(i) If F € F first-order-stochastically dominates F € F, then cr% is more cooperative

than o-%’[ and 01% is more cooperative than 01%.

First consider PD games. A PD game is supermodular if and only if y > x. Notice
that such a PD game satisfies the very common assumption that (c, ¢) maximizes the
sum of game payoffs: 2r > (r + x) + (p — y) or, equivalently, y > x — (r — p). This feature
generalizes: if g € I is supermodular, then 2s(k) > v(l, ") + v(//, ) for all </’ < k with
I <k.

For a supermodular PD game, from Propositions 2 and 3, we know that if F, F satisfy
Condition S, then each has a unique equilibrium, (of, Pr) and (0%, Pg), and F f.o.s.d.
F implies o is more cooperative than o. Proposition 9 generalizes this comparative
static along two dimensions: it does not assume Condition S—so there may be multi-
ple equilibria even if g € PD’—and it applies to pure dilemma games beyond the PD.
The intuition remains similar. Fix a game and imagine first that the equilibrium was
unchanged following a shift from FtoF.Thena given a-type would face a more coop-
erative (perceived) distribution of play. But just as Section 3 demonstrated for PD games,
depending on payoff parameters, this change could make the «-type more or less coop-
erative (i.e., seeking to take advantage of the population’s greater degree of cooperation
in the latter case). Supermodularity of g implies the latter case never obtains.3’

We conclude by identifying a class of games for which all of the analysis from pre-
ceding sections (both game-theoretic and axiomatic) applies.

DEeFINITION 9. A pure dilemma game g € I' has increasing returns to joint cooperation
if, for all k, K/,
stk+1) —s(k) - stk)y —s(k—1)
v(k, k') —v(k +1,k') ~v(k —1,k') —v(k, k')

Notice that this condition is neither weaker nor stronger than supermodularity. It
requires that the benefit to increased joint cooperation increase at a rate greater than
the increase in the individual benefit from lowering one’s own action, independent of the
action selected by the opponent. Consider, for example, a public-good game where both
players can contribute any amount between 0 and K dollars to the public good, and the
function ® (with % < @ < 1) measures the individual benefit derived from the amount of
public good provided given the total contribution. Thatis, v(k, k') = K — k + ®(k + k').
If @ is (weakly) convex, then the returns to joint cooperation are (weakly) increasing.

ProposiTION 10. Ifa pure dilemma game g € I has increasing returns to joint cooper-
ation, then in any equilibrium, o} = oy € (0, 1) and is equal to an equilibrium cutoff of
the PD game generated by deleting actions {1, ..., K —1}.

37Notice that the notion of “more cooperative” in Definition 8 is a strong one: each a-type plays a
(weakly) higher action. Alternatively, for F, FeFand corresponding equilibria (o, P), (7, 13), one could
view the first population’s behavior as more cooperative if its F-measured distribution of play, P, f.0.s.d. the
second population’s F-measured distribution of play, P, even if fixed a-types play less cooperative actions
under o than under o. Under Condition S, Proposition 3 shows that a first-order shift in F implies more
cooperation in this weaker sense for all PD games. It is not difficult to construct further examples outside
PD games.
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Under increasing returns to cooperation, (almost) all types play either 0 or K and
intermediate actions play no (meaningful) role. Therefore, our equilibrium characteri-
zation and tight condition for uniqueness, our comparative statics, and even our axiom-
atization all apply to this class of games with the obvious additional axiom that interme-
diate actions are never chosen.

An example of an experimental study of linear two-player public-good games is
Capraro et al. (2014), who investigate how the distribution of play responds to changes
in the social benefit from cooperation, captured by the scalar ¢, where ®(k + k) =
¢ (k + k’). They find that, independent of the value of ¢, about 20% of subjects con-
tribute half their endowment (a; = %), and argue that these subjects are likely following
a simple heuristic. The predictions of our model are well aligned with behavior in the
remaining 80% of subjects. The vast majority of these subjects (75% of the total popula-
tion) choose an extreme action a; € {0, K} (in line with Proposition 10), and the propor-
tion of them choosing K increases with ¢ (as predicted by Axiom 3 (Monotonicity), in
the aggregate).3®

6. DiscussioN
Methodology

Our approach connects behavioral axioms on the observed play of a collection of players
to a representation that suggests a procedural interpretation of individual behavior and
an equilibrium concept. This is analogous to the standard axiomatic analysis of indi-
vidual choice (see footnote 10). Throughout the paper we have stressed this analogy, as
well as the differences that arise when leveraging our richer domain of group behavior.

At the outset, we discussed several benefits of this methodology. Here we compare
it to related, alternative approaches. In (what we refer to as) the standard approach
for connecting behavioral axioms to strategic, multi-agent environments, first, axioms
characterize a specific utility representation of individual preferences regarding (lot-
teries over) physical allocations; then, second, physical games are described in terms
of those utilities; finally, strategic analysis is performed according to an exogenously
given solution concept (usually an equilibrium notion). The prototypical example of
the standard approach assumes that players care only about their own physical payoffs
and have risk preferences as axiomatized by Von Neumann and Morgenstern (1944).
As another example, Rohde (2010) provides axioms for the inequity-averse utility func-
tion employed in the game-theoretic analysis of Fehr and Schmidt (1999). (See also
Dillenberger and Sadowski 2012, Saito 2013.)

Relative to the benefits of our axiomatic approach that were listed as (B1)-(B3) in the
Introduction, the standard approach has the following differences. In contrast to (B1),
it relies on the assumption that behavior observed in the individual context is tightly
connected to behavior in the strategic context. Clearly, it cannot achieve (B3), as it is
not possible to derive that behavior corresponds to any particular equilibrium notion,

381n the experiment, v(k, k') = K — k + wk’, with 2 < w < 10. So each game is a pure dilemma and
w

strategically equivalent to our description of a linear public-good game with ¢ = 75.
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or that prior beliefs are common, by axiomatizing the objective function of each player
separately.

Notably, once preferences over physical allocations are accounted for, if a given
physical game remains a PD when represented in terms of these utilities, then the stan-
dard approach cannot explain cooperative behavior in this game—as each player should
like higher utility payoffs for himself and be indifferent toward the utility payoffs of
others. That is, explanations of cooperative behavior via altruism or inequity-aversion
merely establish that games that look like PDs in terms of physical game payoffs may not
actually be PDs in terms of utility payoffs. In contrast, our theory is robust to this alter-
native interpretation of game payoffs as utilities. Insofar as cooperation in such games
is plausible, the standard approach’s inability to explain it could be due to a discrep-
ancy between preferences in the individual and strategic contexts (related to (B1)), or to
inappropriate assumptions about beliefs or the equilibrium notion (related to (B3)).

Segal and Sobel (2007), Segal and Sobel (2008) go beyond the standard approach by
fixing a single game and using as an additional primitive individual preferences over
own (mixed) strategies, which may depend on what the (mixed) strategy profile is “sup-
posed to be,” which is referred to as the “context.” They axiomatize a representation
that can, for example, accommodate reciprocal preferences (Rabin 1993), and then em-
ploy the natural extension of Nash equilibrium as the solution concept. Clearly, their
model differs from (B3) in the same manner as does the standard approach. In addition,
the elicitation of the primitive requires that, for a single game, the analyst uncover the
player’s preferences over his own strategies given each possible mixed-strategy profile.
In contrast to (B2), this is not data that is commonly collected, and faces the potential
difficultly that the analyst must meaningfully communicate to each subject (i.e., have
them truly believe) that the opponents are actually using that profile. At the very least
this is more involved than simply asking subjects how they would like to play.

Our approach also differs from well known axiomatic treatments in bargaining and
cooperative game theory, most prominently in Nash bargaining, where axioms directly
characterize the outcome rather than a model of play in the strategic setting coupled
with a solution concept.3? Given the difficulty of accurately capturing the nuances
of, say, bilateral negotiations, that such analysis does not rely on explicit modeling of
the strategic situation is often seen as a strength. However, in the simplified setting of
simultaneous-move, one-shot games, characterizing play seems a more natural objec-
tive. In addition, our representation suggests an intuitive explanation of the individual

39See Thomson (2001) for a thorough review of this approach. In addition, while axiomatic approaches
in cooperative game theory characterize solutions without a strategic model, axiomatic approaches in non-
cooperative game theory typically take as given the structure of the strategic model—by assuming that all
players and the analyst view the game in the same way and that players are “rational” (i.e., they maximize
excepted utility with respect to some (nonmagical) belief about opponents’ play)—with the aim of charac-
terizing particular solution concepts (e.g., rationalizability, Nash equilibrium, correlated equilibrium, etc.).
Again, see Thomson (2001, Section 12.3), and Blonski et al. (2011) for an application to equilibrium se-
lection in repeated games. Outside the axiomatic literature, Bergemann et al. (2017) consider behavior in
games to identify interdependent preferences over outcomes. Because the aim is identification of prefer-
ences, they take as given both the structure of the model and the solution concept.
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Approx. Periods Approx. Stable
(x,y) Until Stabilization % of Cooperation Study
(1.00, 3.00) Study ended after 10 <7% Bo et al. (2010)
(2.33,2.33) 20 out of 200 10% Bereby-Meyer and Roth (2006)
(1.67,1.33) 0 out of 200 19% Andreoni and Miller (1993)
(0.44,0.78) 10 out of 20 22% Cooper et al. (1996)
(0.33,0.11) 20 out of 75 37% Aoyagi and Fréchette (2009)

TABLE 1. Studies of the one-shot prisoners’ dilemma with random, anonymous rematching.

decision-making process, which enables us to provide comparative statics in terms of
the model’s parameters.

For any fixed physical game, our behavioral model resembles a Bayesian game, in
that each player is endowed with a type that affects how he evaluates the expected pay-
off of a potential strategy. The difference, of course, is that in standard Bayesian games, a
player’s type maps outcomes into payoffs, whereas in our model, type affects the player’s
expectations about what outcomes will obtain depending on his action choice. Follow-
ing Savage (1954), the derivation of subjective beliefs is a central concern in the context
of individual choice. Our model provides an example where beliefs (here, about both
the opponent’s type and action choice) are derived from behavior in a strategic setting.

Repetition

There are various experimental studies that report on the evolution of cooperation when
the same one-shot prisoners’ dilemma is played repeatedly, with opponents randomly
and anonymously rematched after every round. Many of these studies find an initial
decline in the incidence of cooperation before it stabilizes at a nonzero level. For a sam-
ple of studies Table 1 reports each of their featured one-shot games (x, y) € PD (modulo
positive affine transformations), the approximate number of periods after which stabi-
lization was reached, and the approximate average levels of cooperation thereafter.*°
Note that the stable levels of cooperation summarized in the table give further support
to Monotonicity (Axiom 3) in the aggregate.

As with most theories of behavior in one-shot settings, our theory does not formally
provide any explanation for the dynamics before steady state is reached. The typical
explanation for a pattern of initially varying behavior followed by stability is that sub-
jects are initially learning about the game (e.g., how it works, how others play, etc.); see
Camerer and Fehr (2003) for a discussion. The interesting feature in this particular in-
stance is that initial play is systematically more cooperative than steady state. While
a formal model along these lines is beyond the scope of this paper, one possible ex-
planation for this pattern is that subjects (act as if they) revise their estimates of their

4ONot all studies provided these numbers explicitly. In these cases, they are estimates based on the infor-
mation the studies do provide.
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own a-types based on play. Because they are not in fact magical, the updating will be
systematically biased downward, leading subjects to cooperate less.*!

Magical-thinking-like notions in other strategic models

In models of oligopolistic competition, the notion of conjectural variation (Bowley 1924,
Pigou 1924) bears some resemblance to magical thinking. However, in this literature
a firm’s belief about how its rival will respond to its action is typically interpreted as
capturing a sequential response. In Roemer’s (2010, 2013) Kantian equilibrium, each
player prefers the equilibrium to any strategy profile that features identical deviations
by all players. Related features are found in Feddersen and Sandroni (2006), who in-
troduce rule-utilitarian players into a model of voting (see also Coate and Conlin 2004,
Ali and Lin 2013). As suggested by their names, the modeling of both Kantian equilib-
rium and rule-utilitarian players are motivated by ethical concepts, in contrast to our
psychological interpretation of magical thinking. While these different motivations may
have similar behavioral consequences in some settings, our motivation more naturally
allows for heterogeneity among players that is absent from these models.*? In addi-
tion, the interpretation of magical thinking is more in line with the evidence discussed
in Section 4.4 Of course, as we have stressed throughout, this paper is also—and most
importantly—distinguished by providing a tight axiomatic characterization of our be-
havioral model.

We conclude by noting that magical thinking is likely not an appropriate description
of behavior in all games for which the standard game-theoretic predictions are unsat-
isfying, be they inaccurate and/or weak due to multiplicity (impeding applied/policy
research, argues Pakes 2008). An ideal axiomatization would alleviate both problems
by avoiding false predictions and ruling out multiplicity where it is descriptively inap-
propriate. Our model alleviates the first concern in prisoners’ dilemma games, and im-
proves on the second in coordination games by eliminating equilibrium multiplicity in
games where coordination on the better symmetric outcome is intuitive.** While our
representation features an equilibrium concept, this need not be the case in other con-
texts. As in theories of individual choice, the goal should be to connect testable and
plausible behavioral axioms to an intuitive, tractable, and identified representation that
may, or may not, have the strategic flavor of equilibrium.

41This could perhaps be because the «; in our behavioral model (of the single-iteration game) represents
only the expected influence i believes he possesses, but his beliefs allow that his influence may vary across
subject pools or other environmental features. That play stabilizes at nonzero levels of cooperation suggests
that the lower bound on «; is believed to be positive by some i.

42Specifically, because in these models all Kantians or rule utilitarians evaluate strategies in the same
way, any heterogeneity in nonstandard behavior is driven completely by asymmetry in the physical aspects
of the game (e.g., variations in the cost of voting). In contrast, even in symmetric games, our model captures
heterogeneity in behavior (e.g., in the sets of PD games that different players choose to cooperate in).

43Additional models in which players’ beliefs about opponent play may be biased include Orbell and
Dawes (1991), Bernheim and Thomadsen (2005), Masel (2007), Capraro and Halpern (2015), al Nowaihi
and Dhami (2015).

441n addition, our behavioral model introduces the possibility of equilibrium multiplicity even in the PD,
depending on F. It is then the axioms that rule out models with multiplicity, again showing that the second
concern can also be addressed axiomatically.
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APPENDIX: PROOFS

PrOOF OF LEMMA 1. Fixany (7, p, x, y) € PD’, and suppose that (o, P) is an equilibrium
according to Definition 1. Then, for any player i,

Vi(e) = Vi(d) = a;[r — p+ (1= P)x + Py] = [(1 — P)x + Py, 4)

and player i strictly prefers c, strictly prefers d, or is indifferent if (4) is positive, negative,
or zero, respectively. Hence, it is sufficient to show that the sign of (4) is unchanged for
all o; when the payoffs are transformed to «(r + ¢, p + &, x, y), where k > 0. Then

Vi(e) = Vi(d) = aj[kr + k¢ — kp — k€ + (1 — P)kx + Pky| — [(1 — P)kx + Pky]

(5)
= k(ei[r — p+ (1 —P)x+ Py]—[(1 - P)x + Py]).

Because « > 0, the signs of (4) and (5) are identical. O

Proor oF ProprosiTioN 1. Claim (i). Fix any (x, y) € PD, and suppose that (o, P) is an
equilibrium according to Definition 1. Then

Vi(c) = Vi(d) = aij[1+ (1 — P)x + Py] — [(1 — P)x + Py]. (6)

Player i strictly prefers c, strictly prefers d, or is indifferent if (6) is positive, negative, or
zero, respectively. For any P € [0, 1], (i) if ¢; = 1, then (6) is positive, and (ii) (6) is linear in
«a;. It follows that the equilibrium must be a cutoff equilibrium and that o* < 1. Suppose
now that &* = 0. Then, by Definition 1, P = 0. But then Vj(c|a; =0) — Vj(d|a; =0) = —x <
0, which contradicts a* = 0, establishing the result.

Claims (ii) and (iii). That solutions to (2) and equilibrium cutoffs are identical fol-
lows immediately from the properties of (6) discussed in the proof of Claim (i). It is
therefore sufficient to establish existence of a solution to (2). If x = y, (2) has a unique
solution: o* = H—Lx = lJyF—y If x # y, any solution to (2) is (implicitly) characterized by
af —(1—a®)x

F(a*)=T(a*|x,y) := m.

()

If x >y, thenlim, ¢ T'(a|x,y) = xi_y > 1 and lim,_,1 T(a|x, y) = —oc. Further, T is con-
tinuous and strictly decreasing in «. Hence, it must intersect F, a continuous CDF on

[0, 1], exactly once. If x < y, then lim,_¢ T (a|x, y) = XL_y < 0and lim,_1 T(alx, y) = co.
Further, T is continuous and strictly increasing in «. Hence, it must intersect F, a con-
tinuous CDF on [0, 1], at least once. O

ProoF OF ProposITION 2. From Proposition 1, the number of equilibrium cutoffs is
the number of solutions to (2), and existence is established. For x > y, the arguments
given in the proof of Proposition 1 demonstrate uniqueness of the solution for any F € F.
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Now fix arbitrary x < y and suppose F’'(a) < % for all « € (0,1). Consider a solution
a* e (0,1):
F(o* T(a*|x, * _
Fla) <) _Tldlvy) adtn-x (8)
o — (a*) ot — (a*) a*(l - a*) (y—x)

Further,

1
(1—a*)’(y—x)
It is a matter of simple algebra to see that the rightmost term in (8) is strictly less than
(9) for any x, y, a* such that 0 < x < y and o* € (0, 1). Hence, at any solution to (2), T
intersects F from below. Because both functions are continuous they can intersect at
most once.

To see that uniqueness fails if the condition is not satisfied, suppose there exists
ag € (0,1) such that F'(«g) > % For any (x, y) € PD such that y > x, T is contin-
0%

T'(a*|x,y) = 9)

fy < 0, and lim,_,1 T'(a|x, y) = co. Hence, there must exist

at least one solution in which 7 intersects F from below. Therefore, if for the same
game there exists a solution in which T intersects F from above, then there are mul-
tiple solutions. Let Y (x|a, F(a)) be the function such that « solves (2) given F(«), x, and
y=Y(x|a, F(a)); thatis,

uous, lim,_.o T'(alx,y) = +

a—(1- a)(l —F(a))x

Y (xle, F(@)) = (1—a)F(a)

Notice that given any (a, F(a)) € (0, 1)2, forall x < at=—F@)
ing for such x, (x, Y(x|a, F(«))) € PD. Finally, it is straightforward that

Y (x|a, F(a)) > 0, mean-

. , F
lim (7" (alx, Y (x|ag, F(ap)))la=ay) = (ao)Z'
x—0 o — ao

By supposition, F'(ap) > % Therefore, because 7' is continuous in both x and y,
0%

there exists x > 0 small enough such that T intersects F from above at « for the game
(x, Y (x|, F(ap))). O

ProoF oF THEOREM 1. Representation — Axioms. Consider a collection / with prim-
itive (D?, C?),-E ; that satisfies the representation. Because each game has a unique
equilibrium cutoff, Lemma 1 immediately implies Axiom 1 is satisfied. To verify that
the primitive satisfies the remaining axioms it is sufficient to focus only on PD and
(Di, C)ier-

Propositions 1 and 2 immediately imply the following. First, if «; =0, then D; = PD,
and if @; = 1, then C; = PD. Second, if o; € (0, 1), then M; = {(x, y) € PD|aj;,y = a;}. Third,
if ; = aj, then (D;, C;) = (Dj, Cj)

Now fix arbitrary «; € (0, 1) and solve (2) to get that

; 1—F(a;
M;={(x,y) ePDla} , = a;} = {(x,y) ePD’y= a _ao_l)F(a.) _x< F(a(.(; )>}
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That is, M; forms a line in PD. Define int; = (I_QO‘W and slp; = 1;(FOE“)’ ). Tt follows that

if 0 < aj < @; <1, then int; > int; and slp; < slpj. The latter is obvious since «; > aj =
F(a;) > F(a;) because F € F. To see the former,

J— —_— 2 4
i( * ) _f@-fe-ad)F@ o, (0,1) <« Conditions.
da\ (1 - a)F(a) ((1 - )F (@)’

For arbitrary player «; € (0, 1), let MU; and ML; be the strict-upper- and strict-lower-
contour sets of M; (within PD), respectively. Now, consider (x, y) € MU;. From Proposi-
tion 2, there exists unique a} » and it is distinct from «; by (x, y) ¢ M;. From the argu-
ment above, whenever «; < «; then ML; € ML;. Therefore, a; y > Qi By the cutoff form
of the equilibrium, (x, y) € D;. Therefore, D; = MU;. An analogous argument establishes
C; = ML;.

Having completed the description of the data, (Dj, C;);cs, that the representation
generates, we are ready to verify the axioms. That extreme players, «; = 0, 1, satisfy
Axioms 2-4 is clear, so consider any player i such that «; € (0,1). Axiom 2 is satisfied
since the sets C; = {(x, y) € PD|y < int; — x - slp;} and D; = {(x, y) € PD|y > int; — x - slp;}
are open in PD. For Axiom 3, if (x,y) € D;, then for any (x',y’) > (x,y) such that
(x',y") # (x, y) it follows that (x’, y') € MU; = D;. To verify Axiom 4, suppose both (x, y)
and (x’, y') are elements of D;. Then

y>int;—x-slp; = vyy>vy(nt;—x-slp;),
y >int;—x"-slp, = (1—y)y' >1-y(int;—x"-slp,)
= w+ 1 —y)y >y(nt —x-slp,) + (1 - y)(int; - x"- slp;)
= yw+ 1=y >int;— (yx+ (1 - y)x)slp;.

Hence, (yx + (1 — y)x’,yy + (1 — y)y') € D;. A symmetric argument holds if {(x, y),
(', y)} C Ci.

Finally, Axiom 5. Suppose the hypotheses of the axiom are satisfied for two distinct
players i and j. Then it must be that 0 < a; < ;. If @j =1, then C; = PD and the axiom is
trivial. If @j < 1, then 0 < o; < «j implies slp i< slp; (above). Further, by hypotheses (ii)
and (iii), slp; < g. Finally, slp; < g and (x',y') € C; imply (x' + ¢,y — 8) € Cj, completing
the proof.

Axioms = Representation. The majority of the proof concerns behavior in the
set of games PD (that is (D;, C;)ics). In a series of lemmas we establish that Axioms 2-
5 imply the representation on this smaller domain. Lemmas A.1 and A.2 demonstrate
that if (D;, C;) satisfies Axioms 24, then there is a unique value for «; and a unique
scalar F; such that any behavioral model [F, («;, a_;)] with F € F and F(«;) = F; can
explain the behavior of player i. Lemmas A.3-A.5 then show that there exists F € Fg that
simultaneously satisfies the required values for all i € I. Therefore, by Proposition 2, for
all (x, y) € PD, under this F there is a unique equilibrium cutoff. This ensures that in
each game there is an equilibrium consistent with the behavior of all players; hence, the
behavioral model using this assignment of F and the mandated «;-values can explain
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(Dj, Ci)ier (Lemma A.6). It is then an immediate corollary that the addition of Axiom 1
implies the representation on the full domain, PD? (Lemma A.7). This completes the
proof. O

Fact A.1. Fix any player i. If (D;, C;) satisfies Axiom 2, and C; + @ and D; # @, then for
any (x,y) € Cj, (x',y") € D;, and continuous path p : [0, 1] — PD such that p(0) = (x, y)
and p(1) = (¥, y'), thereexists t € (0, 1) such that p(t) € M;.

Proor. Let i =sup{¢t|p(t') € C; V¢’ € [0, t]}. Because (x, y) is an arbitrary element of C;,
it is sufficient to show that p(7) € M;. Suppose that p(7) € C;. Then, by definition of 7, for
any ¢ > 0 there exists ¢ € (7, 7 + &) such that p(¢) ¢ C;. Because p is continuous, this con-
tradicts C; being open (and, hence, Axiom 2). Now, suppose that p(?) € D;. By definition
of 7, for all ¢ > 0 there exists ¢ € (f — &, f) such that p(¢) € C;, and therefore p(¢) ¢ D;.
Because p is continuous, this contradicts D; being open (and, hence, Axiom 2). Hence,
p(?) [S M,‘. [l

LeMmmA A.1. Fixany playeri such that (D;, C;) satisfies Axioms 2—4. If D; # @ and C; # &,
then there is a unique pair (int;, slp;) € (0, 00)? such that D; = {(x,y) € PD|y > int; —
slp; - x} and C; = {(x,y) € PD|y < int; — slp; - x}. If D; = @, then C; =PD, and if C; = o,
then D; = PD.

Proor. Consider the three possible cases.

Case 1: D; # @ and C; # @. Axiom 2 implies that not only is M; nonempty, but is
nonsingleton (see Fact A.1). Therefore, let {(x1, y1) # (x2, y2)} C M;, with x; < x,. By
Axiom 3, x| < x and y; > y,. Again employing Axioms 2 and 3, we see that M; N {(x, y) €
PD|x € [x1, x2]} must consist of a strictly decreasing function y, where y(x;) = y; and
Y(x2) = y». For any x € [xq1, xp], if y > y(x), then (x,y) € D;, and if y € (0, y(x)), then
(x,y) € C;. Hence, Axiom 4 implies that y is linear. Let slp, := % € (0, 00) and int; :=
(y1 +slp; - x1) € (0, 00).

Since the above applies to any pair of games in M;, all games in M; must fall on the
same line: M; C {(x, y) € PD|y = int; — slp; - x}. But, if the inclusion were strict, Axiom 2
would be violated (again, see Fact A.1). Hence, M; = {(x, y) € PD|y = int; — slp; - x}. The
claimed structures of D; and C; follow from Axiom 3.

Case 2: D; = @. It must be that M; = @. Suppose to the contrary that some (x, y) €
M;. Then, by Axiom 3, for x’ > x, (x’, y) € D;: a contradiction. Hence, C; = PD.

Case 3: C; = @. It must be that M; = @. Suppose to the contrary that some (x, y) € M;.
Consider then a game (x, y) where x’ € (0, x). By C; = @, (¥, y) € D;. Axiom 3 implies
that (x, y) € D;: a contradiction. Hence, D; = PD. O

LemMA A.2. Fix any player i. If (D;, C;) satisfies Axioms 2—4, then there exists a unique
pair (a;, F;) € [0, 11 such that (D;, C;) can be explained by any behavioral model
[F, (aj, «_;)] such that F € F and F(«;) = F;. Further, («;, F;) is given by

int; 1 )
D;,Ci#o
<1+int,~+slpi’ 1+slpl-) ¥Di Ci# 2,

(ai, Fi) = (1,1) ifD; =, (10)
(07 0) lfC,:@
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Proor. Firstint;, slp; > 0 (Lemma A.1) implies that («;, F;) from (10) is always in [0, 112,
Consider, again, the three possible cases.

Case 1: D; #+ @ and C; # &. Recall from Proposition 1, that in the behavioral model,
forany (x, y) € PD, each equilibrium is of cutoff form, with o7 |, being any solution to (2).
So, it is sufficient to show that for arbitrary (x, y) € PD and F € F such that F(«;) = Fj,
() (x, y) € M; if and only if «; solves (2), (ii) (x, y) € C; implies that there exists « € (0, «;)
such that « solves (2), and (iii) (x, y) € D; implies that there exists « € («;, 1) such that «
solves (2). We take them in turn.

(i) By LemmaA.l, (x,y) € M; <= y=int; —slp; - x > 0. Solving (2) for y gives y =

@ 1-F(a;) ; ; it — @ _ 1-F(a)
Fa—aFan — Fan X The pair of equations int; = @)@ andslp; = Fa)

This establishes the

has a unique solution: «; = ——_— and F(a;)

_ _1
1+int;+slp; ~ 14slp;”

claim.

(ii) Suppose that (x,y) € C;. By Lemma A.1, this implies that y <int; —slp, - x.
Let d(a) := V(cla = a*) — V({dla = a*) = o[l + (1 — F(o))x + F(a)y] —
[(1 - F(a))x+ F(a)y]. Using the assignments of («;, F(«;) = F;) from (10), it
follows that d(«;) > 0. Notice that d(0) = x(F(0) — 1) — yF(0) = —x < 0. Be-
cause F € F, d must be continuous on [0, «;]. Hence, there exists « € (0, «;) that
achieves d(«) = 0 and is therefore an equilibrium cutoff in the game (x, y) € C;
(by Proposition 1).

(iii) Suppose that (x, y) € D;. By Lemma A.1, this implies that y > int; — slp; - x. Using
the assignments of («;, F(«;) = F;) from (10), it follows that d(«;) < 0. Notice that
d(1) = 1. Because F € F, d must be continuous on [«;, 1]. Hence, there exists
a € (aj, 1) that achieves d(«;) = 0 and is therefore an equilibrium cutoff in the
game (x, y) € D; (by Proposition 1).

The following text is relevant for the next two cases. In the behavioral model, for any
F e F, Proposition 1 establishes that a player with type «; = 1 strictly prefers c in all
equilibria of all games, and that a player with type «; = 0 strictly prefers d in all equilibria
of all games. Further, for any F € 7 and any « € (0, 1), the game (x, y) = (1%, 123) isin
PD and has a unique equilibrium cutoff o} |, = a.

Case 2: D; = @. From above, in the behavioral model, for any F € F, a player i strictly
prefers c in every (x, y) € PD if and only if his type is o; = 1. Further, for all F € F,
F(1)=1.

Case 3: C; = @: From above, in the behavioral model, for any F € F, a player i strictly
prefers d in every (x, y) € PD if and only if his type is «; = 0. Further, for all F € F,
F(0)=0. O

LeEMMA A.3. Fix any two players i and j such that (D;, C;) and (D, C;) satisfy Axioms 2-
5and D, C;, Dj, and C; are all nonempty. Using (int;, slp;), (int;, slp;) from Lemma A.1,
ifint; < int;, then slp; > slp;.

Proor. By Lemma A.1, M; = {(x,y) € PD|y =int; — slp, - x} and M; = {(x,y) e PD|y =

int; — slpj - x}. Fix any (x,y) € M;, and for ¢ € (0, fp_), let 6 = ¢ - slp,;. It follows
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that (x +e,y—8) e M;. Next, int; < int; implies that for sufficiently small choices
of x and ¢ there exists (x’,y’) such that (x',y) € M; and {(x,y),(x + &,y — §)} <
{(X,y), (x' + &,y —6)}. ByAxiom 5, (x' + ¢,y — 6) € C; = {(x,y) € PD|y < int; —slpj-~x}.
Thus, slp; < 2 =slp;. O

DerINITION A.1. Fix any player i such that (D;, C;) satisfies Axioms 2-4, D; # &, and
C; # @. Assign («;, F;) as done by (10) in Lemma A.2. Define the function H; : [0, 1] —

R U oo as H(a) = F; 424 for a € [0, 1) and H;(1) = oc.

Fact A.2. For all i such that H; is defined, (i) H;(0) =0, (ii) H; is strictly increasing,
differentiable, and strictly convex on [0, 1), (iii) H;(«;) = F;, (iv) lim,_,1 H;(a) = oo, and
) Hj(a;) = 1.

a—a

The proofis by direct calculations.
LEMMA A.4. Fix any two players i and j such (D;, C;) and (Dj, C)) satisfy Axioms 2-5.

Assign («;, F;) and («j, F}) as done by (10) in Lemma A.2. The following statements are
valid:

(i) Ifaj <a; <1, then Fj S [Hi(aj),Fi)-
i) If0 < a; < aj, then Fj e (F;, H,‘(ozj)].
(iii) Ifoz,' =aj, then Fj =F;.
Proor. First, if «; € {0, 1}, then (i) and (ii) have no implications, and (iii) is immediate

from Lemma A.2. Now fix a; € (0, 1). If @ € {0, 1}, then the claims follow from Fact A.2.
If aj € (0,1), then from Lemma A.3,

(int, slp;) € {(int, slp)[int < int; and slp > slp,} U {(int, slp)|int > int; and slp < slp;}
U {(int, slp)|int = int; and slp = slp,}.

Inverting the bijection from (10) in Lemma A.2,

; 1-¢ 1-F
(aj,Fj)e{(a,qS)‘(l “ “ nd ¢ }

< a >
—a)p ~ (1—ap)F; ¢ F;
o (07 1—¢ 1-F;
T }

o _ o 1—¢_1—F,-
P }

U {(a,d)))(l

v {(a, ol
Rearranging and using Definition A.1 gives

(aj, F) € {(a, ¢)|Hi(a) < ¢ and ¢ < F;} U {(a, $)|Hi(a) > ¢ and ¢ > F;}
U{(a, §)|Hi(a) = ¢ and ¢ = F;},
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which, by (ii) and (iii) of Fact A.2, is equivalent to
(aj, Fj) € {(a, ¢p)|a €0, a;) and ¢ € [H(a), F;) }
U{(a, d)la € (a;, 1] and ¢ € (F;, Hi(a)]}
U {(a, ¢)|a=a;and ¢ = F,'}.

This establishes the result. U
CoROLLARY A.1. Fix any two players i and j such (D;, C;) and (Dj, C)) satisfy Axioms
2-5. Assigning (a;, Fy), (aj, Fj) as done by (10), if 0 < a; < aj < 1, then either H; = H; or
Hl(a) > H]’.(a)foralla e[0,1).

Proor. We have

Fi~aj(1 — ;) —Fj-a,-(l —aj)

Hi(a) - Hj(a) = ool

(11)
By Lemma A.4, either (11) is zero for all a € [0, 1), in which case H; = H; since H;(0) =
H;(0) from Fact A.2, or (11) is positive for all a € [0, 1). O

LeMmmA A.5. Fix a primitive (D;, C;)ic; that satisfies Axioms 2-5. Assign («;, Fi)icy as
done by (10) in Lemma A.2. There exists F € Fg with F(«;) = F; forallie I.

Proor. Order and (re-)index the distinct pairs featuring «; € (0, 1) such that (0,0) «
(a1, F1) € (ag, Fp) € -+ < (am, Fm) < (1, 1), where m < n and the ordering is strict by
Lemma A.4. Foreach k € {1,2,...,m}, set F(ay) = Fy and F'(ay) = a,i(az' Set F(0) =0,
F(1)=1,and F'(1) =0. Next, in F we fill in the intervals between the paikrs to produce a
strictly increasing, differentiable CDF that satisfies Condition S. In doing so, we say that
a differentiable function f; smoothly pastes the ordered pair of differentiable, increasing
functions (f2, f3) on an interval (z,2) if (i) fi(2) = f2(2), (i) f{(2) = f;(2), (i) fi1(2) =
f3(2), and (iv) f{(2) = f5(2).

Step 1. On (0, @1), set F = Hy, which satisfies all of the necessary properties (see
FactA.2).

Step 2. Identifyall k € {1,2,...,m—1},suchthat H;y = Hy,. Forallsuch k, set F = Hy,
on (ay, axy1), which satisfies all of the necessary properties (see Fact A.2).

Step 3. Fix arbitrary k < m such that H; # Hy, 1, and let L be the linear function tan-
gent to Hy, at o. There are two cases: (a) L(agy1) < Fry1 or (b) L(agyq) >
Fry1.

(a) In this case, L intersects Hj;,; at some o’ € (ay,ayy1), where L' <
H, +1(a0). Now for any ¢ > 0 small enough, there exists an elliptical arc
E that smoothly pastes (L, H1) on (e — &, a” + ). By construction, for
sufficiently small &, setting F = L on (ay, o’ —¢], F=Eon (o’ — &,a" + &),
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(b)

and F = Hy,1 on [a® + &, ay1), satisfies differentiability and strict mono-
tonicity. To see that it satisfies Condition S, let I:Ia, r be the H; function of
a hypothetical player with («;, F;) = (a, F)). By (v) of Fact A.2, it is suffi-
cient to demonstrate that F'(a) < I:I;,F(a)(a) for all « € (a, ax41). Notice
that Corollary A.1 implies that this holds with equality on [a" + &, aj41).
For a € (o, a” — &), F is (weakly) concave and crosses the strictly convex
function H, r() from above at «. Hence, the inequality must be satisfied.
Finally, if ¢ is small enough, then since E > Hj 1 on (' —&,a" + ¢), so as

to smoothly paste with Hy4, it must be that £’ < H;_, on this interval.

/

From Corollary A.1, ﬁ{; Fla) > Hy

which establishes the inequality.

In this case, let L be the line that passes through (ay, Fi) and (egy1, Fri1),
so L' < L' by hypothesis. Next, let L5 be the line that passes through the
midpoint between (ay, Fi) and (ak1, Fr11) with slope [/ —&. For any
& > 0 small enough, there exists ¢ > 0 small enough such that (Hy, Ls) can
be smoothly pasted by elliptical arc £ on (ay, ax + €), and (Ls, Hp,q) can
be smoothly pasted by elliptical arc £, on (a; — &, ax1). By construction,
for sufficiently small 6 and &, setting F = E; on (ak, ar + €), F = Ls on
[ay + &, a1 —el,and F = E; on (ag 11 — &, agy1) satisfies differentiability
and strict monotonicity. The arguments that it satisfies Condition S are
analogous to those made in Step 3(a) above, since F is weakly concave on
(ak, k1 — ), and E; < Hy ; on (agy1 — &, agy1) wWhen e is sufficiently
small.

Step 4. For a € (a;, 1), given the properties of H,, from Fact A.2, there exist o’ €
[am, 1) and an elliptical arc E that smoothly pastes (H;,, 1) on (a%, 1) and is
concave. Set F = H,, on (a;,a’] and F = E on (ap, 1) to satisfy differen-
tiability, strict monotonicity, and Condition S (by the same arguments from
Step 3).

LemmMmaA A.6. If (D;, C))ics satisfies Axioms 2-5, then it can be explained by a behav-
ioral model [F, («;)icr], where F € F satisfies Condition S. Furthermore, (a;, F(;))ics s

unique.

The proofis an immediate corollary of Lemmas A.1-A.5.

Lemma A.7. If (D?, C?),-el satisfies Axioms 1-5, then it can be explained by a behav-
ioral model [F, («;)icr], where F € F satisfies Condition S. Furthermore, (a;, F(;))ics is

unique.

The proofis an immediate corollary of Lemmas 1 and A.6.

Proofr of ProrosiTION 3. The proof is ordered: (a) < (c), (b) < (c), (a) < (e),

(d) & (e).
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(@) <= (©). Suppose F f.0.s.d. F. Recall that if x = y, then ay , =dy , (Section 2.1.1),
implying F(ay ) < F (@} ,) by fos.d. If x # y, then the cutoffs are implicitly char-
acterized by F(a )= T(ax L)) and F(&x )= T (ot X »). Further, if x > y, then
T(0|x y) >0= F(O) F(O), and T'(-|x, y) is strictly decreasing. Hence, by f.o.s.d., both
&, < ap, and F@; ) = F(a},). If x <y, then T(0lx,y) <0 =F(0) = F(0), and T is
strlctly 1ncreasmg (but 1ntersect1ng F and F each exactly once since both satisfy Condi-
tion S). Hence, by f.0.s.d., both & ax,y > x,y and F(ax’y) > F(ax,y)' So (a) implies (c).

Now suppose that (a) does not hold; there exists o € (0, 1) such that F(a) > F(a?).
Inthegame x =y = o o we have that o} &j‘c’ y= aY, which then violates (c).

b)) = (¢). Notlce that k. , and kx’y are binomial random variables with n “tri-
als” (i.e., each players’ action) and probabilities of “success” (i.e., cooperation) of
(1- F(aj;’y)) and (1 — ﬁ(a;y)), respectively. Because n is common between the two
random variables, a simple “coupling” argument Lindvall (2002, Chapter 1) establishes
that k, , f.o.s.d. Ex,y ifandonlyif 1 — F(ay ) >1— f('o?j;’y

(a) < (e). That (a) implies (e) is shown in the proof of (a) < (c) above. Now
suppose that (a) does not hold; there exists a’ € (0, 1) such that F(a") > f(ao). In the
gamex=y= o T wehavethate}  =a} = =a’. Because F, F, and T are all continuous
iny,and T is decreasmg ina When x >y, there exits an ¢ > 0 small enough such that in
1(;0’1a0_8)€PDa @y

(d) < (e). That (e) implies (d) follows from the cutoff nature of equilibrium behav-
ior (Propositions 1 and 2). Now suppose that (e) does not hold in that there exists xy < yy

such thatey , >ay | . Let a¥ e (@ ). Then

the game (x, y) = which violates (e).

X0,)0° Xo Yo
{(X(), yO)} - Cao,FmDao’F N {(x’ J’)|x fy} 5& %)

violating (d). A symmetric argument applies if there exists xo > yp such that o} , <
aj;o’}’o'

PrOOF OF ProPOSITION 4. When x =y, the unique solution to (2) is &* = 175 Hence,
Proposition 1 implies that, for any (x,x) € PD and any player i (of any collection),
(x,x) e D;ifand only if @; < 13+ + ~- Part (a) of the proposition follows.

For part (b), first suppose that / is more influenced by x relative to y than is 7. Then
the behaviors of the two collections agree on the subset of games {(x, y) € PD|x = y}. By
part (a) of the proposition, («;);e; = (@;);.j- Immediately, if o; =0, 1, then F(«;) = f(&i).
In addition, I defecting more in {(x, y) € PD|x > y} than does T implies that, for each i
with @; € (0, 1), it must be that the M; line is weakly steeper under F than under F, i.e.,
slp; > slpl (Lemma A.1). Next, by Lemma A.2, F(a;) = 1+Slp < — 1+Slp (al)

Second, suppose that for all i < n, o; = @; and F(a;) < F(a,). Immediately, if

a;=0,1, then i’s behavior is the same in / and I. For each i with «; € (0,1), M; N M; =
1-F(ey) o 1=F(@) _ Jr .

(2% o o L)} Also, slp; = F(alfﬁ > F(ag = slp,. Hence, for any (x, y) GNPD’ if x >y,

then (x,y) € D,- = (x,y) € Dj,and if x < y, then (x, y) € D; = (x,y) € Dj, establish-

ing that / is more influenced by x relative to y thanis /. O
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ProoOF oF ProPosITION 5. First, the proof of Proposition 1, Claim (i) remains valid and
implies that all equilibria are cutoff with o* < 1 and that o* = 0 is an equilibrium cutoff
if and only if x < 0. Second, if x > 0, the existence, uniqueness, and characterization of
the equilibrium cutoff follow identically from the proofs of Propositions 1 and 2. Third,
any a € (0,1) is an equilibrium cutoff if and only if g € M, (the argument given in the
proof of Theorem 1, “Representation — Axioms,” immediately extends to establish
this). Fix now x < 0. By definition of B, (i) if y < B(x), then there does not exist an
interior equilibrium cutoff in game (x, y), and (ii) if y = B(x), then there does exist an
interior equilibrium cutoffin game (x, y). The final caseis y > B(x). For «a € (0, 1), define
y*(alx) = (1_a”)‘F(a) — x(lgfcf‘;‘)) or, equivalently, (x, y*(a|x)) € M,. For any y > B(x),
there exists a1 < a; such that y*(a1|x) = B(x) < y < y*(ay|x), where the final inequality
follows from lim,_, 1 O—OZXW = oo and lim,_,1 1;@5‘)") = 0. Since y*(-|x) is continuous, the
intermediate value theorem implies that there exists a3 € (a1, @) such that y*(asz|x) =y,
meaning a3 in an interior equilibrium cutoff in the game (x, y). O

PROOF OF PROPOSITION 6. First consider g € PD?, so mg = 1. By Propositions 1 and
2 (and Lemma 1), az, € (0,1), implying F (a;) < 1= mg. Second, consider g such that
x > 0> y. Itis straightforward to obtain 7, = xxTy The analog to (7) in which r, p have
o (r—p)—(1—ag)x

== . Therefore,

not been normalized is F (az,) =

ay(r—
mg — F(a}) = =)

- 7 . (12)
) (l—a;‘i)(x—y)>

The inequality is due to aj € (0, 1) (by Proposition 5), r > p,and x > 0 > y.

For the general limit result, observe that Lemma 1 implies that it is sufficient to
establish that if » = 1 and p = 0, then for any ¢ > 0, there exists K € R, such that, if
x + |yl > K, then 7y, — F(aj‘c’y) < ¢. Fix ¢ > 0, and define the terms of = F~1(1 — &),
Ki = s
behavior of a player i with «; = «?, K; = max{int,e

and, letting (int,e, slp,.) be the (int;, slp;) generated by the equilibrium

intas
> slp,e }-
Setting K = max{K, K,} establishes the claim. To see this, suppose that y > 0 and

x+|yl> K. Theny > K —x > K, —x > int,s —x -slp,.. Hence, (x, y) € D, and afc’y > af.
Therefore, F(aj‘c’y) >F(a®)=1—-¢and my , — F(aj‘c,y) =1- F(a’;,y) < &. Suppose instead
that y <0and x + |y| > K. First, ifafc,y >a®, thenl>m, y > F(aj;,y) > F(af)=1-¢g,and
the result holds. Second, if a;‘;, y < af, then by (12), we have

F a;’; y of af

_ = > < < =g,

Try ~ F(axy) (1-ai,)x—y) ~ (1-a®)x—y) (1-a)K; ¢
establishing the claim. O

PRrOOF OF PrOPOSITION 7. Let r = p. If a; = 1, Vi(¢) = V;(d) and player i is indifferent
between ¢ and d. However, such players are measure zero, and their behavior has no
effect on the claims in the proposition. For the remainder, focus then on players with
a; € [0,1), and therefore sign(V;(c) — Vi(d)) = sign((1 — a;))[P; - (—=y) + (1 — P;) - x]) =
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sign(P; - (—y) + (1 — P;) - x), which is independent of «;. Suppose now that (o, P) is an
equilibrium. If o(d|a) is constant in « on [0, 1), then by condition (iii) of Definition 1,
o(d|la) = P for a € [0, 1). Therefore, assigning probability P to d is a best response to P,
regardless of «;, implying 7, = P characterizes a symmetric Nash equilibrium. If o (d|a)
is not constant in « on [0, 1), then, since preferences are independent of «;, for any «; €
[0, 1), any mixture over d and c is a best response to P. Again, then, 7, = P characterizes
a symmetric Nash equilibrium. Now suppose that 7, characterizes a symmetric Nash
equilibrium. Let F(a) = 7, and let 6(d|a) =1 if @ < @ and = 0 otherwise. It is trivial to
verify that (&, 7,) is an equilibrium according to Definition 1. Finally, existence of an
equilibrium follows from the existence of a symmetric Nash equilibrium Osborne and
Rubinstein (1994, Section 20.4). O

Proor of ProrosiTiOoN 8. Fix g € I' and a (candidate) equilibrium (o, P). Let a < o/
and k(a) := max{k : o(k|a) > 0}. Hence, for all k < k(a),

Vilk(@lai = a) z Vi(kla; = o),
as((@) +(1—a) 3 P(K)v(k(@), K) = ask) + (1 —a) 3 P(K')v(k, K,

k'eA k'eA
E(s(k(@) = s(k) = S P(K) (v(k, k') — v(k(a), k'),
1 — [ —— Ked
>0
(k@) =) = Y P (ol k) = v (@), K)),
k'eA

a’s(z(a) (1-¢a) ZP k(a) k') >a's(k)+ (1-a) ZP v(k, k'),
k'eA k'eA

V,'(E(a)|a,~ =d) > Vi(klaj=d).

Because A is finite, but the set of a-types is continuous, o must therefore be increasing
as described in Definition 6. Equilibrium existence is then an immediate application of
the argument in Athey (2001) (Theorem 1, as the above establishes that its single cross-
ing condition holds in our model). The only difference is that, since we are looking for
a symmetric fixed point, we apply Kakutani’s fixed point theorem to the single-player
best-response correspondence (in that paper’s notation, I'; : 3; — 3,;), rather than to the
two-player best-response correspondence (i.e., (I';, ') : 31 x 3 — 31 x 3p). O

Proor ofF ProposiTION 9. Fix a supermodular pure dilemma game g € I' and let
W(k,l, @) = as(tk) + (1 — a)v(k,!) (.e., Vi(k) given «; = « and P(/) = 1). Then W has
increasing differences in (k, «), and has increasing differences in (k, /). To see the first,
letk’ >k and o > «:

(W(k/, l a/) — W(k, [ a/)) - (W(k/, I a) —Wk,l, a))
= (o' — a)(s(k') — s(k) +v(k, 1) —v(k', 1)) = 0.

>0 >0
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To see the second, let kK’ > k and !’ > [:
(W', 1, a) — W(k, U, a)) —(W(K', 1, a)—W(k,I, a))

= (1= ) (K, 1) = vk, ) — (v(K', 1) — v(k, D)) = 0

>0

Both statements in the proposition are then implications of Van Zandt and Vives
(2007) (VZV). Part (i) follows from VZV Theorem 14 (they note that for symmetric
games/models such as ours, the greatest and least equilibria are symmetric (VZV
p. 346)). Part (ii) follows from VZV Proposition 16. O

Proor oF ProposiTION 10. Fix g € I' that has increasing returns to joint cooperation
and a (candidate) equilibrium (o, P). From Proposition 8, ¢ is increasing. Suppose
now that o] < aj. Then, by Definition 6, there exists k ¢ {0, K} and a > &' such that
o(kla) = o(kld’) =1. So Vi(k|la; = &) > Vi(k — 1]|a; = &), which implies V;(k|a; = a) >
Vi(k — 1la; = a) (see the proof of Proposition 8). It follows that

as(k)+ (1—a) > P(K)v(k,k') > astk = 1)+ (1 —a) > P(K')v(k —1,k),

k'eA k'eA

(1-a) NU(k—1,K") —v(k, k')
1>——) P(K) s(k) —s(k—1)

k'eA

Increasing returns to joint cooperation imply

v(k —1,k") —v(k, k') v(k, k') —v(k+1,k")
> PK) > ) P(K)
o= s(k)y—s(k—1) o= s(tk+1)—s(k)
Hence,
(1-—a) WUk k) —v(k+1,k)
1>— =2 P(¥) stk+ 1) —stk)
k'eA
astk+1)+(1—a) Y P(K)v(k+1,k') > as(k) + (1 —a) Y P(K')v(k, k'),

ke k'ed
Vitk +1la; = a) > Vi(kla; = a),

which contradicts that o(k|e) =1 in equilibrium. Therefore, o] = a). So, at most a
measure-zero set of a-types assigns positive probability to any action other than 0 or K.
This has no effect on the best responses of other types, so equilibrium analysis is identi-
cal to that done in the PD game (r, p, x, y) = (s(K), s(0), v(0, K) — s(K), s(0) —v(K, 0)) €
pDC. O
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