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Bayesian games with a continuum of states
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We show that every Bayesian game with purely atomic types has a measurable
Bayesian equilibrium when the common knowledge relation is smooth. Con-
versely, for any common knowledge relation that is not smooth, there exists a type
space that yields this common knowledge relation and payoffs such that the re-
sulting Bayesian game does not have any Bayesian equilibrium. We show that
our smoothness condition also rules out two paradoxes involving Bayesian games
with a continuum of types: the impossibility of having a common prior on compo-
nents when a common prior over the entire state space exists, and the possibility
of interim betting/trade even when no such trade can be supported ex ante.

Keywords. Bayesian games, Bayesian equilibrium, common priors, continuum
of states.
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1. Introduction

When are Bayesian games guaranteed to have Bayesian equilibria? One answer to that
question was given in Harsanyi (1967), the same work that introduced the common prior
assumption, by reducing the question of the existence of Bayesian equilibria to the ques-
tion of the existence of Nash equilibria in an associated game of complete information.
As the latter always exist, so do Bayesian equilibria.

Harsányi’s theorem on the existence of Bayesian equilibria, however, was proved
only for Bayesian games in which all variables are finite. That is, it holds for games with
a finite number of players, finite action spaces, finite payoff parameters, and a finite
number of possible types.

When state spaces have continuum many states, Harsányi’s theorem no longer
holds. Simon (2003) presented an example of a three-player Bayesian game over
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a continuum of states with no measurable Bayesian equilibrium.1 This was extended
in Hellman (2014a), which contains an example of a two-player Bayesian game over a
continuum of states with no Bayesian ε-equilibrium for sufficiently small ε.

The main results of this paper deal with conditions for the existence of Bayesian
equilibria and common priors when the state and type spaces are infinite. Theorem 1
provides sufficient conditions for the existence of measurable Bayesian equilibria within
the class of Bayesian games over a continuum of states. These conditions are that (i) in
every state of the world, each individual belief is purely atomic, and (ii) the common
knowledge relation is smooth, that is, the common knowledge components are precisely
the level sets of some measurable function. The theorem also establishes a certain ne-
cessity of the smoothness, showing that when it does not hold, there are payoffs and
types with precisely this common knowledge structure for which measurable Bayesian
equilibria do not exist.

Continuum state spaces also present challenges relating to the concept of the com-
mon prior. Simon (2000) presented an example in which the very existence of a com-
mon prior depends on whether one is looking at the ex ante stage or the interim stage.
That is, common priors exist globally in the full state space in the ex ante stage but do
not exist over any common knowledge component (i.e., in the interim stage). This is
so counterintuitive that Heifetz (2006) conjectured (using the concept of common im-
proper priors) that despite the lack of consistency in the existence of common priors in
such examples, there would still be behavioral consistency in terms of agreement, i.e.,
agents would consistently agree not to trade in both the ex ante stage and the interim
stage.

This leads us to the other results of this paper: in Theorems 2 and 3 we show
that exactly the same smoothness conditions that characterize which games necessar-
ily possess Bayesian equilibria also provide necessary and sufficient conditions for ex
ante/interim stage consistency of the existence of common priors and no trade/no bet-
ting theorems in continuum of states. In particular, the conjecture of Heifetz (2006) is
wrong: there are examples of behavioral inconsistency, with agents unable to agree to
trade ex ante but agreeing to trade in the interim stage whenever the common knowl-
edge relation is nonsmooth.

Smoothness is a critical condition in the main results here, both those relating to
measurable Bayesian equilibria and consistency of common prior existence. Intuitively,
nonsmooth models appear to be rare and unusual cases, requiring a conscious effort to
conjure up. It would appear that most applications of Bayesian games with a contin-
uum of states in which one would be interested, such as models of profits, elapsed time,
accumulated resources, and so on, are more likely than not to satisfy the conditions for
the existence of measurable equilibria.

With respect to the existence of measurable Bayesian equilibria in games with
continuum-many types, a seminal paper by Milgrom and Weber (1985) proved that such

1Restricting attention to the question of the existence of measurable equilibria is not truly restrictive:
given a game without measurable Bayesian equilibria, one can always construct another game, with an
additional player whose payoffs depend on the strategies of the players in the original game, that has no
well defined equilibria at all.
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equilibria exist when players have absolutely continuous information. However, the
class of smooth games that are established to have equilibria in this paper are a subset of
a different class CIC, the class of games with a subset of continuously distributed infor-
mational commonality introduced by Stinchcombe (2011a), which in turn is a subclass
of DIS , games with discontinuous information structures. All the results in Milgrom and
Weber (1985) assume the condition of absolutely continuous information, which means
that they are disjoint from DIS and hence not applicable at all to the games here.

In his paper, Stinchcombe (2011a) shows that for games in CIC with generic pay-
off functions, the expected payoffs of the players are not continuous as functions of the
strategy profiles. When the expected payoffs are continuous as a function of the players’
behavioral strategies, which are functions from players’ knowledge to actions, Bayesian
equilibria exist. The smooth games in this paper are elements of CIC, leading to the
conclusion that although generically the expected payoffs of those games are not con-
tinuous, they are nevertheless guaranteed by Theorem 1 to have Bayesian equilibria.
More details may be found in Section 6.3.

We conclude by noting that during the composition of this paper, some perhaps sur-
prising parallels between concepts used in game theory and descriptive set theory con-
cepts were uncovered. For example, a regular conditional distribution t of a probability
measure μ parallels the posterior t of a prior μ with respect to a knowledge structure;
the saturation of a point with respect to a countable Borel equivalence relation corre-
sponds to the knowledge component of a state in an epistemic game theoretic model.
Hopefully, these sorts of parallels can be deepened in future research, leading to more
new results.

2. Preliminaries and the model

2.1 Smoothness

As is standard, a Polish space is a separable, completely metrizable space. Measura-
bility without further qualification in this paper, in the context of a Polish space X , is
understood to mean measurability with respect to the Borel σ-algebra ofX .

A relation E on a Polish space � is said to be Borel if it is Borel as a subset of �×�.
In other words, the relation is Borel if the set {(x� y) ∈�×� | x E y} is a Borel subset of
�×�. It is said to be countable if each equivalence class, referred to as classes or atoms,
is countable. We abbreviate countable Borel equivalence relation as CBER.

A very central definition from descriptive set theory that is used extensively in this
paper follows.

Definition 1. A Borel equivalence relation E on a Polish space � is smooth if there is a
Polish space Y and a Borel function ψ :�→ Y such that for all x� y ∈�,

x E y ⇐⇒ ψ(x)=ψ(y)

(i.e., the classes of E are precisely the level sets of ψ).
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If E is the common knowledge relation, a function ψ witnessing the smoothness of
the relation can be thought of as an auxiliary tool that enables us to ascertain when x and
y are in the same common knowledge component: that occurs if and only ifψ(x)=ψ(y).

A transversal of E is a set T ⊆ X that intersects each E equivalence class at exactly
one point. It is easy to see that if a Borel E has a Borel transversal, then it is smooth:
intuitively, the map “ψ(x) = the only element of T that is E-equivalent to x” witnesses
the smoothness of E . For CBERs, the converse is true as well.

From this, one can show that if every equivalence class of E is finite, then E is smooth.
We use this fact repeatedly. Consider the set

T = {x ∈X | ∀y ∈X�x E y =⇒ x≤ y}�

i.e., the set of the ≤ elements of the E-equivalence classes, for any Borel linear order on
the domain of E ; such a set exists by a theorem of Kuratowski. This T is seen to be Borel
and a transversal of E , hence finiteness of the E-classes is sufficient for smoothness; for
details, see, e.g., Example 6.1 of Kechris and Miller (2004). However, for CBERs, which
are the focus of much of the material of this paper, matters are not so simple.

When E is an equivalence relation, for each x ∈�, one may consider the class con-
taining x, which we denote by [x]E . A set B ⊆ � is said to be saturated with respect
to E if it is the union of E-equivalence classes, i.e., if there is a set A ⊆ � such that
B= [A]E := ⋃

x∈A[x]E . The collection of all the Borel E-saturated sets of a Borel equiva-
lence relation E forms a σ-algebra, denoted σ(E).

2.2 Proper regular conditional distributions

Game theorists are used to working with priors and posteriors. The appropriate general-
ization to the context of the structures in this paper makes use of the concept of proper
regular conditional distributions.

For a Polish space X , let �(X) denote the space of regular Borel probability dis-
tributions on X , with the topology of weak convergence of probability measures, and
let �f (X) ⊆ �(X) (resp. �a(X) ⊆ �(X)) denote the subspace of finitely supported
(resp. purely atomic) measures. The space �(X) is itself a Polish space.

If (��B) is a measurable space, μ ∈ �(�), and F is a sub-σ-algebra of B, then (see
Blackwell and Ryll-Nardzewski 1963) a proper regular conditional distribution (hence-
forth, proper RCD) of μ, given F , is a mapping t :�×B → [0�1] such that for each B ∈ B,
ω→ tω(B) is Borel, and such that

μ(B)=
∫
�
tω(B)dμ(ω) for all B ∈ B (1)

and

tω(A)= 1 for μ-a.e.ω ∈A ∈ F 	

It can be shown that (1) implies that for every T ∈ B,

tω(T)=Eμ[1T | F](ω)� μ-a.e.ω ∈�	
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In terms that may be more familiar for game theorists, a proper RCD t of a probability
measure μ may be thought of as the posterior t of a prior μ with respect to a knowledge
structure F = σ(E).

2.3 Knowledge spaces

Most game theory models2 work with partitionally generated type spaces. In such mod-
els, where � is finite or countable, each player i has a partition 
i of �. This approach
suffers from a difficulty in the case of a continuum of states, since the partition has to
“agree” with the measurable structure. In addition, in the continuum case, one can-
not work with arbitrary unions of partitions elements; only Borel unions are admissi-
ble. Our approach differs from the more classical approach given in Nielson (1984) and
Brandenburger and Dekel (1987)—see Section 6.2 for more details on this—in favor of
defining knowledge via relations (instead of σ-algebras), which is better suited for the
class of purely atomic types that concern us. Our approach also differs from the “types”
approach of Milgrom and Weber (1985); see Section 6.1.

We work in general with a nonempty, finite set of players I and a Polish space of
states �. With each player iwe associate a Borel equivalence relation over�, denoted E i,
called i’s knowledge relation. Intuitively, the unions of classes of E i represent the events
that player i can identify; hence, σ(E i) is the set of Borel events that player i can iden-
tify. (In the discrete setting in which knowledge spaces are generated from knowledge
partitions 
i of �, σ(E i) would be given by the unions of elements of 
i.)

Adopting the convention that E stands for the profile of knowledge relations (E i)i∈I ,
a knowledge space is then a triple (�� I�E). Given a knowledge space (�� I�E), the equiv-
alence relation induced by E , which we denote by E , is the transitive closure of the union⋃
i∈I E i; i.e., the smallest equivalence relation containing each element in E . Observe

that σ(E) = ⋂
i∈I σ(E i). In terms that may be more familiar, E is the common knowl-

edge equivalence relation. The class of the common knowledge relation E containing ω
is called the common knowledge component containing ω, and is denoted C(ω).

2.4 Type spaces and priors

Fix a knowledge space (�� I�E). For each i ∈ I, a type function ti is a mapping ti : �→
�(�) that is σ(E i)-measurable and satisfies tiω(A)= 1 whenever ω ∈A ∈ σ(E i).

Adopting the convention that t stands for the tuple (ti)i∈I , a triple (�� I� t) is called
a type space. A type space implicitly defines the knowledge relations E i underlying the
type functions: ω E i ω′ (i.e., (ω�ω′) ∈ E i) if and only if tiω = tiω′ . Intuitively, tiω(B) is the
probability player i associates to the set B in state ω.

A measure μi ∈ �(�) such that ti is a proper RCD for μi given σ(E i) is a prior for ti.
A common prior is a measure μ that is a prior for the type functions of all the players
i ∈ I.

2The definition can be broadened to “nearly all models in the economics, game theory, and the decision
theory literature.”
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2.5 Purely atomic positive spaces

We adopt two main restrictive assumptions on type spaces. The assumption of posi-
tivity, meaning that every state in a player’s knowledge component is ascribed nonzero
probability by his type in said component, is convenient but not really necessary for
our results. In contrast, the other supposition, of countable support for every type, is a
substantively needed assumption.

Definition 2. A type space satisfying the conditions that tiω ∈ �f (�),3 for all i ∈ I and
all ω ∈�, is called a finitely supported type space.

Definition 3. A type space such that for all i ∈ I and all ω ∈ �, the type tiω is purely
atomic (i.e., has countable support), is called a purely atomic type space.

We always assume that types are purely atomic. (Occasionally, we also require them
to be finitely supported.) In addition, we henceforth assume all type spaces satisfy
positivity.

Definition 4. A type space such that for all i ∈ I and all ω ∈�, tiω[ω]> 0 is called pos-
itive. (More generally, if t is a proper RCD of μ with respect to F , t is called positive if
tω[ω]> 0 for all ω ∈�.)4

When positivity does not hold, the set of states that violated it are of measure zero
under any prior (see Proposition 7 in Appendix A); P hence, positivity is a fairly benign
and merely technical assumption. In combination, pure atomicity and positivity imply
that each class of each player’s knowledge relation is countable, and hence so are the
classes of the common knowledge equivalence relation.5 In this case, the knowledge
relation of each player is always smooth and the knowledge sets of each player are the
level sets of his type function.

Definition 5. A CBER is belief induced if there are finitely many smooth CBERs that
generate it.

3Recall that �f (�) is the set of finitely supported measures over �; hence, finite support is equivalent to
each player ascribing positive probability only to a finite number of elements in all knowledge components.
Type spaces with finite fan-out, as defined in Simon (2003), in which each partition element of the under-
lying partitionally based knowledge space contains only a finite number of elements, are a special case of
this, although these classes coincidence if positivity (see Definition 4) is assumed.

4The restriction to positive type spaces is not a serious one and is implemented largely for convenience
and simplicity. Theorem 2 only relies on this assumption to guarantee that a weaker assumption holds,
namely that the knowledge classes of each player are countable. Theorem 3(i), which follows from Theo-
rem 2, could similarly be proved under this weaker assumption. Theorems 1(ii) and 3(ii) deliver construc-
tions in which positivity is guaranteed anyway. Only the proof of Theorem 1(i) makes direct use of positivity
instead of the above weaker condition, in particular Proposition 11; this, too, can be relaxed at the expense
of a more complicated proof.

5This can be shown easily if one builds the common knowledge relation inductively from the players’
knowledge relations, as done in Section A.1.
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Lemma 19 implies that a CBER is belief induced if and only if it is the common
knowledge relation of some finitely supported positive type space.6 Not all CBERs are
belief induced.7 We elaborate on this in Appendix B.

2.6 Bayesian games and Bayesian equilibria

A Bayesian game �= (�� I� t�A� r) consists of the following components:

• The set (�� I� t) forms a type space (with knowledge relations E understood im-
plicitly as generated by t).

• The equality A= (Ai)i∈I is a tuple consisting of a finite action set for each player
i ∈ I.

• The relationship r : � × ∏
i∈I Ai → R

I is a bounded measurable payoff function,
with ri then being the resulting payoff to player i. The payoff function r extends
multilinearly to mixed actions in the usual manner.

A strategy of a player i ∈ I is a mapping si :�→ �(Ai) that is constant on each player’s
knowledge component. In other words, if ω�ω′ ∈ � are in the same atom of E i, i.e.,
tiω[ω′]> 0, then si(ω)= si(ω′).

A Bayesian ε-equilibrium with ε ≥ 0 is a profile of strategies s = (si)i∈I such that for
each i ∈ I, all ω ∈�,8 and each alternative strategy x ∈ �(Ai) of player i,9

∑
{ω′|tiω[ω′]>0}

ri
(
ω′� s

(
ω′))tiω[

ω′] + ε≥
∑

{ω′|tiω[ω′]>0}
ri

(
ω′�x� s−i

(
ω′))tiω[

ω′]	

When a Bayesian ε-equilibrium s satisfies the condition that each si is Borel measur-
able,10 s is said to be a measurable11 Bayesian ε-equilibrium (ε-MBE). When ε = 0, we
refer simply to an MBE instead of a 0-MBE.

6On a knowledge relation with finite classes, one can define a type function that is uniform over each
class.

7The authors are grateful to Benjamin Weiss for pointing this out.
8If there is a common prior, the definition can be modified to require ε-optimality of the strategy in

almost every state.
9Recall that we have assumed types are purely atomic and payoffs are bounded.
10The combination of being Borel measurable and being constant in each knowledge component of

player i is equivalent to requiring that si is σ(E i)-measurable.
11It is possible for a game to have Bayesian ε-equilibria that are not measurable as in, for example, Simon

(2003). However, for our purposes it suffices to concentrate on characterizing the existence of measurable
ε-equilibria, because given a game � that admits only nonmeasurable equilibria, it is always possible to
create another game �′ that has no equilibria at all. This is accomplished by adding an additional player k
to �′ who is not in the player set of �. The payoffs of players i �= k in �′ are defined to be exactly identical
to their payoffs in �, while k’s payoff is given by an integral over the actions of the players i �= k. But if the
equilibrium strategies of the players i �= k are nonmeasurable, at equilibrium player k cannot even define a
payoff, much less an optimal strategy. See Hellman (2014a) for an explicit example of such a construction.
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3. Results

3.1 Measurable Bayesian equilibria

Our main claim is that smoothness of type spaces is crucial for many results, including
the existence of measurable equilibria in Bayesian games, the persistence of common
priors over components, and consistency of no betting in the ex ante and interim stages.
These are all detailed in this section.

Definition 6. A purely atomic positive type space whose common knowledge relation
is smooth is called a smooth type space. A Bayesian game whose underlying type space
is smooth is called a smooth Bayesian game.

Sometimes we want to specify exactly how a type space fails to be smooth.

Definition 7. Let E be a nonsmooth belief-induced CBER. Then a type space τ

whose underlying common knowledge relation is E is called an E-nonsmooth type
space. A Bayesian game whose underlying type space is E-nonsmooth is called an E-
nonsmooth Bayesian game.

Theorem 1 extends Harsányi’s theorem, essentially stating that (within the class
of purely atomic type spaces) a Bayesian game is guaranteed to have a measurable
Bayesian equilibrium if and only if it is smooth. Theorem 1 also resolves the paradox
appearing in Section 4.2.1.

Theorem 1. (i) Every smooth Bayesian game has an MBE.

(ii) Conversely, for every nonsmooth belief-induced CBER E , there is an E-nonsmooth
Bayesian game � that has no MBE.

In part (ii), the types can be constructed to be positive, have finitely supported types,
and a common prior, and such that the game � in fact does not possess an ε-MBE for
ε > 0 small enough.

To prove Theorem 1(i), we proceed in three steps. First, we develop a notion of the
space of all (positive) Bayesian games with countably many states S, player set I, and
set of actions A (Proposition 11), which we denote by B(S� I�A) (or just B for short).
Second, we then prove the existence of a Bayesian equilibrium selection for this class
of games (Corollary 13). Finally, we show that one can measurably map the games
induced on each common knowledge component of a general game into the space of
games on countably many states S (Proposition 14). The composition of this mapping
and the Bayesian equilibrium selection from the second step give us the required global
Bayesian equilibrium.

We can construct such a mapping because the smoothness, it turns out, allows us
measurably to enumerate the elements of each atom, and once we have this enumera-
tion, we can map the game on each atom to its appropriate game in the space B; when
we lack such an enumeration, this cannot be done because we have no canonical way
to select the mapping. Details are given in Section A.3.
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For the proof of Theorem 1(ii), we embed the game given in Hellman (2014a), which
does not have an ε-MBE, into the given structure, using known theorems on embedding
countable Borel equivalence relations into each other.

3.2 Common priors over components

Let τ = (�� I� t) be a type space with common knowledge relation E . Let K ∈ σ(E), that
is, K is a common knowledge event. Writing tK for the restriction of the profile of types
to K, (ti|K)i∈I , one has that τK = (K� I� tK) is a well defined type space over K. This is
true in particular if K is an atom of E . Similarly, we write E |X for the restriction of the
equivalence relation E toX ; formally, E |X = (X ×X)∩ E .

Definition 8. Ifμ is a common prior, then we say that a property holds for almost every
common knowledge component if the set of components for which it does not hold is
contained in a μ-null set.

Theorem 2 essentially states that given a type space τ with a common prior, the type
space τK for any common knowledge component K is guaranteed also to have a com-
mon prior if and only if the underlying common knowledge relation is smooth almost
everywhere. Theorem 2 also resolves the paradox that appears in Section 4.2.2.

Theorem 2. Let τ be a type space with a common prior μ and common knowledge rela-
tion E . The following conditions are equivalent:

(i) There existsX ∈ σ(E)with μ(X)= 1 such that E |X is smooth.

(ii) For almost every common knowledge component K, the type space τK has a com-
mon prior.

(iii) There is a proper RCD t of μ given σ(E) such that for almost every common knowl-
edge componentK and each x ∈K, tx is a common prior for τK .

The proof of Theorem 2 is given in Section A.4. The main step is to show that (i)
implies (ii). The key here is to show that for each player i, if one first takes the regu-
lar conditional distribution of μ with respect to σ(E) and then from that one takes the
conditional distribution with respect to player i’s knowledge structure, one recovers i’s
original type.

3.3 No betting

For a type space τ, a bet is a list of (f i)i∈I of bounded12 random variables f i :�→R such
that

∑
i∈I f i(ω) = 0 for all ω ∈ �. An acceptable bet is a bet that satisfies the condition

that

Ei
[
f i |ω] =

∫
�
f i(s)dtiω[s]> 0 for all i ∈ I�ω ∈�	 (2)

12We assume boundedness to avoid anomalies; see Feinberg (2000) and Hellman (2014b).
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In words, an acceptable bet is a bet that each player believes, based on his type function,
that he is guaranteed to win no matter what the true state of the world is, despite the fact
that the bet is zero sum at each state. If a type space admits no acceptable bets, then we
say that there is no betting over the type space.

Theorem 3 essentially states that we are only guaranteed that almost all common
knowledge components possess no acceptable bets (i.e., there are no acceptable bets
at the interim stage) when the common knowledge relation is smooth. Theorem 3 also
resolves the paradox that appears in Section 4.2.3.

The condition that guarantees consistency in agreeing to trade between the ex ante
and interim stages thus turns out to be virtually identical to the condition that guaran-
tees the existence of measurable equilibria in Bayesian games (as in Theorem 1). On
the one hand, smoothness guarantees common priors on components, which excludes
admissible bets. On the other hand, when smoothness fails, games in which betting is
admissible on components, like that in Section 4.2.3, can be embedded in the structure.

Theorem 3. (i) A smooth type space with a common prior admits no betting over almost
every common knowledge component.

(ii) Conversely, for every nonsmooth belief-induced CBER E , there is an E-nonsmooth
(positive, finitely supported) type space with a common prior such that on almost
every common knowledge component there exists an acceptable bet.

The proof of Theorem 3(i) is given in Section A.4 as an immediate corollary of The-
orem 2; the proof of Theorem 3(ii) is given in Section A.5. Like the proof of Theo-
rem 1(ii), the proof Theorem 3(ii) involves embedding a game in which acceptable bets
exist on the common knowledge components (the example of the two-player game from
Lehrer and Samet (2011) that appears in Section 4) into the given structure, and then
showing that the acceptable bet for those two players on the image of the embedding
can be extended (on each component individually) to an acceptable bet for all players
(however many needed to give the desired common knowledge structure) on the entire
component.

4. Motivating paradoxes

4.1 The ex ante vs. interim stage

Theorems 1, 2, and 3 may be motivated by several paradoxes related to Bayesian equi-
libria and common priors, some of which previously appeared in the literature. They all
revolve around the distinction between the ex ante stage and the interim stage. Indeed,
the main theorems here resolve these paradoxes by providing full characterizations of
when these pathologies may occur and when they are guaranteed not to appear.

The full state space, over which priors are defined, is usually taken to be the ex ante
stage, while the common knowledge component represents the interim stage after each
player receives a signal. According to a widely accepted view, in reality there is no chance
move that selects a player’s type. The true situation the players face is the interim stage



Theoretical Economics 12 (2017) Bayesian games with a continuum of states 1099

after the vector of types has been selected. However, incomplete information requires
us to consider the ex ante stage so as to understand how the players make their choices
in the interim stage, even though it is a fiction and there is no actual distinction between
the different stages.

The paradoxes here challenge that view, because in these examples player behavior
is different depending on whether we are in the ex ante stage or the interim stage. This
is particularly striking in the third example. The concept of “no acceptable bets” can
be extended to “no trading” (Milgrom and Stokey (1982)); the third example then shows
that one can construct knowledge structures in which players cannot measurably agree
to trade in the ex ante stage but may agree to trade in the interim stage.

4.2 Paradoxes

The first two paradoxes—on Bayesian games and common priors over continuum type
spaces—are well known in the literature for about a decade. The third paradox—on no
betting—is new.

4.2.1 The “now you see it, now you don’t” Bayesian equilibrium Simon (2003) and
Hellman (2014a) present examples of Bayesian games over a continuum of states that
have no Bayesian equilibria. In those games, there is no profile of measurable strategies
of the players (with those strategies having as their domain the entire state space�) that
forms a Bayesian equilibrium.

However, in these games each common knowledge component C(ω0), for any state
ω0, is countable. Hence, the Bayesian game restricted to each common knowledge com-
ponent does have a Bayesian equilibrium, by standard arguments (e.g., Simon 2003,
Proposition 1). In summary, there is no ex ante Bayesian equilibrium, but there do exist
interim Bayesian equilibria.

4.2.2 The “now you see it, now you don’t” common prior This paradox was first noted
in Simon (2000). We present here a slight variation of a version appearing in Lehrer and
Samet (2011).

Consider the following type space over a state space �, as depicted in Figure 1.
The state space � is constructed out of four disjoint subsets of R

2, labelled Aj for
j ∈ {1�2�3�4}:

A1 = {
(x�x+ 1) | −1 ≤ x < 0

}
�

A2 = {
(x�x) | −1 ≤ x < 0

}
�

A3 = {
(x�x− 1) | 0 ≤ x≤ 1

}
�

A4 = {(
x�ψ(x)

) | 0 ≤ x≤ 1
}
�

where ψ(x)= x− c(mod 1) for a fixed irrational c in (0�1).
Player 1 is informed of the first coordinate of the state and player 2 is informed of the

second coordinate. Thus, the class of E1 containingω—denote it E1(ω)—consists of the
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Figure 1. The state space consists of the three diagonals A1, A2, and A3, and of A4. The latter
is obtained by a rightward shift of the top-right diagonal by an irrational number c.

two points on the vertical line that contains the state ω. Similarly, E2(ω) contains the
two points on the horizontal line that include the state ω.13

The posterior tiω for each of the two points in E i(ω) is 1
2 . Furthermore, let μ be the

probability measure 1
4
∑4
j=1ψj , where ψj is the Lebesgue measure over Aj . Lehrer and

Samet (2011) show that measurability conditions are satisfied by the posteriors and that
μ is a common prior for (t1� t2).

However, although the entire space � has a well defined common prior, if we again
concentrate on the common knowledge component C(ω0) of any arbitrary stateω0 (fix-
ing the posteriors), then there is no common prior14 over C(ω0). The reason for this is
that C(ω0) is a doubly infinite countable sequence

	 	 	 �ω−(k+1)�ω−k� 	 	 	 �ω−1�ω0�ω1� 	 	 	 �ωk�ωk+1� 	 	 	 (3)

such that for all k ∈ Z, (ωk�ωk+1) ∈ E1 and (ωk�ωk−1) ∈ E2 or vice versa. Any common
prior ν over C(ω0)must satisfy the condition that ν(ωk)= ν(ωk+1) for all k. Thus all the
countably many states in C(ω0)must have the same probability, which is impossible.

13Formally, the knowledge relations are defined by

(x� y) E1 (x′� y ′)↔ x= x′� (x� y) E2 (x′� y ′)↔ y = y ′	

14There may, however, be a common improper prior over C(ω0). An improper prior allows for the possi-
bility that the total measure it defines over a space diverges.
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In summary, there is an ex ante common prior but there does not exist an interim
common prior. In particular, in light of Theorem 2, it follows that the common knowl-
edge relation E generated in Figure 1 is not smooth. This could be seen by more elemen-
tary means: the restriction of E to any one of the setsA1,A2,A3,A4 is equivalent to the
equivalence relation induced by an irrational rotation of the circle (i.e., x→ x− c mod 1,
c being irrational) and this relation is well known to be nonsmooth.

4.2.3 The “now you see it, now you don’t” acceptable bet Equation (2) states that when
a bet is acceptable, there is common knowledge everywhere that every player has an
expectation of positive gain, even though a bet is everywhere zero sum by definition.

If there is a common prior over the entire space, then summing the integrals and
integrating over the entire space shows that there is no acceptable bet (cf. a similar ar-
gument in Hellman 2014b). By Theorem 7 in Feinberg (2000) (see also Heifetz 2006), if
� is compact and we allow only continuous bets, then the converse also holds, that is, if
there is no acceptable bet whose domain is the entire state space �, then there must be
a common prior over �.

As there is a common prior over the entire space in the example depicted in Figure 1,
there can be no acceptable bet over the entire space. However, one can construct accept-
able bets on each common knowledge component in this example. We concentrate on a
particular stateω0 ∈A1 (as in the figure) and the common knowledge component C(ω0)

containing it; hence (ω2k�ω2k+1) ∈ E1 and (ω2k�ω2k−1) ∈ E2 for all k ∈ Z (where the enu-
meration follows the arrows in Figure 1). A variation of a construction from Hellman
(2014b), using C(ω0) as in (3), defines the following function f : C(ω0)→R:

f (ωn)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if n= 0�

(−1)n+1 ·
n∑
i=1

1

2i
if n > 0�

(−1)n ·
−n∑
i=1

1

2i
if n < 0.

The function f is presented graphically in Figure 2. It is easy to check that (f�−f ) is
an acceptable bet over C(ω0), even though there is no globally acceptable bet over the
entire space �. In summary, there is no ex ante betting, but there is interim betting.

Figure 2. Graphical depiction of an acceptable bet over a common knowledge component of
the type space depicted in Figure 1. Player 1’s knowledge is represented by ellipses; player 2’s
knowledge is represented by rectangles.
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5. Examples of smooth and nonsmooth structures

We present here some examples to illustrate the concept of smooth equivalence rela-
tions. These examples are conceptually simpler than the examples underlying the para-
doxes of Bayesian games given in Section 4.2. We repeatedly use the criterion mentioned
earlier and given by Proposition 1: smoothness of a CBER E is equivalent to the existence
of a Borel set B ⊆ �, known as a Borel transversal, which intersects each atom of E at
exactly one point.

We begin with some examples of smooth relations.

Example 1. The state space is�=R, with relation x∼ y if and only if x− y is an integer.
In other words, a player is informed only of the values after the decimal point for any
x ∈R, with the integer value hidden. This relation is smooth.15 The equality B= [0�1) is
a Borel transversal. ♦

Example 2. We have�= R, with the atoms of the common knowledge class of the form
{±x+n | n ∈ Z}; this is induced if one player’s knowledge relation is x∼1 −x and the other
player’s knowledge relation is as in the first example, i.e., x∼2 y if and only if x− y is an
integer. The induced common knowledge relation is again easily seen to be smooth by
taking the Borel transversal B= [0� 1

2 ]. ♦

Example 3. If � = �1 ×�2, consider the relations (x� y) ∼1 (x
′� y ′) if and only if x = x′

and (x� y)∼2 (x
′� y ′) if and only if y = y ′ are smooth; take the transversals �1 × {y0} and

{x0} ×�2 for some x0 ∈�1, y0 ∈�2. This common knowledge relation refers to the case
in which there is common knowledge about one aspect of the state of nature but no
knowledge about the other. ♦

Theorems 1, 2, and 3 then guarantee that for any type space with these common
knowledge relations, common priors exist on all components, Bayesian equilibria exist
regardless of the payoffs, and there are no agreeable bets on any components. Finding
the common priors and Bayesian equilibria, however, can be quite cumbersome, hence
the advantage of possessing general existence theorems such as those we present here.

We now turn to some nonsmooth examples.

Example 4. We have � = R, with the common knowledge relation x ∼ y if and only if
x − y is rational. This common knowledge relation can be induced if a third player is
added to the structure in Example 2, with the knowledge relation of this newly added
third player given by x ∼3 y if and only if x = my, where m is an integer.16 It is well
known that in this structure there does not exist a Borel transversal (see, for example,
Rudin 1986, Chapter 2). ♦

15In fact, one can prove a general theorem: if� is a Polish space with metric d, and E is a CBER such that
for each class A of E , infx�=y�x�y∈A d(x� y) > 0, then E is smooth. In other words, as long as in each atom the
elements “keep their distance” and do not get “bunched up,” the relation is smooth.

16For example, the third player may not be sure if the value made known to him is the total amount or
the amount per person in a group of unknown size after the amount has been divided.
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Example 5. We have � = AZ for some finite A and the relation is given by (xj)j∈Z ∼
(yk)k∈Z if and only if ∃m ∈ Z, ∀n, xn = yn+m, i.e., the relation induced by the shift. This
common knowledge relation is induced when the state of nature is represented by a
doubly infinite sequence of data elements in A but there is uncertainty as to where the
“middle” point is. This relation is well known to be nonsmooth. ♦

Since the common knowledge structures above are not smooth, common knowl-
edge components may not possess common priors, Bayesian equilibria may not exist
for certain priors and payoffs, and for certain type structures—even those induced by a
common prior—we may find acceptable bets on components even though there are no
globally acceptable bets. Again, constructively coming to these conclusions in each sep-
arate case could be extremely cumbersome, while Theorem 1 guarantees the existence
of such cases in a general manner.

We end with a generalization of an Example appearing in Section 4. We include Ex-
ample 6 here to show that even when it is the case that when a player observes his own
type he knows that the types of the other players are limited to a finite number of possi-
ble points, the resulting knowledge structure may be nonsmooth.

Example 6. Let there be N players and let � ⊆ R
N be a finite union

⋃n
j=1�j such that

each �j is a subset of a plane Pj of dimension n− 1 not parallel to any axis; i.e., each Pj
is of the form{

x ∈R
n

∣∣ ∑
aixi = c

}
for some a1� 	 	 	 � an� c ∈R� such that ai �= 0 for all i	

Assume there is a common priorμ on each�j that is absolutely continuous with respect
to the n−1-dimensional Lebesgue measure onPj . The information structure is such that
for each i, player i is informed of the ith coordinate, i.e.,

E i := {(
(x1� 	 	 	 � xN)� (y1� 	 	 	 � yN)

) ∈�×� | xi = yi
}
	

For each player, the knowledge classes are finite. The resulting knowledge structure may
be smooth, but, as the examples of Section 4 show, may also be nonsmooth. ♦

6. Relationship to the literature

6.1 Type spaces

Many papers on games of incomplete information, such as Milgrom and Weber (1985),
model players’ information by types. In such modelling, each player i has a type space
�i with measurable structure Fi, and the set of states of the world in their framework
is � := ∏

i �i with a nonatomic common prior μ defined on a σ-algebra F containing⊗
iFi. Players in this framework are told their own signals and then use that to deduce a

distribution on the states of the world via Bayesian updating with respect to a common
prior μ; we omit the technical details.

The model of Bayesian games studied in this paper can also be formulated using
type spaces. In our framework, each knowledge relation Ei is smooth and the classes are
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level sets of the type function. Hence, by Proposition 1 in Appendix A, the quotient space
�i := �/Ei, which is the collection of classes of Ei with the quotient σ-algebra, is stan-
dard Borel, i.e., a Polish space in some topology consistent with its measurable structure.
Equivalently, we can take �i to be the range of player i’s type function. A common prior
μ on � then induces a common prior on

∏
i �i, itself a quotient space of �.

6.2 Knowledge

An alternative approach to modelling knowledge and type spaces on a continuum of
states, going back to Nielson (1984) (see also Brandenburger and Dekel 1987) is to model
information using σ-algebras. That is, player i’s knowledge is represented by a σ-algebra
F i, where it is understood that two elements x, y are in the same information compo-
nent for player i whenever x ∈ B ∈ F i implies that y ∈ B. (The connection to a knowl-
edge equivalence relation (E i)i∈I from our framework is given by F i = σ(E i).) We have
avoided this approach for several reasons.

First of all, while that approach may be more appropriate for general knowledge
structures, when the types are purely atomic (and hence knowledge classes are count-
able), it is more intuitive, in our opinion, to express the knowledge of the players, as well
as the common knowledge structures, using equivalence relations. While it is true that
our framework is set upon the background of measurable structures, it still echoes the
standard partitional approach to knowledge. The only reason we cannot directly extend
the standard approach is because we restrict ourselves to measurable sets.

Second, if one wishes to model continuum knowledge spaces based directly on
knowledge of σ-algebras, various serious technical problems arise. For example, there
is no guarantee that each player’s knowledge components are measurable or, more gen-
erally, that the saturation of a measurable set with respect to a player’s knowledge (or
the induced common knowledge relation) is measurable. These problems are partially
overcome by identifying sets that differ by a set of measure 0, but, other than the fact
that this requires a common prior at the onset, this fix is useless for our purposes, as we
need to look at the individual common knowledge components, which are generically
of null measure.

6.3 Equilibrium existence

Given the technical difficulties discussed in the previous subsection that are encoun-
tered in dealing with general knowledge structures, results on equilibrium existence in
general knowledge structures are almost nonexistent. One seminal positive result that
does establish the existence of equilibrium is Milgrom and Weber (1985).

As discussed in Section 6.1, Milgrom and Weber (1985) model incomplete informa-
tion using types, and our framework can directly be translated into that framework. The
notion of strategies in Milgrom and Weber (1985) also differs from the definition used
here; they use distributional strategies in contrast to the definition of strategies given
above in Section 2.6. This is also not a serious difference; Balder (1988) similarly proves
equilibrium existence for the same class of games in the class of strategies of the “more
classical” sense used here.
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However—and here is where the real substantive difference lies—Milgrom and We-
ber (1985) then go on to assume that the common prior μ is absolutely continuous with
respect to

⊗
i μi, with μi being the marginal on �i. Unless the common prior is purely

atomic, this assumption clearly implies that types cannot be purely atomic and, hence,
this assumption, which guarantees the existence of Bayesian equilibrium, is not satis-
fied in our framework.

Following Stinchcombe (2011a), denoting the class of games in which μ is not abso-
lutely continuous with respect to a product measure by DIS (for discontinuous infor-
mation structure), the results of this paper relate solely to a subclass of DIS . In contrast,
the class of games in Milgrom and Weber (1985) is precisely those that are disjoint from
DIS .

Stinchcombe (2011a) also studies structures within the DIS class. That paper de-
fines a structure of beliefs to have a subset satisfying continuously distributed infor-
mational commonality (CIC) if on a nonnull subset at least two players can agree on
a nonatomically distributed variable; formally, if there is a set B ⊆ � that is common
knowledge (i.e., B ∈ ⋂

j σ(Ej), recalling notation from Section 6.1) with μ(B) > 0, players
i� j ∈ I, and a Borel mapping φ : B→ [0�1] that is σ(Ei) ∩ σ(Ej)-measurable (in B), such
that φ∗ ◦μ := μ ◦φ−1 is nonatomic.17 Denoting the class of information structures that
contain CIC’s by CIC, Theorem A of Stinchcombe (2011a) shows that CIC ⊆ DIS .18 By
definition, smooth games are in CIC.19

Nonmembership in the class DIS guarantees equilibrium by Milgrom and Weber
(1985). However, within DIS , membership or nonmembership in CIC has no direct im-
plications for the existence of MBE. On the one hand, a two-player game that is ergodic
(that is, the only common knowledge sets are of μ-measure 0 or 1) is not in CIC; an
example of this is the game in Hellman (2014b), which is ergodic and has no equilib-
ria. On the other hand, it is easy to construct games with no equilibria in which two
players have identical knowledge, which places them within CIC; e.g., to the game from
Hellman (2014b), add dummy players with perfect information.

Theorem B of Stinchcombe (2011a) shows that for games in CIC with generic pay-
off functions, the expected payoffs of the players are not continuous as functions of the
strategy profiles (where the strategies, viewed as maps from type spaces to mixed ac-
tions that are measurable with respect to players’ information, are endowed with the
weak-∗ topology induced by μ). As previously mentioned, every smooth Bayesian game
is in CIC, while Theorem 1 of this paper shows that every such game has an MBE. Thus,
games with purely atomic types and smooth common knowledge relations form an in-
teresting class: although generically the expected payoffs of such games are not con-
tinuous, measurable Bayesian equilibria are still guaranteed to exist. The relationships
between DIS and CIC, and their implications for Bayesian equilibrium existence are
summarized graphically in Figure 3.

17That is, for each x ∈ [0�1], μ({ω ∈ B |φ(ω)= x})= 0.
18The theorem requires that the knowledge σ-algebras of at least two players support nonatomic mea-

sures; this holds by construction in our setup as all player’s knowledge relations are smooth; see Proposi-
tion 1.

19All Polish spaces are Borel isomorphic.
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Figure 3. A representation of the interrelationships between DIS and CIC and the implica-
tions of these properties for the existence of equilibria.

We also mention in passing Stinchcombe (2011b), which shows the existence of cor-
related equilibrium. In that framework, actions are a function not only of types, but
also of a public signal chosen uniformly in [0�1]. Interestingly, the proof there shows
that MBE exists in all Bayesian games if one allows for saturated measurable structures,
i.e., structures constructed using nonstandard analysis. Such extensions, however, are
highly nonconstructive.

Appendix A: Tools and proofs

A.1 Mathematical tools

Recall that [T ]E denotes the saturation of T with respect to a CBER E , i.e., the smallest
union of classes of E containing T . In terms that may be more familiar to game theorists
used to working with finite partitions, [ω]E is the knowledge component containing ω.
Recall that a transversal of an equivalence relation is a set that intersects each equiva-
lence class at exactly one point.

Given a Polish � and a CBER E , we let �/E denote the quotient space whose ele-
ments are the equivalence classes by E , and the induced σ-algebra consists of precisely
the images of the E-saturated sets in � under the quotient map.

We make repeated use of the following proposition, which follows from Propositions
6.3 and 6.4 of Kechris and Miller (2004) and the discussion preceding them.

Proposition 1. The following conditions are equivalent for a CBER E on a Polish
space �:
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(a) The CBER E is smooth.

(b) There is a Borel transversal for E .

(c) The quotient space �/E is standard Borel.20

Proposition 2 follows from21 Theorem 1 of Blackwell and Ryll-Nardzewski (1963).

Proposition 2. If E is a smooth CBER on a Polish space � and μ ∈ �(�), then there
exists a proper RCD t of μ given σ(E).

Proposition 3 is a slight variation of the Lusin–Novikov theorem (e.g., Kechris 1995,
Theorem 18.10).

Proposition 3. Let E be a CBER on a Polish space �. Then there are Borel functions
(fn)

∞
n=1 :�→� such that for all ω ∈�, {fn(ω)}n∈N = [ω]E .

From this (or related results) one can deduce by standard techniques; see, e.g.,
Dougherty et al. (1994, Theorem 5.1).

Proposition 4. Let E be a smooth CBER on a Polish space � and let S be a countably
infinite set. Then there is a Borel mapping� :�→ S such that for each E-class C of�, the
restriction �|C :C → S is injective and�(C)= S if C is infinite.

We also recall the following well known result, of which we make repeated implicit
use.

Proposition 5. Let X , Y be Polish spaces and let f :X → Y be Borel such that for each
y ∈ Y , f−1(y) is at most countable (i.e., the map is countable-to-one). Then for each Borel
B⊆X , f (B) is Borel.

Let τ be a type space with knowledge relations (E i)i∈I . For each i ∈ I and each set
N ⊆ �, let Ci(N) denote the saturation of N with respect to E i, i.e., Ci(N) = [N]E i . For
each finite sequence î= (i1� 	 	 	 � ik) ∈ I∗ = ⋃

n≥0 I
n andN ⊆�, let

Cî(N)= Cik(Cik−1
(· · · (Ci1(N)) · · · ))

and

C(N)=
⋃
î∈I∗

Cî(N)�

which is the smallest common knowledge set containing N . Since, by Propositions
4 and 5, the saturation of Borel sets under a CBER is also Borel, we have the following
lemma.

20That is, there is a measurable bijection between it and a Polish space.
21The condition given there for the existence of proper RCDs is easily seen to follow from the existence

of a Borel transversal, which, by Proposition 1, follows from smoothness.
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Lemma 6. IfN is Borel, then so is Ci(N) for each i ∈ I and so is C(N).

The following proposition justifies our restriction to positive type spaces.

Proposition 7. If t is a proper RCD of μwith respect to σ(E) for a CBER E , then

μ
({
ω | tω[ω] = 0

}) = 0	

In particular, if τ is a type space (not necessarily positive) with a common prior μ, then for
each i ∈ I,

μ
({
ω ∈� | tiω[ω] = 0

}) = 0	

Proof. Denote N = {ω | tω[ω] = 0}. Since tω[ω′] = 0 if (ω�ω′) /∈ E and since tω[ω′] = 0
for all the countably many ω′ with (ω�ω′) ∈ E since ω→ tω is σ(E)-measurable, we see
that tω[N] = 0 for all ω ∈�. The proposition follows from the definition of an RCD. �

The following definition and its properties can be found in Dougherty et al. (1994,
Section 3).

Definition 9. Let E be a CBER on a Polish space �. A measure μ ∈ �(�) is called E-
quasi-invariant if for any Borel setA⊆�, μ(A)= 0 if and only if μ([A]E)= 0.

Lemma 8. Let E be a CBER on a Polish space �, and let t be a proper RCD of μ ∈ �(�)
given σ(E). Then t is positive on an E-saturated set of full measure if and only if μ is
E-quasi-invariant.

Proof. Assume μ is E-quasi-invariant. Denoting N = {ω | tω[ω] = 0}, Proposition 7 im-
plies that μ(N)= 0, so μ([N]E)= 0. Therefore, t is positive on the E-saturated set of full
measure � \ [N]E .

Conversely, if t is positive on a E-saturated set of full measureX , then for BorelA⊆�
with μ(A)= 0, denoting B=A∩X ,

0 = μ(A)≥ μ(B)=
∫
�
tω(B)dμ(ω)=

∫
[B]E

tω(B)dμ(ω) (A.1)

since tω(B)= 0 forω /∈ [B]E . Since t is positive inX , tω(B) > 0 in B and, hence, in [B]E as
ω→ tω is σ(E)-measurable. Hence, by (A.1), μ([B]E)= 0 and, hence, finallyμ([A]E)= 0,
as [A]E ⊆ [B]E ∪ (� \X). �

If (��E) and (��D) are Polish spaces with induced Borel equivalence relations E
and D, (��E) is said to be embeddable into (��D) if there is an injective Borel mapping
ψ : � → � such that for all ω�η ∈ �, ω E η ⇐⇒ ψ(ω)Dψ(η); in this case, we denote
(��E)� (��D).

A CBER is said to be hyperfinite (Dougherty et al. (1994)) if it is induced by the action
of a Borel Z action on �; i.e., if there is a bijective22 Borel mapping T :�→� such that
x E y ⇐⇒ ∃n ∈ Z, Tn(x)= y.

22If a Borel mapping between Polish spaces is injective, then by Proposition 5, its inverse is also Borel.
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Proposition 9. Let E1 and E2 be nonsmooth CBERs on Polish spaces�1 and�2, with E1
being hyperfinite. Then (�1�E1)� (�2�E2).

Proof. Since E2 is nonsmooth, the Glimm–Effros dichotomy for CBERs (see Harrington
et al. 1990 or Dougherty et al. 1994, Theorem 3.4) implies that there is a universal hy-
perfinite CBER23 (�0�E0) such that (�0�E0) � (�2�E2). By Theorem 7.1 of Dougherty
et al. (1994), any two nonsmooth hyperfinite equivalence relations can be embedded
into each other; hence, (�1�E1)� (�0�E0). Hence, (�1�E1)� (�2�E2). �

A.2 Embedding of games

Proposition 10 is the primary tool needed for the proofs of Theorems 1(ii) and 3(ii).

Proposition 10. Let � and X be Polish spaces, and let E be a CBER on � that is non-
smooth and belief induced. Let τX = (X�J� (t

j
X)j∈J) be an everywhere finitely supported

and positive type space with a common prior μX , and assume that its common knowl-
edge equivalence relation EX is hyperfinite. Then one can construct a Borel embedding
ψ :X →� and a set of players I, such that J ⊂ I, along with an everywhere finitely sup-
ported and positive type space τ = (�� I� (ti)i∈I) possessing a common prior μ for which
the following statements hold:

• The CBER E is the common knowledge relation induced by the type space τ.

• We have t
j
ψ(·) = ψ∗((tjX)(·)) for each j ∈ J in X ; explicitly, for ω�ω′ ∈ Y ,

t
j
ψ(ω)[ψ(ω′)] = (tjX)ω[ω′].

• For j ∈ J and ω /∈ψ(X), tjω = δω, i.e., the Dirac measure at ω.

• We have ψ∗(μX) := μX ◦ψ−1 � μ and ψ∗(μX)(A)= μ(A) forA ∈ σ(E).

The middle two points say that for each player j ∈ J, his type function onX becomes
his type function onψ(X), and he has perfect knowledge on�\ψ(X). Note in particular
that if ω1 EX ω2, then ψ(ω1) E ψ(ω2). The last point says that the prior induced on � by
μX is absolutely continuous with respect to the final common prior μ, and they agree
on E-saturated sets.

Proof of Proposition 10. Since EX is hyperfinite, by Proposition 9 there is an em-
bedding ψ : (X�EX) � (��E). Denote � = ψ(X) and �0 = [�]E = [ψ(X)]E ; both � and
�0 are Borel by Propositions 3 and 5.

Since E is belief induced, by Proposition 18 there exist a set of playersK and smooth
CBERs (Ek)k∈K with finite classes such that E is induced by (Ek)k∈K . For j ∈ J, define the
knowledge relations

E j = {
(x� y) | (x= y)∨ (

x� y ∈ψ(X)∧ (
ψ−1(x)�ψ−1(y)

) ∈ E jX
)}
�

23Given�0 = 2N, E0 is the tail equivalence relation; Dougherty et al. (1994, Corollary 8.2) shows this to be
hyperfinite.
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i.e., E j is induced by E jX onψ(X) and player j has perfect knowledge outside of�. Define
I =K ∪ J. By construction, E is induced by (E i)i∈I , since it is induced by (E i)i∈I\J and E j
refines E for j ∈ J.

Denote by E0 = E�0 and E� = E |� the restrictions of E to �0 = [�]E and �, respec-
tively. For brevity, let μ̂ = ψ∗(μX) := μX ◦ φ−1; μ̂ is then E�-quasi-invariant by the as-
sumption that μX is positive and by Proposition 8. By Dougherty et al. (1994, Propo-
sition 3.1), there exists an E0-quasi-invariant measure ν on �0 satisfying μ̂ � ν and
satisfying μ̂(A)= ν(A) forA ∈ σ(E).

Observe the following string of implications for a setA⊆�,

μ̂(A)= 0 → μ̂
([A∩�]E�

) = 0 → μ̂
([A∩�]E

) = 0 → ν
([A∩�]E

) = 0� (A.2)

where the first implication is because μ̂ is E�-quasi-invariant, the second is because
[A∩�]E ⊆ [A∩�]E� ∪ (� \�), and the last is since ν, μ̂ agree on E-saturated sets. Also,

ν(A \�)= 0 → ν
([A \�]E

) = 0 → μ̂
([A \�]E

) = 0� (A.3)

where the first implication is because ν is E-quasi-invariant, and the last is since μ̂� ν.
We deal now with two cases to construct μ to be quasi-invariant:
If ν(�)= 1, let μ= μ̂. Then ifA⊆� with μ(A)= 0, then ν(A \�)≤ ν(� \�)= 0 and

μ̂(A)= 0. It follows that since [A]E = [A ∩�]E ∪ [A \�]E , we have μ([A]E)= 0 by (A.2)
and (A.3).

Otherwise, if ν(�) < 1, set

μ= 1
2
μ̂+ 1

2
ν(· |�0 \�)	

If μ(A) = 0, then clearly we also have μ̂(A) = 0 and ν(A \ �) = 0, and then, as above,
μ([A]E)= 0.

Either way, μ is E0-quasi-invariant. Now, for i ∈ I \ J, let ti be a proper RCD of μwith
respect to E i, which exists by Proposition 2. By Lemma 8, it is positive on an E i-saturated
set of full μ-measure and can be modified on a μ-null set to be positive everywhere.24

Clearly, for j ∈ J, tj as defined in the statement of the proposition is a positive proper
RCD of μ with respect to E j , since μ(·|�)= μ̂(· |�). �

A.3 Proof of Theorem 1

Fix a countably infinite set S. Let B denote the collection of all I-tuples (si� gi)i∈I for
which (S� I�A� (si� gi)i∈I) constitutes a positive Bayesian game, with (si) denoting the
types and (gi) denoting the payoff functions. Collection B is endowed with the topology
of pointwise convergence:25 for each α in a directed set, denote byϒα a pair (siα� g

i
α)i∈I of

I-tuples of types and payoff functions associated to α by a net. Thenϒα →ϒ= (si� gi)i∈I
in B if for every player i ∈ I, every ω ∈ S, and every pure action profile a ∈ ∏

i∈I Ai one
has giα(ω�a)→ gi(ω�a) and siα(ω)→ si(ω).

24Since E i has finite classes, over a μ-null set of E i classes let ti be uniform in each class.
25We define the topology in terms of nets.
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Proposition 11. Collection B is homeomorphic to a Borel subset of � :=
(�(S)× R

∏
i∈I Ai)S×I and, hence, is Polish (in some topology that induces the same Borel

structure).

The simple intuition is that for each player and state pair (s� i) ∈ S × I, we need to

specify an element in �(S) as well as an element of R
∏
i∈I Ai , which specifies what payoff

that player receives as a result of each possible action profile.
Henceforth, we identify B with some such fixed subset of �.

Proof of Proposition 11. Write B = ∏
i∈I(Bi

s × Bi
g), where Bi

s (resp. Bi
g) denotes

the projection of B to the space of types (resp. payoffs) for player i, with the induced
topologies. It suffices to show that Bi

s is homeomorphic to a Borel subset of (�(S))S and
that Bi

g is homeomorphic to a Borel subset of RS×
∏
i∈I Ai .

The latter claim is trivial once one notices that for any countable set C, the set of
bounded functions in R

C is Borel, as it can be written

⋃
n∈N

⋂
c∈C

{
a ∈R

C | |ac| ≤ n
}
�

and that the Tychonoff topology is indeed the required topology of pointwise
convergence.

We next turn to the former claim. As mentioned above, the intuition describing the
map from Bi

s to (�(S))S is to specify the beliefs of player i in each state. Hence, the
image of Bi

s under such a map is given by the subset of � defined by two conditions:
they satisfy positivity and they are constant over their support. Mathematically, these
conditions are, respectively,

⋂
ω∈S

{
si ∈ (

�(S)
)S | siω[ω]> 0

}

∩
⋂

ω�η�ζ∈S

{
si ∈ (

�(S)
)S | siω[η]> 0 → siω(ζ)= siη[ζ]}�

and again the topology is the topology of pointwise convergence. �

Denote by � = ∏
i∈I �i the space of strategy profiles over (S� I�A). The space �i of

strategies for player i on the countable space S is clearly a compact subspace of (�(Ai))S ;
hence, � is a compact space in the induced topology.

Proposition 12. The Bayesian equilibrium correspondence BE : B → � has a Borel
graph and takes on compact nonempty values.

Proof. The fact that every Bayesian game with a countable state space has at least
one Bayesian equilibrium follows from standard fixed point arguments; see, e.g., Simon
(2003). The fact that the set of Bayesian equilibria is compact also follows by standard
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arguments. To show that the graphG of the BE correspondence is Borel, note that26

G=
{((
si� gi

)
i∈I�σ

) ∈B×� | ∀ω ∈ S�∀i ∈ I�∀b ∈Ai�
∑
v∈S

gi
(
v�σ(ω)

)
siω[v] ≥

∑
v∈S

gi
(
v�b�σ−p(ω)

)
siω[v]

}
	

�

Corollary 13. There exists a Borel mapping ψ : B→ � such that for all � ∈ B, ψ(�) is
a Bayesian equilibrium of �.

The proof of Corollary 13 follows immediately from Proposition 12 and the selec-
tion theorem of Kuratowski and Ryll-Nardzewski (see, e.g., Aliprantis and Border 2006,
Theorem 18.13, and Himmelberg 1975).

Recalling that C(ω) is the common knowledge component containing a state ω, de-
note by s|C(ω) the restriction of the collection of types to the domain C(ω) and denote
by g|C(ω) the same restriction with respect to the payoff functions. Given two Bayesian
games

(S� I�A� sS�gS) and (T� I�A� sT �gT )

with finite or countable state spaces and the same player and action sets, an embedding
from S to T is an injective mapping φ : S→ T such that the following statements hold:

• For all ω ∈ S, i ∈ I, and pure action profiles x, giS(ω�x)= giT (φ(ω)�x).
• For all ω�η ∈ S and i ∈ I, (siS)ω[η] = (siT )φ(ω)[φ(η)].

Note that ψ(S) is then common knowledge in the type space sT . Intuitively, the
Bayesian game (S� I�A� sS�gS) is copied isomorphically to the Bayesian game
(φ(S)� I�A� s|φ(S)� g|φ(S)).

Proposition 14. Let � = (�� I�A� t� r) be a Bayesian game such that the common
knowledge relation E is smooth. Let B = B(S� I�A) be the set of Bayesian games that
all share some same countable state space S and the same player and action space as �.
Then there is a Borel map � : �→ S and a Borel map27 � : �/E → B such that for each
ω ∈�, if we denote

�ω = (
C(ω)� I�A� t|C(ω)� r|C(ω)

)
�

then �|C(ω) is an embedding of �ω in �(C(ω)).

See Figure 4. Note that for some ω, C(ω) may be finite, in which case �|C(ω) is not
surjective.

26The quantifiers are all countable here.
27By Proposition 11, �/E is standard Borel.
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Figure 4. The mapping �.

Proof of Proposition 14. Let� :�→ S be as in Proposition 4; i.e., Borel and injective
in each equivalence class.28 We can then define �(q) = (giq� s

i
q)i∈I for each common

knowledge component q ∈�/E by

giq
(
�(ω)�x

) = ri(ω�x)�
giq(s�x)≡ 0 ∀s ∈ S \�(q)

and (
siq

)
�(ω)

[
�(η)

] = tiω[η]�(
siq

)
s
= δs ∀s ∈ S \�(q)�

where δs denotes the Dirac measure at s, i.e., players get payoff 0 and have perfect knowl-
edge outside of the image of� on q. It is straightforward to check that� and� so defined
satisfy the requirements. �

Proof of Theorem 1(i). Let ψ : B→ �= (∏i∈I �(Ai))S be a Bayesian equilibrium se-
lection as in Corollary 13. Let �, � be as in Proposition 14. For each ω ∈�, define

σ(ω)=ψ(
�

(
C(ω)

))(
�(ω)

)
�

i.e., at stage ω, σ plays as the equilibrium that ψ chooses for the game �(C(ω)) at state
�(ω). Such σ is then an MBE. �

28The surjectivity in each infinite equivalence class is not needed here.
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Proof of Theorem 1(ii). Let �X = (X� {1�2}� {L�R} × {L�R}� t1X� t2X� r1
X� r

2
X), with X =

{−1�1} × 2N, be the two-player game presented in Hellman (2014a), with state space
X = {−1�1}×2N, which does not possess an ε-MBE for sufficiently small ε; fix some such
ε > 0. We recall the common knowledge relation EX in this game: Define SX :X → X

by SX(x0�x1�x2�x3� 	 	 	)= (−x0�x2�x3�x4� 	 	 	). Then EX is the equivalence relation onX
given by

EX = {
(x� y) | ∃k�m≥ 0� SkX(x)= SmX(y)

}
	

This relation is hyperfinite by Corollary 8.2 of Dougherty et al. (1994).
Let ψ :X →� denote an embedding as in Proposition 10 with the induced positive

type space τ = (�� I� (ti)i∈I) on � and a common prior μ satisfying ψ∗(μX)� μ. Define
the payoffs

rj(ω�x)=
{
r
j
X

(
ψ−1(ω�x)

)
if j = 1�2 andω ∈ψ(X)�

0 otherwise.

By the properties of �X and ε listed above, and the properties of ψ listed in Proposi-
tion 10, the game

�= (
�� {L�R}I� I� t1� t2� t3� 	 	 	 � tI� r1� r2� r3� 	 	 	 � rI

)
does not possess an ε-MBE. �

A.4 Proving Theorem 2

Recall the notion of a restriction of a type space from Section 3.2. Also recall that a subset
A of a Polish spaceX is analytic if it the projection of a Borel set inX×Y for some Polish
space Y .

Lemma 15. The correspondence �→ �(�) given by

�(ω)= {
ν ∈ �a(�) | ν(C(ω)) = 1 and

ν|C(ω) is a common prior for τC(ω)
}

has an analytic graph in�⊗�(�) and |�(ω)| ≤ 1 for all ω ∈�.

Proof. The fact that |�(ω)| ≤ 1 (i.e., that on a countable space in which no proper
nonempty subset is common knowledge there exists at most one common prior) is pre-
cisely Proposition 3 of Hellman and Samet (2012).

Let (fn) be as in Proposition 3. Define �i :�→ �(�) by

�i(ω)= conv
{
ti

(
fj(ω)

) | j ∈N
}

to be the convex hull of the priors for player i over those knowledge components con-
tained in the common knowledge component ofω. Then Gr(�i) is the projection of the
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Figure 5. The commutative diagram.

Borel setAi ⊆�×�(N)×�(�) given by

Ai =
{
(ω�η�ν) ∈�×�(N)×�(�) | ν =

∑
j∈N

η[j] · ti(fj(ω))
}
	

Finally, it is known (e.g., Samet 1998) that �(ω)= ⋂
i �

i(ω); hence, Gr(�)= ⋂
i Gr(�i);

and the finite intersection of analytic sets is analytic. �

Proof of Theorem 2. Clearly, property (iii) implies property (ii). Suppose (ii) holds;
then, for � as in Lemma 15, |�(ω)| = 1 for μ-a.e. ω ∈ � and � is clearly constant on
each class of E . Since Gr(�) is analytic,� is a μ-measurable function on {ω |�(ω) �=∅},
e.g., Kechris (1995, Theorem 21.10). Hence, after restricting � to some X ∈ σ(E) of full
μ-measure, the graph of � defines a Borel function ψ : X → �(�), constant on each
E-class but different on different E-classes. Hence, E |X is smooth.

Finally, assume property (i) holds and assume without loss of generality (w.l.o.g.)
that �=X . By Proposition 2, there is a μ-a.e. proper RCD t for μ given σ(E). The claim
that t is a common prior on a μ-a.e. component follows now from Proposition 16 below,
which states formally the commutativity of the diagram in Figure 5. �

Proposition 16. Let E , D be smooth CBERs on a Polish space �, with D refining E (that
is, D ⊆ E ; the classes of D are contained in classes of E), let μ be a regular Borel probability
measure on �, and let tE and tD be proper RCDs of μ with respect to σ(E) and σ(D)
respectively. Then, for μ-a.e. ω ∈�, for all BorelA⊆�,

tEω
(
A | [ω]D

) = tDω (A)	
Proof. Example 4 of Chang and Pollard (1997, p. 297) shows that for μ-a.e. E-class C,
tD|C (the type function tD restricted to C) is a proper RCD of tE |C given σ(D|C) (where
D|C is the restriction of the relation D to C); this clearly implies the proposition. �

A.5 Proving Theorem 3

Proof of Theorem 3(i). By Theorem 2, almost every common knowledge compo-
nent K has a common prior of the restricted type space τK . This is sufficient, by Theo-
rem 1.a in Hellman (2014b), to conclude that there can be no acceptable bet over τK for
such generic K. �
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Proof of Theorem 3(ii). We first note that the conclusion of Theorem 3(ii) applies to
the example�X given in Section 4.2.3, as explained there, and in fact using only two play-
ers. Denote the type space there (X� {1�2}� (t1X� t2X)) with knowledge relations (E1

X�E2
X).

The common knowledge equivalence relation EX is hyperfinite, as it is clearly induced
by a Z action.

Suppose a countable space K is given with a type space. For our construction, we
want to work a bit more generally with acceptable bets on arbitrary subsets L ⊆ K of
states and subset J ⊆ I of players. To this end, for a bounded function f : L→ R, de-
note by f the extension of f to K by f (ω) = 0 for ω /∈ L. Then we say that (f j)j∈J is an
acceptable bet for J on L if (compare with (2))∑

i∈J
f i(ω)= 0� Ej

[
f
j |ω]

> 0 ∀j ∈ J�ω ∈L	

Now returning to the example �X and given a nonsmooth belief-induced CBER
E on �, let ψ : X → � denote an embedding as in Proposition 10 with induced
finitely supported positive type space τ = (�� I� t) on � and common prior μ satisfying
ψ∗(μX)� μ. LetK be a common knowledge component in τ such thatψ−1(K) is one of
those components in τX on which there is an acceptable bet (f1� f2) (with f2 = −f1). By
assumption, this is true for μ-almost every component K, since it is true for μX-almost
every component inX (in fact, for every component), and μ and ψ∗(μX) have the same
E-saturated null sets. Hence, we also have an acceptable bet for these players, L := {1�2}
on ψ(ψ−1(K)) ⊆ K, and we need to show that there is an acceptable bet on the entire
componentK for all players:

Proposition 17. Let �K = (K� I� t) be a countable type space,29 with finitely supported
types,30 such that K does not strictly contain any nonempty common knowledge compo-
nent. Let L⊆K and J ⊆ I, and suppose there is an acceptable bet (gj)j∈J for J on L. Then
there is an acceptable bet for all the players in I on all ofK.

Proof. First, we show how to define an acceptable bet on the subset L for all players
(in case I �= J). Fix a player i0 ∈ J. Choose a strictly positive function h :L→R such that

Ei0[h |ω]<Ei0[f i0 |ω] ∀ω ∈L	
It is easy to see that this is possible, as types are finitely supported and 0<Ei0[f i0 |ω] for
all ω ∈L. Then define (g′i)i∈I on L by

g′i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
gi if i ∈ J, i �= i0�
gi − h if i= i0�
h · 1

|I| − |J| if i ∈ I, i /∈ J	

It is easy to check that (g′i)i∈I is an acceptable bet on L.

29Positivity is not needed for this proposition.
30Indeed, in our case, the types are finitely supported and positive, as they are derived via Proposition 10

and the example of Section 4.2.3.
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Now we proceed inductively and keep enlarging the domain L of (g′i)i∈I : Let
ω0 ∈K \L and i0 ∈ I be such that Ci0(ω0) ∩ L �= ∅, where we recall that Ci0(ω0) is the
knowledge component of i0 containing ω0. If there are no such i0 and ω0, then we are
done by the assumption that there are no proper subsets that are common knowledge.
Let γ > 0 be such that

ti0(ω0)[ω0] · γ < Ei0[g′j|ω0
]
�

which exists as Ei0[g′j|ω0]> 0, and define (g′i)i∈I at ω0 by

g′i(ω0)=
⎧⎨
⎩

−γ if i= i0�
γ

|I| − 1
if i �= i0	

The term (g′i)i∈I is an acceptable bet onL∪{ω0}. Now repeat the procedure withL∪{ω0}
replacing L and so forth until no states are left. The resulting profile is clearly zero sum
but with positive expectation for each player at each stage. �

�

Appendix B: Belief-induced relationships

We have in several places relied on the fact that a belief-induced relation can always
be assumed to be generated by types that are finitely supported. We formally state and
prove this proposition here.

Proposition 18. A CBER E is belief induced if and only if there are CBERs E1� 	 	 	 �Em
with finite classes that generate E .

It suffices to show this for each player separately (in a profile of players whose beliefs
induce E).

Lemma 19. If E is a smooth CBER, then there are CBERs E1, E2 with finite classes that
generate E .

Proof. It follows from Proposition 4 that there is Borel � : � → N such that for each
class C of E , �|C : C → N is an injection. Let D1 and D2 be two finite equivalence rela-
tions on N such that the relation generated by D1 and D2 has only one class. For example,

D1 = {
(0�1)� (2�3)� (4�5)� 	 	 	

}
� D2 = {

(0)� (1�2)� (3�4)� 	 	 	
}

and define

E j = {
(x� y) ∈ E | (�(x)��(y)) ∈ Dj

}
	 �

As previously mentioned, there are CBERs that cannot be induced by finitely many
smooth CBERs. This can be shown using the concept of the cost of a CBER E with an
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invariant31 measure μ. We briefly recall this concept; for a more comprehensive treat-
ment, see Kechris and Miller (2004).

A Borel graph G on a Polish space � is a Borel relation on � (i.e., a Borel subset of
� ×�) that is irreflexive and symmetric. A Borel graph G induces a Borel equivalence
relation E on �: E is the reflexive and transitive closure of G. We say that G spans E .
Given such a graph, for each v ∈�, let dG(v) ∈ {0�1�2� 	 	 	 �∞} denote the degree of v, i.e.,
the cardinality of the set {w ∈� | (v�w) ∈G}. Clearly, if dG(v) is countable for all v ∈�,
then so is the induced CBER E , and every CBER is spanned by some Borel graph with
vertices of countable degree (the relation itself).

The cost of a CBER E (with respect to an invariant measure μ) is defined as

Cμ(E) := inf
{

1
2

∫
�
dG(ω)dμ(ω) |G spans E

}
	

A result of Levitt (e.g., Kechris and Miller 2004, Chapter 20) is that if T is a Borel transver-
sal for a CBER E with an E-invariant measure μ, then Cμ(E)= μ(� \ T); in particular, if
μ is finite and E is smooth (and hence possesses a Borel transversal by Proposition 1),
then Cμ(E) <∞.

Suppose that E is a CBER and, furthermore, that E is generated by E1� 	 	 	 �En (that is,
the coarsest equivalence relation that each Ek refines). Let μ be E-invariant and finite.
Then μ is clearly also Ek-invariant for each k= 1� 	 	 	 � n, and it is easy to see that32

Cμ(E)≤
n∑
k=1

Cμ(Ek)	

Combining this observation with the result of Levitt, we see that if E1� 	 	 	 �En are smooth,
Cμ(E) is finite.

Hence, to show a non-belief-induced CBER, it suffices to find a CBER with infinite
cost with respect to some invariant measure E on it. A result of Gaboriau (see Kechris
and Miller 2004, Corollary 27.10) states that if E is a CBER with finite invariant measure
μ and T is a Borel tree33 that spans E , then Cμ(E)= 1

2

∫
� dT (ω)dμ(ω).

Now let F∞ denote the free (nonabelian) group with countably many generators.
This group acts on 2F∞ via (f (x))(g) = x(f · g) for x ∈ 2F∞ , f�g ∈ F∞, and induces a
CBER by x∼ y if and only if ∃g ∈ F∞ with g · x= y. From this, one deduces easily that if
μ= ∏

f∈F∞(
1
2 �

1
2) (which is clearly E-invariant), then Cμ(E)= ∞ by Gaboriau’s result.
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