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We study learning and information acquisition by a Bayesian agent whose prior
belief is misspecified in the sense that it assigns probability 0 to the true state of
the world. At each instant, the agent takes an action and observes the correspond-
ing payoff, which is the sum of a fixed but unknown function of the action and an
additive error term. We provide a complete characterization of asymptotic actions
and beliefs when the agent’s subjective state space is a doubleton. A simple exam-
ple with three actions shows that in a misspecified environment a myopic agent’s
beliefs converge while a sufficiently patient agent’s beliefs do not. This illustrates
a novel interaction between misspecification and the agent’s subjective discount
rate.
Keywords. Active learning, learning in games, misspecified models.

JEL classification. D83, D90.

1. Introduction

In many economic settings, agents are uncertain about the payoff consequences of their
actions, and the action they choose influences both their current payoff and the infor-
mation they receive. A fully myopic agent ignores the value of future information, and
even if the agent correctly processes the information she receives, she may repeatedly
take actions that would not be optimal under full information. In contrast, the optimal
rule for a patient agent requires “active learning,” meaning that the agent trades off the
future expected gains from experimentation against its cost in terms of foregone current
payoff. The details of these active learning rules have been extensively studied in the
case where the agent is a Bayesian whose prior is rich enough to include the true state
of the world. In many economic situations, however, it is plausible that the agent’s prior
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is misspecified, in the sense that it assigns probability 0 to the true state of the world,
because the space of possible models is quite large (Diaconis and Freedman 1986).

This paper is the first study of active learning and information acquisition by a mis-
specified Bayesian.1 In our model, at each instant, the agent takes an action and ob-
serves the corresponding payoff, which is the sum of a fixed but unknown payoff func-
tion and an additive error term whose distribution the agent knows corresponds to the
increment of a Brownian motion. The agent thinks there are two possible payoff func-
tions, yet the true payoff function is neither of them. We give a complete characteriza-
tion of the limit behavior of beliefs and actions, and, in particular, we determine when
beliefs converge to a steady state. The agent’s beliefs do not converge if all steady states
are “repelling” in the sense that an informative action played near the steady state gen-
erates signals in favor of another steady state. Using this fact, we show that if there is an
uninformative action and two informative ones, and the uninformative action is myopi-
cally optimal for intermediate beliefs, a myopic agent’s beliefs will converge to a steady
state, while a sufficiently patient agent’s beliefs will oscillate indefinitely. Finally, we
characterize the long-run outcome in a one-armed bandit problem and show how it
depends on which of the subjectively possible payoff functions is closest to the truth.

The idea that myopic Bayesian agents do not experiment and so need not learn the
truth has been explored in a number of economic models. For example, a monopolist
facing an unknown demand curve might choose to set each period’s price to maximize
current expected profit and never learn what the best price would be, as in McLennan
(1984). Similarly, a player in a game who never experiments with some actions might
not learn how her opponents would respond to them, and a system of such myopic
learners could converge to a self-confirming equilibrium whose outcome is not Nash
(Fudenberg and Levine 1993b, 1993a, Fudenberg and Kreps 1995). The optimal active
learning rules for correctly specified Bayesians (meaning that the true state is in the sup-
port of their prior) have also been extensively studied, notably in the multi-armed ban-
dits of Gittins (1979) and Whittle (1980), where the payoff to each arm is independent
of the payoffs of the others, and in optimal stopping problems (e.g., Wald 1945, Arrow
et al. 1949, Chernoff 1972, Moscarini and Smith 2001, and Fudenberg et al. 2017). Ac-
tive learning has also been studied in models of parametric learning like ours, where the
results of one action can provide information about a parameter that also determines
the expected returns to others (e.g., Easley and Kiefer 1988, Kiefer and Nyarko 1989 and
Aghion et al. 1991). In all of these cases, if the agent has a sufficiently low cost of infor-
mation (i.e., is sufficiently patient and/or faces sufficiently low flow costs of acquiring
signals), then with high probability she will learn enough to play the full-information
optimal action. Similarly, patient rational learners with nondoctrinaire and correctly
specified priors over opponents’ strategies cannot converge to non-Nash outcomes in
games (Fudenberg and Levine 1993b).

A marked difference between these models with a correctly specified prior and
those with misspecified priors is that with a correctly specified prior, the agent’s be-
liefs eventually converge, while they need not do so when the prior is misspecified

1We do not provide microfoundations for why the agent has a misspecified prior, but take the misspeci-
fication as given and characterize the resulting behavior.
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(Dubins and Freedman 1966). Berk (1966) is the seminal paper on the asymptotic be-
havior of the posterior distribution when the agent is trying to passively learn a parame-
ter from a series of exogenous and exchangeable signals but none of the parameters the
agent considers possible corresponds to the true distribution. Berk (1966) shows that
the posterior concentrates a.s. (with respect to the true distribution) on the subset �p

of the parameter set � on which the Kullback–Leibler divergence of the true distribu-
tion with respect to the subjective distributions is minimal. Thus, for generic priors with
finite support, the beliefs converge to a single point.2

In the econometrics literature, the maximum likelihood estimator of θ in the case
of a misspecified econometric model is known as a quasi-maximum likelihood estima-
tor (QMLE). In the case when the Kullback–Leibler divergence is minimized at a unique
belief �p = {θp}, QMLE is a natural estimator of θp. The signal process is assumed to
be exogenous and, in addition, it is typically assumed that the process of observations
satisfies near epoch dependence (Gallant and White 1988), which, roughly, requires that
dependence on past realizations fades away sufficiently quickly. In this case, QMLE con-
verges to θp p-a.s. (see, e.g., Gallant and White 1988, Theorem 3.19). In contrast to these
econometrics papers, it is natural for the signal process to have a long memory when
there is active learning. For instance, in a multiple-armed bandit problem, the very first
signal realization can determine whether the agent sticks to the safe arm or continues
with the risky arm forever. Here lies the key difference between our work and literature
on misspecification in statistics.

It is especially natural to consider misspecification in the context of parametric
learning models since any parametric prior (such as the assumption of a linear demand
curve with unknown slope and intercept) assigns probability 0 to “most” payoff func-
tions (Nyarko 1991). Moreover, in many economic applications, it is natural to suppose
that the agent’s action and associated signal distribution are not fixed but change en-
dogenously over time. Arrow and Green (1973) discussed a number of forms of misspeci-
fication of demand in oligopoly, including linear demand with exponentially distributed
parameters, and worked out the learning dynamics for myopic agents. In contrast, be-
liefs and actions cycle with the two-point priors in Nyarko’s (1991) otherwise identical
oligopoly model. Cursed equilibrium (Eyster and Rabin 2005) and analogy-based equi-
librium (Jehiel 2005, Jehiel and Koessler 2008) incorporate misspecification directly into
their definitions. Esponda (2008) provides a learning-theoretic foundation for an equi-
librium with misspecified beliefs in the case of a purely myopic learner who never ex-
periments. Esponda and Pouzo (2016a) define Berk–Nash equilibrium, which relaxes
Nash equilibrium by replacing the requirement that players’ beliefs are correct with the
requirement that each player’s belief minimizes the Kullback–Leibler divergence to her
observations on the support of her prior. They show that if payoffs are subject to small

2Shalizi (2009) gives a more general treatment of the problem: observations follow some stochastic pro-
cess and the considered set of models is not parametric. He requires that for any model θ and associated
density of observations fθ, the limit of (1/t) log(fθ(y1� � � � � yt )/p(y1� � � � � yt)) exists p almost surely, where
{yi} are observations and p is the true density. This assumption cannot be guaranteed independently of the
agent’s actions and is often violated in misspecified learning with endogenous signals, for example in the
cycles in Nyarko (1991).
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random shocks and if intended play converges to a limit “stable profile,” that profile
must be a Berk–Nash equilibrium if players are myopic (Theorem 2) or if the game is
“weakly identified” (Theorem 4).3 Their Supplement develops the dynamics of learn-
ing in an example with myopic players, and uses stochastic approximation to show that
play converges to a mixed Berk–Nash equilibrium. They also show in Theorem 3 that any
weakly identified Berk–Nash equilibrium is stable for some priors if, in addition to the
payoff shocks, players make asymptotically vanishing optimization errors. Esponda and
Pouzo (2016b) extend the definition of Berk–Nash equilibrium to dynamic Markov deci-
sion problems where the agents need not be myopic. While Esponda and Pouzo (2016a,
2016b) characterize the stable outcomes in a very general environment, they do not ana-
lyze when there is convergence and when particular outcomes are stable, while our work
completely characterizes the convergence of beliefs and actions in a specific setting. In
that sense our approaches are complementary. Heidhues et al. (2017) consider a model
of learning with misspecified beliefs where the optimal active learning rule is myopic so
that the agent never sacrifices short-run payoff to acquire more information.

We adopt a continuous-time model with signals generated by a controlled diffusion
to obtain sharper results; we briefly discuss a discrete time analog of our model after de-
veloping the continuous-time version formally. The next section lays out the primitives
of our model of misspecified learning in continuous time. Section 3 provides an exam-
ple in which the agent’s belief converges for high discount rates but cycles if the discount
rate is low. In Section 4, we describe the dynamics of belief updating and characterize
the agent’s optimal policy. In Section 5, we show how the agent’s optimal willingness
to experiment with informative actions depends on her patience level. Section 6 estab-
lishes that the asymptotic behavior of actions and beliefs is pinned down by local prop-
erties of steady states. In Section 7, we apply our techniques to the prominent examples
from the literature. Section 8 concludes.

2. The model

Time is continuous and denoted by t ∈ [0�+∞). At every point in time t, the agent takes
an action at ∈A, where the set of possible actions A is finite. At time t, the agent receives
flow payoff dπt and observes it. Objectively, the flow payoff at time t when the agent
takes the action at is given by

dπt = π̃(at)dt + σ(at)dWt�

where Wt is a standard Brownian motion and σ(a) > 0 is the volatility when the agent
takes action. The agent thinks that the only possible states of the world are �= {0�1}. In
each state θ ∈ {0�1}, the agent believes that the flow payoff is given by

dπt = πθ(at)dt + σ(at)dWt�

3The assumed payoff shocks can have very small support so need not induce experimentation; their
role is to ensure that if beliefs converge, then play does too, as in Fudenberg and Kreps (1993) and the
subsequent literature on smooth fictitious play. We define weak identification and relate it to our model in
Remark 2 below.
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Note that the function σ is the same for both states and is objectively correct. We say
that the agent’s prior is misspecified if there is no θ ∈ � such that πθ = π̃. We denote by
aθ the action that maximizes the flow payoff in state θ, which we assume is unique:

aθ = argmax
a∈A

πθ(a)�

We call these the full-certainty actions and assume that a0 �= a1, as otherwise the prob-
lem is trivial.4

Assumption 1 (No informationally equivalent actions). There is no pair of distinct ac-
tions a′, a′′ such that

π1(a′) −π0(a′)
σ

(
a′) = π1(a′′) −π0(a′′)

σ
(
a′′) �

The agent’s filtration, which is generated by observation of the payoff process (πt),
is denoted by F � (Ft )t≥0. The set of the agent’s strategies, i.e., processes adapted to
F taking values in A, is denoted by S .5 We use P

s[·] and E
s[·] to denote the agent’s

subjective probability measure and expectation operator when she uses strategy s ∈ S ,
and use P̃

s[·] and Ẽ
s[·] to denote the probability measure and expectation operator of an

outside observer who knows the true payoff π̃ function, and thus knows the objective
probability measure when the agent uses strategy s. When a strategy s has been fixed,
we write at for the agent’s action at time t along the course of a particular realization of
the process. The subjective probability the agent assigns to state 1 at time t is denoted
by

pt � P
s[θ = 1 | Ft]�

where p0 ∈ (0�1) is the prior probability the agent assigns to state 1 at time zero. Since
� is a doubleton, we refer to pt as the agent’s belief. To simplify notation, define π(p)(a)

as the flow payoff the agent expects when taking action a when holding the belief p:

π(p)(a)� pπ1(a)+ (1 −p)π0(a)�

Note that π(1) = π1 (when the agent is sure the state is 1, her expected payoff is given by
π1) and similarly that π(0) = π0.

The agent’s objective is to pick a strategy to maximize the expected flow of payoffs
discounted with rate r,

max
s∈S

E
s
p

[
r

∫ +∞

0
e−rt dπt

]
�

For any finite r the agent attaches some value to future payoffs and so may choose to
experiment. We also consider the case of a purely myopic agent who cares only about
the current payoff; her objective is simply maxa∈AE[π(p)(a)].

4If the action a� is optimal independent of the state, it maximizes the expected flow payoff for any belief,
so the optimal strategy is simply to take the action a� after every history.

5As we explain in Remark 1, our results extend to the case where the agent can use mixed strategies.
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3. Illustrative example: Seller with unknown linear demand

Imagine a seller of a differentiated product. Suppose that she thinks that the elasticity
of demand is constant, but is not sure how elastic it is. He already tried some initial
price and now she is deciding whether the price should be changed. If demand is highly
elastic, it is optimal to decrease the price, while if the demand is inelastic, it would be
optimal to increase the price. In actuality, the elasticity of demand is not constant but
is low for low prices and high for high prices. What is the dynamic of the seller’s actions
and beliefs, and what does the seller do in the long run?

Nyarko (1991) studied this problem when the seller is myopic and has only two ac-
tions: high price and low price. The main finding in Nyarko (1991) is that the beliefs of
a seller with a misspecified demand model need not converge. Indeed, when the seller
tries the low price, she detects low elasticity. She extrapolates this low elasticity to the
entire demand curve and sets the high price. After that, she detects high elasticity, which
makes her set the low price, etc. Here prices and beliefs oscillate and do not converge,
because the distribution of price signals under the action that is optimal in state 1 is
closer to the distribution the seller expects under state 0, and, conversely, the myopi-
cally optimal action in state 0 generates signals that increase the probability the seller
assigns to state 1.

However, the results of Nyarko (1991) depend critically on the assumptions that the
player has only two actions and is completely myopic. We show that adding a third un-
informative action that is myopically optimal for intermediate beliefs leads the seller to
eventually play the uninformative action forever, so that her beliefs converge, provided
that the seller is not too patient. In contrast, the beliefs of a sufficiently patient seller
do not converge, because she never chooses the uninformative action. The key here
is that, unlike in the case of a correctly specified payoff function, a misspecified agent
can continue to believe she has a nontrivial “option value” from using actions that are
not myopically optimal, even in the limit as her data set grows large. The example here
is the simplest way to show this qualitative distinction between patience and myopia
when players are misspecified.6

The seller optimizes against a linear demand function and can pick among three
prices, one of them uninformative:

A = {−1�0�1}�

We normalize prices and profits to simplify the algebra. The seller’s perceived linear
demand function gives rise to quadratic subjective profit functions:

π1(a) = −a(a− 2)�

π0(a) = −a(a+ 2)�

6Nyarko’s model is different from ours in that her state space � is a convex subset of R2, but the same
cycling occurs when there are two states and two actions, as when the action 0 is removed from our example
here.
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Figure 1. Objective and subjective payoffs.

The true profit function is, however,

π̃(a) = −a2 − 0�3�

The signal volatility is constant in action, σ(a) � σ . See Figure 1 for a depiction of the
payoff functions.

When p is close to 1, the agent plays a = 1. When a = 1 is played, the true payoff is
closer to the state-0 average payoff than to the state-1 average payoff, because∣∣π1(1)− π̃(1)

∣∣ − ∣∣π̃(1)−π0(1)
∣∣ = 1 + 1�3 − (−1�3 + 3) > 0�

As we show later, this implies that state 0 is closer to the truth in the sense of Kullback–
Leibler (KL) divergence, and so the agent’s belief drifts down and she becomes less con-
fident in state 1. Conversely (and symmetrically), when the agent is confident that the
state is state 0 (p close to 0), she plays a = −1, and the state-1 average payoff is closer to
the truth than the state-0 average payoff:∣∣π1(−1)− π̃(−1)

∣∣ − ∣∣π̃(−1)−π0(−1)
∣∣ = |−3 + 1�3| − |−1�3 − 1| < 0�

Here the agent’s belief drifts upward and she becomes more convinced of state 1.
Therefore, this dynamics pushes the agent’s belief pt from the boundaries to the

center of [0�1]. The question is whether the agent continues to oscillate between actions
1 and −1 indefinitely or if she eventually plays the uninformative intermediate action
a = 0, which is absorbing. It turns out that the answer depends on the agent’s discount
rate. Specifically, using the results from the main part of the paper, we are be able to
show the following claim.

Claim 1. When the agent uses her optimal strategy, there exists a critical discount rate
r̂ = 6/σ2 such that the following statements hold:

(i) When the seller is impatient, r > r̂, her action converges almost surely to the unin-
formative action, limt→∞ at = 0, and her belief converges almost surely to 1/2.

(ii) When the seller is patient, r < r̂, her action and belief almost surely do not converge.
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The patient agent’s beliefs and actions do not converge because she believes that
there are large gains from learning when her belief is close to 1/2, so that it is optimal to
experiment with either a = 1 or a = −1 and never take the uninformative action a = 0.
As the optimal action under state 0 generates signals in favor of state 1 and, conversely,
the optimal action under state 1 generates signals in favor of state 0, the patient agent
experiments indefinitely.7

Esponda and Pouzo (2016a) propose an alternative modification to the two-action
Nyarko example: Instead of adding an uninformative action, they allow the agent to ran-
domize, and define a Berk–Nash equilibrium as a point where the agent’s beliefs mini-
mize the expected KL divergence with the truth, where the expectation is over the dis-
tributions of beliefs that arises from the agent’s mixed action. Our results suggest that
whether play converges to this Berk–Nash equilibrium (and thus whether it is stable in
the sense of Esponda and Pouzo 2016a) when the agent engages in active learning can
depend on the discount factor. However, this suggestion is not definitive due to the dif-
ferences between our models. In particular, we have not extended our model and results
to allow for the payoff perturbations that they use to generate randomized play.

4. The dynamics of optimization and learning

4.1 Dynamics of beliefs

We start by characterizing the evolution of the agent’s beliefs with respect to her subjec-
tive probability measure. To do so we define the informativeness I : A → R of an action
a as

I(a)� π1(a)−π0(a)

σ(a)
�

Note that Assumption 1 implies that no two actions can have the same informative-
ness. Intuitively, if I(a) > 0, the agent who takes action a at time t interprets higher
flow payoffs as evidence of the state being θ1, while if I(a) < 0, she takes high flow pay-
offs as evidence of the state being θ0. The bigger the absolute value of I(a), the more
strongly the agent’s belief reacts to her flow payoffs. For a given strategy s, we define a
process that measures how much the realized payoffs deviated from the agent’s expected
payoffs

Zs
t �

∫ t

0

dπτ

σ(aτ)
−

∫ t

0

πpτ(aτ)

σ(aτ)
dτ� (1)

As is well known (see Bolton and Harris 1999, Liptser and Shiryaev 1974, Theorem 9.1),
under the agent’s subjective probability measure, the process Z is a Brownian motion.
Furthermore, the belief (pt)t∈R+ is a martingale and can be characterized as a solution

7One might object that the player would notice that she is not converging and reconsider her model.
We have two responses to this. First, in our setting, any signal path realizes with positive probability, so
the cycles, while a priori unlikely, do not flatly contradict the agent’s subjective model and need not lead a
Bayesian to reject it. Second, one may think of our analysis as a prediction about what happens before the
(non-Bayesian) agent runs a falsification test and rejects her current model. Fudenberg and Kreps (1993),
Sargent (1999), and Cho and Kasa (2015) develop this idea.
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to the stochastic differential equation8 (SDE)

dps
t = ps

t

(
1 −ps

t

)
I(at)dZs

t � (2)

To simplify notation, we subsequently drop the explicit dependence on the strat-
egy and denote the belief process by just p. The log-likelihood ratio of the subjective
probability of state θ1 and state θ0 is denoted by

Lt � log
pt

1 −pt
�

This transformation of the belief process to the associated log-likelihood process will be
convenient for our future results.

The next lemma derives the evolution of the log likelihood under the objective prob-
ability measure. Under the objective measure, neither p nor L is a martingale, but the
evolution of the log likelihood L follows from applying Ito’s lemma on the dynamics of p.

Lemma 1. Given a strategy s, the dynamics of the agent’s log-likelihood ratio Lt are given
by

dLt = I(at)

[
π̃(at)−π(1/2)(at)

σ(at)
dt + dWt

]
� (3)

where Wt is a standard Brownian motion under the objective distribution.

4.2 Relation to Kullback–Leibler divergence

Let KL(θ�a) for θ ∈ {0�1} be the Kullback–Leibler divergence between the payoff distri-
bution under the true state and the payoff distribution under state θ, when the agent
plays action a ∈A:

KL(θ�a)�
∫
R

log
[
φ

(
x;πθ(a)�σ(a)

)
φ

(
x; π̃(a)�σ(a))

]
φ

(
x; π̃(a)�σ(a)) dx�

where φ(x;π�σ) = (
√

2πσ)−1 exp(−(x−π)2/(2σ)) is the density of the normal distribu-
tion with mean π and variance σ2. Simple algebra shows that

KL(θ�a)=
(
πθ(a)− π̃(a)

)2

2σ2(a)
�

Define �(a) as the difference between these two divergences when action a is played:

�(a)� KL(0� a)− KL(1� a)�

8To avoid technicalities we assume that the agent is restricted to strategies such that (2) admits a unique
strong solution, i.e., the posterior belief is pathwise well defined. A simple sufficient condition is a restric-
tion to Markov strategies where the agent’s action is piecewise constant in her belief.
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Note that �(a) is finite because σ2(a) > 0 for all a ∈A. In discrete time with a fixed signal
generating process, beliefs converge toward the subjective state whose signal distribu-
tion minimizes the Kullback–Leibler divergence to the true state (Berk 1966). Thus, in
discrete time with a fixed action a, pt would converge to 1 if �(a) > 0 and to 0 if �(a) < 0.
As the next result shows, �(at) determines the drift of the log-likelihood ratio (and thus
the belief) process in our continuous model. As we see below in Proposition 3, this nat-
urally extends the discrete time result to nonconstant actions.

Fact 1. The drift of log-likelihood ratio process L given in (3) is equal to �(at). Its squared
volatility is equal to I(at)

2, which is also the Kullback–Leibler divergence between the
payoff distributions in state 1 and state 0 when the agent plays action at .

This fact lets us give some intuition for (3). If for some a ∈ A, π̃(a) > π(1/2)(a), and
I(a) > 0, then the true expected flow payoff π̃(a) is closer to π1(a)—the expected payoff
in the state θ = 1—than it is to π0(a)—the payoff in the state θ = 0. This implies that
observed signals are on average closer to state 1 than state 0, or �(a) > 0. As a result, the
belief process drifts upward.

4.3 Optimal behavior

The next technical preliminary is to verify that an optimal policy for the agent exists. This
has not yet been shown in our setting, even in the case of a correctly specified agent.
The closest results are those of Strulovici and Szydlowski (2015), but their results are
not immediately applicable here because they assume the variance of the controlled
process is uniformly bounded from below. In our setup, this assumption corresponds
to assuming that the informativeness of each action is nonzero (I(a) �= 0) for all a ∈ A.
To circumvent this problem, we recast our model as a combined optimal control and
optimal stopping problem.

We call an action a ∈ A uninformative if I(a) = 0, which is true if and only if
π1(a) = π0(a). The payoff of any uninformative action must be independent of the
state, so in generic games every optimal policy will only use the single uninformative
action with the highest subjective payoff. Denote this action by au and denote its payoff
by g� π0(au).

Define the value function as the highest average expected value that can be achieved
by the agent using an arbitrary strategy given her initial belief p:

vr(p)�

⎧⎪⎨
⎪⎩

sup
s∈S

E
s
p

[
r

∫ +∞

0
e−rt dπt

]
for r <∞�

max
a

π(p)(a) for r = ∞�

The following theorem characterizes the value function and shows the existence of a
Markovian optimal strategy, i.e., a strategy that depends on the history only through the
current belief.
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Theorem 1. For each discount rate r ∈ (0�+∞], there exists an optimal strategy s∗r :
[0�1] →A, which is Markovian. The value function vr : [0�1] →R+ is continuous, convex
in the belief p, continuous and nondecreasing in the discount rate r, and limr→∞ vr(p) =
v∞(p) for all p. Furthermore, for r < ∞, vr(p) is twice continuously differentiable on
{p ∈ (0�1) : vr(p) > g} and satisfies the Hamilton–Jacobi–Bellman (HJB) equation

vr(p)= max
a∈A

π(p)(a)+ [
I(a)p(1 −p)

]2 v
′′
r (p)

2r
�

Any optimal strategy maximizes this expression for p = pt after almost every history.

The proof of the theorem, which is given in the Appendix, first solves the auxiliary
problem where the agent is restricted to informative actions, and once the belief leaves
an exogenously specified set takes the optimal uninformative action forever. Then the
proof verifies that if this set is chosen appropriately, the resulting policy from the aux-
iliary problem is optimal in the original problem. The fact that v is nonincreasing in r

follows, as increasing r is equivalent to increasing the volatility of the signals, and the
agent could replicate this by adding the noise herself.

Remark 1 (Mixed strategies). Because the supremum over all strategies is attained by a
Markov strategy, it is clear that the agent could not gain from an ex ante randomization
over the space of all possible pure strategies. The same conclusion holds if instead we
define mixed strategies as the limit of high-frequency oscillations among pure actions,
as the resulting Bellman equation is linear in the probability of taking each action.9

5. Active experimentation

This section shows how the agent’s optimal willingness to experiment with informative
actions depends on her patience level.

The next lemma uses Theorem 1 to say more about the form of the optimal strategy.

Lemma 2. An optimal strategy s∗r has the following properties:

(i) For any r, there exists a unique (but possibly empty) interval [u�u] ⊂ [0�1] such
that the uninformative action is optimal if and only if p ∈ [u�u].

(ii) The optimal action s∗r (p) is unique for almost every belief p ∈ [0�1], and the evo-
lution of the agent’s beliefs is independent of which optimal strategy she uses.

(iii) There exists an interval of beliefs around p = 0 and p = 1 such that the unique
optimal action is myopic, i.e., for any r, ∃ limp↘0 s

∗
r (p) = a0, limp↗1 s

∗
r (p) = a1.

9Formally, we extend the payoff functions π̃ : �(A) →R and the volatility σ : �(A) →R to mixed actions
by taking the average over payoffs/volatilities when the agent’s action is distributed according to β ∈ �(A),
i.e., π̃(β) = ∑

a βaπ̃(a) and σ(β) = (
∑

βaσ
2(a))1/2. The informativeness I(β) is defined as the average

informativeness, I(β)= ∑
a βaI(a).
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Note that because beliefs evolve continuously, if the prior belief is below u, it can
never rise above it, and that if the prior is above u, it cannot fall below it.

The next example shows how the conclusion of Lemma 2 part (ii) can fail if we drop
Assumption 1 and allow actions that are subjectively but not objectively equivalent.

Example 1. The set of feasible actions is A = {a0� a′� a′′� a1} and the signal variance is
σ(a) ≡ 1 for all a, and the payoff functions are as follows:

a0 a′ a′′ a1

π0(a) 5 4 4 0

π1(a) 0 1 1 5

π̃(a) 4 3 2 1

Actions a′ and a′′ are informationally equivalent because I(a′) = I(a′′). For a myopic
agent with some intermediate p̂, both a′ and a′′ are optimal. However, the objective pay-
off to a′ and a′′ are distinct, and the learning dynamics depends on the optimal action
selection. Action a′ generates signals that point to state 0 while action a′′ generates sig-
nals that point to state 1. Indeed, the drift of L is �(a′) = −1�5 < 0 when a′ is played and
is �(a′′) = 1�5 > 0 when a′′ is played. ♦

Our first main result shows that a sufficiently patient agent does not play uninfor-
mative actions.

Proposition 1. For each p ∈ (0�1), there is r̄ such that for r < r̄, uninformative actions
are not optimal. If additionally a0 and a1 are informative, then there is a uniform r̄ such
that for all r < r̄ and all p ∈ [0�1] only informative actions are optimal.

The proof is deferred to the Appendix; it constructs a strategy that shows that the
gains from learning outweigh the loss from experimentation when the agent is suffi-
ciently patient.

The next proposition is the partial converse of Proposition 1 and states that if an
uninformative action is strictly myopically optimal at some belief, then it is still optimal
when the agent is slightly patient.

Proposition 2. Suppose there is a p̂ ∈ [0�1] such that an uninformative action is the
myopically strict best response to p̂. Then there is r such that for r > r, an uninformative
action is a best response to p̂.

Proof. Let Sr be the maximal set of beliefs where an uninformative action is optimal:
Sr � {p ∈ [0�1] : vr(p) = g}. We have that p̂ ∈ intS+∞. By Theorem 1, v is continuous in r;
consequently, Sr is continuous in r. Therefore, for r large enough, p̂ ∈ Sr for all r > r. �

6. Asymptotic beliefs and actions: Complete characterization

The main result of this section shows that the asymptotic behavior of actions and beliefs
is pinned down by the local properties of the payoff functions near the steady states and,
in particular, whether these steady states are attracting or repelling.



Theoretical Economics 12 (2017) Active learning 1167

Fix an optimal strategy s∗r . The belief p̂ is a steady state belief if whenever pt = p̂

and at = s∗r (pt), we have dpt = 0. By inspecting formula (2), one can see that first, there
are two corner steady states p = 0 and p = 1, and second, there can be interior steady
states at beliefs p̂ ∈ (0�1) where the optimal action s∗r (p̂) is uninformative. Action â is
a steady state action if there is a steady state belief p̂ such that â = s∗r (p̂). The two full-
certainty actions a0 and a1 are steady states. If there is an interior steady state belief, the
corresponding steady state action must be au.

We say that action a ∈ A is attracting if there is positive objective probability that
action converges to a, that is, if P̃[limt→∞ at = a]> 0. We say that a ∈A is repelling if the
objective probability of converging to a is 0.

The next result completely classifies steady state actions into attracting/repelling
and shows that the long-run dynamics of the belief process is completely determined by
the properties of payoff functions evaluated at steady state actions. The interior steady
state is always attracting. Whether a corner steady state is attracting or repelling is de-
termined by the sign of the difference in Kullback–Leibler divergences �(a) evaluated at
the full-certainty action. It is convenient to rewrite �(a) as given by

�(a) =
(
π1(a)−π0(a)

)(
π̃(a)−π(1/2)(a)

)
σ2(a)

� (4)

When �(a) is positive, the payoff in state 1 is objectively closer to the objective payoff
when the agent plays action a; when �(a) is negative, the payoff in state 0 is closer. In
particular, when the objective payoff π̃(a1) is closer to π1(a1) than to π0(a1), �(a1) > 0,
so that when the agent plays a1, she becomes more convinced that it is best to play a1.
Similarly, a0 is attracting if π̃(a0) is closer to π0(a0) than to π1(a0).

Proposition 3. Fix discount rate r.

(i) If the interior steady state action exists, it is attracting. In particular, uninforma-
tive full-certainty actions are attracting.

(ii) Informative full-certainty action a1 (a0) is attracting if �(a1) > 0 (�(a0) < 0) and
is repelling if �(a1) ≤ 0 (�(a0) ≥ 0).

(iii) If there are no interior steady state actions and both a0 and a1 are repelling, then
beliefs and actions converge with probability 0. Otherwise, beliefs and actions con-
verge with probability 1.

The proof is given in the Appendix; here we give the intuition behind the result. Let
[u�u]�U be the set of interior steady state beliefs. For p slightly outside of U , the volatil-
ity of the belief process is separated away from zero and there is a positive chance of
hitting U even if the drift leads away from U . Now consider a corner steady state, p = 1
for concreteness. The volatility of {pt} vanishes as pt approaches 1, and we need to look
at the drift of the belief process. It turns out that that the sign of the drift is sufficient to
determine whether beliefs can converge to 1: positive drift makes pt converge to 1 with
positive probability, while negative drift prevents pt from converging to 1.
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Another intuition involves KL divergence. Consider steady state p = 1, and imagine
the current belief pt ≈ 1. Action a1 is the last informative action before the agent hits the
steady state. If at a1, state 1 is closer to the truth than state 0 in terms of KL divergence
(�(a1) > 0), then the agent’s signals on average favor state 1. This makes her willing to
keep on playing a1 and, therefore, she converges to p = 1 with positive probability.

The proof works with the agent’s belief process and then translates the asymptotic
properties of beliefs into the asymptotic properties of actions. We are able to obtain this
clean characterization of asymptotic beliefs because diffusion processes in continuous
time admit a sharp characterization of the limit distribution (Lemma 5 in the Appendix).
However, if the agent only observes the history of the continuous-time process at dis-
crete but sufficiently frequent intervals and changes her actions only at those times,
then because the distribution of the agent’s future beliefs has no mass points, the pro-
cess cannot converge to a steady state that is a repellor in the continuous-time model.
We believe that attractors of the continuous-time model are also attractors with suffi-
ciently frequent observations in discrete time, but we have not proved this formally.10

A version of the following result is known in the literature and serves here as an illustra-
tion of Propositions 1 and 3: If the support of the agent’s prior includes the true state
and the agent is sufficiently patient, the limit action is optimal.

Corollary 1. Assume that a0 and a1 are informative, and that π̃ ∈ {π0�π1}. Then there
exists r > 0 such that for all r < r, limt→∞ at = maxa π̃(a) with probability 1, so that the
agent’s action converges to the full-information optimum.

Proof. Without loss of generality let π̃ = π1. Because the full-information actions are
both informative, Proposition 1 implies that there is a uniform r̄ such that for all p ∈
[0�1], only informative actions are optimal. Therefore, there are no interior steady states.
Because π̃ = π1, �(a1) > 0, so by Proposition 3, P̃[limt→∞ at → a1] = 1. �

The next two corollaries apply for any discount rate r ∈ (0�+∞] when the agent’s
model can be misspecified.

We say that the belief process is recurrent on (0�1) if for every initial belief p0 ∈ (0�1),
each belief p′ ∈ (0�1) is reached with probability 1, i.e.,

P̃
[
pt = p′ for some 0 ≤ t <∞] = 1�

Corollary 2. Suppose that for all p ∈ (0�1), only informative actions are myopically
optimal. Then the set of limit beliefs and actions does not depend on r. If in addition a0

and a1 are repellors, then the belief interval (0�1) is recurrent for any r.

10The continuous-time value function is an upper bound on what can be achieved with less frequent
observations, and we think it is the limit of the discrete time value functions as the observation periods
shrink. Our proof strategy would be to use this to try to show that the optimal actions also converge. Finally,
we would need to show that the limiting asymptotic beliefs are the same as the asymptotic beliefs in the
continuous-time model.
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This follows immediately from Proposition 3 because if all best responses are infor-
mative, there are no interior steady states.

We say that there is a uniform best explanation if there is a subjective state θ ∈ {0�1}
such that for all actions a ∈A,

∣∣πθ(a)− π̃(a)
∣∣ ≤ 1

2

∣∣π1(a)−π0(a)
∣∣� (5)

The condition posits that the true payoff function π̃ is closer to the same subjective
payoff π0 or π1 for every action. If one state is a strict uniform best explanation (that
is, if the inequality in (5) is strict), then the game is weakly identified.

Corollary 3. Suppose that there is a uniform best explanation. Then the beliefs con-
verge for all r.

Intuitively, if one subjective state is a better explanation for the agent’s observations
for every action, then the agent’s beliefs get pushed toward that state as long as the agent
takes an informative action. Hence, they either converge to probability 1 on that state or
get absorbed as soon as the agent takes an uninformative action.

Next, note that if the agent’s prior assigns positive probability to the true payoff func-
tion π̃(·), then it is the uniform best explanation. Moreover, π̃(a) + ε(a) remains the
uniform best explanation if the perturbation ε(a) is sufficiently small for all informative
actions and zero for the uninformative action. Hence, in the long run the agent’s belief
assigns probability 1 to the perturbed version of the the true payoff function.

The next result says that convergence is monotone in the discount rate.

Corollary 4. If the agent’s belief converges for some r ′, then it converges for any r ′′ > r′.

Proof. Suppose the belief does not converge for r ′′ > r′. Proposition 3 implies that both
a1 and a0 are repelling, and there is no interior steady state. Hence, vr′′(p) > g for all p.
By monotonicity of vr in r, vr′(p) ≥ vr′′(p) > g for all p. Therefore, there are no interior
steady states under r ′. By Proposition 3, the beliefs under r ′ do not converge, which
contradicts the assumption. �

As our leading example in Section 3 shows, the converse is not true: convergence for
r ′ does not imply convergence for r < r ′.

Corollary 5. Suppose a0 and a1 are repellors, that is, �(a1) < 0 and �(a0) > 0. Then
there is r̄ such that for all r < r̄, the belief interval (0�1) is recurrent.

Proof. First, a0 and a1 are informative. Indeed, if a0 and/or a1 were uninformative,
there would be interior steady state beliefs in the neighborhood of the corresponding
state, which would be attracting by Proposition 3. Then, by Proposition 1, there is a
uniform r̄ such that for all p ∈ [0�1], only informative actions are optimal, so there are no
interior steady states. The only steady state beliefs are p = 0 and p = 1. The conclusion
then follows from Lemma 5 part (i), in the Appendix, which applies a standard result to
our setting. �
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Corollary 6. If the uninformative action is myopically optimal for some p, then the
beliefs converge for r large enough. If additionally a0 and a1 are repellors, then there is an
r > 0 such that for all r < r, beliefs do not converge.

Remark 2. Esponda and Pouzo (2016a) (adapted to our one-player setting) say that a
game is weakly identified at an action a if whenever the two states θ and θ′ both mini-
mize the KL divergence between the true and subjective distribution generated by this
action, the action generates the same distribution over outcomes in both states. They
say that a game is weakly identified if it is weakly identified at every action a. In our
model, action a is weakly identified if �(a) = 0, which implies that a is uninformative.
Their Theorem 4 states that a stable strategy must be a Berk–Nash equilibrium if the
game is weakly identified, but inspection of the proof of Theorem 4 shows that for this
result it is sufficient to have weak identification of the strategy in question. Similarly,
in our model, the game is weakly identified at any attracting steady state: At an interior
steady state the action is uninformative and so weakly identified, and if a full certainty
action is an attracting steady state, then only the corresponding state minimizes the KL
divergence with the truth. A difference between our results is that we characterize the
learning dynamics even when the game is not weakly identified at a steady state action a.
Proposition 3 part (ii) shows that in this case a is repelling. For instance, if π̃(a1) = 0 and
π1(a1) = −π0(a1) > 0, then a1 is informative, but �(a1) = 0, so the game is not weakly
identified at a1.

7. Examples

7.1 Seller with unknown linear demand

To begin this subsection, we prove Claim 1. Recall

A = {−1�0�1}�
π1(a) = −a(a− 2)�

π0(a) = −a(a+ 2)�

π̃(a) = −a2 −η� η> 0�

σ(a) ≡ σ�

The proof is an illustration of how to use the general results of Propositions 1, 2, and 3
in a particular situation. The analysis follows two steps: first we find the set of steady
states using Proposition 1 and then we determine whether they are attracting or re-
pelling using Proposition 3. For this example we additionally find the exact discount
rate cutoff r̄.

Proof of Claim 1. First find that

�(a) = −4aη/σ2�
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In this example,

a1 = 1�

a0 = −1�

au = 0�

We have that �(a1) < 0 and �(a0) > 0. By Proposition 3, both a1 and a0 are repelling.
Now we find when the uninformative action au = 0 is the interior steady state. To do

so, we start by computing the value function of the myopic agent:

v∞(p) = max
a

π(p)(a) = max
{
π(p)(1)�π(p)(−1)�π(p)(0)

}
= max

{
p+ (1 −p)(−3)�−3p+ 1 −p�0

}
= max{4p− 3�−4p+ 1�0}�

Every optimal myopic strategy satisfies

s∗∞(p) =

⎧⎪⎪⎨
⎪⎪⎩

1 for p> 3/4�

0 for p ∈ (1/4�3/4)�

−1 for p< 1/4�

For p̂ ∈ (1/4�3/4), the only optimal action is uninformative. By Proposition 2, there is r

such that for r > r, a = 0 is a best response to p̂. Thus, au = 0 is a steady state for r > r.
By Proposition 3, for r > r, the beliefs and actions converge almost surely.

Conversely, for p̂ > 3/4 and p̂ < 1/4, the myopic best response is informative. By
Proposition 1, there is r̄ such that for all r < r̄ and all p ∈ [0�1], only informative actions
are optimal. Thus in this case, there is no interior steady state. The exact cutoff r̂ for the
existence/nonexistence of the interior steady state is somewhere in (r̄� r).

Last, for this example we find the exact value of r̂, which here is equal to 6/σ2. We
derive r̂ by solving the differential equation for the value function. By Theorem 1, the
value function is characterized by the HJB equation

vr(p)= max
a∈A

π(p)(a)+ [
I(a)p(1 −p)

]2 v
′′(p)
2r

�

If r < r̂, we have to have that the maximum in the above expression is attained on
A \ {au} = {−1�1}. By symmetry, action 1 is optimal on p > 1/2 and −1 is optimal on
p< 1/2. Therefore, on p ∈ (1/2�1), the differential equation for v is

vr(p) = π(p)(1)+ [
I(1)p(1 −p)

]2 v
′′
r (p)

2r
= −3 + 4p+

(
4
σ

)2
p2(1 −p)2 v

′′
r (p)

2r
�

This differential equation admits a closed form solution

vr(p) = −3 + 4p+ (1 −p)βp1−βC1 + (1 −p)1−βpβC2�
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where C1 and C2 are free constants, and

β = 1
2

+ 1
2

√
4 + α

α
� α=

(
4
σ

)2 1
2r

�

The differentiability of v and symmetry imply that v′
r(1/2) = 0. Also, vr(1) = 1. From

these initial conditions, we find C2 = 0 and C1 = 4/(2β− 1). Therefore,

vr(p) = −3 + 4p+ 4
2β− 1

(1 −p)βp1−β�

Since a = 0 is never played when r < r̂, it has to be the case that

v(1/2) ≥ 0�

The inequality is satisfied if and only if r ≤ 6/σ2. �

Now we modify the previous example by supposing that there are only two feasible
actions, both of which are informative, so A = {−1�1}, as in the example in Section 5 of
Nyarko (1991) Note that the uninformative action a= 0 is unavailable.

Claim 2. We have P̃[pt converges] = P̃[at converges] = 0.

Proof. There are no interior steady states because there are no uninformative actions,
and both a1 and a0 are repelling as shown above. Therefore, the belief and action do not
converge by Proposition 3. �

So for any discount rate, the beliefs cycle as in Nyarko’s (1991) analysis of the myopic
case. Note that both in this two-action example and in our analysis of the three-action
case, if r < r̂, the action space can effectively be restricted to not contain the uninforma-
tive action a = 0: in the two-action case, this restriction is exogenous, while in our case
with r < r̂, the uninformative action is not played because it is never optimal to do so.

7.2 A bandit model of learning

Suppose now that there are two actions a1 and a0, the second one of which we call safe
and assume to be uninformative:

π0(a0) = π1(a0) = s ∈R+�

We call the other action risky and assume that it leads to a high expected payoff h ∈ R+
in state θ1 of the world and a low payoff l ∈R+ otherwise:

h= π1(a1)>π0(a1) = l�

It is easy to see that the optimal strategy of the agent is to take the risky action if and only
if her posterior likelihood is above a threshold L�. We write σ = σ(a1) for the noise level
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when the risky arm is chosen. The threshold L� depends on s, l, h, andσ as well as the
discount factor r. Let us denote by π the true expected payoff of the risky arm:

π = π̃
(
a1)�

The true payoff of the safe arm is completely irrelevant for the agent’s behavior in this
example as the agent will stick with the safe arm forever once she has chosen the safe
arm for the first time. By Lemma 1, the dynamics of the posterior likelihood of the agent
Lt are given by

dLt = 1{Lt>L�}
(h− l)

σ

[
π − h+ l

2
σ

dt + dWt

]
�

Thus, the posterior likelihood is a Brownian motion with drift (h− l)(π − (h+ l)/2)/σ2

that is absorbed at L∗.
We consider only the nontrivial case when L0 >L∗. From (4) we find that

�
(
a1) = (h− l)

σ

π − h+ l

2
σ

�

�
(
a0) = 0�

First, a0 is uninformative and is always a best response for some belief. Therefore, there
always is an interior steady state. By Proposition 3, a0 is attracting. Next, from Proposi-
tion 3, a1 is attracting if π > (h+ l)/2 and repelling if π < (h+ l)/2. Thus we have proved
the following result.

Claim 3. If the true payoff of the risky arm π is closer to l than h, then the agent eventu-
ally switches to the safe arm with probability 1. If the true payoff of the risky arm is closer
to h than l, then with some strictly positive probability, the agent sticks to the risky arm
forever.

8. Conclusion

This paper has given a first look at active learning by a misspecified Bayesian agent. As
we have seen, even with only two subjectively possible states, the dynamics depends
on the agent’s discount rate as well as on the availability of an uninformative action.
Our findings have important implications for learning in misspecified games: For play
to converge to a Berk–Nash equilibrium, the behavior of the individual players must
converge and, as we show, this can depend on the discount rate. Our analysis has been
restricted to the case of only two states, as this lets us use existing characterizations
of the solutions to one-dimensional SDEs and their limiting behavior (cf. Karatzas and
Shreve 1988, Chapter 5). Characterizing the long-run belief dynamics with three or more
states would require analogs of those results for higher dimensions.
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Appendix A: Appendix: Proofs

A.1 Proofs omitted from Section 4

Proof of Lemma 1. Using (1), the dynamics of the belief process are given by

dpt = pt(1 −pt)I(at)

[
π̃(at)−π(pt)(at)

σ(at)
dt − dWt

]
�

where W is the Brownian motion that determines the true payoff process. As L(p) =
log(p/(1 −p)) is twice differentiable, we can apply Ito’s lemma on (2) and get

dLt = L′(pt)dpt +L′′(pt)

[
pt(1 −pt)I(at)

]2

2
dt

= dpt

pt(1 −pt)
+ 1 − 2pt[

pt(1 −pt)
]2

[
pt(1 −pt)I(at)

]2

2
dt

= I(at)

[ π̃(at)− (
ptπ

1(at)+ (1 −pt)π
0(at)

)+
(

1
2

−pt

)(
π1(at)−π0(at)

)
σ(at)

dt− dWt

]

= I(at)

[
π̃(at)− (

π1(at)+π0(at)
)
/2

σ(at)
dt + dWt

]
� �

For any closed set, let τD be the first hitting time of D ⊆ [0�1]:

τD = inf{t ≥ 0 : pt ∈D}�

The following auxiliary result will be useful to establish the existence of an optimal pol-
icy. It shows that an optimal Markovian policy exists when the agent is restricted to
informative strategies and she switches to the optimal uninformative action once her
belief reaches an exogenously given set D. The maximal average payoff from playing the
uninformative action forever equals

g� π0(au)�
Lemma 3. For any closed set D⊆ [0�1], the control problem

max
a

rE

[∫ τD

0
e−rτDπ(p)(a)dt + e−rτDg

]
�

where the agent is restricted to informative controls at ∈ A \ au, admits a value function
that is twice differentiable on [0�1] \D and solves

vr(p) = max
a∈A\au

π(p)(a)+ [
I(a)p(1 −p)

]2 v
′′
r (p)

2r
�

Any optimal policy maximizes this expression at each belief p ∈ (0�1).



Theoretical Economics 12 (2017) Active learning 1175

Proof. We use Strulovici and Szydlowski (2015) to establish the result. As the variance
of the belief process is not uniformly bounded from below, the conditions of Strulovici
and Szydlowski (2015) are not satisfied directly.11 To avoid this problem, we use the
log-likelihood ratio process Lt instead of the belief process pt as a state variable:

Lt � log
pt

1 −pt
�

We denote by w(L)� vr(p(L)) the value function of the agent when she holds the belief

p(L)� eL

eL + 1
�

For further reference, let us note that

p′(L) = eL(
1 + eL

)2 = (
1 −p(L)

)
p(L)� (A.1)

p′′(L) = p′(L)
(
1 − 2p(L)

)
� (A.2)

The dynamics of Lt are given by

dLt =
[
p(Lt)− 1

2

]
I(at)

2 dt + I(at)dWt�

where Wt is a Brownian motion according to the agent’s subjective probability measure.
Note that the drift term μ(L�a)� [p(Lt)− 1/2]I(a)2

t is bounded by

∣∣μ(L�a)∣∣ ≤ 1
2

max
a′ I

(
a′)2

�

the volatility is bounded from above and below by

min
a′∈A\au

I
(
a′) ≤ I(a) ≤ max

a′∈A\au
I
(
a′)�

and the flow payoffs are bounded by∣∣πp(L)(a)
∣∣ ≤ max

a
max

{∣∣π1(a)
∣∣� ∣∣π0(a)

∣∣}�
Furthermore, the variance term is independent of L and thus is Lipschitz continuous,
the flow payoff and the drift of L are linear in the belief p, and as the belief is Lipschitz
continuous in L it is Lipschitz continuous in L as well. Thus, Assumptions 1, 2, and 3
from Strulovici and Szydlowski (2015) are satisfied, and it follows that the value function
w : R→ R is twice differentiable and satisfies

w(L) = max
a∈A\au

πp(L)(a)+ I(a)2

r

([
p(L)− 1

2

]
w′(L)+ 1

2
w′′(L)

)
� (A.3)

11If we use the belief p as a state variable, the diffusion coefficient I(a)p(1−p) is not uniformly bounded
away from zero, so the conditions for the existence of a classical solution are not satisfied.
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Note that as w(L) = vr(p(L)) and by (A.1) and (A.2), we have that

w′(L) = v′
r

(
p(L)

)
p′(L) = v′

r(p)p(1 −p)�

w′′(L) = v′′
r

(
p(L)

)[
p′(L)

]2 −p′′(L)v′
r(L)

= v′′
r (p)

[
p(1 −p)

]2 − 2
[
p− 1

2

]
w′(L)�

Plugging this into (A.3) yields

vr(p)= max
a∈A\au

π(p) + I(a)2

[
p(1 −p)

]2

2r
v′′
r (p)� �

Theorem 2. For each discount rate r ∈ (0�+∞], there exists an optimal strategy s∗r :
[0�1] →A, which is Markovian. The value function vr : [0�1] →R+ is continuous, convex
in the belief p, and continuous in the discount rate r. Furthermore, vr(p) is nonincreasing
in r and limr→∞ vr(p) = v∞(p) for all p. Furthermore, for r < ∞, it is twice continuously
differentiable on {p ∈ (0�1) : vr(p) > g} and satisfies the HJB equation

vr(p) = max
a∈A

π(p)(a)+ [
I(a)p(1 −p)

]2 v
′′
r (p)

2r
�

Any optimal strategy maximizes this expression at each p ∈ (0�1).

Proof. First note that vr is well defined, as an upper bound on vr is the payoff from
taking the optimal action forever,

vr(p) ≤ p
[
max
a

π1(a)
]
+ (1 −p)

[
max
a

π0(a)
]
�

and a lower bound is given by taking the action that is optimal for the belief p forever,

vr(p)≥ max
a

π(p)(a)�

As vr is the supremum over linear functions, it is convex. As every convex function is
continuous, vr is continuous and the set of beliefs U ⊆ [0�1] for which an uninformative
action is optimal is closed:

U �
{
p ∈ [0�1] : g = vr(p)

}
�

As U is closed, we can define the first time the belief process reaches U , τU � inf{t :
pt ∈U}. Define x̂ as the process that is absorbed in U :

x̂t = xmin{t�τU }�

Consider the control problem where the agent is restricted to informative controls at ∈
A \ au and the process is absorbed the first time it leaves [0�1] \ U with a payoff of g.



Theoretical Economics 12 (2017) Active learning 1177

By Lemma 3, the value function v̂r : [0�1] \U → R of this problem is twice differentiable
and solves

v̂r(p) = max
a∈A\au

π(p)(a)+ [
I(a)p(1 −p)

]2 v̂
′′
r (p)

2r
� (A.4)

with boundary condition v̂r(p) = g for all p on the boundary of [0�1] \U . Furthermore,
an optimal Markovian control a� : [0�1] \U →A \ au exists.

We extend this policy into a Markovian policy on [0�1] by setting a�(p) = au for all
p ∈ U . We first prove that the value function satisfies vr(p) = v̂r(p) for all p ∈ [0�1] \U .
To prove this, we show that it is never optimal to use an uninformative action in [0�1] \U
and thus v̂r(p)= vr(p) by the definition of v̂r . Suppose, it is optimal to chose an uninfor-
mative action at the belief p ∈ [0�1] \ U for a (random) time τ̂. Then, as the belief does
not change prior to τ̂,

vr(p) = rE

[∫ τ̂

0
e−rtπ(pt)(at)dt +

∫ ∞

τ̂
e−rtπ(pt)(at)dt

∣∣∣ p0 = p

]

= (
1 −E

[
e−rτ̂

])
g(p)+E

[
e−rτ̂

]
vr(p)

⇒ 0 = (
1 −E

[
e−rτ̂

])(
g(p)− vr(p)

)
�

As g < vr(p) for all p ∈ [0�1] \ U by definition of U , it follows that τ̂ = 0. Thus, it is
never optimal to chose an uninformative action for a positive amount of time on p ∈
[0�1] \U and v̂r(p) = vr(p).

Finally, we verify that a� is an optimal policy: The verification for p ∈ U follows im-
mediately from the definition of U . The verification argument for p ∈ [0�1] \ U is stan-
dard and uses the fact that the value function is twice differentiable on [0�1] \U to apply
Ito’s lemma. Fix an arbitrary policy a using the law of iterated expectations. The defini-
tion of the stopping set U yields

rE

[∫ ∞

0
e−rtπ(p)(at)dt

]

= rE

[∫ τU

0
e−rtπ(pt)(at)dt +E

[∫ ∞

τU

e−rtπ(pt)(at)dt
∣∣∣ pτU

]]

≤ rE

[∫ τU

0
e−rtπ(pt)(at)dt + e−rτU g

]
�

(A.5)

In the next step, we use that by (A.4), for all p ∈ [0�1] \U and all a �= au, we have

π(p)(a) ≤ v̂r(p)− [
I(a)p(1 −p)

]2 v̂
′′
r (p)

2r
�

For a = au, we have that by definition of U and the fact that v̂r(p) = vr(p) for
p ∈ [0�1] \U ,

π(p)
(
au

)
< vr(p) = v̂r(p)− [

I(a)p(1 −p)
]2 v̂

′′
r (p)

2r
�



1178 Fudenberg, Romanyuk, and Strack Theoretical Economics 12 (2017)

By Ito’s lemma and Doob’s optional sampling theorem, we have that

E

[∫ τU

0
re−rtπ(pt)(at)dt

]

≤ E

[∫ τU

0

{
re−rt v̂r(p)− e−rt

[
I(a)p(1 −p)

]2 v̂
′′
r (p)

2

}
dt

]

= E
[
v̂r(p0)− e−rpτU v̂r(pτU )

]
�

(A.6)

Combining (A.5) and (A.6) and the fact that v̂r(pτU ) = g by the boundary condition of
(A.4) yields

rE

[∫ ∞

0
e−rtπ(p)(at)dt

]
≤ v̂r(p0)= rE

[∫ ∞

0
e−rtπ(p)

(
a�(pt)

)
dt

]
�

Thus, for any policy a, the value is lower than the value when following the policy a�.
This shows that the HJB equation describes an optimal policy. Moreover, it is clear from
inspecting the HJB equation that multiplying the discount rate by λ > 1 is the same as
multiplying the volatility σ(·) by

√
λ, which is the same as adding noise to the agent’s

signals. Hence, the agent’s value function is decreasing in r.
In the next step, we verify that the value function is Lipschitz continuous in r. The

derivative of the value with respect to the discount rate for a fixed strategy equals∣∣∣∣E
[∫ ∞

0
(1 − rt)e−rtπ(p)(at)dt

]∣∣∣∣ ≤ E

[∫ ∞

0
(1 + rt)e−rt

∣∣π(p)(at)
∣∣dt

]

≤ E

[∫ ∞

0
(1 + rt)e−rt dt

]
max
θ∈{0�1}

max
a

∣∣πθ(a)
∣∣

= 2
r

max
θ∈{0�1}

max
a

∣∣πθ(a)
∣∣�

It thus follows from the envelope theorem that the value function is Lipschitz continu-
ous in r for all r bounded away from zero. To see that vr is continuous in r at r = 0, ob-
serve that an upper bound on the agent’s payoff is given by the payoff the agent obtains
when knowing the state and taking the optimal action

vr(p)≤ pπ0(a0) + (1 −p)π1(a1)�
The agent can take an informative action for a long, but deterministic, time T to learn
the state arbitrarily precisely and afterward take an optimal action. As the agent be-
comes patient, her loss in payoff from the initial experimentation phase vanishes, and
thus lim infr→0 vr(p) exists and equals the payoff the agent could obtain when knowing
the state. As the payoff the agent could obtain when knowing the state is also an upper
bound, the limit exists and we have

lim
r→0

vr(p)= pπ0(a0) + (1 −p)π1(a1)� v0(p)�
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Finally, we argue that the agent value function converges to v∞ for r → ∞. First note
that as the agent can always play the myopic optimum given her initial belief and can
ignore all subsequent information, we have

lim
r→∞ infvr(p) ≥ max

a
π(p)(a) = v∞(p)�

To see that v∞(p) is also an upper bound, observe that the agent’s continuation payoff
after time τ cannot be better than when learning the state at time τ for free and taking
the subjectively optimal action at all future points in time:

vr(p) ≤ E

[∫ τ

0
re−rtπ(pt)(at)dt + e−rτv0(pτ)

∣∣∣ p0 = p

]

≤ (
1 − e−rτ

)
E

[
sup

t∈[0�τ]
π(pt)(at)

∣∣ p0 = p
]
+ e−rτ

E
[
v0(pτ) | p0 = p

]
�

As π(pt)(at)≤ maxa π(pt)(a) = v∞(pt), we have that for every fixed strategy s,

vr(p)≤ (
1 − e−rτ

)
E
s
[

sup
t∈[0�τ]

v∞(pt)
∣∣ p0 = p

]
+ e−rτ

E
s
[
v0(pτ) | p0 = p

]
�

Choose τ = 1/
√
r:

vr(p) ≤ (
1 − e−√

r
)
E
s
[

sup
t∈[0�τ]

v∞(pt)
∣∣ p0 = p

]
+ e−√

r
E
s
[
v0(pτ) | p0 = p

]
�

Then in the limit r → ∞, the second term in this sum vanishes and we have

lim
r→∞vr(p) ≤ lim

r→∞E
s
[

sup
t∈[0�1/√r]

π(pt)(at)
∣∣ p0 = p

]

≤ lim
r→∞E

s
[

sup
t∈[0�1/√r]

v∞(pt)
∣∣ p0 = p

]
�

As v∞(p) is continuous in p and almost every realization of the belief process (pt)t is
continuous in t for any strategy, we have that limr→∞ supt∈[0�1/√r] v∞(pt) = v∞(p). And
because for almost every path of the belief process, v∞ is bounded, the dominated con-
vergence theorem implies that

lim
r→∞E

s
[

sup
t∈[0�1/√r]

v∞(pt)
∣∣ p0 = p

]
= E

s
[

lim
r→∞ sup

t∈[0�1/√r]
v∞(pt)

∣∣ p0 = p
]

= v∞(p)�

so limr→∞ vr(p) ≤ v∞(p). �

Lemma 4. Fix an arbitrary strategy s and any p ∈ (0�1), and let τ(p�1) be the first time
that the belief leaves the interval (p�1). Then

lim
p0↗1

E
s
[
e
−rτ(p�1) | θ = 1

] = 0�
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Proof. Note that e−rτ(p�1) = 0 whenever limt→∞pt∧τ(p�1) = 1. We show that this event

happens with probability 1 as p0 → 1. Because the belief conditional on θ = 1 is a sub-
martingale under any strategy and τ is a stopping time, the fact that pτ(p�1) is equal either
to 1 or to p implies that

p0 ≤ E
s[pτ(p�1) | θ = 1] = P

s[pτ(p�1) = 1 | θ = 1] +p
{
1 − P

s[pτ(p�1) = 1 | θ = 1]}�
as

1 ≤
(

lim
p0→1

P
s[pτ(p�1) = 1 | θ = 1]

)
(1 −p)+p

⇔ 1 ≤ lim
p0→1

P
s[pτ(p�1) = 1 | p0 = p̃� θ = 1]�

Consequently, we have that limp0→1 P
s[pτ(p�1) = 1 | θ = 1] = 1 and, hence,

lim
p0↗1

E
s
[
e
−rτ(p�1) | θ = 1

] ≤
(

1 − lim
p0↗1

P
s[pτ(p�1) = 1 | θ = 1]

)
= 0� �

A.2 Proofs omitted from Section 5

Proof of Lemma 2. We first argue that any optimal strategy can only use the uninfor-
mative action when beliefs are in a (possibly empty) interval [u�u]. Note that at a belief p
where the uninformative action is optimal, beliefs and actions will not change in the fu-
ture, so at such p, we have vr(p)= g. Now suppose to the contrary that the set of beliefs
where the uninformative action is optimal is disconnected. This implies that there are
beliefs p < p′ < p′′ such that g = vr(p) = vr(p

′′) �= vr(p
′). As the agent can always take

the uninformative action forever, vr(p′) ≥ g. But convexity of vr implies that vr(p′) ≤ g

and hence v(p′) = g.
Next we prove that the optimal action is unique for almost every belief. If not, then

since there are only finitely many actions, there exists an interval [p′�p′′] such that at
least two actions a�a′ ∈A \ au are optimal for any belief p ∈ [p′�p′′]. As both actions are
optimal in [p′�p′′], the value function solves simultaneously the two linear second order
ordinary differential equations (ODEs) on [p′�p′′]:

vr(p) = π(p)(a)+ [
I(a)p(1 −p)

]2 v
′′
r (p)

2r
� (A.7)

vr(p) = π(p)
(
a′) + [

I
(
a′)p(1 −p)

]2 v
′′
r (p)

2r
�

Take the difference between these ODEs to find

0 = π(p)(a)−π(p)
(
a′) + [

p(1 −p)
]2 v

′′
r (p)

2r
(
I(a)2 − I

(
a′)2)

� (A.8)

As π(p)(·) is linear in p and as there are no informationally equivalent actions, I(a) �=
I(a′), it follows from (A.8) that [p(1 −p)]2v′′

r (p)/(2r) must be linear in p. By (A.7), vr(p)



Theoretical Economics 12 (2017) Active learning 1181

is hence linear in p. This implies that v′′
r (p) = 0 and by (A.8), we have that for all p ∈

[p′�p′′],
π(p)(a) = π(p)

(
a′) ⇒ a = a′�

Finally, as the informative action is almost everywhere unique and the solution to
the SDE of the belief process (3) remains unchanged when switching informative actions
on a set of beliefs of Lebesgue measure zero, it follows that the beliefs of the agent are
independent of which optimal strategy she uses.

We finally show the third part of the lemma. First, we assume that the action a1 is
optimal for some belief in every neighborhood of p = 1, that is, that for all p′ < 1, there
is p′′ ∈ (p′�1) such that a1 is optimal at p′′. In this case, we say that a1 has nontrivial
support. We show that no other action â can be optimal in every neighborhood of p = 1.
Consider two subcases: a1 is either informative or uninformative.

Case 1: a1 has nontrivial support and I(a1) �= 0. Suppose, to the contrary, that in
any neighborhood of p = 1, there is a belief such that some action different from a1

is optimal. Because vr is continuous in p, this implies that there must be a sequence
of beliefs (p̃j)j → 1 such that at each p̃j , the agent is indifferent between a1 and some
other action. As there are only finitely many actions, there must then be an action â and
subsequence (jk)k with limk→∞ jk = ∞ such that the agent is indifferent between a1 and
â at all beliefs (p̃jk)k∈{1�2����}. Denote pk = p̃jk .

By Theorem 1, v′′
r (p) exists on (0�1)\{vr(p) > g}, and because the agent is indifferent

between a1 and â at each pk, the following equalities hold:

vr
(
pk

) = πpk(
a1) + (

I
(
a1)pk

(
1 −pk

))2 v
′′
r

(
pk

)
2r

�

vr
(
pk

) = πpk
(â)+ (

I(â)pk
(
1 −pk

))2 v
′′
r

(
pk

)
2r

�

We know that limp→1 vr(p) = π1(a1), so the first equality implies that

lim
k→∞

(
I
(
a1)pk

(
1 −pk

))2 v
′′
r

(
pk

)
2r

= 0�

However, the second equality implies that

lim
k→∞

(
I(â)pk

(
1 −pk

))2 v
′′
r

(
pk

)
2r

= π1(a1) −π1(â) �= 0�

Taking the ratio, we obtain

lim
k→∞

I
(
a1)2

I(â)2 = 0�

which is a contradiction to the assumption that I(a1) �= 0.
Case 2: a1 has nontrivial support and I(a1) = 0. By the first part of the lemma, we

know that a1 is optimal on some interval [u�u] ⊂ [0�1]. As a1 is optimal for some belief



1182 Fudenberg, Romanyuk, and Strack Theoretical Economics 12 (2017)

in every neighborhood of p = 1, it follows that the action a1 is optimal for some interval
[u�1]. But then, by the proof for Case 1, no other action is optimal in [u�1].

Case 3. Finally, we deal with the case that the action a1 is optimal for p = 1, but
has trivial support, so there is a p < 1such that a1 is not optimal for any p ∈ (p�1). The
agent’s value when she uses the strategy s is bounded above by the payoff she gets when
she takes the correct action a0 in the low state θ = 0 and uses the strategy s in the high
state:

E
s

[∫ ∞

0
e−rt dπt

]
≤ (1 −p)π0(a0) +pEs

[∫ ∞

0
e−rt dπt

∣∣∣ θ = 1
]
�

Let τ(p�1) be the first time that the belief reaches either p or 1. Then since the agent does
not play a1 until at least time τ(p�1),

E
s

[∫ ∞

0
e−rt dπt

∣∣∣ θ = 1
]

≤ (
1 −E

s
[
e
−rτ(p�1) | θ = 1

])(
max
a�=a1

π1(a)
)

+E
s
[
e
−rτ(p�1) | θ = 1

]
π1(a1)�

Combining this with the previous inequality gives

E
s

[∫ ∞

0
e−rt dπt

]
≤ (1 −p)π0(a0)

+p
{(

1 −E
s
[
e
−rτ(p�1) | θ = 1

])(
max
a�=a1

π1(a)
)

+E
s
[
e
−rτ(p�1) | θ = 1

]
π1(a1)}�

(A.9)

As shown in Lemma 4, the expected discounted time until the belief leaves the interval
(p�1) conditional on the high state θ = 1 goes to zero when the initial belief p0 goes to 1
for every strategy, i.e.,

lim
p0↗1

E
s
[
e
−rτ(p�1) | θ = 1

] = 0�

Consequently, taking the limit p0 ↗ 1 of (A.9) yields that

lim
p0↗1

vr(p0) = lim
p0↗1

E
s

[∫ ∞

0
e−rt dπt

]
≤ max

a�=a1
π1(a) < π1(a1) = vr(1)�

This shows that for a1 not to be optimal in the interval (p�1), the agent’s payoff when
she is almost certain that the state is 1 must be bounded away from the payoff she gets
when she knows the state is 1. This contradicts the continuity of vr .

Hence, we have shown that the action a1 is the unique optimal action for a nonempty
interval of beliefs [p�1). By the analogous argument, it follows that the action a0 is the
unique optimal action for a nonempty interval of beliefs around p = 0. �

Proposition 1. For each p ∈ (0�1), there is r̄ such that for r < r̄, uninformative actions
are not optimal. If additionally a0 and a1 are informative, then there is a uniform r̄ such
that for all r < r̄ and all p ∈ [0�1], only informative actions are optimal.
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Proof. The case where all actions are informative is trivial. Suppose there is an unin-
formative action au and recall that g is the payoff from playing au forever. We first show
that our assumptions on payoff functions imply that there exists a belief p̂ ∈ (0�1) such
that all myopic best responses to p̂ are informative. Suppose, to the contrary, that the
uninformative action au is myopically optimal for all p ∈ (0�1). Then Lemma 2 implies
that au is optimal for p ∈ {0�1}, which contradicts the assumption that the full-certainty
actions are different.

We just showed there is p̂ such that v∞(p̂)� maxa π(p)(a) > g. We need to show that
for any r < r̄ and any p, vr(p) > g.

Consider the following strategy: Play an informative action â for a fixed time interval
(0� τ); play the myopic best response to pτ throughout thereafter. The value function
from following this strategy is denoted by Ṽr(p). For any p ∈ (0�1), we have

Ṽr(p)− g = E

[∫ τ

0
re−rtπ(pt)(â)dt + e−rτv∞(pτ)

∣∣∣ p0 = p

]
− g

= E
[(

1 − e−rτ
)(
π(pt)(â)− g

) + e−rτ
(
v∞(pτ)− g

) | p0 = p
]

= (
1 − e−rτ

)(
π(p)(â)− g

) + e−rτ
E

[
v∞(pτ)− g | p0 = p

]
�

By assumption, there exists p̂ such that v∞(p̂) − g > 0. By the continuity of the value
function, there hence also exists an interval around p̂ such that v∞(·) − g > 0 for every
point in that interval. When â is played and p0 ∈ (0�1), the distribution of pτ has full
support on [0�1] and so E[v∞(pτ) − g] > 0. As E[v∞(pτ) − g | p0 = p] and π(p0)(â) − g

is independent of r, we have that Ṽr(p)− g > 0 if r is sufficiently close to zero. Since the
optimal strategy cannot do worse, vr(p)≥ Ṽr(p) > g.

When a1 and a0 are informative, by Lemma 2, for each r, there are 0 < p′ < p′′ < 1
such that a1 is optimal for p ∈ (p′′�1] and a0 is optimal for p ∈ [0�p′). On p ∈ [p′�p′′],
the function p �→ E[v∞(pτ)− g | p0 = p] is bounded away from zero, as it is continuous
and strictly positive. Therefore, there is uniform r̄ such that Ṽr(p) > g for all r < r̄ and
all p ∈ [p′�p′′]. Putting all three intervals together, we find that for all p ∈ [0�1], only
informative actions are optimal. �

A.3 Proofs omitted from Section 6

Let the diffusion process L be defined on (L�L), −∞ ≤ L<L≤ +∞, by

dLt = α(Lt)dt +β(Lt)dWt� (A.10)

where Borel measurable coefficients α�β : R→ R satisfy

β(L) �= 0� ∀x ∈ (L�L)

∀x ∈ (L�L)�∃ε > 0 such that
∫ x+ε

x−ε

1 + ∣∣α(y)∣∣
β(y)2 dy < ∞�
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Fix an arbitrary L0 ∈ (L�L). The scale function for L is a (strictly increasing and invert-
ible) function φ : (L�L) →R defined by

φ(L) =
∫ L

L0

exp
(

−
∫ y

L0

2α(z)

β(z)2 dz
)

dy� (A.11)

The next lemma is Proposition 5.22 in Karatzas and Shreve (1988, p. 345) written in
our notation.

Lemma 5. Let T = inf{t ≥ 0 : Lt /∈ (L�L)} be the exit time from (L�L). Every weak solution
of (A.10) has the following properties:

(i) If φ(L+)= −∞ and φ(L−)= ∞, then

P[T = ∞] = P

[
sup

0≤t<∞
Lt =L

]
= P

[
inf

0≤t<∞
Lt =L

]
= 1�

In particular, the process L is recurrent: for every y ∈ (L�L), we have

P[Lt = y for some 0 ≤ t < ∞] = 1�

(ii) If φ(L+) > −∞ and φ(L−) = ∞, then the process is absorbed in L with
probability 1:

P

[
lim
t→T

Lt =L
]

= 1�

(iii) If φ(L+) = −∞ and φ(L−) < ∞, then the process is absorbed in L with
probability 1:

P

[
lim
t→T

Lt =L
]

= 1�

(iv) If φ(L+) >−∞ and φ(L−) < ∞, then the probability that the process is absorbed
in L (L) is given by

P

[
lim
t→T

Lt =L
]

= 1 − P

[
lim
t→T

Lt = L
]

= φ(L−)−φ(L0)

φ(L−)−φ(L+)
�

Proposition 3. Fix discount rate r.

(i) If the interior steady state action exists, it is attracting. In particular, uninforma-
tive full-certainty actions are attracting.

(ii) Informative full-certainty action a1 (a0) is attracting if �(a1) > 0 (�(a0) < 0) and
is repelling if �(a1)≤ 0 (�(a0)≥ 0).

(iii) If there are no interior steady state actions and both a0 and a1 are repelling, then
beliefs and actions converge with probability 0. Otherwise, beliefs and actions con-
verge with probability 1.
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Proof. Let p be the largest steady state belief below p0 and let p be the smallest steady
state belief above p0. If p0 is already a steady state, then the analysis is trivial. In
what follows, we study the nontrivial case. Change the state variable from p to L =
log(p/(1 − p)) and find L and L that correspond to p and p. Fix an optimal strategy
selection s∗r ∈ S . We are going to use the well known result in the literature of diffu-
sion processes that says that to get the limit distribution of the process, it is sufficient
to evaluate the natural scale function (A.11) at boundaries L and L. Fix arbitrary z and
consider

φr(L) =
∫ L

L0

exp
{
−

∫ x

z

2α(y)

β2(y)
dy

}
dx�

φr(L) =
∫ L

L0

exp
{
−

∫ x

z

2α(y)

β2(y)
dy

}
dx�

where α(L) = I(a)(π̃(a)−π(1/2)(a))/σ(a) = �(a) is the drift of Lt , where a = s∗r (L), and
β(L) = I(a) is the volatility of Lt ; see (3). Therefore,

2α(L)

β2(L)
= 2

�
(
s∗r (L)

)
I
(
s∗r (L)

)2 �

By definition of L and L, β(L)2 > 0 for all L ∈ (L�L). There are four cases to consider:
L= ∞, L = −∞, L<∞, and L>−∞.

We start with L = +∞. By Lemma 2, there is p∗ < 1 such that a1 is optimal for all
p ∈ [p∗�1]. Write L∗ for the corresponding log-likelihood ratio. We have

φr(+∞)=
∫ +∞

L0

exp
{
−

∫ x

z

2α(y)

β2(y)
dy

}
dx

= K1 +
∫ +∞

L∗
exp

{
−

∫ x

z

2α(y)

β2(y)
dy

}
dx

= K1 +
∫ +∞

L∗
exp

{
−

∫ x

z

2�
(
a1)

I
(
a1)2 dy

}
dx

= K1 +
∫ +∞

L∗
exp

{
−(x− z)

2�
(
a1)

I
(
a1)2

}
dx

= K1 +K2

∫ +∞

L∗
exp

{
−x

2�
(
a1)

I
(
a1)2

}
dx

(A.12)

for some finite K1 and 0 < K2 < ∞. Now if �(a1) > 0, then the integral in (A.12) con-
verges, and φr(+∞) <∞. Conversely, if �(a1) ≤ 0, then it diverges and φr(+∞) = ∞.

Therefore, we have

φr(+∞)

{
= +∞ if �

(
a1) ≤ 0�

<+∞ if �
(
a1)> 0�
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By Lemma 5, L= +∞ is attracting if φr(+∞) <+∞ and repelling if φr(+∞) = +∞. The
case L= ∞ is done in a similar fashion. We have

φr(−∞)

{
>−∞ if �

(
a0)< 0�

= −∞ if �
(
a0) ≥ 0�

By Lemma 5, L= −∞ is attracting if φr(−∞) > −∞ and repelling if φr(−∞) = −∞.
Now let us do the case L < ∞. Since �(a) is bounded and I(s∗r (L)) is bounded

away from zero on L ∈ (L�L), 2α(L)/β2(L) is bounded on the bounded interval [L0�L].
Therefore, φr(L) < ∞. By Lemma 5, L is attracting.

Absolutely analogously find that φr(L) <∞ and L is attracting.
Finally, Lemma 5 implies that convergence has a 0–1 property. Therefore part (iii) of

the proposition follows. �

Proof of Corollary 3. Suppose condition (5) holds for θ = 1, |π1(a) − π̃(a)| ≤
(1/2)|π1(a)−π0(a)|, ∀a ∈ A. Then

π1(a)− 1
2

∣∣π1(a)−π0(a)
∣∣ ≤ π̃(a)≤ π1(a)+ 1

2

∣∣π1(a)−π0(a)
∣∣�

π1(a)−π0(a)− 1
2

∣∣π1(a)−π0(a)
∣∣ ≤ π̃(a)−π0(a)

≤ π1(a)−π0(a)+ 1
2

∣∣π1(a)−π0(a)
∣∣�

If π1(a)−π0(a) > 0, then

1
2

∣∣π1(a)−π0(a)
∣∣ ≤ π̃(a)−π0(a) ≤ 3

2

∣∣π1(a)−π0(a)
∣∣�

If π1(a)−π0(a) < 0, then

−3
2

∣∣π1(a)−π0(a)
∣∣ ≤ π̃(a)−π0(a) ≤ −1

2

∣∣π1(a)−π0(a)
∣∣�

Putting the two cases together, we find that

∣∣π0(a)− π̃(a)
∣∣ ≥ 1

2

∣∣π1(a)−π0(a)
∣∣ ∀a ∈A�

Now

�(a) =
(
π0(a)− π̃(a)

)2 − (
π1(a)− π̃(a)

)2

σ2(a)
≥ 0 ∀a�

By the second part of Proposition 3, a1 is attracting. By the third part of Proposition 3,
the belief converges. �
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