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Efficient and strategy-proof allocation mechanisms
in economies with many goods
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In this paper, we show that in pure exchange economies where the number of
goods equals or exceeds the number of agents, any Pareto-efficient and strategy-
proof allocation mechanism always allocates the total endowment to some single
agent even if the receivers vary.
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1. Introduction

Following the seminal work of Hurwicz (1972), the manipulability and efficiency of al-
location mechanisms in pure exchange economies have been studied intensively. Zhou
(1991) established that any Pareto-efficient and strategy-proof allocation mechanism is
dictatorial in exchange economies with two agents having classical (i.e., continuous,
strictly monotonic, and strictly convex) preferences. The dictatorship result in two-
agent economies has been strengthened by being proven in the domain of restricted
preferences.1

Compared with the result in two-agent economies, it is an open question whether
Pareto-efficient and strategy-proof allocation mechanisms can be characterized in
economies with many agents. This is the issue that we examine in this paper. In many-
agent economies, there actually exist Pareto-efficient, strategy-proof, and nondictato-
rial allocation mechanisms. Satterthwaite and Sonnenschein (1981) constructed such
a mechanism, relying on the reverse dictator’s preference, to select one agent among
the remaining agents, who is allocated the total endowment. Kato and Ohseto (2002)
constructed a mechanism in economies with four or more agents, such that all agents
have the opportunity to be allocated the total endowment. A specific feature shared by
all known Pareto-efficient and strategy-proof allocation mechanisms is that some single
agent receives the whole amount of goods even if the receivers vary. Such a mechanism
is called alternately dictatorial. The natural question to be asked is whether there exists
a Pareto-efficient, strategy-proof, and nonalternately dictatorial allocation mechanism.
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1See Schummer (1997), Ju (2003), Hashimoto (2008), and Momi (2013a). Nicoló (2004), however, showed
a Pareto-efficient, strategy-proof, and nondictatorial mechanism in the domain of Leontief preferences.
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In this paper, we show that in exchange economies where the number of goods
equals or exceeds the number of agents, any Pareto-efficient and strategy-proof alloca-
tion mechanism is alternately dictatorial. We believe that our method and result provide
a first step toward solving the general question without conditions on numbers of goods
and agents.

In the following subsections, we discuss our method in detail and compare our result
with those of related papers to highlight the contributions in this paper.

1.1 Approach

In this paper, we study what we call the option set in detail. An agent’s option set, when
the other agents’ preferences are fixed, is defined as the union of the agent’s consump-
tion bundles allocated by a mechanism while his preference changes. Then the agent’s
consumption bundle allocated by a strategy-proof mechanism should be the most pre-
ferred one in the option set with respect to his preference. Therefore, the option set com-
pletely describes how the agent’s consumption changes under a strategy-proof mecha-
nism in response to changes in his preference when the other agents’ preferences are
fixed.

Note that the option set must be either the zero consumption bundle or the total en-
dowment, under an alternately dictatorial mechanism. In this paper, we assume that
a positive consumption bundle different from the total endowment is allocated by a
mechanism, and we then study the agent’s option set in a neighborhood of the con-
sumption bundle. Through the analysis of the option set, we investigate how consump-
tion changes in response to changes in the agent’s preference, and we obtain allocations
that contradict the Pareto efficiency and strategy-proofness of the mechanism.

This is the approach that Hashimoto (2008) and Momi (2013a, 2013b) followed to
analyze two-agent economies. In two-agent economies, we can determine an agent’s
option set as the inverted image of an upper contour set of the other agent’s preference.
This easily yields the dictatorship result in two-agent economies. In economies with
many agents, we cannot obtain the exact shape of the option set. However, we can still
derive the topological properties of the option set. Roughly speaking, we show that in
a neighborhood of an allocated consumption bundle that is neither zero nor the total
endowment, the option set is the smooth surface of a strictly convex set. This property
is sufficient to yield allocations that contradict Pareto efficiency and strategy-proofness.

Throughout the paper, the condition that the number of goods equals or exceeds
the number of agents plays an important role. In the core part of the paper, we deal
with homothetic preferences and consider preferences that satisfy independence in the
following sense. An efficient allocation given by a Pareto-efficient mechanism uniquely
determines the supporting price, and the supporting price vector uniquely determines
the direction of possible consumption of each agent with a homothetic preference. We
refer to this direction vector as the consumption-direction vector of the agent. If these
consumption-direction vectors are independent among agents, then there is a unique
way to scale these vectors so that they sum up to the total endowment. That is, a sup-
porting price induced by a Pareto-efficient mechanism determines the allocation itself
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when the consumption-direction vectors are independent. In other words, a consump-
tion bundle of an agent uniquely determines the other agents’ consumption bundles
under independence of the consumption-direction vectors. This works in many-agent
economies as in two-agent economies: an agent’s consumption immediately deter-
mines the other agent’s consumption as the rest of the goods, which makes two-agent
economies decisively tractable. It is clear that we need at least as many goods as the
number of agents for the existence of a preference profile satisfying the independence
of the consumption-direction vectors.

Through the option set, we know how an agent’s consumption changes in response
to changes in his preference, as mentioned above. If the consumption-direction vectors
are independent, this change of an agent’s consumption exactly determine how other
agents’ consumption changes, that is, how the allocation itself changes. Using this, the
proof in this paper proceeds as follows. We suppose that an agent is allocated consump-
tion that is neither zero nor the total endowment. First, we establish that the agent’s
option set is the smooth surface of a strictly smooth set in a neighborhood of the con-
sumption bundle. Then we observe that such an option set induces allocations that
contradict the Pareto efficiency and strategy-proofness. This implies that any agent’s
consumption is either zero or the total endowment; that is, the allocation is alternately
dictatorial.

1.2 Related literature

As mentioned above, the general characterization of Pareto-efficient and strategy-proof
mechanisms in many-agent economies is still an open problem.

Some studies show the incompatibility of Pareto efficiency and strategy-proofness
with allocation restrictions. Serizawa (2002) shows the incompatibility with the individ-
ual rationality restriction, where agents originally possess their initial endowments and
a mechanism is assumed to allocate consumption that benefits all agents. Serizawa and
Weymark (2003) show the incompatibility with the minimum consumption guarantee
restriction, where the consumption of each agent is assumed to be away from zero by
some minimum distance. Momi (2013b) shows the incompatibility with a simple posi-
tivity restriction, where a mechanism is assumed to allocate positive consumption to all
agents. Alternatively, Barberà and Jackson (1995) discard Pareto efficiency and charac-
terize strategy-proof mechanisms satisfying the individual rationality restriction. These
allocation restrictions are so strong that they exclude any mechanism wherein some
agents receive zero consumption. In particular, alternately dictatorial allocations violate
these restrictions. Therefore, as long as there are at least as many goods as agents, the
result in this paper, where Pareto efficiency and strategy-proofness induce alternately
dictatorial allocations, yields the above-mentioned results by Serizawa (2002), Serizawa
and Weymark (2003), and Momi (2013b) as a corollary.

Some studies investigate the nonbossiness condition. A mechanism is called non-
bossy if a change in the preference of an agent does not affect the allocation as long as
it does not affect the agent’s own consumption. Momi (2013b) shows that any Pareto-
efficient, strategy-proof, and nonbossy mechanism is dictatorial. Goswami et al. (2014)
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show that any Pareto-efficient, strategy-proof, nonbossy, and continuous mechanism is
dictatorial even in the restricted domain of quasi-linear preferences. See Hatfield (2009)
for a study of Pareto-efficient, strategy-proof, and nonbossy mechanisms in the context
of allocating indivisible goods. The nonbossiness condition almost immediately implies
that an alternately dictatorial mechanism is dictatorial; that is, it excludes a mechanism
where receivers of the total endowment vary. Therefore, as long as there are at least as
many goods as agents, the above-mentioned result by Momi (2013b) is obtained as a
corollary of this paper’s result.

The characterization of Pareto-efficient and strategy-proof mechanisms has been
obtained not only for two-agent economies but also for three-agent economies. Momi
(2013b) proves that any Pareto-efficient and strategy-proof allocation mechanism in
three-agent economies is either dictatorial or of the Satterthwaite and Sonnenschein
(1981) type. Unfortunately, this approach crucially relies on the assumption of three
agents and it seems difficult to extend it to economies with more agents. Although Momi
(2013b) studies the option set, he focuses on a preference profile where two out of three
agents have the same preference. In such a case, these two agents can be identified, and
the option set of the other agent is given by the turned-over image of an upper contour
set of this preference, as in two-agent economies.

Alternatively, given the assumption on the numbers of agents and goods, the cur-
rent paper’s result does not cover the case of economies with three agents and two
goods, which is covered by Momi (2013b). However, it might be possible to extend our
proof to cover this case. As mentioned in the previous subsection, and as is seen in the
proof, what is crucial is that the consumption bundle of an agent uniquely determines
the other agents’ consumption. Suppose that the number of agents exceeds the num-
ber of goods by exactly 1. If the consumption bundle of an agent is determined, then
the other agents’ consumption should be determined uniquely under independence of
their consumption-direction vectors because their total consumption equals the total
endowment minus the predetermined consumption. However, such a slight extension
is of minor importance. The interesting and challenging question is, of course, whether
we can have a Pareto-efficient, strategy-proof, and nonalternately dictatorial allocation
mechanism without any restrictions on the numbers of agents and goods.

The rest of the paper is organized as follows. Section 2 describes the model and re-
sults. Section 3 explains some technical aspects of the paper and demonstrates a tech-
nique for constructing a preference. Section 4 reveals the properties of the option set.
Sections 5 and 6 provide the proofs of the results in Section 2. Section 7 provides con-
cluding remarks. The Appendix contains proofs of all lemmas and propositions in Sec-
tions 3 and 4.

2. Model and results

We consider an economy with N agents, indexed by N = {1� � � � �N}, where N ≥ 2, and
L goods, indexed by L = {1� � � � �L}, where L ≥ 2. The consumption set for each agent
is RL+. A consumption bundle for agent i ∈ N is a vector xi = (xi1� � � � � x

i
L) ∈ RL+. The

total endowment of goods for the economy is � = (�1� � � � ��L) ∈RL++. An allocation is a
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vector x = (x1� � � � � xN) ∈RLN+ . Thus, the set of feasible allocations for the economy with
N agents and L goods is

X =
{

x ∈RLN+ :
∑
i∈N

xi ≤�

}
�

A preference R is a complete, reflexive, and transitive binary relation on RL+. The
corresponding strict preference PR and indifference IR are defined in the usual way.
For any x and x′ in RL+, xPRx

′ implies that xRx′ and not x′Rx, and xIRx′ implies that
xRx′ and x′Rx. Given a preference R and a consumption bundle x ∈ RL+, the upper con-
tour set of R at x is UC(x;R) = {x′ ∈ RL+ : x′Rx}, and the lower contour set of R at x is
LC(x;R) = {x′ ∈ RL+ : xRx′}. We let I(x;R) = {x′ ∈ RL+ : x′IRx} denote the indifference set
of R at x, and let P(x;R) = {x′ ∈RL+ : x′PRx} denote the strictly preferred set of R at x.

A preference R is continuous if UC(x;R) and LC(x;R) are both closed for any x ∈
RL+. A preference R is strictly convex on RL++ if UC(x;R) is a strictly convex set in RL

for any x ∈ RL++. A preference R is monotonic if, for any x and x′ in RL+, x > x′ implies
that xRx′.2 A preference R is strictly monotonic on RL++ if, for any x and x′ in RL++,
x > x′ implies that xPRx

′.3 A preference R is homothetic if, for any x and x′ in RL+ and
any t > 0, xRx′ implies that (tx)R(tx′). A preference R is smooth if for any x ∈ RL++,
there exists a unique vector p ∈ SL−1+ ≡ {x ∈ RL+ : ‖x‖ = 1} such that p is the normal of
a supporting hyperplane to UC(x;R) at x. We call the vector p the gradient vector of
R at x, and write p = p(R�x). Note that if R is smooth, strictly convex on RL++, and
strictly monotonic on RL++, then the gradient vector is positive in the positive orthant:
p(R�x) ∈ SL−1++ ≡ {x ∈ RL++ : ‖x‖ = 1} for any x ∈RL++.

We call a preference classical when it is continuous, strictly convex on RL++, and
strictly monotonic on RL++, and we let RC denote the set of classical preferences. Fur-
thermore, we let R denote the set of classical, smooth, and homothetic preferences. In
this paper, we prove the results in the restricted domain R and then extend them to RC .

A preference profile is an N-tuple R = (R1� � � � �RN) ∈ RN . We write the subprofile
obtained by removing Ri from R as R−i = (R1� � � � �Ri−1�Ri+1� � � � �RN) and write the pro-
file (R1� � � � �Ri−1� R̄i�Ri+1� � � � �RN) as (R̄i�R−i). We also write R−{i�j} to denote the sub-
profile obtained by removing Ri and Rj from R.

A social choice function f : RN → X assigns a feasible allocation to each preference
profile in RN . For a preference profile R ∈ RN , the outcome chosen can be written as
f (R) = (f 1(R)� � � � � fN(R)), where f i(R) is the consumption bundle allocated to agent i
by f .

Definition 1. A social choice function f : RN → X is strategy-proof if f i(R)Rif i(R̄i�

R−i) for any i ∈ N, any R ∈ RN , and any R̄i ∈ R.

A feasible allocation is Pareto efficient if there is no other feasible allocation that
benefits someone without making anyone else worse off. That is, x ∈X is Pareto efficient

2For vectors x and x′ in RL, x > x′ denotes that xl ≥ x′
l for any l ∈ L and x 	= x′.

3Therefore, if R is continuous, strictly convex on RL++, and strictly monotonic on RL++, then UC(x;R) ⊂
RL++ for any x ∈ RL++ and the boundary ∂RL+ is an indifference set.
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for preference profile R if there exists no x̄ ∈ X such that x̄iRixi for any i ∈ N and x̄jPRjxj

for some j ∈ N. We say that a social choice function is Pareto efficient if it always assigns
a Pareto-efficient allocation.

Definition 2. A social choice function f : RN → X is Pareto efficient if f (R) is Pareto
efficient for any R ∈RN .

We say that a social choice function is dictatorial if there exists an agent who is al-
ways allocated the total endowment.

Definition 3. A social choice function f : RN → X is dictatorial if there exists i ∈ N
such that f i(R)= � for any R ∈ RN .

We say that a social choice function is alternately dictatorial if it always allocates the
total endowment to some single agent. Note that under an alternately dictatorial social
choice function, the identity of the receiver of the total endowment may vary depending
on preference profiles.

Definition 4. A social choice function f : RN → X is alternately dictatorial if, for any
R ∈ RN , there exists iR ∈ N such that f iR(R)= �.

This paper’s main result is as follows.

Theorem. When L ≥ N , a Pareto-efficient and strategy-proof social choice function f :
RN →X is alternately dictatorial.

This is proved in the preference domain R. Let R̄ be a preference domain such that
R ⊂ R̄ ⊂ RC , and let us extend Definitions 1–4 to R̄.

Corollary. When L ≥ N , a Pareto-efficient and strategy-proof social choice function
f : R̄N → X is alternately dictatorial.

3. Preliminary results

In this section, we explain some technical aspects of this paper. We introduce a met-
ric in the space of preferences and show a technique of preference construction. Fur-
thermore, we define the pseudo-efficiency of a social choice function and the feasible
consumption set for an agent.

As in the previous works, including Serizawa (2002) and Momi (2013b), we introduce
the Kannai metric into R following Kannai (1970), to discuss the continuity in R. For
x ∈ RL+ \ 0, we let [x] denote the ray starting from zero and passing through x: [x] =
{y ∈ RL+ : y = tx� t ≥ 0}. We define 1 ≡ (1� � � � �1) ∈ RL+ so that [1] denotes the principal
diagonal of RL+. Using these definitions, the Kannai metric d(R�R′) for continuous and
monotonic preferences R and R′ is defined as

d
(
R�R′) = max

x∈RL+

∥∥I(x;R)∩ [1] − I
(
x;R′) ∩ [1]∥∥

1 + ‖x‖2 �
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where ‖ · ‖ denotes the Euclidean norm in RL. With the Kannai metric, R is a metric
space. See Kannai (1970) for details.

We often discuss the distance between upper contour sets of preferences. Note that
any homothetic preference is identified by one indifference set or upper contour set in
RL++ because the other indifference sets of the homothetic preference are determined
by similarity transformations. For any subsets A and B in RL, we write A + B = {a +
b ∈ RL : a ∈ A�b ∈ B} and A − B = {a − b ∈ RL : a ∈ A�b ∈ B}. We call a subset A ⊂
RL++ monotonic when x + RL+ ⊂ A holds for any x ∈ A, and we define M as the set of
closed and monotonic subsets of RL++. For any A ∈M , the homothetic, continuous, and
monotonic preference RA that has A as its upper contour set is uniquely determined.
We define the distance dM(A�B) between A and B in M as

dM(A�B)= d(RA�RB)�

Thus, the convergence of candidate upper contour sets with respect to this metric
implies the convergence of the corresponding preferences with respect to the Kannai
metric.4

In this paper, we use Bε(R̄) ⊂ R to denote the open ball set of preferences in R, with
center R̄ and radius ε > 0: Bε(R̄) = {R ∈ R : d(R� R̄) < ε}. We use B ⊂ R to denote an
open ball set of preferences without a specified center or radius,

For a preference R ∈ R and a consumption bundle x ∈ RL+, a preference R̄ is called a
Maskin monotonic transformation (MMT, hereafter) of R at x if x̄ ∈ UC(x; R̄) and x̄ 	= x

implies that x̄PRx. It is well known that if an agent receives x at a preference profile
R, strategy-proofness implies that this agent receives the same consumption bundle x

when his preference is subject to an MMT at x. As shown in Momi (2013b, Lemma 4), for
a preference R ∈ R and a consumption bundle x ∈ RL++, there exists a preference that is
an MMT of R at x in any neighborhood of R.

For a price vector p ∈ SL−1++ and a consumption vector x ∈RL++, we let p⊥ denote the
hyperplane perpendicular to p, i.e., p⊥ = {y ∈ RL : py = 0}, and let H(x;p) denote the
upper right-hand side half-space of the hyperplane, i.e., H(x;p) = y +p⊥ +RL+.

Now, we demonstrate a technique for constructing a preference that satisfies a given
pair of a gradient vector and a consumption bundle in a neighborhood of a given pref-
erence. Let R̄ ∈ R be a preference that has a gradient vector p̄ ∈ SL−1++ at a consumption
bundle x̄ ∈ RL++, as drawn in Figure 1. We let (xn�pn) be another pair consisting of a
consumption bundle and a price vector, and construct a preference Rn that has pn as
the gradient vector at xn. This n in xn should not be confused with the subscripts label-
ing goods. It is not difficult to imagine such a preference Rn in a neighborhood of R̄ if

4Note the difference between the Kannai metric for preferences and the Hausdorff metric for the corre-
sponding indifference or upper contour sets. Fix a consumption vector x. the convergence R → R∗ with
respect to the Kannai metric does not generally imply convergence I(x;R) → I(x;R∗) with respect to the
Hausdorff metric because the indifference sets are not bounded. For example, let P ⊂ SL−1++ be a compact
set and let K = ⋃

z∈P[z] denote the union of rays [z] passing through z ∈ P. Then I(x;R) ∩ K is compact
and the convergence R→ R∗ implies the convergence I(x;R)∩K → I(x;R∗)∩K with respect to the Haus-
dorff metric. Alternatively, the convergence of candidate indifference or upper contour sets with respect to
the Hausdorff metric implies the convergence of the corresponding preferences with respect to the Kannai
metric.



1274 Takeshi Momi Theoretical Economics 12 (2017)

Figure 1. Preference construction.

pn and xn are sufficiently close to p̄ and x̄, respectively. Furthermore, we can have the
preference Rn so that its gradient vector at x̄ is p̄ if pnx̄ > pn([xn] ∩ I(x̄; R̄)), as drawn
in Figure 1. To understand this condition, consider another price vector p′ such that
p′x̄ ≤ p′([xn] ∩ I(x̄; R̄)), as drawn in the figure. It is clear that any strictly convex prefer-
ence with the gradient vector p′ at xn cannot have p̄ as its gradient vector at x̄. This is
summarized as Lemma 1. Note that the condition pn([x̄]∩I(xn; R̄)) > pnxn in the lemma
is equivalent to the above-mentioned pnx̄ > pn([xn] ∩ I(x̄; R̄)), because the preference
R̄ is homothetic. See the Appendix for the proof of Lemma 1.

Lemma 1. Let a preference R̄ ∈ R have a gradient vector p̄ ∈ SL−1++ at a consumption bun-
dle x̄ ∈ RL++: p̄ = p(R̄� x̄). Let {xn}∞n=1 and {pn}∞n=1 be sequences of consumption bundles
and price vectors that converge to x̄ and p̄, respectively: xn → x̄ and pn → p̄ as n → ∞.
For any ε > 0, there exists n̄ such that for any n > n̄ there exists a preference Rn ∈ Bε(R̄)

such that p(Rn�xn) = pn. Furthermore, if pn([x̄] ∩ I(xn; R̄)) > pnxn holds for n > n̄, we
can have Rn ∈ Bε(R̄) satisfying p(Rn� x̄) = p̄ in addition to p(Rn�xn)= pn.

We say that a social choice function is pseudo-efficient if it allocates a Pareto-
efficient allocation or allocates zero consumption to all agents.

Definition 5. A social choice function f : RN → X is pseudo-efficient if, for any R ∈
RN , f (R) is Pareto efficient or f i(R) = 0 for any i ∈ N.

It is clear that if a social choice function is Pareto efficient, then it is also pseudo-
efficient. Until the last step in the proof of the theorem provided in Section 6, we prove
all lemmas and propositions with a pseudo-efficient social choice function rather than
with a Pareto-efficient social choice function. This is because, in the proof of the the-
orem, we apply the lemmas and propositions to a subeconomy N′ ⊂ N with N ′ (< N)
agents. Note that pseudo-efficiency in such a subeconomy does not contradict Pareto
efficiency in the whole economy. Let a social choice function f be Pareto efficient in
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the whole economy N. If f allocates the entire amount of goods to members of a sube-
conomy N′ ⊂ N or to agents outside the subeconomy, then the social choice function f

restricted to the subeconomy N′ is pseudo-efficient.
Furthermore, in most parts of the proofs in this paper, we deal with a social choice

function that only locally satisfies efficiency and strategy-proofness. As mentioned
above, B ⊂ R denotes an open ball set of preferences. We write Bi to clarify that it is
a set of agent i’s preferences and we write B = ∏N

i=1 B
i to denote the product of such

open ball sets over agents. We say that a social choice function is strategy-proof on B if
f i(R)Rif i(R̄i�R−i) for any i ∈ N, any R ∈ B, and any R̄i ∈ Bi. We say that a social choice
function f is Pareto efficient on B if f (R) is Pareto efficient for any R ∈ B. We say that a
social choice function f is pseudo-efficient on B if, for any R ∈ B, f (R) is Pareto efficient
or f i(R) = 0 for any i ∈ N.

We let A denote the feasible consumption set for an agent:

A= {
x ∈RL+ : 0 ≤ xl ≤ �l� l ∈ L

}
�

It is not difficult to observe that if a social choice function is pseudo-efficient on B, then
for any R ∈ B, any agent’s consumption f i(R) is not on the boundary of A except zero
and �; that is, f i(R) ∈ intA ∪ {0��} for any i and any R ∈ B, where intA denotes the
interior of A.

We first observe that f i(R) cannot be on the boundary of the consumption set, ∂RL+,
except for the zero vector. Suppose f i(R) ∈ ∂RL+ \ 0 for an agent i. If there exists another
agent j who receives consumption in the interior of the consumption set, then reallo-
cating f i(R) to agent j makes agent j better off without worsening agent i because the
boundary of the consumption set is an indifferent set, and agent i is indifferent between
zero consumption and any consumption on the boundary. This contradicts the pseudo-
efficiency of f . If there exists no agent who receives consumption in the interior of the
consumption set, then reallocating the total amount of goods to some agent j makes
agent j better off without negatively impacting any other agent, for the same reason.
This contradicts the pseudo-efficiency of f . Therefore, f i(R) /∈ ∂RL+ \ 0.

If f il (R) = �l for some good l and f i(R) 	= � for an agent i, then there exists another
agent j such that f j(R) ∈ ∂RL+ \ 0, which is a contradiction, as shown above. Therefore,
f il (R) 	= �l for any l, except for the case where f i(R) = �. Thus, we have f i(R) ∈ intA ∪
{0��} for any i and any R ∈ B.

4. Option set

In this section, we study the option set and show that it is the smooth surface of a strictly
convex set in a neighborhood of a consumption bundle in the interior of the feasible
consumption set.

We consider a social choice function f that is pseudo-efficient and strategy-proof on
a product set B = ∏N

i=1 B
i.

The option set is defined as follows. For agent i, when the other agents’ preferences
R̄−i ∈ B−i ≡ ∏

j 	=i B
j are fixed, we define the option set, Gi(R̄−i) ⊂RL+, as the union of the
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agent’s consumption bundles given by f over his preferences in Bi:

Gi
(
R̄−i

) =
⋃

Ri∈Bi

f i
(
Ri� R̄−i

)
�

The fact that we omit the domain Bi in the notation of Gi(R̄−i) should not cause any
confusion. We are interested in the option set in a neighborhood of a specific consump-
tion bundle f i(R), and the option set around the consumption bundle does not depend
on the domain B as long as it includes the preference profile R.

Because of the strategy-proofness on B, f i(Ri� R̄−i) should be the most preferred
consumption bundle in Gi(R̄−i) with respect to Ri ∈ Bi. In two trivial cases, Gi(R̄−i) is
given by single-element sets because of strategy-proofness. If f i(Ri� R̄−i) = 0 for some
Ri ∈ Bi, then Gi(R̄−i) = {0}. If f i(Ri� R̄−i) = � for some Ri ∈ Bi, then Gi(R̄−i) = �. Note
that these are the cases that occur under an alternately dictatorial social choice function.
As mentioned in Section 3, f i(R) ∈ intA∪ {0��} for any i and any R ∈ B. Going forward,
we investigate the case where f i(Ri� R̄−i) ∈ intA for an agent i and any Ri ∈ Bi. Note
that as long as f i(Ri� R̄−i) ∈ intA, the allocation f (Ri� R̄−i) is Pareto efficient under the
pseudo-efficiency of f on B.

To study the option set, independence of the preferences is required in the following
sense. At a Pareto-efficient allocation f (R), all agents share the same gradient vector
at their consumption as long as consumption is positive and the gradient vector is well
defined. We call this vector the price vector at allocation f (R) and write p(R� f ) ∈ SL−1++ .

Alternatively, for a preference R ∈ R and a price vector p ∈ SL−1++ , we let g(R�p) ∈
SL−1++ denote the normalized consumption vector where the gradient vector of R is p.
Note that the normalized consumption vector is a continuous function of p because
preference R is smooth and strictly convex in RL++. Therefore, if normalized consump-
tion vectors g(Ri�p), i = 1� � � � �N , are linearly independent at p = p̄, the linear indepen-
dence also holds in a small neighborhood of p̄.

As mentioned above, the price vector depends on the social choice function: p =
p(R� f ). We call g(Ri�p(R� f )) agent i’s consumption-direction vector at the preference
profile R under f because his consumption f i(R) should be on the ray [g(Ri�p(R� f ))].
We can write f i(R) = ‖f i(R)‖g(Ri�p(R� f )).

We focus on a preference profile R̄ ∈ B such that the consumption-direction vectors
are independent. The role of this independence should be clear. As consumption vec-
tors f i(R̄), i = 1� � � � �N , are on the rays [g(R̄i�p(R̄� f ))], i = 1� � � � �N , respectively, and
they sum to the total endowment �, the consumption vectors should be determined
uniquely if the consumption-direction vectors are independent. Note that we need
L≥N for the independence to hold.

The rest of this section discusses the topological properties of the option set when an
agent i receives a consumption bundle in the interior of the feasible consumption set:
f i(R̄) ∈ intA. As a result, we see that in a neighborhood of f i(R̄), the option set Gi(R̄−i)

is the L− 1-dimensional smooth surface of a strictly convex set, as drawn in Figure 2.
Keep in mind that such an L − 1-dimensional option set is obtained under the as-

sumption that f i(R̄) ∈ intA. In the next section, we observe that such an option set
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Figure 2. The option set.

induces allocations incompatible with the Pareto efficiency and strategy-proofness of
the social choice function to prove the alternately dictatorial result.

The next lemma is an immediate consequence of the independence of the consump-
tion-direction vectors. Recall that the proofs of all lemmas and propositions in this sec-
tion are provided in the Appendix.

Lemma 2. Suppose that a social choice function f is pseudo-efficient on a product set of
open balls B = ∏N

i=1 B
i and that g(R̄i�p(R̄� f )), i = 1� � � � �N , are independent at a prefer-

ence profile R̄ = (R̄1� � � � � R̄N) ∈ B. Let R̃ = (R̃1� � � � � R̃N) ∈ B be a preference profile such
that each R̃i has the same gradient vector as R̄i at g(R̄i�p(R̄� f )). If f j(R̃) = f j(R̄) 	= 0 for
an agent j, then f (R̃) = f (R̄).

As mentioned, f i(R) is the most preferred consumption bundle in the option set
Gi(R−i) with respect to Ri ∈ Bi. We want to establish the reverse: the most preferred
consumption bundle in Gi(R−i) with respect to Ri ∈ Bi is the consumption bundle allo-
cated to agent i by the social choice function when his preference is Ri. For tractability,
we initially consider the most preferred consumption bundle in the option set’s closure,
Gi(R−i). By considering the closure, we ensure the existence of the most preferred con-
sumption vector in Gi(R−i) with respect to any preference Ri.

Lemma 3 shows that if a consumption bundle is the most preferred in the closure of
the option set with respect to some preference, then the consumption bundle is actually
an element of the option set.

Lemma 3. Suppose that a social choice function f is pseudo-efficient and strategy-proof
on a product set of open balls B = ∏N

i=1 B
i. If x is the most preferred consumption bundle

in Gi(R−i) with respect to Ri ∈ Bi, then x ∈Gi(R−i). In particular, if R̂i ∈ Bi is an MMT of
Ri at x, then f i(R̂i�R−i) = x.
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An immediate consequence of Lemma 3 is that if x is the unique, most preferred
consumption bundle in Gi(R−i) with respect to Ri ∈ Bi, then x= f i(R). The next lemma
proves that the most preferred consumption bundle is actually unique. Thus, for any
preference Ri ∈ Bi, the most preferred consumption bundle in Gi(R−i) with respect to
the preference is unique, and it is exactly the consumption bundle f i(R) allocated to the
agent for the preference by the social choice function f .

Lemma 4. We let f be a social choice function that is pseudo-efficient and strategy-proof
on a product set of open balls B = ∏N

i=1 B
i. We suppose that g(R̄i�p(R̄� f )), i = 1� � � � �N ,

are independent at a preference profile R̄ = (R̄1� � � � � R̄N) ∈ B and that f i(R̄) ∈ intA for

an agent i. Then f i(R̄) is the unique most preferred consumption bundle in Gi(R̄−i) with
respect to R̄i ∈ Bi.

As a consequence of Lemma 4, the next proposition shows that f (·� R̄−i) is a contin-
uous function of Ri in a neighborhood of R̄i.

Proposition 1. We let f be a social choice function that is pseudo-efficient and strategy-
proof on a product set of open balls B = ∏N

i=1 B
i. We suppose that g(R̄i�p(R̄� f )), i =

1� � � � �N , are independent at a preference profile R̄ = (R̄1� � � � � R̄N) ∈ B and that f i(R̄) ∈
intA for an agent i. Then f (·� R̄−i) is a continuous function in a neighborhood of R̄i.

Next, we show that Gi(R̄−i) is the surface of a convex set in the sense that in

a neighborhood of f i(R̄), Gi(R̄−i) is in the lower left-hand side of the hyperplane
f i(Ri� R̄−i)+p((Ri� R̄−i)� f )⊥ for any Ri in a neighborhood of R̄i.

Proposition 2. We let f be a social choice function that is pseudo-efficient and strategy-
proof on a product set of open balls B = ∏N

i=1 B
i. We suppose that g(R̄i�p(R̄� f )),

i = 1� � � � �N , are independent at a preference profile R̄ = (R̄1� � � � � R̄N) ∈ B and that

f i(R̄) ∈ intA for an agent i. For any Ri in a neighborhood of R̄i, Gi(R̄−i) ⊂ f i(Ri� R̄−i) +
p((Ri� R̄−i)� f )⊥ −RL+ holds in a neighborhood of f i(R̄); that is, there exist positive scalars
ε̄ and ε′ such that

Dε̄
(
f i(R̄)

) ∩Gi
(
R̄−i

) ⊂ f i
(
Ri� R̄−i

) +p
((
Ri� R̄−i

)
� f

)⊥ −RL+ (1)

for any Ri ∈ Bε′(R̄i), where Dε̄(f
i(R̄)) is the open ball in RL+ with center f i(R̄) and ra-

dius ε̄.

This proposition asserts the convexity of the option set in the following sense. For

x′ = f i(Ri′�R−i) and x′′ = f i(Ri′′�R−i) in Gi(R̄−i), if a ray [sx′ + (1 − s)x′′] with s ∈ (0�1)
has an intersection with Gi(R̄−i), then the intersection is written as t(sx′+(1−s)x′′) with
a scalar t ≥ 1 greater than or equal to 1. If the intersection is given as t(sx′ + (1 − s)x′′)
with t < 1, then there exists Ri such that f i(Ri� R̄−i) is arbitrarily close to the intersection

because of the definition of Gi(R̄−i). Then at least one of x′ and x′′ is in the upper right-
hand side of the hyperplane f i(Ri� R̄−i)+p((Ri� R̄−i)� f ))⊥ regardless of the value of the
price vector, which contradicts Proposition 2.
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Next, we show that Gi(R̄−i) is a surface of a strictly convex set; that is, the t in the
previous paragraph is strictly greater than 1. In other words, for any Ri in a neighbor-

hood of R̄i, f i(Ri� R̄−i) is the unique intersection between Gi(R̄−i) and the hyperplane
f i(Ri� R̄−i)+p((Ri� R̄−i)� f )⊥.

Proposition 3. We let f be a social choice function that is pseudo-efficient and strategy-
proof on a product set of open balls B = ∏N

i=1 B
i. We suppose that g(R̄i�p(R̄� f )), i =

1� � � � �N , are independent at a preference profile R̄ = (R̄1� � � � � R̄N) ∈ B and that f i(R̄) ∈
intA for an agent i. Then, for any Ri in a neighborhood of R̄i, f i(Ri� R̄−i) is the unique

intersection between Gi(R̄−i) and f i(Ri� R̄−i) + p((Ri� R̄−i)� f )⊥ in a neighborhood of
f i(Ri� R̄).

The next proposition shows that Gi(R̄−i) is a smooth surface in the sense that at each

point f i(Ri� R̄−i), the hyperplane tangent to Gi(R̄−i) is unique.

Proposition 4. We let f be a social choice function that is pseudo-efficient and strategy-
proof on a product set of open balls B = ∏N

i=1 B
i. We suppose that g(R̄i�p(R̄� f )), i =

1� � � � �N , are independent at a preference profile R̄ = (R̄1� � � � � R̄N) ∈ B and that f i(R̄) ∈
intA for an agent i. For any Ri in a neighborhood of R̄i, f i(Ri� R̄−i) + p((Ri� R̄−i)� f )⊥ is

the unique hyperplane tangent to Gi(R̄−i) at f i(Ri� R̄−i).

Finally, we show that Gi(R̄−i) coincides with Gi(R̄−i) and that it is an L − 1-
dimensional manifold in a neighborhood of the consumption bundle f i(R̄) ∈ intA,
where the consumption-direction vectors are independent.

Proposition 5. We let f be a social choice function that is pseudo-efficient and strategy-
proof on a product set of open balls B = ∏N

i=1 B
i. We suppose that g(R̄i�p(R̄� f )), i =

1� � � � �N , are independent at a preference profile R̄ = (R̄1� � � � � R̄N) ∈ B and that f i(R̄) ∈
intA for an agent i. In a neighborhood of f i(R̄), Gi(R̄−i) coincides with Gi(R̄−i) and it is
an L− 1-dimensional manifold.

5. Proof of Theorem

In the previous section, we showed that given the assumption that an agent is allocated
positive consumption in the interior of the feasible consumption set, the agent’s option
set is the L− 1-dimensional smooth surface of a strictly convex set in a neighborhood of
the consumption bundle. In this section, we observe that such an option set induces al-
locations that are incompatible with the Pareto efficiency and strategy-proofness of the
social choice function. This implies that any agent should be allocated zero consump-
tion or the total endowment.

In the next proposition, we show that if a social choice function satisfies pseudo-
efficiency and strategy-proofness locally in a neighborhood of a preference profile where
the consumption-direction vectors are independent, then any agent receives zero con-
sumption or the total endowment at the preference profile.
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Figure 3. Proof of Proposition 6.

Proposition 6. We let f be a social choice function that is pseudo-efficient and strategy-
proof on a product set of open balls B = ∏N

i=1 B
i. We suppose that g(R̄i�p(R̄� f )), i =

1� � � � �N , are independent at a preference profile R̄ = (R̄1� � � � � R̄N) ∈ B. Then f i(R̄) ∈
{0��} for any i ∈ N.

Proof. We let f be a social choice function that is pseudo-efficient and strategy-
proof on B = ∏N

i=1 B
i. Suppose that g(R̄i�p(R̄� f )), i = 1� � � � �N , are independent at

R̄ = (R̄1� � � � � R̄N) ∈ B. As shown in Section 3, f i(R̄) ∈ intA ∪ {0��} for any i ∈ N. We
assume that there exists an agent who receives consumption in intA at R̄, and show a
contradiction.

As f is pseudo-efficient on B, if an agent receives consumption in intA at R̄, there
exists another agent who also receives consumption in intA. Without loss of gen-
erality, we assume that agents 1 and 2 are such agents: f i(R̄) ∈ intA, i = 1�2. We
write f (R̄) = x̄ = (x̄1� � � � � x̄N) and p(R̄� f ) = p̄. Because of the independence of the
consumption-direction vectors, the results in the previous section hold for agents 1 and
2: in a neighborhood of their consumption bundles, each of their option sets is the L−1-
dimensional smooth surface of a strictly convex set, as drawn in Figure 2.

We let R̃2 ∈ B2 be an MMT of R̄2 at x̄2 such that R̃2 and R̄2 have the same gradient
vector only at consumption on the ray [x̄2]. For example, see Momi (2013b, Lemma 4)
for the construction of such an MMT in any neighborhood of R̄2. Then f (R̃2� R̄−2) = x̄ as
in Lemma 2. Figure 3 describes agent 2’s preferences R̄2 and R̃2 and the corresponding
agent 1’s option sets. In the following proof, we observe that these induce allocations
that contradict strategy-proofness with respect to agent 1.

Now, we focus on the option sets G1(R̄−1) and G1(R̃2� R̄−{1�2}). As f (R̄) = f (R̃2�

R̄−2) = x̄, both of these option sets are tangent to the hyperplane x̄1 + p̄⊥ at x̄1. We ob-
serve that p((R1� R̄2� R̄−{1�2})� f ) 	= p((R1� R̃2� R̄−{1�2})� f ) for any R1 in a neighborhood
of R̄1 unless the gradient vector of R1 at x1 is p̄. If these price vectors coincide, then
the hyperplanes tangent to the option set G2(R1� R̄−{1�2}) at agent 2’s two consumption
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bundles, f 2(R1� R̄2� R̄−{1�2}) and f 2(R1� R̃2� R̄−{1�2}), have the same normal vector. This
contradicts the strict convexity of the option set shown in Proposition 3 because these
two consumption bundles of agent 2 do not coincide by our choice of R̃2.

For a price vector p ∈ SL−1++ in a neighborhood of p̄, we let ȳ(p) denote the point on
G1(R̄−1) such that ȳ(p) + p⊥ is the hyperplane tangent to G1(R̄−1) at ȳ(p), and we let
ỹ(p) denote the point on G1(R̃2� R̄−{1�2}) such that ỹ(p)+p⊥ is the hyperplane tangent
to G1(R̃2� R̄−{1�2}) at ỹ(p). Because of Propositions 1–5 in the previous section, ỹ(p) and
ỹ(p) are determined uniquely for any p in a neighborhood of p̄. Note that we can pick a
price vector p in any neighborhood of p̄ such that the hyperplanes ȳ(p)+p⊥ and ỹ(p)+
p⊥ are different. The existence of such a p should be clear because nonexistence of such
a p in a neighborhood of p̄ implies the coincidence of G1(R̄−1) and G1(R̃2� R̄−{1�2}) in a
neighborhood of x̄1, which contradicts the discussion in the previous paragraph. Thus,
we let {pn}∞n=1 be a sequence of price vectors converging to p̄: pn → p̄ as n → ∞, such
that ȳ(pn) + (pn)

⊥ and ỹ(pn) + (pn)
⊥ are different for any n. Then we have ȳ(pn) → x̄1

and ỹ(pn)→ x̄1 as n→ ∞.
For each sufficiently large n, we pick agent 1’s preferences, R1′

n and R1′′
n in B1, satisfy-

ing the following conditions: (i) the gradient vector of R1′
n at ȳ(pn) is pn, (ii) the gradient

vector of R1′′
n at ỹ(pn) is pn, and (iii) either ȳ(pn) ∈ P(ỹ(pn);R1′′

n ) or ỹ(pn) ∈ P(ȳ(pn);R1′
n ).

For example, such preferences can be obtained as follows. As the hyperplanes
ỹ(pn) + (pn)

⊥ and ȳ(pn) + (pn)
⊥ are different, ȳ(pn) is in the upper right-hand side

of ỹ(pn) + (pn)
⊥ or ỹ(pn) is in the upper right-hand side of ȳ(pn) + (pn)

⊥. Here, we
assume the former, as drawn in Figure 3, and construct R1′

n and R1′′
n satisfying ȳ(pn) ∈

P(ỹ(pn);R1′
n ). A symmetric discussion can be applied for the other case.

To obtain R1′
n ∈ B1 satisfying (i), we directly apply the preference construction in

Lemma 1 so that R̄, (x̄� p̄), and (xn�pn) in Lemma 1 correspond to R̄1, (x̄1� p̄), and
(ȳ(pn)�pn), respectively, in the present setup. As ȳ(pn) and pn converge to x̄1 and p̄,
respectively, as n → ∞, R1′

n converges to R̄1, as shown in Lemma 1, and hence R1′
n is in

B1 for a sufficiently large n.
Alternatively, R1′′

n ∈ B1 satisfying (ii) and (iii) is obtained as follows. If n satisfies
ȳ(pn) ∈ P(ỹ(pn); R̄1), we construct R1′′

n in a neighborhood of R̄1 satisfying (ii) by di-
rectly applying the preference construction in the first part of Lemma 1 so that R̄, (x̄� p̄),
and (xn�pn) in Lemma 1 correspond to R̄1, (x̄1� p̄), and (ỹ(pn)�pn), respectively, in the
present setup. As ỹ(pn) and pn converge to x̄1 and p̄, respectively, as n → ∞, R1′′

n con-
verges to R̄1, as shown in Lemma 1, and hence R1′′

n is in B1 for a sufficiently large n. If
ȳ(pn) ∈ P(ỹ(pn); R̄1), then (iii) is satisfied with R1′′

n when n is sufficiently large because
R1′′
n is then sufficiently close to R̄1.

Even if n satisfies ȳ(pn) /∈ P(ỹ(pn); R̄1), we construct R1′′
n as we did in the proof of

Lemma 1. We let εn be a scalar smaller than the distance between the hyperplanes
ȳ(pn)+p⊥

n and ỹ(pn)+p⊥
n , and define En as the upper contour set of R̄1 at ȳ(pn)− εnpn

cut off by the hyperplane ȳ(pn) + (pn)
⊥: En = UC(ȳ(pn) − εnpn; R̄1) ∩ H(ȳ(pn);pn).

Then we consider a preference R1 such that R1 has the gradient vector pn at ỹ(pn)

and the strictly preferred set at ỹ(pn) includes En: En ⊂ P(ỹ(pn);R1). The existence
of such a preference R1 is clear because the set En is in the upper right-hand side of
the hyperplane ỹ(pn) + (pn)

⊥ and away from the hyperplane. Then we define Fn as
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the intersection of the upper contour set of R1 at ỹ(pn) and that of R̄1 at ȳ(pn) − εnpn:
Fn = UC(ỹ(pn);R1)∩ UC(ȳ(pn)− εnpn; R̄1). Note that ȳ(pn) is in the interior of Fn. This
Fn cannot be an upper contour set of a smooth preference because it has the edge at the
intersection I(ỹ(pn);R1)∩ I(ȳ(pn)− εnpn; R̄1).

We let ε′
n be a scalar smaller than the distance between ȳ(pn) and the boundary of

Fn. Using this ε′
n, we round the edge of Fn as in Lemma 6 and let R1′′

n be the preference
whose upper contour set is the smoothed set. That is, we let D̄ε′

n
⊂ RL+ denote a closed

ball with radius ε′
n and define a closed set Cn as the union of such closed balls with radius

ε′
n included in Fn. That is, Cn = ⋃

D̄ε′n⊂Fn
D̄ε′

n
. We define R̃1′′

n as the preference such that it

has Cn as an upper contour set. It is clear from the construction that ỹ(pn)+ (pn)
⊥ is the

supporting hyperplane of Cn at ỹ(pn) and that ȳ(pn) is in the interior of Cn, and hence,
R1′′
n satisfies (ii) and (iii). To observe that R1′′

n is in B1 for a sufficiently large n, note that
the set Fn converges to UC(x̄1; R̄1) as n → ∞. As n → ∞, the scalar ε′

n we used to round
the edge of Fn converges to 0. Thus R1′′

n converges to R̄1 as n → ∞.
We write f (R1′

n � R̄−1) = x′
n = (x1′

n � � � � � x
N′
n ) and f (R1′′

n � R̃2� R̄−{1�2}) = x′′
n = (x1′′

n � � � � �

xN′′
n ). This n in xi′n and xi′′n should not be confused with the subscripts labeling goods.

It is clear that x1′
n = ȳ(pn) and x1′′

n = ỹ(pn).
We now focus on agent 2’s preferences. Note that x2′

n is the most preferred consump-
tion bundle in G2(R1′

n � R̄−{1�2}) with respect to R̄2, and the gradient vector of R̄2 at x2′
n

is pn. Furthermore, x2′′
n is the most preferred consumption bundle in G2(R1′′

n � R̄−{1�2})
with respect to R̃2, and the gradient vector of R̃2 at x2′′

n is pn. A strictly convex prefer-
ence cannot have the same gradient vector pn at both consumption bundles x2′

n and x2′′
n .

We show that for a sufficiently large n, we have agent 2’s preference in B2 such that the
gradient vector at x2′

n is pn and the gradient vector at x2′′
n is arbitrarily close to pn.

For example, such a preference can be obtained as follows. We let D′ be a closed ball
with a small radius tangent to the hyperplane x2′

n + p⊥
n at x2′

n in the upper right-hand
side of the hyperplane such that D′ \ x2′

n is included in P(x2′
n ; R̄2). Then we consider the

intersection of the ray [x2′′
n ] and the hyperplane x2′

n +p⊥
n , and we let D̄ be the closed ball

with the same radius as D′ tangent to the hyperplane x2′
n +p⊥

n at the intersection in the
upper right-hand side of the hyperplane, as drawn in Figure 3.

We now define Kn as the convex hull of UC(x2′
n ; R̄2) ∪ D̄: Kn = co(UC(x2′

n ; R̄2) ∪ D̄).
The convex hull Kn cannot be an upper contour set of a preference because it is not
strictly convex. We construct a preference by Lemma 5. We fix any positive unit vector
a ∈ SL−1++ and consider the L − 1-dimensional linear space a⊥. For y ∈ a⊥, we let L(y)
denote the half-line starting from y and extending in the direction of the vector a: L(y) =
{x ∈ RL|x = y + ta� t ≥ 0}. We let 0 < s < 1 be a scalar and define R̂2

n�s as the preference
that has the following as an indifference set:

⋃
y∈a⊥

{
s
(
L(y)∩ ∂Kn

) + (1 − s)
(
L(y)∩ I

(
x2′
n ; R̄2))}�

From the construction, the gradient vector of R̂2
n�s at x2′

n is pn and the gradient vector at

x2′′
n converges to pn as s converges to 1. We observe that R̂2

n�s ∈ B2 for any s ∈ (0�1) when
n is sufficiently large. As n → ∞, pn converges to p̄, and both x1′

n and x1′′
n converge to
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x̄1. Hence, both x2′
n and x2′′

n converge to x̄2. Therefore, as n → ∞, x2′′
n becomes closer

to x2′
n and the intersection of [x2′′

n ] and the hyperplane x2′
n + p⊥

n also becomes closer to
x2′
n . Then the set Kn in the above construction becomes closer to the upper contour set

UC(x2′
n ; R̄2) of the preference R̄2. That is, the preference R̂2

n�s becomes closer to R̄2.

Now, we set a sufficiently large n so that R1′
n �R

1′′
n ∈ B1 and R̂2

n�s ∈ B2 for any s ∈ (0�1).

We write f (R1′
n � R̂

2
n�s� R̄−{1�2}) = x̂n�s = (x̂1

n�s� � � � � x̂
N
n�s) and f (R1′′

n � R̂2
n�s� R̄−{1�2}) = x̌n�s =

(x̌1
n�s� � � � � x̌

N
n�s), and we show that these allocations contradict the strategy-proofness of

the social choice function when s is sufficiently close to 1.
Alternatively, as the preference R̂2

n�s has the gradient vector pn at x2′
n , the most pre-

ferred consumption in G2(R1′
n � R̄−{1�2}) with respect to R̂2

n�s is x2′
n . Therefore x̂n�s = x′

n, as
shown in Lemma 2. In particular, x̂1

n�s = x1′
n = ȳ(pn)

Alternatively, the gradient vector of R̂2
n�s at x2′′

n converges to pn as s → 1 as shown
above. Therefore, as s → 1, the most preferred consumption bundle in G2(R1′′

n � R̄−{1�2})
with respect to R̂2

n�s converges to x2′′
n . Then x̌n�s converges to x′′

n. In particular, x̌1
n�s

converges to x1′′
n = ỹ(pn) as s → 1. As R1′

n and R1′′
n satisfy (iii), this implies that x̂1

n�s ∈
P(x̌1

n�s;R1′′
n ) or x̌1

n�s ∈ P(x̂1
n�s;R1′

n ) for a value of s sufficiently close to 1. This contra-
dicts the strategy-proofness of f on B with respect to agent 1 because x̂1

n�s and x̌1
n�s are

consumption bundles allocated to agent 1 for his preferences R1′
n and R1′′

n , respectively,
when the other agents’ preferences are (R̂2

n�s� R̄−{1�2}). �

As a preparatory step in proving the theorem, we let R∗ = (R1∗� � � � �RN∗) be a prefer-
ence profile such that the consumption directions g(Ri∗�p), i = 1� � � � �N , are indepen-
dent for any price vector p ∈ SL−1++ . For example, let Ri∗, i = 1� � � � �N , be the preferences

represented by Cobb–Douglas utility functions uiᾱ
i
(x) = (x1)

ᾱi1 · · · (xL)ᾱiL , where the pa-
rameter vectors ᾱi = (ᾱi

1� � � � � ᾱ
i
L), i = 1� � � � �N , are independent among agents. Then

each g(Ri∗�p) is parallel to (ᾱi
1/p1� � � � � ᾱ

i
L/pL), and the consumption directions are in-

dependent with any price vector.
We show that for any preference profile in a neighborhood of R∗, the consumption-

direction vectors are independent at any Pareto-efficient allocation. For a scalar ε ≥ 0,
we let Pε = {p ∈ SL−1++ : � = ∑N

i=1 t
ig(Ri�p)�where ti ≥ 0�Ri ∈ Bε(R

i∗)� i ∈ N} denote the
set of price vectors at the possible Pareto-efficient allocations, with preferences Ri in the
ε-neighborhoods of Ri∗, i = 1� � � � �N . Note that the closure of Pε, i.e., Pε, is away from
the boundary ∂SL−1++ when ε is sufficiently small because Pε converges to P0 as ε→ 0 and
because P0, the set of price vectors at possible Pareto-efficient allocations with Ri∗, i ∈ N,
is away from the boundary. We fix a scalar ε′ > 0 so that Pε′ ⊂ SL−1++ .

For any fixed price vector p, the consumption direction vector g(Ri�p) converges
to g(Ri∗�p) as Ri converges to Ri∗ with respect to the Kannia metric. Therefore, we
let ε′′ > 0 be a sufficiently small scalar such that g(Ri�p), i = 1� � � � �N , are independent
for any Ri ∈ Bε′′(Ri∗), i = 1� � � � �N , and any p ∈ Pε′ . We define ε̂ = min{ε′� ε′′}. Thus,
for any preferences Ri in Bε̂(R

i∗), i = 1� � � � �N , the consumption directions g(Ri�p),
i = 1� � � � �N , are independent with any price vector at the possible Pareto-efficient al-
locations with such preferences.

We now prove the theorem. We suppose that a social choice function f is Pareto
efficient and strategy-proof on the whole domain RN . As mentioned in Section 3,
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f i(R) ∈ intA ∪ {0��} for any agent i and any preference profile R. Therefore, all we
have to show is that f i(R) /∈ intA for any i = 1� � � � �N and any R ∈ RN . We assume that
an agent receives consumption in intA at some preference profile R̄ ∈ RN (where the
consumption-direction vectors are not independent). We show a contradiction.

We repeat the replacement of the preferences of agents who receive consumption in
intA as follows. We define ε̄= ε̂/N .

Step 1. We first pick an agent i1 who receives consumption in intA at R̄. We replace
his preference with Ri1∗. Let R′ = (R1′� � � � �RN′) denote the new preference profile after
this replacement: Ri1′ =Ri1∗ and Ri′ = R̄i for i 	= i1.

Agent i1’s consumption at R′ is neither 0 nor � because of the strategy-proofness
of f . Therefore, there exists another agent i2 who also receives consumption in intA at
R′ because of the Pareto efficiency of f . We replace agent i2’s preference with Ri2∗ and
let R′′ denote the profile after this replacement. Note that agent i2’s consumption at R′′
is neither 0 nor � because of the strategy-proofness.

Then we consider the replacement of R̄i1 and R̄i2 with any Ri1 ∈ Bε̄(R
i1∗) and any

Ri2 ∈ Bε̄(R
i2∗), respectively. As a result of this replacement, there should exist a prefer-

ence profile R̃′′ = (R̃1′′� � � � � R̃N′′) where R̃i1′′ ∈ Bε̄(R
i1∗) and R̃i2′′ ∈ Bε̄(R

i1∗), R̃i′′ = R̄i for
any agents other than i1 and i2, and there exists a third agent i3 other than i1 and i2 who
receives consumption in intA at R̃′′.

If such a preference profile does not exist, then let f ′′ be the social choice function f

restricted to agents i1 and i2, with other agents’ preferences fixed to R̄i, i /∈ {i1� i2}. Then
f ′′ is a social choice function in the two-agent economy of agents i1 and i2 that is Pareto
efficient and strategy-proof on Bε̄(R

i1∗) × Bε̄(R
i2∗) and that allocates consumption in

intA to both agents at (Ri1∗�Ri2∗). This contradicts Proposition 6.
Step 2. Now we replace agent i3’s preference with Ri3∗. Let R′′′ = (R1′′′� � � � �RN′′′)

denote the preference profile after this replacement: Ri1′′′ = R̃i1′′, Ri2′′′ = R̃i2′′, Ri3′′′ =
Ri3∗, and Ri′′′ = R̄i for i /∈ {i1� i2� i3}. Note that agent i3’s consumption at R′′′ is neither 0
nor � because of the strategy-proofness.

Then we consider the replacement of Ri1′′′, Ri2′′′, and Ri3′′′ with any Ri1 ∈ Bε̄(R
i1′′′),

Ri2 ∈ Bε̄(R
i2′′′), and Ri3 ∈ Bε̄(R

i3′′′), respectively. As a result, there should exist a pref-
erence profile R̃′′′ = (R̃1′′′� � � � � R̃N′′′) where R̃i′′′ ∈ Bi

ε̄(R
i′′′) for i ∈ {i1� i2� i3}, R̃i′′′ = R̄i for

i /∈ {i1� i2� i3}, and there exists a fourth agent i4 /∈ {i1� i2� i3} who receives consumption in
intA at R̃′′′.

If such a preference profile does not exist, then let f ′′′ be the social choice func-
tion f restricted to agents i1, i2, and i3 with other agents’ preferences fixed to R̄i,
i /∈ {i1� i2� i3}. Then f ′′′ is a social choice function in the three-agent economy of agents i1,
i2, and i3 that is pseudo-efficient and strategy-proof on Bε̄(R

i1′′′) × Bε̄(R
i2′′′) × Bε̄(R

i3′′′)
and that allocates consumption in intA to at least two agents at the preference pro-
file (Ri1′′′�Ri2′′′�Ri3′′′).5 Furthermore, R′′′ was obtained as a result of the replace-
ment in the previous step and the replacement of agent i3’s preference: Ri′′′ = R̃i′′ ∈

5For example, suppose that f i1(R′′′) ∈ intA, f i2(R′′′) = 0, f i3(R′′′) ∈ intA, and f i(R′′′) = 0 for i /∈ {i1� i2� i3}.
Then the agents i1, i2, and i3 may receive zero consumption without violating the strategy-proofness and
Pareto efficiency of the social choice function f when agent i2’s preference is replaced. To deal with this
case, we proved the lemmas and propositions with a pseudo-efficient social choice function.
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Bi
ε̄(R

i∗) for i ∈ {i1� i2} and Ri3′′′ = Ri3∗. Therefore, Ri′′′ ∈ Bε̄(R
i∗) ⊂ Bε̂(B

i∗) for any i ∈
{i1� i2� i3}. The consumption-direction vectors of these three agents are independent at
(Ri1′′′�Ri2′′′�Ri3′′′). This contradicts Proposition 6.

Step 3. We repeat the process. We replace agent i4’s preference with Ri4∗. Let
R′′′′ = (R1′′′′� � � � �RN′′′′) denote the preference profile after this replacement: Ri′′′′ = R̃i′′′
for i ∈ {i1� i2� i3}, Ri4′′′′ = Ri4∗, and Ri′′′′ = R̄i for i /∈ {i1� i2� i3� i4}. Note that agent i4’s con-
sumption at R′′′′ is neither 0 nor � because of the strategy-proofness.

Then we consider the replacement of the preferences of these agents i1, i2, i3, and
i4 with any preferences in the ε̄-neighborhoods Bε̄(R

i′′′′) of Ri′′′′, i ∈ {i1� i2� i3� i4}, respec-
tively. As a result, there should exist a preference profile R̃′′′′ = (R̃1′′′′� � � � � R̃N′′′′) where
R̃i′′′′ ∈ Bi

ε̄(R
i′′′′) for i ∈ {i1� i2� i3� i4}, R̃i′′′′ = R̄i for i /∈ {i1� i2� i3� i4}, and there exists a fifth

agent i5 /∈ {i1� i2� i3� i4} who receives positive consumption in intA at R̃′′′′.
If such a preference profile does not exist, then let f ′′′′ be the social choice func-

tion f restricted to agents i1, i2, i3, and i4, with other agents’ preferences fixed to R̄i,
i /∈ {i1� i2� i3� i4}. Then f ′′′′ is a social choice function in the four-agent economy of agents
i1, i2, i3, and i4 that is pseudo-efficient and strategy-proof on Bε̄(R

i1′′′′) × Bε̄(R
i2′′′′) ×

Bε̄(R
i3′′′′) × Bε̄(R

i4′′′′) and that allocates consumption in intA to at least two agents at
the preference profile (Ri1′′′′�Ri2′′′′�Ri3′′′′�Ri4′′′′). Furthermore, R′′′′ was obtained as a re-
sult of the replacement in the previous step and the replacement of agent i4’s prefer-
ence: Ri′′′′ = R̃i′′′ ∈ Bi

ε̄(R
i′′′) for i ∈ {i1� i2� i3} and Ri4′′′′ = Ri4∗. Combined with the result

Ri′′′ ∈ Bε̄(R
i∗) for any i ∈ {i1� i2� i3} in the previous step, we have Ri′′′′ ∈ B2ε̄(R

i∗) ⊂ Bε̂(R
i∗)

for any i ∈ {i1� i2� i3� i4}. Therefore, the consumption-direction vectors of these four
agents are independent at (Ri1′′′′�Ri2′′′′�Ri3′′′′�Ri4′′′′). This contradicts Proposition 6.

We repeat the process until Step N − 2. In Step k (≤ N − 2), we replace agent
ik+1’s preference with Rik+1∗, where agent ik+1 receives consumption that is neither 0
nor �. We let R〈k+1〉 = (R1〈k+1〉� � � � �RN〈k+1〉) denote the preference profile after the
replacement. We consider replacing these k + 1 agents’ preferences with preferences
in the ε̄ neighborhoods of Ri〈k+1〉, i ∈ {i1� � � � � ik+1}, respectively, and obtain preference
profile R̃〈k+1〉 = (R̃1〈k+1〉� � � � � R̃N〈k+1〉), where R̃i〈k+1〉 ∈ Bε̄(R

i〈k+1〉) for i ∈ {i1� � � � � ik+1},
R̃i〈k+1〉 = R̄i for i /∈ {i1� � � � � ik+1}, and there exists a (k + 2)th agent ik+2 /∈ {i1� � � � � ik+1}
who receives consumption in intA at R̃〈k+1〉.

If such a preference profile does not exists, then f 〈k+1〉, which is the social choice
function f restricted to agents i1� � � � � ik+1 with other agents’ preferences fixed to R̄i,
is a social choice function in the (k + 1)-agent economy that is pseudo-efficient and
strategy-proof on Bε̄(R

i1〈k+1〉) × · · · × Bε̄(R
ik+1〈k+1〉) and it allocates consumption in

intA to at least two agents at the preference profile (Ri1〈k+1〉� � � � �Rik+1〈k+1〉). Further-
more, R〈k+1〉 was obtained as a result of the replacement in Step k − 1 and the re-
placement of agent ik+1’s preference: Ri〈k+1〉 = R̃i〈k〉 ∈ Bi

ε̄(R
i〈k〉) for i ∈ {i1� � � � � ik} and

Rik+1〈k+1〉 = Rik+1∗. Combined with the result Ri〈k〉 ∈ B(k−2)ε̄(R
i∗) for any i ∈ {i1� � � � � ik}

in Step k − 1, we have Ri〈k+1〉 ∈ B(k−1)ε̄(R
i∗) ⊂ Bε̂(R

i∗) for any i ∈ {i1� � � � � ik+1}. There-
fore, the consumption-direction vectors of these k + 1 agents are independent at
(Ri1〈k+1〉� � � � �Rik+1〈k+1〉). This contradicts Proposition 6.

Finally, in Step N − 2, we replace agent iN−1’s preference with RiN−1∗, where agent iN
receives consumption that is neither 0 nor �. We let R〈N−1〉 = (R1〈N−1〉� � � � �RN〈N−1〉)
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denote the preference profile after the replacement. We consider replacing these
N − 1 agents’ preferences in the ε̄-neighborhoods of Ri〈N−1〉, i ∈ {i1� � � � � iN−1}, respec-
tively, and obtain preference profile R̃〈N−1〉 = (R̃1〈N−1〉� � � � � R̃N〈N−1〉), where R̃i〈N−1〉 ∈
Bε̄(R

i〈N−1〉) for i ∈ {i1� � � � � iN−1}, R̃i〈N−1〉 = R̄i for i /∈ {i1� � � � � iN−1}, that is, for i = iN , and
the agent iN receives consumption in intA at R̃〈N−1〉. Note that Ri〈N−1〉 ∈ B(N−3)ε̄(R

i∗) ⊂
Bε̂(R

i∗) for i ∈ {i1� � � � � iN−1}.
We replace agent iN ’s preference RiN with RiN∗ and let R〈N〉 denote the prefer-

ence profile after this replacement. Because of strategy-proofness, agent iN receives
consumption that is neither 0 nor � at R〈N〉. Then the Pareto-efficient and strategy-
proof social choice function f allocates consumption in intA to at least two agents at
R〈N〉 ∈ ∏N

i=1 Bε̂(R
i∗), where the consumption-direction vectors are independent. This

contradicts Proposition 6. This ends the proof of the theorem.

6. Proof of Corollary

The theorem implies that if a social choice function f : RN → X is pseudo-efficient and
strategy-proof, then f i(R) ∈ {0��} for any agent i and any R ∈ RN . We prove the corollary
by repeatedly applying this result, as we repeatedly applied Proposition 6 to prove the
theorem.

We let f : R̄N → X be a Pareto-efficient and strategy-proof social choice function
defined on a domain R̄N , where R ⊂ R̄ ⊂ RC . As in the case of R ∈ RN , as mentioned
in Section 3, f i(R) ∈ intA ∪ {0��} for any agent i and any preference profile R ∈ R̄N .
Therefore, all we have to prove is that f i(R) /∈ intA for any agent i and any R ∈ R̄N .
We suppose that R̄ = (R̄1� � � � � R̄N) ∈ R̄N is a preference profile where an agent receives
consumption in intA, and show a contradiction.

We let R∗ = (R1∗� � � � �RN∗) ∈ RN be a preference profile in RN . We repeat the re-
placement of the preferences of agents who receive positive consumption as follows. We
first pick an agent i1 who receives consumption in intA at R̄. We replace his preference
with Ri1∗. Let R′ = (R1′� � � � �RN′) denote the new preference profile after this replace-
ment: Ri1′ = Ri1∗ and Ri′ = R̄i for i 	= i1. As agent i1’s consumption at R′ is neither 0 nor
�, there exists another agent i2 who receives positive consumption in intA at R′. We re-
place this agent’s preference with Ri2∗ and let R′′ denote the preference profile after this
replacement. Note that agent i2’s consumption at R′′ is neither 0 nor �.

Then we consider the replacement of agent i1’s and agent i2’s preferences with any
preferences in R. As a result of the replacement, there should exist a preference profile
R̃′′ = (R̃1′′� � � � � R̃N′′), where R̃i1′′ ∈ R, R̃i2′′ ∈ R, and R̃i′′ = R̄i for i /∈ {i1� i2}, and there ex-
ists another agent i3, different from i1 and i2, receiving positive consumption in intA at
R̃′′. If such a preference profile does not exist, then let f ′′ be the social choice function f

restricted to agents i1 and i2, with other agents preferences fixed to R̄i, i /∈ {i1� i2}. Then
f ′′ is a social choice function in the two-agent economy of agents i1 and i2 that is Pareto
efficient and strategy-proof on R×R and allocates consumption in intA to both agents
at (Ri1∗�Ri2∗). This contradicts the theorem.

Now we replace agent i3’s preference with Ri3∗ and let R′′′ denote the preference
profile after the replacement: Ri1′′′ = R̃i1′′, Ri2′′′ = R̃i1′′, Ri3′′′ = Ri3∗, and Ri′′′ = R̄i for
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i /∈ {i1� i2� i3}. Note that agent i3’s consumption at R′′′ is neither 0 nor �. Then we con-
sider the replacement of the preferences of agents i1, i2, and i3 with any preferences
in R. As a result of the replacement, there exists a preference profile R̃′′′, where R̃i′′′ ∈ R
for i ∈ {i1� i2� i3}, R̃i′′′ = R̄i for i /∈ {i1� i2� i3}, and there exists a fourth agent i4 /∈ {i1� i2� i3}
who receives consumption in intA at R̃′′′. If such a preference profile does not exist,
then let f ′′′ be the social choice function f restricted to agents i1, i2, and i3, with other
agents’ preferences fixed to R̄i, i /∈ {i1� i2� i3}. Then f ′′′ is a social choice function in the
three-agent economy of agents i1, i2, and i3 that is pseudo-efficient and strategy-proof
on R × R × R and allocates positive consumption in intA to at least two agents at the
preference profile (Ri1′′′�Ri2′′′�Ri3′′′). This contradicts the theorem.

We replace the fourth agent’s preference with Ri4∗ and consider the replacement of
these four agents’ preferences with any preferences in R. Repeating this process, we
finally obtain a preference profile in RN where at least two agents have consumption in
intA. This contradicts the theorem and ends the proof of the corollary.

7. Concluding remarks

In this paper, we prove that as long as there are at least as many goods as agents, a Pareto-
efficient and strategy-proof social choice function is alternately dictatorial. Our proof is
based on the analysis of the option set. We show that the option set is the smooth surface
of a strictly convex set if a consumption bundle is allocated in the interior of the feasi-
ble consumption set. Then we observe that such an option set induces allocations that
contradict Pareto efficiency and strategy-proofness to prove that any agent is allocated
zero consumption or the total endowment. As far as we are aware, this paper is the first
to investigate the option set in many-agent economies. We believe that this approach
will be useful for the study of the properties of a strategy-proof social choice function in
more general setups.

The difficulty in dealing with economies with many agents is that the price vector
does not uniquely determine the allocation. In other words, the consumption bundle
of an agent does not determine the other agents’ consumption. This is in sharp con-
trast to two-agent economies, where one agent’s consumption determines the other’s
uniquely, because their consumption bundles sum to the total endowment under Pareto
efficiency. In this paper, to overcome this difficulty, we made the key assumption that
there are at least as many goods as agents. Under this assumption, it is possible to find a
preference profile that ensures the independence of the consumption-direction vectors.
If the consumption-direction vectors are independent, then an agent’s consumption de-
termines other agents’ consumption uniquely. Using this property, we first prove the al-
ternately dictatorial result at such a preference profile and then extend it to preference
profiles that may not satisfy the independence of the consumption-direction vectors.

It is still an open question whether a Pareto-efficient and strategy-proof social choice
function is alternately dictatorial in economies where the number of agents exceeds the
number of goods. It is clear that consumption-direction vectors are dependent in such
an economy and that our approach cannot be applied directly to this type of economy.
In future research, we hope to find answers to this challenging question.
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Figure 4. Construction of Is .

Appendix

A.1 Technical results

In this section, we prove some technical results concerning preference construction that
we repeatedly use in the proofs of the lemmas and propositions. We fix any positive unit
vector a ∈ SL−1++ and consider the L − 1-dimensional hyperplane a⊥. For y ∈ a⊥, we let
L(y) denote the half-line starting from y and extending in the direction of the vector a:
L(y) = {x ∈RL|x= y+ ta� t ≥ 0}. For any consumption vector x ∈RL+ and any preference
R ∈ R, the indifference set I(x;R) intersects with L(y) only once for any y ∈ a⊥ because
R is strictly monotonic in RL++.

If A⊂ RL++ is a closed, strictly convex set with smooth boundary satisfying x+RL+ ⊂
A for any x ∈ A, then there exists a preference R ∈ R such that A equals an upper con-
tour set of R. Let B ⊂ RL++ be a closed, convex set with a smooth boundary satisfying
x+R+ ⊂ B for any x ∈ B. When B does not satisfy strict convexity, it cannot be an upper
contour set of a preference in R. We often make the set B into a strictly convex set by
considering a convex combination of B with a strictly convex set A as follows. With a
parameter s ∈ [0�1], we define Is as

Is =
⋃
y∈a⊥

{
s
(
L(y)∩ ∂A

) + (1 − s)
(
L(y)∩ ∂B

)}
� (2)

Figure 4 depicts the construction of Is.

Lemma 5. For any s ∈ (0�1), the set Is + RL+, where Is is constructed by (2), is a closed,
strictly convex set and its boundary Is is smooth.
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Proof. We choose any orthogonal unit vectors e1� � � � � eL−1 that span a⊥, and introduce
a new orthogonal coordinate system (z1� � � � � zL) so that the set of vectors e1� � � � � eL−1,
and a is its basis. That is, z = (z1� � � � � zL) in this coordinate system corresponds to
z1e1 + · · · + zL−1eL−1 + zLa in the original coordinate system (x1� � � � � xL). We write z−L

to denote the first L− 1 elements: zL = (z1� � � � � zL−1).
As A and B are closed sets satisfying x + RL+ ⊂ A for any x ∈ A and x + RL+ ⊂ B for

any x ∈ B, the half-line L(y) intersects with the boundaries ∂A and ∂B only once for
any y ∈ a⊥. Thus, we let α : RL−1 → R+ and β : RL−1 → R+ be functions in the coordi-
nate system (z1� � � � � zl) so that the graphs equal the boundaries ∂A and ∂B, respectively:
∂A = {(z−L�α(z−L)) ∈RL|z−L ∈RL}, ∂B = {(z−L�β(z−L)) ∈RL|z−L ∈RL}.

We let γs : RL → R+ denote the function defined as γs(z−L) = sα(z−L) + (1 −
s)β(z−L). Then Is defined by (2) equals the graph of γs and the set Is + RL+ equals
{(z−L�zL) ∈RL|zL ≥ γs(z−L)} in the coordinate system (z1� � � � � zL). Therefore, Is +RL+ is
a closed set.

For the strict convexity of Is +RL+, we need to prove the strict convexity of the func-
tion γs . Pick any z′

−L ∈ RL−1 and z′′
−L ∈ RL−1, and let z′′′

−L = qz′
−L + (1 − q)z′′

−L with any
scalar q ∈ (0�1). All we have to show is

γs
(
z′′′
−L

)
< qγs

(
z′
−L

) + (1 − q)γs
(
z′′
−L

)
� (3)

The left-hand side of (3) is γs(z
′′′
−L) = sα(z′′′

−L) + (1 − s)β(z′′′
−L). The right-hand side of

(3) is qγs(z
′
−L) + (1 − q)γs(z

′′
−L) = q{sα(z′

−L) + (1 − s)β(z′
−L)} + (1 − q){sα(z′′

−L) + (1 −
s)β(z′′

−L)}. As A is strictly convex, the function α is strictly convex, and hence α(z′′′
−L) <

qα(z′
−L) + (1 − q)α(z′′

−L). As B is convex, the function β is convex, and hence β(z′′′
−L) ≤

qβ(z′
−L)+ (1 − q)β(z′′

−L). Therefore, we have the inequality (3).
As both A and B have smooth boundaries, the functions α and β are differentiable.6

Then γs is also differentiable, and Is is a smooth boundary of the set Is +RL+.7 �

We often turn a convex set into a convex set with a smooth boundary by rounding
its edges. Let A ⊂ RL be a closed convex set such that its interior is not empty. We let
D̄ε ⊂RL denote a closed ball with radius ε and define a closed set C as the union of such
closed balls with radius ε included in A: C = ⋃

D̄ε⊂A D̄ε. If ε is sufficiently small, then
there exists a closed ball with radius ε that is a subset of A, and hence C is not an empty
set.

Lemma 6. Let A ⊂ RL be a closed, convex set such that intA 	= ∅. When ε is sufficiently
small, C = ⋃

D̄ε⊂A D̄ε is a closed, convex set with a smooth boundary. If A is a strictly
convex set, then C is a strictly convex set.

6A function g :RL−1 →R is differentiable at z−L if there exists (T1� � � � �TL−1) ∈ RL−1 such that

lim
h→0

∥∥g(z−L + h)− g(z−L)− T1h1 − · · · − TL−1hL−1
∥∥

‖h‖ = 0�

where h = (h1� � � � �hL−1). Then (−T1� � � � �−TL−1�1) is the normal vector of the supporting hyperplane to
the graph of g at (z−L�g(z−L)) in the coordinate system (z1� � � � � zL).

7In the coordinate system (z1� � � � � zL), if TA = (TA
1 � � � � �TA

L−1�1) and TB = (TB
1 � � � � �TB

L−1�1) are the nor-
mal vectors of the supporting hyperplanes to A and B at (z−L�α(z−L)) and (z−L�β(z−L)), respectively, then
sTA + (1 − s)TB is the normal vector of the supporting hyperplane to Is at (z−L�γs(z−L)).



1290 Takeshi Momi Theoretical Economics 12 (2017)

Proof. We prove that C is a closed set. We let {xn}∞n=0 be a sequence of points in C

converging to x̄ and prove x̄ ∈ C. From the definition of C, there exists a closed ball D̄n
ε

with radius ε such that xn ∈ D̄n
ε ⊂A for each n. Let cn denote the center of the closed ball

D̄n
ε . As xn is convergent, the union

⋃
n D̄

n
ε of the closed balls is bounded, and hence the

sequence {cn}∞n=0 has a convergent subsequence {cnk}∞k=0. We let cnk → c̄ as k → ∞. We
let D̄ε(c) denote the closed ball with center c and radius ε. Given xnk → x̄ as k→ ∞ and
xnk ∈ D̄ε(ck) ⊂A, we have x̄ ∈ D̄ε(c̄) ⊂A. Therefore, x̄ ∈ C from the definition of C.

We prove that C is a convex set. We let x′ ∈ C, x′′ ∈ C, and s ∈ (0�1), and prove that
sx′ + (1 − s)x′′ ∈ C. From the definition of C, there exist closed balls D̄′

ε and D̄′′
ε such

that x′ ∈ D̄′
ε ⊂ A and x′′ ∈ D̄′′

ε ⊂ A. Let K be the convex hull of D̄′
ε ∪ D̄′′

ε : K = {z ∈ RL+|z =
rz′ + (1 − r)z′′� z′ ∈ D̄′

ε� z
′′ ∈ D̄′′

ε� r ∈ [0�1]}. It is clear that sx′ + (1 − s)x′′ ∈ K. As K equals
the union of closed balls with radius ε that have their centers between the centers of D̄′

ε

and D̄′′
ε , there exists a closed ball D̄′′′

ε with radius ε such that sx′ + (1 − s)x′′ ∈ D̄′′′
ε ⊂ K.

Convexity of A implies K ⊂ A. Therefore, sx′ + (1 − s)x′′ ∈ D̄′′′
ε ⊂ K ⊂ A and sx′ + (1 −

s)x′′ ∈ C from the definition of C.
We show that the boundary of C is smooth. If it is not smooth at a point x on the

boundary of C, then there are two different hyperplanes tangent to C at x. However, as
C is a union of closed balls, there should exist a closed ball with radius ε that is tangent
to x and included in C. This is a contradiction.

Finally, we prove that C is a strictly convex set if A is also a strictly convex set. We
suppose that C is not strictly convex. Given C is convex as shown above, this implies that
there is a segment [x′�x′′] in RL such that the segment is on the boundary of C and C is
tangent to an L − 1-dimensional hyperplane H along the segment [x′�x′′]. Then there
exist closed balls D̄′

ε and D̄′′
ε in C with radius ε that are tangent to the hyperplane H at x′

and x′′. Let K be the convex hull of D̄′
ε ∪ D̄′′

ε and let s ∈ (0�1) be any scalar. The convex
hull K is tangent to H along the segment [x′�x′′], and there exists a closed ball D̄′′′

ε ⊂ K

with radius ε that is tangent to the hyperplane H at sx′ + (1 − s)x′′. Note that K ⊂C ⊂A

because C is a convex set. From the definition of C, if a closed ball D̄ε in C with radius ε
touches the boundary of C, then the closed ball also touches the boundary of A. That is,
if there exists a point x ∈ ∂D̄ε ∩ ∂C, then there exists a point y, which might be different
from x, such that y ∈ ∂D̄ε ∩ ∂A. As sx′ + (1 − s)x′′ is in ∂D̄′′′

ε ∩ ∂C, the closed ball D̄′′′
ε

touches the boundary of A, that is, there exists y such that y ∈ ∂D̄′′′
ε ∩ ∂A. Let H ′ denotes

the supporting hyperplane of D̄′′′
ε at y. Given that D̄′′′

ε is located between D̄′
ε and D̄′′

ε in
K, then, H ′, which is a supporting hyperplane of D′′′

ε , has an intersection with K other
than y. Alternatively, strict convexity of A implies that A does not have an intersection
with the hyperplane H ′ other than y ∈ ∂A. This is a contradiction. �

Lemma 7. If A⊂ RL and B ⊂ RL are closed convex sets with smooth boundaries, then the
convex hull of their union, co(A∪B), also has a smooth boundary.

Proof. Note that any point in the boundary of co(A∪B) is either in the boundary of A,
in the boundary of B, or a convex combination of points in the boundaries of A and B.
That is, if y ∈ ∂ co(A∪B), then either y ∈ ∂A, y ∈ ∂B, or y = sx′ + (1 − s)x′′, where x′ ∈ ∂A,
x′′ ∈ ∂B, and s ∈ (0�1).
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We suppose that the boundary of co(A∪B) is not smooth at a point x on its bound-
ary. That is, there are two different hyperplanes H ′ and H ′′ tangent to co(A ∪ B) at x.
As mentioned above, x ∈ ∂A, x ∈ ∂B, or x = sx′ + (1 − s)x′′, where x′ ∈ ∂A, x′′ ∈ ∂B,
and s ∈ (0�1). If x ∈ ∂A, then H ′ and H ′′ are tangent to A at x, and this contradicts the
smoothness of the boundary of A. Similarly, x ∈ ∂B contradicts the smoothness of ∂B.

We consider the case of x= sx′ + (1 − s)x′′, where x′ ∈ ∂A, x′′ ∈ ∂B, and s ∈ (0�1). We
show that H ′ is tangent to co(A ∪ B) along the segment [x′�x′′]. Note that the segment
[x′�x′′] is in co(A∪B) because of the convexity of co(A∪B). Given x= sx′+(1−s)x′′ ∈H ′
with s ∈ (0�1), if the segment [x′�x′′] is not in H ′, then x′ and x′′ are located in the two
different sides of RL separated by H ′. This contradicts that H ′ is the hyperplane tangent
to co(A∪B). Similarly, H ′′ is tangent to co(A∪B) along the segment [x′�x′′]. Then both
H ′ and H ′′ are tangent to A at x′ ∈ ∂A. This contradicts the smoothness of the boundary
of A. �

A.2 Proof of Lemma 1

We show an example of preference construction. For any xn ∈ RL++ and pn ∈ SL−1++ , we
construct a preference Rn satisfying pn = p(Rn�xn) as follows. We use the technical
results in the previous section.

We let ε′ > 0 be a small scalar and define E as the intersection of the upper contour
set UC(xn − ε′pn; R̄) of R̄ at xn − ε′pn and the half-space H(xn + ε′pn;pn): E = UC(xn −
ε′pn; R̄)∩H(xn + ε′pn;pn).

We then pick a preference R′ satisfying E ⊂ UC(xn;R′) and pn = p(R′�xn). The exis-
tence of such a preference R′ is clear from the fact that E is in the right-hand side of the
hyperplane xn +p⊥

n and is away from the hyperplane.
We provide an example of the construction of such a preference R′. We apply the

methods in the previous section. We let UC(x′; R̄) be an upper contour set of the prefer-
ence R̄ at some consumption vector x′ such that E ⊂ UC(x′; R̄). Applying Lemma 6, we
make the convex set H(xn;pn)∩ UC(x′; R̄) into a convex set with smooth boundary. We
let C ′ denote the union of close balls with radius ε included in H(xn;pn) ∩ UC(x′; R̄):
C ′ = ⋃

D̄ε⊂H(xn;pn)∩UC(x′;R̄) D̄ε, where D̄ε denotes a closed ball with radius ε. We chose
ε sufficiently small so that E ⊂ C ′. Since C ′ is not strictly convex, it cannot be an up-
per contour set of a preference. By applying Lemma 5, we make C ′ into a strictly con-
vex set. We let R̃ ∈ R be a preference such that pn = p(xn; R̃). We fix any positive unit
vector a ∈ SL−1++ and consider the L − 1-dimensional hyperplane a⊥. For y ∈ a⊥, we let
L(y) denote the half-line starting from y and extending in the direction of the vector a:
L(y) = {x ∈RL|x= y + ta� t ≥ 0}. With parameter s ∈ (0�1), we define Is as

Is =
⋃
y∈a⊥

{
s
(
L(y)∩ I(xn; R̃)

) + (1 − s)
(
L(y)∩ ∂C ′)}�

We let Rs ∈ R be the preference such that Is is its indifference set. We set R′ as a pref-
erence Rs with s sufficiently small so that E ⊂ UC(xn;R′). We have pn = p(R′�xn) since
we have chosen R̃ so that pn = p(xn� R̃).
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We continue the construction of Rn. We define F ⊂ RL++ as the intersection of the up-
per contour set of R′ at xn and that of R̄ at xn − ε′pn: F = UC(xn;R′)∩ UC(xn − ε′pn; R̄).
This F cannot be an upper contour set of a smooth preference because it has its edge
at the intersection I(xn;R′) ∩ I(xn − ε′pn; R̄). We round the edge by Lemma 6. We let
ε′′ < ε′ be a scalar smaller than ε′. We let D̄ε′′ ⊂ RL+ denote a closed ball with radius ε′′
and define a closed set C as the union of such closed balls with radius ε′′ included in F :
C = ⋃

D̄ε′′⊂F D̄ε′′ . We define Rn as the preference such that it has C as an upper contour
set.

From the construction, Rn satisfies pn = p(Rn�xn). We observe that Rn converges to
R̄ as n→ ∞ and ε′ in the above construction converges to 0. As ε′ → 0, the upper contour
set U(xn;Rn) converges to U(xn; R̄)∩H(xn;pn). Furthermore, as n→ ∞, we have pn →
p̄ and xn → x̄, and hence the set U(xn; R̄)∩H(xn;pn) converges to U(x̄; R̄)∩H(x̄; p̄) =
U(x̄; R̄). Therefore, as n → ∞ and ε′ → 0, the upper contour set of Rn converges to that
of R̄, that is, the preference Rn converges to R̄.

We now prove the second part of the lemma. Remember that the preference Rn con-
structed above has C as its upper contour set and the set C is F = UC(xn;R′)∩ UC(xn −
ε′pn; R̄), the edge of which is truncated. Therefore, any consumption bundle on the
boundary of C, ∂C, is on either I(xn;R′), I(xn − ε′pn; R̄) or on a set that arises from
the edge truncation. If a consumption bundle on ∂C is on I(xn − ε′pn; R̄), then the
gradient vector of Rn is the same as that of R̄ at the consumption bundle. Therefore
all we have to do is to construct C such that [x̄] ∩ ∂C ∈ I(xn − ε′pn; R̄) or, equivalently,
[x̄] ∩ I(xn − ε′pn; R̄) ∈ ∂C. We write y = [x̄] ∩ I(xn − ε′pn; R̄).

When pn([x̄] ∩ I(xn; R̄)) > pnxn holds, we can construct such a C by taking R′, ε′,
and ε′′ suitably in the above construction. The assumption that pn([x̄]∩ I(xn; R̄)) > pnxn
implies that [x̄] ∩ I(xn; R̄) is in the interior of H(xn;pn). Thus, we let ε′ be sufficiently
small so that y is in the interior of H(xn;pn). We take the preference R′ in the above
construction so that it additionally satisfies y ∈ P(xn;R′). The existence of such an R′
is clear because y is in the right-hand side of the hyperplane xn + p⊥

n and is away from
the hyperplane. Then observe that the intersection of [x̄] and the boundary of F is on
I(xn − ε′pn; R̄). Now we take a sufficiently small ε′′ in the above construction so that y is
not truncated in the process of rounding the edge. More rigorously, we take ε′′ < ε′ such
that the closed ball D̄ε′′ ⊂ UC(xn − ε′pn; R̄) tangent to I(xn − ε′pn; R̄) at y is in P(xn;R′).
Then D̄ε′′ ⊂ P(xn;R′) ∩ UC(xn − ε′pn; R̄) ⊂ F , and y is not truncated; that is, y is on ∂C,
as desired.

A.3 Proof of Lemma 2

As f j(R̃) = f j(R̄) 	= 0 and R̃j and R̄j have the same gradient vector at f j(R̄), we have
p(R̄� f ) = p(R̃� f ) and g(R̄i�p(R̄� f )) = g(R̃i�p(R̃� f )) for any i.

As consumption at preference profiles R̄ and R̃, respectively, sum up to the total
endowment �, we have

∑N
i=1 f

i(R̄) = ∑N
i=1 ‖f i(R̄)‖g(R̄i�p(R̄� f )) = � and

∑N
i=1 f

i(R̃) =∑N
i=1 ‖f i(R̃)‖g(R̄i�p(R̃� f )) = �. Considering the difference between these equations,

we have
∑

i 	=j(‖f i(R̄)‖ − ‖f i(R̃)‖)g(R̄i�p(R̄� f )) = 0 because f j(R̄) = f j(R̃) and g(R̄i�

p(R̄� f )) = g(R̃i�p(R̃� f )). As the consumption-direction vectors are independent, this
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equation implies that ‖f i(R̄)‖ = ‖f i(R̃)‖ for all i 	= j. Thus, we obtain the equality of the
two allocations: f (R̄) = f (R̃).

A.4 Proof of Lemma 3

We let R̂i ∈ Bi be an MMT of Ri at x and show that x= f i(R̂i�R−i). As R̂i is an MMT of Ri

at x, UC(x; R̂i) \ x ⊂ P(x;Ri). Therefore, x is the unique, most preferred consumption
bundle in Gi(R−i) with respect to R̂i.

As x ∈ Gi(R−i), there exists a x̂ ∈ Gi(R−i) arbitrarily close to x. Thus, if x is strictly
preferred to f i(R̂i�R−i) with respect to R̂i, then x̂ is strictly preferred to f i(R̂i�R−i).
This contradicts the strategy-proofness of f . Therefore, f i(R̂i�R−i) ∈ UC(x; R̂i). Then
f i(R̂i�R−i) 	= x contradicts that x is the unique most preferred consumption bundle in
Gi(R−i) with respect to R̂i. Therefore, x= f i(R̂i�R−i) ∈ Gi(R−i).

A.5 Proof of Lemma 4

Without loss of generality, we prove the statement for agent 1. We write f (R̄) = x̄ =
(x̄1� � � � � x̄N) and p̄ = p(R̄� f ). From the definitions, x̄1 is (one of) the most preferred
consumption bundles in G1(R̄−1) with respect to R̄1, and no consumption bundle in

G1(R̄−1) is strictly preferred to x̄1 with respect to R̄1.8 We suppose that there exists an-

other consumption bundle x̃1 in G1(R̄−1) that is indifferent to x̄1 with respect to R̄1, and
show a contradiction.

We let R̃1 be an MMT of R̄1 at x̃1. As in Lemma 3, x̃1 = f 1(R̃1� R̄−1). We write
f (R̃1� R̄−1) = x̃ = (x̃1� � � � � x̃N) and let p̃ = p((R̃� R̄−1)� f ) denote the price vector at this
allocation. Figure 5 describes the situation where the closure of agent 1’s option set has
two most preferred consumption bundles x̄1 and x̃1 with respect to the preference R̄1,
contrary to the statement of the lemma. In the following proof, we observe that such an
option set contradicts the pseudo-efficiency and strategy-proofness of the social choice
function.

We construct agent 1’s new preferences R1
t as follows. In addition to R̃1, which is an

MMT of R̄1 at x̃1, we pick R1′, which is an MMT of R̄1 at x̄1. Let ε > 0 be a sufficiently
small scalar. For a parameter t ∈ (1 − ε�1) sufficiently close to 1, we define Kt as the
convex hull of the set UC(tx̃1; R̃1)∪ UC(x̄1;R1′):

Kt = co
(
UC

(
tx̃1; R̃1) ∪ UC

(
x̄1;R1′))�

We set ε sufficiently small so that for any t ∈ (1 − ε�1), p̃ and p̄ are normal vectors of the
supporting hyperplanes to Kt at tx̃1 and x̄1, respectively.

Applying Lemma 5 with Kt , we slightly modify the indifference set I(x̄1; R̄1). We con-
sider the hyperplane (x̃1)⊥ passing through the origin and perpendicular to the vector
x̃1. For each y ∈ (x̃1)⊥, we let L(y) denote the half-line starting from y and extending in

8As in the proof of Lemma 3, if there exists an x ∈ G1(R̄−1) that is strictly preferred to x̄ with respect to
R̄1, then there exists a x̂ ∈ G1(R̄−1) that is strictly preferred to x̄ with respect to R̄1.
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Figure 5. Proof of Lemma 4.

the direction of x̃1: L(y) = {x ∈ RL|x = y + rx̃1� r ≥ 0}. We fix a scalar s̄ < 1 close to 1 and
define

It =
⋃

y∈(x̃1)⊥

{
s̄
(
L(y)∩ I

(
x̄1; R̄1)) + (1 − s̄)

(
L(y)∩ ∂Kt

)}
�

We let R1
t ∈ R be agent 1’s preference that has It as its indifference set. Note that R1

t

can be arbitrarily close to R̄1 by setting s̄ close to 1. Therefore, we set s̄ sufficiently close
to 1 so that R1

t is in B1 for any t ∈ (1 − ε�1).
Note that both R1

t and R̄1 have the same gradient vectors p̃ and p̄ at x̃1 and x̄1,
respectively. Observe that R1

t is an MMT of R̄1 at x̃1. Furthermore, observe that
UC(x̄1;R1

t ) ∩ LC(x̄1; R̄1) consists of the point x̄1 and a set in a neighborhood of x̃1 that
converges to x̃1 as t converges to 1.

We write f (R1
t � R̄−1) = xt = (x1

t � � � � � x
N
t ). These t in xit should not be confused with

the subscripts labeling goods. Since R1
t is an MMT of R̄1 at x̃1, x1

t = x̃1.
We can select a small positive vector α ∈ RL++ such that for any t ∈ (1 − ε�1), there

exists an agent it ∈ {2� � � � �N} whose consumption xitt is strictly preferred to x̄it + α with
respect to R̄it : xitt ∈ P(x̄it +α; R̄it ). Contrary to this, suppose that for any vector α ∈RL++,
there exists some tα ∈ (1 − ε�1) such that x̄i + α ∈ UC(xitα; R̄i) holds for any i = 2� � � � �N .
Then, with a sufficiently small α, (x̄i + xitα)/2 is strictly preferred to xitα with respect to
R̄i for any i = 2� � � � �N by the strict convexity of the preferences. Similarly, x1

tα
= x̃1 and

(x̄1 + x̃1
tα
)/2 is preferred to x1

tα
with respect to R1

tα
when tα is sufficiently close to 1. These

contradict the Pareto efficiency of xtα .
For each i = 2� � � � �N , we let Ti denote the set of t such that xit is strictly preferred to

x̄i + α with respect to R̄i: Ti = {t ∈ (1 − ε�1) : xit ∈ P(x̄i + α; R̄i)}. Note that there exists
some i such that Ti ∩ [t�1) 	= ∅ for any t ∈ (1 − ε�1). If there does not exist any such i,
then for each i = 2� � � � �N , there exists a ti such that Ti ∩ [ti�1) = ∅, and there exists no i
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satisfying xit ∈ P(x̄i + α� R̄i) for t ∈ [max{t2� � � � � tN}�1), which is a contradiction. Without
loss of generality, we assume that agent 2 is such an agent: T2 ∩ [t�1) 	= ∅ for any t ∈
(1 − ε�1). From now on, we only consider t in T2. In particular, we select a sequence of
t’s in T2 converging to 1.

We pick R̂2 ∈ B2 such that (i) R̂2 is an MMT of R̄2 at x̄2, (ii) x2
t ∈ P(x̄2; R̂2) for

t ∈ T2, and (iii) g(R̂2� p̃) /∈ S(g(R̄2� p̃)� � � � � g(R̄N� p̃)), where S(g(R̄2� p̃)� � � � � g(R̄N� p̃))

denotes the N − 1-dimensional linear space spanned by g(R̄i� p̃)s, i = 2� � � � �N . The
condition (iii) requires that on the L − 1-dimensional indifference surface I(x̄2; R̂2),
the point where the gradient vector p̃ is not in the N − 2-dimensional set I(x̄2; R̂2) ∩
S(g(R̄2� p̃)� � � � � g(R̄N� p̃)). As for (ii), we have x2

t ∈ P(x̄2 + α; R̄2) ⊂ P(x̄2; R̄2) for t ∈ T2 as
shown above. Thus, we have R̂2 ∈ B2 satisfying (i)–(iii).

Observe that f 2(R̄1� R̂2� R̄−{1�2}) = x̄2 because R̂2 ∈ B2 is an MMT of R̄2 at x̄2. There-
fore, f 1(R̄1� R̂2� R̄−{1�2}) = x̄1 as shown in Lemma 2.

We write f (R1
t � R̂

2� R̄−{1�2}) = x̂t = (x̂1
t � � � � � x̂

N
t ) and focus on x̂1

t for t ∈ T2. Facing the
other agents’ preferences (R̂2� R̄−{1�2}), agent 1 can achieve x̄1 by reporting R̄1, as men-
tioned above. Therefore, x̂1

t should be preferred to x̄1 with respect to R1
t . Alternatively, x̂1

t

is not strictly preferred to x̄1 with respect to R̄1. Therefore, x̂1
t ∈ UC(x̄1;R1

t )∩ LC(x̄1; R̄1).
Remember that this set consists of the point x̄1 and a set in a neighborhood of x̃1 that
converges to x̃1 as t converges to 1. We investigate these two cases.

We consider the case where x̂1
t = x̄1. As R1

t and R̄1 have the same gradient vector at
x̄1, and R̂2 and R̄2 have the same gradient vector at x̄2, this case implies that x̂t = x̄ as
shown in Lemma 2. In particular, x̂2

t = x̄2. Remember that f 2(R1
t � R̄

2� R̄−{1�2}) = x2
t and

we have chosen R̂2 so that x2
t ∈ P(x̄2; R̂2) for any t ∈ T2. If agent 2 has preference R̂2 and

faces the other agents’ preferences (R1
t � R̄−{1�2}), he can become better off by reporting

R̄2 and achieving x2
t than reporting his true preference R̂2 and achieving x̂2

t = x̄2. This
contradicts the strategy-proofness of f on B.

We now consider the case where x̂1
t is in a set in a neighborhood of x̃1 that converges

to x̃1 as t converges to 1. In this case, as t converges to 1, the gradient vector of R1
t at

x̂1
t converges to p̃. Therefore, the price vector at x̂t converges to p̃. In particular, the

gradient of R̂2 at x̂2
t converges to p̃ as t → 1.

However, note the equation x̂2
t = x̃2 + ∑

i 	=2(x̃
i − x̂it) obtained from

∑N
i=1 x̃

i = � and∑N
i=1 x̂

i
t = �. In the right-hand side of this equation, x̃1 − x̂1

t → 0 as t → 1, x̃i ∈ [g(R̄i� p̃)]
for i ≥ 2, and x̂it converges to some point on [g(R̄i� p̃)] for i ≥ 3. Therefore, as t → 1,
x̂2
t converges to a point in S(g(R̄2� p̃)� � � � � g(R̄N� p̃)), and the gradient vector of R̂2 at x̂2

t

does not converge to p̃ because of (iii). This contradicts the discussion in the previous
paragraph.

A.6 Proof of Proposition 1

We only have to prove that if the consumption-direction vectors g(R̄i�p(R̄� f )), i =
1� � � � �N , are independent at R̄ and if f i(R̄) ∈ intA for an agent i, then f (·� R̄−i) is a con-
tinuous function at R̄i. Suppose that the claim is true and let Ri be a preference close
to R̄i. Then f (Ri� R̄−i) is close to f (R̄) because of the supposed continuity, and hence
the consumption-direction vectors of agents at the preference profile (Ri� R̄i) are still
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independent and f i(Ri� R̄−i) ∈ intA. Then f (·� R̄−i) is continuous at Ri because of the
supposed claim.

We first prove that f i(·� R̄−i) is a continuous function at R̄i. We let {Ri
n}∞n=1 be a se-

quence of preferences in Bi converging to R̄i as n→ ∞. There exists a convergent subse-
quence {f ink(Ri� R̄−i)}∞k=1 because of the compactness of the feasible allocation set. We
write f i(Ri

nk
� R̄−i)→ xi∗ as k→ ∞. All we have to show is that xi∗ = f i(R̄).

We observe that xi∗ is indifferent to f i(R̄) with respect to R̄i. If xi∗ ∈ P(f i(R̄); R̄i),
then f i(Ri

nk
� R̄−i) ∈ P(f i(R̄); R̄i) for a sufficiently large k. This contradicts the strategy-

proofness on B. If f i(R̄) ∈ P(xi∗; R̄i), then f i(R̄) ∈ P(f i(Ri
nk
� R̄−i);Ri

nk
) for a sufficiently

large k because f i(Ri
nk
� R̄−i) converges to xi∗ as k → ∞ and P(x;Ri

nk
) converges to

P(x; R̄i) at any consumption x as k → ∞. Again, this contradicts the strategy-proofness

on B. Thus, xi∗ is indifferent to f i(R̄) with respect to R̄i. Alternatively, xi∗ ∈ Gi(R̄−i)

because f i(Ri
nk
� R̄−i) ∈ Gi(R̄−i) for any k. Then xi∗ = f i(R̄) by Lemma 4.

We now prove the continuity of f j(·� R̄−i) at R̄i, j 	= i. We proved the continuity of
f i(·� R̄) at R̄i. That is, if {Ri

n}∞n=1 is a sequence of preferences in Bi converging to R̄i as
n → ∞, then f i(Ri

n� R̄−i) converges to f i(R̄). According to this convergence, the gra-
dient vector of Ri

n at f i(Ri
n� R̄−i) converges to the gradient vector of R̄i at f i(R̄); that

is, p((Ri
n� R̄−i)� f ) converges to p(R̄� f ) and, hence, g(R̄j�p((Ri

n� R̄−i)� f )) converges to
g(R̄j�p(R̄� f )) for any j 	= i.

As in the proof of Lemma 2, f j(R) = ‖f j(R)‖g(Rj�p(R� f )) for any preference pro-
file R ∈ B, and the sum of the agents’ consumption equals the total endowment.
Thus, we have two equalities: f i(R̄)+ ∑

j 	=i ‖f j(R̄)‖g(Rj�p(R̄� f )) = � and f i(Ri
n� R̄−i)+∑

j 	=i ‖f j(Ri
n� R̄−i)‖g(Rj�p((Ri

n� R̄−i)� f )) = � for any n. Considering the difference be-
tween these equalities, we have

0 = f i(R̄)− f i
(
Ri
n� R̄−i

)
+

∑
j 	=i

∥∥f j(R̄)
∥∥g(

Rj�p(R̄� f )
) −

∑
j 	=i

∥∥f j(Ri
n� R̄−i

)∥∥g(
Rj�p

((
Ri
n� R̄−i

)
� f

))

= f i(R̄)− f i
(
Ri
n� R̄−i

)
+

∑
j 	=i

(∥∥f j(R̄)
∥∥ − ∥∥f j(Ri

n� R̄−i
)∥∥)

g
(
Rj�p(R̄� f )

)

+
∑
j 	=i

∥∥f j(Ri(n)� R̄−i
)∥∥(

g
(
Rj�p(R̄� f )

) − g
(
Rj�p

((
Ri
n� R̄−i

)
� f

)))
�

As n → ∞, the first and third elements in the last equation converge to 0. As g(R̄j�

p(R̄� f )), j 	= i, are independent vectors, ‖f j(Ri
n� R̄−i)‖ converges to ‖f j(R̄)‖ for any j 	= i.

This implies that f j(Ri
n� R̄−i) converges to f j(R̄) for any j as n → ∞. That is, f j(·� R̄−i) is

continuous at R̄i for any j 	= i.

A.7 Proof of Proposition 2

We first show that for any Ri in a neighborhood of R̄i, Gi(R̄−i) ⊂ f i(Ri� R̄−i) + p((Ri�

R̄−i)� f ))⊥ − RL+ holds in a neighborhood of f i(Ri� R̄−i). That is, there exists a positive
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scalar εRi , depending on Ri, such that

Dε
Ri

(
f i

(
Ri� R̄−i

)) ∩Gi
(
R̄−i

) ⊂ f i
(
Ri� R̄−i

) +p
((
Ri� R̄−i

)
� f

)⊥ −RL+� (4)

Note that all we have to show is the existence of an εR̄i satisfying (4) at R̄, where
consumption-direction vectors are independent and f i(R̄) ∈ intA. Suppose this claim
to be true. If Ri is in a neighborhood of R̄i, then f (Ri� R̄−i) is in a neighborhood of f (R̄)

by Proposition 1, and, hence, the consumption-direction vectors of agents remain inde-
pendent at the preference profile (Ri� R̄−i) and f i(Ri� R̄−i) ∈ intA. Then there exists an
εRi satisfying (4) by the supposed claim.

Contrary to the existence of an εR̄i satisfying (4), we suppose that Gi(R̄−i) has an
intersection with f i(R̄) + p(R̄� f )⊥ + RL++ in any neighborhood of f i(R̄). Then we have
a preference in a neighborhood of R̄i that has two most preferred consumption bundles

in Gi(R̄−i), which contradicts Lemma 4. The rigorous proof proceeds as follows. We
write f (R̄) = (x̄1� � � � � x̄N) and p(R̄� f ) = p̄.

We construct agent i’s new preference as follows. For a parameter ε > 0, we consider
the set H(x̄i; p̄)∩ UC(x̄i − εp̄; R̄i). Applying Lemma 6, we round the edge of this set. We
let ε′′ < ε be a scalar smaller than ε and consider a closed ball D̄ε′′ with radius ε′′. We let
Cε be the union of such closed balls with radius ε′′ included in the set H(x̄i; p̄)∩UC(x̄i −
εp̄; R̄i): Cε = ⋃

D̄ε′′⊂H(x̄i;p̄)∩UC(x̄i−εp̄;R̄i) D̄ε′′ . Note that the surface of the set Cε is flat in a

neighborhood of x̄i.
We apply Lemma 5 to make Cε into an upper contour set of a preference. We fix any

positive unit vector a ∈ SL−1++ and consider the L − 1-dimensional linear space a⊥. For
y ∈ a⊥, we let L(y) denote the half-line starting from y and extending in the direction of
the vector a: L(y) = {x ∈ RL|x = y + ta� t ≥ 0}. For a parameter t ∈ (0�1], we let Ri

ε�t be
agent i’s preference that has as its indifference set

Iε�t =
⋃
y∈a⊥

{
t
(
L(y)∩ I

(
x̄i; R̄i

)) + (1 − t)
(
L(y)∩ ∂Cε

)}
�

Observe that Ri
ε�1 = R̄i and that Ri

ε�t is an MMT of Ri
ε�t ′ at x̄i for t > t ′, and the indifference

set I(x̄i;Ri
ε�t) becomes flatter in a neighborhood of x̄i as t → 0. Furthermore, observe

that if ε is sufficiently small, then ∂Cε is close to the indifference set I(x̄i; R̄i), and hence
Ri
ε�t is close to R̄i for any t. We let ε be sufficiently small such that Ri

ε�t ∈ Bi for any
t ∈ (0�1].

For any t, x̄i is an intersection between Gi(R̄−i) and UC(x̄i;Ri
ε�t), and it is the unique

intersection for t = 1. By the assumption that Gi(R̄−i) has an intersection with x̄i + p̄⊥ +
RL++ in any neighborhood of x̄i, UC(x̄i;Ri

ε�t) has intersections with Gi(R̄−i) other than x̄i

when t is small. We let t(ε) be the largest t such that UC(x̄i;R1
ε�t) has such an intersection

with Gi(R̄−i) in f i(R̄) + p(R̄� f ))⊥ + RL++. Then, with respect to Ri
ε�t(ε), there exist two

most preferred consumption bundles in Gi(R̄−i) and this contradicts Lemma 4. This
ends the proof of the existence of εRi satisfying (4).

We now prove the statement of the proposition. For example, we choose the scalars
ε̄ and ε′ satisfying (1) as follows. We consider εRi satisfying (4) for each Ri in a neigh-
borhood of R̄i. For ε > 0, we consider the ε-neighborhood of R̄i, i.e., Bε(R̄i), and
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define α(ε) as the infimum of εRi for Ri ∈ Bε(R̄
i): α(ε) = infRi∈Bε(R̄i) εRi . Note that

ε �→ α(ε) is a positive and decreasing function by the definition. Alternatively, we de-
fine β(ε) as the supremum of the distance between f (Ri� R̄−i) and f i(R̄) for Ri ∈ Bε(R̄

i):
β(ε) = supRi∈Bε(R̄i) ‖f (Ri� R̄−i) − f i(R̄)‖. Note that ε �→ β(ε) is a positive and increasing
function and β(ε) → 0 as ε → 0 because of the continuity of f . We pick a scalar ε′ satis-
fying β(ε′) < 1

2α(ε
′) and define ε̄ = β(ε′). The existence of such a scalar ε′ is ensured by

the properties of the functions ε �→ α(ε) and ε �→ β(ε) mentioned above.
It can be easily seen that these are the desired scalars. If Ri is in the neighborhood

Bε′(R̄i) of R̄i, then in the neighborhood Dα(ε′)(f i(Ri� R̄−i)), the option set Gi(R̄−i) is in
the lower left-hand side of the hyperplane f (Ri� R̄−i)+p((Ri� R̄−i))� f )⊥:

Dα(ε′)
(
f i

(
Ri� R̄−i

)) ∩Gi
(
R̄−i

) ⊂ f i
(
Ri� R̄−i

) +p
((
Ri� R̄−i

)
� f

)⊥ −RL+�

As the distance between f i(Ri� R̄−i) and f (R̄) is at most ε̄ and α(ε′) > 2ε̄, we have
Dε̄(f (R̄)) ⊂ Dα(ε′)(f i(Ri� R̄−i)). Hence, we have (1).

A.8 Proof of Proposition 3

As in the proof of Proposition 2, we only have to prove that if the consumption-direction
vectors are independent at R̄ and if f i(R̄) ∈ intA, then the statement of the proposition
holds at the preference profile R̄.

Without loss of generality, we prove the proposition for agent 1. We suppose that
g(R̄i�p(R̄� f )), i = 1� � � � �N , are independent at R̄ = (R̄1� � � � � R̄N) ∈ B and f 1(R̄) ∈ intA.
We write f (R̄) = x̄ = (x̄1� � � � � x̄N) and p(R̄� f ) = p̄. We have to prove that x̄1 is the unique

intersection between G1(R̄−1) and x̄1 + p̄⊥ in a neighborhood of x̄1.
Contrary to the statement of the proposition, we suppose that for any scalar ε > 0,

there exists x̃1
ε in the ε-neighborhood Dε(x̄

1) of x̄1 such that x̃1
ε is different from x̄1, and

that x̃1
ε is the intersection between G1(R̄−1) and x̄1 + p̄⊥. We show a contradiction.

We first observe that when ε is sufficiently small, the hyperplane x̄1 + p̄⊥ is tangent

to G1(R̄−1) along the segment [x̄1� x̃1
ε] ≡ {tx̄1 + (1 − t)x̃1

ε ∈ RL+ : 0 ≤ t ≤ 1}. We pick an
arbitrary consumption bundle x1 ∈ (x̄1� x̃1

ε) ≡ {tx̄1 + (1 − t)x̃1
ε ∈ RL+ : 0 < t < 1} and con-

sider a preference R1 in a neighborhood of R̄1 so that the gradient vector of R1 at x1

is p̄. When ε is sufficiently small, x1 is sufficiently close to x̄1, and we can have such a
preference R1 in a neighborhood of R̄1. We let x1′ denote the most preferred consump-

tion in G1(R̄−1) with respect to R1 and let p′ denote the gradient vector of R1 at x1′.
As shown in Proposition 2, x1′ is in the lower left-hand side of the hyperplane x̄1 + p̄⊥.
Therefore, p̄x1′ ≤ p̄x̄1 = p̄x̃1

ε, and hence p̄x1′ ≤ p̄x1. By the same reasoning, x̄1 and x̃1
ε

are in the lower left-hand side of the hyperplane x1′ + (p′)⊥. Therefore, p′x̄1 ≤ p′x1′ and
p′x̃1

ε ≤ p′x1′, and hence p′x1 ≤ p′x1′. These two inequalities are satisfied for the two
combinations (p̄�x1) and (p′�x1′) of a gradient vector and a consumption bundle with
the preference R1 if and only if p̄ = p′ and x1′ = x1. As our choice of x1 is arbitrary on

(x̄1� x̃1
ε), this implies that x̄1 + p̄⊥ is tangent to G1(R̄−1) along the segment [x̄1� x̃1

ε]. From

now on, we assume that ε is sufficiently small so that x̄1 + p̄⊥ is tangent to G1(R̄−1) along
the segment [x̄1� x̃1

ε].
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Figure 6. Proof of Proposition 3.

For each ε, we pick a consumption bundle x̂1
ε ∈ (x̄1� x̃1

ε) and a preference R̂1
ε such

that the gradient vector of R̂1
ε at x̂1

ε is p̄ and R̂1
ε converges to R̄1 as ε → 0. We can have

such a preference because x̂1
ε → x̄ as ε → 0. Similarly, we let R̃1

ε be a preference such
that the gradient vector of R̃1

ε at x̃1
ε is p̄ and R̃1

ε converges to R1 as ε → 0. It is clear that
f 1(R̃1

ε� R̄−1) = x̃1
ε, f 1(R̂1

ε� R̄−1) = x̂1
ε, and p((R̃1

ε� R̄−1)� f ) = p((R̂1
ε� R̄−1)� f ) = p̄. We write

f (R̃1
ε� R̄−1)= x̃ε = (x̃1

ε� � � � � x̃
N
ε ) and f (R̂1

ε� R̄−1)= x̂ε = (x̂1
ε� � � � � x̂

N
ε ).

For agent i 	= 1, the consumption bundles, x̄i, x̂iε, and x̃iε are all on the same
ray [g(R̄i� p̄)] because of the same price vector p̄. Under the independence of the
consumption-direction vectors, which holds for preferences in a neighborhood of R̄,
x̃1
ε 	= x̄1 implies that there exists an agent i 	= 1 such that x̃iε 	= x̄i. Without loss of gener-

ality, we assume agent 2 is such an agent. Then x̂2
ε is between x̄2 and x̃2

ε on the same ray,
and either x̄2 < x̂2

ε < x̃2
ε or x̃2

ε < x̂2
ε < x̄2 holds.

Figure 6 describes the situation where the closure of agent 1’s option set is tangent
to the hyperplane x̄1 + p̄⊥ along the segment [x̄1� x̃1

ε], contrary to the statement of the
proposition. In the following proof, we show that the other agents’ option sets are also
flat and observe that such flat option sets contradict the pseudo-efficiency and strategy-
proofness of the social choice function.

We now show that when ε is sufficiently small, G2(R̂1
ε� R̄−{1�2}) is flat in a neigh-

borhood of x̂2
ε. We suppose that it is not flat in any neighborhood of x̂2

ε, as drawn
in Figure 5. We let ε′ > 0 be a scalar and let Ř2

ε′ be agent 2’s preference in the ε′-
neighborhood Bε′(R̄2) of R̄2 such that the gradient vector p̌ε�ε′ of Ř2

ε′ at the most pre-

ferred consumption bundle in G2(R̂1
ε� R̄−{1�2}) with respect to Ř2

ε′ is different from p̄,
as drawn in the figure. As the closure of the option set is not flat in any neighbor-
hood of x̂2

ε, we can have such a preference Ř2
ε′ in any ε′-neighborhood of R̄2. We write

f (R̂1
ε� Ř

2
ε′� R̄−{1�2}) = x̌ε�ε′ = (x̌1

ε�ε′� � � � � x̌Nε�ε′).9 We have p̌ε�ε′ → p̄ and x̌ε�ε′ → x̂ε as ε′ → 0.

9The set G2(R̂1
ε� R̄−{1�2}) may have an edge at x̂2

ε , and x̌ε�ε′ may be x̂2
ε .
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As x̂1
ε is between x̄1 and x̃1

ε, either p̌ε�ε′ x̄1 > p̌ε�ε′ x̂1
ε > p̌ε�ε′ x̃1

ε, p̌ε�ε′ x̄1 < p̌ε�ε′ x̂1
ε <

p̌ε�ε′ x̃1
ε, or p̌ε�ε′ x̄1 = p̌ε�ε′ x̂1

ε = p̌ε�ε′ x̃1
ε holds. When p̌ε�ε′ x̄1 > p̌ε�ε′ x̂1

ε > p̌ε�ε′ x̃1
ε, as drawn in

Figure 2, or when p̌ε�ε′ x̄1 = p̌ε�ε′ x̂1
ε = p̌ε�ε′ x̃1

ε, we focus on the two combinations (x̄1� p̄)

and (x̌1
ε�ε′� p̌ε�ε′) of a consumption bundle and a price vector. We consider a preference

R1
ε�ε′ in a neighborhood of R̄1 such that the gradient vector of R1

ε�ε′ at x̄1 is p̄ and that at

x̌1
ε�ε′ is p̌ε�ε′ : p̄ = p(R1

ε�ε′� x̄1) and p̌ε�ε′ = p(R1
ε�ε′� x̌1

ε�ε′).

For example, such a preference R1
ε�ε′ can be obtained as follows. We write yε�ε′ =

[x̌1
ε�ε′ ] ∩ I(x̂1

ε; R̂1
ε). We let R∗

ε�ε′ be an MMT of R̄1 at x̄1 and let Kε�ε′ denote the convex hull

of UC(x̂1
ε; R̂1

ε) ∪ UC(x̄1�R∗
ε�ε′): Kε�ε′ = co(UC(x̂1

ε; R̂1
ε) ∪ UC(x̄1�R∗

ε�ε′)). Observe that the

convex hull Kε�ε′ is tangent to the hyperplane yε�ε′ + p̌⊥
ε�ε′ at yε�ε′ . This Kε�ε′ cannot be an

upper contour set of a preference because it is not a strictly convex set. We let Rε�ε′ be
a preference such that its gradient vector at yε�ε′ is p̌ε�ε′ and its upper contour set at yε�ε′

includes Kε�ε′ : Kε�ε′ ⊂ UC(yε�ε′ ;Rε�ε′). We use Rε�ε′ and make Kε�ε′ into an upper contour
set of a preference by applying Lemma 5. We fix any positive unit vector a ∈ SL−1++ and
consider the L− 1-dimensional linear space a⊥. For y ∈ a⊥, we let L(y) denote the half-
line starting from y and extending in the direction of the vector a: L(y) = {x ∈ RL|x =
y + ta� t ≥ 0}. We let R′

ε�ε′ be a preference, for which the indifference set at yε�ε′ is

⋃
y∈a⊥

{
s
(
L(y)∩ I(yε�ε′ ;Rε�ε′)

) + (1 − s)
(
L(y)∩ ∂Kε�ε′

)}
(5)

with a sufficiently small s > 0. Finally, we construct a preference R1
ε�ε′ in a neighborhood

of R′
ε�ε′ such that p̌ε�ε′ = p(R1

ε�ε′� x̌1
ε�ε′) and p̄ = p(R1

ε�ε′� x̄1) by directly applying the pref-

erence construction in Lemma 1 so that R̄, (x̄� p̄), and (xn�pn) in Lemma 1 correspond
to R′

ε�ε′ , (x̌ε�ε′� p̌ε�ε′), and (x̄� p̄) in the present setup, respectively.
We observe that Lemma 1 can be applied to R′

ε�ε′ when ε, ε′, and s in (5) are suffi-
ciently small. As ε → 0, we have x̂ε → x̄. As ε′ → 0, we have x̌ε�ε′ → x̂ε and p̌ε�ε′ → p̄.
Thus, when ε and ε′ are sufficiently small, we have x̌1

ε�ε′ and p̌ε�ε′ sufficiently close to

x̄1 and p̄, respectively. Therefore, we can apply the preference construction method in
Lemma 1. The condition in Lemma 1 is p̄([x̌ε�ε′ ] ∩ I(x̄;R′

ε�ε′)) > p̄x̄ in the present setup.

We set ε and ε′. As s → 0 in (5), UC(x̄1;R′
ε�ε′) converges to Kε�ε′ and [x̌ε�ε′ ] ∩ I(x̄;R′

ε�ε′)
converges to yε�ε′ , which satisfies p̄yε�ε′ > p̄x̄. Therefore, the condition is satisfied when
s in (5) is sufficiently small.

Next, we observe that R1
ε�ε′ is in a neighborhood of R̄1 when ε, ε′, and s in (5) are suffi-

ciently small. As ε→ 0, we have x̂1
ε → x̄1 and R̂ε → R̄1, and, hence, UC(x̂1

ε; R̂′
ε) converges

to UC(x̄; R̄1). Since UC(x̄1;R∗
ε�ε′) ⊂ UC(x̄1; R̄1), Kε�ε′ converges to UC(x̄; R̄1). As s → 0

in (5), UC(yε�ε′ ;R′
ε�ε′) converges to Kε�ε′ . Therefore, as ε → 0 and s → 0, UC(yε�ε′ ;R′

ε�ε′)

converges to UC(x̄1; R̄1) and R′
ε�ε′ converges to R̄1. As R1

ε�ε′ converges to R′
ε�ε′ as ε → 0

and ε′ → 0, we have R1
ε�ε′ in a neighborhood of R̄1 as desired when ε, ε′, and s are suffi-

ciently small.
With the preference R1

ε�ε′ , we have f (R1
ε�ε′� Ř2

ε�ε′� R̄−{1�2}) = x̌ε�ε′ and f (R1
ε�ε′�

R̄−2) = x̄. This contradicts the strategy-proofness of f on B with respect to agent 2 be-
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cause x̌ε�ε′ → x̂ε as ε′ → 0, and x̂2
ε, which is on the same ray as x̄2, satisfies x̂2

ε < x̄2 or
x̄2 < x̂2

ε as mentioned above.
The discussion is symmetric when p̌ε�ε′ x̄1 < p̌ε�ε′ x̂1

ε�ε′ < p̌ε�ε′ x̃1
ε. We focus on the

two pairs (x̌1
ε�ε′� p̌ε�ε′) and (x̃1

ε� p̄). Similar to the discussion above, we can construct a

preference R1
ε�ε′ in a neighborhood of R̃1

ε, and thus in a neighborhood of R̄1, such that

the gradient vectors of R1
ε�ε′ at x̃1

ε and x̌1
ε�ε′ are p̄ and p̌ε�ε′ , respectively. Then we have

f (R1
ε�ε′� Ř2

ε�ε′� R̄−{1�2}) = x̌ε�ε′ , which converges to x̂ε as ε′ → 0, and f (R1
ε�ε′� R̄−2) = x̃ε. This

again contradicts the strategy-proofness of f on B with respect to agent 2. This ends the

proof that G2(R̂1
ε� R̄−{1�2}) is flat in a neighborhood of x̂2

ε when ε is sufficiently small.
In addition to x̂1

ε and R̂1
ε, we pick another consumption bundle x́1

ε ( 	= x̂1
ε) on

(x̄1� x̃1
ε) and another preference Ŕ1

ε for each ε such that the gradient vector of Ŕ1
ε at

x́1
ε is p̄ and Ŕ1

ε converges to R̄1 as ε → 0. It is clear that f 1(Ŕ1
ε� R̄−{1�2}) = x́1

ε and
p((Ŕ1

ε� R̄−{1�2})� f ) = p̄. We write f (Ŕ1
ε� R̄−{1�2}) = x́ε = (x́1

ε� � � � � x́
N
ε ). Similar to the discus-

sion above, G2(Ŕ1
ε� R̄−{1�2}) is flat in a neighborhood of x́2

ε when ε is sufficiently small.
Under the independence of the consumption-direction vectors, x́2

ε is on the same ray as
x̂2
ε and x́2

ε 	= x̂2
ε because of x́1

ε 	= x̂1
ε.

Now we exchange the roles of agents 1 and 2. Facing the closure of the option set

G2(R̂1
ε� R̄−{1�2}), which is flat in a neighborhood of x̂2

ε, we let ε′′ be a scalar such that
with respect to any preference R2 in the ε′′-neighborhood Bε′′(R̄2) of R2, the most pre-

ferred consumption bundle in G2(R̂1
ε� R̄−{1�2}), which should be f 2(R̂1

ε�R
2� R̄−{1�2}), is

in the flat part. Then p(R̂1
ε�R

2� R̄{1�2}) = p̄. In particular, for each sufficiently small
scalar ε′′, we let R̀2

ε′′ be agent 2’s preference in B2
ε′′(R̄2) such that f 2(R̂1

ε� R̀
2
ε′′� R̄−{1�2}) −

x̂2
ε /∈ S(g(R̄3; p̄)� � � � � g(R̄N ; p̄)), where S(g(R̄3; p̄)� � � � � g(R̄N ; p̄)) denotes the N − 2-

dimensional linear space spanned by the consumption-direction vectors of agents i =
3� � � � �N . We can have such a preference R̀2

ε′′ because we can have f 2(R̂1
ε� R̀

2
ε′′� R̄−{1�2})−

x̂2
ε in any L − 1-dimensional directions on the flat part of G2(R̂1

ε� R̄−{1�2}). Note
that the condition f 2(R̂1

ε� R̀
2
ε′′� R̄−{1�2}) − x̂2

ε /∈ S(g(R̄3; p̄)� � � � � g(R̄N ; p̄)) implies that

f 1(R̂1
ε� R̀

2
ε′′� R̄−{1�2}) 	= x̂1

ε under the independence of the consumption-direction vectors.

We write f (R̂1
ε� R̀

2
ε′′� R̄−{1�2}) = x̀ε�ε′′ = (x̀1

ε�ε′′� � � � � x̀Nε�ε′′). Similar to the discussion

above, we now have that x̀1
ε�ε′′ ( 	= x̂1

ε) is on the same ray as x̂1
ε and G1(R̀2

ε′′� R̄−{1�2}) is

flat in a neighborhood of x̀1
ε�ε′′ when ε′′ is sufficiently small.

We write f (Ŕ1
ε� R̀

2
ε′′� R̄−{1�2}) = ẋε�ε′′ = (ẋ1

ε�ε′′� � � � � ẋNε�ε′′). As ε′′ → 0, we have R̀2
ε′′ → R̄2,

and hence ẋε�ε′′ → x́ε�ε′′ . Therefore, when ε′′ is sufficiently small, ẋ2
ε�ε′′ is on the flat part of

G2(Ŕ1
ε� R̄−{1�2}) in a neighborhood of x́2

ε. As ε → 0, both R̂1
ε and Ŕ1

ε converges to R̄1 and,
hence, both preferences become closer. Therefore, when ε is sufficiently small, ẋ1

ε�ε′′ is

sufficiently close to x̀1
ε�ε′′ and it is in the flat part of G1(R̀2

ε′′� R̄−{1�2}) in a neighborhood of

x̀1
ε�ε′′ .

Now we consider four allocations x̂ε, x́ε, x̀ε�ε′′ , and ẋε�ε′′ with sufficiently small ε
and ε′′. Clearly, these satisfy four equations:

∑N
i=1 x̂

i
ε = �,

∑N
i=1 x́

i
ε = �,

∑N
i=1 x̀

i
ε�ε′′ = �,

and
∑N

i=1 ẋ
i
ε�ε′′ = �. As the price vector p̄ is the same in all allocations, and the pref-

erences of all agents, except agents 1 and 2, are unchanged, we have, for i = 3� � � � �N ,
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x́iε = aix̂
i
ε, x̀iε�ε′′ = bix̂

i
ε, and ẋiε�ε′′ = cix̂

i
ε with some scalars ai, bi, and ci. As for agent 1, we

have x̀1
ε�ε′′ = tx̂1

ε and ẋ1
ε�ε′′ = tx́1

ε with a scalar t, because x̀1
ε�ε′′ and x̂1

ε are on the same ray

[g(R̂1
ε� p̄)], ẋ1

ε�ε′′ and x́1
ε are on the same ray [g(Ŕ1

ε� p̄)], and the segments [x̀1
ε�ε′′� ẋ1

ε�ε′′ ] and

[x̂1
ε� x́

1
ε] are both perpendicular to p̄. Similarly, we have x́2

ε = sx̂2
ε and ẋ2

ε�ε′′ = sx̀2
ε�ε′′ with a

scalar s for agent 2. Thus, we have

x̂1
ε + x̂2

ε + x̂3
ε + · · · + x̂Nε = ��

x́1
ε + sx̂2

ε + a3x̂
3
ε + · · · + aNx̂Nε = ��

tx̂1
ε + x̀2

ε�ε′ + b3x̂
3
ε + · · · + bNx̂Nε = ��

tx́1
ε + sx̀2

ε�ε′ + c3x̂
3
ε + · · · + cNx̂Nε = ��

From the first and second equations, we have

sx̂1
ε − x́1

ε + (s − a3)x̂
3
ε + · · · + (s − aN)x̂Nε = (s − 1)��

From the third and fourth equations, we have

t
(
sx̂1

ε − x́1
ε

) + (sb3 − c3)x̂
3
ε + · · · + (sbN − cN)x̂Nε = (s − 1)��

Because of the independence of the consumption-direction vectors and x̂1
ε 	= 0, � is not

in the linear space spanned by x̂3
ε� � � � � x̂

N
ε . Thus, these two equations hold only if s = 1

or t = 1. However, this contradicts that x̀1
ε�ε′′ 	= x̂1

ε and x́2
ε 	= x̂2

ε.

A.9 Proof of Proposition 4

As in the proof of Proposition 2, we only have to prove that if the consumption-direction
vectors are independent at R̄ and if f i(R̄) ∈ intA, then the statement of the proposition
holds at the preference profile R̄.

Without loss of generality, we prove the statement for agent 1. We suppose that
g(R̄i�p(R̄� f )), i = 1� � � � �N , are independent at R̄ = (R̄1� � � � � R̄N) and that f 1(R̄) ∈ intA.
We write f (R̄) = x̄ = (x̄1� � � � � x̄N) and p̄ = p(R̄� f ).

As shown in Proposition 2, x̄1 + p̄⊥ is a hyperplane tangent to G1(R̄−1) at x1, and

G1(R̄−1) is in the lower left-hand side of this hyperplane. We suppose that G1(R̄−1) has

an edge at x̄1 and that there exists another hyperplane tangent to G1(R̄−1) at x̄1 with a
normal vector p̃ different from p̄. We show a contradiction.

As G1(R̄−1) is in the lower left-hand side of x̄1 + p̄⊥, and in the lower left-hand side

of x̄1 + p̃⊥, any hyperplane x̄1 + (tp̄�+(1 − t)p̃)⊥, t ∈ [0�1], is tangent to G1(R̄−1) at x̄1

We let ε > 0 be a small scalar. For each ε, we pick a preference R̃1
ε in the ε-

neighborhood Bε(R̄
1) of R̄1 such that the gradient vector of R̃1

ε at x̄1 is different from p̄

and x̄1 is the most preferred consumption bundle in G1(R̄−1) with respect to R̃1
ε. The ex-

istence of such a preference should be clear from the above discussion. We let p̃ε denote
the gradient vector of R̃1

ε at x̄1: p̃ε = p(R̃1
ε� x̄

1). We write f (R̃1
ε� R̄−1) = x̃ε = (x̃1

ε� � � � � x̃
N
ε ).

It is clear that x̃1
ε = x̄1 and p̃ε = p((R̃1

ε� R̄−1)� f ). As ε → 0, R̃ε → R̄1, p̃ε → p̄, and x̃ε → x̄.
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Figure 7. Proof of Proposition 4.

Figure 7 describes the situation where the closure of agent 1’s option set has an edge at
x̄1, contrary to the statement of the proposition. In the following proof we observe that
this induces allocations that contradict the pseudo-efficiency and strategy-proofness of
the social choice function f .

As f 1(R̄) ∈ intA and f i(R̄) ∈ intA ∪ {0��} for any i as observed at the end of Sec-
tion 3, there exists another agent receiving positive consumption in intA. Without loss
of generality, we assume that agent 2 is such an agent: f 2(R̄) ∈ intA.

As R̄1 and R̃1
ε have different gradient vectors at x̄1, P(x̄1; R̃1

ε) \ UC(x̄1; R̄1) 	= ∅. Then
there exists a consumption bundle y in any neighborhood of x̄1 such that y is indifferent
to x̄1 with respect to R̄1 and y is strictly preferred to x̄1 with respect to R̃1

ε. We let {yn}∞n=1
be a sequence of such consumption bundles converging to x̄1 as n → ∞: yn ∈ I(x̄1; R̄1),
yn ∈ P(x̄1; R̃1

ε), and yn → x̄1 as n → ∞. We let p′
n denote the gradient vector of R̄1 at yn:

p′
n = p(R̄1� yn).

We focus on agent 2. With each sufficiently large n, we let x2′
n be a consumption

vector on G2(R̄−2) such that the hyperplane x2′
n +p′⊥

n is tangent to G2(R̄−2) at x2′
n . Such

a consumption vector x2′
n is obtained uniquely because x̄2 is the unique intersection

between G2(R̄−2) and x̄1 + p̄⊥, as shown in Proposition 3, and p′
n → p̄ as n → ∞. We

have x2′
n → x̄2 as n → ∞.10

We let R2′
n be agent 2’s preference that has gradient vector p′

n at x2′
n and converges

to R̄2 as n → ∞. Such a preference can be obtained by directly applying the preference
construction in the first part of Lemma 1 so that R̄, (x̄� p̄), and (xn�pn) in Lemma 1 corre-
spond to R̄2, (x̄2� p̄), and (x2′

n �p
′
n), respectively, in the present setup. It is clear that with

respect to R2′
n , x2′

n is the most preferred consumption bundle in G2(R̄−2), and, hence,
f 2(R2′

n � R̄−2) = x2′
n and p((R2′

n � R̄−2)� f ) = p2′
n . We write f (R2′

n � R̄−2) = x′
n = (x1′

n � � � � � x
N′
n ).

Observe that x1′
n is on the ray [yn].

10The term G2(R̄−2) may also have an edge at x̄2 and x2′
n may be x̄2.
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For each sufficiently small ε, there exists a sufficiently large n, and we can have
agent 2’s preference R̂2

ε�n in B2 such that (I) the gradient vector of R̂2
ε�n at x̃2

ε is p̃ε, and

(II) the gradient vector of R̂2
ε�n at x2′

n is p′
n. To obtain such a preference, we directly ap-

ply the preference construction in Lemma 1 so that R̄, (x̄� p̄), and (xn�pn) in Lemma 1
correspond to R̄2, (x̃2

ε� p̃ε), and (x2′
n �p

′
n), respectively, in the present setup.

We observe that we can apply the preference construction in Lemma 1. As ε → 0,
x̃2
ε → x̄2 and p̃ε → p̄. As n → ∞, x2′

n → x̄2 and p2′
n → p̄. Therefore, when ε is sufficiently

small and n is sufficiently large, x2′
n and p′

n are sufficiently close to x̃2
ε and p̃ε, respectively,

and, hence, we can apply Lemma 1. We set a sufficiently small ε. The strict convexity of
R̄2 ensures that p̄([x̃2

ε]∩ I(x̄2; R̄2)) > p̄x̄2. As n → ∞, x2′
n → x̄2 and p2′

n → p̄. Therefore, we
have the condition in Lemma 1, p′

n([x̃2
ε] ∩ I(x2′

n ; R̄2)) > p′
nx

2′
n in the present setup when

n is sufficiently large.
We write f (R̂2

ε�n� R̄−2) = x̂ε�n = (x̂1
ε�n� � � � � x̂

N
ε�n) and f (R̃1

ε� R̂
2
ε�n� R̄−{1�2}) = x̌ε�n = (x̌1

ε�n�

� � � � x̌Nε�n). We have x̌2
ε�n = x̃2

ε because of (I) and, hence, x̌ε�n = x̃ε by Lemma 2. Alterna-
tively, we have x̂2

ε�n = x2′
n because of (II) and, hence, x̂ε�n = x′

n. In particular, note that
x̂1
ε�n = x1′

n and, hence, x̂1
ε�n is on the ray [yn].

We first consider the case where x̂1
ε�n ∈ P(x̄1; R̃1

ε). If agent 1 has the preference R̃1
ε

and faces other agents’ preferences (R̂2
ε�n� R̄−{1�2}), he is better off by reporting R̄1 and

achieving x̂1
ε�n than reporting the true preference R̃1

ε and achieving x̌1
ε�n = x̃1

ε = x̄1. This
contradicts the strategy-proofness of f on B.

Next, we consider the case x̂1
ε�n /∈ UC(x̄1; R̄1). If agent 1 has preference R̄1 and faces

other agents’ preferences (R̂2
ε�n� R̄−{1�2}), he is better off by reporting R̃1

ε and achieving
x̌1
ε�n = x̃1

ε = x̄1 than reporting his true preference R̄1 and achieving x̂1
ε�n. Again, this con-

tradicts the strategy-proofness of f on B.
As x̂1

ε�n ∈ [y ′
ε], where yn ∈ I(x̄1; R̄1) and yn ∈ P(x̄1; R̃1

ε), only these two cases need to be
considered.

A.10 Proof of Proposition 5

Without loss of generality, we prove the proposition for agent 1. We suppose that
g(R̄i�p(R̄� f )), i = 1� � � � �N , are independent at R̄ = (R̄1� � � � � R̄N) and that f 1(R̄) ∈ intA.
We write f (R̄) = x = (x̄1� � � � � x̄N) and p(R̄� f ) = p̄.

We consider the Cobb–Douglas utility functions uα(x) = x
α1
1 · · ·xαLL with parameter

α = (α1� � � � �αL) ∈ SL−1++ and the preferences represented by these utility functions.
Observe that the gradient vector of the preferences represented by the utility func-

tion uα(x) at a consumption bundle x = (x1� � � � � xL) is given by the normalization of
(α1
x1
� � � � � αL

xL
). Alternatively, if a preference represented by a Cobb–Douglas utility func-

tion uα(x) has gradient vector p = (p1� � � � �pL) at x = (x1� � � � � xL), then the parameter α
is the normalization of (p1x1� � � � �pLxL).

We let uα
∗
(x) be the Cobb–Douglas utility function such that agent 1’s preference

R1α∗
represented by uα

∗
(x) has gradient vector p̄ at x̄1.

We consider a preference R1α represented by a Cobb–Douglas utility function uα,
where α is in a neighborhood of α∗. Then, of course, R1α is in a neighborhood of R1α∗

.
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As f is supposed to satisfy pseudo-efficiency and strategy-proofness only on B, we

let f̃ 1(R1α� R̄−1) denote the most preferred consumption in G1(R̄−1) with respect to the
preference R1α. If R1α ∈ B1, then, of course, f (R1α� R̄−1) = f̃ (R1α� R̄−1).

We have f̃ (R1α∗
� R̄−i) = x̄ and f̃ 1(R1α� R̄−i) is in a neighborhood of x̄1 when α is in

a neighborhood of α∗ because of the properties of G1(R̄−1) shown in Propositions 2–4.
Observe that α 	= α′ implies that f̃ 1(R1α� R̄−1) 	= f̃ 1(R1α′

� R̄−1) because f̃ 1(R1α� R̄−1) =
f̃ 1(R1α′

� R̄−1) and α 	= α′ imply that R1α and R1α′
have different gradient vectors at the

same consumption bundle, which contradicts Proposition 4. Thus, each f̃ 1(R1α� R̄−1)

in a neighborhood of x̄1 is identified with the corresponding parameter α ∈ SL−1++ in a
neighborhood of α∗ and, hence, in a neighborhood of x̄1,

⋃
α f̃

1(R1α� R̄−1) is an L − 1-
dimensional manifold.

To end the proof, we prove that in a neighborhood of x̄1,
⋃

α f̃
1(R1α� R̄−1), G1(R̄−1),

and G1(R̄−1) coincide. We let p̃α denote the gradient vector of R1α at f̃ 1(R1α� R̄−1):
p̃α = p(R1α� f̃ 1(R1α� R̄−1)). When α is in a neighborhood of α∗ and f̃ 1(R1α� R̄−1) is in
a neighborhood of x̄1, we construct a new preference R̃1 ∈ B1 such that the gradient
vector of R̃1 at f̃ 1(R1α� R̄−1) is p̃α. For example such a preference R̃1 can be obtained by
applying the preference construction in the first part of Lemma 1 so that R̄, (x̄� p̄), and
(xn�pn) in Lemma 1 correspond to R̄1, (x̄1� p̄), and (f̃ 1(R1α� R̄−1)� p̃α), respectively, in
the present setup. As α converges to α∗, f̃ 1(R1α� R̄−1) converges to x̄1 and p̃α converges
to p̄, and, hence, Lemma 1 is applicable and R̃1 converges to R̄1, as shown in the lemma.

Then f̃ 1(R1α� R̄−1)� p̃α) is the most preferred consumption in G1(R̄−1) with respect
to R̃1 ∈ B1, and f̃ 1(R1α� R̄−1) = f (R̃1� R̄−1) ∈ G1(R̄−1), as in Lemma 3. Therefore, we

have
⋃

α f̃ (R
1α� R̄−1) ⊂ G1(R̄−1) ⊂G1(R̄−1) in a neighborhood of x̄1. To observe that any

element of G1(R̄−1) in a neighborhood of x̄1 is included in
⋃

α f̃
1(R1α� R̄−1), note that

any ray [y] in a neighborhood of [x̄1] intersects with G1(R̄−1) once at the most because

of strategy-proofness and, hence, G1(R̄−1) is at most L− 1 dimensional.
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