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Ranking by rating

Yves Sprumont
Département de Sciences Économiques and CIREQ, Université de Montréal

Ranking by rating consists in evaluating the performances of items using exoge-
nous rating functions and ranking these items according to their performance rat-
ings. Any such method is separable: the ordering of two items does not depend
on the performances of the remaining items. When performances belong to a
finite set, ranking by rating is characterized by separability and a property of con-
sistency; this characterization generalizes to the infinite case under a continuity
axiom. Consistency follows from separability and symmetry or from monotonic-
ity alone. When performances are vectors in R

m+ , a separable, symmetric, mono-
tonic, continuous, and invariant method must rank items according to a weighted
geometric mean of their performances along the m dimensions.

Keywords. Ranking methods, separability.

JEL classification. D71, D89.

1. Introduction

Rankings are ubiquitous: we rank products and services such as cars, restaurants, scien-
tific journals, web pages, songs; people such as athletes, students, chess players; insti-
tutions and groups such as schools, universities, academic departments, football teams,
and even cities or countries.

Two types of ranking methods are widely used. Under the simplest and more tra-
ditional ones, an item’s performance is rated using a set of exogenously specified and
weighted criteria, and the items are then ranked according to their ratings. This is, for
instance, how a ranking of students is usually computed from their performances at an
exam. Under more sophisticated methods, the weights of the criteria used to evaluate
an item’s performance vary with the performances of all items. This is typically how aca-
demic journals are ranked according to the citations they receive from other journals, or
web pages according to how they are linked to other pages: a reference from a highly
ranked journal or web page carries an endogenously greater weight.

Methods of the first type are separable: the ranking of two items does not depend on
the performances of the remaining items. This offers a guarantee of transparency, which
probably accounts for the popularity of these methods. Methods of the second type are
not separable.
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In the current note, we are exclusively concerned with separable methods. Our for-
mal model has n items, each of which is characterized by a possibly different set of con-
ceivable performances. No a priori structure is imposed on this set. A ranking method
is modelled as a function that computes an ordering of the items for every performance
profile. We call ranking by rating the class of methods where each item’s performance is
evaluated using an exogenous rating function defined over the set of its possible perfor-
mances, and the items are ranked according to the resulting performance ratings. The
main question we ask is whether all separable methods are of this type, and, if not, under
which conditions that may be the case.

Our results are rather elementary and perhaps folk knowledge, but were, to the best
of our knowledge, in need of a proof. We show in Section 3 that there exist separable
methods other than ranking by rating. Those methods need not be degenerate and can
be quite flexible; their range may include all the linear orderings of the items.

Theorem 1 in Section 4 shows that if the performance sets are finite, a ranking
method is ranking by rating if and only if it is separable and consistent. Consistency here
means that if a change in an item’s performance improves its relative ranking against
some other item at a given profile, the same change does not decrease its relative rank-
ing against any item at any profile. Corollary 1 extends Theorem 1 to the infinite case
under an added continuity requirement.

Section 5 identifies two natural conditions under which a separable method is nec-
essarily consistent. Symmetry, which applies when the performance sets of all items co-
incide, requires that permuting the performances of two items results in permuting their
positions in the ranking. Monotonicity applies when each performance set is ordered,
and requires that a higher performance improves an item’s position in the ranking. The-
orem 2 shows that, in the finite case, a separable ranking method that is symmetric or
monotonic is of the ranking-by-rating type, and Corollary 2 extends this conclusion to
the infinite case under continuity.

Section 6 studies the particular case of our model where an items’ possible perfor-
mances are multidimensional and partially ordered: they are represented by vectors
in R

m+ . If the partial performances along the various dimensions are measured in non-
comparable units, the ranking should not change when the partial performances of all
items along a given dimension are multiplied by the same positive number. We show
that a separable, symmetric, monotonic, and continuous method satisfying this invari-
ance condition must rank items according to a weighted geometric mean of their per-
formances along the m dimensions. Section 7 argues that, from an axiomatic viewpoint,
the simple geometric mean method is a serious competitor of the nonseparable meth-
ods proposed in the literature.

2. Related literature

A sizable literature addresses the problem of characterizing separable orderings defined
over a set of multidimensional alternatives such as a subset of Rm+ . Separability, in that
literature, means that the ordering of two alternatives whose coordinates coincide along
one dimension does not change with the value of that coordinate. The seminal contri-
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bution is that of Gorman (1968), who shows that, under suitable (and important) topo-
logical assumptions, such an ordering can be represented by an additively separable
function. Bradley et al. (2005) show that Gorman’s result does not carry over to the finite
case, and they study properties of discrete separable orderings. Despite a formal simi-
larity, our work is essentially unrelated to that literature. Even when the sets of possible
performances of the n items are infinite, we are interested in ordering only the finite sets
containing precisely n performances, one for each item. We want to order all such sets,
and our separability condition is precisely a restriction on how these different rankings
should be related: the ordering of two performances should not depend on what the
remaining performances are.

Our separability condition is closely related to Arrow’s (1951) axiom of Indepen-
dence of Irrelevant Alternatives and its weakening by Hansson (1973). Arrow’s aggre-
gation problem, however, cannot be rephrased as a ranking problem of the type we
analyze. To be sure, candidates (or social alternatives) may be regarded as items, and
each candidate’s performance may be defined as the list of ranks he occupies in the
preferences of the voters. But the set of possible performance profiles is not a Carte-
sian product: two candidates cannot both be ranked first by the same voter. Likewise,
our separability condition is related to the independence condition used by Rubinstein
(1980) to axiomatize the Copeland ranking method for tournaments, but the problem
of ranking the participants in a tournament also lacks the Cartesian product structure
imposed by our model.

A huge literature deals with the multidimensional submodel discussed in Section 6
and, more specifically, with the case where items and dimensions coincide: this is in-
deed a suitable framework to discuss the popular issue of how to rank academic jour-
nals or web pages. In contrast to the current paper, that literature is concerned with
nonseparable methods and is, therefore, only tangentially related to our work.1

Two classes of methods have received considerable attention. The first class consists
of variants of the eigenvector solution based on the Perron–Frobenius theorem popular-
ized by Landau (1895), Wei (1952), Kendall (1955), Berge (1958), Keener (1993), and oth-
ers; see Vigna (2009) for a survey. Under all such methods, the ranking of the items is de-
termined by their coordinates of the Perron vector of some irreducible nonnegative ma-
trix, but the methods differ in how they construct this matrix from the performance data.
For the problem of ranking web pages, examples include the PageRank method (Brin
and Page 1998), the HITS (Hyperlink-Induced Topic Search) method (Kleinberg 1999),
and the SALSA (Stochastic Approach for Link- Structure Analysis) method (Lempel and
Moran 2000); see Fercoq (2012) for a survey. For the problem of ranking journals, ex-
amples include the method of Leibowitz and Palmer (1984) and the intensity-invariant
modification of Pinski and Narin (1976). Axiomatizations are offered by Palacios-Huerta
and Volij (2004), Altman and Tennenholtz (2005), and Slutzki and Volij (2006).

The second class contains methods based on Sinkhorn’s (1967) algorithm for solving
the so-called matrix scaling problem. For web page ranking, examples of such methods

1Another difference is that, with a few exceptions such as Altman and Tennenholtz (2005), the literature
focuses on cardinal methods. Such methods compute a score for each item, and the differences in scores
are deemed meaningful.
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include those of Smith (2005), Knight (2008), and Govan et al. (2009). For the case where
items and dimensions need not coincide, Demange (2014) proposes and axiomatizes
the so-called handicap-based method.

3. Separability

Let N = {1� � � � � n} be a finite set of items, n ≥ 3. Each item i ∈ N is characterized
by a nonempty set of possible performances Ai. A performance profile is a list a =
(a1� � � � � an) ∈ AN :=×i∈N Ai. Let RN denote the set of orderings2 on N . A (ranking)
method is a function R : AN → RN that assigns to each performance profile a an or-
dering R(a) of the items. The statement (i� j) ∈ R(a), also written iR(a)j, means that
the method R considers i at least as strong as j when the performance profile is a. Let
P(a) and I(a) denote, respectively, the antisymmetric and symmetric components of
R(a). If R(a) is a linear ordering, it will sometimes be convenient to express it by listing
the items according to their rank; for instance, the linear ordering iR(a)j ⇔ i ≤ j will be
written R(a) = 1�2� � � � � n.

A method R is a ranking-by-rating method if there exist real-valued functions
v1� � � � � vn defined, respectively, on A1� � � � �An, such that iR(a)j ⇔ vi(ai) ≥ vj(aj) for all
i� j ∈N and all a ∈ AN . We call v1� � � � � vn rating functions.

If R is a ranking-by-rating method, the relative ordering of two items depends only
on the performances of these items. Formally, R satisfies the following property.

Separability. For all i� j ∈ N and a�a′ ∈ AN , [ai = a′
i and aj = a′

j] ⇒ [iR(a)j ⇔
iR(a′)j]�

The following example shows that Separability does not characterize the ranking-
by-rating methods.

Example 1. Let N = {1�2�3}, Ai = {0�1} for all i ∈N , and

R(a) =
{

1 2 3 if a1 = a2�

2 1 3 if a1 	= a2�

Since 3 is always ranked last, the relative ordering of 1 and 3 and the relative ordering
of 2 and 3 are constant. The relative ordering of 1 and 2 varies, but it does not depend
on a3. Thus, R is separable. If the rating functions v1, v2, and v3 represent R, we should
have

1P(0�0�0)2 ⇒ v1(0) > v2(0)�

2P(1�0�0)1 ⇒ v2(0) > v1(1)�

1P(1�1�0)2 ⇒ v1(1) > v2(1)�

2P(0�1�0)1 ⇒ v2(1) > v1(0)�

Since these inequalities are incompatible, R is not a ranking-by-rating method. ♦
2By an ordering we mean a complete, reflexive, and transitive binary relation. If this relation is also

antisymmetric, we call it a linear ordering.
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Figure 1. A full-range separable method not of the ranking-by-rating type.

In this example, the range of R is very small. But there exist separable methods
whose range contains all strict orderings on N that are not ranking-by-rating methods.
For instance, let N = {1�2�3} and Ai = {0�1�2} for all i ∈ N , and consider the method R

depicted in Figure 1. It is tedious but straightforward to check that R is separable, and
the same argument as above shows that it is not a ranking-by-rating method.

4. Consistency

The separable method in Example 1 is inconsistent: a change in item 1’s performance
from a1 = 0 to a1 = 1 improves that item’s position in the ranking when (a2� a3) = (1�1),
but deteriorates it when (a2� a3) = (0�0). We show in this section that a separable
method that does not exhibit this type of inconsistency is a ranking-by-rating method
provided that (i) the set of performance profiles is finite or (ii) it is a connected topolog-
ical space and the ranking method is continuous.

The following notation will be useful: if i ∈ N , a ∈ A, and α ∈ Ai, then (α�a−i)

is the performance profile obtained from a by replacing ai with α. We write A−i for×j∈N\{i} Aj . The formal property relevant to our analysis is the following.
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Consistency. For all i ∈ N and α�β ∈ Ai, if there exists a−i ∈ A−i and j ∈ N \ {i} such
that iP(α�a−i)jR(β�a−i)i or iR(α�a−i)jP(β�a−i)i, then there do not exist b−i ∈ A−i and
k ∈ N \ {i} such that iR(β�b−i)kR(α�b−i)i�

If, starting from some profile, the ranking of item i relative to j improves when i’s
performance switches from β to α, this reveals that the method R deems α a stronger
performance than β. In that case, a switch from β to α should never deteriorate i’s rank-
ing, and, at any profile where i is tied with some item k, it should push i strictly above k.

Lemma 1. If a ranking method R : AN → RN is separable and consistent, then there exists
an ordering � on X := {(i�α) : i ∈ N and α ∈ Ai} such that iR(a)j ⇔ (i� ai)� (j� aj) for all
i� j ∈N and all a ∈AN .

The proof is given in the Appendix. As a direct corollary to Lemma 1, we obtain the
central result of this section.

Theorem 1. Suppose that A1� � � � �An are finite. A ranking method R : AN → RN is sep-
arable and consistent if and only if it is a ranking-by-rating method.

Proof. If there exist functions v1 ∈ R
A1� � � � � vn ∈ R

An such that iR(a)j ⇔ vi(ai) ≥ vj(aj)

for all i� j ∈N and all a ∈AN , it is straightforward to check that the method R is separable
and consistent.

Conversely, if R is separable and consistent, Lemma 1 guarantees that there exists
an ordering � on X := {(i�α) : i ∈ N and α ∈ Ai} such that iR(a)j ⇔ (i� ai) � (j� aj) for
all i� j ∈ N and a ∈ AN . Because X is finite, the ordering � admits a numerical rep-
resentation: there exists a function V : X → R such that V (i�ai) ≥ V (j�aj) ⇔ (i� ai) �
(j� aj). If, for each i ∈ N , we define the function vi : Ai → R by vi(ai) = V (i�ai), then
iR(a)j ⇔ vi(ai) ≥ vj(aj) for all i� j ∈ N and all a ∈ AN , proving that R is a ranking-by-
rating method. �

The finiteness assumption in Theorem 1 is used to ensure the representability of the
ordering �, but the result is easily adapted to the infinite case. Assume that AN is a
perfectly separable topological space3 and suppose that the ranking method is contin-
uous in the sense that any strict ordering of two items is robust to small changes in the
performance profile.

Continuity. For all i� j ∈ N , the set {a ∈ AN | iP(a)j} is relatively open in AN�

A straightforward application of Theorem II in Debreu (1954), which we omit, then
delivers the following corollary to Theorem 1.

Corollary 1. If AN is a perfectly separable topological space, then a ranking method
R :AN → RN is separable, consistent, and continuous if and only if there exist continuous
functions v1 ∈ R

A1� � � � � vn ∈ R
An such that iR(a)j ⇔ vi(ai) ≥ vj(aj) for all i� j ∈ N and all

a ∈AN .

3This means that there exists a countable class of open sets such that every open set in AN is a union of
sets in that class.
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5. Symmetry and monotonicity

Consistency may seem complicated and somewhat contrived. The current section
identifies two simpler conditions, each of which guarantees that a separable method
is consistent. Both arise naturally in particular cases of our model. The first condi-
tion, Symmetry, applies when the performance sets of all items coincide, that is, when
A1 = · · · =An = A. In that case, AN = AN , and we call a method R : AN → RN symmet-
ric if permuting the performances of two items results in permuting their positions in
the ranking.

Symmetry. For all i� j ∈ N , all a ∈ AN , and every bijection π from N to N , iR(a)j ⇔
π(i)R(πa)π(j), where πa is the performance profile defined by (πa)π(i) = ai for all i ∈N�

The second condition, Monotonicity, applies when each performance set Ai is en-
dowed with a linear ordering ≥i. We call a ranking method monotonic if a higher perfor-
mance improves an item’s position in the ranking.

Monotonicity. For all distinct i� j ∈ N and a�a′ ∈ AN , [iR(a)j and a′
i >i ai] ⇒

[iP(a′
i� a−i)j].

This is a strict form of monotonicity. Note that it implies [iR(a)j and aj >j a
′
j] ⇒

[iP(a′
j� a−j)j] for all distinct i� j ∈N and a�a′ ∈AN .

The crucial observation is recorded in the following lemma.

Lemma 2. Let R : AN → RN be a separable ranking method. Suppose that (i) A1 = · · · =
An = A and R is symmetric or (ii) A1� � � � �An are linearly ordered and R is monotonic.
Then R is consistent.

Proof. Let R : AN → RN be a separable ranking method.
(i) Suppose first that A1 = · · · = An = A and that R : AN = AN → RN is symmetric.

If R is not consistent, we may assume without loss of generality that there exist α�β ∈ A,
a�b ∈AN , and i ∈N \ {1} such that

1P(α�a−1)2R(β�a−1)1 or 1R(α�a−1)2P(β�a−1)1 (1)

and

1R(β�b−1)iR(α�b−1)1� (2)

Case 1. i 	= 2. From (1) and Separability,

1P(α�a2� b−12)2R(β�a2� b−12)1 or 1R(α�a2� b−12)2P(β�a2� b−12)1� (3)

From (2) and Separability,

1R(β�a2� b−12)iR(α�a2� b−12)1� (4)

Because R(α�a2� b−12) and R(β�a2� b−12) are transitive, (3) and (4) imply, after some ma-
nipulations,

iP(α�a2� b−12)2R(β�a2� b−12)i or iR(α�a2� b−12)2P(β�a2� b−12)i�
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which contradicts Separability.
Case 2. i = 2. From (1) and Separability,

1P(α�a2� b2� b−123)2R(β�a2� b2� b−123)1 or
(5)

1R(α�a2� b2� b−123)2P(β�a2� b2� b−123)1�

From (2) and Separability, and since i = 2,

1R(β�b2� a2� b−123)2R(α�b2� a2� b−123)1�

Exchanging the performances of items 2 and 3, Symmetry now implies

1R(β�a2� b2� b−123)3R(α�a2� b2� b−123)1� (6)

Because R(α�a2� b2� b−123) and R(β�a2� b2� b−123) are transitive, (5) and (6) imply, after
some manipulations,

3P(α�a2� b2� b−123)2R(β�a2� b2� b−123)3 or 3R(α�a2� b2� b−123)2P(β�a2� b2� b−123)3�

which contradicts Separability again.
(ii) Suppose next that each performance set Ai is endowed with a linear order ≥i and

that R : AN → RN is monotonic. This case is straightforward. If R is not consistent, we
may assume without loss of generality that there exist α�β ∈A1, a�b ∈AN , and i ∈ N \{1}
such that (1) and (2) hold. Clearly, α 	= β. Since ≥1 is a linear ordering, either α >1 β

or β >1 α. If α >1 β, then (2) contradicts Monotonicity. If β >1 α, then (1) contradicts
Monotonicity. �

Notice that Separability is not used in part (ii) of the proof: we have, in fact, proved
that every monotonic method, separable or not, is consistent.

In the finite case, Theorem 1 and Lemma 2 imply that a separable method that
is symmetric or monotonic is a ranking-by-rating method. Of course, Symmetry and
Monotonicity translate into restrictions on the rating functions: under Symmetry these
functions must all coincide; under Monotonicity they must be increasing. When the
performance sets are infinite, Corollary 1 and Lemma 2 deliver a similar representation
with continuous rating functions. These results are recorded below; we omit their obvi-
ous proofs.

Theorem 2. (i) If A1 = · · · = An = Ais a finite set, then a ranking method R : AN → RN

is separable and symmetric if and only if there exists a function v : A → R such that
iR(a)j ⇔ v(ai) ≥ v(aj) for all i� j ∈N and all a ∈AN .

(ii) If A1� � � � �An are linearly ordered finite sets, then a ranking method R : AN →
RN is separable and monotonic if and only if there exist increasing functions v1 ∈
R
A1� � � � � vn ∈R

An such that iR(a)j ⇔ vi(ai) ≥ vj(aj) for all i� j ∈N and all a ∈AN .
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Corollary 2. (i) If A1 = · · · = An = A is a perfectly separable topological space, then a
ranking method R : AN → RN is separable, symmetric, and continuous if and only
if there exists a continuous function v : A → R such that iR(a)j ⇔ v(ai) ≥ v(aj) for
all i� j ∈Nand all a ∈AN .

(ii) If AN is a perfectly separable topological space and each of A1� � � � �An is endowed
with a linear order, then a ranking method R : AN → RN is separable, monotonic,
and continuous if and only if there exist increasing and continuous functions v1 ∈
R
A1� � � � � vn ∈R

An such that iR(a)j ⇔ vi(ai)≥ vj(aj) for all i� j ∈ N and all a ∈AN .

In statement (ii) of Corollary 2, each item’s performance set is assumed to be com-
pletely ordered. The result does not extend to the case where these sets are only partially
ordered and the method is assumed to be monotonic with respect to that partial order.

Example 2. Let N = {1�2�3} and Ai = A = [0�1]2 for all i ∈ N . Endow A with the
usual partial order ≥. A generic performance profile is a vector a = (a1� a2� a3) =
((a1

1� a
2
1)� (a

1
2� a

2
2)� (a

1
3� a

2
3)) ∈ A{1�2�3}. Define the functions w1, w2, and w3 from A{1�2�3}

to R by

w1(a) = (
1 − a2

2
)
a1

1 + (
1 − a1

2
)
a2

1�

w2(a) = 1
2
a1

2 + 1
2
a2

2�

w3(a) = −1

for all a ∈A{1�2�3}. Note that w1(a) varies with a2. Define the method R by

iR(a)j ⇔wi(a) ≥wj(a)

for all a ∈ A{1�2�3} and all i� j ∈ {1�2�3}. Since w1(a)�w2(a) ≥ 0 for all a, item 3 is ranked
last at every performance profile. Moreover, the ranking of items 1 and 2 does not change
with 3’s performance. So R is separable. Since w1, w2, and w3 are continuous, R is also
continuous. Furthermore, it is monotonic because w1 is increasing in a1 and w2 is in-
creasing in a2.

This method is not a ranking-by-rating method. By definition of w1, w2, w3, and R,

1P
(
(1�0)� (1�0)� (0�0)

)
2

2P
(
(0�1)� (1�0)� (0�0)

)
1

1P
(
(0�1)� (0�1)� (0�0)

)
2

2P
(
(1�0)� (0�1)� (0�0)

)
1�

If v1, v2, and v3 were rating functions from A to R such that iR(a)j ⇔ vi(ai) ≥ wj(aj) for
all a ∈A{1�2�3} and all i� j ∈ {1�2�3}, then

v1(1�0) > v2(1�0)
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v2(1�0) > v1(0�1)

v1(0�1) > v2(0�1)

v2(0�1) > v1(1�0)�

which are incompatible inequalities. ♦

6. Invariance

This section studies the case where the performance sets of the items coincide and are
endowed with a partial order structure. More precisely, we assume that there is a finite
set of criteria M = {1� � � � �m} and Ai = A = R

M++ for each item i ∈ N . A generic perfor-
mance for item i is a vector ai = (a1

i � � � � � a
m
i ) ∈ A. A performance profile is a matrix

a = (ahi ) ∈ AN : rows correspond to items, columns correspond to criteria, and the num-
ber ahi measures item i’s performance according to criterion h. We write bi > ai if bhi ≥ ahi
for all h ∈ M and bi 	= ai. With a slight abuse of our earlier terminology, we now call R
monotonic if [iR(a)j and a′

i > ai] ⇒ [iP(a′
i� a−i)j] for all distinct i� j ∈N and a�a′ ∈AN .

An important concern in this multidimensional framework is expressed by the con-
dition of Invariance. The condition says that the ordering of the items should remain
unchanged when their performances according to a given criterion are all multiplied by
the same positive number. This is compelling if performances are measured on non-
comparable scales across criteria.

To express the condition formally, we use the following notation. For every λ =
(λ1� � � � �λm) ∈ R

M++, let dg(λ) denote the m×m diagonal matrix whose hth diagonal en-
try is λh. With this notation, a ·dg(λ) is the performance matrix obtained by multiplying
each column h of a by λh�

Invariance. For all a ∈AN and λ ∈ R
M++, R(a · dg(λ)) = R(a).

Let �M++ denote the relative interior of the unit simplex of RM .

Theorem 3. Let A1 = · · · = An = A = R
M++. A ranking method R : AN → RN is sepa-

rable, symmetric, monotonic, continuous, and invariant if and only if there exists β =
(β1� � � � �βm) ∈ �M++ such that

iR(a)j ⇔
∏
h∈M

(
ahi

)βh ≥
∏
h∈M

(
ahj

)βh

for all i� j ∈N and all a ∈AN� (7)

Proof. The “if” statement is clear. The proof of the “only if” statement is a straightfor-
ward consequence of Corollary 2 and Osborne’s (1976) characterization of the mono-
tonic transformations of the weighted geometric means.

Fix a separable, symmetric, monotonic, continuous, and invariant method R. By
statement (i) in Corollary 2, there exists a continuous function w : RM++ →R such that

iR(a)j ⇔w(ai)≥w(aj) for all i� j ∈N and all a ∈AN� (8)

Since R is monotonic, w is increasing: ai < aj ⇒ w(ai) < w(aj). Because R is invari-
ant, w is ordinally invariant in the sense that

w(ai) ≤w(aj) ⇔ w
(
λ1a1

i � � � � � λ
mami

) ≤w
(
λ1a1

j � � � � � λ
mamj

)
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for all λ ∈ R
M++. By Osborne (1976), there exist β = (β1� � � � �βm) ∈R

M++ and an increasing
function f : R→R such that

w(ai)= f

( ∏
h∈M

(
ahi

)βh
)

(9)

for all ai ∈ A. (In Osborne’s theorem, w is nondecreasing and β ∈ R
M+ . In our case, the

fact that w is increasing guarantees that β ∈R
M++. The normalization β ∈ �M++ is innocu-

ous.) Statement (7) now follows from (8) and (9). �

Of course, the weighted geometric mean numerical representation in Theorem 3 is
unique only up to an increasing transformation.

7. Separable grading

We conclude with a defense of separability in the context of cardinal evaluation of mul-
tidimensional performances. A grading method is a function G : AN → �N , where �N

denotes the unit simplex of R
N . The vector G(a) = (G1(a)� � � � �Gn(a)) is the grade

distribution assigned by the method G to the performance matrix a. The grade of
item i, Gi(a), is interpreted as a cardinal measure of its multidimensional perfor-
mance. A grading method G clearly induces a ranking method RG defined on AN

by iRG(a)j ⇔ Gi(a) ≥ Gj(a), but the information contained in the grade distribu-
tion G(a) is richer than that in the induced ranking RG(a). As mentioned in foot-
note 1, grading methods are the traditional object of study in the literature on mul-
tidimensional performance evaluation. We call G ordinally separable if RG is separa-
ble.

Assuming that performances are cardinally measurable on noncomparable scales,
two properties of grading methods appear to be essential. The first is the cardinal ver-
sion of the invariance axiom discussed earlier.

Cardinal Invariance. For all a ∈AN and λ ∈R
M++, G(a · dg(λ)) =G(a).

The second condition is Homogeneity. It requires that if an item’s performances with
respect to all criteria are multiplied by the same positive number, the ratio of that item’s
grade to any other item’s grade is multiplied by the same number. This is compelling if
performances with respect to each criterion are cardinally measurable. For every μ =
(μ1� � � � �μn) ∈R

N++, let dg(μ) denote the n× n diagonal matrix whose ith diagonal entry
is μi. With this notation, dg(μ) · a is the performance matrix obtained by multiplying
each row i of a by μi�

Homogeneity. For all a ∈ AN and μ ∈ R
N++, G(dg(μ) · a) is proportional to dg(μ) ·

G(a).
Most popular grading methods fail at least one of these two axioms. In fact, Cardinal

Invariance and Homogeneity together have far-reaching consequences. Call a perfor-
mance matrix a ∈ AN doubly balanced if

∑
i∈N ahi = 1 for all h ∈ M and

∑
h∈M ahi = m/n

for all i ∈N . Let AN∗ denote the set of doubly balanced matrices. Sinkhorn (1967) proves
that for every matrix a ∈AN , there exist a unique vector λ(a) ∈R

M++ and a unique vector
μ(a) ∈ R

N++ such that dg(μ(a)) · a · dg(λ(a)) =: a∗ is doubly balanced. This means that
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every positive matrix a can be reduced to a uniquely defined doubly balanced matrix

a∗ by rescaling its rows and columns. It follows that acardinally invariant and homoge-

neous grading method is completely determined by its behavior on the doubly balanced

matrices.

Corollary to Sinkhorn’s Theorem. A grading method G : AN → �N is cardinally in-

variant and homogeneous if and only if there exists a function G∗ : AN∗ → �N such that

G(a) is proportional to (dg(μ(a)))−1 ·G∗(a∗) for all a ∈AN�

Building on this corollary, Demange (2014) pins down the handicap-based grad-

ing method by adding to Cardinal Invariance and Homogeneity the Uniformity axiom,

which requires that all items should be tied when the performance matrix is doubly bal-

anced.

Uniformity. For all a ∈AN∗ , G(a) = ( 1
n � � � � �

1
n)�

The handicap-based method is not ordinally separable. Its computation requires an

iterative procedure, and the grades it yields vary with the performance matrix in ways

that are difficult to apprehend.

It may, therefore, be worth pointing out that the geometric mean grading method

G
gm
i (a) =

∏
h∈M

(
ahi

) 1
m

∑
j∈N

∏
h∈M

(
ahj

) 1
m

is cardinally invariant, homogeneous, and ordinally separable. Thus, while Cardinal In-

variance, Homogeneity, Ordinal Separability, and Uniformity are incompatible, the first

three of these axioms are not.4 If the first two are considered a must, we are left with a

choice between the last two. Uniformity amounts to imposing the arithmetic mean cri-

terion on the doubly balanced matrices. This creates an obvious tension with Cardinal

Invariance and is probably not compelling. Ranking item 1 above 2 and 3 for the matrix

⎛
⎜⎝3/9 3/9 3/9

2/9 3/9 4/9
4/9 3/9 2/9

⎞
⎟⎠ �

as the geometric mean does, seems to be reasonable and is supported by an argument of

variability aversion: the fact that the scores of item 1 coincide on all criteria gives them

added value. Separability may well be worth sacrificing Uniformity.5

4In fact, Cardinal Invariance, Homogeneity, and the requirement that an items’ grade should be the ge-
ometric mean of its performances when the performance matrix is doubly balanced, together pin down
Ggm, thereby implying Ordinal Separability: this is again a consequence of the above corollary to Sinkhorn’s
theorem.

5The method Ggm is also ordinally monotonic in the sense that RGgm is monotonic. The handicap-based
method has not been shown to be ordinally monotonic.
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8. Conclusion

We have shown that separability is not a characteristic property of ranking-by-rating
methods. These methods are also consistent: if a change in an item’s performance im-
proves its relative ranking against some other item at a given profile, the same change
never decreases its relative ranking against any item at any profile. Separability and
Consistency do characterize ranking by rating in the finite case, and this characteriza-
tion generalizes to the infinite case under a continuity axiom. Consistency follows from
Separability and Symmetry or from Monotonicity alone. When performances are vec-
tors in R

m+ , a separable, symmetric, monotonic, continuous, and invariant method must
rank items according to a weighted geometric mean of their performances along the m

dimensions.
These results hold when the domain of performance profiles is a Cartesian product.

Without that assumption, the implications of Separability are far from clear and deserve
further study.

Appendix

Proof of Lemma 1. If i� j ∈ N , i 	= j, a ∈ A, α ∈ Ai, and β ∈ Aj , let (α�β�a−ij) denote
the performance profile obtained from a by replacing ai with α and aj with β. Let A−ij =×k∈N\{i�j}Ak and define the binary relations �, ∼, and � on X as

(i�α) � (j�β) ⇔ [
i 	= j and ∃a−ij ∈A−ij such that iP(α�β�a−ij)j

]
or[

i = j and ∃a−i ∈ A−i and ∃k ∈N \ {i} such that
iP(α�a−i)kR(β�a−i)i or iR(α�a−i)kP(β�a−i)i

]
�

(i�α) ∼ (j�β) ⇔ [
i 	= j and ∃a−ij ∈A−ij such that iI(α�β�a−ij)j

]
or[

i = j and ∀a−i ∈A−i and ∀k ∈N \ {i}�
iR(α�a−i)k⇔ iR(β�a−i)k

]

and

(i�α)� (j�β) ⇔ (i�α) � (j�β) or (i�α) ∼ (j�β)�

These are revealed performance comparison relations. The statement (i�α) � (j�β)

means that performance α by item i is considered stronger than performance β by
item j. This occurs when (i) i and j are distinct and R ranks i above j at some pro-
file where their performances are α and β, or (ii) when i and j are the same item and
the ranking of this item drops when its performance changes from α to β. Likewise,
(i�α) ∼ (j�β) means that performance α by item i is considered equivalent to perfor-
mance β by item j. This occurs when (a) i and j are distinct and R ties them at some
profile where their performances are α and β, or (b) i and j are the same item and the
ranking of this item never changes when its performance switches from α to β.

Step 1. The binary relation ∼ is reflexive and symmetric, and � is complete.
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These facts follow directly from the definition of ∼ and � ; they do not rely on the
assumptions that R is separable and consistent.

Step 2. For all (i�α)� (j�β) ∈ X , exactly one of the following statements holds:
(i) (i�α) � (j�β); (ii) (j�β) � (i�α); (iii) (i�α) ∼ (j�β)�

Let (i�α)� (j�β) ∈ X . By Step 1, at least one of the above statements (i), (ii), and (iii)
holds. If both (i) and (ii) hold, we obtain a contradiction to Separability when i 	= j and
a contradiction to Consistency when i = j. If both (i) and (iii) hold or if both (ii) and (iii)
hold, we obtain a contradiction to Separability when i 	= j and an immediate contradic-
tion when i = j.

Because of Steps 1 and 2, to prove that � is an ordering, it is enough to show that �
and ∼ are transitive. These are the next two steps.

Step 3. The binary relation � is transitive.
Let (i1�α), (i2�β), (i3�γ) ∈X be such that (i1�α) � (i2�β) � (i3�γ).
Case 1. There exist i1 = i2 = i3, say, (1�α) � (1�β) � (1�γ).
Then there exist a−1, b−1 ∈A−1, and i� j ∈N \ {1} such that

1P(α�a−1)iR(β�a−1)1 or 1R(α�a−1)iP(β�a−1)1 (10)

and

1P(β�b−1)jR(γ�b−1)1 or 1R(β�b−1)jP(γ�b−1)1� (11)

To prove (1�α)� (1�γ), we show that neither (1�γ) � (1�α) nor (1�α) ∼ (1�γ)�
If (1�γ) � (1�α), then there exists c−1 ∈A−1 and k ∈N \ {1} such that

1P(γ� c−1)kR(α� c−1)1 or 1R(γ� c−1)kP(α� c−1)1� (12)

If 1R(β�c−1)k, (12) implies 1R(β�c−1)kR(α� c−1)1, which, combined with (10), contra-
dicts Consistency. If kR(β�c−1)1, (12) implies 1R(γ� c−1)kR(β� c−1)1, which, combined
with (11), contradicts Consistency again.

If (1�α) ∼ (1�γ), then for all x−1 ∈ A−1 and all k ∈ N \ {1}, we have 1R(α�x−1)k ⇔
1R(γ�x−1)k. Specializing this equivalence to k = i, x−1 = a−1, and combining it with
statement (10) yields 1P(γ�a−1)iR(β�a−1)1 or 1R(γ�a−1)iP(β�a−1)1. This statement, in
conjunction with (11), contradicts Consistency.

Case 2. There exist i1 = i2 	= i3, say, (1�α) � (1�β) � (2�γ).
Then there exist a−1 ∈A−1 and i ∈N \ {1} such that (10) holds and there exists b−12 ∈

A−12 such that

1P(β�γ�b−12)2� (13)

By Consistency, (10) implies that there is no c−1 ∈ A−1 such that 1R(β�c−1)2R(α� c−1)1.
Therefore, (13) implies 1P(α�γ�b−12)2; hence, (1�α) � (2�γ).

Case 3. There exist i1 = i3 	= i2, say, (1�α) � (2�β) � (1�γ).
Then there exist a−12� b−12 ∈ A−12 such that 1P(α�β�a−12)2P(γ�β�b−12)1; hence, by

Separability, 1P(α�β�a−12)2P(γ�β�a−12)1, which implies (1�α) � (1�γ).
Case 4. There exist i1 	= i2 = i3, say, (1�α) � (2�β) � (2�γ).
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Then there exists a−12 ∈A−12 such that

1P(α�β�a−12)2 (14)

and there exist b−2 ∈ A−2 and i ∈N \ {2} such that

2P(β�b−2)iR(γ�b−2)2 or 2R(β�b−2)iP(γ�b−2)2� (15)

By Consistency, (15) implies that there is no c−2 ∈ A−2 such that 2R(γ� c−2)1R(β�c−2)2.
Therefore, (14) implies 1P(α�γ�a−12)2; hence, (1�α)� (2�γ).

Case 5. Items i1, i2, and i3 are all distinct, say, (1�α) � (2�β) � (3�γ).
Then there exist a−12 ∈ A−12 and b−23 ∈A−23 such that

1P(α�β�a−12)2P(β�γ�b−23)3� (16)

Let (α�β�γ�a−123) be the profile obtained by replacing item 3’s performance in (α�β�

a−12) with γ. By Separability, (16) implies 1P(α�β�γ�a−123)2P(α�β�γ�a−123)3 and,
hence, 1P(α�β�γ�a−123)3 (because P(α�β�γ�a−123) is transitive), and therefore (1�α) �
(3�γ)�

Step 4. The binary relation ∼ is transitive.
Let (i1�α), (i2�β), (i3�γ) ∈X be such that (i1�α)∼ (i2�β) ∼ (i3�γ).
Case 1. There exist i1 = i2 = i3, say, (1�α) ∼ (1�β) ∼ (1�γ).
Then for all a−1 ∈ A−1 and all i ∈ N \ {1}, 1R(α�a−1)i ⇔ 1R(β�a−1)i ⇔ 1R(γ�a−1)i.

Therefore, 1R(α�a−1)i ⇔ 1R(γ�a−1)i; hence, (1�α) ∼ (1�γ).
Case 2. There exist i1 = i2 	= i3, say, (1�α) ∼ (1�β) ∼ (2�γ).
Then for all a−1 ∈A−1 and all i ∈N \ {1},

1R(α�a−1)i ⇔ 1R(β�a−1)i� (17)

and there exists b−12 ∈A−12 such that

1I(β�γ�b−12)2� (18)

Applying (17) with a−1 = (γ�b−12) and i = 2 yields 1R(α�γ�b−12)2 ⇔ 1R(β�γ�b−12)2.
Combining this with (18) implies 1I(α�γ�b−12)2; hence, (1�α)∼ (2�γ).

Case 3. There exist i1 = i3 	= i2, say, (1�α) ∼ (2�β) ∼ (1�γ).
Then there exist a−12, b−12 ∈ A−12 such that 1I(α�β�a−12)2I(γ�β�b−12)1; hence, by

Separability, 1I(α�β�a−12)2I(γ�β�a−12)1, which implies

1R(γ�β�a−12)2R(α�β�a−12)1� (19)

To prove (1�α) ∼ (1�γ), we must show that 1R(α� c−1)i ⇔ 1R(γ� c−1)i for all c−1 ∈ A−1

and all i ∈ N \ {1}. Suppose, on the contrary, that there exist c−1 ∈ A−1 and i ∈ N \ {1}
such that 1P(α� c−1)iR(γ� c−1)1 or 1R(α� c−1)iP(γ� c−1)1. Then, by Consistency, there is
no d−1 ∈ A−1 such that 1R(γ�d−1)2R(α�d−1)1, contradicting (19).

Case 4. There exist i1 	= i2 = i3, say, (1�α) ∼ (2�β) ∼ (2�γ).
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Then there exists a−12 ∈A−12 such that

1I(α�β�a−12)2 (20)

and, for all b−2 ∈ A−2 and all i ∈ N \ {2}, we have 2R(β�b−2)i ⇔ 2R(γ�b−2)i. Applying
this equivalence with b−2 = (α�a−12) and i = 1, we get 2R(α�β�a−12)1 ⇔ 2R(α�γ�a−12)1.
Combining this with (20) yields 1I(α�γ�a−12)2; hence, (1�α) ∼ (2�γ).

Case 5. Items i1, i2, and i3 are all distinct, say, (1�α) ∼ (2�β) ∼ (3�γ)�
Then there exist a−12 ∈A−12 and b−23 ∈A−23 such that 1I(α�β�a−12)2I(β�γ�b−23)3.

By Separability, this implies 1I(α�β�γ�a−123)2I(α�β�γ�a−123)3; hence, 1P(α�β�
γ�a−123)3 (because I(α�β�γ�a−123) is transitive) and, therefore, (1�α)� (3�γ)�

This completes the proof that � is an ordering.
Step 5. It remains to check that iR(a)j ⇔ (i� ai)� (j� aj) for all i� j ∈N and all a ∈AN .
Fix i� j ∈ N and a ∈ AN . The case i = j being trivial, assume i 	= j. It follows directly

from the definition of � and ∼ that

iP(a)j ⇒ (i� ai)� (j� aj) and iI(a)j ⇒ (i� ai) ∼ (j� aj)�

hence, iR(a)j ⇒ (i� ai) � (j� aj). The converse implication follows from Step 2 and the
completeness of R(a). �

References

Altman, Alon and Moshe Tennenholtz (2005), “Ranking systems: The PageRank axioms.”
In EC’05 Proceedings of the 6th ACM Conference on Electronic Commerce, 1–8, ACM, New
York, New York. [3]

Arrow, Kenneth J. (1951), Social Choice and Individual Values. Wiley, New York. [3]

Berge, Claude (1958), Théorie des graphes et ses applications. Collection Universitaire de
Matheématiques, 2. Dunod, Paris. [3]

Bradley, W. James, Jonathan K. Hodge, and D. Marc Kilgour (2005), “Separable discrete
preferences.” Mathematical Social Sciences, 49, 335–353. [3]

Brin, Sergei and Lawrence Page (1998), “The anatomy of a large-scale hypertextual Web
search engine.” Computer Networks and ISDN Systems, 30, 107–117. [3]

Debreu, Gérard (1954), “Representation of a preference ordering by a numerical func-
tion.” In Decision Processes (R. M. Thrall, C. H. Coombs, and R. L. Davis, eds.), 159–165,
Wiley, New York. [6]

Demange, Gabrielle (2014), “A ranking method based on handicaps.” Theoretical Eco-
nomics, 9, 915–942. [4, 12]

Fercoq, Olivier (2012), Optimization of Perron Eigenvectors and Applications: From web
Ranking to Chronotherapeutics. Ph.D. thesis, Ecole Polytechnique, Paris, France. [3]

Gorman, William M. (1968), “The structure of utility functions.” Review of Economic
Studies, 35, 369–390. [3]

http://www.e-publications.org/srv/te/linkserver/setprefs?rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/b58&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/bhk05&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/bp98&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/d14&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/g68&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/b58&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/bhk05&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/bp98&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/d14&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/g68&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-


Theoretical Economics 13 (2018) Ranking by rating 17

Govan, Anjela Y., Amy N. Langville, and Carl D. Meyer (2009), “Offense-defense approach
to ranking team sports.” Journal of Quantitative Analysis in Sports, 5, 1–19. [4]

Hansson, Bengt (1973), “The independence condition in the theory of social choice.”
Theory and Decision, 4, 25–49. [3]

Keener, James P. (1993), “The Perron-Frobenius theorem and the ranking of football
teams.” SIAM Review, 35, 80–93. [3]

Kendall, Maurice G. (1955), “Further contributions to the theory of paired comparisons.”
Biometrics, 11, 43–62. [3]

Kleinberg, Jon M. (1999), “Authoritative sources in a hyperlinked environment.” Journal
of the ACM, 46, 604–632. [3]

Knight, Philip A. (2008), “The Sinkhorn-Knopp algorithm: Convergence and applica-
tions.” SIAM Journal on Matrix Analysis and Applications, 30, 261–275. [4]

Landau, Edmund (1895), “Zur relativen Wertbemessung der Turnierresultate.” Deusches
Wochenschach, 11, 366–369. [3]

Leibowitz, Stan J. and Jean-Pierre Palmer (1984), “Assessing the relative impact of eco-
nomic journals.” Journal of Economic Literature, 22, 77–88. [3]

Lempel, Ronny and Shlomo Moran (2000), “The stochastic approach for link-structure
analysis (SALSA) and the TKC effect.” Computer Networks, 33, 387–401. [3]

Osborne, D. K. (1976), “Irrelevant alternatives and social welfare.” Econometrica, 44,
1001–1015. [10, 11]

Palacios-Huerta, Ignacio and Oscar Volij (2004), “The measurement of intellectual influ-
ence.” Econometrica, 72, 963–977. [3]

Pinski, Gabriel and Francis Narin (1976), “Citation influence for journal aggregates of
scientific publications: Theory, with application to the literature of physics.” Informa-
tion Processing and Management, 12, 297–312. [3]

Rubinstein, Ariel (1980), “Ranking the participants in a tournament.” SIAM Journal on
Applied Mathematics, 38, 108–111. [3]

Sinkhorn, Richard (1967), “Diagonal equivalence to matrices with prescribed row and
column sums.” The American Mathematical Monthly, 74, 402–405. [3, 11]

Slutzki, Giora and Oscar Volij (2006), “Scoring of web pages and tournaments–
axiomatizations.” Social Choice and Welfare, 26, 75–92. [3]

Smith, Warren (2005), “Sinkhorn ratings, and new strongly polynomial time algorithms
for Sinkhorn balancing, Perron eigenvectors, and Markov chains.” Unpublished, Temple
University, http://rangevoting.org/WarrenSmithPages/homepage/works.html. [4]

Vigna, Sebastiano (2009), “Spectral ranking.” Unpublished, Università degli Studi di Mi-
lano, arXiv:0912.0238. [3]

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/glm09&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/h73&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/k93&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/k55&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/k99&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/k08&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/Landau95&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/lp84&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/lm00&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/o76&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/pv04&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/pn76&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:22/r80&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:23/s67&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/sv06&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://rangevoting.org/WarrenSmithPages/homepage/works.html
http://arxiv.org/abs/arXiv:0912.0238
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/glm09&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/h73&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/k93&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/k55&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/k99&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/k08&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/Landau95&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/lp84&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/lm00&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/o76&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/pv04&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/pn76&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/pn76&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:22/r80&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:23/s67&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/sv06&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%3C1%3ARBR%3E2.0.CO%3B2-


18 Yves Sprumont Theoretical Economics 13 (2018)

Wei, Teh-Hsing (1952), The Algebraic Foundations of Ranking Theory. Ph.D. thesis, Uni-
versity of Cambridge, UK. [3]

Co-editor Johannes Hörner handled this manuscript.

Manuscript received 23 February, 2016; final version accepted 27 December, 2016; available on-
line 19 January, 2017.


	Introduction
	Related literature
	Separability
	Consistency
	Symmetry and monotonicity
	Invariance
	Separable grading
	Conclusion
	Appendix
	References

