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Robust contracting under common value uncertainty

SARAH AUSTER
Department of Decision Sciences and IGIER, Bocconi University

A buyer makes an offer to a privately informed seller for a good of uncertain qual-
ity. Quality determines both the seller’s valuation and the buyer’s valuation, and
the buyer evaluates each contract according to its worst-case performance over
a set of probability distributions. This paper demonstrates that the contract that
maximizes the minimum payoff over all possible probability distributions of qual-
ity is a screening menu that separates all types, whereas the optimal contract
for any given probability distribution is a posted price, which induces bunch-
ing. Using the e-contamination model, according to which the buyer’s utility is a
weighted average of his single prior expected utility and the worst-case scenario,
the analysis further shows that for intermediate degrees of confidence, the opti-
mal mechanism combines features of both of these contracts.

KEyworDs. Ambiguity, optimal contracting, lemons problem.

JEL cLAssIFICATION. D81, D82, D86.

1. INTRODUCTION

The optimal design of contracts in the presence of asymmetric information has been
the subject of investigation for several decades and its theoretical analysis has gener-
ated an array of powerful results. Most of this literature adopts the subjective expected
utility model according to which contracting parties have a single subjective prior belief
about the fundamentals. In real-life contracting situations, e.g., when buying a house
or when investing in a foreign country, the involved parties rarely have a precise idea
about the underlying probability distribution, either because they do not have enough
experience or because they do not have sufficient information. It is well established
that a lack of knowledge about the probability distribution can have important behav-
ioral implications that are incompatible with the subjective expected utility hypothe-
sis. This gives rise to the question of how the presence of uncertainty over probabilistic
scenarios affects the optimal design of contracts and the implemented allocation. This
paper analyzes a bilateral trade model that allows for common values—an important
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feature in many real-life contracting situations—and an ambiguous trading environ-
ment.

In the environment considered, there is a risk-neutral buyer (she) who makes an of-
fer to a risk-neutral seller (he), who is privately informed about the quality of his good.
The paper first presents an introductory example in which quality is either high or low
and then studies the richer environment in which quality belongs to an interval of val-
ues. In contrast to the classic setting, it is assumed that the buyer has ambiguous beliefs
about the distribution of quality, which determines the valuation of both trading parties.
The buyer’s preferences are represented by the maxmin expected utility model (Gilboa
and Schmeidler 1989), according to which the buyer evaluates her choices with the most
pessimistic probability distribution in a set of distributions.

For the case where this set is a singleton, Samuelson (1984) shows that the optimal
mechanism is a take-it-or-leave-it price. The results of this paper demonstrate that if
the extent of ambiguity the buyer faces is sufficiently large and if values are interdepen-
dent, the optimal mechanism is a screening menu rather than a posted price. To show
this, the paper first studies the case of Knightian uncertainty, where the buyer consid-
ers the worst-case payoff over all possible probability distributions of quality. Here the
buyer optimally proposes a contract that equalizes her payoff across all seller types and
thereby hedges against the ambiguity she perceives. This contract can be interpreted
as maximally robust, since it yields the same expected payoff across all possible proba-
bilistic scenarios. The analysis shows that the nature of the robust mechanism crucially
depends on the relation between the buyer’s and the seller’s valuations: if the buyer’s val-
uation strictly increases in the seller’s type, the optimal mechanism is a screening menu
that perfectly separates all seller types, whereas if the buyer’s and seller’s valuations are
independent, the maximally robust mechanism is the pooling price. The intuition is that
a separating menu allows the price of the good to increase with the buyer’s valuation of
the good, thereby balancing her payoff across the different realizations of her and the
seller’s valuation.

The paper also studies the case in which the buyer’s ignorance is less extreme. To
parameterize the buyer’s demand for robustness, her preferences are represented by the
e-contamination model, a special case of the maxmin expected utility model, which
nests the case of Knightian uncertainty on the one hand and the case of a single sub-
jective prior belief on the other hand. According to this representation, the buyer has a
reference distribution but entertains some doubt regarding that distribution, captured
by the parameter . The buyer’s confidence in the model distribution determines the
nature of the optimal mechanism. If ¢ is sufficiently small, the optimal mechanism is a
posted price as in Samuelson (1984), whereas if ¢ is sufficiently large, the optimal mech-
anism is a screening menu that perfectly hedges against ambiguity. For intermediate
values of ¢, the optimal contract combines features of both of these mechanisms: low
quality sellers are bunched at a base price, while high quality sellers are separated by the
mechanism. This hybrid contract solves the trade-off between maximizing the buyer’s
expected utility evaluated at the reference distribution and limiting her minimal payoff
in the worst-case scenario. In particular, by screening sellers with a valuation above the
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base price, the buyer avoids the possibility of trading with probability 0 in some states
of the world.

Given the longstanding debate on the economic implications of ambiguity as op-
posed to risk, I discuss how the optimal contract in the proposed setting differs from the
benchmark model in which the buyer is ambiguity neutral but risk averse. Although the
optimal contract under risk aversion may also be a separating menu, the cases in which
it coincides with the optimal mechanism under ambiguity aversion are nongeneric.
Moreover, the discussion demonstrates that there are situations in which a higher de-
gree of risk aversion makes the pooling price optimal, while a higher degree of ambiguity
aversion generally favors separation.

Finally, in some applications of the maxmin expected utility model, results crucially
rely on the feature that preferences are kinked (e.g., Dow and Ribeiro da Costa Werlang
1992; Condie and Ganguli 2017). This is not the case in the model studied here be-
cause the optimality of separating menus in the considered environment is driven by the
buyer’s desire to hedge against ambiguity, a feature of all decision models that capture
ambiguity averse behavior. This is illustrated by extending the characterization of the
optimal contract for the binary type case to the smooth ambiguity model, introduced
by Klibanoff et al. (2005). The characterization shows that the solution of the buyer’s
optimization problem under smooth ambiguity aversion is a convex combination of the
solution under maxmin expected utility and ambiguity neutrality.

Related literature

This paper is part of a growing literature on robust contracting in an uncertain envi-
ronment, which includes work on procurement contracts (Garrett 2014), optimal dele-
gation mechanisms (Frankel 2014; Carrasco and Moreira 2013), and optimal incentive
contracts in the presence of moral hazard (Carroll 2015; Carroll and Meng 2016; Antié
2014). Crucially, and in contrast to most prior work in mechanism design, the princi-
pal in these models evaluates contracts according to their worst-case performance, e.g.,
over the agent’s preferences or over the set of available technologies.

There is also a small number of papers that study the maxmin optimal contract
in the canonical principal-agent problem with hidden information, as this one does.
In contrast to this work, existing papers assume that the principal’s and agent’s valu-
ations are independent. Bergemann and Schlag (2011) show that under the assump-
tion of independent private values, the maxmin optimal mechanism is a posted price.
Intuitively, if the principal only faces ambiguity over the agent’s acceptance decision,
the worst-case probabilistic scenario is always the one that maximizes the probabil-
ity that the agent rejects. This implies that the optimization problem under maxmin
preferences is equivalent to the optimization problem under a single pessimistic prior
and Samuelson’s (1984) result applies. Bergemann and Schlag (2011) also consider the
mechanism that minimizes maximal regret. In contrast to maxmin expected utility, the
minimax regret criterion generates a regret trade-off that makes randomization across
prices optimal. In recent work, also Carrasco et al. (2017) consider a monopoly pricing
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model with independent private values and a principal with maxmin preferences. In
their environment, the principal has partial probabilistic information about the agent’s
valuation, such as the mean or the variance, which makes a random pricing rule opti-
mal.

There exists a complementary line of literature that studies mechanism design prob-
lems in which the agent rather than the principal faces uncertainty about the underlying
probabilistic environment. This literature includes the work of Bose and Mutuswami
(2012) and Wolitzky (2016), both of which investigate the implementability of efficient
trade in the canonical Myerson and Satterthwaite (1983) environment with the assump-
tion that agents perceive uncertainty about the probability distribution of the oppo-
nent’s type. Also Bose et al. (2006), Bose and Daripa (2009), and Bodoh-Creed (2012)
introduce ambiguity on the agent’s side, but in contrast to the work mentioned before,
the focus of these papers lies on revenue maximization. Finally, Bose and Renou (2014)
and di Tillio et al. (2017) show that the designer may benefit from introducing ambiguity
via the mechanism.

The rest of the paper is organized as follows. Section 2 presents the introductory ex-
ample, which demonstrates the main features of robust contracting in the considered
environment. Section 3 then introduces the main model. I first characterize the optimal
contract for the case in which the buyer considers the worst-case scenario over all pos-
sible probability distributions. Next, I study the case of moderate ambiguity and show
how the features of the optimal contract depend on the buyer’s attitude toward the am-
biguity she faces. Section 4 discusses the differences to risk aversion and explains how
the findings of the model extend when preferences are smooth rather than kinked. Sec-
tion 5 concludes.

2. INTRODUCTORY EXAMPLE

A risk-neutral buyer makes an offer to a risk-neutral seller who possesses one unit of an
indivisible good. The seller is privately informed about the quality of the object, which
can be either high or low. Quality determines both the seller’s and the buyer’s valuations,
implying that the seller knows both his own valuation ¢ € {c;, ¢;} as well as the buyer’s
valuation v € {v;, vy}, whereas the buyer knows neither of these values. I assume that
both the seller and the buyer value high quality more than low quality, i.e., ¢;, > ¢;, v, >
vy, and that the buyer’s value always exceeds the seller’s value: v; > ¢;, i =/, h. The buyer
proposes a menu of contracts, {(x(c), £(¢))}cefe,c,)» consisting of a trading probability
x(c) and a transfer #(c) for each type of good. If the seller reveals truthfully his type,
the buyer’s and the seller’s payoffs as a function of the seller’s type are given by 7 (c) =
x(c)v(c) — t(c) and m5(c) = t(c) — x(c)c, respectively.

The buyer faces ambiguity over the quality distribution and has maxmin expected
utility preferences (Gilboa and Schmeidler 1989). Under this representation, a deci-
sion maker evaluates her choices with the worst probability distribution in a convex
set of distributions. Letting o denote the probability that the quality of the object is
high, this amounts to the buyer minimizing over an interval of values of o. Let E,



Theoretical Economics 13 (2018) Robust contracting 179

denote the expectation operator with respect . The buyer’s payoff function is then
given by
inf E o).
o€lo,0] U[Wb( )]
The buyer maximizes this payoff function subject to the incentive and individual ratio-
nality constraints of each type of seller:

t(cp) — x(¢p)ep = t(cp) — x(ep)ey,
t(cp) — x(cp)ep = t(ep) — x(cpep,

t(c;) —x(¢p)ci =0, i=1h.

Since the seller knows his type, the constraints of the buyer’s optimization problem are
not affected by the presence of ambiguity in this environment. This, and the fact that
the buyer’s objective is weakly decreasing in #(c;) and ¢(c;), implies that the solution
to the buyer’s optimization problem satisfies some well established properties (see, for
example, Salanié 2005, Chapter 2): the incentive compatibility constraint of the low type
seller and the individual rationality constraint of the high type seller are binding, while
the remaining constraints are slack. Furthermore, the low type seller trades with prob-
ability 1. With these properties, the menu of contracts is completely characterized by
the trading probability of the high type seller x(c;,). For notational convenience, let this
probability be denoted by «:

{(x(en), t(en), (x(cn), tlew))} = {(1, acp + (A — @) 1), (o, acp)}.

REMARK. Note that there are two alternative interpretations of the model. In the inter-
pretation followed throughout the paper, the good is indivisible and « is the probability
of trade. In an alternative interpretation, the seller possesses one unit of a perfectly di-
visible good, utility functions are multiplicatively linear, and « is a quantity. Under this
interpretation, the menu is a nonlinear pricing schedule with a quantity discount. Low
quality is traded in large quantity at a low price, while high quality is traded in small
quantity at a high price.

Given the properties stated above, the buyer’s payoff can be stated as a function of «
and her optimization problem becomes

aren[(e)lﬁ] Uel[réfﬁ]{o-a(vh —cp)+ A —o) (v —acy, + (1 —a))}.
To derive the solution to this problem, consider first the case in which the set of proba-
bility distributions is a singleton, so that the buyer is a subjective expected utility max-
imizer with a single prior o. Samuelson (1984) shows that the buyer’s optimal contract
is a posted price, which the seller either accepts or rejects. In the two-type setting, this
result can easily be seen by considering the buyer’s objective function. Since E;[] is
linear in «, the optimization problem has a corner solution. The mechanism character-
ized by a = 0 is a separating price equal to ¢;, while that characterized by « = 1 is the
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pooling price equal to ¢,. Pooling is optimal if the probability that the seller’s type is
high is large enough, which is the case if

Chp—C]

ov,+(1—o)vyy—cp=(1—0)(vy—¢) orequivalently, o> .
Up — €

Proposition 2.1 shows that if the set of probability distributions is not a singleton,
the buyer’s optimal contract is a posted price if and only if this price is optimal under all
probability distributions in the interval [o, o]. Otherwise, the buyer optimally offers a
separating menu.

ProproSITION 2.1. Let 5 := 52:2 . The buyer optimally proposes a menu characterized by

0 ifo <o,

v —C .
27 otherwise.
Up —(

See Appendix A for the proofs of most of the propositions.

The parameter ¢ is the subjective prior under which all values of « yield the same
payoff. If o > &, the optimal value of « is equal to 1, since the contract that maximizes
the buyer’s expected payoff is the pooling price ¢, for all o € [0, 7]. Similarly, if & < &,
the optimal value of « is equal to 0, because the separating price ¢; is optimal for all
o € [o, o). Ambiguity aversion thus affects the buyer’s utility but not her choice of con-
tract. If o < & < @, the buyer optimally proposes a separating menu, characterized by
at = 5}’1 :ng' This value of « is the contracting parameter under which the buyer’s payoff
conditional on the seller’s type being high equals her payoff conditional on the seller’s
type being low. Intuitively, offering a separating menu rather than a posted price al-
lows the buyer to limit the extent of ambiguity over the probability with which the seller
accepts and the net gain when trade occurs, thereby balancing her payoff across the
different states of the world. The menu characterized by o* = U} C’Z can be viewed as a
robust contract because it makes the buyer’s payoff independent of the underlying type
distribution and thereby yields a “safe” payoff equal to w Offering a separat-
ing menu thus hedges against ambiguity in this environment. Hedging is optimal if and
only if the environment is sufficiently ambiguous and the buyer is sufficiently ambiguity
averse, i.e., if [, o] is large enough.

This is illustrated in Figure 1. Under the assumption o < & < &, the expected payoff
of a buyer with subjective prior ¢ is downward sloping in « (solid line), while the ex-
pected payoff of a buyer with subjective prior o is upward sloping in « (dashed line). All
expected payoff functions E;[7], o € (o, o) lie in between these two benchmarks and

intersect at & = =1 s—c» the worst case for the buyer is that the probability

. Fora <

”’—_CC’Z the worst

with which the seller has a h1gh quahty good is large, whereas for « >
case is that the probability of this event is small. Since the buyer’s expected payoff eval-
uated at o is upward sloping in «, while her expected payoff evaluated at o is downward

. . . . . . . x __ U—¢(
sloping in «, her maxmin expected payoff (thick curve) is maximized at o* = e
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v = 1

Vi =
F1GuURE 1. Expected payoffs E,[m] for o € [0, T].

3. THE MAIN MODEL

Consider now the case where the seller’s type takes a value in the interval [0, 1]. As be-
fore, the seller knows his own valuation for the object ¢ and also the buyer’s valuation v,
whereas the buyer is uncertain about these values. Let the differentiable function v(c)
define the relation between the two values, and assume v/'(¢) > 0 and v(¢) > ¢ for all
¢ € [0, 1]. That is, both the seller’s and the buyer’s value for the object are increasing in
its quality, and the buyer’s value strictly exceeds the seller’s value.

In this environment a menu of contracts is defined as {(x(c), t(c))}cef0,1, and the
incentive and individual rationality constraints of the seller are given by

t(c) —x(c)c>t(¢) —x(¢)c Vc,c,

t(c)—x(c)c=0 Ve.

Samuelson (1984, p. 997) shows that this set of constraints implies that x(c) weakly
decreases in ¢ and that 7;(c) = —x(c) almost everywhere. With these properties, the
buyer’s and seller’s payoffs can be derived as a function of x(c) only. Condition ;(¢c) =
—x(c) together with (1) = 0 yields

1
mg(c) = / x(u)du.

The term |, Cl x(u) du is the information rent paid to type c. The buyer’s payoff as a func-
tion of the seller’s type, 7 (c), is then given by the difference between the expected value
of the realized gains from trade and the information rent paid to the seller. That is,

1
mp(c) = x(c)A(c) —/ x(u)du,

where A(c) = v(c) — ¢ denotes the gains from trade when the seller’s type is c.
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3.1 Unique subjective prior

Consider first the benchmark case, where the buyer has a single prior belief F. This
specification corresponds to the standard Bayesian setting, for which Samuelson (1984)
shows that the optimal mechanism for the buyer is a posted price. Assume that F is
twice differentiable and let f(c) = F’(c¢) denote the density function. Defining ¥ as the
set of nonincreasing functions x : [0, 1] — [0, 1], the buyer solves the problem

1 1
ma}I),(EF[ﬂ'b(c)] =/ (x(c)A(c) — f x(u) du)f(c) de. @
X€ 0 c

After an integration by parts, the buyer’s expected payoff can be written as Eg[m(c)] =
fol (A(c)f(c) — F(c))x(c)dc, where the function H(c) = A(c)f(c) — F(c) captures the
marginal benefit of increasing x(c). If H(c) is strictly decreasing in c, the optimal mech-
anism is characterized by the step function

‘o) 1 ife<c*,
x*(c) =
0 ifc>c*,

where c¢* is such that H(c*) =0 if H(1) < 0 and ¢* = 1 otherwise. This mechanism cor-
responds to a posted price equal to ¢*. The buyer’s payoff associated to the posted
price varies with the seller’s type ¢. In particular, the minimum payoff is given by

#min = 1A (0) — ¢*, 0}, which is obtained either when the seller is of the lowest type so
that the buyer’s valuation is A(0) or when the seller rejects the buyer’s offer.

3.2 Knightian uncertainty

Consider now the polar case, where the buyer evaluates possible contracts by their
worst-case performance over all probability distributions on [0, 1]. This case of Knight-
ian uncertainty has received a lot of attention in the literature on robust contracting, e.g.,
Frankel (2014), Garrett (2014), and Carroll (2015). Under this specification, the buyer
solves the problem

1
max inf {x(c)A(c)—/ x(u)du}. (ID
xeW¥ cegl0,1] c

The following proposition characterizes the solution to this problem.

ProrosiTiON 3.1. The unique solution of problem (II) is given by

x*(c) = exp[— fc V) dt} forallce[0,1].
0 A ’

The optimal mechanism for a buyer who minimizes over all types c € [0,1] is a
mechanism that equalizes her payoff across all types. Noting that 7 (c) = x'(c)A(c) +
x(c)v'(c), the mechanism that yields a constant payoff across c solves the differential
equation

x'(©)A(c) +x(c)v'(c) =0
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with x(0) = 1. The solution to this differential equation is given by the function x*(¢),
as defined in Proposition 3.1. Since x* is nonincreasing, the monotonicity constraint for
incentive compatibility is automatically satisfied. The mechanism characterized by x*
can be viewed as the analogue to the contract characterized by a* = % in the binary
case. Its key feature is that it yields a payoff that does not depend on the underlying
probability distribution over types. Instead, the buyer obtains a safe payoff equal to

1.7
ﬁmaXEA(l)eXp[—/ v o) dti|.
0

It should be emphasized that the nature of the mechanism characterized by x*(c)
crucially depends on the relation between the buyer’s valuation and the seller’s valua-
tion. Noting that the first derivative of the optimal trading probability is given by

o [ [YO }v’(C)

o eXp[ /o ORI INGS
it is easy to see that x*(c) strictly decreases in c if and only if the buyer’s valuation v(c)
strictly increases in c. In particular, if there are subsets of [0, 1] for which v/(c¢) =0, the
buyer optimally bunches types on those subsets but separates the rest. The intuition is
that a strictly increasing v(c) favors trading with high types and thus calls for an asym-
metric treatment of sellers so as to equalize the buyer’s payoff across types. Vice versa, if
v(c) is constant on some part of the domain, equalizing the buyer’s payoff across sellers
requires bunching seller types in that part of the domain.

In the independent private value case, where v(c) = v for all ¢ € [0, 1], the optimal
mechanism is, in fact, characterized by x*(¢) = 1 for all ¢. This mechanism corresponds
to the pooling price, which yields a safe payoff equal to v — 1. Once we move away from
the independent private value case, the optimal mechanism is no longer the pooling
price—or any other posted price—but a separating menu. To gain some intuition, note
that if the buyer offers the pooling price and v'(¢) > 0 on some part of the domain, the
buyer obtains her minimum payoff when trading with the lowest type. This minimum
payoff can be increased by reducing the trading probability of higher types so as to re-
duce the information rent paid to the lowest type. Under the optimal contract instead,
the trading probability strictly decreases on the parts of the domain where v strictly in-
creases. This allows the buyer to offset the additional information rent paid to lower
types with a higher probability of trade, thereby balancing the buyer’s payoff across seller
types. In particular, if v is strictly increasing on the whole domain, the maximally robust
mechanism is a screening menu that separates all seller types.

Remark. Note that if instead v'(¢) < 0 for all ¢ € [0, 1], the problem is less interesting.
Here 7, (¢) necessarily decreases in ¢, implying that the worst-case scenario always in-
cludes the degenerate distribution with a mass point at ¢ = 1. The buyer thus optimally
proposes the pooling price. Also when the assumption of strictly positive gains from
trade is violated, the contracting problem becomes trivial. In particular, if there ex-
ists some ¢ € [0, 1] such that A(¢) <0, not trading is a weakly dominant strategy for the
buyer: if the seller’s type is ¢ with probability 1, there is no contract that can yield a
strictly positive payoff for the buyer.
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It is interesting to point out that whenever the gains from trade are constant across
quality so that A(c¢) = §, the mechanism that maximizes (II) is characterized by

x*(c) = e 5 forallce [0, 1].

The trading probability is thus exponentially distributed, scaled by a factor 6. One fea-
ture of the exponential probability distribution is that the density function and the de-
cumulative distribution function decrease proportionally so that the hazard rate is con-
stant.! For the optimal trading probability function x*(c), this implies that the expected
value of the realized gains from trade, x*(¢)8, and the information rent, fcl x*(u)du,
change at the same rate, thereby yielding a constant payoffin c. Clearly, the optimality of
the exponential probability distribution in the problem under consideration hinges on
the assumption that gains from trade are indeed constant. However, the result points to
a more general property of the optimal mechanism, namely an inverse relation between
the gains from trade A(c) and the hazard rate of x*(c): if gains from trade are increasing
in ¢, x*(¢) has a decreasing hazard rate, whereas if gains from trade are decreasing in c,
x*(c) has an increasing hazard rate.

3.3 Intermediate case

The maximally robust mechanism characterized in Proposition 3.1 provides a useful
benchmark. Nevertheless, the Knightian decision criterion can be viewed as some-
what extreme. Given the stark difference between the optimal mechanism under a sin-
gle subjective prior and the mechanism characterized in Proposition 3.1, it is then of
interest to analyze the case where the buyer’s demand for robustness is less extreme.
To make this analysis tractable, the buyer’s preferences will be represented by the &-
contamination model, axiomatized by Kopylov (2016) among others, according to which
the buyer has some reference probability distribution F in mind but considers an ¢ per-
turbation around it. Under this representation, the buyer’s utility function is given by
(1 — &)Ef[mp(c)] + einfgecicon) Eclmp(0)], € € [0, 1], where F belongs to the closed con-
vex hull of A, which is an exogenous information set known to the decision maker that
contains the true probability law on the state space.

In what follows I assume that the buyer has no exogenous information about the
true distribution of seller types so that A contains all probability measures on [0, 1]. This
assumption has the implication that the buyer’s perceived ambiguity is uniform across
the states of the world, which is not without loss of generality. For example, for the
case of independent private values, Carrasco et al. (2017) show that if ¢ is equal to 1
and A includes only those probability distributions with the same mean, the optimal
mechanism is a random pricing rule, whereas Proposition 3.1 shows that if A contains all
probability distributions on [0, 1], the optimal mechanism is the (deterministic) pooling
price. How the optimal mechanism changes with A when it takes more general forms
might pose an interesting question for future research.

Letting g and G, respectively, denote the density function and the cumulative distribution function, the

8(0)

hazard rate is defined by 247
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Given this restriction, the buyer’s payoff function is given by the weighted average of
her subjective expected utility evaluated at F' and the minimum payoff over all state re-
alizations. The buyer’s decision model is thus as if she thinks that with probability 1 — ¢,
the seller’s type is distributed according to F, while with the complementary probabil-
ity it could be any other probability distribution on [0, 1]. The confidence parameter ¢
measures the buyer’s degree of ambiguity aversion. The buyer’s optimization problem
is then given by

1 1
ma};{(l —¢&) | H(c)x(c)dc+ e igéf”{x(c)A(c) - [ x(u) du}, ec(0,1). (IID)
xe 0 cely, 4

Under this preference representation, the buyer faces a trade-off between maximizing
her subjective expected utility evaluated at F and limiting the worst-case scenario. As
shown above, the former objective is achieved by offering the posted price c*, whereas
the worst-case payoff is maximized by offering the menu characterized in Proposi-
tion 3.1. For the remainder of the analysis I assume that H(c¢) is strictly decreasing in c.
Under this assumption, the problem in the absence of ambiguity (¢ = 0) is solvable with-
out the use of ironing techniques. Furthermore, I restrict attention to the case where the
buyer’s valuation is strictly increasing in the seller’s type. This restriction is less essential
but simplifies some of the exposition. The next proposition shows that under these as-
sumptions, the optimal menu is characterized by two parameters: a minimum payoff 7
that lies between the minimum payoff under the optimal posted price in the absence of
ambiguity, 7™, and the minimum payoff under the menu that perfectly hedges against
ambiguity, 7™#*, as well as a threshold ¢, below which the buyer trades with probability
1 and above which she obtains her minimum payoff or trades with probability 0.

ProposiTION 3.2. Assume H'(c) < 0 and v'(c) > 0 for all ¢ € [0,1]. Letting x* denote
the solution of problem (III), there exists a threshold ¢ € [0, ¢c*] and a minimum payoff
7 € [amin Zmax| cuch that

e x*(¢c)=1forallce|0,¢],

e x*(c) is such that x*(c)A(c) — [y x*(u) du =Max{, 0} forall c € (¢, 1].

According to Proposition 3.2, at the optimal mechanism there exists a set of low type
sellers, [0, ¢], who are bunched and trade at a base price, while the trading probability of
the remaining sellers is such that the buyer’s payoff is constant across (¢, 1]. In particu-
lar, if the buyer’s minimum payoff 7 associated with the optimal mechanism is weakly
negative, types above the threshold ¢ trade with probability 0 and the optimal mecha-
nism can be interpreted as a posted price equal to ¢, whereas if the minimum payoff 7 is
strictly positive, the trading probability for types above the threshold ¢ is strictly positive
and strictly decreasing. In the latter case, the optimal mechanism separates all types in
the interval (¢, 1]. Notice also that if ¢ = ¢* and 7 = 77pjn, the mechanism characterized
in Proposition 3.2 corresponds to the posted price ¢*, while if ¢ =0 and 7 = 7™, it
corresponds to the maximally robust menu characterized in Proposition 3.1.
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To see why this type of mechanism is optimal for the buyer, suppose that under the
posted price c*, the buyer obtains a positive payoff with all seller types, i.e., 7™ > 0.
This is the case when F is sufficiently skewed to the left and gains from trade with low
type sellers are sufficiently large. In such situations, the worst-case scenario for the
buyer is when the seller’s type is strictly greater than c¢* so that the buyer’s offer is re-
jected. Starting from the posted price c*, suppose now the buyer wishes to increase her
minimum payoff. This requires an increase in the trading probability with seller types
above c*, which in turn increases the information rent paid to sellers below c¢*. When the
information rent paid to these sellers becomes sufficiently large, the buyer’s payoff with
type c¢ = 0 falls below the minimum payoff. If the buyer wishes to increase her minimum
payoff further, she thus needs to decrease the trading probability for some types in the
bunching region. This is optimally done by reducing the upper bound of that region, i.e.,
by reducing the threshold ¢. At ¢ = 0, the buyer’s minimum payoff reaches its maximum
value, which is equal to 7™M,

If, alternatively, 7™ < 0 so that the buyer makes losses with some seller types when
offering the posted price c*, increasing the buyer’s minimum payoff above 7™ requires
directly decreasing the threshold below which the seller trades with probability 1, while
keeping the trading probability of the remaining types equal to 0. Thus, so as to in-
crease her minimum payoff, realized when ¢ = 0, the buyer initially needs to decrease
the posted price to ¢ < c*. Once the posted price is such that the buyer’s minimum pay-
off reaches zero, a further increase in the minimum payoff requires an increase in the
trading probability for sellers above the threshold ¢, which in turn makes a further de-
crease of that threshold necessary—again up to the point where ¢ = 0 and the minimum
payoff equals 7™,

The optimal value of ¢ and the optimal minimum payoff 7+ depend on the buyer’s
confidence parameter ¢. The next proposition establishes that the optimal mechanism
is a posted price equal to c* if and only if ¢ is sufficiently small, while it is the maximally
robust menu characterized in Proposition 3.1 if and only if ¢ is sufficiently large. It also
shows that there exists a nonempty region of intermediate values of ¢, where the optimal
menu combines features of both of these mechanisms.

ProposiTION 3.3. Assume H'(c) <0 and v'(¢) > 0 for all c € [0, 1]. The optimal value of
the buyer’s minimum payoff 7 is increasing in &, while the optimal value of ¢ is decreasing
in e. Moreover, there exist two values € and € with 0 < ¢ < € < 1 such that

o ¢=c*and 7w =7""ifand onlyifs <,

>

o c=0andw=m"jfandonlyife>=e.

The result in Proposition 3.3 is very intuitive. The proposition shows that the buyer
optimally hedges against ambiguity by separating the seller through the mechanism if
and only if she is sufficiently doubtful about the model distribution F. The fact that the
threshold of the bunching region, ¢, is decreasing in ¢ implies that the lower the buyer’s
confidence in F is, the more separation the optimal mechanism displays.
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FIGURE 2. Optimal mechanism: 7™ < 0,

The statement of Proposition 3.3 is shown by using techniques familiar from wel-
fare economics. The buyer maximizes the weighted sum of two payoff functions: the
expected payoff Ex[m,(c)] and the minimum payoff 7 = inf.¢[g 1) 75 (c). With the struc-
ture of the optimal mechanism established in Proposition 3.2, it is possible to derive
the maximal expected payoff Er[m;(c)] for each value of 7 € [#min zmax] The function
connecting the two values is strictly decreasing and can be viewed as the analogue of a
classic utility-possibility frontier. The optimal mechanism for the buyer is then pinned
down by the tangency point between the possibility frontier and the buyer’s indifference
curve between her expected payoff evaluated at F and the minimum payoff 7, which has
aslope equal to —=-.

To see how the optimal mechanism depends on the parameter ¢, it is useful to dis-
tinguish between the two parameter regimes discussed above, where 7™ is positive or
negative. Suppose first that 7™ < 0: recall that if the buyer’s minimum payoff 7 lies
in the interval [#™", 0], the corresponding mechanism is a posted price such that the
buyer’s payoff with type ¢ = 0 equals 7, whereas if 7 belongs to (0, 7™#], it is a menu
that bunches sellers of low type and separates sellers of high type. The proof of Propo-
sition 3.3 shows that the possibility frontier in this case, illustrated in Figure 2, is strictly
concave. The slope at the lower bound of its domain, qrmin equals 0, which implies that
a posted price equal to c¢* is optimal if and only if £ = 0. The intuition is that, starting
from the posted price c*, a marginal decrease in the price has no effect on Er[m(c)],
whereas it has a positive effect on the buyer’s minimum payoff. At 7= = 0, the possibility
frontier has a corner. This implies that there exists an interval of values of ¢ for which
the optimal value of 7r equals 0 and the associated mechanism is a posted price equal to
gains from trade at ¢ = 0, A(0). This mechanism yields a positive payoff with all sellers in
the interval (0, A(0)), while it yields a zero payoff with the remaining types. If ¢ exceeds



188 Sarah Auster Theoretical Economics 13 (2018)

Eplmpl

Indifference curve with slope — /(1 — &)

Possibility frontier

N S N

Ny

7 in 7 e Fmax

F1GURE 3. Optimal mechanism: min >

the upper bound of that interval, the optimal value of 7 increases continuously in &, up
to the point where it reaches 7™#* and the optimal mechanism becomes the maximally
robust menu characterized in Proposition 3.1. As Proposition 3.3 shows, this value of ¢
is strictly smaller than 1, implying that the maximally robust mechanism is optimal for
a nondegenerate set of parameter values.

Considering next the case 7™ > 0, the utility-possibility frontier has a linear and a
strictly concave part as illustrated in Figure 3.2 If ¢ is sufficiently small so that the slope
of the indifference curve is greater than the slope of the possibility frontier on its linear
part, the optimal mechanism is the posted price c*. At the point where these slopes are
the same, the optimal value of 7 is indeterminate and then increases continuously in ¢,
up to the point where it reaches 7™2%, as discussed in the previous case.

The two parameter regimes are equivalent for large values of ¢, where low types are
bunched while high types are separated and the size of the bunching region decreases
continuously in . The main difference arises when ¢ is small. While for 7min > 0 the
optimal mechanism is a posted price equal to c* for a nondegenerate set of values of ¢,
for #7™iN < 0, this is not the case. Instead, the buyer optimally reduces the posted price
to a value lower than c*, even for very small values of ¢. Appendix B provides a complete
characterization of the optimal mechanism for both cases. For the specification with
constant gains from trade and a uniform model distribution F, the optimal mechanism
can be described in closed form.

PropPosSITION 3.4. Assume A(c) =38, 8 <1, and F(c) =cforallc [0, 1].

2If ¢* > 1 so that #™" > 0, the linear part disappears. The remaining discussion remains valid.
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e Posted Price. If e <1 — %e*%,

1)
where¢ =1+ 8In(8(1 — &)).

1
o Perfect Separation. If e > 1 — %e‘s,

x*(c) = e5 V.

Under the assumption A(c¢) = é and F(c) = ¢, the optimal mechanism in the bench-
mark case ¢ = 0 is a posted price equal to 8. The specification thus satisfies 7™ > 0 and
there are three regions of ¢ to be distinguished. If e <eg=1— %e_%, the optimal mech-

anism is a posted price equal to §, whereasif e >e=1— %e_%, the optimal mechanism
is a separating menu that perfectly hedges against ambiguity and yields a safe payoff

equal to 7™M = e k. Alternatively, if ¢ lies between these two thresholds, the opti-
mal mechanism bunches types below the threshold ¢ =1+ §In(8(1 — ¢)) and separates
the remaining seller types. The optimal threshold ¢ is strictly decreasing in the buyer’s
confidence parameter ¢, reflecting the hedging function of separating menus in this en-
vironment. Figure 4 illustrated the optimal trading probability x*(c¢) and the associated
payoff 7 (c) for different values of ¢.

The example helps one to understand why, for intermediate values of ¢, the buyer
optimally bunches low type sellers and separates high type sellers. Since A(c) = 6 for all
¢ € [0, 1], the marginal gain of increasing the trading probability with a particular seller,
given by the respective gains from trade, is the same across all types. The marginal cost
of increasing the trading probability, alternatively, is strictly increasing in the seller’s type
because the buyer has to pay the additional information rent to all lower types. As a
result, the buyer’s expected payoff evaluated at F is maximized when trading with low
type sellers but not with high type sellers. Also the optimal mechanism for a buyer who
demands robustness maximizes the trading probability with low type sellers—by letting
them trade with probability 1 at a base price—but minimizes the trading probability of
high type sellers only up to the point where the minimum payoff is reached.

4. DISCUSSION
4.1 Ambiguity aversion versus risk aversion

Given the longstanding debate on the implications of ambiguity, an important question
in this contracting problem is how the effects of ambiguity aversion differ from those
of risk aversion. It is well known that if utility functions are not quasilinear, separating
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F1GURE 4. Trading probability x*(c¢) and payoff 7, (c) for different values of ¢ € [0, 1].

menus can be optimal, even when there is no ambiguity. The following discussion shows
that the optimality conditions that determine the mechanism under risk aversion are
different from those under ambiguity aversion, and provides some intuition for why this
is the case.

As an example, suppose the buyer’s utility function u is concave in the difference
between her valuation v(c) and the price she pays in exchange for the good. Given the
arguments put forward in Section 3, the seller’s payoff as a function of his type and the
trading probability x(c¢) can be written as ms(c) = fcl x(t) dt so that the price conditional

1
on trading, denoted by p(c), is given by p(¢) =c+ Je ;((3 dr if x(¢) > 0 and p(c) = 0 oth-

erwise. Normalizing the buyer’s outside option to zero, the risk-averse buyer with single
prior belief F thus maximizes

1 1
/OJC(C)M<A(C)—/c %dr)f(c)dc
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subject to the monotonicity constraint on x(c). There exist parameter constellations un-
der which the function x(c) that solves this problem corresponds to a separating menu
rather than a posted price, as can be verified. However, when the buyer’s valuation de-
pends on the seller’s type, the cases in which the solution x(c¢) corresponds exactly to
the optimal mechanism under ambiguity aversion, whether in the form of Knightian
uncertainty or the e-contamination model, are nongeneric.

More generally, when the buyer’s type increases in the seller’s type, the way in which
the desire to hedge against ambiguity and to hedge against risk affect the optimal mech-
anism is typically different. The previous section showed that ambiguity aversion favors
the separation of sellers through the mechanism. In particular, the maximally robust
mechanism, which is optimal when the buyer is sufficiently ambiguity averse, is such
that the trading probability strictly decreases in the seller’s type. Such a mechanism still
exposes the buyer to risk since the buyer faces a strictly positive probability of not trad-
ing. In fact, there does not exist a mechanism that yields a riskless payoff. However,
in situations where the buyer’s type does not depend too much on the seller’s type so
that the pooling price yields a positive payoff with all types of seller, the buyer can limit
her downside risk by offering the pooling price. If the buyer is sufficiently risk averse,
the pooling price is then indeed optimal, implying that risk aversion can favor pooling
rather than separation.

As seen in the discussion after Proposition 3.1, the assumption that types are inter-
dependent is crucial for the robust mechanism to be a separating menu. If, alternatively,
the buyer’s valuation does not depend on the seller’s private information, the maximally
robust mechanism characterized in Proposition 3.1 is the pooling price. Interestingly,
when v is constant, offering the pooling price not only yields an unambiguous but also
a riskless payoff for the buyer. Thus, in the independent private value case, hedging
against ambiguity can take the same form as hedging against risk.

4.2 Smooth ambiguity aversion

For a given set of measures, the maxmin expected utility model may be seen as a special
case of the smooth ambiguity model, developed by Klibanoff et al. (2005), with infinite
ambiguity aversion. This section illustrates that the main characteristics of the optimal
contract extend to the case of smooth ambiguity aversion and thus do not hinge on the
kink property of maxmin expected utility. To keep the analysis tractable, I return to the
case of binary types, where the probability distribution of seller types is captured by a
single parameter o € [0, 1]. In the smooth ambiguity model, the buyer’s utility function
is given by

Eu[q)(EU[Wb])]’

where wu : [0, 1] — [0, 1] is a subjective prior on a set of probability measures, here cap-
tured by o € [0, 1], and ® : R — R is a function that weighs realizations of the decision
maker’s expected utility E,[7,]. Ambiguity is captured by the second-order belief w,
which measures the buyer’s belief about a particular o being the “correct” probability
distribution, while ambiguity attitude is captured by the function ®. If ® is linear, the
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buyer is ambiguity neutral and her preferences are observationally equivalent to those
of a subjective expected utility maximizer. If, alternatively, ® is concave, the buyer is
ambiguity averse and prefers known risks over unknown risks. The degree of ambiguity
aversion is measured by the coefficient of absolute ambiguity aversion — (g/((f)) .

Asin Section 2, the buyer proposes a menu of the form {(1, ac; + (1 — @)¢;), (@, acy)}.
The optimization problem of the buyer thus amounts to

aren[(a)vi] Eu[®(ca(v, —cp) + (1 — o) (v — acy, — (1 — a)e))].

To make ambiguity matter, assume that u has positive mass on both [0, ) and (7, 1],
and assume that ®'(-) > 0 and ®”(-) < 0. The first-order condition of the buyer’s opti-
mization problem is given by

E.[® (ca(vy, —cp) + (1 — o) (v —acy, — (1 —a)¢)) (0 —0) | 0 < 7]

=MC(a)

=E,[¥ (ca(vy —cp)+ (1= o) (v —acp — (1 —a)q)) (o — o) | o> F].

=MG(a)

The marginal cost of increasing &, MC(«), is the marginal decrease in expected utility in
the probabilistic scenario that pooling is not optimal (o < &), while the marginal gain
of increasing o, MG(«), is the marginal increase in expected utility in the probabilistic
scenario that pooling is optimal (o > ). Concavity of ® implies that the marginal cost
is increasing in «, whereas the marginal gain is decreasing in «. This implies that there
is a unique « that maximizes the buyer’s expected payoff. The conditions for an interior
solution are

MC(0) < MG(0) and MC(1) > MG(1).

The following proposition summarizes this result.

ProrosITION 4.1. The optimal menu of contracts for a buyer with smooth ambiguity
aversion is {(1, a*c, + (1 — a®)¢p), (a*, a*cp)} with

0 if MC(0) > MG(0),
o =11 if MC(1) < MG(1),
such that  MC(a*) = MG(a*) otherwise.

Proposition 4.1 is the smooth counterpart of Proposition 2.1 in the introductory ex-
ample. To see the connection to the optimal mechanism under maxmin expected util-
ity, assume that absolute ambiguity aversion is constant, i.e., _g((f)) = y. Assume fur-
ther that the support of u is [o, ] and that o < & < &. Under maxmin preferences, the
buyer’s optimal mechanism, characterized by oMEU = s~ makes her payoff unam-
biguous. Under smooth ambiguity aversion, the buyer compromises between maximiz-
ing the second-order expectation of her payoff, E,E,[7], and limiting her exposure to

ambiguity. The expected payoff E, E [} ] is maximized by offering a posted price (equal
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to either ¢; or ¢;), whereas ambiguity is eliminated by offering the menu characterized
by «MEVU. The optimal mechanism under smooth ambiguity aversion is a convex com-
bination of the two. If offering the pooling price maximizes E, E,[m], then the optimal
contracting parameter «* lies in the interval [@MEU 1]; otherwise o* lies in the inter-
val [0, @MEV]. The more ambiguity averse the buyer is, the closer is o* to «MEUY. This is
summarized in Proposition 4.2.

"(x) _

ProprosITION 4.2. Assume — T =Y

e IfE,[0] < &, then o* € [0, &MEV] and ‘% > 0.

e IfE,[0] > &, then a* € [aMEY 1] and % <0.

5. CONCLUSION

This paper considers the contracting problem between a seller and a buyer, who de-
mands robustness with regard to the distribution of the seller’s private information, in
an environment with interdependent values. The analysis shows that if the buyer’s val-
uation increases in the seller’s valuation, the nature of the optimal mechanism crucially
depends on the buyer’s confidence in the underlying type distribution. The maximally
robust contract in this situation is a menu that separates all seller types and thereby
hedges against the ambiguity perceived by the buyer. As a result, the larger the buyer’s
demand for robustness is, the more separation the optimal mechanism displays. This
stands in contrast to the case where buyer and seller have independent private values
and a posted price is optimal, no matter what the degree of the buyer’s ambiguity aver-
sion is.

One question not addressed in this paper is how the presence of uncertainty in the
form of ambiguity affects the efficiency of the equilibrium allocation. In the environ-
ment considered, gains from trade are strictly positive with each type of seller and are
thus maximized when the buyer offers the pooling price. As the analysis demonstrates,
if the buyer knows the underlying type distribution, she offers a posted price potentially
smaller than the pooling price, whereas if the buyer perceives and dislikes ambiguity,
she proposes a separating menu. How these two mechanisms compare in terms of the
social surplus they generate, and, more generally, how the presence of ambiguity affects
the welfare of trading parties in environments with asymmetric information might be
an interesting question for future research.

APPENDIX A
A.1 Proofof Proposition 2.1
The buyer maximizes inf,¢[s,7) Es[7]. To identify the minimizing prior, consider

an‘[Wb]

e a(vy —¢p) — (v —¢p).
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The buyer’s payoff E,[m,] is decreasing in o for all o < % and increasing in o

for all « > ;=L We thus have & € arginfye[g, 71 Eo[m] if & < % holds and ¢ €
arginf,e(o,7) Eo[mp ()] if & > % holds. The buyer consequently maximizes the step
function
oa(v, —cp)+ (1 —F)(vl —acp+(1— a)cl) ifa< ﬂ,
H — vy —
oa(vy —cp) + (1 —g)(vl —acp+(1— a)cl) ifa > %
h — ¢l

By definition of &, the buyer’s payoff E;[7] is decreasing in « if o < & and increasing
in a if ¢ > ¢. Consequently, if & < &, both parts of the step function are decreasing in
a and II is maximized at « = 0. Similarly, if o > &, both parts of the step function are
increasing in @ and I is maximized at « = 1. If o < & < @, Il is strictly increasing in « on
the interval [0, 2.=%.] and strictly decreasing in « on the interval [ .=, 1], and therefore

Vp—C] vp—cr’

is maximized at 2=<L,
Vp—C]

A.2 Proof of Proposition 3.1

Suppose that the solution of problem (II) is such that ,(c) is constant across c. This
implies that x(c) is differentiable in ¢. Indeed, notice that, given m,(c¢) = C for some
C e R, we have x(c)A(c) = m5(c) + C for all ¢ € [0, 1]. As 7, is absolutely continuous, a
standard consequence of the seller’s incentive constraints, x(c) is continuous in ¢. But as
ms(c) = [, cl x(u)du and A(c) is differentiable and bounded away from zero, we get from
the fundamental theorem of calculus that x(c¢) is differentiable in c.

We then have ; (c) = x'(c)A(c) + x(c)v'(c), so the optimal mechanism solves the
differential equation

x'(0)A(e) 4+ x(c)v'(c) =0. €Y)

The solution to (1) is given by x(c) = Dexp[— [y % d¢], D € R. Together with the condi-
tion x(0) = 1, this yields D = 1 and hence x*(c¢) as characterized in Proposition 3.1. Let
the associated (constant) payoff be denoted by 7™,

We then need to show that any optimal mechanism indeed equalizes the buyer’s pay-
off across c. Consider a nonincreasing function x : [0, 1] — [0, 1] that satisfies X(c)A(c) —
fcl X(u)du > 7™ We can first show that x(¢) > x*(c¢) for all c. For each ¢ € [0, 1], let

X¢:[0,1] — R be an auxiliary function, defined by x.(u#) = D.exp[— fou Z/éf)) d¢] with D,

such that ¥.(c) = ¥(c). Since x*(u) = exp[— fO” % dr], for all ¢ such that x(c¢) < x*(¢), we
have D. < 1 and hence X.(u) < x*(u) Yu € [0, 1].

Toward a contradiction, suppose now there exists some ¢ € [0, 1] such that x(¢) <
x*(c). Notice that since the payoff with the highest type, x(1)A(1), must be weakly
greater than 7™ = x*(1)A(1), we have x(1) > x*(1) and hence D; > 1. Now we know
that D, < 1 since by assumption X(c) < x*(c). We therefore have X(1) > x.(1). Since ¥ is
nonincreasing and . is continuous, we then have X(u) > X.(«) on a left neighborhood

of 1. Let ¢’ be the supremum of the set {u € [0, 1] : X(u) < X.(u)}, which is well defined
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as X(c¢) = ¥.(c). Since X is nonincreasing, it must then hold that ¥(¢’) < ¥.(¢’) < x*(¢/).
Considering the buyer’s payoff with type ¢/, we obtain

1 1
x(d) - / Ywydu=<xy(c)— / ¥ow)du=3%s(DA) < x*(DHA(L) = 7™M,

The first inequality follows from the facts that ¥(¢’) = X.(¢’) (by definition of X.) and
X(u) > Xo(u) for all u > ¢’. The following equality follows comes from the property that
the buyer’s payoff is constant in ¢ under X,. The last inequality follows from x(¢’) <
x*(c"), which implies D < 1 and hence X, (u) < x*(u) for all u € [0, 1]. Together, this
contradicts our initial assumption ¥(c¢)A(c) — /. cl X(u)du > 7™M for all ¢ and therefore
implies x(¢) > x*(c) for all c.

Finally, consider the buyer’s payoff with type ¢ = 0. Given that the minimum payoff
associated to X must be weakly greater than 7™2*, it must hold that

1

1
X(0)A0) — / X(u)du > A0) — / x*(u) du = 7™M,
0 0

Since ¥(0)A(0) < A(0) and ¥(c) = x*(c) for all ¢, this inequality can only be satisfied if
X(c)=x*(c) forall c.

A.3 Proof of Proposition 3.2

To characterize the solution of problem (III), consider the auxiliary optimization prob-
lem, where the endogenous minimum payoff is treated as an exogenous parameter
TelR:

1
max/ H(c)x(c)dc (I
xe¥ Jo

subject to the pointwise constraints
1
x(c)A(c) — / x(u)du>a Vcel0,1]. 2
c

Evidently, any solution of problem (IIT) must also be a solution of (III") for some 7,
as otherwise the buyer could increase his expected payoff evaluated at F while main-
taining the same minimum payoff inf.c 11{x(c)A(c) — fcl x(u)du}. We can restrict our
attention to values of 7 that are weakly greater than the minimum payoff under the
mechanism that maximizes fol H(c)x(c)dc, i.e., that solves problem (I). Recall that this
payoff is given by #™" = max{A(0) — c¢*,0}. Moreover, the minimum payoff 7 has to
be weakly smaller than the maximum value of inf (o, 1;{x(c)A(c) — fcl x(u) du}, attained
at the mechanism that solves problem (II), as otherwise the feasible set is empty. This
payoff is given by 7™M = A(1) exp(— fol % de).

It will be useful to derive the function x?T“i“ : [0, 1] — [0, 1] under which the buyer’s
payoff m(c) is equal to 7 if 7 > 0 and equal to 0 if # <0 for all ¢ € [0, 1]. This re-
quires that the buyer’s payoff is constant across ¢ € [0, 1] and therefore that x?ji“(c) =

Dexp[— [y % d¢] for some D € R (see Appendix A.2). The associated (constant) payoff
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is equal to max{7, 0} if xP(1)A(1) = max{#, 0}, i.e., if D = 250 exp( [} £L dr). We

ING)
thus have
min, ., max{, 0} Ly ()
Y O="K0 eXp(/c A1) dt)'

We can first show that the pointwise constraints (2) are satisfied only if x(c) > x‘%’i“(c)
for all ¢ € [0, 1]. First, if # < 0 so that x?r‘i“(c) =0 forall c € [0, 1], x(¢) > x?jin(c) must
be trivially satisfied. Second, if @ > 0 and x(c) < xglin(c) for some c € [0, 1], by an
analogous argument to that in Appendix A.2, there exists some ¢’ and some function

xc(u) = D exp[— f0” % d¢] with D, such that x.(c¢) = x(c¢) such that

1 1
x(c’)—f x(u)dufxc/(c’)—/ xe () du = xo (DA < xP(DHA(L) = 7,

thus violating (2).

Suppose now a solution to (III') exists (which we are going to show later) and let it
be denoted by x;. We can then demonstrate that for each c € [0, 1], either x7(c¢) =1 or
x7(c) = xBiN(¢). To see this, let C = {c € [0, 1] : x7(c) € (xT"(c), 1)} and consider the
function x : [0, 1] — [0, 1], defined by

where ¢ € (0, 1) is such that fol F(w)ydu = [01 x7(u)du. We can first verify that & satisfies
the pointwise constraints (2). For ¢ < ¢, where x(c) = 1, notice that the buyer’s payoff,
given by A(c) — fcl fw)du=A(c)—(6—c) — fél X0 () du, strictly increases in ¢, so that
the only relevant constraint is A(0) — f, X(u)du > 7. Since fol F(uw)du = f()l x7(u) du, this
constraint is indeed satisfied. For ¢ > ¢, constraints (2) are satisfied by construction.

Define next the functions X(o) = Jo £(u)du and X7z (c) = foix%(”) du, and consider
their difference X' (¢) — X#(c). Since x(c) > x7(c) for all ¢ < ¢, X(¢) — X7(c) is increas-
ing on [0, ¢], strictly so on the interior of c3 Similarly, since x(c) < x7(c) for all ¢ > ¢,
X(c) — X#(c) is decreasing on [¢, 1], again strictly on the interior of C. This together
with X (0) = X (0) and X (1) = X;(1) implies that X (¢) — X5 (c) > 0 forall ¢ € [0, 1] and
)A((c) — Xs(c)>0forallceintC.

Consider then the difference in the buyer’s expected payoff evaluated at F associated
to ¥ and x ;. After an integration by parts, we obtain

1 1
f H(c)x(c)dc —f H(c)xz(c)dce
0 0

A 1 A
= [H(©[X(©) - X+)]], —/O H'(0)[X(¢) = X5 (c)]de.

The first term on the right-hand side equals 0. Given H'(c) < 0 and )A((c) > X5(c)
for all ¢ € [0,1] and X (¢) > X5(c) for all ¢ € int C, the term fol H'(¢)(X(¢) — X#(c))dc

3Notice that w = X%(c) — x7(c) almost everywhere.
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is nonnegative, and hence f01 H(co)x(c)dce < f01 H(c)xz(c)dc, only if the set intC is
empty.

The previous argument, together with the monotonicity constraint on x; implies
that there exists a threshold ¢ such that x;(¢) =1 for all ¢ < ¢ and x5 (¢) = x‘};i“(c) for
all ¢ > ¢. Notice that, in principle, the function x 7 can take infinitely many values at ¢.
This is the only degree of flexibility, so setting x = 1 at ¢ is without loss of generality. The
threshold ¢ maximizes the buyer’s expected payoff evaluated at F,

é 1 .
/ H(c) dc—i—/ H(c)x3™(¢)de, 3)
0 ¢

subject to the pointwise constraints (2). Given the structure of x;, the only relevant of
those constraints is that for ¢ = 0, as argued above. The first derivative of (3) with respect
to ¢, given by H(¢)(1 — xg‘m(é)), shows that (3) is strictly increasing in ¢ on [0, ¢*] and
strictly decreasing in ¢ on [c*, 0]. The optimal mechanism is therefore characterized by
the maximal value of ¢ on [0, ¢*] such that the buyer’s payoff with type ¢ = 0, given by
A0y —¢— . 61 xrq-?in(u) du, is weakly greater than 7. If this condition is satisfied at ¢ = c*,
i.e., if

1 = 1./
A0) — ¢* — ) %(i,)w} exp(/ 253 dt) dc > 7, (4)

the optimal mechanism is characterized by the threshold c¢*. Otherwise the optimal
threshold is (uniquely) determined by the condition

1 = 1./
AO)y—¢— [ %(i’)w}exp(f %dt)dc:fr. (5)

Problem (IIT') is thus uniquely solved by the function

1 ifc<e,

x7(¢) = 1 max{0, 7} Ly (1) ar) ifes e
A eXp(/c A ) ne=e

(6)

where ¢ = ¢* if (4) is satisfied and ¢ is such that (5) holds otherwise.

A.4 Proof of Proposition 3.3

Since a solution of problem (III) must also be a solution of (III') for some 7 € [7min
7™M3X], to solve the problem (III), we can consider the simpler problem where the buyer
chooses from the collection of functions x as defined in (6) with 7 € [#™", 7MaX] The
buyer’s optimization problem can thus be written as

1 1
max(1 — s)/ H(c)xz(c)dc+ e ig&fﬂ{xﬁ(c)A(c) — / x7(u) du}. )]
X7 0 cell, c

Define IIp(7) = fol H(c)x:(c)dc and notice that inf.cp 1){x#(c)A(c) — fcl x7(uw)du} = 7.
Problem (7) is then analogous to the problem of maximizing Ilr + (1 — )7 subject to
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IIr =11p(7), where I1z(77) is the maximal expected payoff evaluated at F as a function
of the minimum payoff 7, analogous to a conventional utility-possibility frontier. The
optimal mechanism is then determined by the tangency points of the buyer’s indiffer-
ence curves of ¢llr + (1 — )7 and the possibility constraint I1z(7). The indifference
curves are straight lines with a slope equal to —=..

So as to derive the tangency points, it will be useful to distinguish the two cases
where 7™ is positive or negative. Suppose first 7™ > 0 and let 7 denote the value of 7
such that (4) is satisfied with equality. Below 7 the threshold ¢ is equal to ¢*, while above
7r the value of ¢ is determined by (5). Since this condition depends on 7, to analyze
I1r(7), we need to find the derivative of ¢ with respect to 7. Taking the total differential

of (5), we obtain
@ 't m/@ eXp(fc A(r))dc
= .

dm T/ (1)
- WCXP(/a A(D) dt)

With this, we have

! 1U/(t) e~ —min
o A0 ). exp( 20 dt)H(c) dc if e [#™", 7],
(7)) = 1 1 () (8)
— A — o = A —max
H(¢) A ) exp(/c A dt)(H(c) H(c))dc if 7 e (7, 7™,
0 if 7 e [#™0, 7],
Iy (7r) = . 1 ! 0 dé ... . _imex
-H (c)(1+m i exp( o) dt) dc)ﬁ if m e (7, #7].

It can be verified that the derivative of I (i) at 7 = 7 exists and that I1;(7) is strictly
negative and weakly decreasing in 7. The function I1r(7) is thus differentiable, strictly
decreasing, and weakly concave on its domain. More specifically, IIr(7) is linear on
[0, 7] and strictly concave on [7r, #™#]. This implies that there exists only one param-
eter point at which the buyer’s problem has multiple solutions, namely when ¢ is such
that — 2 = IT,.(7), 7 € [0, 7],

We can then derive the thresholds ¢ and €. The optimal mechanism is characterized
by 7 = 0if I1(0) < —1%;, while it is characterized by 7 = 7™ if [T (7M%) > — 2. We
—11,,(0) I !
I-11.(0) = T (7
values, wehave0 < g <z < 1.

Consider next the case 7™ < 0. Under this specification, # = #™". The threshold ¢
is therefore always determined by condition (5). For weakly negative values of 7, xz(c)
is a function with a single step at A(0) — ¢ and so [Ip(7) = fOA(O)_” H(c)dc for all # <0.
The first and second derivatives of Iz () in this case are

thus have ¢ = andz Since IT}(0) and I, (7™?) take finite, nonzero

Mp(7)=-H(A0) —7) <0 and Ij(7)=H'(A0)—7) <0.

On [#™", 0], [1r(7) is thus strictly decreasing and strictly concave. The properties of
I1z(7) for = > 0 have been described above. At 7 = 0, the function I1z(7) has a corner.
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To see this, notice that H/F(f)(O) =—H(A(0)) and

, I Ly ()
0 = ~H(O) — 5 A(())exp( / o dt> (H(AO)) = H(e)) de
>0

< —H(A(0)).

Since IT}, )(O) > IT/ F( +)(O), the derivative function of 1y () is strictly decreasing in 7.
The functlon I1r(7) is thus strictly concave and the solution of the buyer’s optimization
problem is consequently unique.

Again we can derive the thresholds ¢ and . Given that H%(irmi“) =—H(c*) =0, the

condition H;(ﬁ-min) > —12= can only be satisfied when & = 0. We thus have & =0 and,
! max
equivalently to the previous case, € = % 1.

A.5 Proof of Proposition 3.4

For the specification A(c) = 6, § < 1, and F(c) = ¢, we have H(c) = § — ¢ and hence
¢* = 8. As can be verified, this implies 7™" = 7 = 0. Thus, the threshold ¢ is determined
by Condltlon (5). Under the stated assumptions, this condition simplifies to 7 = (§ —

¢)e” 7 . We then obtain

1 ifc<e,
xz(c)=191_ . 1—c¢ feo
Bwep 5 >
and thus
11 1- .o 1-¢
p(7)= H(c)dc—i—/ EWCXP H(c)dc r(m)=1—38exp 5 )

cl A _ N _ T
with ¢ such that 7 = (6 — ¢)e™ 5 forall 7 € [#™1, FMax],
—TT,:(0) _ I, (7max
1= 1-[, 0) and W NOthlng that ac-
cordingto (5),(=6atrm=0andc=0at 7= 7Tmax we have

EZITEO TS ) P TSP TS )

I 1 . . _. .
With 7™M = §¢~ 5, the optimal mechanism for £ < ¢ and ¢ > ¢ is then, respectively, char-
acterized by

We can then derive the thresholds £ =

o= |t M= o= [0, 1]
x*(c) = x*(c)=e"5, cel0,1].
0 ifc>9o

Finally, we consider the case ¢ € (g, ). Here the optimal mechanism is characterized
by the condition —II}(7) = 1Z;; that s,

1_¢
—1+56Xp<Tc> = 1i8.
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Solving for ¢ yields ¢ = 1 4 6In(8(1 — ¢)). Recalling that 7 = (6 — 6)6*%6, the optimal
mechanism is characterized by

1 ifc<e,

* ~
X()=16-¢ et . .
5 e” s ifec>¢,

where ¢ =1+ 61In(8(1 — &)).

A.6 Proofof Proposition 4.2

Under constant absolute ambiguity aversion, we have ®(x) = —%e—” (see Klibanoff
et al. 2005).

Suppose first that E,[o] > ¢ holds. Note that E,E;[7,] increases in « and that
Var,[Eq[m]] > 0 for all « < oMEV. This implies that the expected utility distribution
induced by any « < o™tV is second-order stochastically dominated by the (degenerate)
distribution induced by oMEU Since @ is strictly concave, this implies a* € [«MEU 1.

Letting I1,(a) = ca(vy — cp) + (1 — o) (v — acp, — (1 — a)¢y), the optimal value of o*
is characterized by

E.[exp(—yIg () (0 — )] =0 9
if the solution is interior (otherwise a marginal change in y has no effect). Taking the

total differential yields

da*  Eu[exp(—ylly(a*)) (0 — &)y (a*)]

dy yEu[exp(—yI1, (")) (0 — 5)%]

bl

‘%F < 0 if the numerator is weakly positive on the interval [«MEY, 1]. Suppose not. Then

EM[eXp(—'yH(,(a*))((} - O')H(,-(Ot*) |o < 5’]
> Ey[exp(—yHg(a*)) (o0 — )y (") | o> ]

But

@3]
=
)
o
0
\{
=
q
—_
IS
*
SN—
SN—
Qe
|
3
=
q
—_
8]
*
SN
o]
IA
Qe

which follows from (9) and the fact that m#y) > 0 Va € [aMEVU | 1]—a contradiction.
Hence, ‘% <0.

The proof for the case E,[c] < ¢ is analogous, where the above inequalities are re-
versed. Just note that second-order stochastic dominance implies o* € [0, aMEU] and
that % <0Va e [0, eMEU],
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APPENDIX B: FULL CHARACTERIZATION OF THE OPTIMAL MECHANISM

PROPOSITION B.1. Assume H'(c) <0 and v'(c) > 0 for all ¢ € [0, 1]. If #™™ > 0, the so-
lution of problem (I1l) is generically unique and the optimal mechanism is characterized

by

e 7=0andc=c*ife<eg,

e 7€ [0, 7] and ¢ = c* if e = &, where 7 is such that

. . [P 0)
7=A0)—-c —/C* mexp(/c NG dt)dc,

e 7 and ¢ such that

P . 1 ! Ly'(t) .
:_H(cﬂ—m i exp(/c A(t))(H(c)—H(c))dc,

1 - 1./
7‘T=A(O)—é—/é ﬁexp( j %dt)dc
ifee(e®),
e T=m"Fgndc=0ife>7¢,
where ¢ and €, respectively, are defined by

£ 1 1 1 'U/(t)
- A /e eXp(/c A(D) dt)H(c)dc’

G I L/()
1—E_H(O)+W ; exp(fc A(t)>(H(0)_H(C))dC'

Proor. The derivative function of I1g(7) is as derived in (8). The threshold ¢ is such
that the slope of the indifference curve coincides with the derivative of the possibility
frontier at 7 € [#™" 7]:

e _ 1 ! AQ)
—1_§_m/6* exp(/c A dt)H(c)dc.

For all £ < g, we then have ¢ = ¢* and 7 = 0.

The threshold g is such that the slope of the indifference curve coincides with the
derivative of the possibility frontier at 7 = 7™, At 7 = #™&, condition (5) yields ¢ = 0.
Given this, the threshold z is characterized by

z 1 ! Ly
——1_§=—H(0)—m/[; exp(/c A([))(H(O)—H(c))dc.

For ¢ > €, we therefore have ¢ = 0 and 7 = 7™M,
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Finally, if ¢ € (¢, €), the optimal value of 7 is pinned down by the tangency point
between the indifference curve and the possibility frontier on its strictly concave part,

e ) 1 1 L/ (1) .
= He - g [ew( [ 5 e - o

where ¢ is determined by (5). O

ProprosiTiON B.2. Assume H'(c¢) <0 andv'(c) > 0 forall c € [0, 1]. Ifa'-rmin <0, the solu-
tion of problem (IIl) is unique and the optimal mechanism is characterized by

o 7=A(0)— ¢ with¢suchthat H(C) = 1% ife < &,
e T=0andc=A0)ifec[e, "],

e m and ¢ such that

o 1ot L'(1) \
1—8_H(C)+m ) exp(/c A(t))(H(c)—H(c))dc,

B} . (P 7 0!
77-=A(())—c—/8 mexp(/c A(t)dt>dc

e T=7"Fandc=0ife>7¢,

ifee(e,?),

where &, £, and &, respectively, are defined by

/

&
1_5=H@m»

8// 1 1 1 v/(t)

z 1 ! Ly ()
1—E_H(O)+m ; exp(/c A(t))(H(O)—H(c))dc.

ProOE. As argued above, when #min - the derivative of ITz(7) at 7 is equal to 0,
implying that 77 = #™" is optimal if and only if ¢ = 0. We also noted that I1x(4) has
a corner at 7 = 0. The threshold &’ is the value of ¢ at which the slope of the indifference
curve is equal to the left derivative of IIz(7) at = = 0. Recalling that for 7= < 0, we have

Il (7) = —H(A(0) — ), & is characterized by

/

=—H(A(0)).
1-¢ ( ( ))
For all ¢ < &/, the optimal mechanism is then characterized by the tangency point
£ = —H(A(0) — 7), while ¢ is such that the buyer’s payoff at ¢ = 0 is equal to 7, i.e.,

AS(O) — .

[l =

¢
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Next, ¢” is the value of ¢ such that the slope of the indifference curve is equal to the
right derivative of [I(7) at = = 0. Noting that at 7 = 0, condition (5) yields ¢ = A(0); &”
is defined by

&

__& =—H(A(0)) — b 1 exp(/1 vl(t))(H(A(O)) — H(c))dc
1-¢" A1) Jaw) ¢ A
Forall € € [¢/, £'], we then have 7 =0 and ¢ = A(0).

Finally, for ¢ > &”, the characterization of the optimal mechanism is analogous to
the mechanism in Proposition B.1 when ¢ > &. O
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