
Theoretical Economics 13 (2018), 239–271 1555-7561/20180239

Payoff equivalence of efficient mechanisms
in large matching markets
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We study Pareto efficient mechanisms in matching markets when the number of
agents is large and individual preferences are randomly drawn from a class of
distributions, allowing for both common and idiosyncratic shocks. We provide
a broad set of circumstances under which, as the market grows large, all Pareto
efficient mechanisms—including top trading cycles (with an arbitrary ownership
structure), serial dictatorship (with an arbitrary serial order), and their random-
ized variants—produce a distribution of agent utilities that in the limit coincides
with the utilitarian upper bound. This implies that Pareto efficient mechanisms
are uniformly asymptotically payoff equivalent “up to the renaming of agents.”
Hence, when the conditions of our model are met, policy makers need not dis-
criminate among Pareto efficient mechanisms based on the aggregate payoff dis-
tribution of participants.
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1. Introduction

Assigning indivisible resources without monetary transfers is an important problem in
modern market design; applications range from the allocation of public housing, public
school seats, employment contracts, and branch postings to the assignment of human
organs to transplant patients. A basic desideratum in designing such a market is Pareto
efficiency. If a mechanism is not Pareto efficient, a surplus can be generated and dis-
tributed in a way that benefits (at least weakly) all participants, suggesting clear room
for improvement.
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In a centralized matching market, achieving Pareto efficiency is often not difficult.
A number of mechanisms are known to produce efficiency, often satisfying additional
desirable properties in terms of incentives and (ex ante) fairness.1 Rather, the challenge
is often which mechanism to choose from among many Pareto efficient mechanisms.

This issue is important because alternative Pareto efficient mechanisms often treat
individual participants differently (often dramatically so). For instance, in serial dic-
tatorship, individuals are allowed to choose objects, one at a time, according to some
serial order; the first dictator (the first individual in the serial order) could very well se-
lect the object that is regarded by everyone as the best, while the last dictator (the final
individual in the order) may have to settle for the object regarded by everyone as the
worst. Without monetary transfers to compensate for the loss borne by the latter, the
apparent conflict of interests leaves little hope for consensus in terms of selecting from
alternative Pareto efficient mechanisms. Ideally, the selection must be based on some
measure of aggregate welfare of participants. For instance, if one Pareto efficient mech-
anism yields a significantly higher utilitarian welfare level or a much more equal payoff
distribution than others, that would constitute an important rationale for favoring such
a mechanism.

A similar concern arises when the designer has additional policy considerations,
such as “affirmative treatment” of some target group (say, identified based on their so-
cioeconomic background). Specifically, the designer may select an efficient mechanism
based on such additional goals (for instance, by elevating the target agents’ serial orders
in a serial dictatorship). Any such adjustment obviously impacts the welfare of the par-
ticipants at the individual level, but do these adjustment impact the total welfare of the
agents or their aggregate payoff distribution? If so, how? If accommodating additional
social objectives were to entail a significant loss of utilitarian welfare or to produce a
significant distributive impact, this would call into question the merit of the policy in-
tervention. This type of policy consideration requires one to evaluate the payoff conse-
quences of alternative Pareto efficient mechanisms. Unfortunately, little is known about
how alternative mechanisms perform in this regard.

The purpose of the current paper is to fill this gap while providing useful insights
on practical market design in the process. To make progress, we add some structure to
the model. First, we consider markets that are “large” in terms of the number of par-
ticipants as well as in the number of object types. Large markets are clearly relevant in
many settings. For instance, in the US National Resident Matching Program, approx-
imately 20,000 medical applicants participate in filling the positions of 3000–4000 pro-
grams each year. In New York City, approximately 90,000 students apply to over 700 high
school programs each year. Second, we assume that the agents’ preferences are ran-
domly generated according to some reasonable distribution. Specifically, we consider a

1Mechanisms such as (deterministic or random) serial dictatorship produce efficiency without regard
for existing property rights; top trading cycles mechanisms achieve efficiency by allowing agents to trade
preexisting property rights or priorities (Shapley and Scarf 1974, Abdulkadiroğlu and Sönmez 2003). These
mechanisms satisfy strategy-proofness and can satisfy ex ante “equal treatment of equals” when the serial
order and initial ownership are drawn at random. Efficiency may also be achieved by allowing agents to
purchase the objects using “fake money” in an artificial market, as envisioned by Hylland and Zeckhauser
(1979).
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model in which each agent’s utility from an object depends on a common component
(i.e., a portion that does not vary across agents) and on an idiosyncratic component that
is drawn at random independently (and thus varies across agents). Studying the limit
properties of a large market with preferences randomly generated in this way provides a
framework for answering our questions.

Our main finding is that all Pareto efficient mechanisms yield aggregate payoffs, or
utilitarian welfare, that converge uniformly to the same limit—more precisely, the utili-
tarian optimum—as the economy grows large (in the sense described above). This result
implies that in large economies, alternative efficient mechanisms become virtually in-
distinguishable in terms of the aggregate payoff distribution of the participants. In other
words, agents’ payoffs are asymptotically equivalent across different efficient mecha-
nisms, up to the “renaming” of agents. This result implies that there is no reason to
favor one efficient mechanism over another. From a policy perspective, this means that
a Pareto efficient allocation favoring or prioritizing a certain group of individuals does
not significantly harm utilitarian welfare or significantly alter the distribution of payoffs
in a large market.

Importantly, our equivalence holds in terms of the distribution of ordinal ranks en-
joyed by the participants, making the result robust to the particular specification of car-
dinal utilities assumed. The result is also robust to the institutional details (e.g., the
property rights and priorities enjoyed by some agents), which makes the result readily
applicable to many practical market design problems. Finally, we consider a real-world
school choice environment to test the applicability of our results to realistic market set-
tings. While such environments are two-sided, the literature often focuses on one-sided
ex post efficient mechanisms (as we do in this paper) where only students are welfare-
relevant entities. In addition, several cities actually use such mechanisms to assign stu-
dents to schools.2 Hence, we compare alternative efficient mechanisms using field data
(as well as simulated data) from the New York City school choice program. As we see,
the comparison supports our equivalence result.

The present paper contributes to several strands of literature. First, our equivalence
result is closely related to, and complements, the equivalence result among a class of
efficient mechanisms established by Abdulkadiroğlu and Sönmez (1998) and its exten-
sions (Pathak and Sethuraman 2011, Carroll 2014, Lee and Sethuraman 2011, and Bade
2016). As we discuss in detail, this equivalence result holds only in the absence of prior
ownership or priority rights, i.e., when participants are treated ex ante symmetrically via
fair lotteries. By contrast, our equivalence result holds across arbitrary priority or own-
ership structures, as long as the market is sufficiently large. This generality makes our
equivalence result applicable to many real-world settings where there are often prior-
ity considerations for participants (as is the case with the New York City school choice
program).

Second, our result contributes to the literature on large matching markets,
particularly those with a large number of object types and random preferences; see

2San Francisco and New Orleans use (or have used) the top trading cycles mechanism to assign students
to schools. Random serial dictatorship, a Pareto efficient mechanism, was used in NYC high school choice
program for students who were unassigned after the main round (where DA is used).
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Immorlica and Mahdian (2005), Kojima and Pathak (2009), Lee (2017), Knuth (1997),
Pittel (1989), Lee and Yariv (2017), Ashlagi et al. (2017), and Che and Tercieux
(2015a).3 The first three papers are largely concerned with the incentive issues arising
from the deferred acceptance (henceforth, DA) mechanisms of Gale and Lloyd (1962).
The last five papers are concerned with the ranks of the partners achieved by agents
on two sides of a market under DA. We focus on the payoffs enjoyed by agents under
efficient mechanisms. In a preference environment closer to ours, Lee and Yariv (2017)
show that stable mechanisms also yield the utilitarian upper bound in a large market
limit. As we show below via simulation and data analysis, efficient mechanisms tend to
converge much faster than do stable mechanisms, and the magnitude of the difference
can be considerable for realistic market sizes. Further, our convergence result is robust,
holding even for unbalanced markets, whereas their result is not, as implied by Ashlagi
et al. (2017). Most importantly, the uniform equivalence of efficient mechanisms (pos-
sibly employing different priority structures) established in the current paper is quite
striking and has no analogues in the existing literature.

Methodologically, the current paper utilizes a framework developed in random
graph theory; see Dawande et al. (2001), for instance. In particular, the proof method
is similar to the way Lee (2017) exploits the implications of the stability of agents on two
sides in a suitably defined random graph; as will become clear, our method exploits the
implications of Pareto efficiency for an appropriately constructed random graph.

The rest of the paper is organized as follows. Secion 2 introduces the model. Sec-
tion 3 presents our main theorem. Section 4 sketches the proof. The implications of our
result are discussed in Section 5. Section 6 presents evidence based on the NYC school
choice data.

2. Setup

We consider a model in which a finite set of agents are assigned a finite set of objects, at
most one object for each agent. Because our analysis examines the limit of a sequence
of finite economies, it is convenient to index the economy by its size n. An n-economy
En = (In�On) consists of agents In and object types On, where |In| = n. For much of the
analysis, we suppress the superscript n for notational simplicity.

The object types can be interpreted as schools or housing units. Each object type
o has qo ≥ 1 copies or quotas. Because our model allows for qo = 1 for all o ∈ On,

3Another strand of literature studying large matching markets considers a large number of agents
matched with a finite number of object types (or firms/schools) on the other side; see Abdulkadiroğlu et al.
(2015b), Che and Kojima (2010), Kojima and Manea (2010), Azevedo and Leshno (2016), and Che et al.
(2015), among others. The assumption of a finite number of object types enables one to use a continuum
economy as a limit benchmark in these models. At the same time, this feature makes the analysis and the
resulting insights quite different. The two strands of large matching market models capture issues that are
relevant in different real-world settings and are thus complementary. The latter model is more appropriate
for situations in which there are a relatively small number of institutions, each with a large number of posi-
tions to fill. School choice in some districts, such as Boston Public Schools, could be a suitable application
because only a handful of schools enroll hundreds of students each. The former model is descriptive of set-
tings in which there are numerous participants on both sides of the market. Medical matching and school
choice in some districts, such as the New York Public Schools, would fit this description.
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one-to-one matching is a special case of our model. We assume that total quantity is
Qn = ∑

o∈On qo = n. In addition, we assume that the number of copies of each object
is uniformly bounded, i.e., there is q̄ ≥ 1 such that qo ≤ q̄ for all o ∈ On and all n. The
assumption that Qn = n is made only for convenience: as long as it grows at order n,
our results hold. In particular, as will become clear, our argument holds even in cases
in which the market is unbalanced. Similarly, the assumption that the number of copies
of each object is uniformly bounded is not necessary as long as it grows at a sufficiently
low rate.4

Throughout, we consider a general class of random preferences that allow for a pos-
itive correlation among agents’ preferences on the objects. Specifically, each agent i ∈ In

receives the utility from obtaining object type o ∈On,

Ui(o) = U(uo�ξi�o)�

where uo is a common value, and the idiosyncratic shock ξi�o is a random variable drawn
independently and identically from [0�1] according to a uniform distribution.5

We further assume that the function U(·� ·) takes values in R+, is strictly increasing,
and is continuous in both arguments. The utility of remaining unmatched is assumed to
be 0 so that all agents find all objects acceptable.6 The symmetry of U(·� ·) can be seen as
a normalization in the scaling of individual utilities, which also implies that the highest
possible utility and the lowest possible utility are identical across all agents. The symme-
try assumption serves to discipline interpersonal comparison of utilities. Further, as we
discuss in Section 5, our core findings are robust to the rescaling of individual utilities.
We assume that the agents’ common value for object type o ∈ O, uo takes an arbitrary
value in [0�1] in an n-economy, and its population distribution is given by a cumulative
distribution function (CDF),

Xn(u) =

∑
o∈On:uo≤u

qo

n
�

which denotes the fraction of the objects whose common value is less than or equal to u,
and by another CDF,

Yn(u) =
∣∣{o ∈On | uo ≤ u

}∣∣
n

�

which describes the fraction of the object types whose common value is no greater
than u. Because qo ≥ 1 for each o ∈O, it follows that Xn(·) ≥ Yn(·).

4As is clear from footnote 38, we can allow q̄ = O(n/ log(n)).
5This assumption entails no loss of generality as long as the distribution of idiosyncratic shocks is

atomless. Suppose for instance, ξio is stochastically dependent on uo, given by a distribution function
F(ξio|uo). One can define a new idiosyncratic shock εio = F(ξio|uo), and redefine a utility function to be
ũ(uo� εio) = u(uo�F

−1(εio|uo)). Observe that εio is now independent of uo. This change of variables works
if F is atomless (in fact, even if ξio is unbounded as long as u is bounded). Now, if we also require that for
any ε > 0, info Pr{ξio > 1 − ε} does not vanish as n grows, our argument goes through (assuming F−1 does
not fall too fast in u0 to ensure ũ is strictly increasing in uo).

6This feature does not play a crucial role in our result, which holds as long as a linear fraction of objects
is acceptable to all agents.
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We assume that these CDFs converge to well defined limits, X and Y , in the Lévy
metric. To be precise, for any two distributions F and G, consider their distance mea-
sured in the Lévy metric:

L(F�G) := inf
{
δ > 0 | F(z − δ)− δ≤G(z) ≤ F(z + δ)+ δ�∀z ∈R+

}
�

According to this measure, any two distributions are regarded as being close to each
other as long as they are uniformly close at all points of continuity.7 It follows that
the limit distributions X and Y are nondecreasing and satisfy X(0) = 0, X(1) = 1, and
X(·) − Y(·) ≥ 0. We assume that X has (at most) finite jumps. We allow X and Y to be
fairly general, allowing for atoms.

Several special cases of this model are of interest. The first is a finite-tier model.
In this model, the object types are partitioned into finite tiers, {On

1 � � � � �O
n
K}, where⋃

k∈K On
k = On and On

k ∩ On
j = ∅. (With a slight abuse of notation, the largest cardi-

nality K also denotes the set of indexes.) In this model, the CDFs Xn and Yn are step
functions with finite steps. This model offers a good approximation of situations in
which the objects have clear tiers, such as schools classified into different categories
or regions, or houses existing in clearly distinguishable tiers. A further special case is
when K = 1, in which the support of the common value is degenerate and agents’ or-
dinal preferences are drawn independently and identically distributed (i.i.d.) uniformly.
Knuth (1997), Pittel (1989), and Ashlagi et al. (2017) employ such a model.

Another special case is the full-support model in which the limit distribution Y is
strictly increasing in its support. This model is very similar to Lee (2017) and Lee and
Yariv (2017), who also consider random preferences that consist of common and id-
iosyncratic terms. One difference is that their framework assumes that the common
component of the payoff is also drawn randomly from a positive interval. Our model
assumes common values to be arbitrary, but they can be interpreted as realizations of
random draws (drawn according to the CDF Y ). Viewed in this way, the full-support
model is comparable to Lee’s (2017), except that the current model also allows for atoms
in the distribution of Y .

Unless otherwise specified, we are referring to a general model that nests these two
as special cases. Fix an n-economy. We consider a class of matching mechanisms that
are Pareto efficient. A matching μ in an n-economy is a mapping μ : I → O ∪ {∅} such
that |μ−1(o)| ≤ qo for all o ∈ O, with the interpretation that agent i with μ(i) = ∅ is un-
matched. Let M denote the set of all matchings. All these objects depend on n, although
their dependence is suppressed for notational simplicity.

In practice, the matching chosen by the designer depends on the realized prefer-
ences of the agents as well as on other features of the economy. For instance, if the
objects O are institutions or individuals, their preferences over their matching partners
typically influences the chosen matching. Alternatively, one may wish the matching to
respect the existing rights that individuals may have over the objects; for instance, if the
objects are housing, some units may be occupied by existing tenants who have priority
over these units. Likewise, a school choice matching may favor students whose siblings

7Here, convergence of CDFs in the Lévy metric is equivalent to weak convergence.
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already attend the school or those living nearby. Some of these factors may depend on
the features not captured by their idiosyncratic component. Our model is completely
general in this regard.

Specifically, we collect all assignment-relevant variables, call its generic realization
a state, and denote it by ω = ({ξi�o}i∈I�o∈O�θ), where {ξi�o}i∈I�o∈O is the realized profile
of the idiosyncratic component of payoffs, and θ is the realization of all other variables
(e.g., agents’ priorities, tie-breaking rules, etc.) that influence the matching, and we let
	 denote the set of all possible states. We make no assumption on how θ is drawn and
how its realized value affects the outcome. The generality on the θ contrasts the current
model with the others, many of which tend to impose a particular random structure
on the agents’ priorities (or objects’ preferences). For instance, Ashlagi et al. (2017) as-
sume that these priorities are drawn i.i.d. uniformly, and Lee (2017) and Lee and Yariv
(2017) assume that they consist of random common shocks with full support and i.i.d.
idiosyncratic shocks. Our results do not require any such assumptions.

A matching mechanism is a function that maps a state in 	 to a matching in M . With
a slight abuse of notation, we use μ = {μω(i)}ω∈	�i∈I to denote a matching mechanism,
which selects a matching μω(·) in state ω. Let M denote the set of all matching mecha-
nisms. For convenience, we often suppress the dependence of the matching mechanism
on ω.

A matching μ ∈ M is Pareto efficient if there is no other matching μ′ ∈ M such that
Ui(μ

′(i)) ≥ Ui(μ(i)) for all i ∈ I and Ui(μ
′(i)) > Ui(μ(i)) for some i ∈ I. A matching

mechanism μ ∈ M is Pareto efficient if, for each state ω ∈ 	, the matching it induces,
i.e., μω(·), is Pareto efficient. Let M∗

n denote the set of all Pareto efficient mechanisms
in the n-economy.8

3. Payoff equivalence of Pareto efficient mechanisms

We first define an upper bound for the utilitarian welfare—the highest possible level of
total surplus that can be realized under any matching mechanism. To this end, suppose
that every agent is assigned an object and realizes the highest possible idiosyncratic pay-
off. Because the common values of the objects are distributed according to Xn, the re-
sulting (normalized) utilitarian welfare is

∫ 1
0 U(u�1)dXn(u). This obviously yields the

upper bound for the utilitarian welfare in the n-economy. We consider its limit, the limit
utilitarian upper bound:

U∗ :=
∫ 1

0
U(u�1)dX(u)�

The payoff distribution of an economy, whether a finite n-economy or its limit,
can be represented by a distribution function, i.e., a nondecreasing right-continuous

8While Pareto efficiency is a property of a matching (i.e., for a given profile of preferences), our result
pertains to a property of Pareto efficiency that holds probabilistically across realized profiles of preferences.
This requires us to focus on a Pareto efficient “mechanism” that selects a Pareto efficient matching for each
profile of preferences. Equivalently, a Pareto efficient mechanism induces a random matching if we were
to think of the matching induced by an efficient mechanism as a random variable. Our results can be
interpreted either way.
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function F mapping from [0�U(1�1)] to [0�1]. The quantity F(z) is interpreted as the
fraction of agents who realize payoffs no greater than z. We let Fμ denote the payoff
distribution induced by mechanism μ. In particular, let

F∗(v) := X
(
U−1(v;1)

)

denote the distribution of payoffs attaining the utilitarian upper bound U∗, i.e., when
each agent achieves the idiosyncratic value of 1. We are now in a position to state our
main theorem.

Theorem 1. Recall that M∗
n is the set of Pareto efficient mechanisms in the n-economy.

Then

sup
μn∈M∗

n

L
(
Fμn

�F∗) p−→ 0�9

In words, the theorem states that the distance (in the Lévy metric) between a payoff
distribution resulting from every Pareto efficient mechanism and that of the utilitarian
upper bound vanishes uniformly in probability as n → ∞. More precisely, assuming the
distribution F∗ is continuous, the statement is as follows. Fix any ε�δ > 0. Then, with
a probability of at least 1 − δ, the proportion of agents enjoying any payoff u or higher
under any Pareto efficient mechanism is within ε of the proportion of agents enjoying
a payoff of u or higher under the utilitarian upper bound for sufficiently large n. It is
remarkable that the rate of convergence is “uniform” with respect to the entire class of
Pareto efficient mechanisms.

The following corollary is immediate.

Corollary 1. We have

inf
μn∈M∗

n

∑
i∈I

Ui

(
μn(i)

)

|I|
p−→U∗�10

The theorem also implies that alternative Pareto efficient mechanisms become pay-
off equivalent uniformly as the market grows in size, that is, “up to the renaming of the
agents”:

Corollary 2. We have

sup
μn�μ̃n∈M∗

n

L
(
Fμn

�Fμ̃n) p−→ 0�

9We say Zn
p−→ z, or Zn converges in probability to z, where both Zn and z are real-valued random vari-

ables, if for any ε > 0, δ > 0, there exists N ∈N such that for all n >N , we have

Pr
{|Zn − z|> ε

}
< δ�

10For a given matching, the value of the normalized sum of payoffs only depends on the CDF induced
by the matching. The corollary can be generalized to any social welfare function that only depends on the
induced CDF and is continuous with respect to the Lévy metric.
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These results suggest that as long as agents are ex ante symmetric in their prefer-
ences, there is little ground to favor one Pareto efficient mechanism over another in
terms of the total welfare of participants or aggregate payoff distribution, at least in a
large economy.11 This has important implications for market design. As we already
noted, designers often face extra constraints arising from the existing rights or priori-
ties of some participants over some objects, or there may be a need to treat some target
group of participants affirmatively. In addition, there is a concern that accommodating
such constraints or needs may sacrifice utilitarian welfare or adversely impact the ag-
gregate distribution of payoffs. Our result implies that accommodating such constraints
does not entail any significant loss in these terms in a large economy, as long as Pareto
efficiency is maintained.

Remark 1 (Approximate ex ante efficiency). Recall that our formalism allows for “prob-
abilistic” mechanisms to the extent that “state” ω may include random variables (e.g.,
lotteries). Any such mechanism is Pareto efficient according to our definition as long as
its realized outcome is ex post Pareto efficient. The fact that all such mechanisms attain
the utilitarian upper bound in the limit economy implies that all such mechanisms are
also ex ante Pareto efficient in an asymptotic sense: as the market grows large, the pro-
portion of agents whose ex ante welfare can be improved upon by more than ε > 0 from
any ex ante Pareto dominating reallocation (if it ever exists) vanishes in probability for
any ε > 0.12

4. Sketch of the proof

Here, we sketch the proof of Theorem 1, which is contained in Appendix A. For our
current purposes, assume X(·) is degenerate with a single common value u0 and that
X(·) = Y(·). In other words, the agents have only idiosyncratic payoffs and the matching
is one-to-one. As we see in Appendix A, the same proof argument works for the general
case (with some care).

To begin, fix an arbitrary Pareto efficient mechanism μ̃. We first invoke the fact that
any Pareto efficient matching can be implemented by a serial dictatorship (SD)13 with a
suitably chosen serial order (see Abdulkadiroğlu and Sönmez 1998). Let f̃ be the serial
order, namely, a function that maps each agent in I to his serial order in {1� � � � � n} that

11Our methodology for proving equivalence rests on Pareto efficient mechanisms attaining the utilitarian
upper bound in the large market. At the same time, the two results are logically separate, so outside our
domain, one may occur without the other. To what extent our equivalence result generalizes beyond our
domain remains an open question.

12This notion is similar to asymptotic efficiency defined by Che and Tercieux (2015a) (although it is an ex
post notion). An ordinal notion weaker than ex ante Pareto efficiency is ordinal efficiency (see Bogomolnaia
and Moulin 2001); a similar approximate efficiency holds with that notion as well. Liu and Pycia (2016)
obtain a similar result using ordinal efficiency but with a different large market asymptotic. We further
discuss the relationship to this paper in Section 5.

13A serial dictatorship mechanism specifies an order over individuals and then lets the first individual—
according to the specified ordering—receive his favorite object; the next individual receives his favorite
item of the remaining objects, etc.
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implements μ̃ under a serial dictatorship. Because μ̃ induces a Pareto efficient matching
that depends on the state, the required serial order f̃ is random.

Next, for arbitrarily small ε�δ > 0, define the random set

Ī := {
i ∈ I | Ui

(
μ̃(i)

) ≤U
(
u0�1 − ε

)
and f̃ (i) ≤ (1 − δ)n

}
�

The set Ī consists of agents who are within the 1 − δ top percentile in terms of their
serial order f̃ but fail to achieve payoff ε-close to the highest possible payoff.14 Because
ε�δ > 0 are arbitrary, for the proof, it suffices to show that

|Ī|
n

p−→ 0�

To prove this, we exploit a result in random graph theory. It is thus worth introducing
the relevant random graph model. A bipartite graph G consists of vertices V1 ∪ V2 and
edges E ⊂ V1 × V2 across V1 and V2 (with no possible edges within vertices in each side).
An independent set is V̄1 × V̄2, where V̄1 ⊆ V1 and V̄2 ⊆ V2 for which no element in V̄1 ×
V̄2 is an edge of G. A random bipartite graph B = (V1 ∪ V2�p), p ∈ (0�1), is a bipartite
graph with vertices V1 ∪ V2 in which each pair (v1� v2) ∈ V1 × V2 is linked by an edge with
probability p (independently of edges created for all other pairs). The following result
provides the crucial step for our result.15

Lemma 1 (Dawande et al. 2001). Consider a random bipartite graph B = (V1 ∪ V2�p),
where 0 <p< 1 is a constant, and for each i ∈ {1�2}, |V1| = n, and |V2| = m = O(n). There
is κ > 0 such that

Pr
[∃ an independent set V̄1 × V̄2 with min

{|V̄1|� |V̄2|
} ≥ κ ln(n)

] → 0 as n → ∞�

This result implies that with probability converging to 1, for every independent set, at
least one side of that set vanishes in relative size as n → ∞.

To prove our result, it therefore suffices to show that Ī forms a vanishing side of an
independent set in an appropriately defined random graph. Consider a random bipar-
tite graph consisting of I on one side and O on the other side where an edge is created
between i ∈ I and o ∈ O if and only if ξi�o > 1 − ε. Let

Ō := {
o ∈O | f̃ (

μ̃(o)
) ≥ (1 − δ)n

}

be the (random) set of objects that are assigned to the agents who are at the bottom δ

percentile in terms of the serial order f̃ . See Figure 1 for a graphical representation of the
construction, where the set I is ordered according to (a realization of) the serial order.

We first observe that the (random) subgraph Ī × Ō is an independent set. To see this,
suppose to the contrary: there is an edge between an agent i ∈ Ī and an object o ∈ Ō in

14Strictly speaking, we should focus on individuals receiving payoffs lower than U(u0�1) − ε. However,
given that the utility functions are continuous, there is little loss in focusing our attention on agents receiv-
ing less than U(u0�1 − ε). This point is made clear in the proof.

15The original statement by Dawande et al. (2001) assumes that |V1| = |V2| = n. It is easily verified that
their arguments also apply under our more general assumptions.
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ξio > 1 − ε

δn

I O

Ī

Ō
i

o

Figure 1. Illustration of a random graph and sets Ī and Ō.

some state ω (as illustrated in Figure 1). By construction of Ī, agent i ∈ Ī must realize
less than 1 − ε of idiosyncratic payoff from μ̃ω(i). However, the fact that there is an edge
between i and o means that i would gain more than 1 − ε in an idiosyncratic payoff
from o. Thus, agent i must prefer o to his match μ̃ω(i). However, the fact that o ∈ Ō

means that o is not yet claimed and is thus available when agent i (who is within the
top 1 − δ of serial order f̃ω) picks μ̃ω(i). This is a contradiction, proving that Ī × Ō is an
independent set.

Next we observe that |Ō| ≥ δn, meaning that Ō never vanishes in probability.
Lemma 1 then implies that set Ī/n must vanish in probability. Importantly, this result
applies uniformly to all mechanisms in M∗: If we define the sets Ī(μ̃) and Ō(μ̃) for each
μ̃ ∈ M∗ as above, for each μ̃ ∈ M∗, Ī(μ̃) × Ō(μ̃) forms an independent set of the same
random graph. This explains the uniform convergence.

Remark 2. If the mechanism μ̃ were a serial dictatorship with a “deterministic” serial
order f , a simple direct argument would prove the result. First, let us note that we can
think of each agent as drawing his preferences “along the algorithm,” i.e., he draws his
preferences for the stage when it is his turn to make a choice. Obviously, the distribution
of i’s preferences is not affected by the choices of agents ahead of that agent in the serial
order. Fix any arbitrary ε�δ > 0 and let Ei be the event that at agent i’s turn to make a
choice, there remains at least one object o such that Ui(o) ≥U(u0�1−ε). Then all agents
except those in the bottom δ-percentile serial orders enjoy idiosyncratic payoffs ε-close
to the upper bound with probability:

Pr
{
Ui

(
μ̃(i)

) ≥U
(
u0�1 − ε

)
for all i with f (i) < (1 − δ)n

}

≥ Pr
{ ⋂
i∈I:f (i)<(1−δ)n

Ei

}
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= 1 − Pr
{ ⋃
i∈I:f (i)<(1−δ)n

Ec
i

}

≥ 1 − (1 − δ)n(1 − ε)δn → 1 as n → ∞�

However, this argument does not work for an arbitrary Pareto efficient mechanism. For
a general Pareto efficient mechanism, the serial order implementing the mechanism
is, in general, not independent of the agents’ preferences (which is required in the last
inequality of the above string).16 Our general proof using random graph theory avoids
this difficulty and allows us to obtain a uniform convergence result.

Remark 3 (Rate of convergence). To evaluate an asymptotic result like Theorem 1, a
natural question is how large the market has to be for the result to have “significant bite.”
One way to answer that question is to consider the rate of convergence. Specifically,
we may ask how fast the probability that supμn∈M∗

n
L(Fμn

�F∗) falls below some small
δ > 0 converges to 1. For a meaningful analysis of the convergence rate of interest, we
assume Xn = X for any n.17 As can be seen from the above sketch of the proof, the rate
of convergence of the above probability is the same as the rate at which the probability
that there is an independent set where the size of both sides is linear in n goes to 0. In
Appendix B, we show that this rate is “arbitrarily close” to (1/n!)2. This gives a precise
sense in which the convergence stated in Theorem 1 is very fast. The simulation result
displayed in Figure 2 supports this conclusion. It shows that the welfare performance
of alternative efficient mechanisms is within 1% of each other and is 10% points above
that of DA, even for market with size n= 1000.

Remark 4 (Absolute ranks). While the purpose of the current section is largely to illus-
trate the proof of Theorem 1, it yields as a side product an implication that is of inde-
pendent interest. Specifically, the analysis implies that when payoffs are purely idiosyn-
cratic, all agents, except for a fraction vanishing in probability, enjoy payoffs ε-close to
the upper bound in any Pareto efficient one-to-one matching. Specifically, we can show
that all agents, except for a proportion vanishing in probability, enjoy ranks in the order
very close to log(n). Formally, we state the following proposition.

16This is not just for the sake of generality: this is necessary for standard mechanisms. In particular,
requiring strategy-proofness need not eliminate such dependence. Indeed, the top trading cycles mech-
anism (TTC) is Pareto efficient and strategy-proof, but if one implements TTC via serial dictatorship, the
serial order must depend on the agents’ (reported) preferences. For instance, consider an economy with
three individuals and three objects. Assume that individual k owns ok for each k = 1�2�3. Assume that 1
and 3 rank o2 first, while both 1 and 3 rank the object they initially own (o1 and o3, respectively) as their
least preferred object. It is easy to show that if 2 ranks o1 first, then 1 and 2 are involved in a trade under
the top trading cycles mechanism; so serial dictatorship, which replicates this outcome, must place 3 in the
last position of the serial order. Symmetrically, if 2 ranks o3 first, then 1 must be the last in the serial order.

17Alternatively, we could assume that each object draws a common value according to distribution X

and have Xn be the empirical distribution of common values. In that case, we know by the Dvoretzky–
Kiefer–Wolfowitz inequality that L(Xn�X) converges in probability to 0 at the very fast rate of exp(−n).
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Proposition 1. Assume that for each n, Xn(·) is degenerate with a single common
value u0. Let h : N → R be any function such that h(n) = ω(log(n)) and h(n) = o(n).18

Let Īμ := {i ∈ I | rankμ(i) ≤ h(n)}. Then,

inf
μ∈M∗

n

|Īμ|
n

p−→ 1�

where M∗
n is the set of Pareto efficient matchings in the n-economy with q̄o = 1 for all

o ∈On.

See Appendix C for the proof.
Frieze and Pittel (1995) and Knuth (1996) established a similar property but under

two specific Pareto efficient mechanisms: random serial dictatorship and top trading
cycles. Proposition 1 establishes that the property holds under all Pareto efficient mech-
anisms. While this result seems closely related to Theorem 1 and the argument sketched
earlier, its proof is not an immediate corollary of Theorem 1. First, in our proof, the
probability of adding an edge in our random graph must go to 0 as n increases, which
requires us to develop a new result on the size of independent sets in random graphs
(see Appendix B). Second, when we relate cardinal payoffs to ordinal rankings, we have
to provide a nontrivial bound on the lower tail of a binomial distribution, which requires
the use of a large deviation theory (see Appendix C).

Remark 5 (Bounded support of the idiosyncratic payoffs). A key assumption used for
Theorem 1 is that the upper bound on the support of the distribution of the idiosyncratic
shocks does not depend on the market size. An interpretation could be that one’s payoff
depends on the ordinal preference rank of the object one receives.19 Nevertheless, if one
takes the cardinal utility perspective seriously, it may be reasonable for the support of
idiosyncratic payoffs to expand as the economy grows large. It turns out that Theorem 1
is robust to expanding support. Appendix B shows that our result remains valid as long
as the upper bound of the idiosyncratic payoff is o(n/ log(n)).

5. Discussion

We now discuss the implications of our results and the roles played by the assumptions
we made.

Robustness to cardinalization and ordinal equivalence

Our welfare measure is cardinal in nature, and hence is susceptible to rescaling of utili-
ties. Scaling of individual utilities would matter at a superficial level, for instance, if we
scale up the utilities of some group of agents and keep the others the same, efficient

18The Bachmann–Landau notation ω(·) (not to be confused with our notation on “state”) is defined
as follows. A function h(n) is in ω(f(n)), or simply h(n) = ω(f(n)), if |h(n)| ≥ k|f (n)| for every positive
number k.

19See Section 5 for further discussion of this interpretation.



252 Che and Tercieux Theoretical Economics 13 (2018)

mechanisms that treat them differently would result in different aggregate utilities.20

Nevertheless, there are important senses in which our insights are robust to ex ante het-
erogeneity.

First, regardless of how individual utilities are (re)scaled, in all efficient mechanisms,
the fraction of agents who receive an arbitrarily high idiosyncratic payoff converges to 1
as the market grows large. Second, on more normative grounds, given that we are using
the utilitarian criterion (which assigns equal weight to individual welfare), the symmetry
assumption essentially reflects the idea of treating agents identically. Finally and most
importantly, many institutions assess the performance of a mechanism based on the
distributions of “relative ranks” that agents achieve, namely, the ordinal rank of the ob-
ject obtained in each agent’s ranking divided by the number of objects allocated.21 Such
a measure is clearly invariant to the scaling of the individual utilities. Our large market
equivalence result implies equivalence in this measure.

More generally, in the original environment, our result implies equivalence of effi-
cient mechanisms in this ordinal welfare sense. To this end, for each u0 ∈ [0�1], let

ρ(u0) := 1 −
(
X(uo)+

∫ 1

uo

Pr
{
ξio : U(u�ξio) < U(uo�1)

}
dX(u)

)

denote the (expected) proportion of objects that give higher utility than an object with
common value u0 and idiosyncratic value of 1. Now define a CDF Z∗ : [0�1] → [0�1],
given by Z∗(r) := 1 − X(ρ−1(r)), which gives the upper bound of the fraction of agents
who can achieve a (normalized) rank of r or better. Theorem 1 implies the equivalence
in ordinal rankings.

Corollary 3 (Equivalence in ordinal rankings). For each r ∈ [0�1], let Zμn
(r) denote a

CDF measuring the fraction of population in an n-economy who achieve normalized rank
of r or better under mechanism μn. Then

sup
μn∈M∗

L
(
Zμn

�Z∗) p−→ 0 and sup
μn�μ̃n∈M∗

L
(
Zμn

�Zμ̃n) p−→ 0�

Role of ex ante symmetry

While our model is robust to the rescaling of cardinal utilities in the sense discussed
above, ex ante symmetry remains a crucial assumption necessary for our equivalence.
To illustrate this, suppose there are two object types H and L, each with quota 1

2n such
that uH ≥ uL = 0, and there are two agent types, 1 and 2, with their utilities given by

u1(uo�ξio) u2(uo�ξio)

o=H 1 + ξio ξio

o =L ξio ξio

20Imagine two serial dictatorship mechanisms that yield systematically different serial orders based on
group membership.

21Featherstone (2015) is the first paper studying “rank efficient mechanisms,” i.e., mechanisms with rank
distributions that are not stochastically dominated.
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Assume there are as many type 1 agents as type 2 agents. Alternative Pareto efficient
mechanisms do not yield the same utilitarian welfare even in the limit. Indeed, if the
serial dictatorship is run with the serial order chosen so that type 1 agents precede all
type 2 agents, then (given that agents attain idiosyncratic payoffs arbitrarily close to the
upper bound of 1) the limit welfare will converge to ( 1

2)(2)+ ( 1
2)(1) = 1�5 with high prob-

ability. But if the serial order is chosen so that type 2 agents precede all type 1 agents,
then the limit welfare will converge to ( 1

2)(1) + ( 1
2)(1) = 1 with high probability. More

importantly, nonequivalence persists even in ordinal welfare: the normalized ranks of
type 1 agents converge (in probability) to 0 in the former mechanism, but they converge
to 1

2 in the latter mechanism (recall they all prefer tier 1 objects to tier 2 objects), while
those of type 2 agents converge to 0 in both mechanisms.

Role of preference diversity

The utilitarian efficiency of Pareto efficient allocations stated in Corollary 1 is remark-
able and surprising given the fact that monetary transfers are not allowed. One inter-
pretation is that a large market makes utilities virtually transferable by creating “rich”
opportunities for agents to trade on idiosyncratic payoffs. In other words, objects that
are uniformly valued by the participants can be transferred from one set of agents to an-
other set without entailing much loss in terms of the idiosyncratic payoffs. In this sense,
a large market can act as a “substitute” for monetary transfers.

At the same time, the role preference diversity plays for our equivalence result should
not be exaggerated. It is indeed true that as the market grows large, it becomes increas-
ingly feasible for agents to match with objects that yield very high idiosyncratic payoffs
for them.22 Yet, this by itself does not imply that all Pareto efficient mechanisms match
agents in that way.

First, rich preference diversity does not mean that no conflicts of interests or compe-
tition exist in our model. On the contrary, the presence of common payoff shocks entails
significant conflicts of interests, as would be present in many real-world matching mar-
kets. To see this, consider a (very) special case of our environment in which there are two
“tiers” of objects, all agents agreeing (i.e., irrespective of the realization of idiosyncratic
payoffs) that objects in the first tier are better than those in the second tier. In such a
case, agents have clear conflicting rankings over ex post efficient mechanisms (a group
of agents may be favored in getting the objects in the first tier for some ex post efficient
mechanism, while some other group would be favored in others).

Second, such conflicts of interests could easily entail significant loss of welfare for
agents and yield distinct utilitarian welfares across different Pareto efficient mecha-
nisms. This is indeed the case if the matching is two-sided, i.e., the objects’ welfare is

22This is actually implied by the well known Erdös–Renyi theorem. To see this, as before, one can repre-
sent our matching model by a random bipartite graph in which the nodes on both sides represent agents
and objects, respectively, and an edge between an agent and an object is generated whenever ξio > 1 − ε for
any arbitrary (but fixed) ε. The Erdös–Renyi theorem implies the existence of a perfect matching in large
random graphs. Adapted to our random graph, this means that, with high probability, all agents can be
assigned objects that yield within ε of the maximal idiosyncratic payoffs as n→ 1.
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included in Pareto efficiency (think of them as “schools”). The Gale and Shapley’s de-
ferred acceptance algorithm is a Pareto efficient mechanism in such a setting. But as
long as the market is unbalanced (imagine that there are more agents than objects, and
the difference grows linearly in n), we know from Ashlagi et al. (2017) and Che and Ter-
cieux (2015a) that agents on the long side of the market compete in DA to such an extent
that they suffer a significant loss of welfare even when there are no common shocks. The
“two tiers” market described above effectively involves the same kind of imbalance (with
respect to the top tier objects), so Pareto efficient mechanisms are not utilitarian effi-
cient, even though it becomes increasingly feasible to find a matching that yields high
idiosyncratic payoffs for all agents on both sides as the market grows.23 This also means
that large-market payoff equivalence does not hold when the matching is two-sided.24

Therefore, it is rather remarkable that, in the one-sided matching market, conflicts
of interests do not give rise to a significant loss in utilitarian welfare or a significant dif-
ference in welfare across alternative efficient mechanisms. Also striking, and not antic-
ipated from the modeling structure at all, is the uniformity in the convergence rates in
which all efficient mechanisms become equivalent as the market grows. The uniform
convergence result appears particularly important for the payoff equivalence to matter
for market sizes that are of practical relevance, as we seen in our simulation below (see
Figures 2 and 3) and in the data set based on the New York City high school assignment
(see Section 6).

Connection with the existing equivalence results

The current equivalence result is reminiscent of a similar equivalence result obtained by
Abdulkadiroğlu and Sönmez (1998) between two well known mechanisms—random se-
rial dictatorship (RSD) and TTC with random ownership—and of the large market equiv-
alence result obtained by Che and Kojima (2010) between random serial dictatorship
and a probabilistic serial mechanism as well as their extensions (Pathak and Sethura-
man 2011, Carroll 2014, Lee and Sethuraman 2011, Bade 2016, and Liu and Pycia 2016).
While these results consider arbitrary preferences on the agents, they assume ex ante
symmetric random priorities with respect to the objects. By contrast, our equivalence
result does not impose any structure on the priorities on the object side and in fact holds
across different priority structures. That ex ante symmetric random priorities are not re-
quired for our equivalence is particularly important in practice, since, in many settings
such as school choice and medical matching, applicants are typically treated differently
by schools or hospitals through priorities, preference rankings, or interview decisions.
It also implies that serial dictatorship mechanisms with priorities chosen to “minimize”
utilitarian welfare and “maximize” it all converge uniformly in terms of the utilitarian

23To see this, a random graph in footnote 22 can be modified so that an edge between an agent and
an object is created if and only if the payoffs of the agent and the object are both very high. Then the
Erdös–Renyi’s result applied to this random graph establishes the feasibility of a matching that realizes
high idiosyncratic payoffs.

24Serial dictatorship is obviously Pareto efficient even in a two-sided economy, and Theorem 1 implies
that the agents enjoy close to the upper bound in this allocation, whereas they do not in the DA allocation,
another Pareto efficient allocation.
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welfare attained. This has no analogue in the existing equivalence results. At the same
time, our equivalence result requires a certain structure on the agents’ preferences (to
consist of common values and i.i.d. idiosyncratic shocks), and holds only in the limit as
the number of agents and objects (types) becomes large, whereas the equivalence results
mentioned above holds for any finite economy. Ultimately, our result complements the
existing focus on (ex post) Pareto efficient mechanisms that treat agents symmetrically
in terms of tie-breaking or ex ante assignment of property rights. One implication of
our result is that the fairness achieved by symmetric treatment of agents does not com-
promise welfare significantly, neither in terms of utilitarian welfare nor of the payoff
distribution among agents.

Efficiency versus stability

One may wonder to what extent the payoff performances of efficient mechanisms are
due to efficiency. Indeed, a similar payoff performance is known to arise from a stable
matching in some large market settings. Knuth (1997) and Pittel (1989), among others,
show that if the agents’ ordinal preferences are drawn i.i.d. uniformly and the market
is balanced, the aggregate welfare of the agents under a stable matching approaches
the utilitarian upper bound.25

 Lee and Yariv (2017) show a similar result in a large bal-
anced market in which the agents on both sides have random preferences that consist
of common and idiosyncratic shocks, and the common shock has full support.

Figure 2 shows the normalized utilitarian welfare performance of the stable match-
ing in comparison with three different efficient mechanisms in a simulated assignment
problem. In this simulation, agents’ preferences are given by U(uo�ξio) = uo + ξio and
their priorities are given by school utilities V (vi�ηio) = vi + ηio, where uo, ξio, vi, and
ηio are all drawn independently and uniformly from [0�1]. This specification allows
for a reasonable amount of correlation in students’ preferences and their priorities, an
environment conducive to high welfare performance for a stable matching. The three
efficient mechanisms we consider are as follows. Top trading cycles (TTC), proposed
by Abdulkadiroğlu and Sönmez (2003), yields a Pareto efficient allocation by executing
trades among agents in multiple rounds.26 For the two remaining efficient mechanisms,
we randomly draw a serial order of agents 100 times and select the best- and worst-
performing assignments in terms of utilitarian welfare (these mechanisms are named
SDmax and SDmin, respectively). As pointed out earlier, any efficient assignment corre-
sponds to SD with some serial order, so the two SDs encompass a large range of welfare
performances achievable by efficient mechanisms. The objective is to see the range of
variations in utilitarian welfare associated with different Pareto efficient mechanisms,

25Specifically, they show that the (preference) rank of the objects agents enjoy converges to log(n) on
average, which means that the idiosyncratic payoffs are on the order of 1 − log(n)/n on average. Because
the common values are degenerate in their environment, the result follows.

26In each round, each applicant points to his most preferred object among those available, each object
points to the applicant with the highest priority for the object among those available, and the applicants
associated with a cycle (which must exist due to the finite number of participants) are assigned the objects
they point to and exit the market, along with the seats they are assigned. The same process is repeated with
the remaining participants, until all participants are exhausted.
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Figure 2. Normalized utilitarian welfare under alternative mechanisms.

and compare it with the DA that selects the student-optimal stable assignment for the
agents.27

For each mechanism, we normalize the utilitarian welfare by subtracting the com-
mon value component uo; essentially, we focus on the idiosyncratic utility realized by
the mechanism. (This is without loss since the common value uo affects all agents iden-
tically.) Specifically, we average the normalized utilitarian welfare over 50 iterations of
the preference and priority draws {(uo�ξio� vi�ηio)}(i�o).28

All mechanisms, including DA, perform well and improve as the market grows large.
These results are in line with our main findings (in particular, Corollary 1) and with Lee
and Yariv (2017). What is not implied by these results and can be learned from the sim-
ulations is the speed of convergence and the uniformity across mechanisms. In this
regard, two observations can be made. The first is the degree of payoff proximity of alter-
native Pareto efficient mechanisms. For market size n= 2000, all efficient mechanisms—
even the SDmin—realize more than 98% of the highest possible surplus. The uniformity

27Reporting the results for DA serves an additional purpose. The difference between DA and efficient
mechanisms makes it clear that the similarity across efficient mechanisms is not driven by the correlation
in preferences that are assumed in the simulation. See footnote 36 for a related point.

28For SDmax and SDmin, we have 50 preference draws of ν := {(uo�ξio)}(i�o). For each preference draw,
we obtain the maximum or minimum normalized utilitarian welfares among 100 draws of serial orders.
We then average the welfare over 50 preference draws. Specifically, let U(ν; f ) denote the normalized util-
itarian welfare for a profile ν of preferences and a serial order f . Then SDmin := 1

50
∑

ν∈	̃(minf∈F̃ U(ν; f )),

SDmax := 1
50

∑
ν∈	̃(maxf∈F̃ U(ν; f )), where F̃ is the set of 100 random samples of serial orders, and 	̃ is the

set of 50 random samples of agents’ preferences.
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of convergences across efficient mechanisms is indeed remarkable, for they become es-
sentially indistinguishable for any n ≥ 1000.29 Second, although DA performs well in
utilitarian efficiency, there is a clear difference relative to the efficient mechanisms. For
n = 2000, there is a 3% point difference relative to SDmin, and the tangible difference
of at least 2% of points remains even for n = 10,000. This suggests that the welfare con-
verges more slowly to the utilitarian upper bound under DA than under efficient mech-
anisms. Indeed, the difference becomes more pronounced as the common value com-
ponent of agents’ preferences becomes more important.30

Robustness to the large market asymptotics

We have assumed that the number of object types grows linearly in the market size while
the quota for each object type is bounded at q̄, as has been assumed by several au-
thors (e.g., Ashlagi et al. 2017, Che and Tercieux 2015a, Immorlica and Mahdian 2005,
Kojima and Pathak 2009, Knuth 1997, and Pittel 1989). In fact, our result continues to
hold even when the number of object types grows much more slowly in the market size.
Specifically, the number of object types can grow as slow as on the order log(n), and the
quota/copies of each object type can grow as fast as on the order n/ log(n). At the same
time, the equivalence does not extend if the quota grows faster, e.g., linearly in the mar-
ket size, as has been assumed by a few authors (Abdulkadiroğlu et al. 2015b, Che and
Kojima 2010, Azevedo and Leshno 2016, and Liu and Pycia 2016). To see this, suppose
there are two object types, say o1 and o2, each with quota n/2. Assume further that all
agents prefer o1 objects to o2 objects, regardless of their idiosyncratic shocks. If a se-
rial dictatorship is run with the serial order given by the realized value of ξi�o1 − ξi�o2 (so
that the agents with high values go first), the expected (normalized) utilitarian welfare
converges to 1

2U(u1�
3
4) + 1

2U(u2�
3
4) as n → ∞. By contrast, if the serial dictatorship is

run with the opposite serial order (namely, in the descending order of ξi�o2 − ξi�o1 ), the
expected (normalized) utilitarian welfare converges to 1

2U(u1�
1
4)+ 1

2U(u2�
1
4) as n→ ∞.

This example shows that our equivalence result is distinct from, and is thus not implied
by, the equivalence found by these authors.

Ultimately, which asymptotics is valid depends on the applications. According to
our simulations below, the asymptotics allowed here covers a very large range. Indeed,
we conducted simulations with k = 10�20�30�40�50 schools, each with a quota of 100
and 100k in total students, where the students’ preferences and priorities are generated

29Note that the current equivalence result holds across different priorities and therefore is distinct
from—not implied by—the equivalence result by Abdulkadiroğlu and Sönmez (1998) and its extensions.
Indeed, for very small n, the difference between SDmin and SDmax is appreciable, suggesting that the clas-
sical equivalence result is not applicable here. But even for a modestly large n, the difference between the
two mechanisms vanishes.

30Simulations demonstrating this point are available from the authors as well as in Che and Tercieux
(2015b). The intuition follows from Ashlagi et al. (2017) and Che and Tercieux (2015a). Namely, the limit
result of Lee and Yariv (2017) does not extend to a situation in which students compete for scarce seats
at good schools. As the common value component becomes more important (e.g., the support of uo in-
creases), agents compete more vigorously for objects with high common value. Such a competition entails
significant welfare loss in a stable mechanism, but not under Pareto efficient mechanisms.
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Figure 3. Normalized utilitarian welfare for schools across alternative school quotas.

based on the earlier simulations. This specification allows for a reasonable amount of
correlation in students’ preferences and their priorities, as would be natural in a typical
school choice setting. In addition, this covers typical school choice settings in which the
quota (the number seats at a given school) is typically in the 100s, and the number of
schools/programs can be in the 10s.31 Figure 3 shows the utilitarian welfare of alterna-
tive mechanisms as a percentage of its upper bound. The difference between SDmax
and SDmin captures the degree of possible payoff inequivalence across Pareto efficient
mechanisms. As can be seen, the difference between two mechanisms is less than 1�5%
for 20 schools (a very realistic number for schools) and less than 1% for 30 schools. By
contrast, the difference between SDmax and DA is more than 5% and does not shrink
even for k= 50.

6. Evidence from NYC school choice

What do our results imply for realistic markets? We study this question based on the
choice data supplied by the New York City Department of Education. In New York City,
approximately 90,000 students (mostly in the 8th grade) are assigned to over 700 public
high school programs through an annual centralized matching process. We focus on the
main round (round 2) of assignment. In that round, each student submits a rank ordered
list (ROL) of up to 12 programs, and each program ranks applicants who listed it on their

31In the New York City high school assignment, the number of programs is around 750, and the number
of students is close to 80,000. In the Boston school system, the number schools is 18 for about 4000 students
willing to enter grade 9.
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ROLs according to its priority criteria, which depend on the types of the program.32 The
priorities are coarse for many programs, and a single (uniform) lottery is used to break
ties for all programs. Given the ROLs and priorities, a student-proposing DA algorithm
is used to generate an assignment.

We use the 2009–2010 choice data to calibrate the assignments that would arise un-
der DA and three Pareto efficient mechanisms: TTC, random serial dictatorship (RSD),
and versions of SDmin and SDmax.33 For DA and TTC, we run the mechanism us-
ing a random serial order as a tie-breaker. We then iterate 100 times and obtain the
average distribution of ranks enjoyed by the participants, namely the average num-
ber of students achieving each rank r = 1�2� � � � �12. For RSD, we again generate 100
random draws of serial order and run SD with each serial order, and obtain an aver-
age distribution of ranks. For SDmax (SDmin), we select a serial order from among
the 100 draws to minimize (maximize) the total sum of ranks enjoyed by the agents.34

We iterate this procedure 100 times and obtain the average distribution of ranks en-
joyed by the participants under each mechanism. Here again, the purpose is to see
the range of variations in distribution of ranks associated with different Pareto efficient
mechanisms, and to compare it with the DA. These mechanisms differ in the way that
they treat the participants, so there is no a priori expectation for the relation of the
distributions.

Before proceeding, a couple of remarks are in order. First, following the existing
literature, we assume that the observed ROLs of the applicants represent their truthful
preference ranking of top programs. This assumption is not entirely innocuous because
the strategy-proofness of DA does not apply when the applicants’ ROLs are truncated
(see Haeringer and Klijn 2009). Nevertheless, approximately 80% of the participants
did not fill out their ROLs, suggesting that truncation was not a binding constraint (see
Abdulkadiroğlu et al. 2009 and Abdulkadiroğlu et al. 2015a for the same assumption).
Second, under the current DA algorithm, programs do not specify priorities for students
unless they rank them in their ROLs. To calibrate TTC, we assume that programs assign
lower priorities to students who do not rank them than to those who do rank them. For
our purpose, this does not appear to pose a serious problem.35

Table 1 and Figure 4 present the distribution of preference ranks achieved by the
applicants under alternative efficient mechanisms, using DA as a control mechanism.
They exhibit a striking resemblance in the rank distribution across alternative Pareto
efficient mechanisms, and a noticeable difference between them and the DA outcome.

32The programs are categorized into several types in terms of admissions method: screened, limited un-
screened, unscreened, ed-op, zoned, and audition. See Che and Tercieux (2015a) for a detailed description
of the data and the institutional details.

33RSD is a serial dictatorship where the applicants’ serial orders are determined at random.
34In this definition, the number of unassigned students is not taken into account. An alternative would

be to assign rank 13 to unassigned students and define SDmax and SDmin accordingly. The figures we
obtain in this section are almost the same under this alternative.

35First of all, the Pareto efficiency of TTC is not affected by this feature. Second, the TTC outcome is likely
to lie between those of SDmax and SDmin, which appear to be close to each other according to our finding
below.
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DA TTC SDmin SDmax RSD

1 35,200�87 (53�67) 38,090�25 (36�58) 37,632�46 (59�06) 37,674�23 (62�59) 37,657�08 (51�03)
2 14,006�80 (53�01) 13,256�99 (46�08) 13,272�93 (66�06) 13,348�43 (64�78) 13,307�03 (61�02)
3 8168�72 (41�93) 7157�68 (41�24) 7075�81 (53�59) 7115�60 (54�77) 7103�74 (51�60)
4 4882�67 (35�32) 4025�68 (31�32) 3974�64 (38�37) 4007�42 (47�09) 3983�21 (41�23)
5 2976�64 (29�75) 2382�62 (25�83) 2364�11 (40�66) 2380�82 (32�90) 2374�91 (34�81)
6 1716�71 (20�81) 1347�35 (21�12) 1350�64 (27�38) 1344�07 (27�23) 1343�15 (25�16)
7 996�40 (19�27) 746�87 (17�07) 795�09 (20�54) 790�22 (23�89) 789�61 (20�66)
8 592�47 (16�46) 443�39 (12�92) 471�46 (17�12) 468�89 (17�18) 471�48 (15�55)
9 336�74 (11�8) 265�24 (11�00) 289�05 (14�20) 283�68 (13�23) 287�17 (14�51)

10 190�38 (9�00) 150�22 (8�26) 175�24 (10�22) 171�56 (10�91) 174�88 (11�12)
11 122�17 (6�34) 100�79 (6�02) 115�07 (8�93) 111�79 (8�48) 112�97 (9�16)
12 66�22 (5�41) 54�22 (4�90) 70�94 (7�15) 67�66 (7�57) 69�58 (7�64)
Unassigned 8458�21 (29�31) 9693�70 (31�31) 10,127�56 (29�77) 9950�63 (26�70) 10,040�19 (47�17)

We ran 100 iterations of each algorithm with independent draws of lotteries and focused on the average performance of
each algorithm, including DA. Standard errors are given in parentheses.

Table 1. Ranks achieved by participants under five different algorithms.

While the source of the resemblance is not immediately clear, the difference these mech-

anisms exhibit relative to the DA outcome suggests that the resemblance is not driven

by the special nature of the underlying preferences.36,37

Recall also that the programs have intrinsic priorities in the data, and the alternative

Pareto efficient mechanisms differ in the way that the programs’ priority information

is used to generate the assignment. Hence, the resemblance across alternative Pareto

efficient mechanisms cannot be explained by the equivalence result of Abdulkadiroğlu

and Sönmez (1998) or its extensions by recent authors. These authors focus on an en-

vironment in which programs have no intrinsic priorities and find equivalence of ef-

ficient mechanisms that treat agents randomly in an ex ante symmetric manner. Im-

portantly, the equivalence in these papers holds only in the ex ante sense (in terms

of the lotteries the agents receive), and it does not imply that a similar rank distribu-

tion would result from different Pareto efficient mechanisms using different priority

systems.

36For example, if all applicants submit the same ROL of programs, the rank distribution (i.e., the fraction
of agents getting their first choice, second choice, and so on) would be identical across all assignments, and
there would be no difference between DA assignments and efficient assignments. Likewise, if there are no
conflicts of interests, again, all agents will be assigned to their top choice under both an efficient mech-
anism and DA. The difference between the DA and efficient mechanisms suggests that neither scenario
holds here.

37The average sum of ranks for TTC is smaller than that under SDmax. This should not necessarily come
as a surprise since SDmax minimizes the average sum of ranks over “only” 100 draws of serial orders. Recall
that TTC uses the intrinsic priorities from the data, supplemented by the random draws in case of ties,
whereas the SD only uses random draws. Hence, it is not unlikely that the (100) random draws used for SD
do not include the one replicating TTC. Importantly, the differences between SDmax, SDmin, and TTC are
small relative to the DA outcome.
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Figure 4. Rank distribution under alternative mechanisms (averaged across 100 iterations).

Appendix A: Proof of Theorem 1

A.1 Preliminaries

For an n-economy and for each u ∈ [0�1], let On≥u := {o ∈ On | uo ≥ u} and On≤u :=
{o ∈On | uo ≤ u} denote the set of object types that yield the common value no less than
u and the set of object types that yield the common value no greater than u, respectively.
The numbers of objects with types in On≥u and On≤u are, respectively, denoted by Qn≥u and
Qn≤u. For notational simplicity, we suppress the dependence of these sets on n, with the
exception of Xn.

Now consider any Pareto efficient mechanism μ ∈ M∗. By a well known result (e.g.,
Abdulkadiroğlu and Sönmez 1998), any Pareto efficient matching can be equivalently
implemented by a serial dictatorship mechanism with a suitably chosen serial order.
Let SDfμ be the serial dictatorship mechanism where, for each state ω, a serial order
fμ(ω) : I → I, a bijective mapping, is chosen so as to implement μω(·). That is, for each

state ω ∈ 	, the serial order fμ is chosen so that SD
fμ(ω)
ω (i) = μω(i) for each i ∈ I. Since

the matching μ arising from the mechanism depends on the random state ω, the serial
order f implementing μ is a random variable. In the sequel, we study a Pareto efficient
matching mechanism μ via the associated SDfμ . To avoid clutter, we now suppress the
dependence of f on μ.

Given an n-economy, for any Pareto efficient mechanism μ and the associated serial
order f , let

I≥u(μ) := {
i ∈ I | f (i) ≤Q≥u

}
be the set of agents who have a serial order within the total supply of objects whose
common values are at least u (in the equivalent serial dictatorship implementation).
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For any ε, the set

Īε≥u(μ) = {
i ∈ I≥u(μ) |Ui

(
SDf (i)

) ≤U(u�1 − ε)
}

consists of the agents who realize payoff no greater than U(u�1−ε) while having a serial
order within Q≥u. The following lemma is crucial for the main result.

Lemma 2. For any ε�γ > 0,

Pr
[
∃μ ∈ M∗ and u such that

∣∣Īε≥u(μ)
∣∣

|I| ≥ γ

]
→ 0

as n → ∞.

Proof. Fix any ε > 0 and γ > 0. We first build a random bipartite graph on I ∪O where
an edge (i�o) is added if and only if ξi�o > 1 − ε.

Now choose any δ ∈ (0�1). For each μ ∈ M∗ and u, define random sets Iδ≥u(μ) :=
{i ∈ I | f (i) ≤ (1 − δ)Q≥u}, Īε�δ≥u (μ) := {i ∈ Iδ≥u | Ui(SDf (i)) ≤U(u�1 − ε)}, and

Ōδ≥u(μ) := {
o ∈O≥u | ∃i ∈ μ−1(o) s.t. f (i) > (1 − δ)Q≥u

}
�

which consist of object types in O≥u assigned to the agents with serial order worse than
(1 − δ)Q≥u.

We argue that the set I
ε�δ
≥u(μ) × Ōδ≥u(μ) must be an independent set of the random

bipartite graph on I ∪ O. To prove this, suppose otherwise. Then there would exist an

edge (i�o) ∈ I
ε�δ
≥u(μ)× Ōδ≥u(μ). Then

Ui(o) > U(u�1 − ε)≥Ui

(
SDf (i)

)
�

where the strict inequality holds since ξi�o > 1 − ε (i.e., (i�o) is an edge), o ∈ O≥u, and
since U(·� ·) is monotonic (in particular, strictly increasing in idiosyncratic component).

The weak inequality holds because i ∈ I
ε�δ
≥u . In addition, we must have

f (i) ≤ (1 − δ)Q≥u < f
(
i′
)

for some i′ ∈ μ−1(o)�

where the first inequality comes from the fact that i ∈ I
ε�δ
≥u(μ) ⊂ Iδ≥u(μ), while the second

inequality from the fact that o ∈ Ōδ≥u(μ). Thus, this means that when i becomes the dic-

tator under SDf , object o is still available. But Ui(o) > Ui(SDf (i)) means that i chooses
an object worse than o, which yields a contradiction.

Since I
ε�δ
≥u(μ) × Ōδ≥u(μ) is an independent set for each μ ∈ M∗ and u ∈ [0�1], and

since |I| = n, applying Lemma 1, we have that, for any γ′ > 0,

Pr
[∃μ ∈ M∗ and u ∈ [0�1] s.t. min

{∣∣Iε�δ≥u(μ)
∣∣� ∣∣Ōδ≥u(μ)

∣∣} ≥ γ′n
] → 0 (1)

as n goes to infinity.
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Fix any γ′ > 0. Recall that |Īε�δ≥u (μ)| ≤ |Iδ≥u(μ)| ≤ (1 − δ)Q≥u and |Ōδ≥u|(μ) ≥ δQ≥u/q̄.

Hence, if |Īε�δ≥u (μ)| ≥ γ′n, then we must have |Ōδ≥u(μ)| ≥ δγ′n/((1 − δ)q̄), where recall q̄ is
the upper bound for the number of copies for each object type.

Hence, as n → ∞,

Pr
[∃μ ∈M∗ and u s.t.

∣∣Iε�δ≥u(μ)
∣∣ ≥ γ′n

]

= Pr
[
∃μ ∈ M∗ and u s.t.

∣∣Iε�δ≥u(μ)
∣∣ ≥ γ′n and

∣∣Ōδ≥u(μ)
∣∣ ≥ δγ′

(1 − δ)q̄
n

]

≤ Pr
[
∃μ ∈ M∗ and u s.t. min

{∣∣Iε�δ≥u(μ)
∣∣� ∣∣Ōδ≥u(μ)

∣∣} ≥ min
{

1�
δ

(1 − δ)q̄

}
γ′n

]

→ 0�

where the convergence follows from (1).38

Finally, by construction, |Īε�δ≥u (μ)| ≥ |Īε≥u(μ)| − δQ≥u − 1. Since Q≥u ≤ n, we get that

∣∣Īε�δ≥u (μ)
∣∣

|I| ≥
∣∣Īε≥u(μ)

∣∣
|I| − δ− 1

|I|
for each μ ∈ M∗. Hence, it follows that

Pr
[
∃μ ∈ M∗ and u s.t.

∣∣Īε≥u(μ)
∣∣

|I| ≥ γ′ + δ

]

≤ Pr
[
∃μ ∈ M∗ and u s.t.

∣∣Īε�δ≥u (μ)
∣∣

|I| ≥ γ′ + 1
|I|

]
→ 0�

Set δ and γ′ such that δ+ γ′ = γ. Then

Pr
[
∃μ ∈ M∗ and u s.t.

∣∣Īε≥u(μ)
∣∣

|I| ≥ γ

]
→ 0�

�

We are now ready to prove Theorem 1.

A.2 Proof of Theorem 1

To prove the statement, we show that the payoff distributions induced by Pareto efficient
mechanisms converge to F∗ in the sense defined earlier.

Fix any ε > 0. We show that, as n → ∞,

Pr
[

sup
μ∈M∗

sup
z

max
{
Fμ(z − ε)− F∗(z)�F∗(z)− Fμ(z + ε)

} ≥ ε
]

→ 0�

38Here we use the assumption that q̄ does not increase in n. If q̄ increases in n at the rate of O(n/ log(n)),
then one can check that the lower bound in the above equation is ω(log(n)). Using Lemma 1, one can show
that Lemma 2—and thus Theorem 1—holds with this lower bound.
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where F∗ and Fμ are, respectively, the CDF of the payoff induced by the limit utilitarian
upper bound and the CDF of the payoffs induced by mechanism μ in M∗.

Let

Jμ(z) := {
i ∈ I |Ui

(
μ(i)

) ≤ z
}

denote the set of agents enjoying payoff of at most z under matching mechanism μ.
Obviously, Fμ(z) = |Jμ(z)|/n. Let u(z) be such that U(u(z)�1) = z for each z ∈ Ẑ :=
[U(0�1)�U(1�1)]. (This is well defined since U(·�1) is continuous and strictly increas-
ing.) Note that the function u : Ẑ → [0�1] so defined is continuous and increasing. Let
us fix ε′ such that for any common value u ≤ u(z) + ε′, we have U(u�1) ≤ z + ε for each
z ∈ Ẑ := [U(0�1)�U(1�1)]. Note that this is well defined since U(u(z)�1) = z and U(·�1)
is continuous and strictly increasing. Further observe that ε′ is strictly positive. Clearly,
for any z ∈ Ẑ, any agent matched with an object having common value no greater than
u(z)+ ε′ must be in Jμ(z + ε). This means that |Jμ(z + ε)| ≥ Q≤u(z)+ε′ = Xn(u(z) + ε′)n
for all μ ∈ M∗. By definition, for each z, F∗(z) =X(u(z)).

Then

Pr
[

sup
μ∈M∗

sup
z

(
−

∣∣Jμ(z + ε)
∣∣

|I| + F∗(z)
)

≥ ε

]

= Pr
[

sup
μ∈M∗

sup
z∈Ẑ

(
−

∣∣Jμ(z + ε)
∣∣

|I| + F∗(z)
)

≥ ε

]

≤ Pr
[
sup
z∈Ẑ

(−Xn
(
u(z)+ ε′) +X

(
u(z)

)) ≥ ε
]

= Pr
[
sup
u

(−Xn
(
u+ ε′) +X(u)

) ≥ ε
]

≤ Pr
[
sup
u

(−Xn
(
u+ min

{
ε� ε′}) +X(u)

) ≥ min
{
ε� ε′}]

→ 0

(2)

as n → ∞. The first equality comes from the fact that for any z < U(0�1), F∗(z) = 0; the
first inequality is by definition of ε′ and the convergence follows since L(Xn�X) → 0 as
n → ∞.

For the next part, recall that I≥u(μ) := {i ∈ I | f (i) ≤ Q≥u} and Īε≥u(μ) := {i ∈ I≥u(μ) |
Ui(SDf (i)) ≤ U(u�1 − ε)}, where SDf is the SD rule implementing μ. Let I≤u(μ) :=
{i ∈ I | f (i) ≤ Q≤u}. We also extend the function u such that u(z) = 0 for any z ∈
[U(0�0)�U(0�1)].

Fix ε′′ such that for any common value u ≥ u(z) − ε′′, we have z − ε ≤ U(u�1 − ε′′)
for all z ∈ [U(0�0)�U(1�1)]. Note that this is well defined since U(u(z)�1) ≥ z and U is
continuous and strictly increasing in both components. In addition, ε′′ > 0. Observe
that U(μ(i)) ≤ z − ε implies i ∈ I≤u(z)−ε′′ ∪ Īε

′′
≥u(z)−ε′′(μ). Hence,

∣∣Jμ(z − ε)
∣∣

|I| ≤ |I≤u(z)−ε′′ |
|I| +

∣∣Īε′′
≥u(z)−ε′′(μ)

∣∣
|I| .
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We obtain

Pr
[

sup
μ∈M∗

sup
z

(∣∣Jμ(z − ε)
∣∣

|I| − F∗(z)
)

≥ ε

]

≤ Pr
[

sup
μ∈M∗

sup
z

( |I≤u(z)−ε′′ |
|I| +

∣∣Īε′′
≥u(z)−ε′′(μ)

∣∣
|I| − F∗(z)

)
≥ ε

]

≤ Pr
[

sup
μ∈M∗

sup
z

(
Xn

(
u(z)− ε′′) −X

(
u(z)

)) ≥ ε

2

]
+ Pr

[
sup

μ∈M∗
sup
z

∣∣Īε′′
≥u(z)−ε′′(μ)

∣∣
|I| ≥ ε

2

]

= Pr
[

sup
u
(Xn

(
u− ε′′) −X(u) ≥ ε

2

]
+ Pr

[
sup

μ∈M∗
sup
z

∣∣Īε′′
≥u(z)−ε′′(μ)

∣∣
|I| ≥ ε

2

]
(3)

≤ Pr
[

sup
u

(
Xn

(
u− min

{
ε′′� ε

2

})
−X(u)

)
≥ min

{
ε′′� ε

2

}]

+ Pr
[

sup
μ∈M∗

sup
u

∣∣Īε′′
≥u(μ)

∣∣
|I| ≥ ε

2

]

→ 0�

where the convergence holds by L(Xn�X) → 0 and Lemma 2.
Combining (2) and (3) and the fact that Fμ(z) = |Jμ(z)|/n, we conclude that

Pr
[

sup
μ∈M∗

sup
z

max
{
Fμ(z − ε)− F∗(z)�−Fμ(z + ε)+ F∗(z)

} ≥ ε
]

→ 0

as n → ∞.

Appendix B: Further analysis of independent sets in random graphs

We propose a class of random bipartite graphs where the only difference from Dawande
et al. (2001) is that now the probability of linking two nodes (v1� v2) ∈ V1 × V2 is given by
p(n), where p(n) can go to 0 as n goes to infinity. The next result shows that as long as
p(n) goes to 0 at a lower rate than log(n)/n, the probability that there is an independent
set where the size of both sides is linear in n goes to 0 at a rate “arbitrarily close” to
(1/n!)2.

Lemma 3. Fix any function f : N → R such that limn→∞ f (n)/n = 0. Consider a random
bipartite graph B = (V1 ∪V2�p(n)), where 0 <p(n) < 1 satisfies limn→∞ p(n)/(log(n)/n)=
∞ and for each i ∈ {1�2}, |V1| = n and |V2| = m=O(n). For any n large enough,

Pr
[∃ an independent set V̄1 × V̄2 with min

{|V̄1|� |V̄2|
} ≥ γn

] ≤
(

1
f (n)!

)2
.

Proof. Fix a random bipartite graph B = (V1 ∪ V2�p(n)), where 0 < p(n) < 1 satisfies
limp(n)/(log(n)/n) = ∞ and for each i ∈ {1�2}, |V1| = n and |V2| = m = O(n). Observe
that if V̄1 × V̄2 is an independent set, then so is any subset of V̄1 × V̄2. This has two im-
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plications. The first implication is that whenever there is an independent set V̄1 × V̄2
with min{|V̄1|� |V̄2|} = a(n), then there is a balanced independent set with size a(n).39

Let Za(n) be the number of balanced independent sets V̄1 × V̄2 with |V̄1| = |V̄2| = a(n).
Thus, we want to show that the probability of having a balanced independent set V̄1 × V̄2
with |V̄1| = |V̄2| = a(n) ≥ γn is smaller than (1/(f (n)!))2 for any n large enough. In the
sequel, we sometimes abuse notation and write p and a for p(n) and a(n), respec-
tively. The second implication is that whenever there is a balanced independent set
of size a, there must be a balanced independent set of smaller size. Otherwise stated,
Pr{∃a ≥ γn s.t. Za ≥ 1} = Pr{Zγn ≥ 1}. Thus, we can assume without loss of generality
that a= γn and just show that Pr{Za ≥ 1} ≤ (1/(f (n)!))2 for any n large enough. We have

Pr{Za ≥ 1} ≤ E(Za)=
(
n

a

)(
m

a

)(
(1 −p)a

)a ≤
(
na

a!
)(

ma

a!
)(

(1 −p)a
)a

.

The computation of E(Za) follows from the following argument. A set of vertices A∪B,
where A ⊆ V1 and B ⊆ V2, forms an independent set if there is no edge between every
pair of vertices v1 ∈ A and v2 ∈ B. Suppose that |A| = |B| = a. Since the probability of
an edge is p, the probability that a given A ∪B forms an independent set is ((1 −p)a)a.
There are

(n
a

)
different ways to choose a subset A⊆ V1 of size a and

(m
a

)
ways to choose a

subset B ⊆ V2 of size a. Hence, the number of pairs of subsets (A�B) we are considering
is

(n
a

)(m
a

)
.

We now claim that for any n large enough, γn ≥ (log(n)+ log(m))/ log(1/(1 −p(n))).
This is clear if p(n) does not go to 0. So assume that p(n) → 0. Because m = O(n), we
have that for some constant c and for any n large enough, m ≤ cn. Hence, it is enough
to show that for n large enough, γn ≥ (log(n) + log(cn))/ log(1/(1 − p(n))). The last in-
equality can simply be written as log(1 − p(n)) ≤ −(log(n) + log(cn))/γn. Now fix any
ρ > 0. Using the fact that log(1 + x)/x converges to 1 as x → 0, we obtain that, for n

large enough, log(1 −p(n)) ≤ (1 − ρ)(−p(n)). Thus, for n large enough, log(1 −p(n)) ≤
−(log(n) + log(cn))/γn is implied by (1 − ρ)(−p(n)) ≤ −(log(n) + log(cn))/γn. This
condition can be written as γ(1 − ρ) ≥ (2 log(n)/n)/p(n) + (log(c)/n)/p(n). Because
limp(n)/(log(n)/n) = ∞, the right-hand side goes to 0 as n grows and so the previous
inequality is satisfied for n large enough.

Hence, for n large enough,

(1 −p)a ≤ (1 −p)(log(n)+log(m))/log(1/(1−p)) = (1 −p)log1−p(n
−1)(1 −p)log1−p(m

−1) = n−1m−1�

Thus, for n large enough, we get that (na/a!)(ma/a!)((1 − p)a)a ≤ (1/a!)2. Because
lim f (n)/n = 0, for any n large enough, f (n) ≤ γn and so for n large enough, a! = (γn)! ≥
f (n)!. Thus, we obtain that for n large enough,

Pr{Za ≥ 1} ≤
(

1
a!

)2
≤

(
1

f (n)!
)2

� �

Assuming that the idiosyncratic shocks are drawn from a uniform distribution on
[0� ξ̄(n)], in the random graph built in the proof of Theorem 1, we have that p(n) =

39An independent set V̄1 × V̄2 is balanced if |V̄1| = |V̄2|.
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ε/ξ̄(n). Hence, since the the above result requires limp(n)/(log(n)/n) = ∞, Theorem 1
must hold as long as ξ̄(n)/(n/ log(n)) → 0, i.e., ξ̄(n) = o(n/ log(n)), as claimed in Re-
mark 5.

Appendix C: Proof of Proposition 1

In the sequel, assume Xn(·) is degenerate with a single common value u0 and that
Xn(·) = Yn(·), i.e., q̄o = 1 for all o ∈ On. For the proof, we focus on relative rank,
i.e., rankμ(i)/n. Accordingly, let g(n) := h(n)/n. Clearly, g(n) = ω(log(n)/n) and
limn→∞ g(n) = 0. Then we can rewrite Īμ = {i ∈ I | rankμ(i)/n ≤ g(n)}. We want to show
that

inf
μ∈M∗

n

|Īμ|
n

p−→ 1�

where M∗
n is the set of Pareto efficient matchings in the n-economy.

Let function ε : N → R++ be defined by ε(n) := 1
4g(n) for all n ∈ N. Note that ε(n)

must go to 0 and limn→∞ ε(n)/(log(n)/n) = ∞. Let Īεμ := {i ∈ I | ξiμ(i) ≥ 1 − ε(n)}. Us-
ing the very same random graph as in our sketch of the proof in Section 4, we can use
Lemma 3 (since limn→∞ ε(n)/(log(n)/n)= ∞) to obtain that

inf
μ∈M∗

n

∣∣Īεμ∣∣
n

p−→ 1�

The following claim is then crucial for our result. It states that with probability going
to 1 as n → ∞, an individual i assigned to o with ξio ≥ 1−ε(n) gets a relative rank smaller
than g(n).

Claim 1. We have Pr{∀μ ∈ M∗
n : Īεμ ⊂ Īμ} → 1 as n → ∞.

Proof. For each agent i, let Xi be the number of objects o such that ξio ≥ 1 − ε(n).
Hence, if ξiμ(i) ≥ 1 − ε(n) for some μ, then we must have rankμ(i) ≤Xi. So if Xi ≤ ng(n),
then, for any μ, whenever i ∈ Īεμ (⇔ ξiμ(o) ≥ 1 − ε(n)), we must have rankμ(i)/n ≤ g(n),
so i ∈ Īμ. To prove the claim, therefore, it is enough to show that, with probability ap-
proaching 1 as n → ∞, Xi ≤ ng(n) for all i ∈ I. Note that Xi follows a binomial distribu-
tion B(n�ε(n)) (recall that ξio follows a uniform distribution with support [0�1]). In the
sequel, we let Yi := n−Xi. We have

Pr
{∃i with Xi > ng(n)

} ≤
∑
i∈I

Pr
{
Xi > ng(n)

}

= |I|Pr
{
Xi > ng(n)

}
= |I|Pr

{
Yi < n

(
1 − g(n)

)}
�

where the inequality is by the union bound and the second equality is by definition of
Yi. We further note that Yi = n−Xi follows a binomial distribution B(n�1 − ε(n)). Using
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the inequality provided by Arratia and Gordon (1989) to bound Pr{Yi < n(1 − g(n))}, we
obtain40

Pr
{∃i with Xi > ng(n)

} ≤ |I|Pr
{
Yi < n

(
1 − g(n)

)}
≤ nexp

[−nD
(
1 − g(n) ‖ 1 − ε(n)

)]

= nexp
[
−n

((
1 − g(n)

)
log

(
1 − g(n)

1 − ε(n)

)
+ g(n) log

(
g(n)

ε(n)

))]
�

where D(a ‖ p) stands for the relative entropy between Bernoulli(a) and Bernoulli(p).
Now choose ρ > 0 small enough so that log(4) − ( 3

4)[1 + ρ] > 1
2 . Using the fact

that limx→0 log(1 + x)/x = 1, we must have that, for n large enough, log(1 − g(n))/

(1 − ε(n)) = log(1 + (ε(n) − g(n))/(1 − ε(n))) ≥ [1 + ρ](ε(n) − g(n))/(1 − ε(n)) (recall
that ε(n) − g(n))/(1 − ε(n)) < 0). Thus, for n large enough, we can simplify the above
expression as

n

exp
[
n
(
1 − g(n)

)
log

1 − g(n)

1 − ε(n)
+ ng(n) log

g(n)

ε(n)

]

≤ n

exp
[
n
(
1 − g(n)

)ε(n)− g(n)

1 − ε(n)
[1 + ρ] + ng(n) log

g(n)

ε(n)

]

= n

exp
[

g(n)

log(n)/n
log(n) log

g(n)

ε(n)
−

(
g(n)− ε(n)

)
g(n)

(
1 − g(n)

1 − ε(n)

)
g(n)

log(n)/n
log(n)[1 + ρ]

]

= n

exp
[(

log
g(n)

ε(n)
−

(
g(n)− ε(n)

)
g(n)

(
1 − g(n)

1 − ε(n)

)
[1 + ρ]

)
g(n)

log(n)/n
log(n)

]

= n

exp
[(

log(4)− 3
4

(
1 − g(n)

1 − ε(n)

)
[1 + ρ]

)
g(n)

log(n)/n
log(n)

]

≤ n

exp
[

1
2

g(n)

log(n)/n
log(n)

]

= n

exp
[
log

(
n

1
2

g(n)
log(n)/n

)]

= n

n
1
2

g(n)
log(n)/n

= 1

n
1
2

g(n)
log(n)/n−1

�

40The bound provided by Arratia and Gordon (1989) is closely related to Sanov’s theorem; see Chap-
ter 11.4 of Cover and Thomas (1991). We note that a standard approach to provide a bound on the binomial
cumulative distribution consists in using Hoeffding’s inequality. However, this bound is not fine enough for
our purpose and we need to appeal to bounds provided in the large deviation theory.
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where the third equality uses the assumption that ε(n)= 1
4g(n), while the last inequality

follows since log(4)−( 3
4)[1+ρ]((1−g(n))/(1−ε(n))) ≥ log(4)−( 3

4)[1+ρ]> 1
2 (recall that

g(n) ≥ ε(n)). Thus, since g(n)/(log(n)/n)→ ∞, the above term must converge to 0. �

Now we are ready to complete the proof of Proposition 1. Fix any γ > 0. We have that

Pr
{
∀μ ∈ M∗

n : |Īμ|
n

> γ

}
≥ Pr

{
∀μ ∈ M∗

n :
∣∣Īεμ∣∣
n

> γ and Īεμ ⊂ Īμ

}
→ 1�

where the convergence result follows from Claim 1 and the fact that infμ∈M∗
n
|Īεμ|/n p−→ 1.

We therefore conclude that

inf
μ∈M∗

n

|Īμ|
n

p−→ 1�

as was to be shown.
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