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Who goes first? Strategic delay under information asymmetry

Peter A. Wagner
Department of Economics, University of Bonn

This paper considers a timing game in which heterogeneously informed agents
have the option to delay an investment strategically to learn about its uncer-
tain return from the experience of others. I study the effects of information ex-
change through strategic delay on long-run beliefs and outcomes. Investment de-
cisions are delayed when the information structure prohibits informational cas-
cades. When there is only moderate inequality in the distribution of information,
equilibrium beliefs converge in the long run, and there is an insufficient aggregate
investment relative to the efficient benchmark. When the distribution of informa-
tion is more skewed, there can be a persistent wedge in posterior beliefs between
well and poorly informed agents, because the poorly informed tend to “drive out”
the well informed.
Keywords. Strategic delay, social learning.
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1. Introduction

In 1929, the young German physician Werner Forssmann secretly conducted a risky self-
experiment. He inserted a narrow tube into his arm and maneuvered it along a vein
into his heart. The procedure, known as cardiac catheterization, constituted a revolu-
tionary breakthrough in cardiology and later earned him the Nobel prize in medicine.
Forssmann’s main contribution was the proof that cardiac catheterization was safe to
perform on humans. The basic methods for the procedure had already been developed
decades earlier and successfully tested on animals. It was widely believed, however, that
inserting any object into the beating human heart was fatal, and thus there was a need
for someone to put this hypothesis to the ultimate test.

The story of Werner Forssmann is of someone who took action in an environment
of “wait and see,” in which everyone hopes for the independent initiative of a volunteer
who resolves some of the risks related to an uncharted course of action. There is a broad
spectrum of areas in which these volunteer mechanisms play a crucial role. Palfrey and
Rosenthal (1984) report the case of MCI, a telecommunications company, that fought
for commercial access to AT&T’s telephone networks in the 1960s, facing substantial
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legal fees and significant risk. The legal procedure ended with a favorable ruling by the
Federal Communications Commission (FCC) requiring AT&T to enable third parties to
access their networks. In the end, the ruling benefited not only MCI, but also a host of
other companies that were not previously involved in the case.

Empirically, it is a well established fact that people learn from the behavior and expe-
rience of their peers. Peer learning effects have been found, for example, in the diffusion
of innovations among health professionals (Becker 1970), the enrollment in health in-
surance (Liu et al. 2014), the diffusion of home computers (Goolsbee and Klenow 2002),
stock market entry (Kaustia and Knüpfer 2012), and the introduction of personal income
tax (Aidt and Jensen 2009). In environments in which no formal institution or informal
arrangement exists that coordinates exploratory activities, how efficient is it to rely on
the initiative of volunteers, and how well does such a decentralized mechanism aggre-
gate dispersed information?

To study this problem, I consider a stopping game with asymmetric distribution of
information and a pure informational externality. In this game, each agent has the op-
tion to make an investment. The investment generates an unknown return that depends
on an uncertain state of the world. At the beginning of the game, agents privately receive
information about the state and then decide independently how long to wait before tak-
ing action. The first agent who makes the investment realizes the state-dependent pay-
off and thereby reveals the state to the remaining agents. Uncertainty about the return
of the investment and payoff observability generates a second-mover advantage that
provides agents with an incentive to free-ride on others’ initiatives.

I characterize the Bayes–Nash equilibria as allowing for a heterogeneous distribution
of information. The equilibria can be broadly classified into two types. Equilibria may
end with some agent’s immediate investment if the information structure is capable of
generating an informational cascade. If the information structure prohibits cascades,
then all robust equilibria exhibit delay. In an equilibrium with delay, agents wait for a
period of time before making their investment. The delay is driven by the agents’ ex-
pectation that someone else might invest first. The duration an agent is willing to wait
provides a noisy signal to others about the value of the investment. The agents’ strategic
considerations therefore influence beliefs, which in turn affect investment decisions.

I study the effects of information exchange through strategic delay on long-run be-
liefs and outcomes. Equilibria with delay can exhibit two structurally very different long-
run outcomes. When information is fairly equally distributed, the natural equilibrium
benchmark is one in which beliefs converge over time. All agents eventually become
pessimistic about the state and increasingly less likely to ever make the investment. This
equilibrium generates too little investment in aggregate relative to the efficient bench-
mark. In contrast, when the distribution of information is more skewed, there can be a
persistent wedge in posterior beliefs between well and poorly informed agents, because
the poorly informed tend to “drive out” the well informed.

Intuitively, this effect is the result of an informational feedback loop. Note that for an
agent with an accurate signal about the state, the highest possible posterior belief about
the state is higher than that of a poorly informed agent. Similar to the logic for equilibria
in mixed strategies, in an equilibrium with delay, the poorly informed agent stops more
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quickly than the agent with superior information, because the most optimistic types
must be given an incentive to delay their investment. While the presence of such op-
timistic types depends on the true state, the behavior of the uninformed depends only
on his own information. Stopping with a higher probability, the poorly informed reveals
more information through inaction and thus continues to be worse informed. This rein-
forces a cycle in which one agent continues to be less informed than others while having
to stop at a higher rate. In the limit, the less informed agent eventually invests if no other
agent does, while the better informed are less and less likely to invest, despite the fact
that their expected return remains positive and bounded away from zero.

In this type of equilibrium, some agent invests with certainty regardless of the state
of the world, which might be in excess of the social optimum. The cost of this excess is
borne mainly by the poorly informed. The results in the literature typically suggest the
opposite: when a public good is provided through voluntary contribution, then it is pro-
vided for at a socially insufficient level, because no agent takes into account the value
of his own contribution to others. However, this insight is obtained almost exclusively
through the analysis of symmetric equilibria of models featuring symmetric agents. The
present paper deviates from this narrow focus on symmetric environments, character-
izing the equilibrium outcomes in a more general model that allows agents to differ with
respect to their endowment with information.

The paper is related to the literature on voluntary contributions to discrete public
goods. These papers consider the strategic interaction between agents who face the bi-
nary decision of whether to contribute to a public good, and in which the public good
is provided if the number of participants exceeds a given threshold. Such a model was
first analyzed by Palfrey and Rosenthal (1984). Consistent with standard logic, they find
that in the unique symmetric equilibrium there is an insufficient provision of the public
good. There are several extensions to their model that allow for the presence of informa-
tional asymmetry. Bliss and Nalebuff (1984) consider endogenous timing of voluntary
contributions to a discrete good in a “war of attrition” framework. In their model, agents
are privately informed about their individual cost of contributing to a public good of
commonly known value. In contrast, I assume that agents are privately informed about
the uncertain return to an investment. The public good is the information about the
true return, and the cost of contributing is the loss incurred when receiving a negative
return. Thus, there is not only the strategic interaction that arises from the presence of
asymmetric information, but also learning about the state of the world from observing
others’ behavior.

Observational learning has been studied by a substantial number of papers, follow-
ing the seminal articles of Bikhchandani et al. (1992) and Banerjee (1992). These papers
consider models in which agents learn from other agents’ actions about a common state.
Bikhchandani et al. (1992) show that when actions are a coarse signal about the state,
then sequential decision making can lead to informational cascades in which agents
ignore their own information and herd on an action that may be socially undesirable.
They assume that agents choose their actions in an exogenously determined sequence,
but this is not an essential requirement. Chamley and Gale (1994) find that cascades
persist even with endogenous timing when agents can respond sufficiently quickly to
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others’ actions. The reason is that short delays can reveal only small amounts of infor-
mation that may not suffice to change an agent’s decision from one action to another if
the decision he has to make is binary. This explains why informational cascades do not
arise when agents have to choose an action from a continuum, as in Gul and Lundholm
(1995) and Murto and Välimäki (2013).

The essential novelty in this paper compared to the social learning literature is that
agents not only learn from the behavior of others, but also from the experience of others.
This additional source of information increases the agents’ option value of delay and can
thus induce them to wait longer. As a result, delay may arise naturally in equilibrium.
Delay and information cascades are in fact mutually exclusive. That is, delay occurs
in a robust equilibrium if and only if there is no information cascade. This finding is
consistent with Chamley and Gale (1994), in which the game ends immediately in the
continuous time limit when agents learn only from others’ actions, as well as with Gul
and Lundholm (1995) and Murto and Välimäki (2013), in which equilibrium exhibits
delay and no cascades arise.

The effects of pure informational spillovers from payoff observability has been stud-
ied in the strategic experimentation literature starting with Bolton and Harris (1999) and
Keller et al. (2005). In these papers, agents dynamically choose between two actions (i.e.,
the arms of a bandit), one of which yields a risky and the other a safe payoff. Payoffs are
observable and thus there is an incentive for agents to free-ride on other agents’ exper-
imentation. This in turn leads to inefficient levels of experimentation in equilibrium.
One can view the present model as a limit of these experimentation games, in which
choosing the risky action is immediately fully revealing. Under symmetric information,
the limit game is then isomorphic to the public goods model of Bliss and Nalebuff (1984).

A number of papers study versions of games of strategic experimentation with asym-
metrically informed agents. Some of these papers study non-competitive models in
which agents are privately informed about their cost of delay. In Décamps and Mari-
otti (2004), agents learn over time about a common state variable by observing a public
signal and from the experience of others. Agents have an incentive to delay investment
to signal high cost; thus actions do not reveal information about the state of the world,
as is the case here.

Rosenberg et al. (2007) and Murto and Välimäki (2011) study a model of strategic
experimentation with private payoffs and public exits. Agents are ex ante symmetric
and information about the common state is accumulated through experimentation over
time. Public exits reveal information about the state, but agents do not learn about the
state from the experience of their peers. Therefore, there are no free-riding incentives.
Moreover, in all three papers, agents are ex ante symmetric. The focus of the present
paper is to explore the effects of asymmetries in the distribution of information.

Another array of papers considers a model of competitive experimentation in which
agents are privately informed about the realization of a common state variable (Malueg
and Tsutsui 1997, Moscarini and Squintani 2010). In these papers, investment is com-
petitive due to patent restrictions, so that there is no free-riding motive to delaying in-
vestments. Daron et al. (2011) consider a patent race with privately informed agents
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in which free-riding emerges due to limited patent protection. The authors choose the
information structure specifically to eliminate any free-riding motive.

The remainder of the paper is structured as follows. Section 2 contains the model
and assumptions, Section 3 covers efficiency, Section 4 contains the equilibrium analy-
sis that is discussed in Section 5. Section 6 concludes.

2. Model

There is a set of agents N = {1� � � � � n} who face the option to invest in identical projects
that yield an uncertain return that depends on the realization of an unknown state of
the world θ ∈ {H�L}, where H > 0 and L is normalized to −1. At the outset, all agents
believe that θ =H with probability p0 ∈ (0�1). Each agent decides if and when to stop.

The timing of the game is as follows. After observing their signals, the agents enter
the preemption phase in which they decide sequentially, in the order of their indices,
whether to invest immediately. Preemption allows agents to move sequentially at time
zero without delay, which is essential for equilibrium existence and for establishing an
appropriate efficiency benchmark.1 When no agent preempts, the game enters the wait-
ing phase in which each agent delays his investment by a positive amount of time. We
denote agent i’s action by ti ∈ (0�∞]∪{−i}, where ti = −i represents the event that agent
i preempts the game and ti ≥ 0 is agent i’s stopping time conditional on reaching ti in
the waiting phase. When ti = ∞, agent i waits indefinitely.

The first agent to make the investment immediately realizes the return and thereby
reveals the state to everyone. Let t−i = (tj)j �=i denote the profile of stopping times of all
agents other than i. The payoff for agent i from stopping at ti is

ui(ti� t−i� θ)=

⎧⎪⎨
⎪⎩
e−r max{ti�0}θ if ti = min

j
tj�

e−r max{minj tj �0} max{θ�0} if ti > min
j

tj�

At the outset, it is commonly known that each agent i ∈ N is endowed with a sig-
nal si ∈ [0�1] that is drawn from a distribution with a smooth cumulative distribution
function Fi�θ(·), which we assume has full support and a bounded density. A strategy for
agent i is a function σi : [0�1] → [0�∞] ∪ {−i} with left limits. A strategy profile (σi)i∈N is
a Bayes–Nash equilibrium if σi(si) ∈ arg maxt E[ui(t�σ−i(si)� θ)|si] for every si ∈ [0�1].

For a given strategy profile (σi)i∈N , let τ(s) = mini∈N σi(si) be the first stopping time
among all agents. Further, define s+i = inf{si|σi(si)= −i} to be the lowest signal such that
agent i preempts the game. Similarly, let s−i = inf{si|σi(si) <∞} be the lowest signal such
that agent i stops in finite time. We define inf∅ = 1 for the case that one of these sets is
empty. Finally, define

A(t) = {
i ∈N | ∃si ∈ [0�1] : σi(si)= t

}
1Without preemption, equilibria may fail to exist when some agent stops at time zero with positive prob-

ability. Then other agents may prefer to wait for that agent to move first, but since there is no first instance
after t = 0, a best response may not exist.
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to be the set of agents who are “active” at time t, i.e., the set of agents for whom there
exists a signal si ∈ [0�1] such that agent i stops at t after observing si.

We assume that signal distributions satisfy the monotone likelihood ratio property
(MLRP), which says that the likelihood ratio F ′

i�H(si)/F
′
i�L(si) is increasing in si for each

agent i. We make two further assumptions to render the strategic interaction interesting.

Definition 1 (Optimism). Agent i is weakly optimistic if E[θ|si = 1] > 0 and strongly
optimistic if E[θ|si = 0] > 0.

An agent is weakly optimistic if he assigns a positive expected value to θ after ob-
serving his best signal. A strongly optimistic agent assigns a positive expected value to θ

after any signal. Weak optimism is a necessary condition for this agent’s participation,
since an agent for whom the expected value of stopping is negative at the outset would
never act in any equilibrium.

Assumption 1 (Initial optimism). All agents are weakly optimistic.

Next, we assume that there is aggregate uncertainty about the state of the world. By
aggregate uncertainty we mean that there is a signal for each agent so that this agent
prefers not to act for some realization of any other agents’ signals.

Assumption 2 (Aggregate uncertainty). We have E[θ|si=0� sj=0] < 0 for any i �= j.

The assumption of aggregate uncertainty is important to focus the analysis on in-
formational rather than coordination problems. It says that if any pair of agents would
commonly learn that both received their worst possible signal, then neither of them
would be willing to make the investment. Aggregate uncertainty ensures that others’
private information does not only influence an agent’s timing of investment, as would
be the case without this assumption, but also if an agent will choose to invest at all.

By Bayes’ rule, agent i’s belief that the state is H after observing signal si, but before
the beginning of the game, is

Pr(H|si) = p0F
′
i�H(si)

p0F
′
i�H(si)+ (1 −p0)F

′
i�L(si)

�

Denote by pi(si� s−i) agent i’s belief that the state is H after observing signal si and con-
ditional on the event that each agent j observed a signal no higher than sj . By Bayes’
rule, this belief is given by

pi(si� s−i)=
Pr(H|si)

∏
j �=i

Fj�H(sj)

Pr(H|si)
∏
j �=i

Fj�H(sj)+ Pr(L|si)
∏
j �=i

Fj�L(sj)
�

Throughout, we call an agent i more optimistic than an agent j if agent i’s posterior belief
at a given public history is higher than agent j’s. Moreover, we refer to agent i as being
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better informed than agent j if the variance of agent i’s posterior belief is higher than the
variance of agent j’s belief.

Define the stopping value of agent i at the signal profile si and s−i = (sj)j �=i to be

ũi(si� s−i) := E[θ|si� s−i] = pi(si� s−i)H − (
1 −pi(si� s−i)

)
�

In some cases, agents may be endowed with particularly informative signals that
dominate others’ information in the following sense.

Definition 2 (Dominant signal). Let s∗i be the signal solving E[θ|s∗i ] = 0. Agent i’s signal
is dominant if E[θ|si ≤ s∗i � sj = 1] ≤ 0 for all j �= i.

A dominant signal for agent i is a signal such that knowing that agent i’s expected
stopping value is negative discourages even the most optimistic competitor.

We denote by α(s1� � � � � sn) the likelihood ratio of the posterior probability that the
state is H, conditional on each agent i’s signal being below si. It follows from Bayes’ rule
that

α(s1� � � � � sn)= p0

1 −p0

n∏
i=1

Fi�H(si)

Fi�L(si)
�

MLRP implies that Fi�H/Fi�L is increasing for each i (Eeckhoudt and Gollier 1995) and
thus α is increasing in each of its arguments.

Further, we denote by λi�θ the reverse hazard rate of agent i’s signal distribution in
state θ given by

λi�θ(si) = F ′
i�θ(si)

Fi�θ(si)
�

Denote by hi the reverse hazard ratio (RHR) for agent i at si ∈ [0�1], defined as the ratio
of reverse hazard rates and given by

hi(si) = F ′
i�H(si)/Fi�H(si)

F ′
i�L(si)/Fi�L(si)

�

It is well known that MLRP implies λi�H > λi�L and thus hi > 1. The hazard ratio hi and
the likelihood ratio of the public posterior α allow us to decompose the public posterior
belief about the state into the common component and a private component:

pi(si� s−i)

1 −pi(si� s−i)
= α(s)hi(si)� (1)

Here, α represents a measure of the information about the state that is commonly avail-
able to all agents. The factor hi represents the information that agent i holds privately
and it provides a measure of divergence of an agent’s private belief from the public belief.
Using this decomposition, we write

ũi(si� s−i)

1 −pi(si� s−i)
= α(s)hi(si)H − 1� (2)
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The left-hand side measures the relative payoff from investment. The right-hand side
shows that this value differs across agents only through differences in their respective
RHRs.

We further impose the following technical assumption on the distribution of signals
in the low state.

Assumption 3. For every i ∈N , we have

−∞ < lim
si→0

F ′′
i�L(si)/F

′
i�L(si)

F ′
i�L(si)/Fi�L(si)

< 1�

This assumption is a regularity condition that ensures that the distribution of signals
in a low state is well behaved around zero for all agents. Intuitively, it says that close to
zero, the curvature of the distribution function for signals in a low state is neither too
small nor too large relative to its slope. It is always satisfied, for example, if Fi�L is con-
cave with finite second derivative. Note that it is not a restriction on the informativeness
of signals, because the restriction applies to the distribution of signals in the low state
only, while informativeness is governed by the relative distributions of signals across
states.

3. Socially optimal stopping

In this section, we introduce a notion of efficiency that addresses the question of how
agents should behave so as to maximize welfare. Our efficiency benchmark entails the
restriction that agents cannot communicate their private information prior to deciding
when to stop. We can interpret it as the solution to the “team problem” in which agents
choose their strategies collaboratively, before observing their signals, so as to maximize
the sum of their payoffs. Comparing equilibrium outcomes with this benchmark allows
us to isolate inefficiencies in the use of information resulting from strategic effects and
exclude those inefficiencies that are the result of the way information is processed in
equilibrium. Our notion of efficiency is as follows.

Definition 3. A strategy profile (σi)
n
i=1 is efficient if it maximizes

E

[
n∑

i=1

ui
(
σi(si)�σ−i(s−i)� θ

)]
�

An efficient allocation never entails any delay, because any outcome that is feasible
through delayed stopping in the waiting phase can be achieved without delay in the pre-
emption phase. To see this, fix any strategy profile σ and define Ei = {si|σi(si) <∞} to be
the set of all signals for agent i for which i stops in finite time. Denote by E = E1 ×· · ·×En

the set of all signal profiles for which some agent stops in finite time. We call E the stop-
ping region of σ . Now consider an alternative strategy profile, in which agent i preempts
the game if and only if si ∈ Ei and waits indefinitely otherwise. This strategy profile
generates the same stopping region as σ without delay, and thus increases the sum of
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payoffs provided stopping is indeed socially desirable for all profiles in E. Finding the
efficient strategy profile thus means determining the stopping region E that maximizes
the expected welfare E[v(s) | s ∈E], where

v(s) = Pr(H|s)nH − Pr(L|s)�
Because preemption decisions have to be made autonomously by each agent, each
agent should preempt if the expected sum of payoffs is positive, conditional on his own
signal and on the event that every other agent does not preempt the game.

The stopping region for an efficient strategy profile is characterized by thresholds—
one threshold ŝi for each agent i. This follows from the monotone likelihood ratio prop-
erty: if it is socially optimal for an agent to preempt when his signal is si, then it must
also be socially optimal to do so for any signal s′i > si, as the higher signal implies a higher
expected welfare.

Proposition 1. If σ̂ is an efficient strategy profile, there is a profile of signal thresh-
olds ŝ = (ŝ1� � � � � ŝn) ∈ [0�1]n such that σ̂i(si) = −i if si ≥ ŝi and σ̂i(si) = ∞ otherwise. The
threshold profile satisfies ṽi(ŝ) ≤ 0 for all i with ṽi(ŝ) = 0 whenever ŝi < 1, where

ṽi
(
ŝ
) = E

[
v(s)|si = ŝi� s−i < ŝ−i

]
�

Moreover, an efficient strategy profile exists.

Efficient strategy profiles can be viewed as equilibria of a modified game in which
all agents pursue the common objective of maximizing social welfare. In this modified
game, each agent i takes as given the strategies of others and then chooses the socially
optimal response based on the information available to him: his own signal and the
event that no other agent preempts. The best response for all agents is to preempt when-
ever the social value of doing so, based on their subjective posterior belief, is positive. In
equilibrium, it must therefore be the case that, conditional on no agent preempting the
game, everyone expects the social value to be nonpositive.

Figure 1 illustrates efficient stopping graphically for the case of two agents. Each
agent i = 1�2 preempts if his signal lies above the threshold ŝi, where the profile (ŝ1� ŝ2)

is given by the intersection of their zero-payoff curves. Naturally, the agents could do
better if they were to pool their information before deciding whether to stop. In our
benchmark, agents fail to stop at signal profiles that would generate positive expected
welfare if they were to pool information (Area I) and they do stop at signal profiles at
which it would be socially preferable not to (Area II).

Interestingly, in some cases it is efficient to ignore an agent’s private information
entirely. This is possible if information is distributed in such a way that one agent’s de-
cision not to preempt overpowers any good news of others. Suppose, for example, there
are two agents whose signals are drawn from distributions satisfying F1�H(s) = F1�L(s)

β

and F2�H(s) = F2�L(s)
γ , where β > γ > 1. These signal distributions satisfy MLRP and

the reverse hazard ratios are constants given by h1(s1) = β and h2(s2) = γ, respectively.
By the same logic as in (2), we have the inequality

ṽi(si) ≤ 0 ⇔ α(s1� s2)hi(si) ≤ 1/2H�
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Figure 1. Efficient stopping with two agents.

Since reverse hazard ratios are constant, the inequality cannot bind simultaneously for
both agents. Therefore, by Proposition 1, the signal thresholds must be ŝ1 = 1/

√
2βH

and ŝ2 = 1. In this case, agent 2’s information is entirely ignored, and agent 1’s signal
becomes decisive. What is happening intuitively is that agent 1’s decision not to pre-
empt is worse news than any potential good news that agent 2 may have. We can easily
extend this logic to larger games by adding agents whose signal distributions are identi-
cal to that of agent 2. Taking this reasoning to the extreme yields a striking result: even
as the number of agents becomes large and their information arbitrarily precise in ag-
gregate, almost all of it can become irrelevant in the efficient benchmark under strong
informational asymmetry.

4. Equilibrium analysis

In this section we consider equilibrium outcomes of the model and discuss their prop-
erties. We begin with a preliminary result about the structure of equilibria that shows
that equilibrium strategies are monotone and almost everywhere differentiable. We
then provide a full equilibrium characterization for the case of two agents and gener-
alize these to larger games with many agents.

4.1 Preliminaries

We begin by showing that equilibrium strategies are monotone and induce “smooth”
distributions over stopping times. This result is fundamental for the remaining analysis.

Proposition 2. Let (σ1� � � � �σn) be a Bayes–Nash equilibrium. Then for each i =
1� � � � � n, we have the following scenarios:
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(i) Monotonicity: Each σi is weakly decreasing with s+i < 1 for at most one agent
i ∈N . If s−i < s+i , then σi is strictly decreasing on (s−i � s

+
i ).

(ii) Smoothness: Let s−i < s+i and let Di ⊂ (s−i � s
+
i ) be the (countable) set of disconti-

nuities of σi. Then σi is differentiable on (s−i � s
+
i ) \Di.

(iii) We have |A(t)| �= 1 for a.a. t ≥ 0.

Intuitively, the proposition says that each agent’s equilibrium strategy is a decreasing
function that has flat regions only at the upper and lower tails, where it takes the values
zero and infinity, respectively. If these flat regions do not meet, then there may be a
countable number of downward jumps in the space between. Jumps in the equilibrium
strategy of some agent i correspond to “passive” episodes in the equilibrium behavior
of agent i, in the sense that there exists a time period during which agent i never stops
for any of his signal realization. Discontinuities in the agents’ strategies may arise as the
result of changes in the set of actively participating agents, which, if nonempty, must
contain at least two agents except on a set of measure zero.

Equilibrium strategies are monotone because agents who are more optimistic have
a lower incentive to delay effort (this is the well known cutoff property of Fudenberg and
Tirole 1991). Intuitively, consider the trade-off of an agent choosing between stopping
times t and t ′ > t. The gain from waiting from t until t ′ is equal to the expected loss
avoided if another agent stops between these times and the state turns out to be low.
However, the agent also incurs a loss from waiting for the case in which no agent stops
due to discounting. Now, the higher an agent’s signal, the higher his belief that the state
is indeed high, which reduces the value of delaying investment. Thus, if it is a best re-
sponse for an agent with signal si to stop at t, then no agent with signal s′i > si will stop
later than t.

Equilibrium strategies are “smooth” in the articulated sense because payoffs are dif-
ferentiable with respect to stopping times, and because the signal distributions are “well
behaved” in the sense that they have full support with bounded, continuously differen-
tiable densities. Therefore, a small variation in signals leads to a small change in stop-
ping times.

4.2 Two agents

In this section, we characterize the set of equilibria for the case of two agents. We differ-
entiate between equilibria with preemption, in which the game ends only in the preemp-
tion phase, and equilibria with delay, in which the game ends with positive probability
in the waiting phase.

4.2.1 Equilibria with preemption There are two reasons the game may end in the pre-
emption phase. One reason is that an agent preempts the game because he has access to
exceptionally accurate information and thus takes on the role of an informational leader
whom the other imitates. We call this scenario informed preemption. The second possi-
bility is that a strongly optimistic agent preempts the game regardless of the realization
of his signal, while the other waits for him to move. We refer to this second scenario as
uninformed preemption.
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Informed preemption In an equilibrium with informed preemption, one agent pre-
empts the game if he expects his payoff to be nonnegative, and otherwise waits indefi-
nitely; the other waits forever for sure. Formally, suppose agent i has a dominant signal,
and let s∗i be the signal solving E[θ|s∗i ] = 0. Then, in an equilibrium with informed pre-
emption, agent i preempts if si ≥ s∗i and waits indefinitely otherwise, while the other
agent waits indefinitely for sure. Informed preemption is possible in equilibrium if the
preempting agent’s signal is dominant.

Proposition 3. If agent i has a dominant signal, there exists an equilibrium with in-
formed preemption by agent i.

Informed preemption necessitates a dominant signal so that agent i’s inaction at
the beginning of the game conveys sufficiently bad news to the other to “overpower”
any potential good news he might have himself. That the equilibrium conditions are
satisfied follows immediately from the definition of dominant signals. Agent i expects
that the other will never stop, and thus decides whether to preempt based only on his
own information. If he preempts, the game is over. If he does not preempt, then the
other agent updates his belief, and at this new belief, he assigns a negative expected
value to the state by the definition of dominant signals. Thus it is optimal for him to wait
indefinitely.

The notion of dominant messages provides a necessary and sufficient condition for
the existence of an equilibrium in which an information cascade arises with positive
probability. It generalizes a finding in Herrera and Hörner (2013) in which information
cascades form if reverse hazard ratios are monotonically decreasing. Here, if agents have
identical signal distributions with a decreasing RHR, then each agent has a dominant
signal. To see this, recall that by (1) we have

ũ(s�1)
1 −p(s�1)

= α(s�1)h(s)H − 1 >α(1� s)h(1)H − 1 = ũ(1� s)
1 −p(1� s)

�

where the second inequality holds when h is decreasing (we drop subscript i). Now, if
u(s�1) = 0, then u(1� s) < 0, which shows that each agent has a dominant signal.

Uninformed preemption The game may also end with certain preemption by a strongly
optimistic agent. Certain preemption is optimal for an agent who is strongly optimistic,
provided that the other agent waits indefinitely, and waiting indefinitely is a best re-
sponse to the first agent preempting for sure.

Proposition 4. If agent i is strongly optimistic, then there exists an equilibrium with
uninformed preemption by agent i.

Uninformed preemption is conceptually more problematic than informed preemp-
tion. It is the only equilibrium in which the waiting phase is never reached, and thus
our restriction to Bayes–Nash equilibria is less plausible. In particular, if we consider the
analogous perfect Bayesian equilibrium of the fully dynamic equivalent of our game,
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then the existence of an equilibrium with uninformed preemption relies on the spec-
ification of off-equilibrium beliefs, and it is then not robust to slight perturbations to
the payoff structure (Fudenberg et al. 1988). To see this point, suppose the preempting
agent, agent 1, say, chooses to deviate and instead wait. How is the other agent supposed
to respond? In equilibrium, agent 2 waits indefinitely after such a deviation of agent 1,
regardless of his own belief.

If we introduce a small change in payoffs, such that that there is a small probability
that agent 2 prefers to never stop, waiting indefinitely is no longer a best response. The
reason is that agent 2, after observing that agent 1 does not preempt, assumes that this
is because agent 1 prefers to never stop. Thus agent 2’s best response is to stop immedi-
ately thereafter. Naturally, given that agent 2 will respond this way, it is no longer optimal
for agent 1 to preempt. The problem is that the equilibrium with uninformed preemp-
tion is sustained by pure action. In contrast, in equilibria with informed preemption,
inaction generates an information cascade that makes the equilibrium robust to small
perturbations in payoffs.

4.2.2 Equilibria with delay In an equilibrium with delay, the game ends with positive
probability in finite time in the waiting phase. In such an equilibrium, each agent strate-
gically delays taking action to take advantage of the possibility that another agent may
move first. In this subsection, we show that the strategic interaction in these equilibria
is captured by a pair of coupled differential equations. The long-run equilibrium out-
comes correspond to fixed points of the associated dynamical system. Fixed points can
exist in the interior of the space of signal profiles as well as on the boundary. We ana-
lyze equilibrium belief dynamics and illustrate how the location of fixed points and their
stability attributes affect equilibrium properties.

When there are only two agents in the game, it follows from Proposition 2 that for an
equilibrium with delay (σ1�σ2), each strategy σi is differentiable at a.a. si < s+i . More-
over, each agent’s strategy has a differentiable monotone inverse, which we can use to
derive a system of differential equations whose solutions are candidates for inverse equi-
librium strategies.

Fixing a pair of inverse equilibrium strategies (φ1�φ2), monotonicity implies that we
can write the probability that agent i stops before time t in state θ as 1 − Fi�θ(φi(t)) for
each i = 1�2. Therefore, the expected payoff from stopping at time t > 0 is given by

Pr(H|si)
(∫ t

0
F ′

−i�H

(
φ−i(τ−i)

)
φ′

−i(τ−i)e
−rτ−i dτ−i + F−i�H

(
φ−i(t)

)
e−rt

)
H

+ Pr(H|si)
(
1 − F−i�H

(
φ−i(0)

))
H − Pr(L|si)F−i�L

(
φ−i(t)

)
e−rt �

The first and second terms represent the expected payoff from taking action at t con-
ditional on the state being high. Agent i with signal si assigns probability Pr(H|si) to
this event. He receives payoff e−rτ−iH if agent −i acts at τ−i < t, and otherwise he acts
himself at time t and obtains the payoff e−rtH. The third term represents the expected
payoff if the state is low. In this case, agent i receives a payoff of zero if the other agent
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acts before t, and otherwise he incurs a loss −e−rt . Taking the first-order condition yields

r Pr(H|si)F−i�H

(
φ−i(t)

)
H − r Pr(L|si)F−i�L

(
φ−i(t)

)
= −Pr(L|si)F ′

−i�L

(
φ−i(t)

)
φ′

−i(t)�

Finally, substituting si = φi(t) and dividing both sides by the total probability of reaching
time t, we can rewrite the last equation more succinctly as

rũi
(
φi(t)�φ−i(t)

) = −(
1 −pi

(
φi(t)�φ−i(t)

))
λ−i�L

(
φ−i(t)

)
φ′

−i(t)�

The left-hand side is agent i’s marginal cost of waiting, the right-hand side is the ex-
pected marginal gain from delaying investment by another instant. With probability
λ−i�L(φ−i(t))φ

′
−i(t), the other agent stops at that instant, and then agent i avoids the

loss of −1 if the state is low, which is the case with probability 1 −pi(φi(t)�φ−i(t)).
Now, for any equilibrium (σ1�σ2) with delay, the pair of inverses (φ1�φ2) must solve

the system of differential equations

−φ′
1(t) = Y1

(
φ1(t)�φ2(t)

)
�

−φ′
2(t) = Y2

(
φ1(t)�φ2(t)

)
�

(3)

where

Yi(s1� s2) = rũi(si� s−i)(
1 −pi(si� s−i)

)
λi�L(si)

�

By Proposition 2, strategies belonging to an equilibrium with delay must be monotoni-
cally decreasing, so that a solution path can belong to an equilibrium if and only if it is
strictly decreasing. The following proposition shows that monotonicity and differentia-
bility are in fact sufficient conditions for equilibrium.

Proposition 5. Let s+ = (s+1 � s
+
2 ) ∈ [0�1]2 with s+i = 1 for some i. Suppose φ is a pair

of strictly decreasing, differentiable inverse strategies solving (3) with initial condition
φ(0) = s+. Then φ is an equilibrium.

This result is a corollary to Proposition 8, which is proved in the Appendix. To char-
acterize the set of all Bayes–Nash equilibria, we first find the fixed points of the dynam-
ical system (3) that are the solutions to the system of algebraic equations Y1(s1� s2) =
Y2(s1� s2) = 0. The solutions lie along the zero-payoff curves that correspond to the set
of all signal profiles at which an agent’s stopping value is zero. Formally, the zero-payoff
curve for agent i is defined as the set {(s1� s2)|ũi(si� s−i)= 0} of all signal profiles at which
agent i’s stopping value is zero. By the implicit function theorem, we can represent this
set by a function ϕi, solving ũi(si�ϕi(si)) = 0 for each i = 1�2. Note that if s−i < ϕi(si),
then ũi(si� s−i) < 0, which implies Y−i(s−i� si) < 0 and thus φ′

−i(t) > 0.
The path of a solution to the dynamical system is decreasing in the area above both

zero-profit curves. Because each solution path eventually converges to one of the fixed
points, a path belongs to an equilibrium only if it stays above these curves. We can
interpret any point (s1� s2) in the diagram as a measure of the private information that
remains with the agents. The closer si is to zero, the more information he has revealed.
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Interior limits An interior limit is a fixed point (s1� s2) of (3) with si > 0 for each i. It rep-
resents a long-run equilibrium outcome in which each agent retains a positive amount
of private information in the limit. At an interior limit, the reverse hazard rate is positive
for each i, so that the denominator of each Yi(s1� s2) must be positive. Thus, by (2), the
point (s1� s2) must lie at the intersection of the zero-profit curves.

The following proposition shows that an interior limit exists if neither has or both
agents have a dominant signal, and that any interior limit is also a limit of an equilibrium
with delay.

Proposition 6. There exists an equilibrium that converges to an interior limit s∗ =
(s∗1� s

∗
2) if both have or neither agent has a dominant signal. Moreover, if ϕ′

i(s
∗
i )ϕ

′
−i(s

∗
−i) <

1, then this equilibrium is unique.

When no agent has a dominant signal, then, letting ŝi = ϕ−1
i (1), we have 0 =

ũi(ŝi�1) < ũ−i(1� ŝi) for each i, and thus zero-payoff curves must indeed intersect. Sim-
ilarly, when both agents have a dominant signal, then 0 = ũi(ŝi�1) > ũ−i(1� ŝi). The sta-
bility properties of interior limits depend on the type of intersection. In general, when
the zero-payoff curve for agent 1 intersects the zero-payoff curve for agent 2 from below
(keeping s1 on the horizontal axis), then the point of intersection is an unstable saddle
point. Intuitively, at a point between these lines to the left of the intersection, the system
flows upward (ũ1 < 0) and to the left (ũ2 > 0), thus moving away from the point of inter-
section. In contrast, when the zero-payoff curve for agent 1 intersects the zero-payoff
curve for agent 2 from above, then at a point between the lines to the left of the intersec-
tion, the system flows downward (ũ1 > 0) and to the right (ũ2 > 0), thus moving toward
the point of intersection.

The stability attributes of an interior limit determine the set of solution paths that
converge to it. First, note that each Yi is differentiable except potentially at the upper
boundary when si approaches 1.2 Therefore, the dynamical system (3) is locally Lips-
chitz in the interior and thus for any initial interior point s, there exists a unique so-
lution. Now, starting at a stable interior limit s∗, we can choose any s > s∗ in a small
neighborhood around the fixed point, and solve (3) backward in time starting at s. The
solution is unique and strictly increasing, and by Rademacher’s theorem we can extend
the solution all the way to the boundary. The limit point then determines the initial sig-
nal pair (s+1 � s

+
2 ). If s∗ is an unstable saddle point, then there exists a unique solution

path approaching s∗ from above (i.e., the separatrix that runs from the boundary of the
space of signal profiles along the crest to the saddle point).

Boundary limits A boundary limit is a fixed point (s1� s2) with si = 0 for one agent i.
It represents a long-run equilibrium outcome in which one agent stops with certainty
in finite time, and by doing so perfectly reveals his private information. At a boundary
limit, the reverse hazard for agent i goes to infinity, while for the other agent it must

2When limsi→1 F
′
i�L(si) = 0.
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remain positive.3 This implies that at a boundary limit, the stopping value is zero for
agent i and positive for agent −i.

The following result shows that a boundary limit exists when an agent is strongly op-
timistic, and that for any boundary limit, there is a continuum of equilibria converging
to it.

Proposition 7. If agent i is strongly optimistic, then there exists a threshold ŝi, such that
for any s+i ≤ ŝi, there is an equilibrium that converges to a boundary limit.

The proposition tells us that when an agent is strongly optimistic, then there exists a
continuum of equilibria converging to a boundary limit. The strongly optimistic agent
must potentially preempt the game with positive probability if that agent possesses “too
much” information at the outset.

We construct such an equilibrium as follows. Suppose agent 1 is strongly optimistic.
Let s2 be the signal for agent 2 that solves ϕ2(s2) = 0. The signal s2 has the property that
the stopping value of agent 1 is zero if he observes his worst signal and learns that agent
2 observed a signal no higher than s2. It is easy to check that s∗ = (0� s2) is a boundary
limit of the dynamical system (3). Notice that ũ1(0� s2) < ũ2(s2�0), since agent 1 knows
only that s2 is an upper bound of agent 2’s signal.

The basic idea of the proof is to establish asymptotic stability of the boundary limit
s∗ and use this fact to show that there exists a continuum of strictly decreasing solution
paths that converge to it. Once we have determined that a boundary point is stable, it
follows from Lipschitz continuity (shown in the proof to Proposition 2) that there exists
a unique solution path that ends at s∗. We now take a new point s along this path, and
consider another point sδ = (s1 − δ� s2) with δ ∈ (0� s1); then the solution path going
through the newly selected point sδ must also be strictly decreasing. For each δ, the
point sδ lies on a different solution path, and all of them (i) are strictly decreasing and
(ii) converge to s∗.4

Figure 2 illustrates different types of equilibria for the case of two agents with sym-
metric signal distributions that have a monotone RHR. In each case, there exists a
unique interior limit. The left panel shows the phase diagram for a case in which the
RHR is increasing and agents are strongly optimistic. In this case, there exist two equi-
libria with uninformed preemption, but neither agent has a dominant signal, and thus
there is no equilibrium with informed preemption. Moreover, there exists a unique equi-
librium with delay converging to an interior limit, and there is a continuum of equilibria
converging to a boundary limit, one for each agent.

The right panel shows the phase diagram for a case in which the RHR is decreasing.
When the RHR is decreasing, each agent has a dominant signal. Thus, there exist two
equilibria with informed preemption, and multiple equilibria with delay (possibly in-
volving preemption with positive probability) that converge to the unique interior limit.
Decreasing RHR implies that neither agent is strongly optimistic, and thus there is no

3The latter follows from the fact that, by aggregate uncertainty (Assumption 2), the boundary limit can-
not lie at the origin.

4Note that when δ goes to s1, the slope of the corresponding solution goes to infinity.
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Figure 2. Phase diagrams for symmetric signal distributions with monotonically increasing
RHR (left panel) and decreasing RHR (right panel).

equilibrium with uninformed preemption and no equilibrium converging to a bound-
ary limit.

4.3 Many agents

We now move on to consider games with more than two agents. In such large games,
the essential properties of equilibria with preemption remain the same. Propositions
3 and 4 hold verbatim for any number of agents and the limitations for equilibria with
uninformed preemption still apply. One difference is that there are stronger demands on
a dominant signal, because the signal must informationally dominate all other agents’
signals.

A substantial difference in larger games arises in equilibria with delay. When there
are more than two agents in the game, each agent can become a passive bystander dur-
ing the course of the waiting phase. Recall that with two agents, delay is possible only if
each agent stops with positive probability at every instant, by Proposition 2. With more
than two agents, any subset of at least two agents can engage in this sort of attrition
game, allowing the others to wait and observe. This additional degree of freedom intro-
duces an element of coordination into the game that substantially increases complexity.

To shed some light on the source of this complexity, note that at any instant, we can
divide the set of all agents into those who are “active,” in the sense that they stop with
positive probability, and those who are “passive,” in the sense that they stop with proba-
bility 0. Now, the inverse strategies for active agents at that instant are solutions to a sys-
tem of differential equations obtained from the first-order conditions of active agents.
The inverse strategies of passive agents are simply constants. The crucial observation is
that the partition into active and passive agents is arbitrary and can, in principle, change
at an arbitrary frequency as long as the probability that some active agent stops is such
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that it is indeed optimal for passive agents to wait. Because of the additional complexity,
we do not attempt a full characterization of equilibria as in the two-agent case. Instead,
we focus on the characterization of equilibrium limit points.

Formally, periods of inactivity in the waiting phase correspond to jumps in an agent’s
stopping strategy. Because of these jumps, equilibrium strategies are generally not in-
vertible. Instead, we work with the generalized inverse

φi(t) = sup
{
si|σi(si) ≥ t

}
�

which, for each i, gives the highest signal for which agent i stops after t. The function φi

is the inverse of σi on its image, and its constant continuation elsewhere. Because σi is
weakly decreasing and differentiable almost everywhere by Proposition 2, it follows that
φi is weakly decreasing, continuous, and almost everywhere differentiable. For con-
venience, we call the function φi an inverse strategy, and we say that a given profile
(φ1� � � � �φn) of inverse strategies constitutes an equilibrium if there exists an equilib-
rium (σ1� � � � �σn) such that φi is the generalized inverse of σi for each i ∈N .

By monotonicity of the equilibrium strategies, the distribution over agent i’s stop-
ping time in state θ can be written as Fi�θ(φi(t)). By conditional independence, the
probability that at least one agent other than i stops before time t is given by

Gi�θ(t) := 1 −
∏
j

Fj�θ

(
φj(t)

)
� (4)

Since φi is continuous and almost everywhere differentiable, and each Fi�θ is differen-
tiable and has full support, Gi�θ is continuous and almost everywhere differentiable. The
expected payoff for agent i from choosing stopping time t is

Pr(H|si)
(∫ t

0
e−rτ−i dGi�H(τ−i)+ (

1 −Gi�H(t)
)
e−rt

)
H

+ Pr(H|si)Gi�H(0)H − Pr(L|si)
(
1 −Gi�L(t)

)
e−rt �

The interpretation is analogous to the two-agent case. The derivation of the equilibrium
conditions follows essentially the same steps as before. A sufficient condition for agent
i to be willing to delay stopping is that his marginal expected payoff is greater than zero:

−Pr
(
H|φi(t)

)(
1 −Gi�H(t)

)
rH + Pr

(
L|φi(t)

)(
G′

i�L(t)+ r
(
1 −Gi�L(t)

)) ≥ 0� (5)

Now, substitute the stopping distribution Gi�θ from (4) as well as

G′
i�θ(t) = −

∏
j �=i

Fj�θ

(
φj(t)

)(∑
j �=i

F ′
j�θ

(
φj(t)

)
Fj�θ

(
φj(t)

)φ′
j(t)

)
�

divide both sides of (5) by the total probability of reaching time t, and substitute agent
i’s posterior belief pi to obtain the condition

rũi
(
φi(t)�φ−i(t)

) ≤ −(
1 −pi

(
φi(t)�φ−i(t)

))∑
j �=i

λj�L
(
φj(t)

)
φ′
j(t)� (6)
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Consistent with intuition, the inequality tells us that an agent is willing to delay effort for
an instant only if the instantaneous probability that some other agent will stop is higher
than the value he would receive if he were to stop himself immediately.

The following result provides a sufficient condition for a profile of strategies to con-
stitute a Nash equilibrium with delay.

Proposition 8. A profile (φ1� � � � �φn) of inverse strategies constitutes an equilibrium if
the following conditions hold:

(i) Every φi is continuous, differentiable a.e., and weakly decreasing.

(ii) The inequality φi(−i) < 1 implies φj(−j) = 1 for all j �= i.

(iii) For every i ∈N , condition (6) holds with equality at a.a. t > 0.

Continuity follows from strict monotonicity on the support of types that stop with
delay in finite time. Part (ii) says that at most one agent preempts the game. Part (iii)
says that for any active agent, the strategy is pinned down by first-order conditions. Note
that there is no restriction on the subset of active agents.

Take as given a profile (φ1� � � � �φn) that satisfies the conditions in Proposition 8. Us-
ing elementary operations and rearranging the equation system obtained by setting (6)
equal for each i ∈ A(t), we isolate the derivatives of inverse strategies of active agents.
This yields the dynamical system

−φ′
1(t) = 1{1∈A(t)} ·Y1

(
φ1(t)� � � � �φn(t)

)
−φ′

2(t) = 1{2∈A(t)} ·Y2
(
φ1(t)� � � � �φn(t)

)
���

−φ′
n(t) = 1{n∈A(t)} ·Yn

(
φ1(t)� � � � �φn(t)

)
�

(7)

where

Yi(s1� � � � � sn)= r

λi�L(si)

(
1

|A(t)| − 1

∑
j∈A(t)

ũj(sj� s−j)

1 −pj(sj� s−j)
− ũi(si� s−i)

1 −pi(si� s−i)

)
(8)

and 1{i∈A(t)} is an indicator function that takes the value 1 if agent i is active and 0 oth-
erwise.

In contrast to the two-agent case, some agents may become passive in the limit, that
is, some agents may not invest with positive probability beyond some finite time. The
specification of equilibrium limit points is, therefore, more delicate than in the two-
agent case because we must account for those agents who become passive in the limit.

We define an equilibrium limit to be a profile s∗ = (s∗1� � � � � s
∗
n) such that there is a set

A⊆ N with |A| ≥ 2, so that

Yi

(
s∗1� � � � � s

∗
n

) = 0 ∀i ∈ A�

ũi
(
s∗i � s

∗
−i

)
< max

j∈A
ũj

(
s∗j � s

∗
−j

) ∀i /∈A�
(9)
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In other words, an equilibrium limit is a fixed point of the dynamical system (7), re-
stricted to a set A ⊆ N of active agents, together with the requirement that the stopping
value for every agent not in A is no higher than that of any active agent. The latter re-
quirement makes sure that inactivity is the result of inferior information. It is easy to see
that, for a given signal profile s and set A, condition (6) cannot hold along any solution
path approaching s when the inequality is violated.

Analogous to the two-agent case, we call a limit point an interior limit if s∗i > 0 for all
i and a boundary limit otherwise. In the following proposition, we provide a characteri-
zation of the stopping values at these limits.

Proposition 9. Suppose s∗ = (s∗1� � � � � s
∗
n) is a limit point satisfying (9) for some A ⊂ N .

Then the following statements hold:

(i) If s∗ is an interior limit, then ũi(s
∗
i � s

∗
−i) = 0 for all i ∈A.

(ii) If s∗ is a boundary limit, then there exists a unique i ∈A such that s∗i = 0. Moreover,
we have ũi(s∗i � s

∗
−i)= 0 and there is u∗ > 0 such that ũj(s∗j � s

∗
−j) = u∗ for all j ∈A\{i}.

Interior limits generate a form of symmetry in the sense that for every agent who
is active in the limit, the stopping value is zero. In particular, this implies that their
posterior beliefs must be the same, that is, pi(s

∗
i � s

∗
−i) = pj(s

∗
j � s

∗
−j) for all i� j ∈ A. At a

boundary limit, only the agent whose limit signal lies on the boundary has a stopping
value of zero. The stopping value of all other active agents equalizes as in the interior
limit case, but it remains positive. This result is easy to see for the case of two agents,
but the proposition generalizes to any number of participants in the game.

To see that the stopping value of all agents must be zero at any interior limit s∗, notice
that for (8) to be equal to zero, the expression in parentheses must vanish. It is easy to
see that this is possible for all i ∈ A only if their stopping values are the same. We can
thus simplify the expression and obtain that Yi(s

∗)= 0 only if ũi(s∗i � s
∗
−i)= 0 for all i ∈A.

That a boundary limit can lie on the boundary for at most one agent follows imme-
diately from the assumption of aggregate uncertainty. Recall that this assumption says
that pooling the worst information of any two agents results in a negative stopping value
for both of them.5 The stopping value for the agent with s∗i = 0 is zero because, in the
limit, the stopping value and posterior beliefs of all active agents except i must equalize.
Thus, for j ∈ A \ {i}, it follows again from Yj(s

∗) = 0 that ũi(s∗i � s
∗
−i) = 00. The remain-

ing active agents retain a positive amount of private information and thus a positive
stopping value.

We can use these facts to establish existence results that extend the statements of
the two-agent case as follows.

Proposition 10. The following statements hold:

(i) An interior limit exists if no agent has a dominant signal.

5We made this assumption to ensure that agents are sufficiently interested in each others’ information.
Without this restriction, there would be equilibria that converge to the boundary in which the agents whose
boundary is reached receive a positive stopping value.
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(ii) A boundary limit s∗ with s∗i = 0 exists if agent i is strongly optimistic.

If no interior limit exists, then it must be the case that one agent is more optimistic
than all other agents. Thus, this agent must have a dominant signal. Part (i) implies
that equilibria with preemption and delay are generally complementary, in the sense
that if one type of equilibrium does not exist, then there must be an equilibrium of the
other type. For the existence of a boundary limit, strong optimism of some agent is
enough. The beliefs of the remaining active agents either converge or, if convergence is
impossible, all but one eventually become passive.

5. Discussion

Equilibrium description

In general, we can classify equilibria by the timing of investments and by the dispersion
of beliefs in the long run. Equilibria without delay exist when the information structure
is distributed is such a way that one agent’s decision to delay investment can prompt
others to do the same. In this way, observational learning from inaction can lead to what
Bikhchandani et al. (1992) calls an informational cascade, wherein an agent’s action is
independent of his private information.

Delay is unavoidable when the information structure does not admit informational
cascades. In fact, all equilibria exhibit delay when no agent is strongly optimistic and
none has a dominant signal. This is the case, for example, when highest signals are per-
fectly informative and the prior belief is low.6 In this case, no agent’s inaction can with
certainty dissuade all others from investing. Among equilibria with delay, there are two
structurally different long-run outcomes. In the first type of equilibrium, a group con-
sisting of the most optimistic agents remains active in the limit and their posterior be-
liefs converge over time. In the second type of equilibrium, posteriors do not converge;
one of the agents, who is endowed with a high prior and a weak signal, is most likely to
invest, despite the fact that some others are better informed about the state. Note, how-
ever, that in equilibria with delay, it is possible (and sometimes necessary) that there is
an agent who preempts the game with positive probability.

In general, we find that in the context of indirect learning through delay, better in-
formation reduces the strategic incentive to invest first. That this is the case can be seen
immediately by closer inspection of (7). An active agent who has very accurate private
information, as measured by the divergence between his private belief and the public
belief, stops at a lower rate than an agent who is endowed with less informative signals.
More formally, better information is associated with a larger value of his reverse hazard
ratio, and the larger this value, the lower the stopping rate.

Moreover, in the presence of a strongly optimistic agent, learning from others’ de-
lay tends to reinforce informational asymmetries over time. To see this in the case of
two agents, reconsider the phase diagram shown in Figure 2. The left panel, shows the

6For example, consider the case in which fL(si)= 2si(1 − si) and fH(si)= si for each agent i. If p0 < 1/H,
then no equilibrium with preemption exists.
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case of two strongly optimistic agents whose signals are drawn from identical distribu-
tions. There is an interior limit, but the limit is a saddle point, and thus the equilibrium
converging to the interior limit is unique.

The instability of the interior limit is linked to the strategic effects of informational
asymmetry on equilibrium dynamics. Along the equilibrium path approaching an inte-
rior limit, agents remain similarly well informed. However, after any displacement away
from the equilibrium path, the best-response dynamics force the agent with relatively
less information to reveal more and more information over time. In contrast, boundary
limits are asymptotically stable. Therefore, when the information asymmetry at the out-
set is large enough, some agent reveals all information and invests with certainty in any
equilibrium with delay.

We can summarize these results as follows. When there are large asymmetries in the
distribution of information (such that there is no interior limit), there are two plausi-
ble outcome predictions. Either a well informed agent preempts the game and there is
no delay or there is delay, in which case a less informed agent is most likely to invest
first. In both cases, the asymmetry in the distribution of information shifts responsi-
bility of providing information to one of the parties. When information is distributed
more evenly, such that an interior point does exist, then there is an equilibrium in which
beliefs converge over time, and the burden of investing first is distributed more equally.

Welfare properties

Free-riding incentives lead to inefficiencies in the timing of investments and in the ex-
tent of aggregate investment levels. In equilibria with delay, agents defer their invest-
ments to avoid their individual risk of suffering a loss and, instead, wait for others to
provide this information for free. Delays serve no purpose in aggregating information,
since any aggregate investment through decentralized stopping strategies can be imple-
mented without delay in the preemption phase.

The agents’ failure to internalize the social value of their own investment can have
two, very different implications for aggregate investment levels in equilibrium. In equi-
libria with informed preemption, the preempting agent does not take into account the
informational value of his decision for others. Thus, aggregate investment is below the
socially optimum. Similarly, in an equilibrium with delay that converges to an interior
limit, each active agent decides whether to invest based only on his individual expected
return, ignoring the informational value for others. Therefore, aggregate investment is
below the social optimum. Moreover, agents who are active in equilibrium might differ
from those who are active in the efficient benchmark, which can create an additional
source of inefficiency. The observation that free-riding incentives lead to suboptimally
low aggregate investment levels is intuitive and a standard result in the related literature
concerned with the private provision of public goods.

A novel insight is that in the presence of information asymmetry, free-riding incen-
tives in conjunction with the option to delay investments can induce an informational
feedback loop that results in excess aggregate investment. This dynamic arises in equi-
libria with delay that converge to a boundary limit. Along the equilibrium path of such
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equilibria, the expected rates at which each agent stops must provide the most opti-
mistic types among all others with an incentive to delay their investment. The more ac-
curate an agent’s information, the more optimistic his highest type and the more rapidly
other, less informed agents have to stop. This in turn implies that the least informed
agents reveal more information through inaction than those with better information—
a cycle that reinforces itself over time.

The asymmetry in the distribution of information is a prerequisite for this phe-
nomenon. The cost of the excess investment in aggregate is borne predominantly by
poorly informed agents. While the presence of optimistic types depends on the true
state, the behavior of the poorly informed agents depends only on their own noisy sig-
nals. Therefore, the likelihood that a poorly informed agent stops is relatively larger in a
low state. Thus, as far as production of information is concerned, there is no “exploita-
tion of the great by the small” (Olson 1965), but rather the opposite.

Equilibria with uninformed preemption are somewhat special in two regards. On the
one hand, they are the only type of equilibrium in which no information is exchanged
through delay (since the preempting agent stops immediately for sure). On the other
hand, when investment is socially optimal for any realization of signal profiles (e.g., if
n is large), then uninformed preemption is efficient. Intuitively, when the social gain
from investing is large and independent of the agent’s aggregate information, then it is
efficient to rely on an uninformed agent to reveal the true state to everyone for sure. All
other equilibria are, in contrast, inefficient.

Arrival of information

Questions relating to asymmetric information in timing games have been studied exten-
sively in the literature, and it is worthwhile exploring the connections to and differences
from the present paper in more detail. One set of papers considers timing games in
which agents receive a private signal at the outset, and any additional information is
obtained through inference from the timing of others’ exits. Chamley and Gale (1994)
consider a discrete time game in which agents are privately informed about their own
presence, which is positively correlated with a binary state. Agents choose when to exit,
and exits are publicly observable. When the period length goes to zero, then in the
unique symmetric equilibrium, an analogue to information cascades of Bikhchandani
et al. (1992) appears and the game ends immediately with probability 1. Intuitively, the
game ends immediately because agents delay their investment only if the amount of
information in each period is large enough to potentially affect their decision. Here,
exits reveal not only an agent’s private signal, but also the true state of the world. The
informational value of exits is thus substantial, so that it makes sense that delays persist.

Chamley and Gale (1994) also show that there is a bias toward underinvestment,
meaning that when the number of agents grows large, there can be insufficient invest-
ment in a high state, but never excess investment in a low state. Here, only equilibria
with delay are sensitive to an increase in the number of agents. Assuming symmetric
signal distributions, the effects on an increase in the number of agents on aggregate
investment depends on the properties of the underlying distribution of signals. In gen-
eral, when the number of agents increases, then the critical signal for each agent moves
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closer to 1. The effect on aggregate investment is ambiguous and depends on the reverse
hazard ratio (RHR). While the probability that an individual agent invests only in a high
state increases, the total probability that there is at least one agent who receives such a
signal in a low state increases as well. By Proposition 9, each agent’s stopping value at an
interior limit must vanish, and thus, by condition (1), we have α(s∗� � � � � s∗)h(s∗)H = 1.
Thus, if the RHR increases in s∗, then the public posterior must decrease, so that the
accuracy of aggregate decision making becomes worse as the number of agents grows
large.

A number of other papers consider timing games in which agents are uninformed
a priori and information arrives in the form of state-dependent flow payoffs gradually
over time. Rosenberg et al. (2007) considers a game of private strategic experimenta-
tion with two players who observe their own payoff and whether the other agent has
stopped. The continuous influx of information changes long-run outcomes dramati-
cally, because given a sufficient amount of time, the agents eventually learn the true
state. Thus, information cascades in which no player invests do not arise in this model.

Murto and Välimäki (2011) consider a related problem with private experimentation
of many agents whose irreversible “exit” from experimentation is publicly observable.
They show that in the symmetric equilibrium, information aggregates in exit waves that
arrive randomly over time. As in Rosenberg et al. (2007), the continuous arrival of in-
formation implies that information cascades can arise only on investment, since in the
long-run, agents eventually learn the true state. The symmetric equilibrium combines
features of informed preemption and equilibria with delay and interior limit.

Replicator dynamics

There is a strong connection between the equilibrium learning dynamics of our model
and replicator dynamics that are commonplace in evolutionary game theory and the-
oretical ecology. The standard replicator dynamics characterize the changes in com-
position of a population over time as a function of its payoff or “fitness” in relation to
the population average. These dynamics are captured by coupled first-order differential
equations.

In the present model, the dynamics that characterizes the composition of private in-
formation across agents over time exhibits qualitatively the same properties. The con-
nection becomes most obvious in the case of two agents. The first-order condition ob-
tained in this case yields differential equations that generate dynamics identical to the
models of “competing species” (a special case of the replicator dynamics model), which
becomes apparent in the phase diagram shown in Figure 2 (see Hofbauer and Sigmund
1998). A crucial feature of the competing species models is that, under sufficiently strong
competition between species, coexistence of both species is possible only at an unsta-
ble fixed point. Any small imbalance that favors one species leads to its complete dom-
inance and the eventual extinction of the other. Here, we observe the same basic effect
but applied to the revelation of information through strategic delay.
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6. Conclusion

The objective of this paper was to reveal some of the mechanisms that govern strate-
gic investments in environments in which information is dispersed and agents learn
through observation from others’ actions and experience. I fully characterize equilibria
for games with two agents, and long-run equilibrium outcomes for larger games. Invest-
ments are insufficient when agents are evenly well informed, but may also be excessive
when information is distributed unevenly.

The basic setup of the model has been kept purposefully simple to retain tractabil-
ity. It is, however, natural to consider extensions. For example, first-mover advantage
or second-mover advantage appears plausible in many applications, such as R&D com-
petition. Such a change would create a bias among agents for action or inaction, de-
pending on whether we consider first- or second-mover advantages, but qualitatively
the basic insights in this paper remain the same.

Another possibility would be to study how private information affects free-riding
in a richer model in which experimentation occurs over time contemporaneously with
learning from others’ action. We may view the current model as a reduced form game
in which the stopping payoffs represent the continuation value in an extended game in
which a second round is played after agent stops.

Appendix: Proofs

Proof of Proposition 1. Because of the monotone likelihood ratio property, ex-
pected payoffs are nondecreasing in signals. Therefore, if it is optimal to stop for a given
signal si of some agent i, then it must also be optimal to stop at any higher signal. Thus,
the stopping region is characterized by a profile ŝ of thresholds. The optimal threshold
profile solves

max
(ŝ1�����ŝn)

p0

(
1 −

n∏
i=1

Fi�H

(
ŝi

))
nH − (1 −p0)

(
1 −

n∏
i=1

Fi�L

(
ŝi

))
� (10)

The associated Lagrangian is

L
(
ŝ1� � � � � ŝn

) = p0

(
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n∏
i=1

Fi�H

(
ŝi

))
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(
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))

+
∑
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ρi
(
ŝi − 0
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(
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The efficient threshold profile ŝ solves the necessary conditions

p0
∏
j �=i

Fj�H

(
ŝj

)
F ′
H�i

(
ŝi

)
nH − (1 −p0)

∏
j �=i

Fi�L

(
ŝj

)
F ′
i�L

(
ŝi

) = ρi −μi

together with the Kuhn–Tucker conditions ρisi = 0 and μi(1 − si) = 0, and ρi�μi ≥ 0 for
all i ∈ N . Note that the left-hand side is equal to ṽ(ŝ), so that the first-order condition
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can also be written as ṽ(ŝi� ŝ−i) = ρi −μi, where (ŝi� ŝ−i) denotes the profile of signals for
which agent i’s signal is ŝi and the remaining signals are given by ŝ−i.

First note that setting ŝi = 0 is never optimal by aggregate uncertainty. If ŝi ∈ (0�1),
then ρi = μi = 0, so that ṽ(ŝi� ŝ−i) = 0. If ŝi = 1, then ρi = 0 and μi > 0. Thus, the first-
order condition implies that ṽ(ŝi� ŝ−i) ≤ 0.

Existence follows from the extreme-value theorem. Since signal distributions are
continuous, the objective in (10) is continuous. The set of signal thresholds [0�1]n is
compact; thus a solution exists. �

Definition 4. The strategy σi has an atom at t if there exists an open set A of signals in
[0�1] such that σi(si)= t for a.a. si ∈A.

Lemma 1. The distribution over stopping times of each agent i induced by an equilibrium
strategy σi has no atom except for at most one agent at time zero.

Proof. (i) At most one agent preempts the game. Suppose there are two agents i > j who
preempt with positive probability. Then for each signal si with σi(si) = −i, agent i would
do strictly better by stopping at time t = ε for ε > 0 small, so that preemption is no best
response for i.

(ii) There are no atoms at t > 0. Suppose to the contrary that there is an atom at t > 0.
Then by standard arguments, it cannot be optimal for any other to stop at a time t − ε

for ε > 0 small. But then σi(si) = t cannot be a best response for any signal si of agent i,
contradicting the hypothesis that there is an atom at t. �

Lemma 2. Equilibrium strategies are nonincreasing.

Proof. We show that equilibrium payoffs are submodular. Let q(si)= Pr(H|si). Denote
by Gi�θ(t) the probability agent i assigns to the event that at least one other agent stops
before t in state θ. The payoff of stopping at time t ≥ 0 for agent i with signal si is

U∗
i (t� si) = q(si)

∫ t

0
e−rz dGi�H(z)H + e−rtu∗

i (t� si)�
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We can now use that ∫ t ′

t
e−rz dGi�H(z) ≤ e−rt ′Gi�H

(
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and substitute
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to obtain the inequality
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Thus U∗
i is submodular, so that by Topkis’ monotonicity theorem we have that

σi(si)= arg max
t

U∗
i (t� si)

is nonincreasing in si. �

Lemma 3. Let σ = (σ1� � � � �σn) be an equilibrium and let φ = (φ1� � � � �φn) be its general-
ized inverse, where φi(t) = sup{si|σi(si) ≥ t} for each i = 1� � � � � n. Suppose φi is strictly de-
creasing for all i ∈A⊆ N on an interval I = (t� t ′) with t ′ > t > 0. Then φi is differentiable
on I for each i ∈A.

Proof. We show that Fi�L(φi(t)) is Lipschitz-continuous for each i. Because Fi�L has
full support by hypothesis, it follows then that σi is differentiable almost everywhere.

By definition of U∗, it follows that
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(
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Agent i prefers t = σi(si) over t ′ ∈ (t�σi(s)) and, therefore, it must be the case that
�U∗

i (t� t
′� si) ≤ 0. Thus, it follows that
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We further have∫ t ′

t
e−rz dGi�H(z) ≥ e−rt ′

∫ t ′
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Using a zero addition, we find that

e−rtu∗
i (t� si)− e−rt ′u∗

i

(
t ′� si

)
= e−rtu∗

i (t� si)− e−rt ′u∗
i (t� si)+ e−rt ′u∗

i (t� si)− e−rt ′u∗
i

(
t ′� si

)
= (

e−rt − e−rt ′)u∗
i (t� si)+ e−rt ′q(si)

(
Gi�H

(
t ′
) −Gi�H(t)

)
H

− e−rt ′(1 − q(si)
)(
Gi�L

(
t ′
) −Gi�L(t)

)
�

where we used the definition of u∗
i in the last equation. Rearranging the last equality
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Now, use (11) and (12) successively to obtain(
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The exponential function e−rt is Lipschitz-continuous on the positive real line with Lip-
schitz bound r, and, therefore, r(t ′ − t)≥ e−rt − e−rt ′ . Altogether, it follows that

L
(
t� t ′

)(
t ′ − t

) ≥ (
Gi�L

(
t ′
) −Gi�L(t)

)
�

where

L
(
t� t ′

) = r

e−rt ′
u∗
i

(
t�φi(t)

)
1 − q

(
φi(t)

) �
The function L(t� t ′) is positive because φi is strictly decreasing on (t� t ′) and thus
u∗(t�φi(t)) > 0. Second, L(t� t ′) is finite because q(φi(t

′)) < 1 (if q(φi(t
′)) = 1, agent i

with signal φi(t
′) would not want to wait until t ′ > 0). Therefore, L(t� t ′) is continuous
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any j ∈A \ {i}, we have

∣∣Gi�L

(
t ′
) −Gi�L(t)

∣∣ =
∣∣∣∣∏
l �=i

Fl�L

(
φl(t)

) −
∏
l �=i

Fl�L

(
φl

(
t ′
))∣∣∣∣

≥
∏
l �=i�j

Fl�L

(
φl

(
t ′
))∣∣Fj�L

(
φj(t)

) − Fj�L

(
φj

(
t ′
))∣∣�



Theoretical Economics 13 (2018) Strategic delay under information symmetry 369

In equilibrium, we have
∏

l �=i�j Fl�L(φj(t
′)) > 0, and thus we can combine the last two

inequalities to obtain
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which implies that each Fj�L(φj(·)) is locally Lipschitz-continuous as well. Now, each
Fj�L is strictly increasing and continuously differentiable by assumption and, hence, it
is invertible, and the derivative of the inverse F−1

j�L is again differentiable with bounded

derivative (since Fj�L has full support). Thus, F−1
j�L is Lipschitz-continuous with some
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The last inequality shows that φj is locally Lipschitz-continuous. Since this holds for
all i, it follows from Rademacher’s theorem that every φj is differentiable almost every-
where on R+. �

Proof of Proposition 2. (i) By Lemma 2, equilibrium strategies are nonincreasing,
which implies 0 ≤ s−i ≤ s+i ≤ 1. By Lemma 1, the distribution over stopping times of
every agent has no atoms except at time zero.

(ii) Follows from Lemma 3.
(iii) Suppose A(t) = {i} on some open interval (t0� t1) ⊂ R+. But then there is a type

si ∈ φi((t0� t1)) in the set of types of agent i that stop during this interval who receives
a strictly higher payoff from stopping at t0 than at t1, which implies that stopping at t1
cannot be a best response. �

Proof of Proposition 3. We prove the result for n ≥ 2. Suppose agent i has a domi-
nant signal. Let s∗i solve E[θ|si] = 0. Set

σi(si)=
{

−i if si > s∗i �
∞ if si < s∗i

and let σj(sj) = ∞ for all j �= i. The payoff for agent i is

Ui(si)=
{
E[θ|si] if si > s∗i �
0 if si < s∗i �

If si < s∗i , agent i cannot gain by stopping at a finite time. If si > s∗i and agent i deviates
by stopping at t > 0, then his payoff is e−rt

E[θ|si] < Ui(si). No agent j �= i can gain by
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preempting before agent i. If agent j �= i chooses a stopping time t ≥ 0, his payoff is

e−rt
(
Pr(H|sj)Fi�H

(
s∗i

)
H − Pr(L|sj)Fi�L

(
s∗i

))
< e−rt

E
[
θ|sj� si < s∗i

]
< 0�

Hence, this deviation is not profitable. �

Proof of Proposition 4. We prove the result for n ≥ 2. Suppose agent i is strongly
optimistic. Set σi(si) = −i and σj(sj) = ∞ for all j �= i. The payoff for agent i is Ui(si) =
E[θ|si]. By strong optimism, Ui(si) ≥ 0 for all si. If agent i deviates by stopping at t > 0,
his payoff is e−rt

E[θ|si]<Ui(si). For any agent j �= i, the payoff is Uj(sj) =E[max{θ�0}|sj],
which is the maximum attainable payoff, so no deviation can be profitable. �

Proof of Proposition 6. The main argument is given in the text. It remains to char-
acterize the stability properties of the interior limit. Define

ei(x� y) = α(x� y)hi(y)H − 1�

Let s∗ = (x� y) be an interior limit. The Jacobian for the dynamical system is

J =

⎛
⎜⎜⎜⎝
λ′
L�1(x)e2(x� y)− λL�1(x)∂xe2(x� y)

λL�1(x)
2 −∂ye2(x� y)

λL�1(x)

−∂xe1(x� y)

λL�2(y)

λ′
L�2(y)e1(x� y)− λL�2(y)∂ye1(x� y)

λL�2(y)
2

⎞
⎟⎟⎟⎠ �

Note that if s∗ is an interior limit, then e2(s
∗) = e1(s

∗)= 0. Thus, the Jacobian becomes

J =

⎛
⎜⎜⎝

−∂xe2(x� y)

λL�1(x)
−∂ye2(x� y)

λL�1(x)

−∂xe1(x� y)

λL�2(y)
−∂ye1(x� y)

λL�2(y)

⎞
⎟⎟⎠ �

The associated characteristic polynomial is given by

det(J − ρI)=
(

−∂xe2(x� y)

λL�1(x)
− ρ

)(
−∂ye1(x� y)

λL�2(x)
− ρ

)
− ∂xe1(x� y)

λL�1(x)

∂ye2(x� y)

λL�2(x)
�

The roots of the characteristic polynomial are

ρ1�2 = −λL�1(x)∂ye1(x� y)+ λL�2(y)∂xe2(x� y)

2λL�1(x)λL�2(y)

±
((

λL�2(y)∂xe2(x� y)+ λL�1(x)∂ye1(x� y)
)2

4λL�1(x)2λL�2(y)
2

− 4λL�1(x)λL�2(y)
(
∂xe2(x� y)∂ye1(x� y)− ∂ye2(x� y)∂xe1(x� y)

)
4λL�1(x)2λL�2(y)

2

)1/2
�
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By the implicit function theorem, the null clines ϕ1 and ϕ2, defined implicitly through
e1(s1�ϕ1(s1)) = 0 and e2(ϕ2(s2)� s2)= 0, have the slopes

ϕ′
1(x) = −∂xe1(x� y)

∂ye1(x� y)
� ϕ′

2(y) = −∂ye2(x� y)

∂xe2(x� y)
�

If ϕ′
1(s1)ϕ

′
2(s2) < 1, then

∂xe2(x� y)∂ye1(x� y)− ∂ye2(x� y)∂xe1(x� y) < 0�

Thus, the eigenvalues ρ1 and ρ2 have opposite signs, which implies that the interior
limit is a saddle point and hence is unstable. Thus, there exists a unique trajectory (the
separatrix) that converges to s∗, and this trajectory constitutes an equilibrium path. �

Proof of Proposition 7. The main argument is given in the text. It remains to show
that a boundary limit is asymptotically stable. Define again

ei(x� y) = α(x� y)hi(y)H − 1�

Let s∗ = (0� y) be a boundary limit. The Jacobian for the dynamical system is again

J =

⎛
⎜⎜⎜⎝
λ′
L�1(x)e2(x� y)− λL�1(x)∂xe2(x� y)

λL�1(x)
2 −∂ye2(x� y)

λL�1(x)

−∂xe1(x� y)

λL�2(y)

λ′
L�2(y)e1(x� y)− λL�2(y)∂ye1(x� y)

λL�2(y)
2

⎞
⎟⎟⎟⎠ �

We have e1(s
∗)= 0 and limsi→0 λ1�L(si) = ∞. Thus, the Jacobian becomes

J =

⎛
⎜⎜⎜⎝
λ′
L�1(0)e2(0� y)

λL�1(0)2 0

−∂xe1(0� y)
λL�2(y)

−∂ye1(0� y)
λL�2(y)

⎞
⎟⎟⎟⎠ �

From Assumption 3, it follows that there is an a > 0 such that λ′
L�1(0)/λL�1(0)

2 = a. We
now substitute ei for each i = 1�2:

J =
⎛
⎜⎝

−a
(
α
(
s∗

)
h2(s2)H − 1

)
0

−∂s1α
(
s∗

)
λL�2(s2)

H −∂s2α
(
s∗

)
λL�2(s2)

H

⎞
⎟⎠ �

It is easy to see that the associated eigenvalues are ρ1 = −a(α(s∗)h2(s2)H − 1) and ρ2 =
−∂s2Hα(s∗)/λL�2(s2). Now e1(s

∗) = 0 implies α(s∗)H − 1 = 0. Thus, α(0� s2)h2(s2)H > 1,
which implies ρ1 < 0 . Moreover, ρ2 < 0, because α is increasing in each argument and
λL�2(s2) > 0. Thus s is asymptotically stable. �

Proof of Proposition 8. We show that if σ = (σ1� � � � �σn) is a strategy profile that has
the generalized inverse φ = (φ1� � � � �φn) that satisfies properties (i)–(iii), then σi(si) ∈
arg maxt ũi(t� si) for all si ∈ [0�1] and i ∈N . Fix si and set t = σi(si).
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Let t > 0. Suppose agent i with signal si = φi(t) chooses a stopping time t ′ �= t. By a
slight abuse of notation, we write ui(t� si) as the expected payoff of agent i when stopping
at time t. Then

dui
(
t ′� si

)
dt

= −Pr(H|si)
(
1 −Gi�H

(
t ′
))
rH + Pr(L|si)

(
G′

i�L

(
t ′
) + r

(
1 −Gi�L

(
t ′
)))

= Pr(L|si)r
(
1 −Gi�L

(
t ′
))(−Pr(H|si)

Pr(L|si)
1 −Gi�H

(
t ′
)

1 −Gi�L

(
t ′
)H + 1

r

G′
i�L

(
t ′
)

1 −Gi�L

(
t ′
) + 1

)

= Pr(L|si)r
(
1 −Gi�L

(
t ′
))(Pr

(
H|φi

(
t ′
))

Pr
(
L|φi

(
t ′
)) − Pr(H|si)

Pr(L|si)
)

1 −Gi�H

(
t ′
)

1 −Gi�L

(
t ′
)H�

where the third equality follows by substituting (5) evaluated at t ′, noting that φi is de-
creasing by hypothesis and

Pr(H|si)
Pr(L|si) = p0

1 −p0

F ′
i�H(si)

F ′
i�L(si)

is increasing by MLRP. Thus dui(t ′� si)/dt > 0 if t ′ < t and dui(t
′� si)/dt < 0 if t ′ < t, which

implies that t is a best response for agent i with signal si.
Now let t = −i. By (iii), we have dui(σi(si)� si)/dt = 0 for all si ∈ (s−i � s

+
i ). Thus,

limsi↑s+i dui(σi(si)� si)/dt = 0, where s+i = inf{si|σi(si) = −i}. It follows that dui(0� si) ≤ 0

for si ≥ s+i . Thus stopping immediately is a best response for si ≥ s+i , since, by condition
(ii), no other agent preempts with positive probability. �

Proof of Proposition 9. (i) At an interior limit, we have Yi(s
∗) = 0 for all i ∈ A. Since

the point is interior, we have s∗i > 0 and thus λi�L(s
∗
i ) < ∞ for all i ∈ A. It then follows

from (8) that

ũi
(
s∗

)
(
1 −pi

(
s∗

)) = ũj
(
s∗

)
(
1 −pj

(
s∗

)) ∀i� j ∈A�

This in turn implies that pi(s
∗) = pj(s

∗) =: p∗ and ũi(s
∗) = ũj(s

∗) =: u∗ for all i� j ∈ A. It
follows that

Yj

(
s∗

) =
(

1
|A| − 1

)∑
j∈A

u∗

1 −p∗ − u∗

1 −p∗ =
(

1
|A| − 1

)
u∗

1 −p∗ �

Hence, Yj(s
∗) = 0 implies that ũi(s∗)= ũj(s

∗) = u∗ = 0 for all i� j ∈A.
(ii) By aggregate uncertainty, if there are two agents i �= j such that s∗i = s∗j = 0, then

ũi(s
∗) = ũj(s

∗) < 0. But then there exists a finite time t such that i prefers not to stop
after t, which contradicts the hypothesis that s∗ is a limit point with s∗i = 0. Now let
s∗i = 0. Then s∗j > 0 and thus λj�L(s

∗
j ) < ∞ for all j ∈ A \ {i}. By the same argument as in

part (i), it follows that there are p∗ and u∗ such that pj(s
∗) =: p∗ and ũj(s

∗) =: u∗ for all
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j ∈A \ {i}. We have

Yj

(
s∗

) = 1
|A| − 1

∑
k∈A

ũk
(
s∗

)
1 −pk

(
s∗

) − ũj
(
s∗

)
1 −pj

(
s∗

)

= 1
|A| − 1

((|A| − 1
) u∗

1 −p∗ + ũi
(
s∗

)
1 −pi

(
s∗

))
− u∗

1 −p∗

= 1
|A| − 1

ũi
(
s∗

)
1 −pi

(
s∗

) �
Thus, Yj(s

∗) = 0 implies ũi(s
∗) = 0. Again by aggregate uncertainty, we have hj(s

∗
j ) > 1

for all j ∈A \ {i}. Thus,

α
(
s∗

)
hj

(
s∗j

)
H − 1 ≥ α

(
s∗

)
H − 1 = 0�

It then follows from (2) that u∗ > 0. �

Proof of Proposition 10. (i) No dominant signals implies the existence of interior
limit. Define

L0 = {
s ∈ [0�1]n | ũi(s) ≤ 0 for all, with equality for at least one i ∈N

}
�

By aggregate uncertainty, L0 �= ∅. For any s ∈ L0, set I(s) = {i ∈ N | ũi(s) = 0}. If |I(s)| =
2 and s ∈ (0�1)n, then s is an interior limit. Suppose there is no interior limit, so that
|I(s)| = 1 for all s ∈L0 ∩ (0�1)n. By continuity of payoffs in signals, this means that there
exists i ∈ N such that I(s) = i for all s ∈ L0 ∩ (0�1)n. Hence ũi(s) > ũj(s) for all s ∈ L0 ∩
(0�1)n.

Consider first the case in which all agents are strongly optimistic. Take s =
(s1� � � � � sn) ∈L0 with si = 0 and sj > 0 for all j �= i (which exists by aggregate uncertainty).
By strong optimism and MLRP, we have hi(si)= 1 and hj(sj) > 1, and thus

ũi(s) = α(s)hi(si)H − 1 <α(s)hj(sj)H − 1 = ũj(s)�

which contradicts the finding that ũi(s) > ũj(s) on L0 ∩ (0�1)n (using the continuity
of ũi).

Second, consider the case in which some agent i is not strongly optimistic. Then
there exists a signal profile s = (s1� � � � � sn) with si > 0 and sj = 1 for all j �= i, such that
ũi(s) = 0. Since I(s) = i for all s ∈ L0 ∩ (0�1)n, we have ũi(s

′) > ũj(s
′) for all s′ ∈ L0 ∩

(0�1)n, so that by continuity of ũ, 0 = ũi(s) ≥ ũj(s). But then s is a dominant signal for
agent i, contradicting the hypothesis.

(ii) Suppose player i is strongly optimistic. By aggregate uncertainty, there exists a
nonempty set of signal profiles

Li =
{
s ∈ [0�1]n | si = 0� ũi(s) = 0

}
�

Let u∗ = maxj �=i�s∈Li ũj(s) (which exists because Li is compact and ũj is continuous for
all j). Denote the solution by u∗ and the maximizing arguments by j∗ and s∗. Then, by
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construction, s∗i = 0, ũi(s∗) = 0, ũj∗(s∗) = u∗, and ũj(s
∗) ≤ u∗ for all j �= i� j∗. It is easy to

verify that Yi(s
∗) = Yj∗(s∗)= 0. Thus, s∗ is a boundary limit. �
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