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Rational expectation of mistakes and
a measure of error-proneness

Shaowei Ke
Department of Economics, University of Michigan

We characterize axiomatically a stochastic choice model, the consistent-mistakes
model (CMM), that describes an error-prone decision maker’s choices. In con-
trast to random utility models, CMMs generate closed-form choice probability.
Under the axioms, we uniquely identify from the choices an expected utility func-
tion that represents the decision maker’s true preference and a propensity func-
tion that describes how likely an alternative is to be chosen. We introduce a mea-
sure of error-proneness and show that the logit model of mistakes is a CMM with
a constant measure of error-proneness, characterized by a strong version of the
independence axiom from expected utility theory. We analyze the properties of
models of mistakes.
Keywords. Stochastic choice, error-proneness, logit model.
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1. Introduction

People often make mistakes. To study mistakes, we use models that permit choice ran-
domness. One of the most prominent is the random utility model (Thurstone 1927).
When it is used to model mistakes, the model says that each alternative i has true utility
ui, but the decision maker observes a noisy signal ui + εi. The decision maker chooses
the alternative that has the highest signal. Since εis are random, the decision maker
chooses each alternative with some probability.

Although the random utility model of mistakes (RUMM) has been widely used in
economics, several issues remain unaddressed. First, how do we distinguish a model
of mistakes from a model of taste shocks? In a random utility model, we can interpret
εis either as noise or as taste shocks. If we interpret εis as taste shocks, the true utility
of alternative i is ui + εi. If we interpret εis as noise, the true utility of alternative i is
ui. However, the two interpretations seem to induce identical choice behavior. Hence,
when we observe a decision maker’s stochastic choices, it seems unclear whether we
should attribute choice randomness to mistakes or to random taste shocks.

Second, imagine that we want to understand, in a textbook macroeconomic model,
what will happen if we allow decision makers to make mistakes. Suppose we introduce
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mistakes into the textbook model via the RUMM. The original textbook model may be
simple and tractable, but the new model becomes intractable, because the choice prob-
ability generated by the RUMM is not in closed form in general. Some RUMMs are
tractable; for instance, the widely used logit RUMM generates closed-form choice prob-
ability. However, if we can only examine the logit case, it becomes unclear how much
the results are driven by the logit assumption.

This paper characterizes a simple model of mistakes that addresses these issues. We
study a two-stage model of mistakes. At the first stage, the decision maker chooses
stochastically from a set of menus. Each menu is a set of risky alternatives (lotteries).
At the second stage, the decision maker chooses a lottery stochastically from the menu.

First, the dynamic and risky environment helps us distinguish a model of mistakes
from a model of taste shocks. Take the random utility model as an example. In a static
setting, the decision maker’s choice behavior is the same whether we interpret εis as
noise or as taste shocks. In a dynamic setting, however, when it is a model of taste
shocks, the expected utility of a menu consisting of n alternatives is often defined as the
expected maximum of ui + εis, Emaxi∈{1�����n}{ui + εi}. When it is a model of mistakes,
the expected utility of the menu is often defined as the rational expectation of true util-
ity,

∑n
i=1 ρiui, in which ρi is the choice probability of alternative i.1 Thus, the dynamic

setting enables us to focus on a model of mistakes. Since we need to analyze the deci-
sion maker’s expected utility (not just utility) of menus, we study choices among risky
alternatives to elicit the decision maker’s expected utility function.2

Second, our model of mistakes always generates closed-form choice probability, and
nests the logit RUMM as a special case. Clearly, this model will differ from the RUMM,
but will not conflict with the substantial amount of research based on the logit RUMM
following McKelvey and Palfrey (1995).

The primitive of our model is a stochastic choice function (SCF) ρt that describes
how the decision maker chooses at stage t. For example, ρ1({a�b}� {a�b� c}) describes
the probability of choosing menu a or b if the decision maker confronts menus a, b,
and c at the first stage, and ρ2({p}� a) describes the choice probability of lottery p from
menu a. We impose axioms on the SCF. Among other axioms, one main axiom follows
from the assumption that the decision maker forms a rational expectation of her own
future mistakes, and another main axiom requires that the decision maker’s true prefer-
ence (induced by the SCF) satisfies the independence axiom from expected utility the-
ory.

The main theorem establishes that the SCF satisfies our axioms if and only if it has
the following representation: There exists an expected utility function U and a propen-
sity function φ such that for each lottery p, U(p) = ∑

p(x)U(x) as usual; for each menu

1Under the interpretation of taste shocks, the formula Emaxi∈{1�����n}{ui +εi} can be found in Train (2009)
and Fudenberg and Strzalecki (2015). Under the interpretation of mistakes, the formula

∑n
i=1 ρiui can be

found in McKelvey and Palfrey (1998). In the former case, the decision maker enjoys the option value of
larger menus. In the latter case, the decision maker suffers from mistakenly choosing alternatives with low
true utility from larger menus.

2For these ideas to be implemented, it is sufficient to examine a two-stage model we describe above. We
generalize the model to a setting that is similar to Kreps and Porteus (1978) in the Appendix.
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a = {p1� � � � �pn} and each set of menus A,

U(a) =
∑
pi∈a

ρ2
({pi}� a

)
U(pi)�

ρ1
({a}�A) = φ

(
U(a)

)
∑
b∈A

φ
(
U(b)

) and ρ2
({pi}� a

) = φ
(
U(pi)

)
∑
pj∈a

φ
(
U(pj)

) � (1)

Equation (1) reflects the decision maker’s rational expectation of future mistakes. It
computes the expected true utility the decision maker gains by choosing from a. The
propensity function is a strictly increasing function that converts an alternative’s util-
ity u into a measure of propensity for choosing that alternative, φ(u) > 0. We call this
representation of an SCF a consistent-mistakes model (CMM).3

We introduce a simple measure of error-proneness—that is, the propensity for mak-
ing mistakes—for comparative static analyses. Consider two decision makers, labeled
1 and 2. Decision maker 2 is said to be more error-prone than decision maker 1 if de-
cision maker 2 always chooses inferior lotteries with higher probability. In a CMM, this
happens if and only if

φ′
2

φ2
≤ φ′

1
φ1

;

that is, the normalized increase rate of decision maker 1’s propensity function is greater
than that of decision maker 2’s. We take φ/φ′ as a measure of error-proneness.

Using the measure of error-proneness, we study the logit RUMM. We note that the
logit RUMM is the CMM that exhibits a constant measure of error-proneness, and we
show that among CMMs, the logit RUMM is characterized by a strong stochastic version
of the independence axiom from expected utility theory. The logit RUMM may be vio-
lated, for example, if the decision maker becomes more error-prone as the utilities of all
available alternatives increase. We show how the CMM can accommodate the violation
without sacrificing tractability.

We analyze the properties of models of mistakes and show that, in a CMM or RUMM,
a simple monotonicity property may be violated. In particular, the expected utility of a
menu may not be increasing in the utilities of the lotteries in the menu. This observation
is specific to neither the CMM nor the RUMM. First, whenever a model of mistakes nests
the logit RUMM as a special case, monotonicity fails. Second, we show that for a wide
range of models of mistakes, including the CMM and the RUMM, there are three simple
properties that cannot hold simultaneously.

The paper proceeds as follows. Section 2 introduces the axioms, the representation
theorem, and the measure of error-proneness. In Section 3, we characterize the logit
RUMM. Section 4 studies some properties of models of mistakes. Section 5 discusses
the related literature.

3A similar representation has been discussed in nonaxiomatic work by Chen et al. (1997) and Hofbauer
and Sandholm (2002). A detailed discussion follows in Section 5.
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p q r

a= {p}

A= {a�b}

b= {q� r}

Figure 1. The decision problem is A, which consists of two menus, a and b. Menu a consists of
only one lottery p. Menu b consists of two lotteries, q and r.

2. A two-stage model of mistakes

There are two choice stages. At the first stage, the decision maker confronts a decision
problem, which is a set of menus. The decision maker chooses a menu from the decision
problem at the first stage. A menu is a set of lotteries. At the second stage, the decision
maker chooses a lottery from the menu to consume. Choices may be stochastic at both
stages. We sometimes call menus and lotteries alternatives.

2.1 The choice domain and the primitive

Let Z be an arbitrary set of outcomes, and let �(Z) be the set of simple lotteries on Z . For
any set X , let K(X) denote the collection of nonempty finite subsets of X . Therefore, the
set of menus is M := K(�(Z)), and the set of decision problems is D := K(M). Typical
decision problems are denoted by A, B, C, and D; typical menus are denoted by a, b, c,
and d; and typical lotteries are denoted by p, q, r, and s. See Figure 1 for an example.
As usual, we do not distinguish between an outcome x and a degenerate lottery δx that
assigns probability 1 to x. For any set of lotteries p1� � � � �pn,

∑n
i=1 αipi represents the

lottery whose probability of outcome x is equal to
∑n

i=1 αipi(x), in which αi ≥ 0 and∑n
i=1 αi = 1.

The decision maker makes mistakes stochastically at both stages. The following pair
of functions is the primitive of our model that describes the decision maker’s choices.

Definition 1. A pair of functions ρ1 : D × D → [0�1] and ρ2 : M × M → [0�1] is called
an SCF if for any decision problems A and B and menus a and b, ρ1(A�A)= 1, ρ2(a�a) =
1, ρ1(A�B)= ∑

c∈A ρ1({c}�B), and ρ2(a�b) = ∑
p∈a ρ2({p}� b).

When the menu is b, ρ2(a�b) represents the probability that any lottery contained in
a is chosen. Similarly, when the decision problem is B, ρ1(A�B) represents the proba-
bility that any menu contained in A is chosen. See Figure 2 for an example.

When we say that a decision maker makes mistakes, implicitly we mean that she has
a stable true preference. Since she is error-prone, she will not reveal the true preference
deterministically. However, she may reveal the true preference statistically. Based on an
SCF, we define the decision maker’s true preference over lotteries as follows.
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Figure 2. At the first stage, the decision maker chooses menu a from decision problem A with
probability ρ1({a}�A). Suppose she chooses b at the first stage. At the second stage, she chooses
lottery r from menu b with probability ρ2({r}� b).

Definition 2. For any p�q ∈ �(Z), we say that p is preferred to q (p� q) if ρ2({p}� {p}∪
a) ≥ ρ2({q}� {q} ∪ a) for any menu a ∈ M such that p�q /∈ a.

The decision maker reveals that she prefers p to q if p is always chosen over a with
higher probability than q over a, for any a that does not contain p and q. We could have
similarly defined the decision maker’s true preference over menus, but it is unnecessary
now; the true preference over menus will become useful in Section 4. Below, we impose
axioms on the SCF (ρ1�ρ2) and sometimes on the induced true preference �.

2.2 Axioms and the representation

We first consider three axioms that have appeared in the literature.

Axiom 1 (Positivity). For any p ∈ a ∈ M and b ∈ A ∈ D, ρ1({b}�A) > 0 and ρ2({p}� a) > 0.

Axiom 2 (Luce independence). For any a�b� c�d ∈ M and A�B�C�D ∈ D such that (a ∪
b)∩ (c ∪ d)=∅ and (A∪B)∩ (C ∪D) =∅,

(i) ρ1(A�A∪C) ≥ ρ1(B�B ∪C) implies ρ1(A�A∪D)≥ ρ1(B�B ∪D)

(ii) ρ2(a�a∪ c) ≥ ρ2(b�b∪ c) implies ρ2(a�a∪ d)≥ ρ2(b�b∪ d).

Axiom 3 (von Neumann–Morgenstern (vNM) independence). For any p�q� r ∈ �(Z)

and α ∈ (0�1), p	 q implies αp+ (1 − α)r 	 αq+ (1 − α)r.

Axiom 1 is from McFadden (1973). In our setting, it states that every alternative has
some chance to be (mistakenly) chosen. Axiom 2 is from Gul et al. (2014). Together
with other axioms, it ensures that our representation will be a Luce rule (Luce 1959).
One well known violation of the Luce rule is the duplication problem (Debreu 1960),
which violates Axiom 2. Since the main idea of our paper is unrelated to this violation,
we maintain Axiom 2. More importantly, Axiom 2 ensures that the decision maker will
reveal her true preference consistently; that is, if she chooses p over a set of lotteries a

more often than q over a, then she always chooses p with higher probability than q over
any other set of lotteries that does not contain p and q.

Axiom 3, vNM independence, is needed to identify the decision maker’s expected
utility function. Note that the primitive of our model is the SCF. Therefore, although
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Axiom 3 appears to be identical to the independence axiom from expected utility theory,
they have different behavioral content. Also note that Axiom 3 only concerns second-
stage choices. Following Axiom 3, we impose two technical assumptions on the second-
stage choices.

Axiom 4 (Continuity). For any p�q ∈ �(Z) and a ∈ M, ρ2({αp + (1 − α)q}� {αp + (1 −
α)q} ∪ a) is continuous in α.

Axiom 5 (Unboundedness). For any a ∈ M and α ∈ (0�1), there exist lotteries p�q /∈ a

such that ρ2({p}� {p} ∪ a) < α and ρ2({q}� {q} ∪ a) > α.

Since we have imposed Axiom 3, it is natural to consider the continuity axiom from
expected utility theory. However, imposing the vNM continuity axiom on the decision
maker’s true preference can still allow ρ2({αp+ (1 − α)q}� {αp+ (1 − α)q} ∪ a) to change
discontinuously as α changes. Our Axiom 4 is a natural extension of the vNM continuity
axiom to the current setting. Axiom 5 is a stochastic version of the standard unbound-
edness assumption expressed using choice probability.

Our last axiom connects the decision maker’s belief about menus to lotteries. To
state it, we first define comparable lotteries. For any menu a = {p1� � � � �pn} ∈ M, we can
find a lottery denoted by pa such that for any outcome x ∈ Z ,

pa(x) =
n∑

i=1

ρ2
({pi}� a

) ×pi(x);

that is, the probability that pa assigns to each outcome x is equal to the probability that
the decision maker gets x after (i) she chooses some pi from a and (ii) pi’s risk resolves.
We call pa the comparable lottery of menu a.

Axiom 6 (Rational expectation of mistakes). For a1� � � � � an ∈ M, ρ1({ai}� {a1� � � � � an}) =
ρ2({pai}� {pa1� � � � �pan}).

If the decision maker understands the probability with which she chooses each al-
ternative in the menu ai, she will notice that ai and pai induce the same probability
distribution over outcomes. The only difference is that with the alternative ai, it is the
decision maker’s choice that induces the distribution over outcomes, while with pai ,
the decision maker does not need to make any choice: pai itself is the distribution over
outcomes. If the decision maker only cares about what distribution over outcomes she
obtains, and does not care whether the distribution arises from her choices, then choos-
ing between ais is equivalent to choosing between pais. Therefore, we require that the
decision maker’s error-prone choice behavior be identical in those two situations.

In Theorem 1, we show that these axioms are equivalent to the following represen-
tation.

Definition 3. An SCF (ρ1�ρ2) is a consistent-mistakes model (CMM) if there exists a
function U : �(Z) ∪ M → R and a surjective strictly increasing continuous function φ :
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U(�(Z)∪M)→R++ such that for any p ∈ �(Z), a= {p1� � � � �pn} ∈ M, and A ∈ D,

U(p) =
∑

p(x)U(x)� (2)

U(a) =
n∑

i=1

ρ2
({pi}� a

)
U(pi) (3)

and

ρ1
({a}�A) = φ

(
U(a)

)
∑
b∈A

φ
(
U(b)

) and ρ2
({pi}� a

) = φ
(
U(pi)

)
∑
pj∈a

φ
(
U(pj)

) � (4)

When U and φ satisfy the equations above, we say that (U�φ) represents ρ. A lot-
tery’s utility is given by (2), the standard expected utility equation. For a decision prob-
lem a, (3) says that the decision maker forms a rational expectation about the expected
utility that she will get if she actually chooses from a. Although the decision maker seems
to understand her future choice probability, this does not imply that she can avoid mis-
takes. For example, an investor may be well aware that she does not always invest opti-
mally, but she may understand, on average, how often she makes mistakes and how bad
those mistakes typically are. Following the tradition in economics, we assume that the
decision maker’s expectation is rational (unbiased).

The decision maker makes mistakes when choosing. The function φ, called the
propensity function, in (4) translates an alternative’s utility into a measure of the propen-
sity for choosing that alternative. Since the propensity function is the same for both
stages, the way the decision maker makes mistakes at both stages is the same. One
way to interpret (4) is that, for example, when confronting two alternatives, the deci-
sion maker may know that one alternative (such as an investment opportunity) gives
her expected utility 1 and the other gives 0, but she can only identify the better alterna-
tive with probability φ(1)

φ(1)+φ(0) . Since φ is increasing, alternatives with higher utility will
be chosen more often.

The propensity function describes the decision maker’s error-proneness. For exam-
ple, let φ(u) = uk (u ∈ R++). Higher k implies fewer mistakes. In the limiting case in
which k is arbitrarily large, the best alternatives will be chosen with certainty. At the
other extreme, when φ becomes a constant function in the limit, the decision maker
chooses uniformly randomly. A formal comparative static analysis will be presented af-
ter we introduce the main theorem.

Our first result is the representation theorem that establishes the equivalence be-
tween the axioms and the CMM.

Theorem 1. An SCF ρ is a CMM if and only if it satisfies Axioms 1–6. Moreover, suppose
(U�φ) represents ρ. Then (Ũ� φ̃) also represents ρ if and only if there exist α1�α2 > 0 and
β such that Ũ = α1U +β and φ(u) = α2φ̃(α1u+β).

The necessity is routine. The sufficiency proof consists of three steps. First, we show
that the true preference � over lotteries induced by the second-stage SCF ρ2 satisfies
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the three vNM axioms. Recall that a lottery p is preferred to q if p is always chosen

over a with higher probability than q over a, for any menu a that does not contain p, q.

Axiom 2 ensures that � is complete. Axioms 1, 2, and 5 are needed to show that the

preference is transitive. Together with Axioms 3 and 4, we know that � has an expected

utility representation; that is, we can identify an expected utility function Û defined for

all lotteries. This gives us (2). As usual, Û is unique up to a positive affine transformation.

Next, we show that the second-stage SCF ρ2 satisfies a richness assumption used by

Gul et al. (2014) due to Axioms 1, 4, and 5. Therefore, thanks to their Theorem 1, Axiom 2

and richness imply the existence of a positive function V that evaluates each lottery such

that ρ2({pi}� {p1� � � � �pn}) = V (pi)∑n
j=1 V (pj)

. The axioms impose several restrictions on V . The

most important restriction stems from the observation that V represents �. Specifically,

Û is an expected utility representation of �, while V only needs to be a utility represen-
tation of �. Hence, V is a monotone transformation of Û (but not necessarily a positive

affine transformation of Û); that is, given V and Û , the restriction on V is that there is a

unique strictly increasing function φ such that V (p)=φ(Û(p)) for each lottery p.

Last, the first-stage choices provide a revealed-preference foundation for interpret-

ing the decision maker’s second-stage choice randomness as mistakes. Define a func-

tion U such that U(p) = Û(p) for any lottery p, and U(a) = Û(pa) for any menu a.

According to the definition of comparable lotteries, (3) holds because Û is linear. Ax-

iom 6 pins down equations for the first-stage choices: For any decision problem A =
{a1� � � � � am},

ρ1
({ai}�A) = ρ2

({pai}� {pa1� � � � �pam}) = φ
(
U(pai)

)
m∑
j=1

φ
(
U(paj )

) = φ
(
U(ai)

)
m∑
j=1

φ
(
U(aj)

) �

Therefore, (4) holds.

To see how φ is uniquely identified from choices and how it describes error-

proneness more concretely, fix an expected utility function U that represents �. Focus

on the second stage. Consider four lotteries, p, q, r, and s, such that U(p) = 0, U(q) = 1,

U(r) = 100, and U(s) = 101. Suppose we observe that the decision maker chooses q over

p with probability 90% (ρ2({q}� {p�q}) = 90%), and that she chooses s over r with prob-

ability 60% (ρ2({s}� {r� s}) = 60%). Intuitively, this reveals that the decision maker makes

fewer mistakes when the expected utilities of all available alternatives are lower. In other

words, if the decision maker will get about 100 utils (confronting {r� s}), she is less likely

to choose the marginally better lottery, compared to the case in which she confronts

{p�q}. This allows us to pin down the rate of increase of φ for each level of expected
utility.

This example also suggests that the rate of increase of φ should be related to mea-

suring the decision maker’s error-proneness. In the next subsection, we formalize this

observation.
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2.3 A comparative measure of error-proneness

Consider two decision makers, labeled I and II. We say that decision maker II is more
error-prone than decision maker I if decision maker II always chooses the inferior alter-
native with higher probability. Let ρI

t and ρII
t describe the stochastic choice behavior at

stage t of decision makers I and II, respectively.

Definition 4. Decision maker II is more error-prone than decision maker I if, for any
p�q ∈ �(Z), ρII

2 ({p}� {p�q}) ≥ ρII
2 ({q}� {p�q}) implies ρI

2({p}� {p�q}) ≥ ρII
2 ({p}� {p�q}).

Although the decision maker also makes mistakes at the first stage, her first-stage
choices reflect how she thinks about her second-stage choices. To focus exclusively on
error-proneness, Definition 4 only involves second-stage choices.4 The definition says
that if decision maker II is more error-prone than decision maker I, then whenever de-
cision maker II reveals that she prefers p over q, decision maker I not only prefers p over
q as well, but also chooses the preferred lottery p with higher probability.

Proposition 1. Suppose the SCFs of decision makers I and II are CMMs. Then decision
maker II is more error-prone than decision maker I if and only if there exist (U I�φI) and
(U II�φII) representing the SCFs of decision makers I and II, respectively, such that U I(p) =
U II(p) for any p ∈ �(Z), and φII(u)

φI(u)
is decreasing in u.

Proof. Suppose U I(p) = U II(p) for any lottery p, and φII(u)
φI(u)

is decreasing in u. For any

lotteries p, q such that ρII
2 ({p}� {p�q}) ≥ ρII

2 ({q}� {p�q}), we have φII(U II(p))
φII(U II(p))+φII(U II(q))

≥
φII(U II(q))

φII(U II(p))+φII(U II(q))
. Therefore, U II(p) ≥ U II(q). Define uh := U I(p) = U II(p) and ul :=

U I(q) =U II(q). Since φII(uh)
φI(uh)

≤ φII(ul)
φI(ul)

, we have

φI(uh)

φI(uh)+φI(ul)
≥ φII(uh)

φII(uh)+φII(ul)

as desired.
Now, suppose we know that decision maker II is more error-prone than I. In a

CMM, ρI
2({p}� {p�q}) ≥ ρI

2({q}� {p�q}) ⇐⇒ U I(p) ≥ U I(q) and ρII
2 ({p}� {p�q}) ≥ ρII

2 ({q}�
{p�q}) ⇐⇒U II(p) ≥U II(q). Therefore, the hypothesis ρII

2 ({p}� {p�q}) ≥ ρII
2 ({q}� {p�q}) ⇒

ρII
2 ({p}� {p�q}) ≤ ρI

2({p}� {p�q}) implies that

U II(p) ≥U II(q) ⇒ U I(p)≥U I(q)� (5)

Equation (5) seems to allow the case in which U II(p) >U II(q), but U I(p) =U I(q). How-
ever, as in Ghirardato et al. (2004), when U I and U II are affine functionals on a linear

4The definition is the same as Definition 11 of pairwise-selectiveness in Fudenberg et al. (2015). Their
paper uses this condition to characterize properties of the cost function in their representation. We uses this
condition to study the propensity function. Both their cost function and our propensity function determine
how the decision maker makes mistakes.
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space, this case can be ruled out. According to Corollary B.3 of Ghirardato et al. (2004),
for some λ > 0 and δ, U I(p) = λU II(p)+ δ for any lottery p. Because of the uniqueness
of the CMM, we can without loss of generality pick the U II such that λ = 1 and δ = 0. In
that case, U I(�(Z) ∪ M) = U II(�(Z) ∪ M); that is, φI and φII share the same domain.
Now, for any lottery p, q such that U II(p) ≥ U II(q), we define uh and ul similarly. We

must have φI(uh)
φI(uh)+φI(ul)

≥ φII(uh)
φII(uh)+φII(ul)

, which implies that φII(uh)
φI(uh)

≤ φII(ul)
φI(ul)

. Therefore, we

know that φII(u)
φI(u)

is decreasing on the common domain of φI and φII. �

To better understand this result, let us apply it to the case in which the propensity
functions are differentiable. We omit the proof of the following corollary.

Corollary 1. Suppose that (U I�φI) and (U II�φII) represent the SCFs of decision makers
I and II, respectively, such that U I(p) = U II(p) for any p ∈ �(Z), and φI and φII are dif-
ferentiable. Then decision maker II is more error-prone than decision maker I if and only

if DφI(u)
φI(u)

≥ DφII(u)
φII(u)

for all u.5

The result above says that if ρII is more error-prone than ρI, the normalized rate of

increase of the propensity function φII, DφII

φII , should be lower than that of φI. Based on

this result, it is natural to let φ(u)
Dφ(u) > 0 be the measure of error-proneness. A decision

maker with higher φ(u)
Dφ(u) is more error-prone.

3. The logit model and stochastic vNM invariance

Below, we establish a relation between the widely used logit RUMM and the indepen-
dence axiom from expected utility theory. The result suggests a new reason why, in
addition to the well known duplication problem, the logit RUMM may be undesirable.
To begin with, note that previous discrete choice literature often does not distinguish a
Luce rule from a logit model. A Luce rule says that each alternative i ∈ {1� � � � � n} has a
Luce value vi > 0 and is chosen with probability vi∑n

j=1 vj
. In a logit RUMM, each alter-

native i has true utility ui, but the decision maker observes a noisy signal ui + εi of the
true utility. The noise terms εis follow some independent and identically distributed
(i.i.d.) extreme value type I distribution. Since in an RUMM, the probability of choos-
ing alternative i ∈ {1� � � � � n} is Pr[ui + εi ≥ uj + εj� j ∈ {1� � � � � n}], it can be shown that for

some λ > 0, alternative i is chosen with probability exp{ui/λ}∑n
j=1 exp{uj/λ} .6 Usually, economists

will identify vis from data and let ui = λ logvi.
The CMM is always a Luce rule, but it is a logit RUMM if and only if

φ(u) = eu/λ (6)

5To simplify notation, we use Dφγ to denote the derivative of φγ , γ = I� II. We use either Dφ or φ′ to
denote the derivative of φ when φ has no superscript.

6See Luce (1959), McFadden (1973), and Train (2009).
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r1 = 11% ×p+ 89% × r r2 = 11% × q+ 89% × r

$1M
89% $1M
1% $0
10% $5M

s1 = 11% ×p+ 89% × s s2 = 11% × q+ 89% × s

89% $0
11% $1M

90% $0
10% $5M

Table 1. A violation of Axiom 7.

(up to a positive scalar multiplication) for some λ > 0. The CMM can separate the logit
RUMM from the Luce rule because in a CMM, ui is the expected utility of alternative i,
and λ logvi does not necessarily give us alternative i’s expected utility.

We want to understand what conditions characterize the logit special case of the
CMM. First, note that when a CMM exhibits a constant measure of error-proneness
(φ/Dφ = λ), simple calculations show that (6) holds; that is, the logit RUMM is the CMM
with a constant measure of error-proneness. The axiom below characterizes the CMM
with a constant measure of error-proneness.

Axiom 7 (Stochastic vNM invariance). For any p�q� r� s ∈ �(Z) and α ∈ (0�1), ρ2({αp +
(1−α)r}� {αp+(1−α)r�αp+(1−α)s}) = ρ2({αq+(1−α)r}� {αq+(1−α)r�αq+(1−α)s}).

Axiom 7 says that when the common component p in αp+ (1−α)r and αp+ (1−α)s

is replaced with q, the probability of choosing either lottery should not change. This
axiom is related to the independence axiom in expected utility theory. Consider a classic
example from the Allais paradox. Suppose there is a continuum of ex ante identical
students. Each is asked to choose between two lotteries, s1 and s2. Lottery s1 gives one
million dollars with probability 11% and zero otherwise, and lottery s2 gives five million
dollars with probability 10% and zero otherwise. Say that τ percent of students prefer
s2 over s1. Next, each student is asked to choose between another two lotteries, r1 and
r2. Lottery r1 gives one million dollars with certainty, and lottery r2 gives zero dollars
with probability 1%, one million dollars with probability 89%, and five million dollars
with probability 10%. Say that τ′ percent of students prefer r2 over r1. Clearly, τ may be
different from τ′.

However, Axiom 7 requires that τ = τ′. To see this, first note that because the stu-
dents are ex ante identical, if (ρ1�ρ2) is an arbitrary student’s SCF, then ρ2({s2}� {s1� s2}) =
τ and ρ2({r2}� {r1� r2}) = τ′. Next, from the relation between s1, s2, r1, and r2 illustrated in
Table 1, we can see that Axiom 7 implies τ = τ′. In the table, p and r both give one
million dollars with certainty, s gives zero dollars with certainty, and q gives five million
dollars with probability 10/11 and zero dollars with probability 1/11.

From the table we can also see that if every student’s preference over lotteries satis-
fies the independence axiom in expected utility theory, then a student chooses s2 over s1
if and only if she chooses r2 over r1. This implies τ = τ′. Thus, the violation of Axiom 7 is
related to the violation of the independence axiom in expected utility theory.
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A CMM does not have to satisfy Axiom 7, but it must satisfy Axiom 3, which is also
related to the independence axiom in expected utility theory. Does the violation of the
independence axiom in expected utility theory above suggest that Axiom 3 is often vi-
olated as well? Not necessarily. In the example above, it can be verified that as long as
both τ and τ′ are above 1/2, or both are below 1/2, Axiom 3 is not violated. Indeed, in
2015 and 2016, we asked students from a PhD-level microeconomics course at the Uni-
versity of Michigan to choose from {s1� s2} and then from {r1� r2}. In both years, the total
number of students was around 50, with τ around 45 and τ′ around 35. We do not find
evidence that Axiom 3 is violated.

The following result establishes the relation between the logit RUMM and Axiom 7.

Proposition 2. Suppose an SCF is a CMM such that U(�(Z)) = R. The SCF is a CMM
with a constant measure of error-proneness if and only if it satisfies Axiom 7.

Suppose the decision maker’s SCF is a CMM. The fact that Axiom 7 is almost always
violated means that the decision maker usually does not have a constant measure of
error-proneness. One plausible alternative assumption is that Dφ(u)

φ(u) may be higher at
lower u, but lower at higher u; that is, the decision maker is more error-prone when the
utilities of all available alternatives are higher. The RUMM may be able to accommo-
date this, but it is likely intractable. The CMM can easily accommodate this without
sacrificing tractability. For instance, suppose φ(u) = uλ (u≥ 0). Then

φ(u)

Dφ(u)
= u

λ
;

that is, the measure of error-proneness increases with u.
Let us point out another way to characterize the logit RUMM. In the previous lit-

erature, the CMM briefly appears in Hofbauer and Sandholm (2002).7 In a somewhat
different setting, they show that the logit model is the only intersection between the ran-
dom utility model and the CMM. Below, we adapt their finding to our setting to provide
another characterization of the logit RUMM.

Proposition 3. Suppose an SCF (ρ1�ρ2) is a CMM such that U(�(Z)) = R. The follow-
ing statements are equivalent:

(i) For some strictly positive density function f : R → R++, ρ2({pi}� {p1� � � � �pn}) =
Pr[U(pi) + εi ≥ U(pj) + εj�∀j] for any p1� � � � �pn ∈ �(Z), in which εjs are i.i.d.
random variables whose density function is f .

(ii) The SCF is a CMM with a constant measure of error-proneness.

Proof. The second statement implies the first, because we can let εjs be i.i.d. accord-
ing to some extreme value type I distribution (McFadden 1973), whose density function
is strictly positive. To see why part (i) implies part (ii), first note that since U(�(Z)) = R,

7We thank an anonymous referee for referring us to this result.
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Lemma 4 in the Appendix shows that for each u ∈ R, there are infinitely many lot-
teries whose expected utility is equal to u. Thus, for each integer n and each vector
(u1� � � � � un) ∈ R

n, we can find a set of distinct lotteries p1� � � � �pn such that U(pj) = uj
for j = 1� � � � � n. Next, since εjs are i.i.d. and the first statement holds, for each integer n,
we apply Hofbauer and Sandholm’s (2002) Proposition 2.3 to show that the only way for

ρ2 to satisfy ρ2({pi}� {p1� � � � �pn}) = φ(U(pi))∑
pj∈a φ(U(pj))

for any n lotteries p1� � � � �pn is to have

φ(u) = eu/λ for some positive λ (up to a positive scalar multiplication). Since this con-
clusion does not depend on n, we know that the CMM has to have a constant measure
of error-proneness. �

4. Risk from mistakes versus standard objective risk

Two types of risks appear in our framework. The risk associated with lotteries is the stan-
dard objective risk. The other, risk from mistakes, is due to the decision maker’s stochas-
tic error-prone choices. Decision makers’ choice mistakes have caused big losses for
banks and other financial institutions in the past. Economists have classified this type
of risk as an important case of operational risk in one of the most influential banking
regulations, Basel II. In this section, we analyze risk from mistakes and discuss how it
differs from standard risk.

We start with a counterintuitive observation: The expected utility that a decision
maker gets from a menu may not be increasing in the utilities of its lotteries. In Defi-
nition 2, we only define the decision maker’s true preference over lotteries. Now, let us
similarly define the decision maker’s true preference over menus: For any a�b ∈ M, we
say that a is preferred to b (a� b) if

ρ1
({a}� {a} ∪A

) ≥ ρ1
({b}� {b} ∪A

)
for any decision problem A ∈ D such that a�b /∈ A.

Let us introduce a simple property of the SCF.

Definition 5. An SCF is weakly monotone if p1 � q1 and p2 � q2 imply {p1�p2} �
{q1� q2}.

Note that an adapted version of weak monotonicity holds for standard risk under
expected utility theory: If p1 � q1 and p2 � q2, then αp1 + (1 − α)p2 � αq1 + (1 − α)q2.

Surprisingly, the logit RUMM violates weak monotonicity, which means that weak
monotonicity will be violated for any class of models of mistakes that nests the widely
used logit RUMM as a special case. To see why weak monotonicity is violated, consider
a menu consisting of two lotteries, {p�qn}. Say the utility of lottery p is 2 and the utility
of qn is −n (n ≥ 0). If we replace p with r, whose utility is equal to 2�1, and replace qn
with s, whose utility is 1, we seem to have obtained a better menu, {r� s}. However, think
of the logit RUMM with φ(u) = eu. As n gets arbitrarily large,

lim
n→−∞U

({p�qn}) = 2�
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because U({p�qn}) = ρ2({p}� {p�qn})× 2 +ρ2({qn}� {p�qn})× (−n), and it can be verified
that limn→−∞ −n× ρ2({qn}� {p�qn}) = 0. In contrast,

U
({r� s}) = exp{1} + 2�1 exp{2�1}

exp{1} + exp{2�1} ≈ 1�825 < 2�

Therefore, for n large enough, {p�qn} 	 {r� s}, even though r 	 p and s 	 qn.
The intuition is as follows. In a model of mistakes, having strictly better lotteries in a

menu does not necessarily improve the menu, because the choice probability distribu-
tion depends on the lotteries. By having the obviously worse lottery qn instead of s, it is
easier for the decision maker to avoid the worse lottery.

Such a violation of weak monotonicity is not limited to this particular logit RUMM
with φ(u) = eu. It is easy to prove that all logit RUMMs violate weak monotonicity,
because when φ(u) = eu/λ, limu→−∞ uφ(u) = 0. Many other CMMs and RUMMs also
violate weak monotonicity. The following result says that in the CMM, some limiting
behavior of φ can tell us whether weak monotonicity is violated.

Proposition 4. Suppose an SCF is a CMM such that U(�(Z)) =R. If limu→−∞ uφ(u) =
0, then ρ is not weakly monotone.

This is not a coincidence. Some properties are natural in the context of standard
risk, but conflict in the context of risk from mistakes. To illustrate this, we present below
a general impossibility result. The proposition above will become a corollary of it.

4.1 An impossibility theorem

To show this result, we need only to work with the decision maker’s true utility function
U : �(Z) ∪ M → R. We do not require U to be an expected utility function; neither do
we need to specify how the decision maker’s SCF depends on U . Therefore, the result
below applies to a wide range of models, including the CMM and RUMM. We say that U
is monotone if

U(p1) > U(q1)� U(p2)≥ U(q2) ⇒ U
({p1�p2}

)
>U

({q1� q2}
)
�

It should be clear by now why monotonicity may seem reasonable and why it may not.
We say that U satisfies betweenness if

U(p) ≥ U(q) ⇒ U(p) ≥ U
({p�q}) ≥ U(q)�

The idea is that even though the decision maker makes mistakes, she understands that
the true utility she gets by choosing from a menu will be between the best lottery’s utility
and the worst lottery’s utility. Clearly, both the CMM and RUMM satisfy betweenness.
We say that U satisfies reducibility if

lim
n→∞U(qn) = −∞ ⇒ lim

n→∞U
({p�qn}) = U(p)�
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Reducibility means that as qn gets arbitrarily bad, it become more and more obvious for
the decision maker to not choose qn. Since qn will not be chosen in the limit, it can be
ignored in the limit from the menu {p�qn}; that is, p is as good as {p�qn} in the limit.
Although this property may seem less appealing, it is nonetheless satisfied by the logit
RUMM.

We can write down a version of monotonicity, betweenness, and reducibility for
standard risk and expected utility theory, which can hold simultaneously.8 In contrast,
the result below shows that there is some tension between these three simple properties.

Theorem 2. Suppose U(�(Z)) = R and, for each u ∈ R, there exist two distinct lotteries
p, q such that U(p) =U(q) = u. Monotonicity, betweenness, and reducibility cannot hold
simultaneously.

The proof of this result is simple. Suppose there is a U such that all three conditions
hold. Take two different lotteries p and q0 such that U(p) = U(q0) = u. By between-
ness, we know that U({p�q0}) = u. Find a sequence {qn} such that U(qn+1) < U(qn) and
limn→∞ U(qn) = −∞. Then, by monotonicity and reducibility, we know that

u >U
({p�qn})> lim

n→∞U
({p�qn}) = u�

Therefore, we reach a contradiction.

5. Related literature

The most popular stochastic choice model is the random utility model (Thurstone 1927
and Block and Marschak 1960). Motivated by the fact that the random utility model is
usually intractable, we provide a decision theoretic foundation for an alternative model,
the CMM, which is tractable. Similar to what Hofbauer and Sandholm (2002) have ob-
served, we confirm that under certain assumptions, the only intersection between the
random utility model and the CMM is the logit model.

Chen et al. (1997) first study the CMM. They examine an equilibrium notion in which
players’ behavior follows equations that are similar to the CMM. We focus on other as-
pects of the CMM. We characterize the CMM axiomatically, which shows how it can be
uniquely identified or falsified using individual choice data. We analyze its comparative
measure of error-proneness, the logit special case, and other behavioral properties.

A CMM is a Luce rule (Luce 1959). In the previous literature, we often do not distin-
guish between the Luce rule and the logit model (either of mistakes or of taste shocks).
However, in our setting, the logit RUMM is a special case of the CMM. This is because
by analyzing the decision maker’s choices over lotteries, we identify the expected utility
function separately. A similar argument about why the Luce rule and the logit model
are different also appears in Chen et al. (1997) and Hofbauer and Sandholm (2002), but

8A lottery version of monotonicity is as follows: If p1 � q1 and p2 � q2, then αp1 + (1 −α)p2 � αq1 + (1 −
α)q2. A lottery version of betweenness is as follows: If p� q, then p� αp + (1 − α)q � q. A lottery version
of reducibility is as follows: limα→1 αp+ (1 − α)q ∼ p.
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in both papers, utilities are given. We explain how to identify the true expected utility
function from error-prone choices. We show that a strong stochastic version of the in-
dependence axiom from expected utility theory characterizes the logit model, and that
the logit model has a constant measure of error-proneness.

In a recent critique, Apesteguia and Ballester (2018) show that the random util-
ity model violates some monotonicity property: Confronting two lotteries, the choice
probability of the riskier lottery may increase as the decision maker becomes more risk-
averse. Their monotonicity property is different from ours in Section 4. The CMM also
violates their monotonicity property.

Gul and Pesendorfer (2006) also study stochastic choices in a setting with risky alter-
natives. They introduce a linearity condition that requires

ρ2
({pi}� {p1� � � � �pn}

) = ρ2
({
αpi + (1 − α)q

}
�
{
αp1 + (1 − α)q� � � � �αpn + (1 − α)q

})
(7)

for any lotteries p1� � � � �pn, q and α ∈ (0�1). This condition is stronger than Axiom 7 in
two ways. First, Axiom 7 only considers binary choices. Second, for binary choices, what
Axiom 7 requires is implied by (7).

Our paper is related to several papers on dynamic stochastic choices, such as Gul
et al. (2014), Fudenberg and Strzalecki (2015), and Fudenberg et al. (2015). Gul et al.
introduce a model to address the duplication problem (Debreu 1960). In a dynamic set-
ting, their decision maker can detect and delete duplicates in dynamic problems. Our
Axiom 2 is adapted from Gul et al. They use a richness assumption to establish the equiv-
alence between their version of Axiom 2 and the Luce rule. In our paper, with lotteries,
the richness assumption is replaced with Axioms 4 and 5. We use their Theorem 1 to
show that under our axioms, the SCF is a Luce rule.

Fudenberg and Strzalecki (2015) are the first to use an axiomatic approach to extend
the logit model to a dynamic setting. The dynamic setting they consider has finitely
many stages and flow payoffs.9 They establish the relation between aversion to bigger
menus and preference for postponing making choices. They offer two equivalent rep-
resentations of the SCF. In the first, choice randomness comes from taste shocks. The
utility of a menu is equal to Emax{ui + εi} minus some cost of making choices, which
captures the aversion to bigger menus. In the second representation, the stochastic
choice results from maximizing a menu’s expected true utility (similar to our (3)) minus
an adjusted entropy cost function. Similar to the second representation but in a static
setting, Fudenberg et al. (2015) propose a model whose cost function is not necessarily
adjusted entropy, and the SCF is not necessarily logistic. Cost functions are ruled out in
our paper.

Other papers have studied dynamic deterministic choices. Krishna and Sadowski
(2014) study the decision maker’s preference over state-contingent infinite-horizon de-
cision problems; the states represent taste shocks and follow a subjective Markov pro-
cess. Cooke (2017) and Piermont et al. (2016) study how, from dynamic choices, one can
reveal the taste-related information that the decision maker has learned through past
consumption. In both papers, learning is endogenous.

9We extend the CMM to a similar dynamic setting in the Appendix.
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Appendix

Proof of Theorem 1. We first prove the necessity of the axioms. A CMM is a Luce
rule according to (4). Hence, according to Gul et al. (2014), ρ1 satisfies the first part of
Axiom 2, and ρ2 satisfies the second part. In a Luce rule, p� q if and only if φ(U(p)) ≥
φ(U(q)). Since φ is strictly increasing, we know that p � q if and only if U(p) ≥ U(q).
When restricted to �(Z), U is an expected utility function. Therefore, Axiom 3 holds.
According to (3) and (4), Axiom 6 holds.

Since φ(U(p))�φ(U(a)) > 0 for any lottery p and menu a, Axiom 1 holds. Note that
U(�(Z)) = U(�(Z) ∪M), because for any a = {p1� � � � �pn} ∈ M, U(a) is some weighted
average of U(pi)s. Since φ is surjective, φ(U(Z)) = R++. Therefore, Axiom 5 holds.
Last, because for any p�q ∈ �(Z), U(αp + (1 − α)q) and U({αp + (1 − α)q}) are equal
and continuous in α, and φ is continuous, one can verify that Axiom 4 holds.

Next, we prove the sufficiency of the axioms.

Lemma 1. The preference � is complete and transitive.

Proof. From Axiom 2, we know that � is complete because for any ρ2({p}� {p} ∪ a) and
ρ2({q}� {q} ∪ a) such that p�q /∈ a, the former is either greater than or less than the latter.
Say it is greater. Axiom 2 implies that ρ2({p}� {p} ∪ b) ≥ ρ2({q}� {q} ∪ b) for any b ∈ M
such that p�q /∈ b. Therefore, p� q.

To prove transitivity, suppose ρ2({p}� {p} ∪ a) ≥ ρ2({q}� {q} ∪ a) and ρ2({q}� {q} ∪ b)≥
ρ2({r}� {r} ∪ b), in which p�q� r ∈ �(Z), p�q /∈ a, and q� r /∈ b. If any two of p, q, r

are identical, clearly we have p � r. Otherwise, we can apply Axiom 2 to know that
ρ2({p}� {p} ∪ a) ≥ ρ2({q}� {q} ∪ a) implies

ρ2
({p}� {p� r}) ≥ ρ2

({q}� {q� r}) (8)

and ρ2({q}� {q} ∪ b)≥ ρ2({r}� {r} ∪ b) implies

ρ2
({q}� {p�q}) ≥ ρ2

({r}� {p� r})� (9)

Due to Axiom 1, ρ2({r}� {p� r}) > 0. By Axiom 5, we can find a new lottery s ∈ �(Z) such
that

ρ2
({s}� {p� s}) < ρ2

({r}� {p� r})� (10)

Equations (8), (9), and (10) show that s is distinct from p, q, and r. By Axiom 2, we have
ρ2({p}� {p� s}) ≥ ρ2({q}� {q� s}) ≥ ρ2({r}� {r� s}). Therefore, p� r. �

Lemma 2. For any p�q� r ∈ �(Z), p 	 q 	 r implies that there exist α�β ∈ (0�1) such that
αp+ (1 − α)r 	 q 	 βp+ (1 −β)r.

Proof. Following similar arguments from the previous lemma, we can find a lottery s

such that ρ2({p}� {p� s}) > ρ2({q}� {q� s}) > ρ2({r}� {r� s}), in which s �= p�q� r. Note that
p = 1 · p+ 0 · r. By Axiom 4, we can find an α near 1 such that ρ2({αp+ (1 − α)r}� {αp+



544 Shaowei Ke Theoretical Economics 13 (2018)

(1 − α)r� s}) > ρ2({q}� {q� s}) if αp + (1 − α)r is distinct from s. If the α we pick satisfies
αp+ (1 −α)r = s, we can find another α′ �= α near 1 such that ρ2({α′p+ (1 −α′)r}� {α′p+
(1 − α′)r� s}) > ρ2({q}� {q� s}), in which case α′p+ (1 − α′)r has to be different from s. To
find β, similar arguments apply. �

The lemma above shows that the familiar vNM continuity axiom is satisfied by the
preference �. Knowing that � is complete and transitive, and satisfies Axiom 3 and the
vNM continuity axiom, we know that there exists a function Û : �(Z) → R that repre-
sents � such that

Û(p)=
∑
x∈Z

p(x)Û(x)� (11)

By writing Û(x) in (11), we mean Û(δx), as we do not distinguish between δx and x.
Define a function U : �(Z)∪M →R such that for any a = {p1� � � � �pm} ∈ M,

U(a) := Û(pa)�

and for any p ∈ �(Z), U(p) := Û(p). We immediately have (2). By construction,

U(a) = Û(pa) =
∑
x∈Z

(
m∑
i=1

ρ2
({pi}� a

)
pi(x)Û(x)

)

=
m∑
i=1

ρ2
({pi}� a

)
Û(pi)�

(12)

Hence, (3) holds.
Finally, we show that (4) holds and φ’s properties, as stated in Definition 3, are satis-

fied.

Lemma 3. For any a ∈ M and α ∈ (0�1), we can find p�q� r ∈ �(Z) such that p�q� r /∈ a,
ρ2({p}� {p} ∪ a) = α, ρ2({q}� {q} ∪ a) > α, ρ2({r}� {r} ∪ a) < α, and p = βq + (1 − β)r for
some β ∈ (0�1).

Proof. By Axiom 5, there exists q(0) /∈ a and r(0) /∈ a such that ρ2({q(0)}� {q(0)} ∪ a) > α

and ρ2({r(0)}� {r(0)} ∪ a) < α. By Axiom 4 and the intermediate value theorem, we can
find β(0) such that

ρ2
({
β(0)q(0) + (

1 −β(0))r(0)}�{β(0)q(0) + (
1 −β(0))r(0)} ∪ a

) = α

if β(0)q(0) + (1 −β(0))r(0) /∈ a.
Suppose β(0)q(0) + (1 − β(0))r(0) ∈ a. We can apply Axiom 5 to find q(1) /∈ a and

r(1) /∈ a such that 1 > ρ2({q(1)}� {q(1)} ∪ a) > ρ2({q}� {q} ∪ a) and 0 < ρ2({r(1)}� {r(1)} ∪ a) <

ρ2({r1}� {r1} ∪ a). We know that 1 > ρ2({q(1)}� {q(1)} ∪ a) and 0 < ρ2({r(1)}� {r(1)} ∪ a) be-
cause of Axiom 1. Again, we can find β(1) such that

ρ2
({
β(1)q(1) + (

1 −β(1))r(1)}�{β(1)q(1) + (
1 −β(1))r(1)} ∪ a

) = α

if β(1)q(1) + (1 −β(1))r(1) /∈ a.
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Suppose β(1)q(1) + (1 − β(1))r(1) ∈ a again. We can repeat the above procedure.
Since a is finite, after at most (|a| + 1) rounds, we will be able to find lotteries
q(i)� r(i)�β(i)q(i) + (1 −β(i))r(i) /∈ a such that ρ2({q(i)}� {q(i)}∪a) > α, ρ2({r(i)}� {r(i)}∪a) <

α, and ρ2({β(i)q(i)+(1−β(i))r(i)}� {β(i)q(i)+(1−β(i))r(i)}∪a) = α for some integer i ≤ |a|.
Let q := q(i), r := r(i), and p := β(i)q(i) + (1 −β(i))r(i). �

Lemma 4. For any a ∈ M, α ∈ (0�1), and u ∈ U(�(Z) ∪ M), there exists infinitely
many p ∈ �(Z) such that ρ2({p}� {p} ∪ a) = α and infinitely many p′ ∈ �(Z) such that
U(p′)= u.

Proof. By Axiom 5, according to Lemma 3, there exist q1� r1�p1 /∈ a such that p1 =
β1q1 + (1 − β1)r1, ρ2({q1}� {q1} ∪ a) > α, ρ2({r1}� {r1} ∪ a) < α, and ρ2({p1}� {p1} ∪ a) = α.
Consider supp(q1) and supp(r1). Since they are finite, we can find x ∈ supp(q1)∪ supp(r1)

such that x� z for all z ∈ supp(q1) ∪ supp(r1), and find y ∈ supp(q1) ∪ supp(r1) such that
z � y for all z ∈ supp(q1) ∪ supp(r1). Applying Axiom 5 again, we can find a lottery q2 /∈ a

such that 1 > ρ2({q2}� {q2} ∪ a) > ρ2({x}� {x} ∪ a). We must have 1 > ρ2({q2}� {q2} ∪ a) be-
cause of Axiom 1. We do not need to worry about x ∈ a, because if that is the case, we can
always apply Lemma 3 to find some other lottery s such that s ∼ x and s /∈ a. The same
arguments go through if we replace x with s. Without loss of generality, let us assume
that x /∈ a for simplicity.

We claim that supp(q2) must contain some outcome that is strictly better than x,
and hence supp(q2) �= supp(q1)� supp(r1). If this claim is not true, then x� q2, because �
has a standard expected utility representation over �(Z). However, x � q2 implies that
ρ2({x}� {x} ∪ a) ≥ ρ2({q2}� {q2} ∪ a) for any a such that x�q2 /∈ a, which is a contradiction.
Similarly, we can find r2 /∈ a such that 0 < ρ2({r2}� {r2} ∪ a) < ρ2({y}� {y} ∪ a), and hence
supp(r2) �= supp(q1)� supp(r1). Again, we have assumed without loss of generality that
y /∈ a. By Axiom 4, we can find β2 ∈ (0�1) such that ρ2({p2}� {p2} ∪ a) = α, in which p2 :=
β2q2 + (1 − β2)r2 /∈ a. Clearly, p2 is distinct from p1, q1, and r1 since both q2 and r2
have different supports from q1 and r1. Again, we do not have to worry that β2q2 +
(1 − β2)r2 ∈ a; otherwise, we could use the same procedure in Lemma 3 to find some
other q(i)2 , r(i)2 , and p(i)

2 such that they are all different from q1, r1, and p1 and satisfy

ρ2({q(i)2 }� {q(i)2 }∪a) > α, ρ2({r(i)2 }� {r(i)2 }∪a) < α, and ρ2({β(i)
2 q(i)2 +(1−β(i)

2 )r(i)2 }� {β(i)
2 q(i)2 +

(1 −β(i)
2 )r(i)2 } ∪ a) = α for some integer i ≤ |a| and β(i)

2 ∈ (0�1).
We can repeat the above procedure to find a sequence of pj , qj , and rj , j = 1�2� � � � .

Each qj and rj will invite new elements to the support, and hence generate countably
infinitely many distinct pj /∈ a such that ρ2({pj}� {pj} ∪ a) = α.

Last, for each u ∈ U(�(Z) ∪ M), we can also find infinitely many p′ ∈ �(Z) such
that U(p′) = u. First, since U(a) is a weighted average of U(pi)s for any menu a =
{p1� � � � �pn}, we know that U(�(Z) ∪ M) = U(�(Z)). For any u ∈ U(�(Z) ∪ M), there
is some p′ ∈ �(Z) such that U(p′) = u. From the proof above, we know that there are
infinitely many lotteries. Take a set of lotteries b such that p′ /∈ b. Then we already know
that we can find a sequence of lotteries, p′

1�p
′
2� � � � , such that for any j ∈N, p′

j /∈ b and

ρ2
({
p′
j

}
�
{
p′
j

} ∪ b
) = ρ2

({
p′}�{p′} ∪ b

)
� (13)
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Equation (13) and Axiom 2 imply that p′
j ∼ p′ for each j ∈N. Because when restricted to

�(Z), U represents �, we know that U(p′
j) = u. �

Due to Lemma 4 and Axiom 2, we can apply Theorem 1 of Gul et al. (2014) to ρ2.
Then we know that there exists a surjective function V : �(Z) → R++ such that p� q if
and only if V (p)≥ V (q), and for any a = {p1� � � � �pn},

ρ2
({pi}� a

) = V (pi)
n∑

j=1

V (pj)

�

To see why we can do this, first note that applying the independence condition from Gul
et al. (2014) to ρ2 is identical to assuming the second part of Axiom 2. Second, applying
their richness condition to ρ2 requires that for any a� c ∈ M and α ∈ (0�1), there exists
a menu b ∈ M such that b ∩ c = ∅ and ρ2(b�a ∪ b) = α. Lemma 4 shows that, for any
a� c ∈ M and α ∈ (0�1), we can find a lottery p such that ρ2({p}� {p} ∪ a) = α. We only
have to show that {p} ∩ c = ∅ before we let b= {p}. Since c ∈M is a finite set of lotteries
and there are infinitely many lotteries p that satisfy ρ2({p}� {p} ∪ a) = α, we can assume
without loss of generality that {p} ∩ c = ∅. Therefore, we know that ρ2 satisfies both
conditions in Gul et al.’s (2014) Theorem 1.

Since both U and V represent � on �(Z), we know that there exists a strictly in-
creasing function φ : U(L) → R++ such that V (p) = φ(U(p)) for any p ∈ �(Z). Since V

is surjective, φ must also be surjective. By Axiom 4, φ must be continuous.
Last, we want to prove that for each decision problem A= {a1� � � � � am} ∈ D,

ρ1
({ai}�A) = φ

(
U(ai)

)
m∑
j=1

φ
(
U(aj)

) �

By (12), U(aj) =U(paj ) for j = 1� � � � �m. By Axiom 6,

ρ1
({ai}�A) = ρ2

({pai}� {pa1� � � � �pam})
= φ

(
U(pai)

)
m∑
j=1

φ
(
U(paj )

)

= φ
(
U(ai)

)
m∑
j=1

φ
(
U(aj)

) �

For uniqueness, we only prove the necessity. Suppose (U�φ) represents ρ. If
(Ũ� φ̃) also represents ρ, then U and Ũ both represent �. Since U and Ũ are both
expected utility functions on �(Z), we know that there exists α1 > 0, β ∈ R such that
Ũ(p)= α1U(p)+β for any p ∈ �(Z). For any a ∈ M, U(a) =U(pa) and Ũ(a) = Ũ(pa) =



Theoretical Economics 13 (2018) Rational expectation of mistakes 547

α1U(pa) + β = α1U(a) + β. Therefore, Ũ = α1U + β holds for �(Z) ∪ M. Since Luce
values are unique up to a positive scalar multiplication, φ(U(p)) = α2φ̃(Ũ(p)) for some
α2 > 0. Therefore, φ(u) = α2φ̃(α1u+β). �

Proof of Proposition 2. We first prove the necessity. Suppose (ρ1�ρ2) is a CMM such
that U(�(Z)) =R and φ(u) = βeu/λ (λ > 0, β> 0). Then

ρ2
({
αp+ (1 − α)r

}
�
{
αp+ (1 − α)r�αp+ (1 − α)s

})
= exp

{
α/λ ·U(p)+ (1 − α)/λ ·U(r)

}
exp

{
α/λ ·U(p)+ (1 − α)/λ ·U(r)

} + exp
{
α/λ ·U(p)+ (1 − α)/λ ·U(s)

}
= exp

{
(1 − α)/λ ·U(r)

}
exp

{
(1 − α)/λ ·U(r)

} + exp
{
(1 − α)/λ ·U(s)

}
= exp

{
α/λ ·U(q)+ (1 − α)/λ ·U(r)

}
exp

{
α/λ ·U(q)+ (1 − α)/λ ·U(r)

} + exp
{
α/λ ·U(q)+ (1 − α)/λ ·U(s)

}
= ρ2

({
αq+ (1 − α)r

}
�
{
αq+ (1 − α)r�αq+ (1 − α)s

})
�

Therefore, Axiom 7 holds.
Conversely, if Axiom 7 holds, we know that ρ2({ 1

2p + 1
2 r}� { 1

2p + 1
2 r�

1
2p + 1

2 s}) =
ρ2({ 1

2q+ 1
2 r}� { 1

2q+ 1
2 r�

1
2q+ 1

2 s}), which means

φ
(
1/2 ·U(p)+ 1/2 ·U(r)

)
φ

(
1/2 ·U(p)+ 1/2 ·U(r)

) +φ
(
1/2 ·U(p)+ 1/2 ·U(s)

)
= φ

(
1/2 ·U(q)+ 1/2 ·U(r)

)
φ

(
1/2 ·U(q)+ 1/2 ·U(r)

) +φ
(
1/2 ·U(q)+ 1/2 ·U(s)

) �
Since we are focusing on ρ2, in which case φ’s domain is R, for any u1�u2��u ∈R, we can
find r� s ∈ �(Z) such that U(r) = 2u1, U(s) = 2u2, and p�q ∈ �(Z) such that U(p) = 0,
U(q) = 2�u. Then, for all u1�u2��u ∈R,

φ(u1)

φ(u2)
= φ(u1 +�u)

φ(u2 +�u)
� (14)

Fixing u1, (14) implies that φ(u2 + �u) = ϕu1(u2)ηu1(�u), in which ϕu1(u2) = φ(u2)/

φ(u1) and ηu1(�u) =φ(u1 +�u). Since φ is strictly increasing, positive and continuous,
by Theorem 2 in Chapter 3 in Aczél (1966), φ(u) = βexp{αu} for some α�β > 0. Let λ =
1/α. �

A.1 The CMM in a dynamic setting

Now we move to a more general dynamic setting similar to that of Kreps and Porteus
(1978). We characterize the CMM in the new setting; notations adopted here will be
different from other parts of the paper. There is a finite integer T , and for each time
t ∈ {0� � � � �T }, there is a set Zt of possible payoffs. Generic elements of Zt are denoted
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by xt , yt , and zt . Let LT be the set of simple lotteries on ZT . Recursively, let Mt be the
collection of nonempty finite subsets of Lt , and let Lt−1 be the set of simple lotteries
on Zt−1 × Mt . Generic elements of Lt are denoted by pt , qt , and rt , and generic ele-
ments of Mt are denoted by At , Bt , Ct , and Dt . We do not distinguish between a pair
of consumption and a next-stage decision problem (xt�At+1) and a degenerate lottery
δ(xt�At+1) that assigns probability 1 to the pair (xt�At+1). Mixtures of lotteries are defined
as usual. For notational convenience, we sometimes write pt+1, Lt+1, At+1, and Mt+1

even when t = T . One could treat LT+1 and MT+1 as empty sets.
A decision problem at time t is an element of Mt . An alternative at time t is an ele-

ment of Lt . We define H1 := Z0, and for each t ∈ {2� � � � �T }, Ht := Ht−1 ×Zt−1. A generic
element of Ht , denoted by ht = (x0� � � � � xt−1), is called payoff histories ht at time t. For
simplicity, we write ht+1 = (x0� � � � � xt) as (ht�xt) if ht = (x0� � � � � xt−1).

At each time t, the decision maker confronting a decision problem At chooses an
alternative pt ∈ At . The alternative pt is a probability distribution over pairs of current-
stage consumption and a next-stage decision problem. Suppose the pair (xt�At+1) ∈
supp(pt) is realized. The decision maker consumes xt and then makes another choice
from At+1 at the next stage. Specifically, the following function describes how, after each
payoff history ht , the decision maker chooses at time t.

Definition 6. A function ρht : Mt × Mt → [0�1] is the decision maker’s SCF at time t

after the payoff history ht if ρht (At�At) = 1 and ρht (At�Bt) = ∑
pt∈At

ρht ({pt}�Bt).

We call the set of functions

� :=
{
ρht : ρht is the decision maker’s SCF at time t after the payoff

history ht for some t ∈ {0� � � � �T } and ht ∈Ht

}

the decision maker’s SCF. From the SCF, we define the decision maker’s true preference
over alternatives at time t after the payoff history ht .

Definition 7. For any pt�qt ∈ Lt , we say that pt is preferred to qt (pt �ht qt ) at time
t after the payoff history ht if ρht ({pt}� {pt} ∪ At) ≥ ρht ({qt}� {qt} ∪ At) for any At ∈ Mt

such that pt�qt /∈At .

The axioms below are adapted from Section 2.2.

Axiom 8 (Positivity∗). At any time t after any ht , for any pt ∈At ∈ Mt , ρht ({pt}�At) > 0.

Axiom 9 (Luce independence∗). At any time t after any ht , for any At�Bt�Ct�Dt ∈ Mt

such that (At ∪Bt)∩(Ct ∪Dt) =∅, ρht (At�At ∪Ct)≥ ρht (Bt�Bt ∪Ct) implies ρht (At�At ∪
Dt) ≥ ρht (Bt�Bt ∪Dt).

Axiom 10 (vNM independence∗). At any time t after any ht , for any pt�qt� rt ∈ Lt and
α ∈ (0�1), pt 	ht qt implies αpt + (1 − α)rt 	ht αqt + (1 − α)rt .
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At

(xt�At+1)

(yt�Bt+1)

{πht (At)}

(xt�At+1)

(yt�Bt+1)

Figure 3. Solid lines represent available alternatives in a decision problem. Dotted lines rep-
resent objective probabilities from lotteries. The probability of choosing (xt�At+1) from At is
equal to the probability that the alternative πht (At) assigns to (xt�At+1).

Axiom 11 (Continuity∗). At any time t after any ht , for any pt�qt ∈ Lt and At ∈ Mt ,
ρht ({αpt + (1 − α)qt}� {αpt + (1 − α)qt} ∪At) is continuous in α.

Axiom 12 (Unboundedness∗). At any time t after any ht , for any At ∈ Mt and α ∈ (0�1),
there exist pt�qt /∈At such that ρht ({pt}� {pt} ∪At) < α and ρht ({qt}� {qt} ∪At) > α.

For any decision problem At = {p(1)
t � � � � �p

(n)
t } at time t after the payoff history ht ,

we define its comparable lottery πht (At) ∈Lt as

πht (At)(xt�At+1)=
n∑

i=1

ρht
({
p(i)
t

}
�At

) ×p(i)
t (xt�At+1)�

Figure 3 for an example. The idea of Axiom 13 below is similar to Axiom 6: The de-
cision maker has a correct belief about the probability that she will end up with any
(xt�At+1) after choosing from At . Since πht (At) generates the same distribution over
(xt�At+1)s, the decision maker should “identify” At with the degenerate decision prob-
lem {πht (At)}.

Axiom 13 (Rational expectation of mistakes∗). At any time t < T after any ht , for any
xt ∈Zt and At+1 ∈ Mt+1, (xt�At+1) ∼ht (xt� {π(ht�xt)(At+1)}).

The last axiom is a simple temporal consistency assumption adapted from Kreps and
Porteus (1978).

Axiom 14 (Temporal consistency). At any time t < T after any ht , (xt� {pt+1}) �ht

(xt� {qt+1}) if and only if pt+1 �(ht �xt) qt+1.

These axioms characterize the following extension of the CMM, whose functional
form is similar to the representation in Lemma 4 in Kreps and Porteus (1978).

Definition 8. An SCF � is a generalized consistent-mistakes model (GCMM) if there
exists, for each history ht , a function Uht : Lt → R, a function Wht : {(xt�ut+1) : ut+1 =
U(ht�xt)(pt+1) for some pt+1 ∈ Lt+1} → R that is strictly increasing and continuous in
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its second argument, and a function φht : Uht (Lt) → R++ that is surjective, strictly in-
creasing, and continuous such that for any time t, history ht , pt ∈ Lt , xt ∈ Zt , and
At+1 ∈ Mt+1,

Uht (pt)=
∑

(yt �Bt+1)∈supp(pt)

pt(yt�Bt+1)Uht (yt�Bt+1)� (15)

Uht (xt�At+1)= Wht

(
xt�

∑
qt+1∈At+1

ρ(ht�xt)
({qt+1}�At+1

)
U(ht�xt)(qt+1)

)
(16)

and

ρ(ht�xt)
({qt+1}�At+1

) = φ(ht�xt)

(
U(ht�xt)(qt+1)

)
∑

rt+1∈At+1

φ(ht�xt)

(
U(ht�xt)(rt+1)

) � (17)

Equation (15) is the standard expected utility equation. Equation (16) shows that
after each history, the decision maker has a correct belief about how she will choose
from the next-stage decision problem. Specifically, the decision maker uses her evalu-
ation of the comparable lottery π(ht�xt)(At+1) of At+1 to evaluate At+1. Then, to evalu-
ate (xt�At+1), the decision maker uses an aggregator Wht to aggregate the current-stage
consumption xt and the utility of π(ht�xt)(At+1). Note that (16) also implies

Uht

(
xt� {qt+1}

) =Wht

(
xt�U(ht�xt)(qt+1)

)
�

Last, after each history ht , the decision maker uses the propensity function φht to con-
vert an alternative’s utility into a measure of propensity for choosing that alternative.

This representation should be applied backward to a decision problem. Starting
from the last stage, after each history hT , (15) evaluates each alternative in LT . Then
(17) tells us what the choice probability distribution is over any AT . Equation (16) shows
us how to evaluate each pair of (xT−1�AT ), after which we are ready to evaluate each
alternative in LT−1, and so on.

Theorem 3. An SCF � is a GCMM if and only if it satisfies Axioms 9–14. Moreover, if an
SCF � is a GCMM, then each Uht is unique up to a positive affine transformation; fixing
Uht s and Wht s are unique, and φht s are unique up to a positive scalar multiplication.

Many steps in establishing the equivalence between the axioms and the representa-
tion are similar to the proof of Theorem 1. We only briefly describe how we can prove the
sufficiency of the axioms. First, similar to Lemmas 1 and 2, for each history ht , we can
show that �ht satisfies the three axioms from expected utility theory. This helps us pin
down Uht . Similar to Lemmas 3 and 4, we can show that the richness assumption in Gul
et al. (2014) holds. Therefore, we obtain a Luce value Vht (pt) for each alternative pt ∈Lt .
Since Uht and Vht represent the same preference, we can pin down φht . Last, Axioms 13
and 14 imply that there must be a strictly increasing function f(ht �xt) such that

Uht (xt�At+1) = f(ht �xt)
(
U(ht�xt)

(
π(ht�xt)(At+1)

))
�

This function becomes the Wht function in (17).
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