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Computational principal-agent problems
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Collecting and processing large amounts of data is becoming increasingly crucial
in our society. We model this task as evaluating a function f over a large vector x =
(x1, - .., Xxy), which is unknown, but drawn from a publicly known distribution X.
In our model, learning each component of the input x is costly, but computing the
output f(x) has zero cost once x is known. We consider the problem of a principal
who wishes to delegate the evaluation of f to an agent whose cost of learning any
number of components of x is always lower than the corresponding cost of the
principal. We prove that, for every continuous function f and every € > 0, the
principal can—by learning a single component x; of x—incentivize the agent to
report the correct value f(x) with accuracy e. complexity.
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1. INTRODUCTION

Our society is more and more data intensive. Every day, firms need to gather and process
multiple pieces of data to make products and decisions. In this paper, we investigate
how to delegate to a rational agent the process of first obtaining multiple pieces of data
and then aggregating them into a “compact” final result. In our model, obtaining the
pieces of data is expensive, but the algorithmic operations to process them are free.

In our setting, a risk-neutral principal wants to learn the output of a continuous
function f : [0, 1]" — R on an input x = (x1, ..., x,). The input x is unknown, but drawn
from a known distribution X. Once the input vector (x1, ..., x;) is known, f(x1, ..., x5)
can be computed at no cost. Learning the inputs, however, is costly. Specifically, the
principal can learn any & coordinates of x at a cost of y(k). There also exists a risk-
neutral agent, who can learn any k coordinates of x at a smaller cost, c(k) < y(k), where
both c¢(k) and y(k) are increasing with k. Since the agent has a lower cost, it is socially
optimal for the agent to learn y = f(x) and then report y to the principal. However,

Pablo D. Azar: pazar@mit.edu

Silvio Micali: silvio@csail.mit.edu

We thank Gabriel Carroll, Tommaso Denti, Harry Di Pei, Juuso Toikka, and Vira Semenova for productive
discussions as well as the referees and editors for their helpful suggestions. We give special thanks to Geor-
gios Vlachos for his input on the proof of Theorem 2. Pablo D. Azar is grateful for financial support from the
Robert Solow Fellowship and the Stanley and Rhoda Fischer Fellowship.

Copyright © 2018 The Authors. This is an open access article under the terms of the Creative Commons
Attribution-Non Commercial License, available at http://econtheory.org. https://doi.org/10.3982/TE1815


http://econtheory.org/
mailto:pazar@mit.edu
mailto:silvio@csail.mit.edu
http://econtheory.org
https://doi.org/10.3982/TE1815

554 Azar and Micali Theoretical Economics 13 (2018)

since the principal cannot monitor the agent’s actions, she cannot necessarily trust him
to learn f(x) or to truthfully report its value. Thus, we must find a way to incentivize the
agent to act in the best interests of the principal in this new framework.

Let us illustrate the usefulness of our goals by means of two examples.

ExampLE 1 (Scientific Data). Each input x; is the result of an expensive but replicable
physical experiment, which the agent can perform more cheaply than the principal. ¢

ExaMPLE 2 (Proprietary Data). An information company has a proprietary database
about the behavior of » individuals, and the principal is an outsider wishing to obtain
some aggregate function of these data, say, to price a new product. Here, the agent is the
information company itself, and while the principal can recreate each individual’s data
from scratch with nontrivial cost, the information company—after sinking a fixed cost
into creating its database—can retrieve each record very cheaply. O

Although our framework and results apply also when the number of inputs n > 1 is
small and each input component x; consists of just a few digits, our results are most
relevant when # is large and each x; has a large number of significant digits, so that it
would be impractical for an agent to report the entire input vector (x1, ..., x,) to the
principal. Typically, in fact, itis when (xq, ..., x,) is huge that one wishes to deal instead
with an aggregate value f(xi,...,x,).! Indeed, when the input vector x is large,® the
principal should not insist on the agent revealing all the data he has learned, but on his
reporting the right answer f(x).

We investigate delegation of computation over costly inputs in two settings.

1.1 Exact computation

In our first setting, the exact computation case, the principal wants to learn y =
f(x1,..., x,) exactly. We show that, for an important class of functions, the principal can
incentivize the agent to reveal f(x) using a direct mechanism. Informally, the following
conditions hold in a direct mechanism.

1. The agent (a) chooses a subset S 4 of the input coordinates and learns the corre-
sponding subvector xs , = (x;);es , ata costof ¢(|S 4]) and (b) reports a value z(xs ,),
allegedly equal to y = f(x1, ..., xp).

2. The principal (a) chooses a (random) subset S of the input coordinates and learns
xs = (x;)jes and (b) pays the agent a reward R(z, xs), which is a continuous func-
tion of z and xg.

1As an example, when f is Lipschitz continuous with Lipschitz constant 1, so that |f(x) — f(x')] < 8
when ||x — x|l < §, the number of significant digits that we would need to send to communicate f(x) in-
creases with % , while the number of significant digits needed to communicate the entire vector (x1, ..., x,)
increases at a rate that is n times larger.

2For example, the large hadron collider at CERN produces 30 petabytes of data every year (CERN Com-
puting).



Theoretical Economics 13 (2018) Computational principal-agent problems 555

A direct mechanism is (a) incentive-compatible if the agent maximizes his expected
payoff Eg[R(z, xs) — ¢(|S4|)] only by learning f(xq,...,x,) exactly and reporting z =
f(x1,...,x,) and (b) individually rational if the agent’s expected reward minus his costs
are greater than or equal to zero.

Our first result: The mechanism My A function f : [0, 1] — R is separable if f(xq, ...,
xn) =Y 1y fi(xi). We show that if f is separable and each f; is bounded, then the prin-
cipal can correctly learn f(x1,..., x,) by means of a direct, incentive-compatible, and
individually rational mechanism M/ in which the principal queries just one input her-
self.

As we shall see, mechanism M is a crucial subroutine for our more general mecha-
nismes.

Our second result: The limits of direct contracts Our first result raises the question of
whether direct contracts can be used to delegate the exact computation of functions
that are not separable. In our second theorem, we show that this is not the case even for
a very simple nonseparable function. Indeed we show that for

foo=]]x
i=1

no direct contract can incentivize the agent to reveal f(x) unless the principal queries
the entire input vector (x, ..., x,,) herself.3

1.2 Approximate computation

In our second setting, the e-approximate computation case, the principal wants to learn
z such that |z — f(x)| < e for some arbitrarily small € > 0.

Our third result: Approximately delegating arbitrary continuous functions We show
that for any continuous function f : [0, 1] — R, any input x € [0, 1]7, and any € > 0,
there exists a (nondirect) mechanism M, that incentivizes the agent to reveal a z that is
within distance € of f(x).

In mechanism M, the following conditions hold:

¢ The principal queries only one coordinate of the input vector x.

e The principal and the agent interact in two rounds, in each of which one sends a
message to the other.

31t is important to remark that our positive results (Theorems 1 and 3) in this paper are proved for func-
tions defined over [0, 11", whereas the counterexample function f(x) = [/, x; we use to prove our negative
results (Theorems 2 and 4) is defined over [—1, 1]". We note that we can always scale and shift this domain
and use the function f(x) = [T7;(2x; — 1) defined over [0, 1]", but we prefer not to do so to simplify the
notation in the proofs of Theorems 2 and 4.
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Our fourth result: Round optimality of M, In our fourth result, we show that one-
round mechanisms cannot be used for approximate delegation of arbitrary continu-
ous functions unless the principal queries the whole input vector (xi, ..., x,), which
would defeat the purpose of delegating the computation in the first place. Accordingly,
our mechanism M, simultaneously minimizes the number of queries that the princi-
pal makes to the input vector, and the number of rounds of interaction between the
principal and the agent.

1.3 Optimality and unlimited liability

Our mechanisms Mj minimizes the number of queries and interaction rounds among
all incentive-compatible mechanisms that delegate separable functions, and M, min-
imizes the number of queries and interaction rounds among all incentive-compatible
mechanisms that approximately delegate continuous functions. These properties hold
for any environment where the agent and principal are risk-neutral. In particular, they
hold when the agent has limited liability and can only be paid a positive amount ex post.

Of course, queries and rounds of interaction are not the only costs that the principal
faces. She must also bear the monetary cost of paying the agent’s reward. We highlight
that there is one setting where we can simultaneously minimize all three of these costs:
namely, when the agent also has unlimited liability.

With unlimited liability, the technique for minimizing the expected payment to the
agent is well known (Hélmstrom 1979): the principal charges the agent a fixed partic-
ipation fee equal to the expected utility that the agent gets from the mechanism.* In
this way, the principal can always find a mechanism that makes the agent’s individual
rationality constraint bind, without affecting the number of queries or the number of
communication rounds.

Auditing and optimality When the agent has unlimited liability, there is a trivial
incentive-compatible, individually rational, and one-round mechanism in which the
principal learns f(x1, ..., x,) exactly, minimizes the expected reward, and makes (in ex-
pectation) arbitrarily few queries. Namely, the following mechanism.

The e-Auditing Mechanism
1. The agent reports a value z, allegedly equal to y = f(x1, ..., X5).
2. With probability (1 — €), the principal pays the agent 0.

3. With probability €, the principal queries the entire input vector (x1, ..., x,) and
pays the agent @ if f(x1,...,x,) =z and 0 otherwise.

The e-auditing mechanism, however, is not meaningful in many cases: for instance,
when y(k) = +oo for some k£ > 1. Consider first our Example 1, where each x; is the

4The principal can compute this expected reward at zero cost because she knows the random variable
X from which the true input x is drawn and can take expectations with respect to this distribution without
gathering any costly information about the true input x. Of course, this would not be true in a model where
the principal has to pay a cost for every algorithmic operation that she makes.
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result of a replicable scientific experiment. Assume »n = 100, and that each experiment
takes 1 day for the agent to perform, but 1 year for the principal. Then, for every possible
choice of ¢, the agent should never agree to participate in the e-auditing mechanism, as
the principal will die before he could pay the agent a positive amount.

Consider now our Example 2, where (x1, ..., x,) is a proprietary data set owned by
an information company. If the principal does not have enough money (or time) to learn
the entire vector (x1, ..., x,), then the agent has no hope to be paid. (Problems also arise
even when the agent is able to reveal and prove to the principal the value of each x; in a
very cheap manner. Indeed, the information company must reveal all of its proprietary
data to get paid, and, thus, it destroys its own business by enabling a competitor in the
process.)

In any case, even when the e-auditing mechanism can be meaningfully used, we
must ask, “what is the optimal mechanism to use once the auditing state is reached?”
This is the mechanism that would be observable (when there is no auditing, we only
observe that there is no auditing). Thus, we will focus on mechanisms that—under any
possible realization of the random choices they make—query at least one input. As we
shall prove in Sections 3 and 4, M; and M; both make only one query to the input
distribution and, under unlimited liability, are, therefore, optimal once the auditing state
is reached for their respective settings.

1.4 Additional related work

Delegating computation to an expert can be interpreted as a moral hazard problem.
The agent’s effort corresponds to the number of components of x that he queries. The
project is successful only if the principal learns f(x) correctly, which requires maximum
effort from the agent. Furthermore, the agent has to decide ex ante how much effort to
exert before observing any components of x.

There are many results in the proper scoring rule literature that consider costly infor-
mation acquisition. Osband (1989), Clemen (2002), and Lambert (2013) consider modi-
fications of strictly proper scoring rules where the agent can increase the precision of his
signal by paying a cost. These models are like ours because the agent must exert some
costly effort to acquire more information, and the decision to expend this effort is made
ex ante. In fact, our mechanisms use strictly proper scoring rules as a crucial component
to incentivize the agent to acquire information about x and then reveal f(x).

Demski and Sappington (1987) consider a moral hazard model where a (weakly) risk-
averse agent must be incentivized to (a) acquire information about a random state of
the world s and (b) take an action a that produces some outcome y = p(s, a). The prin-
cipal is risk-neutral and can only observe the outcome y. Her payoff is given by y — ¢(y),
where ¢ is some transfer to the agent that only depends on the observed outcome y.
This model—like ours—captures scenarios where expertise is both costly to acquire and
costly to communicate. In fact, in Demski and Sappington’s model, communication is
infinitely expensive: the principal and agent cannot exchange messages, and the trans-
fer can only depend on the observed outcome. Our paper is similar to Demski and Sap-
pington’s model in the sense that the agent learns a function of the state of the world,
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but due to communication costs, cannot share his entire expertise with the principal.
Instead, he must take an action that depends on his acquired expertise, which produces
a low-dimensional outcome that is the only information observable by the principal.

There are many other papers that consider moral hazard with costly information ac-
quisition (see Zermetio Vallés 2012, Carroll 2017, Malcolmson 2009, and the references
therein). The main conceptual difference between our results and the moral hazard with
costly information acquisition literature is that our model allows both the principal and
the agent to acquire information at a cost, with the information asymmetry arising from
the fact that the principal’s cost for acquiring information is higher than the agent’s re-
spective cost. Furthermore, we focus on a problem that has been overlooked so far; that
is, how to delegate the evaluation of any continuous function while observing as few of
the inputs as possible.

Our model can also be viewed as a way to capture the complexity of contracts.
One other way to account for computation in the design of contracts was studied by
Anderlini and Felli (1994), who show that when contracts are generated by a Turing ma-
chine, then in some situations computable contracts will be suboptimal. In subsequent
work, Al-Najjar et al. (2006) show that when events cannot be finitely described, some-
times the best contract is no contract at all. Since our model focuses on the computa-
tion of continuous functions, where the complexity of a contract depends only on the
number of inputs queried, we bypass these impossibility results. Another way in which
complexity in contracts can be modeled is via how much time it takes to resolve uncer-
tainty in the state of the world. Using this, MacLeod studies what types of contracts are
more efficient in low and high complexity environments (MacLeod 2000).

In a previous paper of ours Azar and Micali (2012), we study the problem of dele-
gating the computation of a function, where both principal and agent have zero cost for
computing, but the principal cannot perform more than a given amount of computa-
tion. In contrast, the model we present in this paper captures the fact that computation
is costly for both the principal and the agent, and that differences in cost should capture
realistic differences in computational power.

Furthermore, our earlier results Azar and Micali (2012) and followup work by Guo
et al. (2015) focus on giving alternative characterizations of computational complexity
classes as sets of problems that can be delegated to a rational agent. In particular, when
the agent is computationally unlimited, the set of problems that can be delegated to
a computationally unbounded and rational agent in one round of communication in-
cludes the complexity class #P (Azar and Micali 2012). This is a set of canonical count-
ing problems that includes counting the number of satisfying assignments to a boolean
formula, and counting the number of perfect matchings in a bipartite graph. When the
principal is restricted to act in sublinear time and the agent is restricted to act in poly-
nomial time (but both still have zero cost of computation), the set of problems that the
principal can delegate to the agent is the complexity class P (Guo et al. 2015). This is the
set of problems that can be solved in polynomial time.

We remark that—like our results in this paper—the results in Azar and Micali (2012)
and Guo et al. (2015) use proper scoring rules to incentivize the agent to compute a large
sum in a truthful manner.
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2. THE MODEL
Notation

We denote the set {1, ..., n} by [n]. For any S C [n], we denote by xg the vector (x;);cs
and by x_g the vector (x;);+5. We emphasize that knowledge of x5 implies knowledge of
the underlying coordinate set S. We refer to each subvector x¢ as a partial input.

IfX =(Xy,...,X,)isarandom variable over R”, we define X def (X;)ies and denote
the conditional random variable “ X given that X5 = x5” by X |xg. We refer to the process
of learning xs as querying the subset S.

If g is a function of a random variable X, we will write the expectation of g as
Ex—x[g(x)]. We write the expectation of a function g(-, -) with respect to two indepen-
dent random variables X and Y as Ex« x,yy[g(x, y)].

Computational environments

A computational environment is a tuple, £ = (f, X, x, ¢, v), where the following defini-
tions hold:

e The function f: [0, 1]" — R is the target function.

e Therandom variable X € A([0, 1]"*) is continuously distributed, with a distribution
that is common knowledge to the principal and the agent.

e The vector x = (x1, ..., x,) is a realization of the random variable X, a priori un-
known to the principal or agent.

e The function ¢ : {0, ..., n} — R is the agent’s cost function. For every set S C [n],
c(|S]) is the cost to the agent of learning xg.

e Thefunctiony: {0, ..., n} — Risthe principal’s cost function. For every set S C [n],
v(|S]) is the cost to the principal of learning x.

Throughout the paper, we maintain the following assumptions.

AssumpTION 0. Any sequence of purely algorithmic operations has zero cost for both
the principal and agent. (Thus, evaluating any function on known inputs, or computing
an expectation over a known distribution, can be performed at zero cost.)

AssumMpPTION 1. The cost functions are monotonic. For all ¢ < k, we have
y(0) <y(k),  c) <c(k).
AssumpTION 2. The cost of querying zero inputs is zero:
v(0) = ¢(0) = 0.

AssumpTiOoN 3. The cost functions satisfy the increasing differences condition. For all
¢, k, we have

clk+2)—ck) <y(k+£)—y(k).
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(That is, it is always cheaper for the agent than for the principal to query ¢ extra inputs.)

3. EXACT COMPUTATION

In this section, we prove our results for the exact computation setting. Before stating
our results, we define direct computational contracts, define boundedly separable func-
tions, and recall some facts about proper scoring rules.

3.1 Preliminaries

DEFINITION 1. A set S C [n] determines f exactly if the support of the random variable
f(X)|xg is a singleton for every possible value of xg.

DErINITION 2. Forall k < n, a k-query direct computational contract is a mechanism M
specified by the following statements:

e A function D mapping a real number z to a distribution D(z) over {S C [n] : |S| =
k}, that is, over all input coordinate subsets of size k.

e A continuous reward function R mapping a real number z, and a partial input xg
to a real number R(z, xg).

Such a mechanism M = (D, R) has only one player, the agent, and is played as fol-
lows.

Stage 0. Nature draws x < X. (The agent does not observe x.)

Stage 1. The agent queries a subset S 4 of the inputs (updating his beliefs about x to
Xlxs,).

Stage 2. The agent reports a value z = z(xs ,) to the mechanism.
Stage 3. The mechanism draws a subset S of inputs from the distribution D(z).

In such a play, the agent’s reward is r = R(z, xg) and his utility is r — c(|S 41).

The mechanism M is incentive-compatible for a function f : [0, 1] — R if the agent
strictly maximizes his utility by choosing S 4 such that S 4 determines f exactly, and re-
porting z = f(x) in Stage 2.

The mechanism M is individually rational for f if Es—p(fx)),x<x[R(f(x), xs) —
c(n)]=0.

DEerINITION 3. A function f : [0, 1]" — R is boundedly separable if there exist bounded
functions fi, ..., f, : [0, 1] = R such that f(x1, ..., x,) = > 1y fi(xi).

Scoring rules A strictly proper scoring rule® is a function S : A(K) x K — R that takes
as input a distribution () over a finite set K and a sample o € K, and that satisfies the

5For brevity and when the context is clear, we will often refer to strictly proper scoring rules simply as
proper scoring rules or scoring rules.
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property
E S(Q,0)> E S, )

<) <

for any ' # Q. A function that satisfies this property incentivizes a rational expert to
state his true beliefs about the distribution of w. Many such rules are known.® We will
use Brier’s scoring rule (BSR), defined by

BSR(Q, w) =2Pr(Q = w) — ZPr(Q =a)?+1,

where Pr(Q) = «) is the probability that distribution () assigns to the element «. The Brier
scoring rule is always in the interval [0, 3].”

3.2 Our first theorem

THEOREM 1. Let f : [0,1]" — R be a boundedly separable function. Then there exists
a one-query, incentive-compatible, and individually rational direct computational con-
tract M1 = (R, D) for f.

Proor. We first prove Theorem 1 assuming that the agent has zero costs; that is,
c(|S4l) =0forall S4 C [n]. Let f(x1,...,%x,) = fi(x1) + -+ fu(xy) and let B > 0 be a
bound such that |f;(x)| < B for every x € [0, 1] and every i € [n]. Let gi(x) = fi(x;) + B
and note that 0 < g;(x) <2B. Let g(x1,...,x,) = Y 1= 8i(x) = f(x1,..., Xp) + nB. We
now give an incentive-compatible contract for g. Since, by construction, we have en-
sured that each term g;(x) in the sum is nonnegative, our mechanism can scale this
term so as to interpret it as a probability, and use some techniques from scoring rules to
incentivize the agent.

Our mechanism M, takes the agent’s report z as an input and produces a distribu-
tion D(z) and reward function R(z, -) as follows:

Mechanism M (z) = (D(z), R(z, -))
e The function D(z) is the uniform distribution over the singleton sets {{1}, ..., {n}}.

e The reward function R(z, -) is defined as follows:
— If z ¢ [—Bn, Bn], then R{(z, xg) = —oo for all xg. (That is, since the range of f is
[—Bn, Bn], a z outside this range must be a lie.)

— If z € [-Bn, Bn], then the mechanism proceeds as follows:
x Draws § = {i} from D. Since S is a singleton, we denote it by S = .

6The interested reader is referred to a paper by Gneiting and Raftery (2007), which includes a compre-
hensive survey.

"Usually, the Brier scoring rule is defined as BSR(Q, w) =2Pr(Q =) - 3, Pr(Q = a)? — 1. Our formula
is the usual definition plus 2. The reason we add 2 to the usual formulation of the scoring rule is to ensure
that the reward to the expert is nonnegative. Note that adding a constant to this reward does not affect
incentives.
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* Queries x; and computes g;(x;).

x Draws a realization from the random variable w that is equal to 1 with proba-
bility &2 and equal to 0 with probability 1 — 8432,

x Interprets z as a random variable (), over {0, 1} that is equal to 1 with proba-

bility 5 (”B”) and equal to 0 with probability 1 — %.

* Returns Ri(z, x;) = BSR(();, w).

Let us now show that mechanism M; is incentive-compatible. Given a report z,
the agent’s expected reward is E; R(z, x;) = E, BSR({);, w). Since Brier’s scoring rule is
strictly proper, this expected reward is maximized only when the agent reports z so that
), is equal to the distribution from which the principal is drawing w.

Let us now consider the probability that w is equal to 1. This probability is equal to
Y7 Pr(w =1]S = i) Pr(S = i). Since Pr(w = 1|S = i) = £ and Pr(S = i) = 1, we have
that

Prw=1)=) Pr(w=1|S=i)Pr(S=i)= ﬁ > gilxi).
i=1

i=1

Since (), is arandom variable with Pr(Q), = 1) = ZZJ%LZ " the agent maximizes his reward by

announcing z such that z+ Bn = )"}, g;(x;). Note that this is equivalent to announcing
z =7 ; fi(x;), because each g;(x;) = fi(x;) + B. Thus, the agent maximizes his reward
by announcing z = f(x1, ..., x,). Since we are currently assuming that the agent’s cost
function is identically 0, the agent can learn the value of f((xq,..., x,)) at no cost by
querying S = [n].

The above argument only applies when the agent’s cost function c is identically 0.
When this is not the case, we can scale the reward R(z, x) by a large enough constant so
that the agent is incentivized to learn the value of f(xy, ..., x,) exactly. This part of our
proofis standard in the costly information acquisition literature (Lambert 2013, Osband
1989, Clemen 2002) and proceeds as follows.

For every partial input xg ,, let

z*(xg,) € argmax E [R(z,x1)],
z i<—D(z),x<—X\xSA
14 S = E R Z* X s Xi) s
S=, B [RE s, )]

so that v(S 4) is the reward that the agent ultimately expects to receive when he chooses
to query set S4. Let §% € argmaxgv(S). Since the agent maximizes his reward only if
he reports z = f(x) exactly, the random variable f(X)|xg, must satisfy Pr(f(X) = z|
xs,) = 1 for any possible realization of xg,. This implies that the agent learns f(x) ex-
actly when he queries the set §*.8

8Equivalently, for any x in the support of X, the value of the function f(x) must not depend on x_ 55
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Depending on the distribution of the random variable X and the choice of f, there
might be multiple sets in argmaxg»(S). Let §% be a set in argmaxg»(S) that has min-
imum cardinality.” Let « > 0 be such that, for any S such that S 4 ¢ argmaxgv(S), we
have

k-v(S%) —c(|8%]) > k- v(Sa) — c(IS4l). (1)

Since v(S 4) can be computed by taking expectations over the commonly known distri-

bution X, and without the need to learn the true input x, the principal can compute « at

zero cost. Let R(-, ) dof . R(-,-) be a scaled reward function, and let (S 4) be the reward

that the agent expects to receive when he chooses to query S 4 and the reward function
is R. Then, by construction, we have

#(8%) = e(|S41) > #(S.a) = (1S 1)

forany S 4 ¢ argmaxg»(S) and any S 4 € argmaxg v(S 4) such that c(|S 4|) > ¢(|S% ). Thus,
by changing the reward function of M; to be « - R, we can incentivize the agent to learn
f(x1,...,x,) exactly at the minimum cost, and to report z = f(x1, ..., X,).

Finally, since »(S5%) is positive, the principal can choose « so that inequality (1) holds,
and also k- v(8%) — c(|8%]) > 0. That is, so that M using the reward function « - R is also
individually rational. O

3.3 Query optimality and our second theorem

Since the mechanism M/ only makes one query, we have the following corollary.

CoroLLARY 1. Nodirect computational contract that is incentive-compatible for separa-
ble functions makes fewer queries than M.

We now argue that the query optimality of mechanism M is intrinsically linked to
the fact that f is separable. Indeed, we show the following theorem.

THEOREM 2. There exists a continuous, bounded, and nonseparable function f : [—1,
11" — R such that any direct computational contract M = (D, R) that is incentive-
compatible for f must query the whole input vector (x1, ..., Xy).

Theorem 2, which is proved in Appendix A, provides the motivation to broaden ei-
ther our definition of computational contracts or the notion of delegation itself.

In the next section, we define multi-round contracts and show that they can be used
to delegate any continuous function approximately. That is, the agent can be incen-
tivized, for all continuous f and all x € R”, to reveal some value z € [f(x) — €, f(x) + €],
where € > 0 is an arbitrary small number.

9Note that the agent is incentivized to query a set with minimum cardinality. For any two sets S*,, S*e
argmaxg , v(S4) such that |$% | < |S%], the agent will always prefer to query $% than to query S’
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The fact that we broaden both the definition of a contract and the notion of exact
delegation raises the question of whether multi-round mechanisms are really necessary
for the approximate delegation of an arbitrary continuous function. In Section 5, we
prove a generalization of Theorem 2 showing that multi-round mechanisms are neces-
sary. That is, even if we allow approximate answers, we cannot incentivize the agent to
reveal an approximate value to f(x) with a one-round mechanism.

4. APPROXIMATE COMPUTATION

Direct computational contracts are sufficient for delegating boundedly separable func-
tions, but to handle the delegation of arbitrary continuous functions in an approximate
manner, we need to define computational contract more generally, so as to allow the
agent to report not only (an approximation to) the true answer f(x), but some additional
evidence that helps the principal compute the reward. In addition, before proving our
theorems, we recall a result of Kolmogorov about representing continuous functions, as
well as a basic fact about Brier’s scoring rule.

4.1 Preliminaries

DEFINITION 4. A k-query, T-round computational contract for a function f : [0, 1]" — R
is a mechanism M specified as follows:

o A collection of functions {D;}”_,, where D, : R2!~D+1 — A(D) maps a vector of
length 2(¢ — 1) + 1 to a distribution D, (m) over a finite support D.

e Afunction S : R*" — [n] that maps a vector of size 27 to a set of input coordinates
S(m) of size k.

e A continuous reward function R : R*” x [ J]_; R¢ that maps a vector of size 2T and
a partial input xg to a real number R(m, xg).

Such a mechanism M = ({D,}thl, S, R) has a single player—the agent—and it is
played over T rounds. In each round, the agent sends a message to the mechanism
and then receives a random message from the mechanism.

Atanyround ¢ € {1, ..., T}, the information available to the agent consists of the set
S’ of all inputs he has queried so far, and of the vector m' of all messages exchanged
with the mechanism so far. Initially, S?q = @ and m" is the empty vector. A play of the
mechanism proceeds as follows.

Stage 0. Nature draws x < X. The agent does not observe x.

Round ¢. Foreachte{l,..., T}, round ¢ consists of the following stages:
Stage 2(t — 1) + 1. The agent
e chooses a function a,(-) and a subset S 4 ; C [n]

e queries the set S 4, and updates ', = S, US4,

e sends the mechanism the message m; = a,;(x s, ).
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Stage 2(¢t — 1) + 2. The mechanism draws a random element r; from the
distribution D;(my, r1, ..., r+—1, m;). The vector of mes-
sages at the end of this round is m' = (my, ry, ..., my, ry).

At the end of this play, the mechanism queries the set S = S(m”) and pays the agent
the reward r = R(m7, xs). The agent’s utility is r — c(|SZ1 D.
The mechanism M is e-incentive-compatible for f if

Imy — f(x)] <&,

where the sequence of messages m, ..., mr is generated by an agent that, at each round
tef{l,..., T}, chooses a;(-) and S 4, to maximize his expected utility given the informa-
tion x g1, m' ~1 available to him at the beginning of the round.

Thé1 mechanism M is individually rational if

max E ... max E [R((m1,r1,...,mT,7T), XS(m)) ]
a1(),S4,1 x<x,11<D1  ar(-),S] X X|(xgr1,m"=1),rr <Dy
YA
T
—c(|8%]) > 0.

Kolmogorov’s superposition theorem In Theorem 3, we will make use of the following
representation of continuous functions over compact sets.

THEOREM (Kolmogorov 1963). Let f : [0, 1] — R be an arbitrary continuous function.
Then f has the representation

2n n
f(x) = Zq)q<z l!’q,p(xp)>a
q=0 p=1

where 4 and 4, , are continuous one-dimensional functions, and the functions s, , are
Lipschitz continuous and independent of the function f.

A basic property of Brier’s scoring rule In our proof of Theorem 3, we will use the follow-
ing well known property of Brier’s scoring rule on binary distributions

LEMMA 1. Let v and w be real numbers in [0, 1], and let V and W be random variables
over {0, 1} such thatPr(V =1)=vand Pr(W =1) =w. Then

E [BSR(V, w) —BSR(W, w)] =2(v — w)*.

w<—

For completeness, the proof is given in Appendix B.

4.2 Our third theorem

THEOREM 3. For all continuous functions f : [0, 1]" — R and all € > 0, there exists a one-
query, two-round, computational contract M, that is e-incentive-compatible and indi-
vidually rational.
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Prookr. Asinthe proofof Theorem 1, we first prove Theorem 3 assuming that the agent’s
cost function is identically zero. We then use this result to prove the more general result
when the agent’s cost function is arbitrary.

Case 1: ¢(-) =0. Let f(x1,...,%,) = Zén:o CD‘I(ZZ=1 ¥q,p(xp)). Since the functions
4, p are Lipschitz continuous, there exists an M such that |4, ,(x) — g, p(X)| < M|x —
x'| for any x, x’ € [0, 1]. Furthermore, because of this Lipschitz condition, the family of
functions {4, p}4, » has the following two properties:

e Uniform boundedness. There exists a constant B > 0 such that |, ,(x)| < B for
every x € [0, 1] and every g, p.

¢ Uniform equicontinuity. For every e > 0, there exists a § > 0 such that |[x — x'| < §
implies |4, p(x) — ¢4, p(x")| < € for every g, p and every x, x" € [0, 1].

Because of uniform boundedness, we can interpret the domain of the “outer” func-
tion @, as the compact set [-nB, nB]. Since any continuous function with a compact
domain is bounded and uniformly continuous, we have that each ®, is bounded and
uniformly continuous. Let C be a bound such that the image of each @ is contained in
[-C, Cl.

InTuiTiION The intuition behind our contract is to interpret f(x) = Zé”: 0Py X
(Z’;Zl Yq,p(xp)) as a boundedly separable function f(wo, e, W) = Zf,io Dy (wy),
where each wy(x) = 2221 Yq,p(xp) is itself a function of x. If the principal knew the
value w, for arandom index g, then she could use the computational contract from The-
orem 1 to incentivize the agent to reveal f(x) = f(w) = Zé’; o Pg(wy) using the mecha-
nism M.

However, the principal does not know the value of w,(x). Since wy(x) is itself a
boundedly separable function of x, the principal might attempt the following mecha-
nism.

Round 1. Use mechanism M, to incentivize the agent to reveal f (w(x)) = Z(ZZ'; o Pgx
(wg(x)). This mechanism needs to query wgy(x) for a uniformly random gq.
To obtain w,(x), go to round 2.

Round 2. Use mechanism M; to incentivize the agent to reveal the boundedly sep-
arable function wy(x) = ZZZI 4, p(xp) by querying a uniformly random
input coordinate p.

The problem with this approach is that the agent gets two rewards: one for announc-
ing f(w) and one for announcing wy(x). Accordingly, it is possible that the agent would
lie about w, (thus, getting a lower reward in round 2) to manipulate the mechanism in
round 1 and receive a higher reward overall.

The way to avoid this problem is to make the reward from round 2 so high that the
agent has no incentive in round 2 to reveal a value v, whose distance from w,(x) is
greater than 6 for some & that we will choose. We will argue that the agent will be in-
centivized in round 1 to announce f V1, ..., 0p) = Zé’; 0 @4(vy) instead of the true value
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flwi, ..., w,) = Z‘ZI’; 0 @4(wy). Nevertheless, by using the uniform continuity of f, we
will guarantee that the agent’s announcement is e-close to the true value f(w) = f(x).

THE cONTRACT M; We formalize the above intuition via the following contract and
analysis.

Mechanism M, = (D, S, R)
A play of M, proceeds as follows:
o In Stage 1, the agent announces z, allegedly in the set [f(x) — €, f(x) + €].
e In Stage 2, the mechanism announces ¢, drawn from D; = Uniform({0, ..., 2n}).
¢ In Stage 3, the agent announces vy, allegedly close to ZZ:I p,q(Xp).
e In Stage 4, the mechanism announces p, drawn from D, = Uniform({1, ..., n}).
Given the message vector m = (z, q, vq, p), define
e S(m)={p}C[n],and

e R(m, xs(m)), the value computed as follows:

- Let w1 (vy) be arealization of a random variable that is equal to 1 with probabil-
i (q’q(vq)JFC) (‘Dq(vq)+c)
ty —c 2C

- Let w; be a realization of a random variable that is equal to 1 with probability
Ypgxp) q(x” ) and equal to 0 with probability 1 — %

and equal to 0 with probability 1 —

— Interpret z as arandom variable ), that is equal to 1 with probability m—;é)cc))
. . +Qn+1)C
and equal to 0 with probability 1 — %

(vq+nB)

— Interpret v, as a random variable (), that is equal to 1 with probability
(vq+nB)

and equal to 0 with probability 1 — 45~

— Return the reward
R(m’ xS(m)) = R((Z’ q7 Uq’ p)’ xp) = BSR(QZ’ C()l) + 0 : BSR(qu, wZ)’
where 0 > 0 is a constant, which we determine later.

€-INCENTIVE COMPATIBILITY Thereward function depends on z only through BSR({};,
w1(vg)). Thus, taking his choice of v, in Stage 3 as given, the agent is incentivized to re-
veal z in Stage 1 such that the distribution (), equals the distribution from which w1 is
drawn. We have that

q(Uq) + C
2C

Pr(w;=1)= ZPr(q)Pr(wl =l =5 Z

q=0

1 2n
T @2n+1)2C (Z Dy (vg) + (2n + 1)C>,
n =
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Since Pr(Q), =1) = %, we conclude that Pr(Q), = 1) = Pr(w; = 1) if and only if

2n
z= Z D, (vg).
q=0

Note that z is not necessarily the true value f(xq, ..., x,) = Zé’lo (Dq(Z’;:l ¥pq(xp)),
since vy # 22:1 ¥ p,q(xp). Note further that the agent is not incentivized to announce
Vg = > =1 ¥p.q(xp), since vy enters his reward both via Q,, and via w1, which is de-
fined in terms of v,. While announcing v, # Z’;Zl ¥ p,q(xp) always decreases the term
6 BSR()y,, @2) in the agent’s reward, it may increase the term BSR({),, w{) enough to
make such a deviation profitable.

We now give a bound on how much the agent can profit by announcing v, instead
of wg = 3,1 ¥p,q(xp). There are two effects that this deviation has on the expected
reward:

e The first term of the expected reward changes by E,,, [BSR({);, w1(v4)) — BSR({);,
w1(wy)] < 3 since the Brier scoring rule is bounded above by 3 and below by 0.

e Given a fixed ¢, by Lemma 1, the second term of the expected reward changes by

26
0 - E[BSR(Q —BSR(Q =7 (v, —wy)>
IE[ ( vy w?) ( Wy > wZ)] (ZBH)Z (vg — wgq)
Taking expectations over ¢, which is drawn uniformly from {0, 1, ..., 2n}, the total
expected loss in reward is — (22—"’;)2 (2,11—“) lv— w||%.

This analysis shows that when the agent reports v such that ||[v — w||% > §, the change
in his reward is bounded by

2
3-— —028.
(2n+1)(2Bn)

When 6 is high enough, this change in reward is always negative and the agent always
prefers not to announce a value v far away from w. In particular, if we set

3(2n+ 1)(2Bn)?
> e —

6 ;
26

the agent is incentivized to report v such that ||v — w||% <é.

Finally, we use the above analysis to show that the principal can incentivize the agent
to announce z such that |z — f(x)| < e. For the desired approximation factor e, let 5(¢)
be such that when ||v — w||3 < 8(e), we have |Zf]’;0 Dy (vg) — Z;’;O D, (wy)| < €.19 Since

(3(2Bn)?
26(€))

he is always incentivized to announce z = Zf{;o ®,(vy), we conclude that the agent is
always incentivized to announce z such that |z — f(x1, ..., x,)| <e€.

the agent is incentivized to announce v such that ||v — w||% < &(€) when 6 > and

10Note that 8(e) does not depend on x since le;io ®,(+) is uniformly continuous.
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Case 2: c(-) #20. The above argument only applies when the agent’s cost function
¢ is identically 0. When this is not the case, we prove that we can scale the reward
R((z,q,vq, p), xp) by alarge enough constant « so that the agent is incentivized to learn
enough inputs from the vector (xq,...,x,) so as to provide an e-approximation to f.
As mentioned above, once the agent has learned this e-approximation, the scoring rule
guarantees that he will maximize his reward by reporting it to the mechanism. In con-
trast to the proof of Theorem 1, the following scenarios occur:

e The agent does not need to learn the whole input (xq, ..., x,), since he only needs
to give an approximation to f(x).

e The agent learns his set of inputs S 4 in two stages: by querying S 4 ; in Round 1
of the mechanism and by querying S 2(z, ¢, x5, ,) in Round 2, after making his
first-round announcement z, and learning the mechanism’s random choice g and
the partial input xg , ,. The final set of inputs S 4 that the agent learns is the union
S 4,1Y S A2+

Our argument proceeds by analyzing the agent’s optimization using backward in-
duction. For any partial inputs xg,, and xs, , that the agent could learn, any z that
the agent announces in Stage 1, and any random g that the mechanism could draw in
Stage 2, let

UZ(Z,XSAJ,XSA’Z)GargmaX ]E [R((Z7 q7 v, p)a-xp)]a
v X< Xl(xsy oxsy ) <D

v2(2,q, %5, ,,84,2) = E [R((2, 4> v (x5,0.1> G5 X5,45)> P)s Xp) ]

x<Xlxs , l,p(—Dz

sothatvy(z, q, x5, ,,S.4,2) is thereward that the agent ultimately expects to receive when
he learns xg, , and announces z in Stage 1, receives ¢ from the mechanism in Stage 2,
and chooses S 4 > in Stage 3. For any z, any xg, ,, and any g, let

11
S%0(z,q,xs,,) € argmaxvy(z, q, X5, ,, S4,2)-
San

Proceeding by backward induction, for any set S 4 1, we define

z*(xg,,) € argmax E [v2(2, 9, x5, ,» 8% 2(2, 4, x5, )]
’ z x<—X|xSA 1,q<—D1 ’ ’ ?
Vl(SA,l): ]E [VZ(Z*(XSAl)aq:xSA1>Sj<4 Z(ZaqaxSAl)]a
x<X,q<Dy ? ’ ’ ’

so that v;(S 4,1) is the agent’s expected reward when he chooses set S 4 1.
Let §% | € argmaxg v((S). From Case 1, we can make the following inferences:

e For any S 4 1, the agent’s choice of set §% 2(2*(365/1,1), q,S4,1) in Stage 3 will give
him enough information to report v, such that ||v — w||§ < 6.

'There may be multiple such sets, but we shall argue that this multiplicity does not matter for our argu-
ment.
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e Given that the agent is reporting such a v, in Stage 3, the agent chooses % , in

Stage 1 to get enough information tolearn z = z*(xg, ) such that z = Z;"ZO Dy (vg).

We now proceed to scale the reward so that, even when there is cost, the agent is
always incentivized to choose S | in Stage 1 and is incentivized to choose $% ,(-,,-) in
Stage 3. Choose k > 0 such that the following conditions hold:

e Forany S, 1 # 8% , and any S 4 , we have

kv (Shq) —e([S% ] +1Sa20) > k- v(Sa,1) —c(1Sa1] +1S4.20)-

e For any z, any ¢, and any XS, and any S 42 # 8% ,(z,9,54,1),

Kkv2(2, @, x5, 15 S5 2(25 (5,010 4> S4.1)) — (15411 + |87 2(2, 4, S4.1)|)
> k(25 q, X541, 84,2) — ¢(ISa,11 + 1S4,21)-

Such a « exists because $% ,(z, g, S4,1) and S% , are chosen to maximize v, and v,

respectively. Let R, ) def k-R(-,-) be ascaled reward function. Let 7, def K-v1,0) def K-v3.

Then, by our choice of k, we have the following conditions:

e Forany S, 1 #S% , and any S 4 », we have

v1(S%1) = c(|S% 1] +184,20) > 9(Sa,1) — c(1S4,11 +1S.4,21).-

e For any z, any ¢, and any x5, andany S0 # 8% (2" (xs, 1), 4, 54,1),

12(2, G X541 8% 2 (25 (x5, 4 Sa.1)) — (IS a1 + [ 2 (2%(x5,,.1)5 4> S4,1)|)
>02(2,q, X5, ,,84,2) — c(1Sa11 +1S4.2]).

Thus, by changing the reward of function of M, to be « - R, we can incentivize the
agent to gather enough information to be able to report v such that |Jv — w||% < 6 and
report z such that |z — f(x)| <e.

We conclude by noting that we can further increase « to ensure individual rational-
ity, and even if there are multiple optimal choices for §% | and §7 ,, all such choices
guarantee that the agent gathers enough information to report z within e of f(x). O

4.3 Our fourth theorem

Our mechanism M, queries only one coordinate x, from the input vector, and uses
two rounds of interaction between the principal and the agent. This raises the question
of whether there exist one-round contracts that can be used to approximately delegate
continuous functions and query few inputs. We show in the following theorem that this
cannot be the case as long as the reward function is concave in the agent’s reported
value z. We remark that the reward function R((z, g, v4, p), x) used in Theorem 3 is
concave in the agent’s reported value z, but it is not concave as a function of the agent’s
additional message v,.
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THEOREM 4. There exists a continuous function f : [—1,1]" — R such that every one-
round, e-incentive-compatible contract M = (D, R) with a concave reward function must
query the whole input (x1, ..., X,).

The proof of Theorem 4 is given in Appendix C.

5. DiscussioN
Optimality and unlimited liability

In the above discussions, we have been careful to minimize the number of queries that
the mechanism makes to the input (as well as the number of interaction rounds between
the principal and the agent). In addition to the query cost, the principal of course bears
the monetary cost of paying the agent’s reward. As we mentioned in the Introduction,
this monetary cost can be minimized for any of our mechanisms when the agent has
unlimited liability. The principal can simply charge the agent a fixed fee equal to the
agent’s expected utility from participating in the mechanism. Since this fixed fee can
be computed using expectations over X (rather than querying the actual input x), the
principal can compute this reward at no extra cost. Since the principal minimizes her
expected payment to the agent and the number of queries she makes, our contracts are
optimal in the unlimited liability scenario.

In the classical setting, this type of argument is known as “selling the firm” Holm-
strom (1979) and makes the problem trivial. In this setting, the problem is still nontrivial
because the principal still needs to be convinced that the agent has computed a correct
approximation to f(x) and, therefore, needs to query some set S of inputs so as to ver-
ify the agent’s answer. Thus, even when we sell the firm and minimize the principal’s
monetary cost, the problem of minimizing the principal’s query cost still stands.

Beyond e-incentive compatibility

In this paper, we focused on the case where the principal wants to obtain a value z arbi-
trarily close to the true value of f(x). While we believe that this is an important model for
delegation of computation, it is not the only one. For instance, one may also investigate
various trade-offs between the quality of the agent’s answer z and the cost of obtaining
this answer.

Accounting for algorithmic cost

In our results, we assumed that data collection is expensive, but once the data are avail-
able, running an algorithm on the collected data is free. An advantage of this model over
other ways to measure computational complexity is that we can precisely analyze how
many pieces of data a principal has to observe so as to incentivize the agent to evaluate
a continuous function of the entire data set. Indeed, we showed that the principal only
needs to observe a single piece of data.

An alternative approach would be to assume that the data are already available (and
thus cost-free), while running algorithms on the available data has a cost that increases
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with the number of operations performed. We are also interested in delegating compu-
tation to a rational agent in this model. We believe that doing so is likely to require
techniques from computer science, such as computationally sound interactive proof
systems (Micali 2001, Kilian 1992), where the agent gives verifiable evidence to the prin-
cipal that his answer is correct. This verifiable evidence guarantees to the principal that
no malicious agent (who may go out of his way to cheat her) will be able to deceive her.
Such guarantees are very strong, but require very complicated protocols. We believe that
by properly modeling the rationality of the agent, as we have done in this paper, we can
vastly simplify these protocols.

APPENDIX A: PROOF OF THEOREM 2

THEOREM 2. There exists a continuous, bounded and nonseparable function f : [—1,
11" — R such that any direct computational contract M = (D, R) that is incentive-

compatible for f must query the whole input vector (x1, ..., X,).
Proor. We consider the function f(xq,...,x,) = x1x2...x,. Assume that there is a
direct computational contract M = (D, R) that is incentive-compatible for f and that
queries n — linputs. Let S_; ={1,...,n} —{i}and let x_; = (X1, ..., Xj—1, Xit1,---, Xn)-
We can write the function f(xq,..., x,) =x1x2...x, as
n
X1X2...Xp :argmaXZProb(D:S,i)R(z, X_;). (2)
z

i=1
Let ¢_;(x_j,z) = Prob(D = S_;))R(x_;,z) and let p(x1,...,x4,2) = Y i P_i(x_j, 2).

Then we can write f(x1, ..., x,) as

X1...Xp=argmaxp(xy,..., Xpn, 2).
Z

Now consider the set 4 = {—1,1}" = {(x1,...,x,) : x; € {1, —1}} and notice that
f(x1,...,xp) €{l,—1} foranyvectorx € A. Let Ay ={xe A: f(x)=1}and 4_1={x €
A: f(x) =—1}. For any vector x € Ay, we must have that 1 = f(x) = argmax, p(x, z), SO
that p(x, 1) > p(x, —1). Similarly, for any x € A_1, we must have that p(x, —1) > p(x, 1).

The above argument implies that

Y e y> > px, 1), (3)

xeA1 xeA1
> el == Y plx, D). @
xeA,l xeA,l

We proceed to obtain a contradiction by showing that

Y op,h= " plx, ), (5)

xeAy xeA_q

Y Pl =D= > plx,-D. (6)

xeAy xeA_q
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Note that for every x € A; and indexi € {1, ..., n}, there exists a unique y(x,i) € A_4
such that y_;(x, i) = x_;. Such a y(x, i) can be constructed by setting y;(x, i) = x; for all
j #iand yi(x,i) = —x;. It is clear from this construction that x;...x, = —y;...y,, and
since x1...x, = 1, we must have y; ...y, = —1. For a fixed i, it is clear that the function
mapping x to y(x, i) is a bijection between A4; and 4_;.

To show that (5) holds, write

Yoo, =" bix i D= ¢ilx i, 1)

X€A1 XEA1 i=1 i=1 xeA1
n n
=Y Y by, =) Y by D
i=1xeA; i=1yeA_y
n
=Y Y iy h= > p(yD.
yed_q i=1 yeA_1

Analogously, we can show that (6) holds. Now note that from (3), (4), (5), and (6) we
can derive the contradiction

dop D> D p,~D= Y plr,=D> Y plr, =) p(x,1).

XEAI XEA] XEA_I XEA_I XEA]

This contradiction arose from assuming that x; ...x, could be written in the form
of (2). Thus, we conclude that x; ... x,, cannot be delegated with an (n — 1)-query direct
revelation contract. O

To prove this theorem we have used the fact that the contract is strictly incentive-
compatible. The proof would still work with weakly incentive-compatible contracts.'?

APPENDIX B: PROOF OF LEMMA 1

LEMMA 1. Let v and w be real numbers in [0, 1], and let V and W be random variables
over {0, 1} such that Pr(V =1)=vand Pr(W =1) = w. Then

E [BSR(V, ®) — BSR(W, »)] =2(v — w)*.

w<—

12We illustrate this informally. Suppose that the distribution of inputs X is such that x € A; with prob-
ability 1 — e and x € 4_; with probability e. Suppose, furthermore, that the contract is weakly incentive-
compatible so that for any x € 41 and any ¥ € A_;, we have

GE R x5)] = E_[R(f(2), xs)].

E_[R(f(%), %s)] ZSLED[R(f(x),is)}

S<D

If any one of these equalities holds strictly, we derive a contradiction just as in our proof above. If both hold
as equalities, then the contract cannot be weakly incentive-compatible because the agent knows that the
value of f is equal to f(x) = 1 with extremely high probability and, therefore, will maximize his expected
payoff by always reporting the value 1 without querying any inputs, and, thus, obtaining the same reward
with less cost.
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Proor. Note that we have [[V]|3 = v? + (1 — v)? and ||W |3 = w? + (1 — w)?. We have

E BSR(V, w)

w<V
=Pr(w=1)(2Pr(V =1) — V|3 +1) + Pr(w = 0)(2Pr(V = 0) — [V |5 + 1)
=20 +2(1—v)? - —(1—v)’+1=v"+ (1 —-0v)?+1
=20" - 2v+2.
We also have

E BSR(W,»)=Pr(w=1)Q2Pr(W =1) — [W|}+1)

w<V
+Pr(w =0)(2Pr(W =0) — [WI|3+1)
=2vw+2(1—v)(1—w) —w? — (1 —w)?+1
= dow +2 — 2v — 2w’

Taking differences, we have

E [BSR(V, w) — BSR(W, )] =2(v* + w?) — 2v — dvw + 2v

w<V
= 20% + 2w? — dwv

=2(v—w). O

APPENDIX C: PROOF OF THEOREM 4

The following lemma will be useful for the proof of Theorem 4.

LEMMA 2. Let ¢q, ..., o, : R — R be continuous concave functions, and let ¢ : R — R be
a function such that ¢(z) =Y i ¢i(z). Let zj = argmax, ¢;(z) and assume that there
exists an interval [a, b] such that for all i, z} € [a, b]. Then

argmax ¢ (z) € [a, b].

PROOF. Since each ¢; is continuous and concave, it is superdifferentiable everywhere.!3
Furthermore, since each ¢; is maximized in the interval [a, b] for each i, the following
supergradients exist:

e Asupergradient «; > 0 such that ¢;(z) — ¢i(a) < a;(z — a) for every z € R.
e Asupergradient 8; <0 such that ¢;(z) — ¢;(b) < Bi(z — b) for every z e R.

134 function f : R — R is superdifferentiable at x if there exists a real number ¢ such that for every z € R,
we have f(z) — f(x) <c(z —x).
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Adding up over all /, we conclude that there exist supergradientsa« = Y " ; @; > 0 and
B =" ,Bi<0for ¢ such that ¢(z) — ¢(a) < a(z—a) and ¢(z) — ¢(b) < B(z — b) for
every z € R. Since ¢ is concave, this implies that there exists a point z* € [a, b] such that
0 is a supergradient of ¢ at z*. Thatis, ¢(z) — ¢(z*) <0(z — z*) for every z € R. This
implies that

¢ (2) < ¢(z%)

for every z € R. Therefore, the maximum of ¢ is in the interval [a, b]. ]

THEOREM 4. There exists a continuous function f : [—1, 1]" — R such that every one-
round, e-incentive-compatible contract M = (D, R) with a concave reward function must
query the whole input (x1, ..., X,).

ProOOF. As in the proof of Theorem 2, we consider the function f(xi,...,x,) =
X1x2...Xx,. Let e <1 and assume that an (n — 1)-query, e-incentive-compatible con-
tract M = (D, R) exists for delegating f. We can then write the agent’s expected reward
from sending a message m as

n n
Y _Prob(D=S_pR(m,x_i) =) d_i(m,x_p),
i=1 i=1
where ¢_;(m, x_;) = Prob(D = S_;)R(m, x_;). Note that each ¢_;(m, x_;) is concave.
Therefore,

p(m, x)= Z b_i(m, x_;)

i=1

will also be concave.

Define the set 4 = {—1,1}" = {(x1,...,xn) : x; € {1, —1}} and notice that f(xq,...,
xy)e{l,—1}foranyvectorx € A. Let A; ={x e A: f(x)=1}and A_1={x e A: f(x) =
—1}. Recall that for every x € A; and every index i € {1, ..., n}, there exists a unique
y(x,i) € A_y such that x_; = y_;(x, i). The key to proving Theorem 4 is using this bijec-
tion to derive the equation for any possible message m:

Y pmx)= Y p(m,y). (7)

x€A1 yGA,l

This equation holds because

Yopmx)=" > "¢ imx =) Y ¢_1(mx)

xeAl xeAl i=1 i=1 xeA1
n n
=Y Y bilmyixD)=) > bilm,y)
i=1 xeA1 i=1 yEA,l

= Z Z¢—i(m’y—i)= Z p(m’y)

yeA_q i=1 yeA_4



576 Azar and Micali Theoretical Economics 13 (2018)

We now show that (7) leads to a contradiction. Since p(m, x) is a continuous
and concave function, there exists a continuous function m(x) such that m(x) =
argmax,, p(m, x). Since the mechanism is e-incentive-compatible, m(x) € [f(x) —
€, f(x) + €]. In particular, for any x € 41, we must have m(x) € [1 — €, 1 + €], and for
any y € A_1, we must have m(y) e [-1 —¢€, —1 + €].

The sum } . 4, P(m, x) is itself a concave function of m. Let m} =
arg max,, erA1 p(m, x). Since each m(x) = argmax,, p(m, x) belongs to the interval
(1 —€,1+¢€), Lemma 2 tells us that m] € [1 — ¢, 1 + €]. Analogously, the same lemma
tells us that m* | = argmax,, ) p(m,y) must belong in the interval [-1 — €, —1 + €].

But (7) tells us that

yeA;

> plmix)= 3 p(mi,y),
xeA, yeA_q
Y p(mt,y)= )" p(m?y,x).
yeA_y xeAy

The strict concavity of p implies that ZyeA_lp(m’jl,y) > ZyeA_lp(mT,y) and
p(m*, x) > p(m* ., x). Putting these equations together, we derive the con-
ved, PUME, X) >3 4 p(m*,, x). Putting these equations togeth derive th
tradiction

2. p(miy)= ) plm’y, x)

yeA_4 xeAy

=Y p(mhx

x€A1

= 2 plmiy)

yeA_;

< Y oty

yeA_4

From this contradiction, we conclude that an (n — 1)-query, e-incentive-compatible
contract for f(xq,...,x,) = x1...x, does not exist. O

As a final remark, note that we do not need f to be symmetric for Theorem 4 to hold.
The proof tells us that there exists a symmetric function f such that any one-round e-
incentive-compatible contract for f requires the principal to query all n coordinates of x.
However, we can construct a nonsymmetric perturbation f of f for which Theorem 4
also holds. Let g(x) be a nonsymmetric continuous function such that 0 < gx) <1 Let
f(x) =f(x)+5 3 - g(x). Then we have that f is not symmetric and that |f(x) — f(x)| <
Even though f is not symmetric, there does not exist an 5-incentive-compatible one-
round computational contract (D, R) for f that queries k < n coordinates of x. If such
a contract existed, then it would also be an e-incentive-compatible contract for f. This
is because the contract would incentivize the agent to reveal some value 71(x) such that
|m(x) — f(x)| < 5. The revealed value m(x) would also satisfy [m(x) — f(x)| <e.

We conclude that there is a very general class of functions for which no one-round
mechanisms that make k& < n queries can be e-incentive-compatible.
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