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This paper builds coordination costs, transaction costs, and other aspects of the

theory of the firm into a production chain model with an infinite number of ex

ante identical producers. The equilibrium determines prices, allocations of pro-

ductive tasks across firms, firm sizes, and the number of active firms. These prices

and allocations match several stylized facts on firm boundaries, vertical integra-

tion, and division of the value chain.
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1. Introduction

Reflecting on a conversation with an ex-Soviet official wishing to know who was in

charge of supplying bread to the city of London, Seabright (2010) observed that “there

was nothing naive about his question, because the answer ‘nobody is in charge’ is, when

one thinks about it, astonishingly hard to believe.” Seabright’s comment highlights the

ability of market forces to coordinate a vast number of specialized activities with mini-

mal central planning.
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As pointed out by Coase (1937), however, even in free market economies a great deal
of top-down planning does in fact take place. The difference is that, rather than bureau-
crats in government departments, most of these planners are managers, working in en-
tities called firms. The operation of free market economies blends planning within firms
and decentralized production coordinated by prices. Firms are “islands of conscious
power in the ocean of unconscious cooperation.”1

The islands to which Coase refers exhibit striking diversity. For example, in 2011,
Royal Dutch Shell operated in over 80 countries, had annual revenue exceeding the gross
domestic product of 150 nations, and paid its chief executive officer 35 times the salary
received by the President of the United States. In the same year, the total number of
employees at Walmart exceeded the population of all but 4 U.S. cities. In addition to
such giants, tens of millions of smaller firms operate around the world.2

What forces shape the number and size of large firms and the multitude of smaller
ones? The pioneering work of Coase (1937) addressed at least some of these questions
by analyzing the trade-off between intrafirm coordination costs, which tend to inhibit
firm growth, and external transaction costs, which encourage it. Subsequent researchers
analyzed firm size and firm boundaries by considering the effects of imperfect informa-
tion, incentive and agency problems, incomplete contracts, property rights, decision
rights, and the microfoundations of transaction costs.3

In this paper we study the determinants of firm size, firm heterogenity, and alloca-
tion of tasks across firms in the context of production chains coordinated by prices. As
in Coase (1937), firms along the chain have nontrivial size because of transaction costs
associated with using the market. Entrepreneurs and managers can sometimes coordi-
nate production at a lower cost within the firm. A countervailing force, referred to by
Coase (1937) as “diminishing returns to management,” prevents firms from expanding
without limit.4 The boundary of the firm is determined by the point at which the cost
of organizing another productive task within the firm is equal to the cost of acquiring a
similar input or service through the market.

The firms in the model act competitively. Responding to prices, firms decide how
much to produce in-house and how much to subcontract to upstream partners. In this
way, ex ante identical firms arrange themselves into a production chain with several
distinct features. One is that value added is higher the further down the production

1This phrase from Coase’s essay is originally due to Robertson (1923).
2Sources: United States Census Bureau and the Forbes Global 2000 List.
3Well known contributions include Jensen and Meckling (1976), Williamson (1979), Williamson (1981),

Klein et al. (1978), Hart and Moore (1990), Holmstrom and Milgrom (1994), and Grossman and Helpman
(2002). Recent surveys include Aghion and Holden (2011) and Bresnahan and Levin (2012).

4Well known studies based on this assumption include Lucas (1978) and Becker and Murphy (1992). For
Coase, diminishing returns to management were driven by the huge informational requirements associ-
ated with large planning problems, leading to “mistakes” and misallocation of resources. The challenges
associated with coordinating production through top-down planning were emphasized by Hayek (1945),
who highlighted the difficulty of utilizing knowledge not held in its totality by any one individual. Later
authors have identified additional causes of high average management costs in larger firms, such as com-
munication costs or free-riding, shirking, and other incentive problems. See, for example, Garicano (2000),
Jensen and Meckling (1976), Holmstrom and Milgrom (1994), McAfee and McMillan (1995), Milgrom and
Roberts (1992), Geanakoplos and Milgrom (1991), and Meagher (2003).
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chain firms are located. A second is that, when firms are allowed to optimally choose
the number of subcontractors, downstream firms have the largest number of subcon-
tracting partners, while upstream firms are smaller and have fewer. These results are
broadly consistent with the stylized facts on production chains.

As an ancillary result, the model also produces a prediction for the size distribution
of firms. While the model lacks the intrinsic heterogeneity required to accurately match
observed data, it can yield the kind of heavy tailed firm size distribution that has been
noted by many studies.5 This is interesting because the mapping from identical agents
into a power law firm size distribution occurs purely as a result of market interactions
and the kinds of frictions identified by the modern theory of the firm, without requiring
exogenous shocks or inherent power law features.6

One way to understand our model is to observe that firms along the supply chain are
in some senses analogous to the layers of management within an organization studied
in Garicano (2000). Under this correspondence, the range of tasks performed by a given
firm maps to the size or problem solving capability of each layer of management, while
trade between firms maps to communication between layers. Our finding that value
added and the range of tasks per firm are higher the further we move downstream in
the production chain can be seen as partly analogous to the finding in Garicano (2000)
that optimal arrangement of management layers has a pyramidal structure, consistent
with observed intrafirm organization. Another analogy is that in Garicano (2000), a rise
in communication costs between layers tends to increase the size of individual layers so
as to economize on communication. Similarly, in our study, a rise in transaction costs
between firms increases the size of firms, as firms produce more in-house to economize
on transaction costs.

There are, however, obvious differences between our work and Garicano (2000). For
example, in our study of production chains, prices play an essential role, partly by co-
ordinating production and partly due to the fact that transaction costs are proportional
to price. These multiplicative costs compound along the value chain from upstream
to downstream, since earlier transaction costs are accommodated in the value of each
subsequent transaction. We show that an increase in transaction costs leads to higher
prices, larger firms and a smaller number of firms along one chain in equilibrium.7

The multiplicative transaction costs in our model capture the idea that many such
costs associated with interfirm trade are sensitive to the value of a given transaction.
Firms will spend more on acquiring information, writing and negotiating contracts, pro-
viding insurance, currency hedging, or bribes for a transaction that costs $1,000,000 than
for a transaction that costs $1,000. At the same time, we acknowledge that some transac-
tion costs are fixed or additive rather than proportional, and for this reason, in Section 5,

5See, e.g., Axtell (2001), Luttmer (2007), Lucas (1978), or Rossi-Hansberg and Wright (2007).
6In this respect, our work connects with Geerolf (2017), who uses the framework provided by Garicano

(2000) to study Pareto distributions in labor income, showing that power law distributions can be generated
by power production functions.

7Another way that our model differs from Garicano (2000) is that in Garicano the number of layers of
management is either fixed or infinite. In our model, the number of firms is finite and endogenous. This
endogeneity allows us to study how transaction and coordination costs impact all salient aspects of the
production chain, including the number of firms.
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we also study a richer model with both kinds of transaction costs. In this extension we
also allow for the realistic possibility that firms have multiple upstream partners. Thus,
not only the relative size of firms but also the number of suppliers per firm is determined
endogenously at every level of the industry. This provides a rich network structure that is
well suited to the study of modern multifirm production chains. Although much of our
analysis is restricted to simulation, key ideas from the baseline model, such as larger
downstream firms in terms of value added, are also found in the extended model.

There are also connections between our paper and the work of Garicano and Rossi-
Hansberg (2006), who follow Garicano (2000) in considering layers of management.
They show in the Appendix that organization of the firm can be decentralized, so that
outcomes are the result of market interactions. There is also a numerical component
of the study that allows the number of layers to be endogenous. However, unlike our
model, the number of management layers is constrained by fixed costs associated with
each layer. In our model, the number of firms is constrained by transaction costs, as
envisaged by Coase (1937). These transaction costs compound along the value chain, a
fact that magnifies their weight in equilibrium outcomes.

Another related paper in this vein is Caliendo and Rossi-Hansberg (2012), who also
extend the model of Garicano (2000), adding a demand side so as to study the impact of
trade liberalization on organizations. Among other things, the paper is notable for the
fact that the number of management layers is endogenous, just as the number of firms
in one production chain is endogenous in our model. At the same time, the propor-
tional transaction costs in our model have no direct counterpart in Caliendo and Rossi-
Hansberg (2012), where, as in Garicano and Rossi-Hansberg (2006), the number of layers
is constrained by fixed costs associated with each layer. As a result, the cost function in
Caliendo and Rossi-Hansberg (2012) evaluated at the optimal management structure is
kinked and nonconvex. In contrast, prices in our model are strictly convex and contin-
uously differentiable. This enables us to obtain sharp results concerning uniqueness of
equilibria and other properties, such as a connection between the derivative of equilib-
rium prices and a classical idea on firm boundaries stated verbally by Coase (1937).

A separate literature connected to our work studies production chains and the trade-
offs that determine the size and productivity of the chain. An early contribution is the
O-ring theory of development presented in Kremer (1993), which analyzes the fragility
of production when links in the chain can fail. A more recent example is Levine (2012),
who analyzes production chains with Leontief technology and possibly correlated fail-
ure probabilities at each stage. He finds that higher failure probabilities lead to shorter
chains. Our work differs in that the length of chains is restricted not by failures, but
rather by transaction costs.

Our work on production chains also connects to studies of fragmentation of pro-
duction and supply chains found in recent work on international trade. For example,
Costinot (2009), Grossman and Rossi-Hansberg (2012), Costinot et al. (2013), and Antràs
and Chor (2013) all consider sequential production over a continuum of tasks with a
large number of firms. Of these, the most similar to our paper is Costinot et al. (2013),
who studies global supply chains. It shares many features with our model, including
sequential production, competitive behavior, and a potentially sophisticated pattern of
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vertical specialization. Their model nonetheless differs from ours in that in-house pro-
duction costs are proportional to the number of tasks performed. Heterogeneity in out-
comes is driven not by the trade-off between transaction costs and diminishing returns
to management, as in our model, but rather by intrinsic heterogeneity associated with
differing productivity levels across countries.

Finally, we obtain a recursive representation of equilibrium prices and allocations
that relates to earlier research connecting recursive methods and static problems. One
example is Garicano and Rossi-Hansberg (2006), who use recursive methods to study
their firm organization problem. Others include Lucas and Rossi-Hansberg (2002) and
Hsu et al. (2014), who apply dynamic programming techniques to spacial location prob-
lems. Our recursive methods contain a number of innovations, made necessary by the
fact that the operator that generates equilibrium prices as a fixed point is, in general,
expansive rather than contractive. As a consequence, our methods deviate from the tra-
ditional approach in significant ways. For example, the equilibrium price function is
the fixed point of an operator, but its iterates converge to the equilibrium price function
only when the initial condition is chosen to match certain shape restrictions.

Details of the model structure can be found in Section 2. Section 3 defines the
equilibrium and gives existence and uniqueness results. Section 4 considers impli-
cations for the structure of the value chain and the distribution of firms. Section 5
extends our results to the case of multiple upstream partners. Section 6 concludes.
Proofs are deferred to the Appendix, while code for simulations can be found at https:
//github.com/jstac/production_chains.

2. The model

We begin by studying production of a single unit of a final good. We start with a linearly
ordered production chain, where the good is produced through the sequential comple-
tion of a large number of processing stages. On an intuitive level, we can think of move-
ment from one processing stage to the next as requiring a single specialized task. At the
same time, to provide a sharper marginal analysis, we model the processing stages as a
continuum. In particular, the stages are indexed by t ∈ [0�1], with t = 0 indicating that
no tasks have been undertaken and t = 1 indicating that the good is complete.

2.1 The production chain

Allocation of tasks among firms is endogenous. The key ideas can be understood in
terms of the subcontracting scheme illustrated in Figure 1. In this example, an arbitrary
firm—henceforth, firm 1—receives a contract to sell one unit of the completed good to
a final buyer. Firm 1 then forms a contract with firm 2 to purchase the partially com-
pleted good at stage t1, with the intention of implementing the remaining 1 − t1 tasks
in-house (i.e., processing from stage t1 to stage 1). Firm 2 repeats this procedure, form-
ing a contract with firm 3 to purchase the good at stage t2. In the example in Figure 1,
firm 3 decides to complete the chain, selecting t3 = 0.

At this point, production unfolds in the opposite direction (i.e., from upstream to
downstream). First, firm 3 completes processing stages from t3 = 0 up to t2 and transfers

https://github.com/jstac/production_chains
https://github.com/jstac/production_chains
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Figure 1. Recursive allocation of production tasks.

Figure 2. Notation.

the good to firm 2. Firm 2 then processes from t2 up to t1 and transfers the good to firm

1, who processes from t1 to 1 and delivers the completed good to the final buyer. In what

follows, the length of the interval of stages carried out by firm i is denoted by �i. We refer

to �i as the range of tasks carried out by firm i. Figure 2 serves to clarify notation.

Notice that each firm chooses only its upstream boundary, treating its downstream

boundary as given. In other words, it chooses how far to integrate backward into input

production. The benefit of this formulation is that it implies a recursive structure for the

decision problem for each firm: In choosing how many processing stages to subcontract,

each successive firm faces essentially the same decision problem as the firm above it in

the chain, with the only difference being that the decision space is a subinterval of the

decision space for the firm above. We exploit this recursive structure in our study of

equilibrium.
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2.2 In-house production costs

We study allocation of tasks in the presence of what Coase (1937) referred to as dimin-
ishing returns to management, that is, rising costs per task when a firm expands the
range of productive activities implemented within its boundaries and coordinated by its
managers. Rising costs per task can be thought of as driven by the expanding informa-
tional requirements associated with larger planning problems, leading to progressively
higher management costs, incentive problems, and misallocation of resources. As in
Becker and Murphy (1992), we represent these ideas by taking the cost of carrying out �
tasks in-house to be c(�), where c is increasing and strictly convex. We also assume that
c is continuously differentiable, with c(0) = 0 and c′(0) > 0. Thus, average cost per task
rises with the range of tasks performed in-house. These assumptions also imply that c
is strictly increasing.8

2.3 Transaction costs

Diminishing returns to management makes in-house production expensive, favoring
small firms and external procurement. However, as pointed out by Coase (1937) and
reiterated by many authors since, there is a countervailing force that acts against
infinite subdivision of firms: the existence of transaction costs associated with buying
and selling through the market. One example is the cost of negotiating, drafting,
monitoring, and enforcing contracts with suppliers. Other commonly cited transac-
tion costs include search frictions, transaction fees, taxes, bribes, and theft associ-
ated with transactions, bargaining and information costs, and the costs of assessing
credit worthiness and reliability (see, e.g., Coase (1937), Williamson (1979), North (1993),
Blume et al. (2009)).

Transaction costs are represented as a wedge between the buyer’s and the seller’s
prices. (Our convention is that the phrase “transaction costs” refers only to transac-
tions that take place through the market, rather than within the firm.) In our model, it
matters little whether the transaction cost is borne by the buyer, the seller, or both (see
Section 3.3). Hence we assume that the cost is borne only by the buyer. In particular,
when two firms agree to a trade at face value v, the buyer’s total outlay is δv, where δ > 1.
The seller receives only v, and the difference is paid to agents outside the model.

3. Equilibrium

The next step is to define a notion of equilibrium for the production chain. In doing so
we assume that all firms are ex ante identical and act as price takers. There is a countable
infinity of firms i = 1�2� � � � . There are no fixed costs or barriers to entry.

8The cost function c is assumed to already represent current management best practice, in the sense
that no further rearrangement of management structure or internal organization can obtain a lower cost of
in-house production. Also note that the cost of carrying out � = s − t tasks depends only on the difference
s − t rather than s directly. In other words, all tasks are homogeneous. While extensions might consider
other cases, our interest is in equilibrium prices and choices of firms in the case where tasks are ex ante
identical.
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3.1 Definition of equilibrium

Throughout the paper, an allocation is a nonnegative sequence � = {�i}i∈N with only
finitely many nonzero elements. Recalling Figure 2, an allocation � defines a division of
tasks across firms, with �i being the range of task implemented by the ith firm. If �i = 0,

then firm i is understood to be inactive. We always assume that firms enter in order,
with firm 1 being the furthest downstream. This is a labeling convention that confers no
special privileges.

An allocation � is called feasible if
∑

i≥1 �i = 1. Feasibility means that the entire pro-
duction process is completed by finitely many firms. Given a feasible allocation �, let {ti}
represent the corresponding transaction stages, defined by

t0 = s and ti = ti−1 − �i� (1)

In particular, ti−1 is the downstream boundary of firm i and ti is its upstream boundary
(as in Fgure 2).

Firms face a price function p, which is a map from [0�1] to R+, with p(t) interpreted

as the price of the good at processing stage t. Since the ith firm purchases the good at
stage ti, sells it at stage ti−1, and undertakes the remaining �i tasks in-house, its total
costs are its processing costs c(�i) plus gross input cost δp(ti). As transaction costs are

incurred only by the buyer, its profits are

πi = p(ti−1)− c(�i)− δp(ti)� (2)

Definition 3.1. Given a price function p and a feasible allocation � = {�i}, let {ti} be
the corresponding firm boundaries and let {πi} be corresponding profits, as defined in

(1) and (2). The pair (p��) is called an equilibrium for the production chain if

(i) p(0)= 0,

(ii) πi = 0 for all i,

(iii) p(s)− c(s − t)− δp(t)≤ 0 for any pair s� t with 0 ≤ s ≤ t ≤ 1.

Condition (i) is a zero profit condition for suppliers of initial inputs, which implies
that p(0) is equal to the cost of producing these inputs. To simplify notation, we assume
that this cost is zero.

Condition (ii) states that all active firms make zero profits. Free entry and the infi-
nite fringe of competitors rule out positive profits for incumbents, since any incumbent
could be replaced by a member of the competitive fringe filling the same role in the pro-

duction chain. Profits are never negative in equilibrium because firms can freely exit.
Condition (iii) ensures that no firm in the production chain has an incentive to de-

viate. It also ensures that no inactive firms can enter and extract positive profits.
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3.2 Existence of equilibrium

In this section we provide a constructive proof of existence, meaning that the equilib-
rium is shown to exist and that methods for computing it are also provided. In Sec-
tion 4.2 we will show that this same equilibrium is also unique across a large class of
candidate solutions.

To begin, consider the operator T mapping p : [0�1] → R+ to Tp via

Tp(s) = min
t≤s

{
c(s − t)+ δp(t)

}
for all s ∈ [0�1]� (3)

Here and below, the restriction 0 ≤ t in the minimum is understood. The operator T is
analogous to a Bellman operator. Under this analogy, p corresponds to a value func-
tion and δ corresponds to a discount factor. Since δ > 1, the map T is not a contrac-
tion in any obvious metric, however, and Tnp diverges for many choices of p, even
when it is continuous and bounded.9 Nevertheless, there exists a domain on which T is
well behaved: the set of convex increasing continuous functions p : [0�1] →R such that
c′(0)s ≤ p(s) ≤ c(s) for all 0 ≤ s ≤ 1. We denote this set of functions by P .

Theorem 3.1. Under our assumptions the following statements are true:

(i) The operator T maps P into itself.

(ii) The operator T has a unique fixed point in P , denoted below by p∗.

(iii) For all p ∈ P , we have Tkp → p∗ uniformly as k → ∞.

The significance of T and its fixed point p∗ is that, as we now show, there exists an
allocation �∗ such that (p∗��∗) is an equilibrium for the production chain in the sense
of Definition 3.1. To construct this allocation, we begin by introducing the equilibrium
choice function

t∗(s) := arg min
t≤s

{
c(s − t)+ δp∗(t)

}
� (4)

By definition, t∗(s) is the cost minimizing upstream boundary for a firm that is con-
tracted to deliver the good at stage s and faces the price function p∗. Since p∗ lies in P

and since c is strictly convex, it follows that the right-hand side of (4) is continuous and
strictly convex in t, and hence the minimizer t∗(s) exists and is uniquely defined.

We can use t∗ to construct an equilibrium allocation as follows: recalling that firm 1
sells the completed good at stage s = 1, its optimal upstream boundary is t∗(1). Hence
firm 2’s optimal upstream boundary is t∗(t∗(1)). Continuing in this way produces the
sequence {t∗i } defined by

t∗0 = 1 and t∗i = t∗(ti−1)� (5)

The sequence ends when a firm chooses to complete all remaining tasks. We label this
firm (and hence the number of firms in the chain) as n∗. More precisely

n∗ := inf{i ∈N : t∗i = 0}� (6)

9For example, if p≡ 1, then Tnp= δn1, which diverges to +∞.



738 Kikuchi, Nishimura, and Stachurski Theoretical Economics 13 (2018)

The task allocation corresponding to (5) is given by �∗
i := t∗i−1 − t∗i for all i. Below, p∗

is called the equilibrium price function and �∗ is called the equilibrium allocation. The
next theorem justifies this terminology.

Theorem 3.2. The value n∗ in (6) is well defined and finite, the allocation �∗ = {�∗
i } is

feasible, and the pair (p∗��∗) is an equilibrium for the production chain.

Full proofs of Theorems 3.1 and 3.2 are given in the Appendix. Much of the insight
can be obtained by observing that, as a fixed point of T , the equilibrium price function
must satisfy

p∗(s) = min
t≤s

{
c(s − t)+ δp∗(t)

}
for all s ∈ [0�1]� (7)

From this equation it is clear that p∗ satisfies part (iii) of Definition 3.1. Moreover, the
equilibrium upstream boundary for firm i is the minimizer in (7) when s is its down-
stream boundary, so profits are zero for all incumbent firms. Hence part (ii) of Defi-
nition 3.1 is satisfied. Part (i) of the definition is immediate from the fact that p∗ ∈ P ,
whence we obtain p∗(0) ≤ c(0) = 0.

3.3 Comments and examples

Some comments on the preceding results are in order. First, (7) illustrates why it matters
little whether we place transaction costs on the buyer side, the seller side, or both. For
example, suppose that, in addition to the existing buyer side transaction cost, the seller
faces a transaction costs parameterized by γ. In particular, the seller receives only frac-
tion γ < 1 of any sale. The profit function then becomes π(s� t) = γp(s)−c(s− t)−δp(t).
Minimizing over t ≤ s and setting profits to zero yields p(s) = mint≤s{c(s − t)γ−1 +
δγ−1p(t)}, which is analogous to (7). Nothing substantial has changed, since δ/γ > 1
and since c/γ inherits from c all the properties of the cost function stated in Section 2.2.

A second comment on the preceding results is that, as shown in the proof of The-
orem 3.1, the convergence in part (iii) of that theorem occurs in finite time from every
element of P , and the required number of iterates can be calculated ex ante. In par-
ticular, if s̄ := sup{s ∈ (0�1] : c′(s) ≤ δc′(0)}, then Tkp = p∗ whenever p ∈ P and k ≥ 1/s̄.
Hence we can compute p∗ with a high degree of accuracy.

Two equilibrium price functions computed using this method are shown in Figure 3.
For the initial condition we chose p= c. In both cases we used the exponential cost func-
tion c(�) = eθ� − 1 with θ = 10. The dashed line corresponds to δ = 1�02, while the solid
line is for δ= 1�2. Not surprisingly, prices shift up pointwise with each rise in transaction
costs.10

Figure 4 shows the corresponding equilibrium allocations, in addition to the prices.
The vertical lines are firm boundaries, computed via (5) using the equilibrium price

10At each step of the iteration, we calculated Tp(s) on a grid of 500 points si ∈ [0�1]. We then con-
structed an approximation to Tp using piecewise linear interpolation over the grid {si} and computed val-
ues {Tp(si)}. We then set p equal to the resulting piecewise linear function and moved to the next iteration.
The code can be found at https://github.com/jstac/production_chains.

https://github.com/jstac/production_chains
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Figure 3. Equilibrium price functions when c(�) = eθ� − 1.

Figure 4. Firm boundaries for δ = 1�02 (top) and δ= 1�2 (bottom).

function, with the latter obtained using the methods just discussed. The top diagram
shows the price function and firm boundaries when δ = 1�02 and c is as in the previous
figures. The bottom diagram shows the same information when δ= 1�2.

The preceding discussion gives us the price of a single unit of the final good. The
final good market is also competitive, and p∗(1) is the amount the most downstream
producer must be compensated so as to make zero profits. Assuming the production
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process described above can be replicated any number of times without affecting factor
prices, p∗(1) is also the long run equilibrium price in the market for the final good.

4. Equilibrium properties

In this section we discuss properties of the equilibrium and their implications.

4.1 Properties of the price function

Since p∗ lies in P , Theorem 3.1 implies it is increasing and convex. The next result
strengthens these findings and adds an alternative representation of p∗ that provides
additional intuition.

Proposition 4.1. The equilibrium price function p∗ is strictly convex and strictly in-
creasing, with sc′(0) ≤ p∗(s) ≤ c(s) for all s in [0�1]. Moreover, for each such s,

p∗(s) = min

{ ∞∑
i=1

δi−1c(�i) : {�i} ∈ R
∞+ and

∞∑
i=1

�i = s

}
� (8)

When s = 1, the minimizer in (8) is equal to the equilibrium allocation �∗.

The fact that p∗ is strictly increasing is not surprising, given that c is itself strictly
increasing. The strict convexity of p∗ is discussed further in Section 4.4. The upper
bound p∗(s) ≤ c(s) holds because a single firm can always implement the entire process
up to stage s, at cost c(s). The lower bound in p∗(s) ≥ sc′(0) can be thought of as a cost
attained when δ = 1 and firms enter without limit.

To understand what the right-hand side of (8) represents, let p be any price function
and let � be any allocation that produces s, in the sense that

∑n
i=1 �i = s. Let {ti} be

the corresponding transaction stages.11 If all firms make zero profits, then p(ti−1) =
c(�i)+ δp(ti) for i = 1� � � � � n. Iterating on this equation gives

p(t0) = c(�1)+ δc(�2)+ · · · + δn−1c(�n)+ δnp(tn)�

Since t0 = s and tn = 0, if we assume as in the definition of equilibrium that p(0) = 0,
then we have p(s) = c(�1)+ δc(�2)+ · · · + δn−1c(�n), which is the expression minimized
in (8). Hence p∗(s) is the minimal cost of producing s when all firms make zero profits
and transaction costs cannot be avoided.

4.2 Uniqueness of equilibrium

Let us agree to call a price function p nontrivial if, for each s > 0, it can support a chain
of firms that produce the good up to stage s while each receiving nonnegative profit. In
other words, there exists an allocation � such that

∑
i �i = s and p(ti−1)−c(�i)−δp(ti)≥ 0

11That is, t0 = s and ti+1 = ti − �i+1.
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for all i. At a lower price one firm will always lose money, and hence such a price cannot
be observed in equilibrium.

Let E be all pairs (p��), where p is a nontrivial price function and � is a feasible
allocation. The following result is proved in the Appendix.

Theorem 4.2. The pair (p∗��∗) is the unique equilibrium for the production chain in E .

The intuition is as follows. First, if p is any nontrivial price function, then p must be
large enough to sustain nonnegative profits. By comparison, the equilibrium p∗ sustains
exactly zero profits for incumbents, leading to p∗ ≤ p. Conversely, if p is also an equilib-
rium price function for some allocation, then p eliminates all profit opportunities, and
hence is less than the feasible price function p∗.

4.3 Marginal conditions

We can develop some additional insights on the behavior of firms by examining
marginal conditions associated with the equilibrium. As a first step, let

�∗(s) := s − t∗(s)�

which is the cost minimizing range of in-house tasks for a firm with downstream bound-
ary s:

The function �∗ is plotted for δ = 1�2 and δ = 1�02 in Figure 5. Other parameters are
the same as for Figure 3. Observe that �∗(s) increases with s. The next result shows that
this is always true, as well as connecting �∗ to the derivatives of p∗ and c.

Proposition 4.3. Both t∗ and �∗ are increasing and Lipschitz continuous, while p∗ is
continuously differentiable at all s ∈ (0�1) with derivative

(
p∗)′

(s) = c′(�∗(s)
)
� (9)

Equation (9) follows from p∗(s) = mint≤s{c(s−t)+δp∗(t)} and the envelope theorem.
It is analogous to a standard result from optimal growth theory, which states that the
derivative of the value function is equal to the marginal utility of optimal consumption.
The monotonicity of t∗ and �∗ is discussed further below.

A related equation is the first order condition for p∗(s) = mint≤s{c(s − t) + δp∗(t)},
the minimization problem for a firm with upstream boundary s, which is

δ
(
p∗)′(

t∗(s)
) = c′(s − t∗(s)

)
� (10)
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Figure 5. Optimal range of in-house tasks as a function of s.

This condition matches a marginal condition expressed verbally by Coase; that is, “a
firm will tend to expand until the costs of organizing an extra transaction within the firm
become equal to the costs of carrying out the same transaction by means of an exchange
on the open market. . . ” (Coase 1937, p. 395).

Combining (9) and (10) and evaluating at s = ti, we see that active firms that are
adjacent satisfy

δc′(�∗
i+1

) = c′(�∗
i

)
� (11)

In other words, the marginal in-house cost per task at a given firm is equal to that of its
upstream partner multiplied by gross transaction cost. This expression can be thought
of as a “Coase–Euler equation,” which determines interfirm efficiency by indicating how
two costly forms of coordination (markets and management) are jointly minimized in
equilibrium.

Example 4.1. Let c have the exponential form c(�) = eθ� − 1. Note that c(0) = 0 and
c′(0) > 0 as required. From the Coase–Euler equation (11) we have �i+1 = �i − lnδ/θ.
Using this equation, the constraint

∑n∗
i=1 �i = 1, and some algebra, it can be shown (cf.

Lemma A.12) that the equilibrium number of firms is

n∗ = ⌊
1/2 + (1 + 8θ/ lnδ)1/2/2

⌋
� (12)

where 
a� is the largest integer less than or equal to a. The value n∗ is decreasing in δ be-
cause higher transaction costs encourage less use of the market and more in-house pro-
duction. In other words, firms get larger. Since the range of tasks does not change, larger
firms imply less firms. At the same time, n∗ is increasing in θ because θ = c′′(�)/c′(�), so
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θ parameterizes curvature of c, and hence the intensity of diminishing returns to man-
agement. More intense diminishing returns to management encourage greater use of
the market, and hence a larger number of smaller firms. ♦

4.4 “Upstreamness” and firm size

One implication of the model that deserves further investigation is that, in terms of the
range of tasks that they implement, downstream firms are always larger than upstream
firms. Indeed, since c′ is increasing and δ > 1, (11) implies that �∗

i+1 < �∗
i for any pair of

adjacent active firms i and i+1. Similarly, Proposition 4.3 shows that the optimal choice
function s �→ �∗(s) is increasing in s. The monotone relationship between firm size and
“downstreamness” can be seen in Figure 4.

The same monotone relationship between upstream and downstream firms ob-
served in the sequence {�∗

i } also holds for other measures of firm size. For example, recall
that value added for firm i is vi := p∗(ti−1) − p∗(ti). Observe that �∗

i+1 > �∗
i can also be

written as ti − ti+1 < ti−1 − ti. Since p∗ is increasing and convex, it follows that vi+1 < vi.
In other words, value added shares the monotone relationship between upstream and
downstream possessed by {�∗

i }.
To gain a better understanding of this monotone relationship in terms of the choice

problem faced by firms, consider the first order condition (10), which can be expressed
here by saying that firms choose their downstream boundary to equalize the marginal
cost of in-house production and the marginal cost of inputs at a given stage along the
value chain. Since the equilibrium price function is strictly convex, the marginal cost of
these inputs rises as we move from upstream to downstream. Hence downstream firms
choose to do more in-house.

From the preceding discussion it is clear that strict convexity of p∗ is essential to
size increasing with downstreamness. The equilibrium price function is strictly convex
partly because transaction costs that are sensitive to value compound as we go from
upstream to downstream. At the same time, diminishing returns to management also
matter, since they motivate firms to divide the value chain in the first place. (If c is linear,
say, then a single firm will complete the value chain, and the relative size of firms cannot
be discussed.)

Let us consider how the prediction that firm size increases with downstreamness
compares with the data. A partial answer can be obtained by using indices developed in
Fally (2012) and Antràs et al. (2012). These indices describe industries’ position in ver-
tical production chains by exploiting information about relationships in input–output
tables. Fally and Hillberry (2017) calculate these indices for manufacturing industries
in nine Asian countries and the United States and obtain negative correlation between
upstreamness and value added content (Fally and Hillberry 2017, p. 41). These findings
are consistent with our theoretical prediction that firm size tends to be smaller upstream
than downstream.

Of course the predictions of our model concern individual production chains, while
the regressions described above are across production chains. Table 1 makes an attempt
to address production chains using aggregated data. The table is constructed from the
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Table 1. Maximum value added by stage.

Industry Stage 1 Stage 2 Stage 3

Automobile 0�2346 0�1353 0�0201
Light truck 0�2113 0�1377 0�0205
Non-upholstered furniture 0�4736 0�0319 0�0101
Upholstered furniture 0�3891 0�0423 0�0099

2002 Bureau of Economic Analysis input–output tables. It shows data for the four most
downstream industries in the table, where downstreamness is computed using the same
index as in Antràs et al. (2012). Each row of the table traces back the value added at
every production stage associated with one dollar of spending on the industry in ques-
tion. Stage 1 is value added by the industry itself. Stage 2 is the maximum of the value
added associated with this same dollar of spending by all of the direct input industries,
and stage 3 is the maximum of the value added by all of the direct inputs to these in-
puts. Value added increases with downstreamness, coinciding with the prediction stated
above.12

4.5 Comparative statics

Variations in transaction costs shift equilibrium outcomes monotonically in the direc-
tions intuition suggests. In particular, a rise in transaction costs causes prices to rise, the
size of firms to increase, and the equilibrium number of firms to fall. The next proposi-
tion gives details.

Proposition 4.4. If δa ≤ δb, then p∗
a ≤ p∗

b, �ai < �bi for all active firms and n∗
b ≤ n∗

a.

Here p∗
a is the equilibrium price function for transaction cost δa, p∗

b is that for δb,
and so on. Compare the upper and lower panels in Figure 4 to see these results in a
simulation.

5. Multiple upstream partners

So far we have assumed that production is linearly sequential, in the sense that firms
contract with only one partner. In reality, most vertically integrated firms have multiple
upstream partners. Generalization of the model to include multiple upstream partners
is possible when we adopt a recursive approach. In the process we also include additive
transaction costs, so as to achieve a more realistic framework and explore the robustness
of our findings in this setting.

To develop intuition, consider the tree in Figure 6. Here each firm subcontracts to
two upstream partners. As drawn, firm 1 chooses the set �1 for in-house production and
subcontracts the remaining two intervals on the left and right to two different upstream

12Case studies of production chains also tend to find that downstream firms are larger. See, for example,
Kimura (2002) and Subrahmanya (2008).
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Figure 6. Subcontracting when k= 2.

partners (the shape of the division is chosen only to simplify the diagram). Similarly, the
upstream partners choose to implement intervals �2 and �3, respectively, and subcon-
tract the remainder. The process of subdivision repeats until the firms at some lower
level choose to implement all remaining tasks.

More generally, suppose that each firm has k upstream partners. Suppose that a
firm contracts to supply the good at stage s, chooses a quantity � ≤ s to produce in-
house, and then divides the remainder s − � equally across k upstream partners. In this
case, profits will be given by revenue p(s) minus input costs δkp((s − �)/k), in-house
production costs c(�), and the additive transaction costs mentioned above. We assume
that, for each firm, additive transaction costs are an increasing convex function g(k) of
the number of transactions k. Thus, profits are

π(s� �) = p(s)− δkp
(
(s − �)/k

) − c(�)− g(k)�

If we take k as fixed, then setting profits to zero, letting t := s − �, and minimizing with
respect to t yields the equation

p(s) = min
t≤s

{
c(s − t)+ g(k)+ δkp(t/k)

}
�

If g(1) = 0, then this equation is an immediate generalization of (7).
However, once multiple partners are allowed, the assumption that the number of

partners is fixed becomes both unsatisfactory and counterfactual. For this reason we
allow each firm to choose k at each stage, leading to the functional equation

p(s)= min
k∈N�t≤s

{
c(s − t)+ g(k)+ δkp(t/k)

}
� (13)

No ad hoc upper bound is imposed on the number of partners.
The fact that δ > 1 means that a fixed point approach based around contractions is

problematic, just as it was in the single partner case. Here, additive costs and endoge-
nous multiple partners lead to further complications. We can, however, establish the
following theorem, which implies the existence of a price function satisfying (13). In
the statement of the theorem, F is all nonnegative increasing p : [0�1] → R such that
p(0) = 0.



746 Kikuchi, Nishimura, and Stachurski Theoretical Economics 13 (2018)

Theorem 5.1. The set of p ∈ F satisfying (13) for all s ∈ [0�1] is a complete lattice.

Analogous to Section 3, let T be the operator on F defined by

Tp(s) = min
k∈N�t≤s

{
c(s − t)+ g(k)+ δkp(t/k)

}
�

To compute prices and the optimal choices of firms, we adapt the recursive procedure
outlined in Section 3. The equilibrium price function p∗ is obtained by iterating with
T , starting at initial condition p0 = c. Given p∗, we then obtain the production network
recursively using a method analogous to that described in Section 3.2 (here including
optimal choice of the number of upstream partners at each step).

Figure 7 explores some of the networks that arise for different parameter values.13

In these networks, each node represents a firm, and the node size is proportional to the
value added of that firm. The most downstream firm is the firm at the center of the
network. The additive transaction cost function is g(k) = β(k − 1) for a given constant
β, while c(�) = �θ for different values of θ. Here g(k) is proportional to k − 1 so that
g(1) = 0, as discussed above. Details of all computations can be found at https://github.
com/jstac/production_chains.

The way that the network changes with the parameters is in line with the intuition
arising from the discussion so far. Comparing networks (A) and (B), firms respond to
a reduction in multiplicative transaction costs by forming a deeper network with more
layers. The number of firms roughly doubles, from 51 to 101. Comparing networks (A)
and (C), the change is a lower additive transaction cost in (C), which encourages more
subcontractors at each level of the network, as well as a larger number of firms. Com-
paring (A) and (D), the difference is in greater curvature in the internal coordination cost
function c, which also encourages more outsourcing.

There are two results that are robust across all of our simulations. First, downstream
firms have greater value added (as can be seen by comparing the relative size of the
nodes in Figure 7). This is consistent with the one partner case and with stylized facts
about upstreamness and firm size, as discussed in Section 4. Second, the equilibrium
number of upstream partners is weakly (and often strictly) decreasing as we move from
downstream to upstream (from the center to the edges). This prediction is also broadly
consistent with the literature on production chains. For example, Kimura (2002) finds
in a study of the Japanese machinery industry that the number of direct affiliates gets
larger with the firm size, and that the probability of working as a subcontractor declines
as firms get larger.14

The production chain model given above generates not only a network, but also a
nontrivial firm size distribution. Lacking both capital and heterogeneity, our model is

13In the parameterizations below we allow c′(0) = 0, despite our earlier assumption in the linear set-
ting that c′(0) > 0. The reason is that, in the current setting, additive transaction costs prevent firms from
becoming too small, and hence yield an equilibrium with a finite number of firms.

14It is also noteworthy that, as the co-editor pointed out, the second layer always has 10 firms despite
changes in parameters. Thus, shocks to fundamentals have effects on its structure that are mostly felt down
the supply chain and die out up the chain.

https://github.com/jstac/production_chains
https://github.com/jstac/production_chains
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Figure 7. Production networks with multiple upstream partners.

too stylized to match all features of the firm size distribution. Nonetheless, it is worth

considering whether the distributions generated by the model match any significant

empirical regularities.

While the observed size distribution of business firms varies over time and space, as

well as with the measure of size adopted and the level of aggregation, one well known

regularity is a power law in the right tail, as has been observed in many studies. An

early example is Axtell (2001), who finds evidence of Zipf’s law in aggregate U.S. firm

size data (a form of power law with a unit coefficient). Since then many economists

have constructed theories that generate power laws in the firm size distribution from

more basic primitives.15

15See, e.g., Lucas (1978), Luttmer (2007), and, more recently, Geerolf (2017).
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Figure 8. A size-rank plot of the distribution of firms sizes.

To make statements about the firm size distribution, we use value added as our mea-
sure of size.16 The rank-size plot in Figure 8 shows log size by value added against log
rank in the distribution, with the generated data taken from the same parameters found
in Figure 7(A). The data look artificial due to the stylized nature of the model and the lin-
ear fit is not tight, but the slope is close to −1, which corresponds to Zipf’s law. The heavy
tail can also be seen by observing that the largest observation is more than 6 standard
deviations greater than the mean.

6. Conclusion

In this paper, we embedded several ideas from Coase (1937) into a competitive product
market with an infinite number of identical price-taking firms. By developing an ap-
proach to the equilibrium problem based on recursive subdivision of tasks, we showed
how to obtain prices, actions of firms, and vertical division of the value chain. This
allowed us to investigate individual firm boundaries and the vertical structure of pro-
duction. We analyzed the relative size of firms, the relationship between upstream and

16We can also make predictions regarding firm size in terms of employees if we specify productivity. For
example, let m be the number of employees in a given firm, and suppose that m is related to the range
of tasks � via � = f (m). Conversely, for a given range of tasks �, the required number of employees is m =
f−1(�). Assume that f is strictly increasing and strictly concave with f (0) = 0, and that c(�) = wm= wf−1(�)

for some wage rate w. Then c satisfies the assumptions we imposed on it in Section 2.2. The value mi =
c(�i)/w is then equal to the number of employees in the ith firm.
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downstream firms, the overall distribution of firms, and the relationship between di-
minishing returns to management, transaction costs, and the properties of the vertical
production chain.

We showed in particular how the equilibrium price function and the structure of
the production chain vary with transaction and internal coordination costs. We de-
rived a first order condition that corresponds to the marginal condition determining
firm boundaries stated verbally by Coase (1937). This permits the trade-off associated
with the make-or-buy decision to be investigated by analyzing how changes to policy or
technology show up in the marginal costs and benefits of integration as quantified by
the first order condition. We also added an Euler equation relating costs and hence sizes
of adjacent firms.

On a technical front, we provided a recursive formulation and computational meth-
ods that are likely to have applications to other fields involving sequential production or
allocation of tasks, such as off-shoring by multinationals or division of labor with fail-
ure probabilities or other frictions. In addition, the model presented above was a base-
line model in most dimensions, with perfect competition, perfect information, identical
firms, and identical tasks. These assumptions can potentially be weakened. The effect of
altering contract structures could also be investigated, as could the various possibilities
for determining upstream partners in Section 5.

The model has several interesting empirical implications, one of which is that, in a
setting with multiple upstream partners, the number of upstream partners decreases
with upstreamness. A second prediction is the positive relationship between down-
streamness and value added caused by increasing marginal costs of transactions as
semiprocessed goods move from upstream to downstream. The same prediction also
holds when value added is replaced by number of tasks performed in-house, and, while
this quantity is typically unobservable, it can potentially be proxied by the number of
distinct specialist occupations or the expenditure on managers used to coordinate these
specialists. A more detailed model and firm level data will shed further light on these
relationships.

Appendix

This appendix collects proofs. We start by focusing on fixed points of the operator T

defined in (3). We pursue a direct proof of existence, uniqueness, and convergence.

A.1 Preliminaries

Our first result shows that T preserves convexity.

Lemma A.1. If p ∈ P , then Tp is strictly convex.

Proof. Pick any 0 ≤ s1 < s2 ≤ 1 and any α ∈ (0�1). Let ti := arg mint≤si
{δp(t)+ c(si − t)}

for i = 1�2, and t3 := αt1 + (1 − α)t2. Given that ti ≤ si, we have 0 ≤ t3 ≤ αs1 + (1 − α)s2,
and hence

Tp
(
αs1 + (1 − α)s2

) ≤ δp(t3)+ c
(
αs1 + (1 − α)s2 − t3

)
�
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The right-hand side expands out to

δp
[
αt1 + (1 − α)t2

] + c
[
αs1 − αt1 + (1 − α)s2 − (1 − α)t2

]
�

Using convexity of p and strict convexity of c, we obtain Tp(αs1 + (1 −α)s2) < αTp(s1)+
(1 − α)Tp(s2), which is strict convexity Tp. �

Lemma A.2. Let p ∈ P and let tp and �p be the optimal responses, defined by

tp(s) := arg min
t≤s

{
δp(t)+ c(s − t)

}
and �p(s) := s − tp(s)� (14)

If s1 and s2 are any two points with 0 < s1 ≤ s2 ≤ 1, then

(i) both tp(s1) and �p(s1) are well defined and single-valued,

(ii) tp(s1) ≤ tp(s2) and tp(s2)− tp(s1)≤ s2 − s1,

(iii) �p(s1) ≤ �p(s2) and �p(s2)− �p(s1)≤ s2 − s1.

Proof. Since t �→ δp(t) + c(s1 − t) is continuous and strictly convex (by convexity of p
and strict convexity of c), and since [0� s1] is compact, existence and uniqueness of tp(s1)

and �p(s1) must hold. Regarding the claim that tp(s1) ≤ tp(s2), let ti := tp(si). Suppose
instead that t1 > t2. We aim to show that, in this case,

δp(t1)+ c(s2 − t1) < δp(t2)+ c(s2 − t2)� (15)

which contradicts the definition of t2.17 To establish (15), observe that t1 is optimal at s1

and t2 < t1, so

δp(t1)+ c(s1 − t1) < δp(t2)+ c(s1 − t2);
∴ δp(t1)+ c(s2 − t1) < δp(t2)+ c(s1 − t2)+ c(s2 − t1)− c(s1 − t1)�

Given that c is strictly convex and t2 < t1, we have

c(s2 − t1)− c(s1 − t1) < c(s2 − t2)− c(s1 − t2)�

Combining this with the last inequality yields (15).
Next we show that �1 ≤ �2, where �1 := �p(s1) and �2 := �p(s2). In other words,

�i = arg min�≤si
{δp(si − �) + c(�)}. The argument is similar to that for tp, but this time

using convexity of p instead of c. To induce the contradiction, we suppose that �2 < �1.
As a result, we have 0 ≤ �2 < �1 ≤ s1, and hence �2 was available when �1 was chosen.
Therefore,

δp(s1 − �1)+ c(�1) < δp(s1 − �2)+ c(�2)�

17Note that t1 < s1 ≤ s2, so t1 is available when t2 is chosen.
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where the strict inequality is due to the fact that minimizers are unique. Rearranging
and adding δp(s2 − �1) to both sides gives

δp(s2 − �1)+ c(�1) < δp(s2 − �1)− δp(s1 − �1)+ δp(s1 − �2)+ c(�2)�

Given that p is convex and �2 < �1, we have

p(s2 − �1)−p(s1 − �1) ≤ p(s2 − �2)−p(s1 − �2)�

Combining this with the last inequality, we obtain

δp(s2 − �1)+ c(�1) < δp(s2 − �2)+ c(�2)�

contradicting optimality of �2.18

To complete the proof of Lemma A.2, we also need to show that tp(s2) − tp(s1) ≤
s2 − s1 and similarly for �. Starting with the first case, we have

tp(s2)− tp(s1) = s2 − �p(s2)− s1 + �p(s1) = s2 − s1 + �p(s1)− �p(s2)�

As shown above, �p(s1) ≤ �p(s2), so tp(s2)− tp(s1) ≤ s2 − s1, as was to be shown. Finally,
the corresponding proof for �p is obtained in the same way, by reversing the roles of tp
and �p. This concludes the proof of Lemma A.2. �

Recall the constant s̄ defined in Section 3.3, existence of which follows from the con-
ditions in Section 2 and the intermediate value theorem. Regarding s̄, we have the fol-
lowing lemma, which states that the best action for a firm subcontracting at s ≤ s̄ is to
implement all stages up to s (i.e., to start at stage 0).

Lemma A.3. If p ∈ P , then s ≤ s̄ if and only if mint≤s{δp(t)+ c(s − t)} = c(s).

Proof. First suppose that s ≤ s̄. Seeking a contradiction, suppose there exists a t ∈ (0� s]
such that δp(t) + c(s − t) < c(s). Since p ∈ P , we have p(t) ≥ c′(0)t and hence δp(t) ≥
δc′(0)t ≥ c′(s̄)t. Since s ≤ s̄, this implies that δp(t)≥ c′(s)t. Combining these inequalities
gives c′(s)t + c(s − t) < c(s), contradicting convexity of c.

Suppose, alternatively, that inft≤s{δp(t) + c(s − t)} = c(s). We claim that s ≤ s̄ or,
equivalently, c′(s) ≤ δc′(0). To see that this is so, observe that since p ∈ P , we have
p(t) ≤ c(t), and hence c(s) ≤ δp(t)+ c(s − t) ≤ δc(t)+ c(s − t) for all t ≤ s;

∴ c(s)− c(s − t)

t
≤ δc(t)

t
∀t ≤ s�

Taking limits, we get c′(s) ≤ δc′(0) as claimed. �

Lemma A.4. Let p ∈ P and let �p be as in (14). If s ≥ s̄, then �p(s) ≥ s̄. If s > 0, then
�p(s) > 0.

18Note that 0 ≤ �1 ≤ s1 ≤ s2, so �1 is available when �2 is chosen.
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Proof. By Lemma A.2, �p is increasing, and hence if s̄ ≤ s ≤ 1, then �p(s) ≥ �p(s̄) =
s̄ − tp(s̄) = s̄. By Lemma A.3, if 0 < s ≤ s̄, then �p(s) = s − tp(s) = s > 0. �

Lemma A.5. If p ∈ P , then Tp is differentiable on (0�1) with (Tp)′ = c′ ◦ �p.

Proof. Fix p ∈ P and let tp be as in (14). Fix s0 ∈ (0�1). By Benveniste and Scheinkman
(1979), to show that Tp is differentiable at s0, it suffices to exhibit an open neighborhood
U � s0 and a function w : U → R such that w is convex, differentiable, satisfies w(s0) =
Tp(s0), and dominates Tp on U . To this end, observe that, in view of Lemma A.4, we
have tp(s0) < s0. Now choose an open neighborhood U of s0 such that tp(s0) < s for
every s ∈ U . On U , define w(s) := δp(tp(s0)) + c(s − tp(s0)). Clearly w is convex and
differentiable on U and satisfies w(s0) = Tp(s0). To see that w(s) ≥ Tp(s) when s ∈ U ,
observe that if s ∈U , then 0 ≤ tp(s0) ≤ s and

Tp(s) = min
t≤s

{
δp(t)+ c(s − t)

} ≤ δp
(
tp(s0)

) + c
(
s − tp(s0)

) = w(s)�

As a result, Tp is differentiable at s0 with (Tp)′(s0) =w′(s0)= c′(�p(s0)). �

Lemma A.6. Let p ∈ P and let tp and �p be as defined in (14). If p is a fixed point of T ,
then δc′(�p(tp(s))) = c′(�p(s)) for all s > s̄.

Proof. Since p is a fixed point of T , it follows from Lemma A.5 that p is differentiable
and p′(s) = c′(�p(s)). Moreover, since s > s̄, Lemma A.3 implies that tp(s) > 0, and hence
the optimal choice in the definition of tp(s) is interior. Thus the first order condition
associated with the definition holds, which is δp′(tp(s)) = c′(�p(s)). Combining these
two equalities gives Lemma A.6. �

Lemma A.7. The operator T defined in (3) maps P into itself.

Proof. Let p be an arbitrary element of P . To see that Tp(s) ≤ c(s) for all s ∈ [0�1],
fix s ∈ [0�1] and observe that since p ∈ P implies p(0) = 0, the definition of T implies
Tp(s) ≤ δp(0) + c(s + 0) = c(s). Next we check that Tp(s) ≥ c′(0)s for all s ∈ [0�1]. Pick-
ing any such s and using the assumption that p ∈ P , we have Tp(s) ≥ inft≤s{δc′(0)t +
c(s − t)}. By δ > 1 and convexity of c, we have δc′(0)t + c(s − t) ≥ c′(0)t + c(s − t) ≥
c′(0)t + c′(0)(s − t) = c′(0)s. Therefore Tp(s) ≥ inft≤s c

′(0)s = c′(0)s.
It remains to show that Tp is continuous, convex, and monotone increasing. That

Tp is convex was shown in Lemma A.1. Regarding the other two properties, let �p and
tp be as defined in (14). By the results in Lemma A.2, these functions are increasing and
(Lipschitz) continuous on [0�1]. Since Tp(s) = δp(tp(s))+ c(�p(s)), it follows that Tp is
also increasing and continuous. �

Lemma A.8. If p�q ∈ P , then Tnp = Tnq whenever n ≥ 1/s̄.

Proof. The proof is by induction. First we argue that T 1p = T 1q on the interval [0� s̄].
Next we show that if Tkp = Tkq on [0�ks̄], then Tk+1p = Tk+1q on [0� (k+1)s̄]. Together
these two facts imply the claim in Lemma A.8.
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To see that T 1p = T 1q on [0� s̄], pick any s ∈ [0� s̄] and recall from Lemma A.3 that
if h ∈ P and s ≤ s̄, then Th(s) = c(s). Applying this result to both p and q gives
Tp(s) = Tq(s) = c(s). Hence T 1p = T 1q on [0� s̄] as claimed. Turning to the induction
step, suppose now that Tkp = Tkq on [0�ks̄], and pick any s ∈ [0� (k+ 1)s̄]. Let h ∈ P be
arbitrary, let �h(s) := arg mint≤s{δh(t)+c(s− t)}, and let th(s) := s−�h(s). By Lemma A.4,
we have �h(s) ≥ s̄, and hence th(s) ≤ s − s̄ ≤ (k + 1)s̄ − s̄ ≤ ks̄. In other words, given ar-
bitrary h ∈ P , the optimal choice at s is less than ks̄. Since this is true for h = Tkp, we
have

Tk+1p(s) = min
t≤s

{
c(s − t)+ δTkp(t)

} = min
t≤ks̄

{
c(s − t)+ δTkp(t)

}
�

Using the induction hypothesis and the preceding argument for h= Tkq, this is equal to

min
t≤ks̄

{
c(s − t)+ δTkq(t)

} = min
t≤s

{
c(s − t)+ δTkq(t)

} = Tk+1q(s)�

We have now shown that Tk+1p = Tk+1q on [0� (k+ 1)s̄]. The proof is complete. �

Lemma A.9. The operator T has one and only one fixed point in P .

Proof. To show existence, let n ≥ 1/s̄ and fix any p ∈ P . In view of Lemma A.8, we have
Tn(Tp) = Tnp. Equivalently, T(Tnp) = Tnp. In other words, Tnp is a fixed point of T .
Regarding uniqueness, let p and q be two fixed points of T in P , and let n ≥ 1/s̄. In view
of Lemma A.8, we have p = Tnp= Tnq = q. �

Our next step is to show that the unique fixed point of T in P is precisely the mini-
mum value function defined in (8). In the statement of the result, tjp is the jth composi-
tion of tp with itself, and t0

p is the identity.

Lemma A.10. Let p be the unique fixed point of T in P , and let tp and �p be as defined in
(14). Let p∗ be as defined in (8). If s is any point in [0�1], then

p∗(s) = p(s) =
∞∑
i=1

δi−1c(�i)� (16)

where the allocation {�i} in (16) is defined by �i := �p(t
i−1
p (s)) for all i.

Proof. Pick any s ∈ [0�1]. To see that the second equality is valid, observe from re-
peated applications of the fixed point property p = Tp and the definitions of tp and �p
that

p(s) = c
(
�p(s)

) + δp
(
tp(s)

)
= c

(
�p(s)

) + δc
(
�p

(
tp(s)

)) + δ2p
(
t2
p(s)

)
���

= c
(
�p(s)

) + δc
(
�p

(
tp(s)

)) + · · · + δn−1c
(
�p

(
tn−1
p (s)

)) + δnp
(
tnp(s)

)
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for any n. Adopting the notation from the statement of the lemma, we can write this as

p(s)=
n∑

i=1

δi−1c(�i)+ δnp
(
tnp(s)

)
for all n ∈N�

We next show that tnp(s) = 0 for sufficiently large n. To see this, observe that, in view of
Lemma A.3, we have tp(z) = 0 whenever z ≤ s̄. Hence we need only prove that tnp(s) ≤ s̄

for some n. Suppose that this is not true. Then, since �p is increasing, since �p(s̄) = s̄,
and since tnp(s) > s̄ for all n, we must have �p(t

n
p(s)) ≥ �p(s̄) = s̄ for all n. Alternatively,

tnp(s) > s̄ for all n also implies that �p(tnp(s)) → 0 as n → ∞. Contradiction.
For i ≥ n, we also have �i = 0. Since p(0)= 0 (recall the definition of P ), we have

p(s) =
n∑

i=1

δi−1c(�i)+ δnp(tn) =
n∑

i=1

δi−1c(�i) =
∞∑
i=1

δi−1c(�i)�

This completes our proof of the second equality in (16).
Now we turn to the first equality in (16). To simplify notation, let ti := tip(s). By

the definition of {�i} and {ti}, we have
∑∞

i=1 �i = ∑∞
i=1(ti−1 − ti) = t0 = s. As we have just

shown thatp(s) = ∑∞
i=1 δ

i−1c(�i), it follows from the definition of p∗(s) thatp∗(s) ≤ p(s).
Thus it remains only to show that p(s) ≤ p∗(s) also holds.

To establish this, we will show that our allocation {�i} computed from tp and �p is
the minimizer in (8). For (8), given the convexity of c, the Karush–Kuhn–Tucker (KKT)
conditions for optimality are necessary and sufficient. The conditions are existence of
Lagrange multipliers α ∈R and {μn} ⊂ R such that

δi−1c′(�i)= μi + α� μi ≥ 0 and μi�i = 0 for all i ∈ N� (17)

To see that this holds, let n̄ be the largest n such that �n > 0, let α := c′(�1), and let μi := 0
for i = 1� � � � � n̄ and μi := δi−1c′(0) − α for i > n̄. We claim that ({�i}�α� {μi}) satisfies the
KKT conditions. To see this, observe that by repeatedly applying Lemma A.6, we obtain

δn̄−1c′(�n̄)= δn̄−2c′(�n̄−1)= · · · = δc′(�2) = c′(�1)= α� (18)

Now take any i ∈ {1� � � � � n̄}. Since μn = 0, the first equality in (17) follows from (18) and
the second is immediate. Alternatively, if i > n̄, then �i = 0, and hence δi−1c′(�i) =
δi−1c′(0) = μi + α, where the last equality is by definition. Moreover, μi�i = 0 as re-
quired. Thus it remains only to check that μi = δi−1c′(0) − c′(�1) ≥ 0 when i > n̄. Since
i > n̄, it suffices to show that δn̄c′(0) ≥ c′(�1). In view of (18), this claim is equivalent to
δn̄c′(0) ≥ δn̄−1c′(�n̄) or δc′(0) ≥ c′(�n̄). Regarding this inequality, recall the definition of
s̄ as the largest point in (0�1] satisfying c′(s̄) ≤ δc′(0). From Lemma A.3 we have �n̄ ≤ s̄.
Since c′ is increasing, we conclude that δc′(0) ≥ c′(�n̄).

This completes the proof that the allocation {�i} defined in the statement of
Lemma A.10 is a minimizer in (8). Hence p(s) ≤ p∗(s). We already showed that the
reverse inequality holds, and hence the first equality in (16) also holds. �

The next result serves mainly to summarize implications and notation.
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Corollary A.11. Let s be any point in [0�1] and let

p∗(s) := min

{ ∞∑
i=1

δi−1c(�i) : {�i} ∈R
∞+ and

∞∑
i=1

�i = s

}
� (19)

If �∗ and t∗ are as defined in (4), then

p∗(s) = min
t≤s

{
c(s − t)+ δp∗(t)

} = c
(
�∗(s)

) + δp
(
t∗(s)

)
� (20)

Moreover, if we define {�i} and {ti} by

t0 = s� �i = �∗(ti−1) and ti = ti−1 − �i� (21)

then there exists a finite n ∈ N such that tn = 0, and p∗(ti−1) = c(�i) + δp∗(ti) for i =
1� � � � � n. Finally, the allocation {�i} is the unique minimizer in (19).

Proof. That p∗(s) = mint≤s{c(s − t) + δp∗(t)} follows immediately from Lemma A.10,
which tells us that Tp∗ = p∗. The second equality in (20) is immediate from the defini-
tions of �∗ and t∗. Moreover, since p = p∗ in Lemma A.10, it follows that �p = �∗ and tp =
t∗, and hence the “recursive” allocation {�i} defined in Lemma A.10 by �i := �p(t

i−1
p (s))

for all i is the same allocation defined in (21). As shown in Lemma A.10, this allocation
is the minimizer in (19). In the proof of Lemma A.10, it is also shown that tn = 0 for some
finite n.

Finally, to see that the minimizer is unique, consider the functional F on the linear
space of nonnegative sequences R

∞+ defined by F(�) = F({�i}) = ∑∞
i=1 δ

i−1c(�i). Let L
be the set of � ∈ R

∞+ such that F(�) < ∞. Evidently any minimizer lives in L. From strict
convexity of c it is easy to show that L is a convex set and F is a strictly convex function
on L. Hence the minimizer is unique. �

A.2 Main results

We can now prove the claims stated in the main section of the paper.

Proof of Theorem 3.1. That T maps P to itself was shown in Lemma A.7. That T has
a unique fixed point in P was shown in Lemma A.9. Moreover, Tnp = p∗ for all n ≥ 1/s̄,
as shown in Lemmas A.8 and A.9, so the final claim in Theorem 3.1 is also true. �

Proof of Theorem 3.2. Let p∗ and �∗ be as in the statement of the theorem. That the
recursively generated allocation is feasible and the integer n∗ in (6) is well defined can
be seen from Corollary A.11. To see that (p∗��∗) is an equilibrium for the production
chain, observe that p∗(0) = 0 by (19), and that the zero profit conditions holds because
p∗(t∗i−1) = c(�∗

i ) + δp∗(t∗i ) for i = 1� � � � � n∗, as shown in Corollary A.11. Part (iii) of the
definition of equilibrium is implied by the fact that p∗ is a fixed point of T . �

Proof of Proposition 4.1. Since p∗ ∈ P and the image under T of any function in P

is strictly convex (Lemma A.1), we see that p∗ = Tp∗ is strictly convex. Letting p = p∗ in
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Lemma A.5, we see that p∗ is differentiable, with (p∗)′(s) = c′(�∗(s)). Since c and �∗ are
continuous, the latter by Lemma A.2, and since c′(s) > 0 for all s, the equation (p∗)′(s) =
c′(�∗(s)) implies that p∗ also is continuously differentiable and strictly increasing. The
bounds c′(0)s ≤ p∗(s) ≤ c(s) are immediate from p∗ ∈ P . That p∗ is equal to the right-
hand side of (8) was shown in Lemma A.10. �

Proof of Theorem 4.2. That (p∗��∗) is an equilibrium in E follows directly from the
definitions, Theorem 3.2 and (20). Regarding uniqueness, our first claim is that if p is
a nontrivial price function and an equilibrium for some allocation, then p = p∗. To see
that this is so, fix s ∈ [0�1]. Since p is nontrivial, there exists an allocation � such that∑n

i=1 �i = s and p(ti−1) ≥ c(�i) + δp(ti) for i = 1� � � � � n. Iterating on this inequality gives
p(s) ≥ c(�1) + δc(�2) + δ2c(�3) + · · · . It now follows from (19) that p(s) ≥ p∗(s). For the
reverse inequality, let {�i} and {ti} be as defined in (21). By Corollary A.11 we have p∗(s) =∑n

i=1 δ
i−1c(�i). Alternatively, since p is an equilibrium price function, the inequality

in condition (iii) of Definition 3.1 holds. In particular, p(ti−1) ≤ c(�i) + δp(ti) for i =
1� � � � � n. Iterating on this inequality from i = 1 gives p(s) = p(t0) ≤ ∑n

i=1 δ
i−1c(�i). In

other words, p(s) ≤ p∗(s).
Now let �∗ be as above and let � be any other feasible allocation. We claim that if

(p∗��) is an equilibrium, then � = �∗. To see this, suppose to the contrary that �∗ =
{�∗

i } and � = {�i} are distinct. Then, by the fact that {�∗
i } is the unique minimizer in (19)

when s = 1, we have p∗(1) = ∑n
i=1 δ

i−1c(�∗
i ) <

∑n
i=1 δ

i−1c(�i). At the same time, since
(p∗� {�i}) is an equilibrium, the zero profit condition yields p∗(ti−1) ≤ c(�i) + δp∗(ti) for
i = 1� � � � � n, and hence, by iterating, p∗(1) = ∑n

i=1 δ
i−1c(�i). Contradiction. �

Proof of Proposition 4.3. We already showed that (p∗)′(s) = c′(�∗(s)). The claimed
properties on t∗ and �∗ are immediate from Lemma A.2. �

Proof of Proposition 4.4. Let δa ≤ δb. Let Ta and Tb be the corresponding operators.
We begin with the claim that p∗

a ≤ p∗
b. It is easy to verify that if p ∈ P , then Tap ≤ Tbp

pointwise on [0�1]. Since Ta and Tb are order preserving (i.e., p ≤ q implies Tp ≤ Tq),
this leads to Tn

a p ≤ Tn
b p. For n sufficiently large, this states that p∗

a ≤ p∗
b. Next we show

that the number of tasks carried out by the most upstream firm decreases when δ in-
creases from δa to δb. Let �ai be the number of tasks carried out by firm i when δ = δa,
and let �bi be defined analogously. Let n = n∗

a. Seeking a contradiction, suppose that
�bn > �an. In that case, convexity of c and (11) imply that

c′(�bn−1
) = δbc

′(�bn)> δac
′(�an) = c′(�an−1

)
�

Hence �bn−1 > �an−1. Continuing in this way, we obtain �bi > �ai for i = 1� � � � � n. But then∑n
i=1 �

b
i >

∑n
i=1 �

a
i = 1. Contradiction.

Now we can turn to the claim that n∗
b ≤ n∗

a. As before, let n = n∗
a, the equilibrium

number of firms when δ= δa. If �bn = 0, then the number of firms at δb is less than n = n∗
a

and we are done. Suppose instead that �bn > 0. In view of Lemma A.3, we have δac
′(0) ≥

c′(�an). Moreover, we have just shown that �an ≥ �bn. Combining these two inequalities and
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using δb > δa, we have δbc
′(0) ≥ c′(�bn). Applying Lemma A.3 again, we see that the nth

firm completes the good, and hence n∗
b = n∗

a. �

Proof of Theorem 5.1. Let T be the operator in (5). Evidently T maps F into itself.
By construction, solutions to (13) in F coincide with fixed points of T . Endow F with
the usual pointwise order, so that f ≤ g in F whenever f (s) ≤ g(s) for all s ∈ [0�1]. With
this order, it is easy to verify that (F �≤) is a complete lattice.19 Moreover, since k and δ

are both nonnegative, T is order preserving on (F �≤). The claim now follows from the
Knaster–Tarski fixed point theorem. �

Lemma A.12. If c(�) = eθ� − 1, then the equilibrium number of firms is given by (12).

Proof. Let n = n∗ be the equilibrium number of firms and let r := ln(δ)/θ. From
δc′(�n+1)= c′(�n), we obtain �i+1 = �i − r, and hence �1 = �n + (n− 1)r. It is easy to check
that when c(�) = eθ� −1, the constant s̄ defined above is equal to r. Applying Lemma A.3,
we get 0 < �n ≤ r. Therefore (n − 1)r < �1 ≤ nr. From

∑n
i=1 �i = 1 and �1 = �n + (n − 1)r

it can be shown that n�1 − n(n − 1)r/2 = 1. Some straightforward algebra now yields
−1 + √

1 + 8/r < 2n ≤ 1 + √
1 + 8/r. The expression for n = n∗ in (12) follows. �
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