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Alternating-offer bargaining with the global
games information structure

Anton Tsoy
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In this study, I examine the alternating-offer bilateral bargaining model with pri-
vate correlated values. The correlation of values is modeled via the global games
information structure. I focus on the double limits of perfect Bayesian equilibria
as offers become frequent and the correlation approaches perfect. I characterize
the Pareto frontier of the double limits and show that it is efficient, but the surplus
split generally differs from the Nash bargaining split. I then construct a double
limit that approximates the Nash bargaining split in the ex post surplus, but with
a delay. Further, I prove the folk theorem when the range of the buyer’s values co-
incides with the range of the seller’s costs: any feasible and individually rational
ex ante payoff profile can be approximated by a double limit.

Keywords. Bargaining delay, alternating offers, incomplete information, private
correlated values, Coase conjecture, global games.
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1. Introduction

In many markets, parties negotiate prices bilaterally and their privately known valua-
tions are correlated. Examples of such markets include over-the-counter markets for
financial assets, real estate, private equity, and durable goods. However, the bargain-
ing literature has focused exclusively on one-sided or two-sided independent private
information but not on two-sided correlated private information.

To fill this gap, I study frequent-offer limits of perfect Bayesian equilibria (PBEs) in
an alternating-offer bilateral bargaining model with private correlated values. The main
conclusion is that even when values become almost perfectly correlated, the bargaining
outcome can differ in both the surplus split and the delay from the complete informa-
tion outcome. In this limit, while the players’ private information about values is precise,
a variety of bargaining outcomes is possible because of the lack of common knowledge
about values. In this sense, the results stress the role of public rather than private infor-
mation in predicting the bargaining outcome.
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Figure 1. Distribution of types. Types (s� b) are uniformly distributed on the diagonal stripe of
width 2η inside the unit square. The bold line depicts the support of buyer’s optimistic conjec-
tures.

I use the global games information structure to capture the correlation of values,
which is commonly used in the global games literature (Carlsson and Van Damme 1993,
Morris and Shin 1998, 2000). Specifically, players’ types are uniformly distributed on a
“diagonal stripe” of width 2η inside the unit square (see Figure 1). Players’ values are
strictly increasing functions of their own types. Thus, the buyer with a higher value
assigns positive probability to an interval of seller types with higher costs. The global
games information structure is quite rich and incorporates a variety of correlations rang-
ing from almost perfect (narrow stripe) to independent values (wide stripe). I assume
that the gains from trade are positive for any realization of types.

My focus is on PBE limits as first offers become frequent, and then the correlation
approaches perfect. I refer to such limits as double limits. This order of limits is par-
ticularly interesting, because the reverse order of limits boils down to the well studied
complete information game (Rubinstein 1982, Binmore et al. 1986). Given the strong
notion of the correlation between values (types assign positive mass only to an interval
of the opponent’s types) and positive gains from trade for any realization of types, one
might expect that as the correlation between the values becomes almost perfect, the
bargaining outcome converges to the unique complete information outcome in which
equally patient players immediately split the surplus equally. I refer to such a split as the
Nash split, because it coincides with the Nash bargaining solution (Nash 1953).

I find that even for an almost perfect correlation, a variety of bargaining outcomes
can be sustained as frequent-offer PBE limits, and I obtain the type of multiplicity that is
common in bargaining models with two-sided independent private information about
values. Recall that with independent values, multiple outcomes can be sustained as
frequent-offer PBE limits with optimistic conjectures where, for example, each buyer
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type puts probability 1 on the lowest seller type after the seller’s deviation. Under opti-
mistic conjectures, there is a continuation equilibrium with the following Coasian prop-
erty: As offers become frequent, the deviator gets the lowest share of the surplus over all
equilibrium continuation plays. However, when values are highly correlated, such op-
timistic conjectures result only in a marginal updating of beliefs. Nevertheless, I show
that for any level of correlation, I can construct a continuation equilibrium with opti-
mistic conjectures with the following contagious Coasian property: The frequent-offer
limit gives just as harsh a punishment to the deviator as in the case of independent
values.

The key to my construction of the continuation equilibrium is the combination
of the Coasian argument and the contagion arguments, which is similar to the global
games literature. Specifically, I first consider the game between seller type 0 and buyer
types below η that under optimistic conjectures assign probability 1 to the seller type
0 (see Figure 1). The Coasian property in this game with one-sided private informa-
tion starts the contagion. By the Coasian argument, the buyer types below η have a low
maximal willingness to pay that implies low screening prices for the seller types that are
“slightly” above seller type 0. This fact, in turn, leads to a larger set of buyer types at the
bottom with a low willingness to pay, which in turn, implies low screening prices for a
larger set of seller types at the bottom. This process continues until we cover all buyer
types and show that their willingness to pay is relatively low, which guarantees that the
seller’s utility is low in such a continuation equilibrium.

The contagious Coasian property sustains a variety of on-path dynamics and re-
duces the problem of characterizing various equilibrium sets to the construction of ap-
propriate on-path strategies. There are three main results of the paper. The first result is
the characterization of the ex ante Pareto frontier of double limits. On the Pareto fron-
tier, the bargaining outcomes are efficient, as in the complete information case. How-
ever, in general, the surplus split differs from the Nash split. To characterize the Pareto
frontier, I construct PBEs with the following segmentation dynamics. There are endoge-
nously defined segments, and the seller signals a particular segment of types with her
first offer. This offer is accepted by a sufficiently large set of buyer types, which ensures
that the trade will occur immediately for a sufficiently large set of players’ types. The
rest of the buyer types reject this offer, and after the rejection, the war-of-attrition type
of dynamics emerge in which both sides gradually concede to less favorable price of-
fers. This war-of-attrition dynamics ensures that none of the seller types finds it optimal
to mimic another segment, and the buyer types who accept the seller’s first offer find it
optimal to do so. By appropriately choosing the price offer in each segment and increas-
ing the number of segments as the correlation approaches perfect, I can construct PBEs
that approximate any point on the Pareto frontier or approximate ex post the complete
information outcome, and do so without delay in the limit.

The second result is the construction of frequent-offer PBE limits that approximate
the ex post Nash split as correlation approaches perfect, but with a delay. Such out-
comes exhibit realistic two-sided screening dynamics that can be described as follows:
Both sides start from extreme price offers and gradually their offers converge. All types
on each side pool on price offers, but gradually separate by the time they give in and
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accept the opponent’s offer. By constructing accepted price offers that are close to the
prices that attain the Nash split for accepting types, I ensure that such a bargaining out-
come approximates the ex post Nash split. However, the gradual acceptance leads to
inefficient bargaining delays.

The third result proves the folk theorem when the range of values coincides with
the range of costs. In this case, I use the frequent-offer PBE limits with the two-sided
screening dynamics in which the accepted prices are close to the values of the accepting
types. These limits ensure that the acceptances occur very slowly, and there is no trade
at the limit. Given the characterization of the Pareto frontier, I obtain the folk theorem
when players have access to the public correlation device in the beginning of the game:
any feasible, individually rational bargaining outcome is sustainable as a double limit.

The results stress the role of higher-order uncertainty in bargaining models with pri-
vate information about values. Specifically, suppose that the buyer and the seller types
equal 1

2 . Then for any integer m and any positive ε, the correlation of types can be suffi-
ciently high (the diagonal stripe in Figure 1 is sufficiently narrow) so that there is an mth
level of mutual knowledge between the buyer and the seller that their types are within ε

of 1
2 . However, no matter how high the correlation of types is, it is only common knowl-

edge between players that their types are in [0�1]. The analyst who wishes to predict the
bargaining outcome in this environment might be tempted to ignore the higher-order
uncertainty and choose to approximate this environment with the complete informa-
tion game between buyer and seller types equal to 1

2 . In particular, the analyst might
feel confident in using the Nash bargaining solution as a reduced form for the complete-
information bargaining outcome, which is standard in the applied work. I demonstrate
that this assumption is far from innocuous. For example, the folk theorem shows that
under certain conditions, no predictions about the expected payoffs can be made apart
from those implied by feasibility and individual rationality constraints.

Related literature. This paper is related to several strands of literature. First, the lit-
erature on bargaining with private information about values focuses on one-sided pri-
vate information about independent or interdependent values and two-sided private
information about independent values. The main result in the literature on one-sided
private information about independent values is the Coase conjecture showing that the
complete information bargaining outcome is sensitive to even a small amount of pri-
vate information (see Fudenberg et al. 1985, Gul and Sonnenschein 1988, Grossman and
Perry 1986, Ausubel and Deneckere 1992a, Gul et al. 1986). Deneckere and Liang (2006),
Fuchs and Skrzypacz (2013), and Gerardi et al. (2014) explore the model with one-sided
private information about interdependent values where only one party knows the qual-
ity of the object, which determines the values of both parties.1 When the uninformed
party makes offers, there is a unique equilibrium as in the case of independent val-
ues. In models with two-sided independent private information, optimistic conjectures
generally sustain a variety of equilibrium dynamics, and the literature studies partic-
ular classes of equilibria and restricts its attention to one-sided offers.2

 Ausubel and

1Vincent (1989) provides an earlier analysis of this model.
2The exception is Ausubel and Deneckere (1993a), who allow offers by both sides and justify the restric-

tion to one-sided offers with the welfare perspective.
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Deneckere (1992b) show that in a rich subclass of sequential equilibria for the no-gap
case, essentially no trade happens as the offers become frequent. Cramton (1984) con-
structs an equilibrium where first the seller gradually reveals her type and then screens
the buyer types. Cho (1990) considers a class of equilibria in which the seller’s price of-
fers perfectly separate types in every round. Both equilibria in Cramton (1984) and Cho
(1990) converge to an immediate trade at a price equal to the lowest valuation of the
buyer as offers become frequent. Cramton (1992) considers the model with two-sided
offers where parties strategically choose the amount of delay to signal their values.3 This
paper complements these papers by constructing a rich class of equilibria with segmen-
tation and two-sided screening dynamics in a new environment with correlated values
and two-sided offers. Further, it shows that a variety of bargaining outcomes is possible
even when the support of players’ beliefs (but not higher-order beliefs) is small.

The papers in the bargaining literature closest to this one are Feinberg and Skrzy-
pacz (2005) and Weinstein and Yildiz (2013). Feinberg and Skrzypacz (2005) show that
the Coase conjecture is not robust to second-order uncertainty. In the current paper,
any finite-order uncertainty becomes small as the correlation between values increases,
and my model stresses the role of higher-order uncertainty in bargaining. Weinstein
and Yildiz (2013) show that the complete-information game is not robust to the pertur-
bations in higher-order beliefs. However, their result involves complex and somewhat
artificial types, while my type space has a natural structure of private information about
values commonly used in the bargaining literature. Put differently, I impose stronger
common knowledge restrictions compared to Weinstein and Yildiz (2013); in particular,
it is common knowledge between players how types are mapped into values.

Although I use the information structure from the global games literature (Carlsson
and Van Damme 1993, Morris and Shin 1998, 2000), the multiplicity of double lim-
its is quite different from the selection results in that literature. In this sense, my
results are closer to Weinstein and Yildiz (2007, 2013), who apply the contagion ar-
gument to show that there is no robust refinement of rationalizability.4

 Morris and
Shin (2012) show how the contagious adverse selection can lead to a market break-
down in a static trading game. However, I show that even when players have a great
flexibility in exchanging offers, the inefficient trade delay can arise as an equilib-
rium outcome. Similar to Morris and Shin (2012), I stress that the public informa-
tion ensures efficiency through building common knowledge among players, as op-
posed to the reduction in the adverse selection as proposed in Daley and Green (2012),
Asriyan et al. (2017), and Duffie et al. (forthcoming).

The segmentation dynamics of PBEs that approximate the Pareto frontier of dou-
ble limits are similar to the war-of-attrition dynamics in reputational bargaining (Abreu
and Gul 2000, Kambe 1999, Compte and Jehiel 2002, Wolitzky 2012, Fanning 2016). In

3See also Fudenberg and Tirole (1983) for an analysis of the model with two bargaining rounds, and see
Chatterjee and Samuelson (1987) for a characterization of the bargaining dynamics under the additional
restriction that the type and action space consist of only two types and two offers. Watson (1998) analyzes
the uncertainty about discount factors.

4Angeletos et al. (2007) and Chassang (2010), who show the multiplicity of equilibria in dynamic envi-
ronments less related to mine.
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those models, commitment types require a fixed share of the surplus, and the war-of-
attrition dynamics emerge, in which rational types mimic certain commitment types. In
my model these dynamics arise despite the fact that all types are rational. My paper also
gives the connection between the trade dynamics and primitives such as the values of
players, while the reputational bargaining literature is silent on where the commitment
types come from.

The paper is organized as follows. Section 2 describes the game. Section 3 presents
the main results. Section 4 derives the optimal punishment for off-path deviations. Sec-
tion 5 concludes by reviewing the results and directions for future research. Omitted
proofs are given in Appendices A and B. Additional results and auxiliary technical lem-
mas are provided in the Supplemental Material, available in a supplementary file on the
journal website http://econtheory.org/supp/2543/supplement.pdf.

2. The model

Types and values. The buyer (he) and the seller (she) negotiate the price of an indivisible
object. The seller’s type s and the buyer’s type b are jointly uniformly distributed on
the diagonal stripe of width 2η inside the unit square, �η = {(s�b) ∈ [0�1]2 : s − η ≤ b ≤
s + η} (see Figure 1). The Lebesgue σ-algebra on �η is denoted by Fη, the uniform
distribution on �η is denoted by Pη, and the expectation with respect to Pη is denoted
by Eη. I denote the diagonal inside the unit square by �0 = {(s�b) ∈ [0�1] : s = b}, and
the uniform distribution on the diagonal by P0.

The uncertainty parameter η ∈ (0�1] controls the degree of the correlation be-
tween types. By varying η, the model spans a variety of environments from indepen-
dent (η = 1) to almost perfectly correlated types (η ≈ 0). If π(x) = min{1�x + η} and
π(x) = max{0�x − η}, then given their types, players’ prior beliefs about the opponent’s
type are uniform on Bs = [π(s)�π(s)] for seller type s and on Sb = [π(b)�π(b)] for buyer
type b. Such an information structure is similar to the global games information struc-
ture: Types s and b serve as noisy private signals about the underlying quality, where the
noise has bounded support as in Morris and Shin (1998).

The value of an object for a type b buyer is v(b), and the cost of selling an object for
a type s seller is c(s), where v and c are strictly increasing, continuously differentiable
functions with derivatives bounded from below and above by positive � and �, respec-
tively.5 I additionally impose the following technical condition on v and c: there is D> 0
such that |dkv(x)/dxk|/k! <D and |dkc(x)/dxk|/k!<D for all x ∈ [0�1] and k= 1�2� 	 	 	 .
(All polynomial functions satisfy this condition.) The monotonicity of v and c implies
that the values are positively correlated. The uncertainty about the type of opponent
translates into the uncertainty about the opponent’s value.

5When types are independent (η= 1), there is no loss of generality by assuming that types are uniformly
distributed. For any distribution of values, there is a transformation of functions v and c that preserves the
distribution of values and changes the distribution of types to uniform on the unit interval. With correlated
types, this is no longer true, because no such transformation is guaranteed to preserve the correlation.
I consider a general class of functions v and c but restrict the distribution of types to be uniform.

http://econtheory.org/supp/2543/supplement.pdf
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The gains from trade are denoted by 
(s�b) ≡ v(b) − c(s), and the upper bound on
the gains from trade is denoted by �≡ v(1)− c(0). I use the shorthand notation 
(x) for

(x�x). I assume that the minimal gains from trade ξ ≡ min(s�b)∈�η{
(s�b)} are positive.
This assumption does not preclude the possibility that c(1) > v(0), and hence, in general
there is not a single price that gives nonnegative utility to all types.

The game. Bargaining occurs in rounds n = 1�2� 	 	 	 . The length of the time interval
between bargaining rounds is 
 > 0. Players discount the future at a common discount
rate r > 0, and the common discount factor is denoted by δ≡ e−r
.

The seller is active in odd rounds and the buyer is active in even rounds. An active
player can either accept the last offer of the opponent or make a counteroffer. Once
a price offer is accepted, the game ends and the payoffs are determined. If the trade
happens in round N at price p, the buyer’s utility is δN−1(v(b)−p) and the seller’s utility
is δN−1(p − c(s)). If a trade does not occur in finite time, then both players get a payoff
of zero.

A history Hn is a sequence of rejected price offers up to round n− 1, if by the begin-
ning of round n, no trade has occurred. A pure strategy of the buyer σn

b is a measurable
function that maps any buyer type b and history Hn to the acceptance decision or the
counteroffer. The posterior belief of buyer μn

b is a measurable function that maps any
buyer type b and any history Hn to a probability distribution of seller types. The strategy
σn
s and the posterior beliefs μn

s are defined analogously for the seller. The pure strategies
are extended appropriately to behavioral strategies.

A perfect Bayesian equilibrium (PBE) consists of a pair of strategy profiles (σn
b �σ

n
s )

and beliefs (μn
b�μ

n
s ) that satisfy the sequential rationality and the following conditions

on the beliefs: (a) Bayes’ rule is applied to update beliefs whenever possible; (b) μn
b and

μn
s do not change in even and odd rounds, respectively; and (c) for any history Hn, μn

b ∈

(Sb) and μn

s ∈ 
(Bs). This is a natural adaptation of the PBE (Fudenberg and Tirole
1991) to my environment with correlated values and the bounded support of beliefs.
The last requirement states that both on and off the equilibrium path, players assign
positive probability only to the types of opponent that they initially considered possible,
that is, in Bs or Sb.

An outcome in the bargaining game is the mapping from types (s�b) to the time of
trade τ(s�b) and the price of a trade ρ(s�b). Hence, τ and ρ are random variables on the
probability space (�η�Fη�Pη). I focus on PBEs in which players’ on-path strategies are
pure. Given this restriction, I define a PBE outcome, (N(s�b)
�p(s�b)), as the outcome
induced by equilibrium strategies where N(s�b) and p(s�b) are the round and the price
of a trade between types s and b in the PBE.

Double limits. I focus on double limits of equilibria as first offers become frequent,

 → 0 or, equivalently, δ → 1, and then the correlation becomes perfect, η → 0. I call
(τ�ρ) the frequent-offer PBE limit of a sequence of PBEs indexed by δ → 1 if equilibrium
outcomes (N
�p) converge in probability to the outcome (τ�ρ) as δ→ 1, that is, for any
ε > 0,

lim sup
δ→1

Pη
(|N
− τ|> ε or |p− ρ| > ε

) = 0	

The double limits are defined as follows.
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Definition 1. The sequence of outcomes of frequent-offer PBE limits, (τη�ρη), in-
dexed by η → 0 converges to the limit (τ�ρ) as η → 0, which is denoted by (τη�ρη) →

η→0
(τ�ρ) if, for any ε > 0,

lim sup
η→0

Pη
(|τη − τ|> ε or |ρη − ρ| > ε

) = 0	

I call (τ�ρ) the double limit if there is a sequence of frequent-offer PBE limits (τη�ρη) →
η→0

(τ�ρ).

Definition 1 states that as η → 0, deviations larger than ε in the trade delay and
the price in the frequent-offer PBE limit (τη�ρη) from that in (τ�ρ) become unlikely.
I denote by DL the set of all double limits.

Since my focus is on double limits, the complete information model is a natural
benchmark. Let

y(s�b)≡ δc(s)+ v(b)

1 + δ
and y(s�b) ≡ c(s)+ δv(b)

1 + δ

be equilibrium offers of the seller and the buyer, respectively, when values v(b) and c(s)

are common knowledge (Rubinstein 1982). In the complete information game, the first
offer is accepted, and as δ → 1, y(s�b) and y(s�b) converge to an equal surplus split,

which I denote by y∗(s�b) ≡ 1
2(c(s) + v(b)). When s = b, I write y∗(s) instead of y∗(s�b),

and the same notation is adopted for y and y . The complete-information outcome
provides noncooperative foundations to the axiomatic Nash bargaining solution (Nash
1953). Hence, I refer to the equal surplus split as the Nash bargaining split or simply the
Nash split.

2.1 The set of individually rational payoffs

In this subsection, I introduce the set of individually rational expected payoffs and its
Pareto frontier. The following lemma gives weak bounds on equilibrium prices and
payoffs.

Lemma 1. In any PBE and after any history, the following statements hold:

(i) The seller accepts with probability 1 any offer above y(1), and the buyer rejects with
probability 1 any offer above y(1).

(ii) The buyer accepts with probability 1 any offer below y(0), and the seller rejects with
probability 1 any offer below y(0).

(iii) The seller’s continuation utility is at least max{y(0)− c(s)�0}, and the buyer’s con-
tinuation utility is at least max{v(b)− y(1)�0}.

See Appendix A.1 for the proof.
When the variation in values across types is large, then y(0) and y(1) are far apart

and Lemma 1 puts only weak bounds on the price of a trade even when η is very small.
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These bounds are standard in the bargaining literature (e.g., Grossman and Perry 1986,
Watson 1998). By Lemma 1, the seller cannot do better than if she convinces the buyer
that her cost is the highest possible and the buyer admits that his value is the highest
possible. Moreover, the buyer always has the option to trade immediately at price y(1)
by admitting that he has the highest valuation and by recognizing that the seller has the
highest cost. This option combined with the opportunity to reject all seller’s offers gives
the lower bound on the buyer’s utility in Lemma 1.

If US
η(τ�ρ) = Eη[e−rτ(s�b)(ρ(s�b) − c(s))] and UB

η (τ�ρ) = Eη[e−rτ(s�b)(v(b) − ρ(s�b))]
are the players’ expected ex ante payoffs from the outcome (τ�ρ), then the set of ex ante
payoffs supported by double limits is

E =
{

lim
η→0

(
US
η(τη�ρη)�U

B
η (τη�ρη)

) : (τη�ρη) →
η→0

(τ�ρ) ∈ DL
}
	

The convex hull of the closure of E is denoted by E . Furthermore, when players have
access to the public randomization device in the beginning of the game, then E is the set
of ex ante expected payoff profiles that can be approximated by the double limits in my
model.

Let us put some preliminary restrictions on E . Fix η and any outcome (τη�ρη) of the
frequent-offer PBE limit. Clearly, the feasibility constraint holds:

US
η(τη�ρη)+UB

η (τη�ρη)≤ Eη
[

(s�b)

]
	

Moreover, Lemma 1 implies that the seller’s utility is at least US
η ≡ Eη[max{y∗(0) − c(s)�

0}], and, symmetrically, the buyer’s utility is at least UB
η ≡ Eη[max{v(b) − y∗(1)�0}].

Hence, the ex ante individual rationality constraints holds:

US
η(τη�ρη) ≥US

η and UB
η (τη�ρη) ≥UB

η	

Denoting the limits of Eη[
(s�b)], US
η, and UB

η as η → 0 by 
, US , and UB, respectively,
I get that E ⊆ IR, where

IR = {(
US�UB

) : US +UB ≤
�US ≥US�and UB ≥UB
}

is the set of feasible, ex ante individually rational payoffs. The ex ante Pareto frontier is

PF = {(
US�UB

) : US +UB =
�US ≥US�and UB ≥UB
}
	

(See Figure 2 for the illustration.) For simplicity of exposition, I focus on characterizing
the ex ante payoffs in the double limits. Interim versions of the main results can be
found in the Supplementary Material.

3. Main results

This section shows that a variety of bargaining outcomes arises as double limits. Sec-
tion 3.1 derives the optimal punishment for detectable deviations from the equilibrium
path. Section 3.2 characterizes the Pareto frontier of double limits. Section 3.3 shows
that requiring the double limit to approximate the Nash split does not necessarily mean
efficiency. Section 3.4 proves the folk theorem.
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Figure 2. The set of feasible, ex ante individually rational payoffs and its Pareto frontier. The
complete-information outcome in the figure corresponds to the immediate equal surplus split,
(τ�ρ)= (0� y∗(s� b)).

3.1 Optimal punishment

The literature on bargaining shows that two-sided offers and two-sided independent
private information can create a variety of bargaining dynamics by punishing deviations
from the equilibrium path with optimistic conjectures: the opponent of the deviator as-
signs probability 1 to the weakest type of the deviator, and this way the deviator gets a
low continuation utility after the deviation. Similarly, I construct continuation equilib-
ria with optimistic conjectures to deter deviations. In my model, it is a priori not clear
whether optimistic conjectures are as efficient in deterring deviations. Indeed, when
η is small, players’ beliefs can be updated only marginally within the support Bs or Sb.
Nevertheless, in the next lemma, I show that when offers are frequent, the deviator’s
utility in the punishing continuation equilibrium is independent of η and approximates
the lower bound in Lemma 1. I call a deviation by the seller detectable if all buyer types
assign it probability 0 on the equilibrium path.

Lemma 2 (Contagious Coasian property). Fix a PBE. Consider a history Hn that contains
no buyer’s deviations and ends with the seller’s detectable deviation. If after history Hn,
the seller’s posterior beliefs are the truncation of the prior from above at b and from below
at b, then for any ε > 0, there is δ(ε) ∈ (0�1) such that for all δ ∈ (δ(ε)�1), there is a
continuation equilibrium in which the continuation utility of any remaining seller type
s ∈ [π(b)�π(b)] is at most max{y∗(b)− c(s)�0} + ε.

Remark 1. I can switch the buyer and the seller in Lemma 2 to derive the punishing
continuation equilibrium for the buyer’s detectable deviations. In this case, the contin-
uation utility of any buyer type b is at most max{v(b) − y∗(s)�0} + ε, where s is defined
analogously to b in Lemma 2.
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I refer to the continuation equilibrium in Lemma 2 as the seller punishing (contin-
uation) equilibrium with b. It has several useful properties. First, the punishment is
the harshest possible. It approximates the lower bound on the seller’s utility in Lemma 1
that does not depend on η. Second, this equilibrium punishes all seller types simultane-
ously, and, hence, the buyer does not need to know which seller type deviated. Further,
the convergence is uniform, that is, δ(ε) does not depend on s or b.

Remark 2. However, δ(ε) in Lemma 2 does depend on η, and it converges to 1 as
η → 0.6 Thus, the order of limits is important for the results. Intuitively, when η de-
creases, each buyer type’s optimistic conjecture assigns probability 1 to a higher seller
type, who in turn believes that the buyer type comes from a higher interval in which ev-
ery buyer type assigns probability 1 to higher seller types and so on. This fact results in
the higher maximal willingness to pay of buyer types, which in turn increases the seller’s
reservation price.

The proof of Lemma 2 builds on the existing results to construct the continuation
equilibrium strategies for types b ∈ [b�b + η] and s = b that exhibit Coasian dynamics,
and then uses the contagion argument to extend the construction and the Coasian dy-
namics to higher types. The proof is deferred until Section 4.

3.2 Pareto frontier

Lemma 2 in the previous subsection shows that the high correlation of values does not
restrict the ability to punish players for detectable deviations as long as offers are fre-
quent. This lemma gives the bounds in terms of payoffs on the outcomes potentially
attainable by double limits. The next theorem characterizes the Pareto frontier of bar-
gaining outcomes that are sustainable as double limits.

Theorem 1 (Pareto frontier). The following statements obtain:

(i) If (US�UB) ∈ PF , then (US�UB) ∈ E .

(ii) We have (0� y∗(s�b)) ∈D.

The first part of Theorem 1 states that any point of the ex ante Pareto frontier can be
approximated by some double limit. The E ⊆ IR implies that the ex ante Pareto frontier
of payoff profiles that are approximated by double limits is efficient. However, the sur-
plus split in general differs from the Nash split. The second part states that it is still pos-
sible to approximate the complete-information outcome (0� y∗(s�b)) with double limits,
that is, for η≈ 0, I can construct PBEs in which the ex post surplus split is close to equal
and the trade delay is short with high probability.

The key to Theorem 1 is the construction of PBEs with segmentation dynamics
in which players establish common knowledge of a narrow range of values early in

6To see this, note that the right-hand side of the inequality (23) in Lemma 11 in Appendix A.1 converges
to y(s) as η → 0. Hence, for sufficiently small η, the seller never accepts offers below y(s) − ε and so is
guaranteed utility of at least y(s)− c(s)− ε after any history.
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the game, and in this way, avoid lengthy bargaining delays. I next construct these
PBEs.

Proof of Theorem 1. The proof proceeds in five steps.
Step 1: Bargaining outcomes spanning the Pareto frontier. I first construct bargaining

outcomes that approximate the expected payoff profiles in Theorem 1 when types are
uniformly distributed on the diagonal �0. For x ∈ [0�1] and γ ∈ (0�1), I define the trade
price as

q(x�γ) ≡ (1 − γ)y∗(x)+ γmax
{
c(x)� y∗(0)

}
�

which is the convex combination of the complete-information price for types s = x and
b = x and the minimal price that type s = x can accept in any frequent-offer PBE limit.
In the bargaining outcome (0� q(s�γ)), trade is immediate at price q(s�γ). Step 5 below
shows that for any γ ∈ (0�1), the outcome (0� q(s�γ)) is a double limit. Therefore, while
varying γ from 0 to 1, I span all ex ante expected payoff profiles on the segment of Pareto
frontier that connects ( 1

2
� 1
2
) and (US�
 − US). To span the segment of the Pareto

frontier that connects ( 1
2
� 1

2
) and (
 − UB�UB), I can use the same argument with
the roles of the seller and the buyer reversed and instead of q(x�γ), use trade prices

p(x�γ) ≡ (1 − γ)y∗(x)+ γmin
{
v(x)� y∗(1)

}
	

This way I can span the whole ex ante Pareto frontier with double limits. This proves the
first part of Theorem 1. Further, as γ → 0, the outcome (0� q(s�γ)) for all types converges
to the outcome (0� y∗(s� s)), which in turn approximates the complete-information out-
come, (0� y∗(s�b)), as η→ 0. This proves the second part of Theorem 1.

Step 2: Construction of segments. Fix γ ∈ (0�1). To approximate (0� q(s�γ)), I parti-
tion the set of types into segments of length

√
η and construct PBEs in which the seller

reveals in the first round her segment with a price offer “close” to q(s�γ). This is accepted
by “most” types of buyer except for a “small” interval of types near the boundaries of the
segments that engage in the war-of-attrition type of bargaining in the continuation.

In this step, I describe the on-path strategies in round 1, when the seller reveals her
segment. (See Figure 3 for the illustration.) The number of segments is Z ≡ �1/

√
η�. Let

b0 = s0 = 0, let bZ = sZ = 1, and define, for z = 1� 	 	 	 �Z − 1,

bz = bz−1 + √
η�

sz = bz +η	

I refer to types bz and sz for z = 1� 	 	 	 �Z − 1 as boundary types. Let ŝ0 = 0, let ŝZ = 1, and
define, for z = 1� 	 	 	 �Z − 1,

ŝz = bz −η�

qz = q
(
bz�γ

)
�

q̂z = (
1 − δ2)c(ŝz) + δ2qz (1)
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Figure 3. Illustration of on-path strategies in Step 2 of the proof. In round 1, types s ∈ [0� ŝ1)

offer q̂1, types s ∈ [ŝ1� ŝ2) offer q̂2, types s ∈ [ŝ2� ŝ3) offer q̂3, and so on. If the first round offer is
q̂1, then all buyer types accept it; if the first round offer is q̂2, then types b < b1

2 reject it and types
b ≥ b1

2 accept it; if the first round offer is q̂3, then types b < b2
2 reject it and types b ≥ b2

2 accept it;
and so on.

and q̂Z = q(bZ�γ). I specify that in the PBE, in round 1, for z = 0� 	 	 	 �Z − 1, seller types
s ∈ [ŝz� ŝz+1) offer q̂z+1.7 The interpretation is that seller types signal one of Z segments
in round 1. Offers qz and q̂z increase with z, i.e., higher segments are associated with
higher offers. First round offer q̂z is constructed so that type ŝz is indifferent between
trading at price q̂z now and trading at qz in two rounds. I suppose that η is sufficiently
small so that

√
η> 4η and8

c(x+ 3
√
η) < q(x�γ) < v(x− 3

√
η) for all x ∈ [0�1]� (2)

q
(
min{x+η�1}�γ)

< y∗(x) for all x ∈ [√η−η�1]	 (3)

Step 3: War-of-attrition dynamics near boundaries. In this step, I construct equilib-
rium strategies on and off path after the on-path play in round 1. Suppose in round 1,
the seller types s ∈ [ŝz� ŝz+1) make offer q̂z+1 for some z = 0� 	 	 	 �Z−1. Observe that since
ŝz+1 − ŝz ≥ √

η−η> 2η for all z = 0� 	 	 	 �Z − 1, each buyer type expects to receive one of
at most two offers on the equilibrium path in round 1.

On-path strategies after round 1. For z = 0, only buyer types b ∈ [0�π(ŝ1)) expect
offer q̂1, and they accept it. I now consider z = 1� 	 	 	 �Z − 1. Let bz1 = π(ŝz+1) and sz2 =
ŝz . Consider (bzn)

∞
n=2 and (szn)

∞
n=3 such that bzn is strictly decreasing for even n and is

constant for odd n, szn is strictly decreasing for even n and is constant for odd n, and that
satisfy

v
(
bzn

) − q̂z+1 = δ2(αS
n

(
v
(
bzn

) − qz
) + (

1 − αS
n

)(
v
(
bzn

) − q̂z+1
))

for n even� (4)

qz − c
(
szn

) = δ2(αB
n

(
q̂z+1 − c

(
szn

)) + (
1 − αB

n

)(
qz − c

(
szn

)))
for n odd� (5)

7Here and subsequently, all the intervals of types are closed for z = Z − 1, e.g., types s ∈ [ŝZ−1� ŝZ] offer
q̂Z .

8Since c(x) < q(x�γ) < v(x) for all x ∈ [0�1], and c, v, and q(·�γ) are continuous functions, the inequality
(2) holds for sufficiently small η. The inequality (3) holds, as y∗(x) > q(x) for x ∈ (0�1], and y∗(·) and q(·�γ)
are continuous functions.
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where

αS
n = szn+1 − szn−1

bzn +η− szn−1
� (6)

αB
n = bzn−1 − bzn+1

bzn−1 − szn +η
	 (7)

Lemma 3. Fix z = 1� 	 	 	 �Z−1. There are sequences (bzn)
∞
n=2 and (szn)

∞
n=3 as specified above

such that bzn ↓ bz and szn ↑ sz , and bz2 − bz ∈ (0�2η] and sz − sz3 ∈ (0�2η].

The proof of this and the other lemmas in this subsection are given in Appendix A.2.
On the equilibrium path, only types s ∈ [ŝz� ŝz+1) make offer q̂z+1, and only buyer types
b ∈ [π(ŝz)�π(ŝz+1)) expect to receive it. The on-path strategies are as follows:

• For even n, if offer q̂z+1 is made in round n − 1, then buyer types b ∈ [bzn�bzn−1)

accept it, and types b ∈ [π(ŝz)� bzn) reject it and make a counteroffer y(0). If offer
qz is made in round n−1, then all (remaining) buyer types b ∈ [π(ŝz)� bzn−1) accept
it. (See Figure 3 for the illustration of thresholds bzn for n = 2.)

• For odd n, types s ∈ [szn−1� s
z
n) make offer qz and types s ∈ [szn−1� ŝ

z+1) make offer
q̂z+1.

Remark 3. Threshold types bzn (similarly, szn) are chosen so that they are just indifferent
between accepting q̂z+1 in round n or rejecting it and accepting it in round n+2. Indeed,
acceptance of q̂z+1 brings utility v(bzn) − q̂z+1 (the left-hand side of (4)). Alternatively,
after the rejection of q̂z+1, the seller lowers her offer to qz with probability αS

n and with
complementary probability offers q̂z+1 in round n + 1 (the right-hand side of (4)). Note
that αS

n is the probability that type bzn assigns to the seller offering qz . Type bzn believes
that seller types s ∈ [szn−1� b

z
n+η] remain in the game in round n and types s ∈ [szn−1� s

z
n+1)

will offer qz in the next round. This logic gives (6). (Equations (5) and (7) for the seller
threshold types are interpreted analogously.) Observe that since types are correlated,
the probability (6) that the seller lowers her offer to qz depends on the threshold type bzn,
which would not be the case if the types were independent.

Off-path strategies after round 1.

• If the buyer makes an offer different from y(0), then the play switches to the buyer

punishing equilibrium in Remark 1 with s = ŝz+1 if the seller rejects it. The seller
rejects such an offer if and only if it brings her a lower utility compared to the
continuation utility in the buyer punishing equilibrium with s = ŝz+1.

• If the buyer type b ∈ [bzn−1�π(ŝ
z+1)) remains in the game in even round n, be-

cause of the deviation from the acceptance strategy in some previous round, and
in round n − 1 the seller offers q̂z+1 or qz (and the seller did not deviate prior to
n− 1), then type b accepts the seller’s offer in round n.
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• If the buyer type b ∈ [π(ŝz)�π(ŝz+1)) counteroffers y(0) in round n to the seller’s
offer qz made by seller types in [szn−2� s

z
n−1) in round n − 1, then in round n + 1,

seller types in [szn−2� s
z
n−1) make offer qz again, which is accepted by the buyer type

b ∈ [π(ŝz)�π(ŝz+1)) in round n.

• After any history without any previous seller’s detectable deviations, if the seller
makes an offer different from q̂z+1 or qz , then if the buyer rejects it, the play
switches to the seller punishing equilibrium in Lemma 2 with b = 0. The buyer
rejects such an offer if and only if it brings him a lower utility compared to the
continuation utility in the seller punishing equilibrium with b= 0.

• If the seller makes an offer q̂z+1 when the equilibrium strategies prescribe her to
offer qz , then it is rejected by the buyer types who detect this deviation. In the next
round, the seller makes offer qz that is accepted by all remaining types of buyer.

• If the seller makes an offer qz when the equilibrium strategies prescribe her to offer
q̂z+1, then it is accepted by all remaining types of buyer.

The next lemma verifies that these strategies constitute the equilibrium in the continu-
ation after the on-path play in round 1.

Lemma 4. Fix a PBE and z = 0� 	 	 	 �Z − 1. Suppose on path in round 1, seller types in
[ŝz� ŝz+1) make offer q̂z+1. There is δ̂ ∈ (0�1) such that for all δ ∈ (δ̂�1), the strategies
specified above constitute equilibrium in the continuation game.

Since Z is finite, it follows from Lemma 4 that the constructed strategies constitute
continuation equilibria for all z = 0� 	 	 	 �Z − 1 for sufficiently large δ.

Remark 4. The constructed continuation equilibrium has dynamics similar to the war-
of-attrition game in which all buyer types pool at the lower offer qz and gradually accept
the seller’s offer starting from the top, and seller types pool at the higher offer q̂z+1 and
gradually accept the buyer’s offer starting from the bottom. The difference is that in
my construction, the buyer types pool at the lowest offer y(0) and gradually accept the
higher offer q̂z+1, and the seller types at the bottom gradually reveal themselves with
an offer qz that is accepted by all buyer types. This construction ensures that the buyer
after round 1 does not reveal that his type is above π(ŝz), which would happen if the
buyer types did not pool at y(0), but instead made partially revealing offers. Thus, the
seller’s utility in the punishing equilibrium is close to max{0� y∗(0) − c(s)} (instead of
max{0� y∗(π(ŝz))− c(s)}), which in turn makes trades at prices qz and q̂z+1 (which might
be below y∗(π(ŝz))) possible. Note that the difference between these two dynamics van-
ishes as δ→ 1.

Step 4: Verification of equilibrium conditions. In this step, I construct the rest of the
off-path strategies and verify that these strategies indeed constitute the PBE for suffi-
ciently large δ. The following off-path histories have not been covered yet in the previous
step.
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• Suppose that in round 1 the seller type s ∈ [ŝz� ŝz+1) deviates to an offer q ∈ QS ≡
{q̂1� 	 	 	 � q̂Z}. If q < q̂z+1, then it is accepted by the buyer; if q > q̂z+1, then it is
rejected by the buyer; and in round 3, type s offers q̂z+1 and the game proceeds as
on the equilibrium path.

• After any deviation of the seller in round 1 to offers not in QS , players switch to the
seller punishing equilibrium in Lemma 2 with b = 0 if such an offer gets rejected.
The buyer rejects such an offer if and only if it brings him a lower utility compared
to the continuation utility in the seller punishing equilibrium with b = 0.

Lemma 5. Strategies constructed in Steps 2–4 constitute the PBE for sufficiently large δ.

Step 5: Proof of convergence. On the equilibrium path, for any z = 1� 	 	 	 �Z − 1, buyer
types in [bz2�π(ŝz+1)] ⊆ [bz + 2η�bz+1 − 2η] receive offer q̂z and accept it in round 2.
Since bz+1 − bz ≥ √

η, the fraction of buyer types that trade in round 2 is of order 1 −
4η/

√
η →

η→0
1. Moreover, such types trade at prices close to q(b�γ), since |qz − q̂z| →

δ→1
0

and maxx∈[bz−1+2η�bz−2η] |qz − q(x�γ)| →
η→0

0. This argument implies the convergence at

the double limit of the bargaining outcome arising from the constructed PBE strategies
to (0� q(s�γ)). �

Remark 5. In the proof of Theorem 1, the number of segments is Z, which goes to in-
finity at rate 1/

√
η as η → 0. This construction implies the probability of delay longer

than two rounds of order Zη = √
η →

η→0
0. However, if I fix the number of segments at

Z0 = 1/
√
η0 for some η0 sufficiently small so that the construction above is valid, then

the probability of delay longer than two rounds is of order η, which has an intuitive in-
terpretation: the inefficiency is of the same order as the players’ uncertainty about each
others’ values.

3.3 Nash split with delay

In this subsection, I construct a double limit that approximates the Nash split but with a
bargaining delay.

Auxiliary war-of-attrition game. A preliminary step is to consider the auxiliary
continuous-time war-of-attrition game in which players only choose the acceptance
time but not offers. Types and payoffs are as in the original model. Suppose paths of
offers are exogenously fixed and given by the continuous, strictly decreasing function qSt
for the seller and the continuous, strictly increasing function qBt for the buyer. I suppose
that for some T <∞, qSt = qST and qBt = qST for t ≥ T , i.e., offers are constant starting from
time T . Before the bargaining starts, each player chooses his or her acceptance time
conditional on his or her type, and privately commits to it, i.e., he or she cannot revise it
over the course of the game. Thus, the game is essentially static. When one of the parties
accepts, the trade occurs at the accepted price. If both parties accept simultaneously at
time t, then the price is (qBt + qSt )/2. I denote such a game by G(qSt � qBt ).
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I consider Bayesian Nash equilibria (BNE) of G(qSt � qBt ) in threshold strategies. The
threshold acceptance strategies are described by the strictly decreasing bt : [0�∞) →
[0�1] and the strictly increasing st : [0�∞) → [0�1] such that for any t, all buyer types
above bt and all seller types below st accept the opponent’s offer at t. I further restrict
bt and st to be right-continuous with discontinuities possible only at 0 and T . The game
G(qSt � qBt ) has the following BNE in threshold strategies.

Lemma 6. Suppose there are types b∞ ∈ (2η�1 − 3η), b0 ∈ (b∞ + 2η�1], s0 ∈ [0� b∞ − η),
time T < ∞, and thresholds strategies bt and st that for s∞ ≡ b∞ + η, sT ≡ s∞ − 2η, and
bT ≡ b∞ + 2η satisfy the following conditions.

(i) For t ∈ [T�∞), v(b∞)− qST > 0 and qBT − c(s∞) > 0 hold, and bt and st solve

r
(
v(bt)− qST

) = ṡt

bt − st +η

(
qST − qBT

)
� (8)

r
(
qBT − c(st)

) = − ḃt

bt − st +η

(
qST − qBT

)
� (9)

bT = sT +η� lim
t→∞bt = b∞� lim

t→∞ st = s∞	 (10)

(ii) For t ∈ [0�T ), v(bt)− qSt > 0 and qBt − c(st) > 0 hold, and bt and st solve

r
(
v(bt)− qSt

) = −q̇St � (11)

r
(
qBt − c(st)

) = q̇Bt � (12)

st |t=0 = s0� bt |t=0 = b0� lim
t↑T

bt = bT � lim
t↑T

st = sT 	 (13)

Then bt and st constitute a BNE in the war-of-attrition game G(qSt � qBt ).

Figure 4 illustrates strategies in Lemma 6. After time T , the dynamics are similar to
the war-of-attrition dynamics constructed in Step 3 of the proof for Theorem 1: offers are
constant and both sides gradually accept the opponent’s offer so that cutoff types bt and
st are just indifferent between accepting at t and marginally delaying the acceptance. In
fact, conditions (8) and (9) are continuous-time counterparts of (4) and (5), respectively.
Incentives to wait after time T come from the positive probability that the counteroffer
is accepted by the opponent.

Note why threshold strategies are optimal for types that accept after time T . If types
were independent, then the optimality would follow from the single-crossing property
of payoffs. For example, the buyer with a higher value is more impatient and accepts
earlier, given the likelihood of the seller’s concession. With correlated types, this logic
might not apply. If the seller with higher costs accepts faster than the seller with lower
costs, this creates a countervailing force that makes higher types of the buyer more pa-
tient. However, this situation does not occur when both sides follow threshold strategies
and types are positively correlated, as the buyer with higher value also assigns positive
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Figure 4. Illustration of strategies in Lemma 6. Buyer types in [0� b∞] never accept; the accep-
tance strategy of buyer types b ∈ (b∞� bT ) is given by (8); buyer types in [bT �bT ] accept at T ; the
acceptance strategy of buyer types b ∈ (bT �b0) is given by (11); buyer types in [b0�1] accept at
time zero. The seller’s strategy is analogous.

probability to higher types of the seller, who accept later in the game. Since both forces
point in the same direction, the optimality of the threshold strategies holds.

Before time T , by bT > sT +η, each side assigns probability 0 to his or her offer being
accepted and the only incentive for waiting comes from opponent’s more favorable of-
fers in the future. Thus, the two-sided screening dynamics emerges. For the types above
bT , the buyer is screened by a path of the seller’s decreasing offers qSt , while for the types
below sT , the seller is screened by a path of the buyer’s increasing offers qBt . The opti-
mality of threshold strategies here follows from the standard skimming property: higher
types of the buyer and lower types of the seller are more impatient and, thus, accept ear-
lier. Because of the two-sided screening dynamics, there is necessarily a delay, as long
as qB0 < qBT and qS0 > qST .

Inefficient limits. In the original model, I am interested in approximating with
frequent-offer PBE limits the bargaining dynamics in a particular class of BNEs in
Lemma 6 that allow the approximation of the Nash split with delay and that are also
used in the proof of the folk theorem. Specifically, given β ∈ (0�1), b0 and s0 are

βy∗(b0)+ (1 −β)v(b0)= y∗(1)�

βy∗(s0)+ (1 −β)c(s0)= y∗(0)	 (14)

For t ∈ [0�T ),

qSt = βy∗(bt)+ (1 −β)v(bt)� (15)

qBt = βy∗(st)+ (1 −β)c(st)	 (16)

Buyer types above b0 and seller types below s0 immediately accept y∗(1) and y∗(0), re-
spectively, and until time T , the threshold types bt and st accept prices that are convex
combinations of the Nash prices and their values. I can get bt and st for t ∈ [0�T ) by solv-
ing the system (11)–(13) with s0, b0, qSt , and qBt , and find bT and sT such that bT = sT +3η.
Set qST ≡ limt↑T qSt , qBT ≡ limt↑T qBt , b∞ ≡ bT −2η, and s∞ ≡ sT +2η. I can solve (8)–(10) to
get bt and st for t ≥ T , and this way determine the BNE in game G(qSt � qBt ). The bargain-
ing outcome of this BNE is denoted by (τ

β
η�ρ

β
η). The next lemma approximates (τβη�ρ

β
η)

with the frequent-offer PBE limit.
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Lemma 7 (Inefficient limit). For any β ∈ (0�1), there is η(β) > 0 such that for all
η ∈ (0�η(β)), there is a frequent-offer PBE limit (τ�ρ) such that τ(s�b) = τ

β
η(s�b) and

ρ(s�b) = ρ
β
η(s�b) whenever b > bT +η or s < sT −η.

Outline of the proof for Lemma 7. The complete the proof is given in Appendix A.3;
here, I outline the main steps. Let N ≡ �T/
�, and suppose without loss of generality that
it is even. I construct decreasing thresholds bn, increasing thresholds sn, and discrete
offer paths qSn and qBn such that bN−2 = bT and sN−1 = sT ; qSn = qST for even n ≥ N and
qBn = qBT for odd n≥N + 1; and paths qSn and qBn approximate qSt and qBt for n <N . I then
construct PBEs with the following on-path strategies.9

• In an odd round n, if offer qSn−1 is made in the previous round, then it is accepted
by all remaining seller types. If offer y(0) is made in round n − 1, seller types in

[sn�1] offer y(1), and seller types in [sn−1� sn) offer qBn .

• In an even round n, if offer qBn−1 is made in the previous round, then it is accepted
by all remaining buyer types. If offer y(1) is made in round n− 1, then buyer types
in [0� bn] offer y(0) and buyer types in (bn�bn−1] offer qSn.

The construction of (bn� sn�qBn �q
S
n) is different before and after round N . The difference

comes from the fact that types who reveal themselves in rounds before N assign prob-
ability 0 to their opponent, revealing himself or herself (due to the bounded support of
beliefs). While after round N , there is a positive probability that the opponent reveals
himself or herself.

For n ≥N , I replicate Step 3 in the proof of Theorem 1 to construct the discrete-time
war-of-attrition with constant revealing offers qST and qBT . For n < N , only one side ac-
tively reveals itself and so, unlike in the case n ≥ N , there is no need to carefully choose
bn and sn to guarantee that both sides have incentives to reveal themselves at the ap-
propriate rate. Hence, the tuple (bn� sn�q

B
n �q

S
n) is a discretization of continuous-time

paths (bt� st� qBt � q
S
t ). As before, I punish detectable deviations with punishing equilibria

in Lemma 2 and Remark 1.
I can use PBEs with on-path strategies described by (bn� sn�q

B
n �q

S
n) to complete the

proof. Whenever b > bT +η or s < sT −η, the bargaining outcome is determined by on-
path strategies before round N , and because Pη({(s�b) : b > bT +η or s < sT −η}) →

η→0
1,

strategies of these types determine the bargaining outcome at the double limit. Thus,
the convergence to (τ

β
η�ρ

β
η) as δ → 1 follows from the convergence of (bn� sn�q

B
n �q

S
n)

to (bt� st� q
B
t � q

S
t ) as δ → 1. Next, I state the main result of this subsection. Consider

sequence β→ 1 and let η̂(β) ≡ min{1 −β�η(β)}, where η(·) is as in Lemma 7. Note that
η̂(β) →

β→1
0. Denoted by (τ†�ρ†) the limit of frequent-offer PBE limits (τ

β
η̂(β)

�ρ
β
η̂(β)

) as

β → 1. The next theorem shows that (τ†�ρ†) is the desired double limit that attains the
Nash split, but is inefficient.

9Note the difference between these strategies and the strategies in G(qSt � qBt ): here, the seller reveals that
her type is in [sn−1� sn) with offer qBn , while in G(qSt � qBt ), offer qBt is made by the buyer and accepted by seller
type st . This construction guarantees the optimality of such strategies when players deviate and do not
reveal themselves in the prescribed round.
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Theorem 2 (Nash split with delay). For any ε > 0,

lim
β→1

Pη̂(β)

(∣∣ρβ
η̂(β)

− y∗(s�b)
∣∣ > ε

) = 0	

Further, there is τ > 0 such that limβ→1 Eη̂(β)[τβη̂(β)]> τ.

Proof. As β → 1, qSt and qBt in (15) and (16) converge to y∗(bt) and y∗(st), respectively.
For types above bT + η̂(β) and below sT − η̂(β), the bargaining outcome is determined
by the acceptance strategy of only one side, and as β → 1, the accepted price converges
to y∗(s�b) for such types. This implies the convergence of ρβ

η̂(β)
to y∗(s�b) as β → 1. The

positive expected delay Eη̂(β)[τβη̂(β)] follows from the fact that in this case, the left-hand
sides of (11) and (12) are bounded from above by r� and so the acceptance is gradual. �

3.4 Folk theorem

In this subsection, I prove the folk theorem when the ranges of v and c coincide.
Let v0(·) and c(·) be strictly increasing functions such that v0(0) = c(0), v0(1) = c(1),

and v0(x) > c(x) for all x ∈ (0�1). Suppose that v0 and c satisfy the differentiability as-
sumptions on v and c in Section 2. Note that both v0 and c span values in [c(0)� c(1)],
and the surplus is zero for x= 0 and x= 1, but is positive for x ∈ (0�1).10 Given ξ > 0 and
if the seller’s cost is given by c(s) and the buyer’s value is given by v(b) = v0(b) + ξ for
b ∈ [0�1], then I obtain the specification of v and c as in the baseline model.

I am interested in characterizing the limit of set E as ξ → 0, which I denote by E0,
where the convergence is in the Hausdorff metric. I denote by IR0 the limit of IR at
ξ → 0. If 
0 ≡ limη→0 Eη[v0(b)− c(s)], then

IR0 = {(
US�UB

) :US +UB ≤
0�U
S ≥ 0�and UB ≥ 0

}
	

The difference between IR0 and IR is that the reservation utility of both sides is zero in
the former, and positive in the latter. As ξ → 0, y∗(0) converges to c(0) (y∗(1) converges
to v(1)). Thus, fewer seller (respectively, buyer) types get positive utility from trading at
y∗(0) (respectively, y∗(1)). In the limit ξ → 0, US(x) and UB(x) are equal to zero for any
x ∈ [0�1]. The next theorem states the folk theorem at the limit ξ → 0.

Theorem 3 (Folk theorem). The equality E0 = IR0 obtains.

The reasoning for the proof of Theorem 3 is as follows. Consider the configuration
depicted in Figure 5. I have already characterized in Theorem 1 the Pareto frontier of
E and so it remains to show that the point (US�UB) can be approximated as a double
limit when ξ → 0. As ξ → 0, the fraction of buyer (seller) types that get positive utility
from trading at price y∗(1) (respectively, y∗(0)) goes to zero, while for the rest of types
UB(b) = 0 (respectively, UB(s) = 0). I use Lemma 7 to construct PBEs with the standoff

10An example of such functions is any strictly concave v0 and strictly convex c satisfying the differentia-
bility conditions with c(0) = v0(0) and c(1) = v0(1) (e.g., c(x)= ex − 1 and v0(x) = e− e1−x).
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Figure 5. Illustration for the proof of Theorem 3.

dynamics. Initially, offers y∗(1) and y∗(0) are accepted by buyer types above some b0
and seller types below some s0. The remaining types follow the two-sided screening
dynamics as in the previous subsection with prices of trade that are close to the values
or costs of the threshold types (β ≈ 0). The latter guarantees that the trade happens
slowly over time and ensures that the expected utility is close to zero for these types. As
ξ → 0, the set of buyer (seller) types that get positive utility from a trade at price y∗(1)
(respectively, y∗(0)) disappears and so b0 goes to 1 (respectively, s0 goes to 0). Thus, I
construct PBEs, in which the ex ante expected utilities of both sides are close to zero.

Proof of Theorem 3. Theorem 1 has already proven that the Pareto frontiers of E co-
incides with PF , the Pareto frontier of IR. As ξ → 0, PF converges to PF 0, the Pareto
frontier of IR0. Hence, the Pareto frontier of E0 coincides with PF 0. Note that the worst
payoff profile (US�UB) converges to (0�0) as ξ → 0. Thus, to prove the folk theorem, it
is sufficient to construct a sequence of double limits indexed by ξ → 0 that have ex ante
expected payoffs converging to (0�0).

Fix ε > 0. Consider PBEs constructed in Lemma 7 that approximate (τε
2

η �ρε
2

η ) as
δ→ 1. Plugging (16) into (12) with β= ε2, I get

q̇Bt = rε2(y∗(st)− c(st)
) ≤ r�ε2�

hence, qBt − qB0 ≤ r�ε2t. Alternatively, since c′(x) ≤ � and v′(x) ≤ � for all x ∈ [0�1], it
follows from (16) that qBt − qB0 ≥ �(st − s0). Therefore,

st − s0 ≤ r�

�
ε2t	

Thus, in (τε
2

η �ρε
2

η ), types s ≥ s0 + ε trade after a delay of at least �/εr�. By (14), βy∗(s0)+
(1 − β)c(s0) = y∗(0), and so s0 ≤ c−1(y∗(0)) → 0 as ξ → 0 (since y∗(0) − c(0) →

ξ→0
0).
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I choose a ξ small enough so that s0 < ε and so [2ε�1] ⊆ [s0 + ε�1]. Analogously, in
(τε

2
η �ρε

2
η ), types b ∈ [0� b0 − ε] trade after a delay of at least �/εr�, and [0�1 − 2ε] ⊆

[0� b0 − ε]. Therefore, only a fraction of types of order ε trade with a delay that does not
exceed �/εr�, while the expected payoff of the rest of the types is at most �exp(−�/ε�).
This holds for all η sufficiently small, and so holds in the limit outcome (τε

2
�ρε

2
) of

(τε
2

η �ρε
2

η ) as η→ 0. By taking ε → 0, I get the desired sequence of double limits. �

4. Proof of the contagious Coasian property

Section 3.1 introduced the contagious Coasian property of punishing equilibria. The key
insight formalized in Lemma 2 is that the utility of the deviator in the punishing equilib-
rium is independent of η. In this section, I outline the construction of such punishing
equilibria and provide intuition for how the contagion argument can obtain Lemma 2.
(The full analysis is provided in Appendix B.)

The proof proceeds in five steps. I start with the analysis of the auxiliary game, in
which the buyer is restricted to either accepting the last seller’s offer or making a coun-
teroffer y(0), and the buyer holds optimistic conjecture, while the seller holds her orig-
inal beliefs. Specifically, the buyer puts probability 1 on the lowest type in the support
Sb, i.e.,11

μn
b

[
π(b)

] = 1

for all b ∈ [0�1]. In Steps 1–4, I construct the PBE in this auxiliary game with Coasian dy-
namics, namely, as offers become frequent, the buyer’s highest willingness to pay uni-
formly approaches max{y∗(0)� c(π(b))}. In Step 5, I show that it is also the PBE, even
when the buyer can make counteroffers different from y(0). This immediately implies

the result in Lemma 2 when b = 0 and b = 1. I generalize the argument to arbitrary
0 ≤ b < b≤ 1 in Appendix B.5, which completes the proof of Lemma 2.

Step 1: Standard Coasian dynamics for types b ∈ [0�η] and s = 0. It is useful to
start with the argument for independent values, η = 1. In this case, the buyer’s opti-
mistic conjectures put probability 1 on the lowest seller type, s = 0, for all buyer types.
Thus, the auxiliary game with the buyer types pooling at y(0) is essentially the standard
game with one-sided offers, and one-sided private information between the buyer types
b ∈ [0�1] and the seller type s = 0 analyzed in Fudenberg et al. (1985), Gul et al. (1986),
Ausubel and Deneckere (1989). I can use an argument similar to Fudenberg et al. (1985)

11Such beliefs can be justified in the original model by the following trembles in the model with a finite
number of types and a finite grid of price offers. Seller’s and buyer’s types come from {k/K}Kk=1 for some
integer K, and price offers come from a discrete set P . Seller type s trembles with probability (1 − s)m/2 for
some integer m, and conditional on trembling, she chooses a price offer uniformly from P . As m → ∞, the
probability of tremble converges to 0. Yet, conditional on the buyer type b, the probability that the tremble
comes from seller type π(b) is (

1 −π(b)
)n

(
1 −π(b)

)m +
∑

s∈Sb\{π(b)}
(1 − s)m

→
m→∞ 1�

as 1 − s < 1 −π(b) for s ∈ Sb \ {π(b)}.
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to construct the continuation equilibrium in weak-Markov strategies with the followings
scenarios:

• The buyer accepts any seller’s offer less than or equal to his willingness to pay P(b),
where P(·) is weakly increasing and right-continuous.

• The seller optimally screens the buyer given the willingness to pay function P(·).

By the same argument as in Gul et al. (1986) or Ausubel and Deneckere (1989), such an
equilibrium has the Coasian property: as δ → 1, all screening offers of type s = 0 are
close to y∗(0). This implies that the willingness to pay function P(·) converges to the
constant function P(b)= y∗(0).

In contrast to η = 1, when η < 1, only the buyer types below η place probability
1 on the seller type s = 0. For such types, I use the above argument to construct the
PBE strategies in the auxiliary game that have Coasian dynamics. (See Appendix B.1.)
However, this argument implies that the willingness to pay P(b) is close to y∗(0) only for
buyer types below η.

Step 2: Strategies for types b > η and s > 0. The key insight of Lemma 2 is that the
contagion argument extends the Coasian property to the rest of the types. Since the
buyer holds optimistic conjectures, players can disagree on the equilibrium path play.
Hence, I refer to the path that the seller expects as the equilibrium path in the auxiliary
game. In this step, I describe the PBE on-path strategies in the auxiliary game for types
b > η and s > 0, and, in the next step, construct them. The PBE strategies off path are
constructed in Appendix B.2.

As in Step 1, I construct the equilibrium on-path strategies for types b > η and s > 0,
in which, for any history without buyer’s deviation, the following statements hold:

• The buyer accepts according to the right-continuous, weakly increasing willing-
ness to pay function P(·).

• Each seller type s > 0 optimally screens the buyer, given the willingness to pay
P(b) of types b ∈ Bs .

If the lowest seller’s offer in the past is p and the buyer follows strategy P(·), then
β ≡ inf{b : P(b) ≥ p} is the highest remaining buyer type. For a given function P(·),
the screening problem of seller type s > 0 can be formulated recursively. The low-
est type of the buyer in Bs with willingness to pay no greater than c(s) is denoted by
β(s) ≡ max{sup{b : P(b) ≤ c(s)}�π(s)}.12 I look for an optimal screening strategy for the
seller given P(·) such that type s sells only to buyer types above β(s). Then for s and
β ≥ β(s), the expected profit R(β� s) normalized by (β − β(s)) satisfies the Bellman
equation

R(β� s) = max
b∈Bs∩[β(s)�β]

{
(β− b)

(
P(b)− c(s)

) + δ2R(b� s)
}
	 (17)

12By convention, β(s) = π(s) whenever P(b) > c(s) for all b.
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Figure 6. Illustration of the construction of P(·) and t(·� ·). Solid arrows indicate the be-
liefs of buyer types under optimistic conjectures: Type b assigns probability 1 to seller type
π(b) = b − η for b > η. Dashed arrows indicate the cutoff type t(s) in the first round of screen-
ing by seller type s. The key observation in Step 3 is that the dashed arrows originating in types
(kd(δ)� (k+ 1)d(δ)] always point to buyer types below η+kd(δ), which allows the iterative con-
struction of P(·) and t(·� ·).

The set of maximizers in (17) is denote by T(β� s), and t(β� s) ≡ supT(β� s). That is, it is
optimal for the seller of type s to sell to all types above t(β� s), given that the highest re-
maining buyer type is β. I can also recover via σ(β� s) = P(t(β� s))—the corresponding
price offer of seller type s. A special role in the analysis is played by the first screen-
ing cutoff and price offer, and I denote them as t(s) ≡ t(π(s)� s) and σ(s) ≡ σ(π(s)� s),
respectively.

Note that if buyer type b > η rejects P(b), then he is still the highest type in the sup-
port of beliefs of type π(b), as only types above b accept P(b). Hence, after the rejec-
tion of P(b), seller type π(b) will restart her screening and again offer σ(π(b)). Thus,
the willingness to pay P(b) is the price at which type b is indifferent between accept-
ing it and accepting the price σ(π(b)) in the next screening round, i.e., v(b) − P(b) =
δ2(v(b)− σ(π(b))), or after rearranging the terms,

P(b)= (
1 − δ2)v(b)+ δ2σ

(
π(b)

)
for b ∈ (η�1]	 (18)

Step 3: Construction of P(·) and t(·� ·). In this step, I construct functions P(·) and
t(·� ·) such that P(·) satisfies (18), and t(·� ·) is the supremum of the set of solutions to
(17). (See Figure 6 for the illustration.)

In Step 1, I have already constructed t(β�0) and P(·) for b ∈ [0�η]. In Lemma 22 in
Appendix B.3, I prove that there is d(δ) > 0 such that each seller type s sells to at least
types [π(s) − d(δ)�π(s)] in the first round of screening, i.e., t(s) ≤ π(s) − d(δ). This
implies that any seller type s ∈ (0� d(δ)] does not screen buyer types above η, for whom
I have already constructed the willingness to pay P(b). Thus, I can derive the optimal
screening policy t(·� s) of seller types s ∈ (0� d(δ)] such that t(s) ≤ η. Now, buyer types
b ∈ (η�η+d(δ)] assign probability 1 to the seller types π(b), for whom I have just derived
t(π(b)) and shown that t(π(b)) ≤ η. Thus, the formula (18) determines P(b) for b ∈
(η�η+d(δ)]. Lemma 17 in Appendix B.3 shows that σ(s) is right-continuous and weakly
increasing in s. This fact combined with (18) and the continuity and strict monotonicity
of v(·) implies that P(·) on [0�η+ d(δ)] is right-continuous and strictly increasing.

I next proceed to seller types s ∈ (d(δ)�2d(δ)] and buyer types b ∈ (η + d(δ)�

η+ 2d(δ)], and by the same argument construct functions P(·) and t(·� ·) for them; then
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I proceed to types s ∈ (2d(δ)�3d(δ)], b ∈ (η + 2d(δ)�η + 3d(δ)], and so on until I cover
all types. Since d(δ) > 0, I do so in a finite number of steps.

Step 4: Contagious Coasian property of P(·). This step proves that as offers become
frequent, the buyer’s willingness to pay approaches the minimal price that the seller can
accept in any equilibrium.

Lemma 8. For any ε > 0, there is a δ(ε) ∈ (0�1) such that for all δ ∈ (δ(ε)�1), it holds that
maxb∈[0�1] |P(b)− P∗(b)| < ε, where P∗(b) = max{y∗(0)� c(π(b))}.

Before proceeding with the proof of Lemma 8, I make the following preliminary
observation. By iteratively applying (18) and the fact that σ(π(b)) = P(t(π(b))) ≤
P(b− d(δ)), I have that for any b ∈ (η�1], there is an integer J such that

P(b)≤ (
1 − δ2) J−1∑

j=0

δ2jv
(
b− jd(δ)

) + δ2JP(η)	 (19)

Thus, it follows from (19) that the willingness to pay of any buyer type is connected to
the willingness to pay of type η. This connection illustrates the importance of higher-
order beliefs in the analysis. Under optimistic conjectures, type b assigns probability 1 to
seller type π(b). Seller type π(b) targets buyer type t(π(b)) ≤ b− d(δ) when she makes
her first screening offer. These are second-order beliefs of type b. Buyer type t(π(b))

in turn assigns probability 1 to seller type π(t(π(b))), who in turn targets buyer type
t(π(t(π(b)))), when she makes her first screening offer. These are third- and fourth-
order beliefs of type b. This process can go on until it reaches buyer types below η.
Here, buyer type b knows that the seller assigns probability 0 to buyer types below η.
Moreover, if η is small, this fact might be mutual knowledge up to some finite order.
However, the willingness to pay of buyer types below η is important in determining P(b),
because on a sufficiently high order of beliefs, the seller does assign positive probability
to buyer types below η.

If J in (19) does not change with δ, then Lemma 8 would immediately follow from
(19), because the second term in (19) would converge to y∗(0), while the first would
converge to zero as δ → 1. However, this is not the case, because d(δ) →

δ→1
0 and there-

fore J →
δ→1

∞. Instead, the argument proceeds as follows. I denote s+ ≡ c−1(y∗(0)) as

the seller type whose cost is equal to y∗(0). The proof of Lemma 8 separately considers
buyer types who assign probability 1 to seller types below s+ and above s+. The differ-
ence between those cases is similar to that between the “gap” and “no-gap” cases in the
bargaining literature: types s < s+ get positive utility from trading at the lowest price
y∗(0) (so there is a gap between c(s) and y∗(0)), while types s > s+ get negative utility
from trading at y∗(0) (so there is no gap between c(s) and y∗(0)). Let b+ be such that
π(b+) = s+.

Step 4.1: Buyer types b ∈ (η�b+). The types b≤ η assign probability 1 to seller type 0.
Thus, I can use the standard Coasian property to show that the willingness to pay of
buyer types below η approaches y∗(0) as offers become frequent. Therefore, I can then
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Figure 7. Illustration for the proof of the contagious Coasian property.

build the contagion argument to determine the willingness to pay of the rest of the buyer
types. I use the following lemma to determine the willingness to pay of buyer types
b < b+.

Lemma 9. There is a function f (φ�δ) that satisfies the following conditions:

(i) For any fixed δ ∈ (0�1) and φ ∈ (0� 1
2η), if for some b̂ ∈ (η−φ�1], it holds that

c
(
π(b̂)

) + 2�φ< P(b̂−φ)� (20)

then

P
(
min{b̂+φ�1}) <P(b̂)+ f (φ�δ)	 (21)

(ii) For any fixed φ> 0, limδ→1 f (φ�δ) = 0.

I now illustrate how Lemma 9 can be used to build the contagion argument. Given
φ ∈ (0� 1

2η), I denote bk ≡ η+φk and sk ≡ π(bk) for integer k= 0� 	 	 	 �K, where K is the
largest k such that c(π(bk))+ 2�φ< y∗(0). (See Figure 7 for the illustration.) The choice
of K implies

c
(
π(bk)

) + 2�φ < y∗(0) < y(0) ≤ P(bk −φ)�

which in turn gives inequality (20) with b̂ = bk for each k= 0� 	 	 	 �K.
Further, I show that for any ε > 0, the willingness to pay of buyer type bK is below

y∗(0) + ε for δ sufficiently close to 1.13 I start by considering k = 0. By Lemma 9, the

13Note that for any b < b+, c(π(b)) < y∗(0). Thus, I can find φ sufficiently small such that bK > b and
then the argument covers all such types.
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willingness to pay of type b1 = b0 + φ cannot differ by more than f (φ�δ) from the will-
ingness to pay of type b0 = η. The intuition is similar to that for the Coasian property
in the gap case. The willingness to pay of buyer type b1 is determined by the screen-
ing policy of seller type s1 = π(b1). If the difference P(b1) − P(η) is large, then type s1

spends significant time screening buyer types above b0 = η. However, if (20) is satisfied
for b̂ = b1, then the profit of type s1 from selling to types below b0 = η is positive and
creates a temptation for type s1 to speed up the screening of types above b0 = η. As a
result, the difference in P(b1) − P(η) is bounded from above by f (φ�δ) that converges
to zero as offers become frequent.

I now consider type b2 = φ + 2η. Again, the profit from types below b1 creates a
temptation for type s2 not to screen for a significant time those types above b1. Hence, by
Lemma 9, the willingness to pay of type b2 is at most f (φ�δ) away from the willingness
to pay of type b1, and at most 2f (φ�δ) away from P(η). Similarly, I get that for any k≤K,

P(bk +φ)− P(η)≤ (k+ 1)f (φ�δ)	

Given δ be such that f (φ�δ)/φ < 1
2ε, then

P(bK) = P(bK−1 +φ) ≤Kf(φ�δ)+ P(η)≤ 1
φ
f(φ�δ)+ P(η) <

1
2
ε+ P(η)	

Since by the standard Coasian property, P(η)≤ y∗(0)+ 1
2ε for sufficiently large δ, I have

that P(bK) ≤ y∗(0)+ ε.

Remark 6. This contagion argument resembles the one in the global games literature
(see, e.g., Morris and Shin 1998 or Weinstein and Yildiz 2013). In the latter, there are
regions of types for whom certain actions are dominant. Then for types that are close to
the boundaries of those regions, actions become dominant, because such types assign
sufficiently high probability to types in dominance regions, and this argument can be
repeated to expand the dominance regions. Similarly, my model shows that only a small
set of buyer types below η has a willingness to pay close to y∗(0) by the standard Coasian
dynamics. However, seller types below s1 are tempted by the possibility to sell to buyer
types below η and, hence, quickly screen types above η. This screening leads to the
willingness to pay close to y∗(0) of a larger set of buyer types below b1, which in turn,
ensures that seller types below s2 quickly lower their price offers to y∗(0), and so on. In
the end, the willingness to pay is close to y∗(0) for buyer types that are much higher
than η.

Step 4.2: Buyer types b ∈ [b+�1]. The above argument is not valid for types above b+.
Indeed, such types know that the seller will never charge a price below her costs and so
their willingness to pay cannot converge to y∗(0). Showing that it converges to c(π(b))

is a bit subtle, but the idea is similar to Lemma 9. For any such type b†, I show that it is
possible to find b̂ < b† such that for the seller type s† ≡ π(b†), the temptation to sell to
types below b̂ is sufficiently strong so that seller type s† does not spend significant time
screening buyer types above b̂. This lack of screening implies that the willingness to pay
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of type b† is “close” to c(π(b†)). The difficulty with this argument is that the profit from
types both above and below b̂ for type s† converges to zero as δ → 1. In this sense, this
step is like the no-gap case in the classical bargaining literature. The following lemma
extends the contagion argument to buyer types above b+.

Lemma 10. For any ε > 0, there are a φ̃(ε) > 0 and a δ̃(ε) ∈ (0�1) such that for any φ ∈
(0� φ̃(ε)) and δ ∈ (δ̃(ε)�1), if for some b† ∈ [η�1] it holds that

c
(
π

(
b†)) + 2�φ ≥ P

(
b† − 2φ

)
� (22)

then

P
(
b†)< c

(
π

(
b†)) + ε	

Step 5: Verification of equilibrium conditions. So far, I have considered the auxiliary
game in which the buyer is restricted to counteroffer y(0) if he rejects the seller’s offer. In
the last step, I verify that even when the buyer can make offers different from y(0), I can
specify continuation strategies so that he does not have incentives to do so. I specify that
if the buyer deviates from the pooling offer y(0), then the seller switches to optimistic
beliefs, i.e.,

μn
s

[
π(s)

] = 1	

These optimistic conjectures are never updated in the continuation. In this case, buyer
types b ∈ [η�1] and seller types s ∈ [0�1 − η] believe that they play a complete informa-
tion game against type π(b) and π(s), respectively, and play corresponding equilibrium
strategies in the continuation. Seller types s ∈ (1 − η�1] best respond to buyer type 1’s
strategy, and buyer types b ∈ [0�η) best respond to seller type 0’s strategy. Thus, for
any ε > 0 and sufficiently large δ, if the buyer deviates, he expects to trade at a price
above y∗(π(b)�π(π(b))) − ε. Alternatively, for a sufficiently large δ, on the equilibrium
path, the buyer expects to trade at a price below max{y∗(0)� c(π(b))} + ε with no delay.
These strategies make the buyer’s deviations from y(0) unprofitable for small ε, because
max{y∗(0)� c(π(b))} < y∗(π(b)�π(π(b))) for all b.

5. Discussion

In this paper, I study the alternating-offer bargaining model with a global games infor-
mation structure. Despite the strong notion of correlation—each type assigns a positive
probability only to a set of opponent types—a variety of equilibrium dynamics can be
sustained even when the correlation between values is close to perfect. To conclude, I
discuss the implications of the analysis, alternative bargaining protocols, robustness of
the results to the model of correlation, and directions for future research.

The role of higher-order uncertainty and public information. The results stress the
role of higher-order uncertainty in bargaining. For example, suppose that the analyst
does not know the primitives of the model, in particular functions v and c and parame-
ters δ and η, but can observe mth-order beliefs of players for arbitrary but finite m; that
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is, she observes, say, the seller’s cost and all higher-order beliefs about the buyer’s value
and the seller’s cost up to order m. The rules of the bargaining game imply the trivial
prediction that the price can range between the seller’s cost and the buyer’s value, and
the expected delay can be any nonnegative number. Can one refine this prediction with
a given degree of accuracy ε0 by hiring such an analyst?

The answer is “no.” For any buyer or seller type x ∈ (0�1), any ε ∈ (x�1 − x), and any
integer m, there is η such that for all η<η, type x hasmth level of mutual knowledge that
s ∈ [x− ε�x+ ε] and b ∈ [x− ε�x+ ε]. Hence, the mth order beliefs provide information
about functions v and c only in the ε neighborhood of x. I can specify functions v and
c outside this neighborhood so that v(0) < c(x− ε) and c(1) > v(x+ ε), and use double
limits constructed in the proofs of Theorems 1 and 3 to approximate up to ε0 any surplus
split and any expected delay. Thus, the analyst who observes only finite-order beliefs
cannot refine the trivial prediction. Alternatively, if the analyst observes only players’
values and the range of values and costs (which is common knowledge among players),
then by Lemma 1 such an analyst can predict that the price is between y∗(0) and y∗(1),
and in this way, potentially refine the trivial prediction.

The analysis delineates the effect of private and public information on bargaining
outcomes, and stresses the role of the latter in obtaining predictions in bargaining mod-
els. In the limit of η → 0, the model approaches the complete-information model in
the sense that the infinite hierarchies of beliefs of types s and b, or Harsanyi’s types
(Harsanyi 1967), approach types with common knowledge of values c(s) and v(b) in the
product topology. Specifically, for η → 0, the uncertainty about values vanishes, and
in this sense, the information asymmetry disappears. At the same time, no matter how
small η is, it is only common knowledge among players whose types are in �η, and in
this sense, the public information remains coarse for any η. The results demonstrate
that as long as the public information is coarse, the complete-information outcome can
be a poor approximation of the bargaining outcome, both in the surplus split and in ef-
ficiency. This finding suggests that the application of the Nash bargaining solution as
a reduced form for the bargaining outcome with small information asymmetry could
be less compelling in environments with scarce public information, such as over-the-
counter financial markets.

Alternative bargaining protocols. Suppose that instead of alternating offers, after
the seller’s offer in an odd round, time 
s > 0 elapses, and after the buyer’s offer in an
even round, time 
b > 0 elapses. Given α ≡ 
b/
s +
b ∈ (0�1), the complete informa-
tion outcome in this case is the immediate trade at a price that approaches y∗

α(s�b) =
(1 − α)v(b) + αc(s) as δ → 1. All of the results immediately extend to this more general
model with y∗

α(s�b) replacing y∗(s�b) in all the expressions.
Further, suppose that the buyer is restricted to only offer some unacceptable yB be-

low c(0). Since an offer below c(0) can never be accepted by the seller, such a game is
essentially the game with one-sided offers by the seller. Note that in the proof of the
contagion Coasian property and the characterization of the Pareto frontier, I have con-
structed equilibria in which all buyer types pool at the lowest acceptable price y(0). I can
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extend these proofs to the case where the buyer only makes the unacceptable counterof-
fer yB. In particular, after replacing y(s�b) with v(b) and y∗(x) with v(x), and appropri-
ately adjusting the definition of the set PF , I get Theorem 1 for the case of one-sided
offers.

Robustness to the model of correlation. The assumption that the support of beliefs
is bounded makes it harder to sustain equilibrium dynamics by ruling out the stan-
dard punishment with optimistic conjectures. However, it simplifies the construction
of the on-path dynamics. For example, in the PBEs constructed in the proof of Theo-
rem 1, each buyer type expects to receive one of at most two offers in the first round, and
hence, the seller can only mimic types in the adjacent segment without being detected.
To explore the role of bounded support, my companion paper (Tsoy 2016) considers an
alternative model of correlation, in which types are distributed according to the affili-
ated distribution with full support on the unit square. Tsoy (2016), additionally, uses a
version of the standard refinement in the bargaining literature (see Bikhchandani 1992,
Grossman and Perry 1986, Rubinstein 1985) that the support of beliefs does not expand.
The main result is that the delay is necessary to attain the Nash split with double lim-
its. In particular, this result means that the segmentation dynamics in Theorem 1 or,
more generally, any efficient bargaining dynamics cannot approximate the Nash split.
Tsoy (2016) also shows that the two-sided screening dynamics in Theorem 2 can still be
sustained in the model with the full support of beliefs. In this sense, the double limit
with two-sided screening dynamics is robust to the assumptions about the details of the
correlation between values, while the efficient dynamics are not.

Frequent-offer PBE limits for fixed η. My main results describe double limits. How-
ever, Lemma 2 is true for any η, and the main result is that the level of punishment does
not depend on η. This result can be useful in the analysis of the bargaining outcomes
for fixed η, as it immediately provides the optimal punishment for detectable deviations.
Also, the proofs of Theorems 1 and 7 explicitly construct PBEs that have drastically dif-
ferent efficiency properties for sufficiently large δ and small η. These results suggest that
the equilibrium set is large for η small, but not necessarily converging to zero.

Directions for future research. There are several interesting directions for future re-
search. First, I prove the contagious Coasian property for any η, but focus on the anal-
ysis of the equilibrium set in the limit η → 0. The analysis of the equilibrium set for
intermediate levels of correlation is an interesting avenue for future research. Second,
Remark 5 constructs PBEs with the fixed number of segments in which the inefficiency
is of order η. It remains an open question whether one could improve this bound. Third,
my results are of the folk-theorem type. Tsoy (2016) shows that some of the bargaining
outcomes in this paper are sensitive to the details of the correlation between types. Fur-
ther refinements of the model predictions are left for future research. Fourth, the order
of limits is important to the results: there is a multiplicity of outcomes when I first take
δ → 1, then η → 0, but there is a convergence to the complete-information outcome
under the reverse order of limits. Exploring how the relative speed of convergence of δ
and η affects the equilibrium set would be interesting. Finally, the prediction that the
amount of public information can affect bargaining delays when the precision of private
information is fixed can be tested in the lab.
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Appendix A

A.1 Proof for Section 3.1

I first derive general bounds on acceptable offers that imply Lemma 1. Let Pb be the
supremum of offers accepted by type b of the buyer with positive probability in equilib-
rium (both on and off path), and, analogously, let Ps be the supremum of offers rejected
by type s of the seller with positive probability in equilibrium. Let pb be the infimum
of prices rejected by type b of the buyer with positive probability in equilibrium, and let
ps be the infimum of prices accepted by type s of the seller with positive probability in
equilibrium.

Lemma 11. For all b, s,

Pb ≤ (1 − δ)

∞∑
k=0

δ2k(
v
(
π(2k)(b)

) + δc
(
π(2k+1)(b)

))
�

ps ≥ (1 − δ)

∞∑
k=0

δ2k(
c
(
π(2k)(s)

) + δv
(
π(2k+1)(s)

))
	 (23)

Proof. First, by the definition of Ps , type b of buyer can guarantee himself the continu-
ation utility arbitrarily close to δ(v(b)−maxs∈Sb Ps) by making an offer arbitrarily close to
maxs∈Sb Ps whenever he is active. Hence, δ(v(b)− maxs∈Sb Ps)≤ v(b)−Pb. Second, let Us

be the supremum of the continuation utilities of type s on and off path if the trade does
not occur in the current round. If type s of the seller rejects an offer, she cannot guaran-
tee more than max{δ(maxb∈Bs Pb − c(s))�δ2Us}, which implies Us ≤ δ(maxb∈Bs Pb − c(s)).
Hence, Ps − c(s) ≤ δ(maxb∈Bs Pb − c(s)). Therefore,

Pb ≤ (1 − δ)v(b)+ δmax
s∈Sb

Ps

≤ (1 − δ)v(b)+ δmax
s∈Sb

(
(1 − δ)c(s)+ δ max

b′∈Bs

Pb′
)

= (1 − δ)
(
v(b)+ δc

(
π(b)

)) + δ2 max
s∈Sb

max
b′∈Bs

Pb′ 	

By iterating this inequality, I obtain the first inequality in the statement of the lemma.
The argument for the second inequality is symmetric. �

Proof of Lemma 1. Parts (i) and (ii) follow directly from Lemma 11 and the mono-
tonicity of functions v and c. The last part follows from parts (i) and (ii), and the fact that
players can make unacceptable offers and guarantee payoff 0. �

A.2 Proofs for Section 3.2

The following lemma is the key mathematical fact in the proof of Lemma 4.
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Lemma 12. Consider b∞ ∈ (2η�1 − 3η) and s∞ = b∞ +η, qB, qS that satisfy

c(s∞) < qB < qS < v(b∞)	 (24)

There exists δ ∈ (0�1) such that for all δ ∈ (δ�1) there exist positive sequences (xk� yk)∞k=1
that converge to (0�0) and satisfy the recursive system⎧⎪⎪⎨

⎪⎪⎩
xk+1 = (

1 − αB(yk+1)
)
xk − αB(yk+1)yk+1�

yk+1 = (
1 − αS(xk)

)
yk − αS(xk)xk�

x1 + y1 = 2η�

(25)

where

αB(y) =
(
1 − δ2)(qB − c(s∞ − y)

)
δ2(qS − qB

) � (26)

αS(x) =
(
1 − δ2)(v(b∞ + x)− qS

)
δ2(qS − qB

) 	 (27)

Moreover,

xk + yk < 2η for k= 2�3� 	 	 	 � (28)

xk + yk+1 < 2η for k= 1�2� 	 	 	 	 (29)

See the Supplemental Material for the proof.

Proof of Lemma 3. Fix z = 1� 	 	 	 �Z − 1. By (2),

v
(
bz

)
> v

(
bz − 2η

) ≥ v
(
bz − √

η
) ≥ v

(
bz+1 − 3

√
η

)
> q

(
bz+1�γ

) = qz+1

> qz = q
(
bz�γ

)
> c

(
bz + 3

√
η

) = c
(
ŝz +η+ 3

√
η

)
> c

(
ŝz+1)> c

(
sz

)
	

(30)

Moreover, since |qz − q̂z| →
δ→1

0 for all z = 1� 	 	 	 �Z − 1 and qz is increasing in z, for

sufficiently large δ it holds that qz < q̂z+1. Hence, c(sz) < qz < q̂z+1 < v(bz). Since
bz = bz−1 + √

η and
√
η > 4η, bz ∈ (2η�1 − 3η). Therefore, qS = q̂z+1, qB = qz , s∞ = sz ,

and b∞ = bz satisfy the conditions of Lemma 12, and so, for sufficiently large δ, there
exist positive sequences (xk� yk)

∞
k=1 that satisfy (25). I construct sequences of thresh-

old types bzn, szn, αS
n, and αB

n as follows. Let bz1 = π(ŝz+1) and for k = 1�2� 	 	 	 , define
bz2k = bz + xk, sz2k−1 = sz − yk, αS

2k = αS(xk), and αB
2k−1 = αB(yk). This implies that bzn

and szn so constructed satisfy (4), (5), (6), and (7). Since xk and yk are positive and
αB(y) > 0 whenever y > 0, it follows from (25) that xk+1 −xk = −αB(yk+1)(xk + yk+1) < 0
for all k and, analogously, yk+1 − yk < 0. Hence, bzn and szn are strictly decreasing in even
rounds and strictly increasing in odd rounds, respectively. Since (xk� yk) converges to
(0�0), the limits of bzn and szn are bz and sz , respectively. By (28), bz + xk ≤ sz − yk + η or
bz2k ≤ sz2k−1 +η, and so,

sz −η= bz ≤ bz2k ≤ sz2k−1 +η≤ sz +η= bz + 2η	

Hence, max{bz2 − bz� sz − sz3} ≤ 2η. This completes the proof. �
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Proof of Lemma 4. After round 1, only types s ∈ [ŝz� ŝz+1) and types b ∈ [π(ŝz)�π(ŝz+1))

remain. By (4) and (6), type bzn is indifferent between accepting in even round n and
accepting in round n + 2. (Recall Remark 3.) Note that (6) gives the probability that
threshold buyer type bzn assigns in round n to the seller’s type being in [szn−1� s

z
n+1), and

hence, to the seller lowering the price in round n + 1. To see this, observe that this
probability is equal to (szn+1 − max{szn−1�π(b

z
n)})/(π(bzn) − max{szn−1�π(b

z
n)}) for even

n > 2, and to (sz3 − π(bz2))/(π(b
z
2) − π(bz2)) for n = 2. For n > 2, using (28), I get that

szn−1 = sz − yn/2 = bz +η− yn/2 > bz + xn/2 −η= bzn −η= π(bzn), and so

αS
n = szn+1 − szn−1

bzn +η− szn−1
= szn+1 − max

{
szn−1�π

(
bzn

)}
π

(
bzn

) − max
{
szn−1�π

(
bzn

)} 	
For n = 2, using x1 + y1 = 2η, I get that sz1 = sz − y1 = bz +η− y1 = bz + x1 −η= bz2 −η=
π(bz2), and so

αS
2 = sz3 − sz1

bz2 +η− sz1
= sz3 −π

(
bz2

)
π

(
bz2

) −π
(
bz2

) 	
The likelihood that type b assigns in round n to the seller offering qz in the next round is
given by (szn+1 − szn−1)/(b+η− szn−1), which is decreasing in b. Thus, if b > bzn, then type
b has both higher value and assigns smaller probability to the seller lowering the offer to
qz in round n+ 1, and so all types above bzn strictly prefer to accept in round n. Similarly,
all types below bzn strictly prefer to accept in round n+ 2. Hence, the acceptance strategy
given by bzn is optimal for the buyer. Similarly, (5) and (7) imply that the seller prefers to
make offer qz as prescribed by strategy szn, but not earlier or later.

For z = 0� 	 	 	 �Z − 1, by (3) and (30),

qz+1 = q
(
bz+1�γ

) = q
(
sz+1 −η�γ

) = q
(
ŝz+1 +η�γ

)
< y∗(ŝz+1)�

qz = q
(
bz�γ

)
> y∗(0)�

qz+1 < v
(
bz − 2η

)
�

qz > c
(
ŝz+1)	

Moreover, |qz+1 − q̂z+1| →
δ→1

0. By following the equilibrium strategy, any seller type s ∈
[ŝz� ŝz+1) gets at least qz −c(s), and any buyer type b ∈ [π(ŝz)�π(ŝz+1)) gets at least v(b)−
q̂z+1. Alternatively, when δ is sufficiently large, by Lemma 2, if the seller deviates from
offers qz and q̂z+1, then she gets utility uniformly close to max{0� y∗(0) − c(s)} < qz −
c(s), and by Remark 1, if the buyer deviates from counteroffer y(0), then he gets utility

uniformly close to max{0� v(b) − y∗(ŝz+1)} < v(b) − q̂z+1. Hence, for sufficiently large δ,
such deviations are not profitable. This completes the proof. �

Proof of Lemma 5. By Lemma 4, after on-path play in round 1, the continuation
strategies constitute the PBE for sufficiently large δ. By the construction of q̂z > y∗(0)
and Lemma 2, the seller in round 1 does not have incentives to deviate to offers out-
side QS .
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I next verify that the seller has no incentives to deviate in the first round. Note that
only buyer types b ∈ [bz − 2η�bz) are uncertain about the offer they receive in round 1.
(All the rest of the types b know which offer the seller makes in round 1 on path, as Sb ⊆
[ŝz� ŝz+1) for some z.) Only seller types s ∈ [ŝz − 2η� ŝz + 2η] assign positive probability
to such buyer types. Thus, I consider separately the following two cases.

Case 1: Type s ∈ [ŝz� ŝz + 2η] deviates to q̂z or type s ∈ [ŝz − 2η� ŝz) deviates to q̂z+1.
Such deviations to offers in {q̂z}z=1�			�Z may not be detected by the buyer. Since bz2 >

bz = ŝz + η = π(ŝz) and bz−1
2 < bz−1 + 2η = bz + 2η − √

η < ŝz − η = π(ŝz), all buyer
types in Bŝz accept offer q̂z , but always reject q̂z+1. By (1), q̂z − c(ŝz) = δ2(qz − c(ŝz))

and so seller type ŝz is indifferent between offering q̂z , which is accepted for sure in
round 2, and offering q̂z+1, which is rejected for sure and then offering qz that is accepted
for sure in round 4. By the single-crossing property of payoffs and the fact that types
s ∈ [ŝz� ŝz + 2η] assign a positive probability to q̂z+1 being accepted in round 2, seller
types s ∈ [ŝz� ŝz + 2η] strictly prefer to follow their equilibrium strategy. Analogously,
seller types ŝz ∈ [ŝz − 2η� ŝz) strictly prefer to trade at q̂z in round 2, rather than at qz in
round 4. Since bz ≥ bz−1 + √

η, all seller types in [ŝz − 2η� ŝz) expect the buyer to always
reject q̂z+1. Thus, such types prefer offering q̂z rather than deviating to q̂z+1 and then
making offer qz in round 4.

Case 2: Types deviating to offers in {q̂z}z=1�			�Z that are always detected by the buyer.
Deviation of the seller in round 1 to a higher offer in QS is rejected for sure for sufficiently
large δ, as the buyer expects that the seller will return to the equilibrium path and de-
crease her price offer in the next round. Hence, such a deviation is not profitable (as it
causes additional delay with any gain in the price). Deviation from q̂z+1 to a lower offer
in QS is accepted for sure, but for sufficiently large δ, is dominated by offering q̂z+1 and
counteroffering qz if it gets rejected. �

A.3 Proofs for Section 3.3

Proof of Lemma 6. I prove that in G(qSt � qBt ), the threshold strategy bt is a best response
for the buyer to the seller’s threshold strategy st . (The argument is symmetric for the
seller.) Observe that since v(bt) − qSt > 0 for all t ∈ [0�∞), all buyer types b ∈ (b∞�1]
prefer to accept at some t to never trading.

Step 1: Buyer type b ∈ [bT �1]. Since s∞ = π(bT ) ≤ π(bt) for t ≤ T , buyer type b as-
signs probability 0 to his offer being accepted. Thus, he chooses the acceptance time t

to maximize e−rt(v(b)− qSt ) for which the first-order condition is given by (11). The suf-
ficiency of the first-order condition follows from the single-crossing property of payoffs.
Since it is optimal for type b0 to accept qS0 at t = 0, by the single-crossing property, it is
also a best response for any type b > b0.

Step 2: Buyer type b ∈ (b∞� bT ). Note that Pη is affiliated, and denote its cumu-
lative distribution function (c.d.f.) by F . Then F(s|b) = (max{min{s�π(b)} − π(b)�0})/
(π(b)− π(b)) is the c.d.f. of the buyer type b’s beliefs, and let f (s|b) be the correspond-
ing probability density function (p.d.f.). For any b ∈ (b∞� bT ), there exists time t such
that b = bt . I show that if bt satisfies (8) and the seller follows the threshold strategy st ,
then it is optimal for type bt to accept at time t.
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Let tS(s) be the inverse of st , i.e., tS(s) = inf{t : s ≤ st} for s ∈ [0� s∞) and tS(s) = ∞ for
s ∈ [s∞�1]. The term tS(s) gives the time when seller type s accepts if she follows thresh-
old strategy st . Analogously, let tB(b) be the inverse of bt . Fix buyer type b ∈ (b∞� bT ).
Note that such a type assigns positive probability to his (lower) offer being accepted by
the buyer and has a lower value than type bT , who assigns zero probability to his offer be-
ing accepted and for whom it is optimal to accept at T . Thus, it is without loss to assume
that type b chooses from acceptance times in t ∈ [T�∞), as any time t < T is dominated
by T . Buyer type b ∈ (b∞� bT ) chooses the acceptance time t ≥ T to maximize

u(b� t) =
∫ st

0
e−rtS(s)

(
v(b)− qBT

)
dF(s|b)+ (

1 − F(st |b)
)
e−rt

(
v(b)− qST

)
	

The first-order condition for this problem is

(
qST − qBT

)
f (st |b)ṡt = r

(
v(b)− qST

)(
1 − F(st |b)

)
	 (31)

(Note that types b ∈ (b∞� bT ) assign positive probability only to types s ∈ (sT �1] that ac-
cept at times t > T , and that for t > T , st is differentiable, as it is part of the solution to
(8) and (9).) From the first-order condition (31), for b ∈ (b∞� bT ),

u
(
bT � tB(bT )

) − u
(
b� tB(b)

) =
∫ bT

b

(
∂

∂b
u
(
b̃� tB(b̃)

) + ∂

∂t
u
(
b̃� tB(b̃)

)
t ′B(b̃)

)
db̃

=
∫ bT

b

∂

∂b
u
(
b̃� tB(b̃)

)
db̃	

(32)

In Claim 1 below, I show that u(b� t) satisfies the smooth single-crossing difference
(SSCD) condition in (b�−t). Together with the envelope formula (32), this verifies the
conditions of Theorem 4.2 in Milgrom (2004) and proves that type bt ’s best response to
the threshold strategy st is to accept at time t, which completes the proof of Step 2.

Claim 1. The function u(b� t) satisfies the SSCD condition in (b�−t) for b ∈ (b∞� bT ) and
t ∈ [T�∞).

Proof. I will show that the following conditions are satisfied, which imply the SSCD:

(i) The function u(b� t) satisfies the strict single-crossing difference condition in
(b�−t), i.e., for all t̃ > t and b̃ > b,

u(b� t)− u(b� t̃) ≥ 0 =⇒ u(b̃� t)− u(b̃� t̃) > 0	

(ii) For all t, if ∂u(b� t)/∂t = 0, then for all δ > 0,

∂u(b� t − δ)/∂t ≥ 0 and ∂u(b� t + δ)/∂t ≤ 0	

Let us start with the strict single-crossing difference condition. Consider b < b̃ and t < t̃,
and suppose that

u(b� t) ≥ u(b� t̃)	 (33)
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I will show that u(b̃� t) > u(b̃� t̃). Define function

g(u|b� t) = e−ru
(
v(b)− qBT

)
1{u ≤ t)} + e−rt

(
v(b)− qST

)
1{u > t}	

Note that g(·|b� t) is decreasing in u and

u(b� t) =
∫ 1

0
g
(
tS(s)|b� t

)
dF(s|b)	

Then ∫ 1

0
g
(
tS(s)|b� t

)
dF(s|b) = u(b� t)

≥ u(b� t̃)

=
∫ 1

0
g
(
tS(s)|b� t̃

)
dF(s|b)

≥
∫ 1

0
g
(
tS(s)|b� t̃

)
dF(s|b̃)�

where the first inequality follows from (33), and the second inequality follows from the
fact that g(tS(·)|b� t̃) is decreasing in s and F(·|b̃) first-order stochastically dominates
F(·|b) (as F is affiliated). This implies that

u(b� t) =
∫ st

0
e−rtS(s)

(
v(b)− qBT

)
dF(s|b)+ (

1 − F(st |b)
)
e−rt

(
v(b)− qST

)

≥
∫ st̃

0
e−ru

(
v(b)− qBT

)
dF(s|b̃)+ (

1 − F(st̃ |b̃)
)
e−rt̃

(
v(b)− qST

)
�

or, equivalently,

v(b)

(∫ st

0
e−ru dF(s|b)+ (

1 − F(st |b)
)
e−rt −

∫ st̃

0
e−ru dF(s|b̃)− (

1 − F(st̃ |b̃)
)
e−rt̃

)

≥ qST −
∫ st̃

0
e−ruqBT dF(s|b̃)− (

1 − F(st̃ |b̃)
)
e−rt̃qST 	

(34)

I will show that the left-hand side of (34) is positive and so the left-hand side would
increase if I substitute v(b̃) instead of v(b). This in turn implies that u(b̃� t) > u(b̃� t̃)

and completes the proof of the strict single-crossing difference. Let h(u|t) = e−ru ×
1{u < t)} + e−rt1{u ≥ t}, which is decreasing in u. Then the left-hand side of (34) is equal
to

v(b)

(∫ 1

0
h
(
tS(s)|t

)
dF(s|b)−

∫ 1

0
h
(
tS(s)|t̃

)
dF(s|b̃)

)

≥ v(b)

(∫ 1

0
h
(
tS(s)|t

)
dF(s|b̃)−

∫ 1

0
h
(
tS(s)|t̃

)
dF(s|b̃)

)

= v(b)

∫ 1

0

(
h
(
tS(s)|t

) − h
(
tS(s)|t̃

))
dF(s|b̃) > 0�
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where the first inequality follows from F(·|b̃) first-order stochastically dominating F(·|b)
and h(·|t) decreasing, and the last term is strictly positive by t < t̃.

Now, let us show the second requirement of the SSCD condition. Suppose
∂u(b� t)/∂t = 0. By taking the partial derivative

∂

∂t
u(b� t) = e−rt

[(
qST − qBT

)
f (st |b)ṡt − r

(
v(b)− qBT

)(
1 − F(st |b)

)]
�

I get that

∂

∂t
u(b− δ� t) = e−rt

(
1 − F(st |b− δ)

)[(
qST − qBT

) f (st |b− δ)

1 − F(st |b− δ)
ṡt − r

(
v(b− δ)− qST

)]
	

Since v(b − δ) ≤ v(b) and f (st |b− δ)/1 − F(st |b− δ) ≥ f (st |b)/1 − F(st |b) (by the af-
filiation of f ), it follows that ∂u(b − δ� t)/∂t ≥ 0. Showing that ∂u(b + δ� t)/∂t ≤ 0 is
analogous. �

Step 3: Buyer type b ∈ [0� b∞] ∩ [bT �bT ). Note that type b ∈ [0� b∞] has a lower value
and assigns a higher probability to his (lower) offer being accepted than any type in
(b∞� bT ). Hence, it is optimal for such types to never accept. Analogously, types b ∈
[bT �bT ) prefer to accept at T . �

Before proceeding with the proof of Theorem 7, I derive the lower bound on the
players’ expected utilities in the BNE of G(qSt � qBt ) in Lemma 6. Denote such utilities by
US
G(s) for seller type s and by UB

G (b) for buyer type b.

Lemma 13. There exists ε̃ > 0 such that for sufficiently small η, US
G(s) > ε̃ for all s ∈ [0�1]

and UB
G (b) > ε̃ for all b ∈ [0�1].

Proof. In the game G(qSt � qBt ), type s can accept qBT at time T and so her expected
utility is at least e−rT (qBT − c(s)), which is positive for s ∈ [0� s∞ + 2η] and sufficiently
small η. Moreover, type s > s∞ + 2η knows for sure that her offer will be accepted by
the buyer by time T , and this offer is above min{βy∗(s − η) + (1 − β)v(s − η)� y∗(1)} ≥
min{y∗(s −η)� y∗(1)}. Hence, I have

UG(s) ≥
{
e−rT

(
qBT − c(s)

)
for s ∈ [0� s∞ + 2η]�

e−rT
(
min

{
y∗(s −η)� y∗(1)

} − c(s)
)

for s ∈ (s∞ + 2η�1]�

and the right-hand side is bounded from zero in both cases. The argument for the buyer
is symmetric. �

Proof of Lemma 7. I construct a frequent-offer PBE limit that coincides with (τ
β
η�ρ

β
η)

whenever b > bT + η or s < sT − η. Threshold strategies bn and sn and paths of offers
qSn and qBn on the equilibrium path are described in the text, and I proceed to the con-
struction of (bn� sn�qSn�q

B
n )

∞
n=1 in Steps 1 and 2. In Step 3, I specify off-path strategies and

verify equilibrium conditions.
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Recall that N ≡ �T/
�. I set bN−2 = bN−1 = bT and sN−1 = sN = sT . Without loss of
generality suppose N is even.

Step 1: Construction of on-path strategies after round N . This step essentially repli-
cates Step 3 in the proof of Theorem 1. I set that, for n ≥ N , qSn = qST and qBn = qBT , i.e.,
offers are constant. By following the same line of argument as in Lemma 12, I can show
that Lemma 12 in Appendix A.2 holds with functions αB(y) and αS(x) in (26) and (27)
replaced by

αB(y) =
(
1 − δ2)(qB − c(s∞ − y)

)
δ
(
qS − c(s∞ − y)

) − δ2(qB − c(s∞ − y)
) �

αS(x) =
(
1 − δ2)(v(b∞ + x)− qS

)
δ
(
v(b∞ + x)− qB

) − δ2(v(b∞ + x)− qS
) 	

I then use this result and replicate the construction in Step 3 of the proof of Theorem 1
to obtain threshold types bn�n ≥ N , and sn�n > N , such that bn ↓ b∞, sn ↑ s∞, and bN ≤
sN+1 +η, and that satisfy

v(bn)− qST = δαS
n

(
v(bn)− qBT

) + δ2(1 − αS
n

)(
v(bn)− qST

)
for n even� (35)

qBT − c(sn) = δαB
n

(
qST − c(sn)

) + δ2(1 − αB
n

)(
qz − c(sn)

)
for n odd� (36)

where αS
n and αB

n are defined by

αS
n = sn+1 − sn−1

bn +η− sn−1
�

αB
n = bn−1 − bn+1

bn−1 − sn +η
	

Equations (35) and (36) are counterparts of (4) and (5) with the difference coming from
the fact that here both sides make unacceptable offers until they make a revealing offer,
which is accepted by all opponent’s types. Equation (35) implies that type bn is indif-
ferent between revealing himself to be in [bn�bn−1) in round n with price offer qST and
revealing that b ∈ [bn+2� bn) in round n + 2. Any type b > bn has a higher value and as-
signs a lower probability to the seller making offer qBT in round n + 1 (as (sn+1 − sn)/

(b + η − sn−1) is decreasing in b); hence, he strictly prefers to offer qBT in round n to of-
fering qBT in round n+ 2. Similarly, types b < bn strictly prefer to make offer qBT in round
n+2. Hence, (35) guarantees that after round N , if the seller follows an on-path strategy,
the on-path strategy is optimal for buyer types b ≤ bN−1. The argument is symmetric for
seller types s ≥ sN .

Step 2: Construction of on-path strategies before round N . Let ε̃ > 0 be as in
Lemma 13, and fix

ε0 ≡ 1
2

min
{
ε̃� min

t∈[0�T ]
{
qSt − y∗(bt)� y∗(st)− qBt

}}
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Let

sn = sn+1 −

dst

dt

∣∣∣∣
t=(n+1)


for odd n ≤N − 3�

bn = bn+1 −

dbt

dt

∣∣∣∣
t=(n+1)


for even n ≤N − 4	

For odd n ≤ N − 3, set bn = bn−1, and for even n ≤ N − 2, set sn = sn−1. I construct paths
qSn (for n odd) and qBn (for n even) backward in time starting from N − 1 that satisfy

v(bn)− qSn = δ2(v(bn)− qSn+2
)

for even n ≤N − 2� (37)

qBn − c(sn) = δ2(qBn+2 − c(sn)
)

for odd n ≤N − 1	 (38)

Let n0 be the largest n such that either qSn > y∗(1) − ε0 or qBn < y∗(0) + ε0. Suppose that
the former is the case in round n0 and n0 is even. (The other case is analogous.) Then
I redefine the rounds to be n − n0 instead of n, i.e., sn0+1 and qBn0+1 become s1 and qB1 ,

respectively, bn0+2 and qSn0+2 become b2 and qS2 , respectively, and so on. Note that this

way qB1 ≥ y∗(0)+ ε0 and qS2 ≤ y∗(1)− ε0.

I extrapolate (bn� sn�q
B
n �q

S
n) to continuous time by the linear extrapolation. The fol-

lowing claim follows from the construction of (bn� sn�qBn �q
S
n).

Claim 2. The linear extrapolation of (bn� sn�qBn �q
S
n) to continuous time converges uni-

formly to (bt� st� q
B
t � q

S
t ) on [0�T ] as δ → 1, i.e., for any ε > 0, there is δ†(ε) ∈ (0�1) such

that for all δ ∈ (δ†(ε)�1), it holds that

sup
t∈[0�T ]

∣∣bn|n=� t

 � − bt

∣∣ < ε and sup
t∈[0�T ]

∣∣sn|n=� t

 � − st

∣∣< ε�

sup
t∈[0�T ]

∣∣qBn |n=� t

 � − qBt

∣∣ < ε and sup
t∈[0�T ]

∣∣qSn|n=� t

 � − qSt

∣∣< ε�

where 
= − 1
r lnδ.

Claim 2 implies the convergence of outcomes of the PBEs that I am constructing to
(τ

β
η�ρ

β
η) for types b > bT + η and s < sT − η, as such types assign probability 1 to the

trade happening when they reveal themselves at some time before T .
Step 3: Construction of off-path strategies and verification of equilibrium. I describe

how the seller’s deviations are punished and strategies are symmetric after the buyer’s
deviations.

Since revealing price offers become more favorable over time, the lowest on-path
utility is attained in the beginning of the game. Thus, Lemma 13 and Claim 2 imply
that there is δ∗(ε0) ∈ (0�1) such that for δ ∈ (δ∗(ε0)�1), the seller’s on-path utility in any
round is greater than ε0, and, in addition,

qSn > y∗(bn)+ 1
2
ε0 (39)
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for any n ≤ N . Moreover, I will specify below that seller’s offer qB1 in round 1 is accepted
both on and off path. Thus, the seller’s on-path continuation utility in any round is at
least

max
{
qB1 − c(s)�ε0

}
> max

{
y∗(0)− c(s)�0

} + 1
2
ε0	 (40)

Let us choose δ(ε) as in Lemma 2 such that for any b, in the seller punishing equilibrium
with b, the seller’s continuation utility is less than max{y∗(b) − c(s)�0} + 1

2ε0. I suppose
that δ is greater than max{δ(ε)�δ∗(ε)}.

The following seller’s deviations are possible:

D1. If the seller makes in round n an offer different from y(1) or qBn , the play
switches to the seller punishing equilibrium with b = 0 described in Lemma 2.
Such a deviation is not profitable, as the utility from punishment is at most
max{y∗(0)− c(s)�0} + 1

2ε0, which by (40) is the lower bound on the on-path utility
in any round.

D2. Suppose type s ∈ [sn−1� sn) of the seller mimics a lower type and offers qBn′ < qBn in
odd round n. I specify that in equilibrium, such an offer is accepted by the buyer
irrespective of whether the buyer detects such an offer as a deviation, and if it gets
rejected, then the subsequent play returns to the equilibrium path. By (38), such
a deviation is not profitable for type s. Since the play returns to the main path
in case the deviating offer is rejected, the buyer indeed prefers to accept such an
offer, as it is lower than subsequent on-path offers.

D3. Suppose type s ∈ [sn−1� sn) offers y(1) instead of qBn in odd round n. Such a devi-
ation is detected by the buyer only when b < π(sn). In equilibrium, buyer types
who detect this deviation switch to optimistic conjectures as in Lemma 2 with
b = 0. Note that these types assign probability 1 to the seller type π(b).

D3.1. If the seller type is in [sn−1� sn)∩ [0�π(π(sn))), then the seller assigns prob-
ability one to the buyer detecting the deviation. In this case, the play pro-
ceeds as in the punishing equilibrium in Lemma 2 with b= 0.

D3.2. If the seller type is in [sn−1� sn) ∩ [π(π(sn))�1], then the seller does one of
two things depending on which one brings higher expected utility in the
continuation:

• Offer qBn+2 in round n + 2, which is accepted if and only if b ≥ π(sn).
If such an offer is rejected, then players follow their strategies in the
punishing equilibrium.

• They follow her strategy in the punishing equilibrium. In continuation,
both players follow their strategies in the punishing equilibrium.

By the single-crossing property of payoffs and construction of offers in (37), even
if the buyer does not detect the deviation, type s prefers to reveal herself in round
n rather than in round n+ 2. (See the argument in the end of Step 1 of this proof.)
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On top of that, delaying the revelation increases the probability that the buyer
detects the deviation, which triggers the punishing equilibrium, making, in turn,
the deviation even less appealing for the seller (by the inequality (40)).

D4. Suppose type s ∈ [sn−1� sn) offers y(1) instead of qBk in rounds k = n�n+ 2� 	 	 	 � n′.
The strategies in the continuation are analogous to the previous case: buyer types
who detect such a deviation switch to the seller punishing equilibrium, and the
seller types either switch to strategies in the punishing equilibrium or do so after
making offer qBn′+2 in round n′ + 2, whichever brings higher continuation payoffs.

D5. Suppose in round n, the buyer makes offer qSn and the seller deviates and rejects
such an offer in round n + 1. Since the buyer follows the on-path strategy up to
round n, the seller’s type is below π(bn−1). I specify that after such a deviation,
the play switches to the seller punishing equilibrium with b = bn described in
Lemma 2. By (39), the seller’s continuation on-path utility in round n + 1 is at
least y∗(bn) + ε0 − c(s). At the same time, the seller punishing equilibrium with
b = bn brings utility less than y∗(bn) − c(s) + 1

2ε0, which makes such a deviation
unprofitable. �

Appendix B

This appendix constructs and analyzes the punishing equilibrium, the continuation
equilibrium with optimistic conjectures of the buyer and original beliefs of the seller.
The structure of this section is as follows. I first consider in Appendices B.1–B.4 the aux-
iliary game, in which the buyer holds optimistic conjectures and is restricted to either
accept the last seller’s offer or make a counteroffer y(0). Appendix B.1 constructs pun-
ishing equilibrium strategies for buyer types below η and seller type s = 0, and proves
the Coasian property for such types. Appendix B.2 describes PBE strategies for the rest
of the types. Appendix B.3 contains the preliminary analysis of such strategies. Ap-
pendix B.4 shows that the willingness to pay of the buyer is uniformly (in type) close
to max{y∗(0)� c(π(b))}. The argument in these sections is provided for the case b = 0 and
b = 1. Finally, I show in Appendix B.5 how the argument generalizes to 0 ≤ b < b ≤ 1, and
collect all the steps to complete the proof of Lemma 2.

B.1 Appendix for Step 1: Standard Coasian dynamics for types b ∈ [0�η] and s = 0

Observe that when the buyer has optimistic conjectures, buyer types b ∈ [0�η] assign
probability 1 to the seller type s = 0, and hence, if I restrict attention only to those types,
my game is essentially the game with one-sided private information and one-sided of-
fers.14 Hence, for those types, I can use existing results to construct the punishing equi-
librium strategies that exhibit Coasian dynamics. My construction and results in this
subsection follow the argument in Fudenberg et al. (1985) and Ausubel and Deneckere
(1989), and so I simply sketch the argument.

14Recall that I consider the auxiliary game with the buyer pooling on y(0).
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Note that seller type s = 0 is indifferent between accepting buyer’s offer y(0) in the
current round and making a counteroffer y(0) that is guaranteed to be accepted (by
Lemma 1) in the next round. I focus on PBEs of the auxiliary game, in which the seller
never accepts the buyer’s price offer. I follow Fudenberg et al. (1985) to construct PBEs in
weak-Markov strategies in this auxiliary game. Let right-continuous and weakly increas-
ing function P(b) be the maximal willingness to pay of type b. In equilibrium, after any
history, type b accepts any offer less than or equal to P(b), and rejects any offer above
P(b). By the standard argument, I can state the following lemma.

Lemma 14. In the PBE of the auxiliary game, after any history, the posterior of seller type
s = 0 is a truncation of the prior from above at some β.

Let σ(β�Hn) be the probability distribution over seller’s offers in odd round n given
the history Hn of rejected offers up to round n and the highest remaining buyer type
β in the beginning of round n. By the same argument as in Lemma 3 in Fudenberg
et al. (1985), I can show that there exists β̄ ∈ (0�η] such that P(b)= (1 − δ2)v(b)+ δ2y(0)
for b ∈ [0� β̄] and σ(β�Hn) = y(0) for β ∈ [0� β̄] constitute a continuation equilibrium
in any subgame with the highest buyer type below β̄. That is, β̄ is sufficiently small so
that given P(·), the seller optimally chooses not to screen buyer’s types and offer y(0),
and the willingness to pay P(b) of types b ∈ [0� β̄] is such that they are just indifferent
between accepting P(b) and rejecting it and accepting the seller’s offer y(0) in the fol-
lowing round. Again, as in Lemma 3 in Fudenberg et al. (1985), β̄ > 0 implies that the
game ends in at most N∗ rounds. I can then follow the steps in the proof of Proposi-
tion 1 in Fudenberg et al. (1985) to construct weak-Markov equilibrium strategies P(b)

and σ(β�Hn−1). Lemma 15 summarizes.

Lemma 15. There exists a PBE in weak-Markov strategies (P�σ) in the auxiliary game
such that for some β̄, P(b)= (1 − δ2)v(b)+ δ2y(0) for b ∈ [0� β̄].

By the same argument as in the uniform Coase conjecture15 in Ausubel and De-
neckere (1989), I can show that the constructed weak-Markov equilibrium exhibits
Coasian dynamics.

Lemma 16. For any ε > 0, there exists δ1(ε) < 1 such that for all δ ∈ (δ1(ε)�1), in the
weak-Markov equilibrium in Lemma 15, σ(η�Hn) < y∗(0)+ ε after any history Hn.

Remark 7. The uniform Coase conjecture in Ausubel and Deneckere (1989) holds for
a general class of demand functions, which are their counterparts of my function v.
Hence, for any b ∈ [0�1], if in the argument above I replace the lowest type of the seller
s = 0 with s = b and the buyer types b ∈ [0�η] with b ∈ [b�b+η], δ1(ε) in Lemma 16 will
not change.16

15See Theorem 5.4 in Ausubel and Deneckere (1989) and the discussion after the statement of Theo-
rem 5.4 for the gap version of the uniform Coase conjecture, which is the relevant result in my analysis.

16Of course, y∗(0) in Lemma 16 should be replaced by y∗(b).
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B.2 Appendix for Step 2: Strategies for types b > η and s > 0

On-path strategies for buyer types b ∈ (η�1] and seller types s ∈ (0�1] are described in
the main text. Specifically, I specified that as long as seller’s previous offers were above
P(b), buyer type b accepts the current offer if and only if it is less than or equal to P(b),
and that if the highest remaining buyer type β belongs to [β(s)�π(s)], seller type s makes
offer σ(β� s) = P(t(β� s)).

Note that if π(s) < β(s) and β ∈ [π(s)�β(s)), then P(b) ≤ c(s) for all remaining types
b in Bs below β, and so it is optimal for the seller type s to make unacceptable offers for
the rest of the game and get utility 0. I specify that in this case, σ(β� s) = y(s�π(s))/δ2 +
v(π(s))(1 − δ2)/δ2, which is guaranteed to be rejected by the buyer (as P(b) < c(s) <

y(s�π(s)) for b < β) and so is optimal for seller type s who believes that b ∈ [π(s)�β).

Remark 8. Type π(s) in this case is willing to accept any offer less than or equal to
y(s�π(s)). Observe that in my original game with two-sided offers, I can specify in-
stead that type s in this case assigns probability 1 to buyer type b = π(s), in which case
y(s�π(s)) would be indeed her equilibrium offer in the continuation (as she believes that
the buyer type b = π(s) in turn assigns probability 1 to the seller type s).

Next, I specify off-path strategies. Suppose that in the beginning of an odd round n,
I have the following conditions:

• The buyer’s threshold acceptance strategy P†(b) in round n + 1, i.e., offer p in
round n+ 1, is accepted if and only if p ≤ P†(b).

• A β
†
(s) that satisfies β

†
(s) = max{sup{b : P†(b) ≤ c(s)}�π(s)}, i.e., if the buyer fol-

lows P†, then seller type s gets positive payoff only from allocating to types above

β
†
(s).

• The seller’s screening policy is σ†(β� s) for any β ∈ Bs .

Suppose that in round n, the seller makes an offer p, and the buyer rejects it. Let
β‡ = inf{b : P†(b) ≥ p} be the highest buyer type that rejects p under strategy P†. Then I
specify the continuation strategies as follows:

• For b < β‡, the buyer did not deviate from the strategy P† in round n + 1, and I
specify that P‡(b) = P†(b) for b < β‡.

• For s < β‡ + η, even if the buyer deviated from P† in round n + 1, the seller does
not detect such a deviation in round n + 2. In the continuation, the seller makes
offers σ†(β� s) for β ∈ [π(s)�π(s)]. Thus, for such seller types, I specify σ‡(β� s) =
σ†(β� s).

• For b ∈ [β‡�β‡ + 2η), the buyer deviated from P† in round n+ 1, but believes that
the deviation is not detected, as he assigns probability 1 to seller type s < β‡ + η.
He expects such seller types to follow σ‡(β‡� s) defined in the previous step, and I
specify

P‡(b)= (
1 − δ2)v(b)+ δ2σ‡(β‡�π(b)

)
for b ∈ [

β‡�β‡ + 2η
)
	 (41)
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Note that since σ‡(β‡� s) is defined in the previous step for s < β‡ + η and π(b) <

β‡ +η for b ∈ [β‡�β‡ + 2η), (41) is well defined.

• For s ∈ [β‡ + η�β‡ + 3η), the seller detects the buyer’s deviation. I specify that in
round n + 2, such a type believes that the buyer type is uniformly distributed on
[π(s)�β‡ + 2η]. I define

β
‡
(s) = max

{
sup

{
b≤ β‡ + 2η : P‡(b) ≤ c(s)

}
�π(s)

}
for s ∈ [

β‡ +η�β‡ + 3η
)
	

Let σ‡(β� s) for β ∈ [β‡
(s)�β‡ + 2η) be the optimal screening policy of seller

type s ∈ [β‡ + η�β‡ + 3η), given that the buyer’s willingness to pay function is
P‡(b). Note that only buyer types below β‡ + 2η are relevant for screening by
the seller type s, and P‡(b) was defined in the previous step for such types. For

β ∈ [π(s)�β‡
(s)), I specify that σ‡(β� s) = y(s�π(s))/δ2 + v(π(s))(1 − δ2)/δ2.

• For b ∈ [β‡ + 2η�β‡ + 4η), the buyer knows that his deviation in round n+ 1 is de-
tected (as he assigns probability 1 to seller type π(b) ∈ [β‡ +η�β‡ + 3η)). I specify
the new willingness to pay function for such types as

P‡(b) = (
1 − δ2)v(b)+ δ2σ‡(β‡ + 2η�π(b)

)
for b ∈ [

β‡ + 2η�β‡ + 4η
)
	 (42)

Note that π(b) < β‡ + 3η for b ∈ [β‡ + 2η�β‡ + 4η), and σ‡(β� s) was specified for
s < β‡ + 3η in the previous step. Thus, (42) is well defined.

For general k≥ 2, the following scenarios hold:

• For s ∈ [β‡ + kη�β‡ + (k + 2)η), the seller detects the buyer’s deviation. I spec-
ify that such types believe that the buyer type is uniformly distributed on [π(s)�
β‡ + (k+ 1)η]. I define

β
‡
(s) = max

{
sup

{
b ≤ β‡ + (k+ 1)η : P‡(b) ≤ c(s)

}
�π(s)

}
�

for s ∈ [
β‡ + kη�β‡ + (k+ 1)η

)
	

Let σ‡(β� s) for β ∈ [β‡
(s)�β‡ + (k+ 1)η) be the optimal screening policy of seller

type s ∈ [β‡ +η�β‡ + (k+ 2)η), given that the buyer’s willingness to pay function
is P‡(b). Note that only buyer types below β‡ + (k+ 1)η are relevant for screening
by the seller type s, and P‡(b) was defined in the previous step for such types. For

β ∈ [π(s)�β‡
(s)), I specify that σ‡(β� s) = y(s�π(s))/δ2 + v(π(s))(1 − δ2)/δ2.

• For b ∈ [β‡ + (k+ 1)η�β‡ + (k+ 3)η), the buyer knows that his deviation in round
n + 1 is detected (as he assigns probability 1 to seller type π(b) ∈ [β‡ + kη�β‡ +
(k+ 2)η)). I specify the new willingness to pay function for such types as

P‡(b) = (
1 − δ2)v(b)+ δ2σ‡(β‡ + (k+ 1)η�π(b)

)
for b ∈ [

β‡ + (k+ 1)η�β‡ + (k+ 3)η
)
	

(43)
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Note that π(b) < β‡ + (k+ 2)η for b ∈ [β‡ + (k+ 1)η�β‡ + (k+ 3)η), and σ‡(β� s)

was specified for s < β‡ + (k+ 2)η in the previous step. Thus, (43) is well defined.

Since η> 0, this way I construct, in a finite number of steps, functions P‡ and σ‡.
Now, the equilibrium strategies are constructed as follows. In the beginning of the

game, set P̃ = P and σ̃ = σ , where P and σ are as described in the main text. The follow-
ing deviations are possible:

• If the seller deviates to p from σ̃(β� s), then such an offer is guaranteed to be ac-
cepted if p ≤ P̃(π(s)), and in this case the game ends. If p > P̃(π(s)) and the
buyer rejects it, then the seller makes an offer σ̃(β′� s) in the next round, where
β′ = min{β� inf{b : P̃(b) ≥ p}}, and players continue following P̃ and σ̃ in the con-
tinuation.

• If the buyer deviates and the offer p< P̃(b) is rejected, then I set P† = P̃ and σ† = σ̃

in the argument above, and compute the corresponding P‡ and σ‡. I set new P̃

and σ̃ to P‡ and σ‡, respectively, and the game proceeds according to these new
strategies, with the play after deviations being as I just specified for the original P̃
and σ̃ .

B.3 Appendix for Step 3: Construction of P(·) and t(·� ·)
In this appendix, I derive several properties of equilibrium functions P(·) and t(·� ·).
I first derive properties of the function σ(·� ·). The central result is the bound d(δ) on
π(s)− t(s) in Lemma 19 that I use in the main text to construct functions P(·) and t(·� ·).
In the end, I show that the constructed strategies indeed constitute the PBE in the auxil-
iary game.

The next lemma shows properties of the seller’s screening offers σ .

Lemma 17. The following statements hold:

(i) The function σ(β� s) is weakly increasing in β on [β(s)�π(s)], and σ(β� s) is weakly
increasing in s on [0�π−1(β)).

(ii) The function σ(s) is right-continuous and weakly increasing in s.

Proof. Part (i). On [β(s)�π(s)], increasing β strictly increases the gradient of the ob-
jective in (17), and so the correspondence T(β� s) is weakly increasing in β. This implies
that t(β� s) is weakly increasing in β, and so is σ(β� s) = P(t(β� s)).

To prove the monotonicity of σ(β� s) in s, suppose to the contrary that for some β̃

and some s1 < s2 < π−1(β̃), σ(β̃� s2) < σ(β̃� s1). Note that if β(s2) ≥ min{π(s1)� β̃}, then
σ(β̃� s2) = y(s�π(s))/δ2 + v(π(s))(1 − δ2)/δ2 > c(s) ≥ P(b) for all b ≤ β̃, which implies
that σ(β̃� s2) > σ(β̃� s1). Thus, suppose that min{π(s1)� β̃} > β(s2). I consider the case
β̃ ≤ π(s1); the argument is analogous for β̃ > π(s1). Let B ≡ [π(s1)� β̃]. Let

π(β�b� s) ≡
{
(β− b)

(
P(b)− c(s)

)
for b ∈ [

β(s)� β̃
]
�(

β(s)−β
)(
b−β(s2)

)
for b ∈ [

π(s1)�β(s)
)
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Then for s = s1� s2, the value function R(β� s) solves the Bellman equation

R(β� s) = max
b∈Bs∩[π(s1)�β]

{
π(β�b� s)+ δ2R(b� s)

}
	 (44)

Indeed, (44) allows the seller to choose b ∈ [π(s)�β] as opposed to the constraint b ∈
[β(s)�β] in (17). However, by construction of π(β�b� s), it is never optimal for type s to
choose b < β(s), as π(β�b� s) < 0 for b < β(s) and so it is dominated by b = β(s). Thus,
the solutions to (44) and (17) coincide for β ≥ β(s). Observe that for β ∈ [π(s1)�β(s)),
R(β� s) = −(β(s)−β)2/(1 − δ2) < 0.

I will show that the maximized function in (44) satisfies the single-crossing property
in (b; s) on B× {s1� s2}. This implies, by Theorem 4′ in Milgrom and Shannon (1994) that
t(β̃� s1) ≤ t(β̃� s2) and so σ(β̃� s1) ≤ σ(β̃� s2), which leads to a contradiction and com-
pletes the proof of monotonicity of σ(β� s).

Since ∂2π(β�b� s)/∂s ∂b = c′(s) > 0, π(β�b� s) has the strict single-crossing property
in (b; s), and so it is sufficient to show that R(b� s) has the single-crossing property in
(b; s). I show that for β2�β1 ∈ B such that β2 >β1, it holds that

R(β2� s2) > R(β1� s2)�

which is a stronger property than the strict single-crossing property. There are three
cases possible.

Case 1: β1 <β2 ≤ β(s2). Then

R(β2� s2)−R(β1� s2) = − 1

1 − δ2

(
β(s2)−β2

)2 + 1

1 − δ2

(
β(s2)−β1

)2

= 1

1 − δ2 (β2 −β1)
(
2β(s2)−β2 −β1

)
> 0	

Case 2: β1 ≤ β(s2) < β2. Then R(β1� s2) ≤ 0 <R(β2� s2).
Case 3: β(s2) < β1 <β2. Then by the optimality of t(β2� s2) when β = β2,

π
(
β2� t(β2� s2)� s2

) + δ2R
(
t(β2� s2)� s2

) ≥ π
(
β2� t(β1� s2)� s2

) + δ2R
(
t(β1� s2)� s2

)
�

and so, for R(β2� s2) > R(β1� s2), it is sufficient that

π
(
β2� t(β1� s2)� s2

) + δ2R
(
t(β1� s2)� s2

)
>π

(
β1� t(β1� s2)� s2

) + δ2R
(
t(β1� s2)� s2

)
	 (45)

Inequality (45) is equivalent to

(β2 −β1)
(
P

(
t(β1� s2)

) − c(s2)
)
> 0�

which holds, as P(t(β1� s2)) > c(s2) whenever β1 >β(s2). I conclude that indeed for β2 >

β1, R(β2� s2) > R(β1� s2) and so function π(β�b� s) + δ2R(b� s) has the single-crossing
property in (b; s) on B × {s1� s2}.

Part (ii). To show that σ(s) is right-continuous in s, suppose to the contrary that
there is a sequence sk ↓ s∗ such that limk→∞σ(sk) ≡ σ̄ > σ(s∗), which is equivalent to
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limk→∞ σ(π(s0)� sk) ≡ σ̄ > σ(π(s0)� s
∗). By the right-continuity of P(·), this implies that

limk→∞ t(π(s0)� sk) ≡ t̄ > t(π(s0)� s
∗). By the generalization of the theorem of the max-

imum in Ausubel and Deneckere (1993b), t̄ ∈ T(π(s0)� s
∗), which, however, contradicts

the fact that t(π(s0)� s
∗) = supT(π(s0)� s

∗). Monotonicity of σ(s) follows from the mono-
tonicity of σ(β� s) in both arguments proven in the first part. �

The next lemma is the preliminary lower bound on the expected profit of the seller.

Lemma 18. For any b ∈ [0�1], it holds that

P(b)≥ c
(
π(b)

) + (
1 − δ2)ξ	 (46)

Moreover, there exists δ0 ∈ (0�1) such that for any δ ∈ (δ0�1) and any s ∈ [0�1−η], it holds
that

R
(
π(s)� s

) ≥ ξ2

4�
(1 − δ)2	 (47)

Proof. For any type b of the buyer,

P(b)= (
1 − δ2)v(b)+ δ2P

(
t
(
π(b)

))
≥ (

1 − δ2)v(b)+ δ2c
(
π(b)

)
≥ c

(
π(b)

) + (
1 − δ2)ξ�

where the first inequality follows from the fact that the seller does not make offers below
her costs and the second inequality is by v(b)− c(π(b)) ≥ ξ.

To prove inequality (47), consider type s ∈ [0�1 − η] of the seller and suppose she
makes offer p ≡ c(s)+ (1 − δ2)ξ2 in the first round of screening. Let

b̃ ≡ inf
{
b ∈ [0�1] : c(π(b)) > c(s)− (

1 − δ2)ξ
2

}

and b∗ ≡ max{b̃�π(s)}. By (46), for types b ∈ [b∗�π(s)],

P(b)≥ c
(
π(b)

) + (
1 − δ2)ξ ≥ c(s)+ (

1 − δ2)ξ
2

and so such types accept the offer p. I next compute the mass of these types. I consider
separately two cases.

Case 1. If b̃ = 0, then b∗ = π(s) = 0 and so the mass of types in [b∗�π(s)] is greater
than η. This implies that R(π(s)� s) ≥ η(p− c(s)) = 1

2(1 − δ2)ξη.

Case 2. If b̃ > 0, by continuity of c it holds that c(π(b̃)) = c(s) − 1
2(1 − δ2)ξ. Since

maxs∈[0�1] c′(s) ≤ �, c(s) ≤ c(π(b̃))+ �(s −π(b̃)), so

s −π(b̃) ≥ 1
�

(
c(s)− c

(
π(b̃)

)) = (
1 − δ2) ξ

2�
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Hence,

π(s)− b∗ ≥ min
{
π(s)− b̃�π(s)−π(s)

}
≥ min

{
s −π(b̃)�η

}
≥ min

{(
1 − δ2) ξ

2�
�η

}
	

For δ ∈ (
√

max{0�1 − 2η�/ξ}�1), the lower bound equals (1 − δ2)ξ/2�. Therefore, type

s is guaranteed to get at least (1 − δ2)ξ/2� × 1
2(1 − δ2)ξ ≥ ξ2

4� (1 − δ)2. This bound is
smaller than the bound obtained in Case 1 whenever δ > max{0�1 − 2η�/ξ} and so for
δ0 ≡ √

max{0�1 − 2η�/ξ}, the inequality (47) holds for δ > δ0. �

I can now derive d(δ) used in the main text to construct on-path strategies.

Lemma 19. There exists δ0 ∈ (0�1) such that for any δ ∈ (δ0�1) and any s ∈ [0�1 − η], it
holds that

π(s)− t(s) ≥ d(δ)�

where

d(δ)≡ ξ2

4��
(1 − δ)3	 (48)

Proof. Fix s ∈ [0�1 −η]. Let x = π(s)− t(s). Then

R
(
π(s)� s

) = x
(
P

(
π(s)− x

) − c(s)
) + δ2R

(
π(s)− x� s

)
≤ x

(
P

(
π(s)− x

) − c(s)
) + δ2R

(
π(s)� s

)
�

where the inequality follows from R(π(s)� s) ≥ x(P(t(π(s)−x� s))−c(s))+R(π(s)−x� s).
Thus, for any δ ∈ (δ0�1),

x≥ R
(
π(s)� s

)(
1 − δ2)

P
(
π(s)− x

) − c(s)
≥ ξ2

4�
(1 − δ)2

(
1 − δ2)
�

≥ ξ2

4��
(1 − δ)3�

where δ0 is the bound on δ in Lemma 18, and the second inequality is by (47) and the
fact that P(π(s)− x)− c(s) ≤ v(π(s)− x)− c(s) ≤ �. �

To conclude this appendix, I prove that strategies that I constructed in Step 3 in the
main text and in Appendix B.2 constitute the PBE in the auxiliary game.

Lemma 20. Strategies constructed in Step 3 in the main text and in Appendix B.2 consti-
tute the PBE in the auxiliary game.

Proof. By Lemma 15, the constructed strategies are part of equilibrium for types b ∈
[0�η] and s = 0. By construction in Step 3 in the main text and Appendix B.2, screening
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policies are optimal for the seller both on and off path. I am left to show that the buyer
has no incentives to deviate from strategy P on path (off path the acceptance strategy is
given by some P† described in Appendix B.2, and the argument is analogous).

If the highest remaining type of the buyer exceeds b, then type b interprets the previ-
ous seller’s offers as the seller’s deviations and expects the seller to restart the screening.
From (18), it follows that any offer above P(b) would be rejected by buyer type b. I next
show that prices below P(b) are accepted by buyer b. Suppose, to the contrary, that the
seller makes price offer p < P(b) and buyer type b strictly prefers to reject p. If P(β) =
P(b), then in the continuation, the seller type π(b) restarts her screening policy and so
by (18), it is optimal for type b to accept p. Suppose p ≤ P(β) < P(b). First, suppose
that π(b)≤ β. Then the next price offer of seller type π(b) is σ(β�π(b)) ≥ σ(β�π(β)) by
Lemma 17. It follows from (18) that

v(β)−p ≥ δ2(v(β)− σ
(
β�π(β)

))
�

from which it follows that (
1 − δ2)v(b) > (

1 − δ2)v(β)
≥ p− δ2σ

(
β�π(β)

)
≥ p− δ2σ

(
β�π(b)

)
	

Hence,

v(b)−p> δ2(v(b)− σ
(
β�π(b)

))
	 (49)

Buyer type b believes that the seller type is π(b). Thus, by the construction of equilib-
rium strategies off path in Appendix B.2, after the deviation, type b expects to accept
σ(β�π(b)) in the next round. But then by (49), type b strictly prefers to accept p, which
gives a contradiction.

Now suppose that π(b) ∈ (β�β + 2η]. Then, by the specification of strategies in Ap-
pendix B.2, seller type s = π(b) detects the buyer’s deviation and her beliefs are uni-
form on [π(s)�β+ 2η]. By Lemma 17, σ(β+ 2η�π(b)) ≥ σ(β+ 2η�π(β)) ≥ σ(β�π(β)),
and by the same argument as above for π(b) ≤ β, I get the contradiction. The cases
π(b) ∈ (β+ kη�β+ (k+ 1)η] for some k= 1� 	 	 	 are considered analogously. This com-
pletes the proof of optimality of strategy P . �

B.4 Appendix for Step 4: Contagious Coasian property of P(·)
This appendix proves Lemma 8, which characterizes the limit of P(·) as δ → 1. The ar-
gument proceeds in three steps. In Section B.4.1, I first prove Lemma 9 that covers types
below b+. In Section B.4.2, I then prove Lemma 10 that covers types above b+. Finally,
in Section B.4.3, I combine the two lemmas to yield the proof of Lemma 8.

B.4.1 Buyer types b ∈ (η�b+)

Proof of Lemma 9. Fix δ ∈ (0�1) and φ ∈ (0� 1
2η). Suppose that for some b̂ ∈ (η−φ�1],

(20) holds. I construct f (φ�δ) so that the upper bound in (21) on the willingness to pay
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Figure 8. Illustration for Lemma 9.

of type b† ≡ min{b̂ + φ�1} holds, and limδ→1 f (φ�δ) = 0 for any φ > 0. (See Figure 8 for

the illustration of quantities in the proof of the lemma.)

Denote by s† ≡ π(b†) = b† − η and ŝ ≡ π(b̂) = max{b̂ − η�0} types of the seller to

which types of the buyer b† and b̂, respectively, assign probability 1. Since φ ∈ (0� 1
2η)

and b† − b̂ ≤φ,

max
{
s† −η�0

} = max
{
b† − 2η�0

}
< b† − 2φ≤ b̂−φ< b† = s† +η

and so [b̂−φ�b†] ⊂ Bs† . I have

c
(
s†) + �φ< c(ŝ)+ 2�φ< P(b̂−φ)� (50)

where the first inequality is by maxs∈[0�1] c′(s) ≤ � and s† − ŝ ≤φ, and the second inequal-

ity is by (20) and ŝ = π(b̂).

Let K ≤ ∞ be the first round of screening when seller type s† makes an offer below

P(b̂). Then

R
(
b†� s†) ≤

∫ b†

b̂

(
P(b)− c(ŝ)

)
db+ δ2KR

(
b̂� s†)	 (51)

Let M(δ) = �(1 − δ)−1/2� and consider an alternative screening policy in which type

s† makes a sequence of offers (am)
M(δ)
m=1 such that am = v(b†) + m/M(δ)(c(s†) − v(b†))

and sells with probability 1 in M(δ) rounds. Since in round m, the seller sells to types

with P(b) ∈ [am�am−1) at price am, the loss in profit from such types compared to

the maximal profit that could be extracted from such types is at most am−1 − am =
(v(b†) − c(s†))/M(δ) ≤ �/M(δ). Recall that β(s†) = max{sup{b : P(b) ≤ c(s†)}�π(s†)}.
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By (50), β(s†) ≤ b̂−φ. Then

R
(
b†� s†) ≥ δ2M(δ)

(∫ b†

β(s†)

(
P(b)− c

(
s†))db− �

M(δ)

(
b† −β

(
s†)))

≥ δ2M(δ)

(∫ b†

β(s†)

(
P(b)− c

(
s†))db− �

M(δ)

)
�

(52)

where the first inequality is by the optimality of the seller’s screening policy, and the

second inequality is by b† −β(s†) ≤ 1. Combining (51) and (52),

∫ b†

b̂

(
P(b)− c(ŝ)

)
db+ δ2KR

(
b̂� s†) ≥ δ2M(δ)

(∫ b†

β(s†)

(
P(b)− c

(
s†))db− �

M(δ)

)
	 (53)

Then I have

(
1 − δ2M(δ)

)
�φ+ δ2KR

(
b̂� s†) ≥ (

1 − δ2M(δ)
)∫ b†

b̂

(
P(b)− c

(
s†))db+ δ2KR

(
b̂� s†)

≥ δ2M(δ)

(∫ b̂

β(s†)

(
P(b)− c

(
s†))db− �

M(δ)

)

≥ δ2M
(
R

(
b̂� s†) − �

M(δ)

)
�

(54)

where the first inequality is by P(b) − c(s†) ≤ v(b) − c(s†) ≤ �, the second inequality is

by (53), and the third inequality is by R(b̂� s†) ≤ ∫ b̂
β(s†)(P(b)− c(s†))db. When the highest

remaining type is b̂, type s† of the seller can make offer P(b̂ − φ), which is accepted at

least by types in (b̂−φ� b̂) and so, using (50),

R
(
b̂� s†) ≥φ

(
P(b̂−φ)− c

(
s†))>φ2� > 0	 (55)

Finally, dividing (54) by R(b̂� s†) and using (55), I get

δ2K ≥ δ2M(δ) − �

R
(
b̂� s†)

(
δ2M(δ)

M(δ)
+φ

(
1 − δ2M(δ)

))

> δ2M(δ) − �

φ2�

(
δ2M(δ)

M(δ)
+φ

(
1 − δ2M(δ)

))
	

(56)

Buyer type b† prefers to purchase at his willingness to pay P(b†) rather than wait

until the screening round K when price drops below P(b̂) and so v(b†) − P(b†) ≥
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δ2K(v(b†)− P(b̂)), which implies that

P
(
b†) − P(b̂)≤ (

1 − δ2K)(
v
(
b†) − P(b̂)

)
≤ (

1 − δ2K)(
v
(
b†) − c(ŝ)

)
≤ (

1 − δ2K)
�

<

(
1 − δ2M(δ) + �

φ2�

(
δ2M(δ)

M(δ)
+φ

(
1 − δ2M(δ)

)))
��

where I used (56) in the last line. Denoting the last expression by f (φ�δ) gives the de-
sired bound. (Indeed, limδ→1 δ

M(δ) = limδ→1 e
lnδ/

√
1−δ = 1 and limδ→1 M(δ) = ∞, and so

limδ→1 1 − δ2M(δ) +�/φ2�(δ2M(δ)/M(δ)+φ(1 − δ2M(δ))) = 0.) �

B.4.2 Buyer types b ∈ [b+�1] Before proceeding to the proof of Lemma 10, I prove two
auxiliary results. The first auxiliary lemma shows that there cannot be large discontinu-
ities in function P(·).

Lemma 21. For any ε > 0, there exists δ(ε) ∈ (0�1) such that for any δ ∈ (δ(ε)�1) the
following statements hold:

(i) For any interval (p�p) ⊂ [P(0)�P(1)] of length at least ε, there exists b ∈ [0�1] such
that P(b) ∈ (p�p).

(ii) For any type s of the seller and any type b ∈ Bs of the buyer,

P(b)− σ(b� s) ≤ ε	

Proof. Part (i). Suppose, to the contrary, that there exist ε > 0, p�p > p + ε such that
for any δ arbitrarily close to 1, either P(b)≥ p or P(b)≤ p for all b. By (18), for any b and

δ ∈ (
√

1 − ε/2��1),

P(b)− σ
(
π(b)

) = (
1 − δ2)(v(b)− σ

(
π(b)

)) ≤ (
1 − δ2)�<

ε

2
	 (57)

Let b̃ ≡ sup{b : P(b) < p}. Consider type b̂ = b̃ + 1
4d(δ) and b̌ = b̃ − 1

4d(δ), where d(δ) is

as in Lemma 19. Let δ(ε) = max{δ0�
√

1 − ε/2�}, where δ0 is as in Lemma 19. Suppose
δ ∈ (δ(ε)�1). Applying Lemma 19 to the seller type π(b̂), I get that b̌ > t(π(b̂)). Hence,
P(b̂)− σ(π(b̂)) = P(b̂)− P(t(π(b̂))) ≥ P(b̂)− P(b̌)≥ ε, which contradicts (57).

Part (ii). Consider s ∈ [0�1] and b ∈ Bs. By Lemma 17, σ(b� ·) is weakly increasing and
so since s ≥ π(b), σ(b� s) ≥ σ(b�π(b)). Hence,

P(b)− σ(b� s) ≤ P(b)− σ
(
b�π(b)

) = P(b)− σ
(
π(b)

)
�

which by (57) is less than ε for δ ∈ (δ(ε)�1). �

The second auxiliary lemma gives the bound on the distance between two types in
terms of δ and the difference in their willingness to pay.
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Lemma 22. For any ε > 0, there exists δ(ε) ∈ (0�1) such that for any δ ∈ (δ(ε)�1) and any
b′′� b′ ∈ [0�1],

P
(
b′′) − P

(
b′) ≥ ε implies b′′ − b′ ≥ C(ε)(1 − δ)2�

where C(ε) is a strictly increasing function of ε with C(0) = 0.

Proof. Set δ1(ε) ∈ (0�1) such that for any δ ∈ (δ1(ε)�1), ln(1 − ε
�
)/(4 lnδ) ≥ 1

and 1 − δ/(− lnδ) > 1
2 , and let δ0 be the bound on δ from Lemma 19. Set δ(ε) =

max{δ0� δ1(ε)}.
Consider ε, b′, and b′′ such that P(b′′)− P(b′) ≥ ε > 0. Define l̂ and tl, l = 0� 	 	 	 � l̂ + 1

recursively as follows. Recall that t(s) gives the lowest type to whom seller type s allo-
cates in the first round of screening. Let t0 = b′′ and tl = t(π(tl−1)) for l = 1� 	 	 	 � l̂ + 1,
where l̂ is the largest integer such that t

l̂
≥ b′. By Lemma 19,

tl−1 − tl ≥ d(δ)� (58)

where d(δ) = ξ2(1 − δ)3/4�� is defined in (48) in Lemma 19. Since d(δ) > 0, l̂ is finite

and sequence (tl)
l̂+1
l=0 is strictly decreasing. By (18) and σ(s) = P(t(s)),

P
(
b′′) = (

1 − δ2)v(b′′) + δ2σ
(
π

(
b′′))

= (
1 − δ2)v(b′′) + δ2P

(
t
(
π

(
b′′)))

= (
1 − δ2)v(b′′) + δ2P(t1)

= (
1 − δ2)v(t0)+ (

1 − δ2)δ2v(t1)+ (
1 − δ2)δ4σ

(
π(t1)

)
· · ·

= (
1 − δ2) l̂∑

l=0

δ2lv(tl)+ δ2(l̂+1)P(t
l̂+1)	

Then

P
(
b′′) − P

(
b′) = (

1 − δ2) l̂∑
l=0

δ2lv(tl)+ δ2(l̂+1)P(t
l̂+1)− P

(
b′)

≤ (
1 − δ2) l̂∑

l=0

δ2lv(tl)− (
1 − δ2(l̂+1))P(

b′)

<
(
1 − δ2(l̂+1))(v(b′′) − P

(
b′))�

where the first inequality is by P(·) weakly increasing and b′ ≥ t
l̂+1, and the second in-

equality is by v(·) strictly increasing and tl < t0 = b′′. Since v(b′′)−P(b′)≥ P(b′′)−P(b′)≥
ε > 0,

δ2(l̂+1) ≤ 1 − P
(
b′′) − P

(
b′)

v
(
b′′) − P

(
b′) ≤ 1 − ε

�
�
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which implies that

l̂ ≥
ln

(
1 − ε

�

)
2 lnδ

− 1	 (59)

Then I have

b′′ − b′ =
l̂∑

l=1

(tl−1 − tl)+ t
l̂
− b′

≥ d(δ)l̂

≥ d(δ)

( ln
(

1 − ε

�

)
2 lnδ

− 1
)

= ξ2

4��
(1 − δ)3

( ln
(

1 − ε

�

)
2 lnδ

− 1
)

≥ ξ2

16��
ln

(
1 − ε

�

)
(1 − δ)3

lnδ

>− ξ2

32��
ln

(
1 − ε

�

)
(1 − δ)2�

where I used the definition of tl in the first line, (58) in the second line, (59) in the third
line, definition of d(δ) in the fourth line, and δ > δ1(ε) in the last two lines. Defining
C(ε) ≡ −ξ2 ln(1 − ε

�
)/(32��), I get the desired result. �

I can now prove Lemma 10.

Proof of Lemma 10. Suppose, to the contrary, that there exists ε > 0 such that there
exists a sequence of φ> 0 and δ ∈ (0�1) converging to 0 and 1, respectively, such that for
any φ and δ, for some b† ∈ [0�1], it holds that c(π(b†)) + 2�φ ≥ P(b† − 2φ) (inequality
(22)), but

P
(
b†) ≥ c

(
π

(
b†)) + ε	

I will derive a contradiction.
Let s† ≡ π(b†) and ν ≡ P(b†) − c(s†) ≥ ε > 0. (See Figure 9 for the illustration of

different variables in the proof.) By Lemma 21, there exists δ(ε) ∈ (0�1) such that for
all δ ∈ (δ(ε)�1), in any interval (p�p) ⊂ [P(0)�P(1)] of length greater than 1

10ε (and so,

greater than 1
10ν), there exists b such that P(b) ∈ (p�p), and P(b)−P(t(b� s)) ≤ 1

10ε ≤ 1
10ν

for any s ∈ [0�1] and b ∈ Bs. I further consider δ > δ(ε).
Lower bound on xK . Let K ≤ ∞ be the first round of screening, in which seller type

s† makes an offer less than or equal to c(s†) + 7
10ν. Let b̂ be the lowest buyer type that

buys in round K. By part (i) of Lemma 21, P(b̂) > c(s†) + 6
10ν. In the first K rounds of

screening, type s† allocates to the mass xK ≡ b† − b̂ of buyer types.
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Figure 9. Illustration for Lemma 10.

Consider the following alternative screening strategy, in which type s† screens buyer
types above b̂ in MK = �min{ 1

2K�(1 −δ)−1}� <K rounds instead of K. Let ak be the price
offer that type s† makes in round k in the on-path equilibrium screening strategy. Define
qk ≡ P(b†) + (aK−1 − P(b†))k/MK , k = 1�2� 	 	 	 �MK . In the alternative strategy, type ŝ

makes offer pk = min{qk�ak} in rounds k ≤ MK , makes offer aK in round MK + 1, and
continues following the equilibrium strategy from then on (i.e., offers aK+1� aK+2� 	 	 	 ).

The total loss from using this alternative strategy is at most 4
10νxK/MK . Indeed, in

each round, the loss of type s† compared to the maximum surplus that can be extracted
is at most (P(b†) − P(b̂))/MK ≤ 4

10ν/MK , and the seller allocates to a mass xK of buyer
types. Moreover, there is no loss due to discounting, as by construction, the allocation
to all buyer types happens sooner under the alternative strategy than under the equi-
librium strategy. At the same time, by speeding up the screening, type s† gains at least
(δ2MK − δ2K)VK , where VK is the continuation utility of type s† after she makes price of-
fer aK and follows the equilibrium strategy further. By the optimality of the screening
strategy of type s†,

4
10

ν
xK
MK

≥ (
δ2MK − δ2K)

VK	 (60)

Lower bound on xL. Consider seller type ŝ ≡ π(b̂), and let L be the first round of
screening, in which type ŝ makes an offer below c(s†) + 4

10ν on the equilibrium path.

Suppose in round L, type ŝ allocates to all buyer types above some b̌. By part (i) of
Lemma 21, P(b̌) > c(s†) + 3

10ν. Denote by xL ≡ b̂ − b̌ the mass of buyer types to whom
type ŝ allocates in the first L rounds, denote by VL the continuation utility of the seller
type ŝ after round L of equilibrium screening, and let ML = �min{ 1

2L�(1 − δ)−1}� < L.
By the analogous argument as with the lower bound on xK , for the optimality of the
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screening strategy of type ŝ, it is necessary that

4
10

ν
xL
ML

≥ (
δ2ML − δ2L)

VL	 (61)

Lower bound on VK . Type s† can offer c(s†)+ 3
10ν in round K + 1 of the screening in-

stead of following the equilibrium screening policy. The mass of buyer types that accept
such a price is at least xL and so

VK ≥ 3
10

νxL	 (62)

Lower bound on VL. In round L + 1 of screening by type ŝ, only buyer types below
b̌ remain and P(b̌) > c(s†) + 3

10ν. Type ŝ can offer c(s†) + 1
10ν instead of following the

equilibrium screening strategy. Denote by b′′ and b′ the highest and lowest buyer types,
respectively, that accept such an offer. By part (i) of Lemma 21, P(b′′) − P(b′) > 1

10ν ≥
1
10ε. By Lemma 22, there is δ(ε) such that whenever δ > δ(ε), it holds that b′′ − b′ ≥
C( 1

10ε)(1 − δ2) and so

VL ≥ 1
10

νC
(

1
10

ε

)
(1 − δ)2� (63)

where C(ε) is the function defined in Lemma 22.
Deriving the contradiction. Multiplying inequalities (60), (61), (62), and (63), I get

16
3
xK ≥MK(1 − δ)ML(1 − δ)

(
δ2MK − δ2K)(

δ2ML − δ2L)
C
(

1
10

ε

)
	 (64)

I first show that the right-hand side of (64) converges to a positive number along the
subsequence as δ → 1. Let us first find the lower bound on the limit of MK(1 − δ) ×
(δ2MK − δ2K). Consider a subsequence of δ such that δK and δL converge. Since type b†

prefers to buy at price P(b†) rather than wait until the price drops below P(b̂) in round
K,

δ2K ≤ v
(
b†) − P

(
b†)

v
(
b†) − P(b̂)

≤ v
(
b†) − c

(
s†) − ν

v
(
b†) − c

(
s†) − 7

10
ν

≤ �− ν

�− 7
10

ν

≤ �− ε

�− 7
10

ε

< 1	 (65)

It follows from (65) that

lim
δ→1

(1 − δ)K = lim
δ→1

(− lnδ)K > −1
2

ln
[

�− ε

�− 7
10

ε

]
≡ A(ε) > 0�

and so limδ→1 δ
K ≤ e−A(ε). Since MK = �min{ 1

2K�(1 − δ)−1}�,

lim
δ→1

MK(1 − δ) = min
{

lim
δ→1

1
2
K(1 − δ)�1

}

≥ min
{1

2
A(ε)�1

}
> 0	
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If limδ→1 δ
K ≤ e−3 or, equivalently, limδ→1(− lnδ)K ≥ 3, then

lim
δ→1

δ2MK = e−2 min{limδ→1
1
2K(− lnδ)�1} = e−2�

and so

lim
δ→1

(
δ2MK − δ2K) ≥ e−2 − e−6 > 0	

If limδ→1 δ
K > e−3 or, equivalently, limδ→1(− lnδ)K < 3, then

lim
δ→1

(
δ2MK − δ2K) ≥ lim

δ→1

(
δK − δ2K)

> min
{
e−3 − e−6� e−A(ε) − e−2A(ε)

}
> 0�

where the first inequality is by MK ≤ 1
2K, and the second inequality is by the fact that the

function x− x2 attains its minimum on [e−3� e−A(ε)] either at e−3 or e−A(ε). Summariz-
ing, I get

lim
δ→1

MK(1 − δ)
(
δ2MK − δ2K) ≥ min

{
1
2
A(ε)�1

}
× min

{
e−3 − e−6� e−A(ε) − e−2A(ε)

}
≡ B(ε) > 0	

Analogously, since type b̂ prefers to buy at price P(b̂) rather than wait until the price
drops to P(b̌),

δ2L ≤ v(b̂)− P(b̂)

v(b̂)− P(b̌)
≤

v(b̂)− c
(
s†) − 6

10
ν

v(b̂)− c
(
s†) − 4

10
ν

≤
�− 6

10
ν

�− 4
10

ν

≤
�− 6

10
ε

�− 4
10

ε

< 1�

and I can proceed as above to show that for some constant B1(ε) > 0, it holds that

lim
δ→1

ML(1 − δ)
(
δ2ML − δ2L) ≥ B1(ε)	

Therefore, the limit of the right-hand side of (64) as δ → 1 is bounded from below by
B(ε)B1(ε)C( 1

10ε) > 0.
At the same time, for φ<φ1 ≡ ε/(20�), inequality (22) implies P(b† − 2φ) ≤ c(s†) +

2�φ ≤ c(s†)+ 1
10ε ≤ c(s†)+ 1

10ν and so {b ∈ Bs† : P(b) > c(s†)+ 1
10ν} ⊆ [b† −2φ�b†]. There-

fore, xK ≤ 2φ and the left-hand side of (64) converges to zero as φ → 0, which gives the
desired contradiction and proves the lemma. �

B.4.3 Proof of Lemma 8 Fix ε > 0. Since by Lemma 1, P(b) ≥ max{y(0)� c(π(b))} ≥
max{y∗(0)� c(π(b))}, it is sufficient to show that there exists δ(ε) ∈ (0�1) such that for
any δ ∈ (δ(ε)�1) and b ∈ [0�1], either P(b)≤ c(π(b))+ ε or P(b)≤ y∗(0)+ ε.

Let us collect all results that I have proven so far.

R.1. By Lemma 16, there exists δ1(ε) ∈ (0�1) such that for any δ ∈ (δ1(ε)�1), P(b) ≤
y∗(0)+ 1

2ε for any b ∈ [0�η].
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R.2. By Lemma 10, there exists φ̃(ε) > 0 and δ̃(ε) ∈ (0�1) such that for any φ ∈
(0� φ̃(ε)) and δ ∈ (δ̃(ε)�1), for any b† ∈ [η�1],

c
(
π

(
b†)) + 2�φ ≥ P

(
b† − 2φ

)
implies P

(
b†)< c

(
π

(
b†)) + 1

2
ε	 (66)

Let

φε ≡ 1
2

min
{
φ̃(ε)�

1
2
η�

1
2�

(
y∗(0)− c(0)− 1

2
ε

)}
	 (67)

R.3. Let function f (·� ·) be as in Lemma 9. By Lemma 9, there exists δ̂(ε) ∈ (0�1) such
that for any δ ∈ (δ̂(ε)�1), f (φε�δ) <

1
2εφε, and for any b̂ ∈ (η−φε�1],

c
(
π(b̂)

) + 2�φε < P(b̂−φε) implies

P
(
min{b̂+φε�1})<P(b̂)+ f (φε�δ)	

(68)

I let δ(ε) ≡ max{δ1(ε)� δ̃(ε)� δ̂(ε)} and fix any δ ∈ (δ(ε)�1). Suppose there exists b such
that

P(b) > c
(
π(b)

) + ε	 (69)

I will show that this implies that

P(b)≤ y∗(0)+ ε	 (70)

Since δ > δ1(ε), by Lemma 16, the inequality (70) holds whenever b ≤ η. Hence, I con-
sider the case b > η.

Define K as follows. If there is a nonnegative integer k < �(b− η)/φε� + 1 such that
c(π(b − kφε)) + 2�φε ≥ P(b − kφε − φε), then let K be the smallest such integer. If no
such k exists, let K = �(b− η)/φε� + 1. Observe that K ≥ 1. Indeed, if K = 0, then since
P(·) is weakly increasing, c(π(b)) + 2�φε ≥ P(b − φε) ≥ P(b − 2φε). Then (66) implies
that P(b) < c(π(b))+ 1

2ε, which contradicts inequality (69).
By the construction of K, for any k = 1� 	 	 	 �K − 1, it holds that c(π(b − kφε)) +

2�φε < P(b− kφε −φε). Then (68) holds for b̂ = b− kφε, k = 1� 	 	 	 �K − 1, and so

P(b− kφε +φε) < P(b− kφε)+ f (φε�δ)	 (71)

Summing inequalities (71) over all k= 1� 	 	 	 �K − 1, I get

P(b) < P
(
b− (K − 1)φε

) + (K − 1)f (φε�δ)	 (72)

To complete the argument, I consider separately two cases.
Case 1. Suppose K = �(b − η)/φε� + 1. This implies that b − Kφε ≤ η. By (67),

b−Kφε > η−φε and

c
(
π(b−Kφε)

) + 2�φε = c(0)+ 2�φε < y∗(0)− 1
2
ε < y(0) ≤ P(b−Kφε −φε)�
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where the last inequality is by Lemma 1. Hence, by (68) applied to b̂ = b − Kφε, the
inequality (71) holds for k=K as well and so, combined with the inequality (72),

P(b) < P(b−Kφε)+Kf(φε�δ)

≤ P(b−Kφε)+ 1
φ
f(φε�δ)

≤ P(b−Kφε)+ 1
2
ε�

≤ P(η)+ 1
2
ε�

≤ y∗(0)+ ε�

where I used K ≤ (b − η + φε)/φε ≤ b/φε ≤ 1/φε in the second inequality, used
f (φε�δ)/φε ≤ 1

2ε for δ > δ̂(ε) in the third inequality, used P(·) weakly increasing in the
fourth inequality, and used P(η) ≤ y∗(0)+ 1

2ε for δ > δ1(ε) in the last inequality. There-
fore, inequality (70) holds in this case.

Case 2. Suppose that K < �(b − η)/φε� + 1. Then by the definition of K and mono-
tonicity of c(·),

c
(
π

(
b− (K − 1)φε

)) + 2�φε ≥ c
(
π(b−Kφε)

) + 2�φε ≥ P(b−Kφε −φε)	

Applying (66) with b† = b− (K − 1)φε, I get

P
(
b− (K − 1)φε

)
< c

(
π

(
b− (K − 1)φε

)) + 1
2
ε	 (73)

Alternatively, by the definition of K, for k = 1� 	 	 	 �K − 1, c(π(b − kφε)) + 2�φε <

P(b − kφε − φε). Hence, by the inequality (72), inequality (69), and the argument as
in the previous case, I get

P
(
b− (K − 1)φε

)
> P(b)− (K − 1)f (φε�δ)

≥ P(b)− 1
φε

f(φε�δ)

≥ P(b)− 1
2
ε

> c
(
π(b)

) + 1
2
ε

≥ c
(
π

(
b− (K − 1)φε

)) + 1
2
ε�

which is a contradiction to (73). Thus, this case is not possible.

B.5 Proof of Lemma 2

So far, I considered the case b = 0 and b = 1. Now consider the general case 0 ≤ b <

b ≤ 1. I first restrict attention to buyer types b ∈ [b�b] and seller types s ∈ [b�b], and
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suppose that the optimistic conjectures of the buyer in this case put probability 1 on
the lowest seller type above b, i.e., μn

b[max{π(b)�b}] = 1. I can proceed as in Appendices
B.1–B.4 to construct the PBE of the auxiliary game with the buyer’s strategy given by
the willingness to pay function P(b|b), and show that it exhibits the contagious Coasian
property. Importantly, the bounds on δ that I derived in these steps do not depend on
b= 0; hence, I can generalize Lemma 8 as follows.

Lemma 23. For any ε > 0, there exists δ(ε) ∈ (0�1) such that for all δ ∈ (δ(ε)�1) and all
0 ≤ b < b≤ 1, it holds that

max
b∈[b�b]

∣∣P(b|b)− max
{
y∗(b)� c

(
π(b)

)}∣∣ < ε	

I now collect all steps to complete the proof of Lemma 2. Step 5 in the main text
verifies that the PBEs of the auxiliary game are also PBEs in the original game for suf-
ficiently high δ. The continuation utility of any seller type s ∈ [π(b)�π(b)] in the PBEs
of the auxiliary game that I constructed is bounded above by P(min{π(s)�b}) − c(s). By
Lemma 23, for δ ∈ (δ(ε)�1) and any s ∈ [π(b)�π(b)],

P
(
min

{
π(s)�b

}) − c(s) ≤ max
{
y∗(b)− c(s)�0

} + ε�

which gives the desired conclusion of Lemma 2.
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