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Competition and networks of collaboration

Nikita Roketskiy
Department of Economics, University College London

I develop a model of collaboration between tournament participants in which
agents collaborate in pairs, and an endogenous structure of collaboration is rep-
resented by a weighted network. The agents are forward-looking and capable of
coordination; they value collaboration with others and higher tournament rank-
ings. I use von Neumann–Morgenstern stable sets as a solution. I find stable net-
works in which agents collaborate only within exclusive groups. Both an absence
of intergroup collaboration and excessive intragroup collaboration lead to ineffi-
ciency. I provide a necessary and sufficient condition for the stability of efficient
outcomes in winner-takes-all tournaments. I show that the use of transfers does
not repair efficiency.
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1. Introduction

We often observe collaboration between direct competitors. For instance, firms that
compete in the market for a final product frequently collaborate at the research and de-
velopment (R&D) stage. Similarly, co-workers who compete for a promotion collaborate
with their rivals. Agents in these environments face a dilemma: If they collaborate, they
become stronger competitors, but they also strengthen their rivals’ positions.

Under what conditions do competitors collaborate efficiently? And if those condi-
tions do not hold, what are stable patterns of collaboration? Does competition suppress
collaboration, and if it does, do agents use transfers to exchange utility for collaboration
and restore efficiency?

I address these questions with a model in which an endogenous structure of collab-
oration is represented by a weighted network; i.e., I assume that a quantum of collabo-
ration is a bilateral interaction. I restrict my attention to situations in which competi-
tion can be modeled as a tournament. In a tournament, a higher level of collaboration,
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measured by the number of collaborative partners and the intensity of the collaborative
interaction, results in better performance and, therefore, a higher tournament ranking.

In my model, a finite population of identical agents participates in a tournament.
Each agent may exert an effort to collaborate with any opponents of his choice. The
collaboration is nonexclusive, and if the agent chooses a higher collaborative effort, his
performance improve only if his collaborative partner reciprocates the effort. Once all
of the collaboration has taken place, all agents are ranked according to their output,
which is increasing in their reciprocated collaborative efforts. Agents value their output
directly and indirectly through their preferences for higher tournament ranks.

I focus on a protocol-free formation of a collaborative network. To model this pro-
cess, I take a cooperative route: I look at all possible suggestions that agents can collec-
tively make and test them against the possible objections of other agents. This process
results in stable sets of outcomes (networks of collaboration) that are immune to ob-
jections. Requiring that a stable outcome be immune to all objections is too strong, so
I require only that a stable outcome be immune to objections that lead to other sta-
ble outcomes. Formally, I study von Neumann–Morgenstern stable sets of outcomes
defined for a farsighted blocking relation.

My findings are threefold. First, I find stable networks of collaboration that have a
group structure. When tournament prizes are large enough, agents are endogenously
divided into several groups. Generally, agents collaborate at an excessively high level
within each group, but collaboration across groups is absent. Put differently, these
groups form complete components. Any complete component is strictly larger in size
than a union of all complete components that are smaller in size. In particular, the
largest complete component always contains a strict majority of all agents. The number
of groups, their size, and the intensity of the within-group collaboration are determined
by the intensity of the competition. For instance, when tournament prizes are small, the
competition is mild and the efficient (complete) network of collaboration is stable.

The intuition behind this result builds on the observation that a large enough group
can guarantee top tournament rankings for its members, irrespective of what the rest
of the agents do. To achieve that, the group members must sacrifice collaboration with
outsiders. Roughly speaking, a large enough group has a collective maxmin strategy that
yields a high payoff for its members. Indeed, members of this group can refuse to col-
laborate with outsiders. If a group constitutes a majority, there are more collaborative
opportunities within the group than outside of it; thus group members have a competi-
tive advantage in the tournament.

The size of each group is endogenous. It can be found by maximizing an agent’s
payoffs across complete components of various sizes (assuming that the agent is part
of these complete components). For example, the size of the largest group maximizes
a participant’s payoff across all possible groups that can be formed by a strict majority.
One interesting interpretation of this criterion is the following: Imagine a by-invitation-
only union in which all participants collaborate with each other. Start with a union that
is formed by the smallest strict majority.1 In my model, such a union stops inviting new
members as soon as it reaches the size of the largest group.

1This is a necessary condition for union members to dominate the tournament.
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My second finding is a necessary and sufficient condition for stability of efficient
outcomes in winner-takes-all tournaments. I show that there exists a stable set that con-
tains an efficient outcome if and only if a payoff of an agent in this outcome is weakly
larger than a payoff of an agent in any complete component that constitutes a strict ma-
jority and guarantees its members top rankings in the tournament. Moreover, if such
a stable set exists, it is a singleton. For winner-takes-all tournaments, this condition is
equivalent to the prize in the tournament being sufficiently small. To the best of my
knowledge, this result does not appear in the literature (with the notable exception of
Dutta et al. (1998); however, a similar observation in their paper is derived only for a
three-agent example, and it does not generalize).

The important driving force behind these two results is an externality caused by
tournament competition. Consider a complete network of collaboration in which all
agents tie for all rankings in the tournament. Reducing the intensity of a link between
two agents moves both of them all the way down to the bottom two positions of the rank-
ing or, equivalently, moves the rest of the agents away from the bottom two positions.
In this case, the two agents who reduce the intensity of the link bear the opportunity
cost, which equals the value of lost collaboration and the value of the top-ranking po-
sitions. At the same time, these agents impose a positive externality on the rest of the
agents, since the rankings of the latter improve. Clearly, agents cannot exploit this posi-
tive externality to their benefit unilaterally, but collectively such an exploitation may be
possible. For instance, consider all agents who sever a link with agent i. These agents
internalize the effect of the positive externality they impose on each other.

I find that the requirement for the stability of efficient outcomes is very demanding.
A natural question, then, is whether one can allow agents to buy missing collaboration
from each other and restore efficiency. In particular, there are large gains from such a
trade in stable outcomes, in which networks of collaboration feature group structure. In
my most general version of the model, I allow agents to use monetary transfers to pay
each other for collaboration. Transfers are modeled as voluntary bilateral agreements,
in which a pair of agents jointly decide on the amount of money one agent pays the
other.

I show that transfers do not resolve the tension between stability and efficiency. In
particular, the opportunity to transfer money voluntarily does not affect the stability of
outcomes in which agents in larger groups refuse to collaborate with agents in smaller
groups. The absence of links between groups in these outcomes results in efficiency
losses. I show that even if we allow agents to split the gains of restored links endoge-
nously and without any restrictions, missing links are not restored. Intuitively, agents
are substitutes for each other. When negotiating the price of a missing link, agents pro-
pose to implement new outcomes that generate larger welfare compared to the starting
point of negotiation. However, these new outcomes are prone to collective deviations,
and I show that the set of collective deviations is so rich that the long-term gain of im-
plementing these outcomes is always zero. An important assumption in this part of the
model is that the transfers are part of self-enforcing bilateral agreements and, therefore,
are set in a decentralized manner.
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These results are in line with the observation that the structure of collaboration
between competitors is often asymmetric and inefficient. For example, Bekkers et al.
(2002) show that the network of cross-licensing agreements between participants in the
Global System for Mobile Communications (GSM) market has a tightly connected clus-
ter of industry leaders. Some firms were left out of these agreements, despite having
large portfolios of patents that were essential to GSM technology.

The rest of the paper is structured as follows. Related literature is discussed in Sec-
tion 2. Section 3 contains a simple three-agent example that outlines the main findings
of the paper. The setup of the general model in Section 4 is followed by the results in
Section 5. Applications of the model are discussed in Section 6, and Section 7 concludes.

2. Related literature

This paper contributes to the literature on collaboration between rivals. Related models
are studied by Bloch (1995), Yi (1998, 1997), and Yi and Shin (2000) in the context of coali-
tion formation, and Joshi (2008), Goyal and Joshi (2003), Goyal and Moraga-Gonzalez
(2001), Marinucci and Vergote (2011), Mauleon et al. (2014), and Grandjean and Vergote
(2015) in the context of network formation. These studies focus on R&D collaboration
among firms as the main application.

Other applications that are relevant for this paper are sabotage in tournaments and
the interaction between discrimination and social status. Lazear (1989), Chen (2003),
and Konrad (2000) study various aspects of sabotage in tournaments. McAdams (1995)
studies racial discrimination that is fueled by a desire to obtain higher social status.

A stability concept used in this paper—the farsighted stable set—is closely related
to various solutions used in the literature on coalition and network formation with
farsighted agents. Several papers in this literature follow a cooperative approach and
use farsighted stability concepts as solutions. This strand of the literature includes
Greenberg (1990), Chwe (1994), Ray and Vohra (1997), Diamantoudi and Xue (2007),
Herings et al. (2009), Page et al. (2005), Grandjean et al. (2010, 2011), and Mauleon et al.
(2011). The version of the farsighted stable set used in this paper differs from the ver-
sions defined in the above papers in a few aspects. First, I allow for arbitrary acting
coalitions (Herings et al. 2009 and Mauleon et al. 2011 restrict the acting coalition to be
a singleton or a pair). Second, I allow agents to choose all of their actions (i.e., the inten-
sity of collaboration and the sizes of transfers) in a cooperative manner (Herings et al.
2009, Page et al. 2005, Grandjean et al. 2010, 2011, and Mauleon et al. 2011 focus on pure
network formation).

Another strand of the literature uses dynamic noncooperative models to describe
the process of coalition or network formation. Among these are Aumann and Myerson
(1988), Bloch (1996), Konishi and Ray (2003), and Dutta et al. (2005). Dynamic mod-
els can naturally accommodate the time preferences of agents involved in the network-
formation process. However, this comes at the cost of less rich sets of coalitional devia-
tions that agents are allowed to undertake. In most of these models, exogenously chosen
proposers (or agenda setters) suggest the course of action.
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Figure 1. Various networks of collaboration.

3. Simple example

In this section, I present a simple three-agent example that illustrates my main find-
ings. Consider three engineers—Antony, Brutus, and Caesar— who are participating in
a winner-takes-all tournament. The objective of the tournament is to select the best de-
sign for a phone. Each engineer is an expert on a particular phone module: Antony’s
specialty is touch screens, Brutus’s is batteries, and Caesar’s is mobile processors and
memory modules.

The engineers can ask each other to design high-quality proprietary modules for
their phones or they can source low-quality generic modules from the market. When
two engineers—say, Antony and Brutus—agree to collaborate, Antony can use a battery
design developed by Brutus in exchange for his own touch screen design.2 In this case,
their products will have identical proprietary touch screens and batteries. It is conve-
nient to represent a structure of bilateral collaboration by a network (see Figure 1) in
which nodes correspond to agents and links correspond to collaborations.

For simplicity, assume that the quality of a final product is strictly increasing in
the number of proprietary modules and does not depend on any other characteristics.
Therefore, an engineer whose phone has the largest number of proprietary modules
wins the tournament. Also, assume that even if an engineer does not win the tourna-
ment, he can use his prototype in the future. The latter means that developing a high-
quality prototype is valuable: Let f (k) be the value of a prototype with k proprietary
components and let R be a prize in the tournament. An engineer with a prototype that
has k proprietary components receives a payoff

f (k)+wR�

where w ∈ [0�1] is the engineer’s chances of winning the tournament.

2Such a collaboration is essentially a cross-licensing agreement when engineers have patent protection
for their proprietary components.
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In this very stylized tournament, there is only one decision that each engineer has to
make: with whom to collaborate. Consider Antony and Brutus. Collaboration between
them does not change their relative positions in the tournament. Suppose that Antony
has a better prototype than Brutus. I assume that if they collaborate, Antony’s prototype
will still be better than Brutus’s. Moreover, collaboration contributes to the value of both
prototypes and makes them more competitive than Caesar’s prototype.

If the competitors are myopic and can only make one link change at a time, they will
fully collaborate, and all three prototypes will be built with proprietary components.
More formally, the unique pairwise stable network of collaboration is a complete one
(see Figure 1(a)). This outcome is also the unique efficient outcome, since the tourna-
ment is a constant-sum game, and the value of prototypes is increasing with collabora-
tion.

This paper focuses on a case in which agents are farsighted (i.e., they care about
their long-run payoffs) and able to coordinate with each other. I show that the com-
plete network of collaboration is no longer a plausible prediction. For instance, suppose
that R is large and all three engineers are collaborating with each other. Any two en-
gineers (e.g., Antony and Brutus) have a jointly profitable deviation. If they simultane-
ously refuse to share their modules with Caesar, the value of their prototypes drops from
f (2) to f (1), but their individual chance of winning the tournament increases from 1/3
to 1/2, since Caesar’s prototype becomes strictly worse than the other two prototypes
(see Figure 1(b)). If R/6 > f(2)− f (1), such a deviation is mutually beneficial for Antony
and Brutus.

Naturally, one may cast doubt on the credibility of this deviation. For instance, both
Brutus and Caesar prefer to restore their missing link so as to proceed from the outcome
depicted in Figure 1(b) to the outcome depicted in Figure 1(c). Note that the credibility
of the latter deviation is also not obvious, as both Antony and Caesar would like to seize
their collaboration with Brutus and restore their missing link so as to proceed from the
outcome depicted in Figure 1(c) to the one depicted in Figure 1(d). It is easy to see that
there are no outcomes in this example that are immune to all coalitional deviations.

To resolve this problem, I relax the stability requirement. Suppose that stable out-
comes are those that are immune only to credible coalitional deviations (i.e., to devia-
tions to other stable outcomes).3

If R/6 > f(2) − f (1), a set of all collaborative networks with exactly one link is sta-
ble. To show this, consider the following two arguments. First, there is no coalition of
engineers who can and want to proceed from the outcome depicted in Figure 1(b) to the
one depicted in Figure 1(d). Indeed, the only engineer who wants to follow this path is
Caesar, and he cannot do anything to make this transition happen (he needs Antony’s
active participation, but Antony does not gain anything from this transition). Therefore,
these three outcomes are immune to deviations to stable outcomes. Second, for any
outcome with zero, two, or three links, there is a coalition of two engineers who want
to proceed to an outcome in which they collaborate only with each other. Moreover,
these two engineers can always implement this transition without relying on the third.

3This definition implies that a set of stable outcomes must be self-enforcing.
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Therefore, outcomes with zero, two, or three links are not immune to deviations to stable
outcomes.

To get a better intuition for the solution, consider two sets that are not stable: a
singleton that contains a complete network and the set that contains two networks, as
depicted in Figures 1(c) and 1(d). The first set does not satisfy the criteria for stability,
because there are outcomes that are not included in it and that are immune to deviations
to the (allegedly) stable outcomes. In particular, the networks in Figures 1(b) and 1(d)
are immune to deviations to the complete network. The property that the complete
network fails to satisfy is called external stability.

The second set, which consists of the two networks depicted in Figures 1(c) and 1(d),
does not satisfy the criteria for stability because the network in Figure 1(c) is not immune
to a deviation to the (allegedly) stable network in Figure 1(d). The property that this set
fails to satisfy is called internal stability. I discuss internal and external stability in detail
in Section 4.

When is the efficient level of collaboration stable in this example? All three engineers
share their design when competition is not too fierce, compared to direct benefits from
collaboration; i.e., when R≤ 6(f (2)− f (1)). This condition can be rewritten as

n ∈ arg max
k>n/2

{Vk}�

where Vk = f (k) + R/k is the payoff of an agent participating in a large, fully collab-
orating group of size k, and n is the total number of players (n = 3 in this example).
Intuitively, when a group is formed, its size is determined by the utility of its represen-
tative member. New members are added only if the current members benefit from the
addition, and existing members are excluded if the remaining members benefit from the
exclusion.

In the inefficient outcome in which, for instance, Antony and Brutus collaborate
with each other and Caesar is on his own, there are gains from trade: Caesar could col-
laborate with the two other engineers and compensate them for their loss in the tour-
nament. Despite the presence of gains from such a trade, voluntary transfers cannot
destabilize the inefficient outcome mentioned above. The engineers are imperfect sub-
stitutes for each other. Therefore, in the situation in which Caesar pays for his collabora-
tion with competitors, he can propose a new arrangement in which one of the competi-
tors, e.g., Brutus, is dropped and the other, Antony, is compensated with a small amount
for following this proposal.

The findings presented in this section do not depend on the simplifying assumptions
about three-player winner-takes-all tournaments and the discreet and costless nature
of collaboration. In the next section, I present a much richer model, followed by formal
results that generalize the observations discussed here.

4. Model

Let N = {1� � � � � n} be a set of identical agents competing in a tournament. Tournament
participants engage in bilateral collaborations with each other. Agent i ∈ N chooses a
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vector of efforts xi = (Xi�j)j∈N ∈ Rn+. A component Xi�j of this vector is the amount of
effort agent i contributes to the collaboration with agent j. A matrix of efforts is defined
as X = (x1�x2� � � � �xn).

The structure of collaboration is described by a symmetric matrix G that is defined
as

Gi�j = g
(
min{Xi�j�Xj�i}

)
�

It is useful to visualize this matrix as a network in which links between the agents
represent bilateral collaboration. A link between agents i and j has an intensity
g(min{Xi�j�Xj�i}). I model the intensity as (a transformation of) the smaller of the two ef-
forts to capture the idea that collaboration requires the consent and active participation
of both collaborators.

The diagonal elements of matrix G play a special role in this model. For an agent i,
Gi�i = g(Xi�i) is (a transformation of) the effort the agent spends working solo. There-
fore, the diagonal elements of G capture the activities that do not require collaborative
partners, but are beneficial for tournament participants. I assume no special order of
choosing the two types of efforts. This assumption allows me to capture the idea that
agents may respond to changes in their rivals’ collaborative levels by adjusting their ef-
forts toward working solo and vice versa. The diagonal of G can be used to compare the
results of the main model to a scenario in which collaboration is infeasible.4

I assume that function g : R+ → R+ is strictly increasing, concave, and bounded
from above by g = limz→∞ g(z). The monotonicity property is self-explanatory. The
concavity of g reflects the decreasing returns to the collaborative effort. The assump-
tion that g is bounded means that the number of collaborative partners plays a crucial
role in this model.5 I use the normalization g(0) = 0.

The following notation is useful. For M ⊂ N , I(M) ∈ {0�1}N×N is a matrix such that
for all i, [I(M)]i�j = 1 if {i� j} ⊂ M and [I(M)]i�j = 0 otherwise. In particular, matrix I(∅)

describes the empty network and I(N) describes the complete network in which every
link has a unit intensity. For two matrices Y and Z, denote their Hadamard product by
Y ◦Z: for all i, j, [Y ◦Z]i�j = Yi�jZi�j .

In the course of the tournament, agent i produces an output yi that is determined by
the total intensity of the agent’s collaboration:

yi(X) =
n∑

j=1

g
(
min{Xi�j�Xj�i}

) =
n∑

j=1

Gi�j�

To model the process of forming collaborative relationships, I follow a cooperative
approach; i.e., I define a set of outcomes, agents’ preferences, and a binary blocking
relation on this set. Using these components, I study stable outcomes in the sense of
von Neumann and Morgenstern (see von Neumann and Morgenstern 1944).

4The returns to working solo are assumed to be equal to the returns to working with a partner. This
assumption does not play an important role in the analysis, and can be easily removed at the cost of intro-
ducing additional notation.

5I discuss this assumption in detail in Section 5.
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An outcome in this model is a pair (X�T), where X ∈RN×N+ is a matrix of efforts that
define a structure of collaboration, and T ∈ RN×N+ is a matrix that describes a system of
transfers between agents. I assume that Ti�j ≥ 0 is the amount that agent i pays to agent
j in the outcome (X�T). By (X�0n�n), I denote an outcome with zero transfers. Finally,
by U , I denote a set of all feasible outcomes.

The result of the tournament depends on the vector of the agents’ outputs. In
particular, given an outcome (X�T), the agents are ranked according to their outputs
in descending order. Ties are resolved randomly using the uniform distribution. Let
R : N → R be a tournament prize schedule; i.e., R(k) is the prize for an agent ranked
kth in the tournament. I assume that R is decreasing and convex (the latter means that
R(k) − R(k + 1) is decreasing in k), and I normalize the prize for the agent with the
lowest ranking to be zero, i.e., R(n) = 0. For any i� j : 1 ≤ i ≤ j ≤ n, let

r(i� j) = 1
j − i+ 1

j∑
k=i

R(k)

be an expected prize for an agent who is randomly placed between rankings i and j in
the tournament (by construction, this agent ties with j − i other agents).

The agent’s payoff is additive in his tournament prize, output, cost of effort, and
transfers. The payoff of agent i in outcome (X�T) is

Ui(X�T) = r
(
pi(X)�qi(X)

) + f
(
yi(X)

) +
n∑

j=1

(Tj�i − Ti�j − cXi�j)�

where c > 0 is a constant marginal cost of effort, and pi and qi denote the lower and the
upper bounds on possible rankings for agent i in the tournament. These bounds are
defined as

pi(X) = ∣∣{k ∈N : yi(X) < yk(X)
}∣∣ + 1

and

qi(X) = n− ∣∣{k ∈N : yi(X) > yk(X)
}∣∣�

I assume that function f :R+ →R+ is increasing.
By UM(X�T), I denote a vector of utilities for the set of agents M in outcome (X�T).

Also, for two vectors UM and VM , I say that UM 	 VM if ∀i ∈M , Ui > Vi.
In this specification, the agents may derive a positive net value of collaboration with-

out taking into consideration a tournament outcome. In the vast majority of the liter-
ature (see Goyal and Joshi (2003), Goyal and Moraga-Gonzalez (2001), Marinucci and
Vergote (2011), and others), collaboration is assumed to be costly. I consider the possi-
bility of both costly and costless links.6 The latter is interesting for two reasons. First,
this assumption relates better to some of the applications that I discuss in Sections 1

6The case of costless links models a situation in which any two agents are always better off collaborating
with each other if the actions taken by all other agents remain unchanged.
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and 6; second, it allows me to highlight a novel interaction between collaboration and
competition.

In the main specification of the model, I assume that the agents derive a value only
from their direct connections. One could get similar results if indirect connections were
assumed to be valuable for the agents. I consider such an extension in Section 5.3.

Since agents’ utilities are linear in transfers, f is increasing, and g is strictly increas-
ing and concave, the set of efficient outcomes consists of all outcomes in which all
agents collaborate at the optimal level with all available partners. In the efficient out-
comes, networks of collaboration are complete.

Remark 4.1. An outcome (X�T) is efficient if and only if, for all i, j, Xi�j = x∗, where

x∗ = arg max
x≥0

{
f
(
ng(x)

) − cnx
}
�

A corresponding network of collaboration for an efficient outcome is always complete.

Proof. Start with the observation that the Pareto frontier is a flat surface with a slope of
45 degrees. Therefore, one can use a utilitarian welfare criterion. Consider an outcome
(X�T). Observe that

∑n
i=1

∑n
j=1 Ti�j = 0. The social welfare in this outcome is

W =
n∑

i=1

Ui(X�T) =
n∑

i=1

(
f

(
n∑

j=1

Gi�j

)
− c

n∑
j=1

Xi�j

)
+

n∑
i=1

R(i)�

This expression achieves the maximum if and only if X = x∗I(N). �

The main result of this paper involves the stability of efficient outcomes in this
model. As shown in Remark 4.1, besides efficiency, these outcomes have another po-
tentially desirable property—completeness of the network of collaboration.

4.1 Network formation and stability

When modeling the formation of collaborative relationships, I follow the usual practice
in cooperative games: I define a notion of stability using a binary blocking relation on
the set of feasible outcomes.

To understand the idea behind the blocking relation, consider a group (or a coali-
tion) of players carrying out a transition from one outcome to another. Once the tran-
sition takes place, farsighted agents expect additional transitions. Eventually, as the re-
sult of a sequence of such transitions, the agents arrive at the “terminal” outcome from
which no further transitions are attempted. A necessary condition for rational agents
to engage in such a sequence of transitions is that ultimately, in the terminal outcome,
they are better off. I implicitly assume that the agents do not derive the utility from tran-
sitory outcomes along a transition. More precisely, if there are two different transitions
between outcomes (X�T) and (X ′�T ′), agents do not distinguish between these two
transitions, because the final destination is the same. One way to justify this assump-
tion is to interpret the transitions as proposals and counterproposals (or objections) that



Theoretical Economics 13 (2018) Competition and networks of collaboration 1087

agents make to each other without engaging in the actual modification of physical out-
comes. These proposals are meant to convince everyone to proceed to a stable outcome
right away.

The following definition formalizes the idea of a feasible transition, i.e., what each
coalition can do in terms of shaping outcomes. Note that the feasibility of a transition
does not depend on agents’ preferences.

Definition 4.2. A coalition M can enforce a transition from outcome (X�T) to out-

come (X ′�T ′), i.e., (X�T)
M→ (X ′�T ′) if, for all i� j ∈N ,

(i) X ′
i�j =Xi�j implies i ∈M ,

(ii) T ′
i�j > Ti�j implies i� j ∈M ,

(iii) T ′
i�j < Ti�j implies i ∈M or j ∈M .

According to this definition, all agents who are active during a transition from one
outcome to the other must be contained in the coalition that enforces the transition.
In this definition, it is postulated that players can unilaterally choose collaborative ef-
forts. Recall, however, that an increase in this effort does not necessarily translate into
an increase in a collaborative intensity, because Gi�j = g(min{Xi�j�Xj�i}). For example,
if Xi�j = Xj�i, both agent i and agent j must increase their efforts to increase the inten-
sity of their collaboration. Any agent can always unilaterally decrease the intensity of
the collaboration with any of his partners. This dichotomy reflects the fact that collab-
oration is achieved through a bilateral agreement and is a standard assumption in the
literature on the formation of undirected networks.

A reduction in the amount of money transferred can be achieved unilaterally, either
by refusing to pay (on the side of the sender) or refusing to accept (on the side of the
receiver).

The next definition introduces a blocking relation that formalizes, among other
things, the assumption that agents are rational and farsighted.

Definition 4.3. An outcome (X�T) ∈ U setwise farsightedly blocks (X ′�T ′) ∈ U or

(X�T)�
(
X ′�T ′)

if there exists a finite sequence {(Sk�Xk�Tk)}Kk=1 ∀k = 1� � � � �K, Sk ⊂ N , and (Xk�Tk) ∈
U such that

(i) (X ′�T ′) = (X1�T 1)
S1→ (X2�T 2)

S2→ ·· · SK→ (X�T),

(ii) USk(X�T) 	 USk(X
k�Tk) for all k ≤K.

To establish the intuition for this definition, assume that all agents view outcome
(X�T) as stable (this assumption is confirmed in the definition of stable sets of out-
comes, Definition 4.4). This outcome blocks the other outcome (X ′�T ′) if the following
conditions hold:
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(i) There exists a sequence of transitions that starts at (X ′�T ′) and arrives at (X�T);
every outcome of this sequence, except for (X�T), is assigned an active coalition
that enforces a corresponding step in the transition.

(ii) Every member of an active coalition strictly prefers the final destination of the
transition (X�T) to the outcome in which the coalition becomes active. In other
words, every agent who has to modify his choice of efforts and transfers so that the
transition proceeds benefits from the transition once it is complete. This condi-
tion mimics the transition process in which coalition members are asked whether
they wish to proceed with the transition or stay in the current outcome.

The blocking relation makes little sense on its own, and its adequacy should not be
judged in the absence of the stability concept. It is implicitly assumed that all agents
who participate in a sequence of transitions from (X ′�T ′) to (X�T) believe that the lat-
ter outcome is final or, in other words, stable. When this definition is used to check for
stability, a blocking outcome is always stable and a blocked outcome is arbitrary. A sta-
bility notion that I use in conjunction with this blocking relation is the von Neumann–
Morgenstern stable set defined for an abstract problem (U��).7

Definition 4.4. A set of outcomes R ⊂ U is farsighted stable8 if it satisfies internal sta-
bility (IS) and external stability (ES) conditions:

(IS) For any (X�T)� (X ′�T ′) ∈ R, (X�T)� (X ′�T ′).

(ES) For any (X ′�T ′) /∈ R, there exist (X�T) ∈ R, (X�T)� (X ′�T ′).

Internal stability requires that stable outcomes do not block other stable outcomes,
while external stability requires that all outcomes that are not part of a stable set are
blocked by stable outcomes.

A stable set of outcomes is a collection of all outcomes that are unblocked by ele-
ments of this stable set. Let Y : 2U → 2U be a function that, for a set of outcomes X ,
returns a set Y(X ) of all outcomes that are unblocked by any outcome in X : Y(X ) =
{(X�T) ∈ U : (X ′�T ′)� (X�T) ∀(X ′�T ′) ∈ X }. Then R is farsighted stable if and only if

R = Y(R)�

Farsighted stability is a set-valued solution. An element of a stable set is not con-
sidered stable in isolation (unless the stable set is a singleton). The stability of a single
element hinges on the stability of all other elements in the stable set. This means, for
instance, that there can be more than one stable set.

Note that in both the internal and external stability conditions, the outcomes that
are blocking or not blocking other outcomes come from the conjectured stable set. Put

7One can also define an abstract core for (U��). However, in my model, for the most interesting values
of parameters, this abstract core is empty.

8There is little agreement on naming various stability concepts in the recent literature on cooperative
games; this name is chosen following Ray and Vohra (2015).
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differently, this definition ignores the instances in which an unstable outcome blocks
a stable outcome, because the transition that implements this blocking is not credible.
Indeed, the agents who participate in this transition should not be concerned about
their well-being in the unstable outcome. This connection between Definitions 4.3 and
4.4 is crucial for understanding the meaning of a farsighted blocking relation.

As Chwe (1994) shows, internal and external stability, together, imply that stable sets
possess a consistency property. Any collective short-run profitable deviation to an un-
stable outcome is punished by a low long-run payoff for at least one of the agents who
participated in the deviation. I discuss this property in detail in the Supplemental Ap-
pendix.9

Farsighted stability implicitly requires all agents to agree on the set of outcomes that,
once reached, are not followed by any deviations. It also requires that all agents involved
in a sequential deviation agree on the exact path of this deviation. Put differently, I do
not allow a situation in which an agent initiates a certain transition that ends up different
from his original plan due to the actions of the other agents involved.

An alternative way to model agents’ beliefs is to define an expectation function with
a Markov property: a function that returns a stable outcome for any given outcome if the
latter is treated as an initial condition for the transition process. This function is simi-
lar in spirit to a subgame perfect Nash equilibrium (SPNE) strategy profile in a dynamic
game. The expectation function was proposed by Jordan (2006) and was later used by
Acemoglu et al. (2012), Acemoglu et al. (2015), Dutta and Vohra (2017), and others. The
advantage of the latter approach over sequential blocking is that the agent’s expecta-
tions do not depend on whether the agent is currently involved in a transition between
outcomes. Also, the expectation function allows the acting agents to maximize their
preferences rather than just improve their well-being. However, the drawback of this
approach is that the expectation function may not exist if the set of feasible transitions
is large.

5. Stable sets

The main result of this paper is twofold. First, Theorem 5.3 shows that there always exist
stable sets in which each outcome has a group structure. These stable sets exist both
when transfers are allowed and when they are not. When the group structure in these
stable sets is nondegenerate (i.e., there is more than one group), all of the outcomes in
these sets are inefficient. Second, I examine the hypothesis that there exist other stable
sets that contain efficient outcomes. For winner-takes-all tournaments without trans-
fers, Theorem 5.6 provides necessary and sufficient conditions for efficient outcomes to
be included in a stable set. If these conditions are satisfied, the stable set is unique and
does not contain inefficient outcomes.

5.1 Groups

In this section, I characterize a special class of stable sets that always exist in this model.
They have the following properties. First, agents are partitioned into groups of a certain

9The Supplemental Appendix is available at https://ssrn.com/abstract=3220682.

https://ssrn.com/abstract=3220682
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size. Each group must be larger than the union of all of the smaller groups, i.e., the
largest group must contain a strict majority, the second largest group must contain a
strict majority once the largest group is removed, and so on.

Second, agents collaborate with all members of their own group and not with anyone
else. All agents within a group exert the same effort, but these efforts may differ across
groups. This property implies that all members of a group will tie in the tournament.

Third, the effort exerted by an agent in a group k must be large enough to guarantee
that his output is weakly larger than the largest output that agents in the smaller groups
can produce. To calculate this bound on effort, one should look at the counterfactual
outcome in which all members of all groups that are smaller than group k collaborate
with each other at the maximum (unachievable) level g. This condition ensures that
agents’ tournament rankings are increasing in the size of their group and that agents
with low rankings cannot overthrow agents with high rankings.

Finally, the size of each group is chosen to maximize the payoff of its representative
member, taking the sizes of all larger groups as given.

To formalize this construction, consider a group of r agents collectively trying to
outperform other q < r agents who are collaborating with each other at a very high (un-
feasible) level of effort, but not collaborating with the rest of the agents. The group is
guaranteed to succeed in this task if each member exerts an effort x toward every avail-
able partner, where x satisfies rg(x) ≥ qg or

x≥ g−1
(
qg

r

)
� (1)

If the members of the group want to maximize their output net of cost of effort, un-
der the requirement that they outperform other q < r agents for all possible levels of
collaboration between the latter, they must solve the problem

v(r�q)= max
x≥g−1( qgr )

{
f
(
rg(x)

) − crx
}
� (2)

The effort level that solves this problem is an analog of a maxmin strategy. The sizes of
the groups can now be defined.

Definition 5.1. Consider a sequence {mk}Kk=1. Let M0 = 0 and, for k ≥ 1, let Mk =∑k
i=1 mi. The sequence {mk}Kk=1 is group-optimal if MK = n and for all k≥ 1,

mk ∈ arg max
n−Mk−1

2 <m≤n−Mk−1

{
r(1 +Mk−1�m+Mk−1)+ v(m�n−m−Mk−1)

}
�

For clarity of exposition, I assume that the group-optimal sequence is unique. All
of the results easily generalize to multiple group-optimal sequences by taking a union
across these sequences. Given a group-optimal sequence {mk}Kk=1, let

Vk = r(1 +Mk−1�Mk)+ v(mk�n−Mk)
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Figure 2. An outcome that has a group structure induced by a sequence {5�3�1}.

be a payoff of a representative member of group k and let

xk = argmax
x≥g−1( qgr )

{
f
(
mkg(x)

) − cmkx
}

be an effort exerted by this member toward a collaboration with another member of the
same group.

The definition of m1 and V1 considers a set of all outcomes in which a majority group
of size m forms a complete component in which all members of the group collaborate
at the payoff-maximizing level, subject to the constraint that their effort must be suffi-
ciently high to dominate all outsiders in the tournament independent of the efforts of
the outsiders. The size of the majority group m1 is chosen to maximize the payoff of a
single member. The criterion for mk is identical to the criterion for m1, formulated with
respect to a “residual” problem in which the sizes and structure of all of the larger groups
are fixed.

Definition 5.2. An outcome (X�T) has a group structure induced by a sequence
{mk}Kk=1 if there exists a partition N = {N1� � � � �NK} of the set N such that

(i) ∀k, |Nk| = mk,

(ii) X = ∑K
k=1 xkI(Nk).

An example of an outcome that satisfies Definition 5.2 is given in Figure 2. This
outcome is induced by a sequence {5�3�1} and effort levels x1, x2, and x3. There are
three complete components or groups of size 5, 3, and 1. A member of group k exerts
efforts xk along every link that is present in Figure 2.

Stable sets of outcomes always exist in this model, and at least one consists of out-
comes that have a group structure. In these outcomes, the agents may use transfers
within a group, but these transfers do not affect the distribution of payoffs, i.e., for each
agent, the sums of outgoing and incoming transfers are equal.

Theorem 5.3. Set of outcomes R is stable if every outcome (X�T) ∈ R has a group struc-
ture induced by a group-optimal sequence and satisfies
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(i) Xi�j = 0 implies Ti�j = 0,

(ii) for any i ∈N ,
∑

j∈N Ti�j = ∑
j∈N Tj�i.

Proof. Denote a set that satisfies the conditions of the theorem by R. One has to show
that set R is internally and externally stable.

I start with internal stability. I show that for any (X ′�T ′)� (X�T) ∈ R, (X�T) �

(X ′�T ′). Let H = {H1� � � �} be a partition that induces (a network of collaboration in)
(X�T) and let F = {F1� � � �} be a partition that induces (X ′�T ′). Also, let B = {i ∈ N :
Ui(X�T) > Ui(X

′�T ′)}.
The following argument formalizes the idea that agents in set F1 do not participate in

the transition from (X ′�T ′) to (X�T), because their utility cannot be further increased.
Agents from set F2 do not participate in this transition, because for any of them to in-
crease their utility, they must get a spot in set H1. However, for that to happen, at least
one agent from F1 must participate in the transition. A similar argument applies to sets
F2, F3, etc.

Formally, denote an index of a largest set populated by agents from B in (X�T) by k,
i.e., for all j < k, B ∩Hj = ∅ and B ∩Hk = ∅. Let M = ⋃

j≤k Fj and note that |M| >N/2.

For any S ⊂N \M and for any (X̂� T̂ ), (X ′�T ′) S→ (X̂� T̂ ), I have UM(X ′�T ′) =UM(X̂� T̂ ).
Hence, if (X�T) � (X ′�T ′), it must be that UM(X ′�T ′) = UM(X�T), which contradicts
B∩M =∅ (by construction of set B, if i ∈ B∩Hk, it must be the case that i ∈ Fj for some
j < k).

To show that R satisfies external stability, for any (X ′�T ′) /∈ R, I construct (X�T) ∈
R : (X�T) � (X ′�T ′). By the definition of set R, every element of this set has a group
structure. I partition the transition from (X ′�T ′) to (X�T) into K stages in such a way
that in the course of stage k, only agents who form a group of size mk are active and, at
the end of the stage, this group is formed.

The following result is used to complete the proof.

Definition 5.4. An outcome γ = (X�T) contains a top component if ∃M ⊂ N , |M| =
m1, ∀i ∈M , Xi�j = x1I{j ∈M},

∑
j∈M Ti�j = ∑

j∈M Tj�i, and
∑

j /∈M Ti�j = 0.

Lemma 5.5. Denote a set of agents whose payoff is below V1 by A(X�T) = {i : Ui(X�T) <

V1}. For any outcome (X�T), either (X�T) contains a top component or one can always
find (X ′�T ′) such that

(i) (X�T)
A(X�T)→ (X ′�T ′)

(ii) A(X�T)�A(X ′�T ′)

(iii) (X ′�T ′) does not contain a top component.

Proof. Suppose that (X�T) does not contain a top component. Consider an outcome
(X̃� T̃ ) such that X̃i�j = Xi�jI{i� j /∈ A(X�T)} and T̃i�j = Ti�jI{i /∈ A(X�T)}. There are two
cases to consider: either (i) (X̃� T̃ ) contains a top component or (ii) the opposite.
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If it is case (ii), then ∃χ > 0, for X̂i�j = Xi�jI{i� j /∈ A(X�T)} + χI{i� j ∈ A(X�T)} and
T̂i�j = Ti�jI{i /∈ A(X�T)}, we have A(X�T) � A(X̂� T̂ ). Also, (X̃� T̃ ) not containing a
top component implies that (X̂� T̂ ) also does not contain a top component. Therefore,
(X̂� T̂ ) satisfies all three conditions of the lemma.

Consider case (i), in which (X̃� T̃ ) contains a top component. Since (X�T) does
not contain a top component and (X̃� T̃ ) does, there exists a player k /∈ A(X�T) such
that

∑
i∈A(X�T) Gi�k > 0. Consider an outcome (X ′� T̂ ), such that X ′

i�j = Xi�j(I{i� j /∈
A(X�T)} + I{i = k and j ∈ A(X�T)} + I{j = k and i ∈ A(X�T)}). The outcome (X ′� T̂ )
does not contain a top component. Moreover, by convexity of R, A(F ′� T̂ ) = N \ {k} ⊃
A(F�T); hence, (F ′� T̂ ) satisfies the conditions of the lemma. �

Consider an outcome (X̂� T̂ ) that emerges at the end of stage k − 1. There is either
a set of agents Nk such that ∀i ∈ Nk, Xi�j = Xj�i = xkI{j ∈ Nk} or the opposite. In the
former case, stage k is degenerate. In the latter case, let A(X̂� T̂ ) = {i :Ui(X̂� T̂ ) < Vk}. If
|A(X̂� T̂ )| < (n − Mk−1)/2, applying Lemma 5.5 repeatedly obtains a sequence of out-
comes such that the last element of the sequence, (X̃� T̃ ), satisfies |A(X̃� T̃ )| ≥ mk.
Moreover, the transition between the elements of the sequence can be enforced by
agents in corresponding sets A(·� ·), and these sets are nested. In the final step of
the transition, select mk agents from A(X̃� T̃ ) (including all agents who were active
in all of the previous steps), and call this set Nk. An outcome (X∗�T ∗), such that
X∗

ij = xkI{i� j ∈Nk} + X̃ijI{i� j /∈Nk} and T ∗
ij = T̃ijI{i� j /∈Nk}, finalizes stage k.

The same result holds if transfers are not allowed, i.e., if the set of feasible outcomes
is

U0 = {
(X�T) ∈RN×N+ × 0n�n

}
�

Indeed, the transitions are constructed in such a way that transfers are reduced in the
course of a transition. If, in the origin of a transition, all transfers are equal to zero, the
whole transition sequence is contained in U0. �

From an efficiency perspective, the outcomes presented in Theorem 5.3 have too
much intragroup collaboration and too little intergroup collaboration.

These outcomes have many missing links in networks of collaboration. A large group
of agents isolates itself from others to ensure top tournament ranking for its members.
An absence of collaboration between groups is an extreme measure. Indeed, there are
other outcomes that induce the same distribution of tournament ranks and feature
strictly more direct net benefits from collaboration. In other words, there are outcomes
that Pareto-dominate the stable outcomes found in Theorem 5.3. However, deviations
to Pareto-improving outcomes are not credible, because collaboration between agents
who are ranked differently in the tournament opens a door for further modification of
a collaborative network. In particular, agents who are ranked low may threaten others
with dropping the existing links. This may lead to losses for agents who are ranked high
in the tournaments because they may lose both the value of deleted links and their high
ranking. To neutralize threats of this kind, the dominant majority severs all links to all
other agents in the stable outcomes found in Theorem 5.3.
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Also, for some parameters of the model, there is excessive within-group collabora-
tion. Collaboration within large groups may have an inefficiently high intensity because
the members of these groups are threatened by competition from lower-ranked agents.
This concern is formalized in inequality (1) when the group-optimal sequence is de-
fined. This competition may not materialize in stable outcomes, but the agents must
still take it into account because it can be part of a credible blocking transition.

When the size of group k is chosen, group members face the following trade-off:
Making the group smaller leads to a higher expected prize in the tournament, but ex-
panding the group results in more opportunities for collaboration and makes it less
costly to compete with the remaining agents. Formally, r(1 + Mk−1�m + Mk−1) is de-
creasing in m and v(m�n−m−Mk−1) is increasing in m (because f (m(g(x))) is increas-
ing in m and the set of the permissible effort levels expands with m).

The equation for m1 is related to union mentality; to see this, consider a problem of
a homogeneous union inviting new members. The optimal size of the union, from the
point of view of its existing members, is m1. Each member of such a union evaluates
new members based on their potential contribution to existing members’ well-being.
This decision rule leads to inefficient allocation of membership, because the well-being
of outsiders (i.e., potential members) is ignored.

It is well known that in group-formation (or coalition-formation) models, a union
mentality results in inefficient outcomes (for a summary of these results, see Ray 2007).
Note, however, that in those models, each member of a group has veto power over the
inclusion of new members. This veto power reflects the assumption that group mem-
bership is exclusive. This is not the case in my model, in which it is feasible for any
member of a group to collaborate with outsiders. Nevertheless, there is a stable set of
outcomes with a full separation of groups. This means that the notion of a group arises
endogenously.

Theorem 5.3 makes the connection between the results obtained in the literature on
coalition-formation and network-formation models.10 Theorem 5.3 justifies the notion
of a coalition—or simply a group of agents—that is characterized by exclusive member-
ship and a lack of connections with outsiders. The vast majority of the literature assumes
that a coalitional structure is a partition of the set of agents: An agent cannot be a mem-
ber of more than one coalition at any given moment in time (see Ray 2007, Section 14.4).
In my model, this property is endogenous and can be derived from stability conditions.
Moreover, the stable set of coalitions in a coalition-formation model (either a canon-
ical cooperative model or a model with sequential proposals, as in Bloch 1995, 1996),
in which agents are endowed with the same preferences as in the current model, is the
same as the set of groups (network components) in Theorem 5.3. Of course, this result
must be taken with a grain of salt, because there may exist other stable sets of networks
in which the structure of connections between agents cannot be reduced to groups.

The rules of the tournament—or, more precisely, the feature by which tournament
participants are awarded prizes based on a ranking of their outputs—allow me to con-
struct outcomes in which smaller groups of agents cannot change the payoffs of mem-
bers of larger groups without their consent. This feature underlies the internal stability

10A similar result in a different setting appears in Erol and Vohra (2014).
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of the stable sets characterized in Theorem 5.3. That is why the largest group should
constitute a strict majority; otherwise, the remaining agents may overrule the outcome.
This feature is also important for the existence of stable sets: It limits the externalities
sufficiently for a stable set to exist for any vector of parameters.

Definition 5.1 pins down the size of each group in the stable networks characterized
in Theorem 5.3 uniquely (up to indifference). The literature on pairwise stable networks
of collaboration, such as Goyal and Joshi (2003, Proposition 3.5) and Marinucci and Ver-
gote (2011, Propositions 1 and 2), puts bounds on sizes of interconnected groups. The
multiplicity of pairwise stable networks in those models follows from the inability to
rule out failures of coordination. In my model, group members collectively decide on
the group’s composition by maximizing participants’ payoffs; hence, there is no scope
for miscoordination.

Apart from constructing interesting stable outcomes, Theorem 5.3 also solves an im-
portant technical problem: It establishes the existence of farsighted stable sets in the
model. Indeed, the set of outcomes found in Theorem 5.3 is well defined for any vec-
tor of the parameter values. There is no general existence theorem for farsighted stable
sets in hedonic games.11 By proving that any element in the core is a singleton stable
set, Mauleon et al. (2011) show that farsighted stable sets always exist in a one-to-one
two-sided matching framework. Several papers (see Ray and Vohra 1997, Levy 2004, and
Acemoglu et al. 2012) use acyclicity conditions imposed on the superposition of feasible
transitions and individual preferences over outcomes to enable the use of backward in-
duction in constructing farsighted stable sets. I show the existence of farsighted stable
sets in my model without relying on these commonly used assumptions.

The previous result suggests that competitive forces may lead to inefficient out-
comes. In the case of winner-takes-all tournaments, this observation generalizes to any
farsighted stable set. The efficient outcome is stable: It belongs to some stable set if and
only if the stakes in the competition are low. This is the second main result of this paper.

Theorem 5.6. Suppose the following conditions:

(i) Transfers are not allowed, i.e., the set of feasible outcomes is

U0 = {
(X�T) ∈ RN×N+ × 0n�n

}
�

(ii) The tournament is winner-takes-all, i.e., R(k) =R(n) for all k> 1.12

Then there exists a stable set R that contains an efficient outcome if and only if a group-
optimal sequence is {n} or, equivalently,

n = argmax
n
2 <m≤n

{
r(1�m)+ v(m�n−m)

}
� (3)

Proof. If (3) holds, Theorem 5.3 implies that there exists a singleton stable set that con-
tains the efficient outcome with the complete network of collaboration.

11See the discussion of known existence results in Ray and Vohra (2015).
12This condition can be relaxed to R(2) < r(1� n).
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Suppose that (3) does not hold, and let (X�0n�n) be an outcome in which X has a
group structure induced by some group-optimal sequence {mk}Kk=1. Note that m1 = n.
Let (X∗�0n�n) be the efficient outcome, i.e., ∀i� j, X∗

i�j = x∗, where

x∗ = argmax
{
f
(
ng(x)

) − cnx
}
�

and let R be a farsighted stable set.
Assume to the contrary that (X∗�0n�n) ∈ R. Since (X∗�0n�n) � (X�0n�n) and

(X�0n�n) � (X∗�0n�n), it must be that (X�0n�n) /∈ R, and there must exist (X ′�0n�n) ∈ R
such that (X ′�0n�n)� (X�0n�n). Then (X∗�0n�n)� (X ′�0n�n), which is a contradiction.

To show this, define a set of winners in the tournament,

H(Z) =
{
i ∈N : ∀k ∈N :

∑
j∈N

g
(
min{Zi�j�Zj�i}

) ≥
∑
j∈N

g
(
min{Zk�j�Zj�k})}�

and a set of agents who are immediately willing to make a transition into (X∗�0n�n),

B(Z) = {
i ∈ N : Ui(Z�0n�n) < f

(
ng

(
x∗)) − cnx∗ + r(1� n)

}
�

Since r(1� n) > R(2) = 0, for all i /∈H(Z),

f

(
n∑

j=1

g
(
min{Zi�j�Zj�i}

)) −
n∑

j=1

cXi�j < f
(
ng

(
x∗)) − cnx∗ + r(1� n)

or

Ui

(
Z′�0n�n

)
<Ui

(
X∗�0n�n

)
�

Therefore, ∀Z, N \H(Z) ⊂ B(Z).
There are two cases to consider: either (i) |B(X ′)| < n/2 or (ii) |B(X ′)| ≥ n/2 (if n =

|H(X ′)|, it is impossible that (X ′�0n�n)� (X�0n�n)).
In case (i), since (X ′�0n�n)� (X�0n�n) for any i ∈H(X ′), Ui(X

′�0n�n) > V1. Therefore,
either ∀i ∈ H(X ′)� j /∈ H(X ′), min{X ′

i�j�X
′
j�i} = 0 or the opposite. In the latter case, select

a pair a ∈ H(X ′), b /∈H(X ′), min{X ′
a�b�X

′
a�b}> 0 and consider an outcome X1:

X1
i�j =X ′

i�jI
{
i or j /∈ B

(
X ′)} −X ′

b�aI{i = b and j = a}�

Clearly, H(X1)�H(X ′). Repeat this procedure iteratively until either |B(Xk)| ≥ n/2
or ∀i ∈H(Xk)� j /∈H(Xk), min{Xk

i�j�X
k
j�i} = 0.

If ∀i ∈ H(Xk)� j /∈ H(Xk), min{Xk
i�j�X

k
j�i} = 0 or |B(Xk)| ≥ n/2, there exists χ such

that an outcome X ′′ satisfying

∀i� j ∈N : X ′′
i�j = Xk

i�jI
{
i� j /∈ B

(
Xk

)} +χI
{
i� j ∈ B

(
Xk

)}
results in a low payoff for all agents:

∀i ∈N : Ui

(
X ′′�0n�n

)
< f

(
ng

(
x∗)) − cnx∗ + r(1� n)�
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The sequence of outcomes that results from this construction enforces (X∗�0n�n) �
(X ′�0n�n). �

Theorem 5.6 is qualitatively different from the results obtained in the literature. The
model in which collaboration is costless (recall that, in this model, the moderate amount
of collaboration is beneficial for its participants even if they are ranked very low in the
tournament) is considered a simple case in the literature: either the efficient outcome
is guaranteed to be pairwise stable or all agents exert an inefficiently large collaborative
effort. In both cases, the pairwise stable outcomes are symmetric. If links are moderately
costly, the efficient outcome is stable, but there may be inefficient outcomes that are
also stable. Theorem 5.6 says that even in a simple case with costless links, efficiency is
incompatible with stability if potential gains from competition are high. More precisely,
the efficient outcome can neither be singleton stable nor can it coexist with any other
outcomes in any stable set.

The condition (3) is equivalent to R(1) ≤R∗, where

R∗ = min
n
2 <m<n

{
mn

n−m

(
v(n�0)− v(m�n−m)

)} ≥ 0

for winner-takes-all tournaments. It requires that the tournament prize is low compared
to the direct value of collaboration. Theorem 5.6 suggests that if this condition is not
satisfied, a strict subset of agents would be willing to sacrifice some collaboration in ex-
change for the top tournament ranking. A collective tactic that achieves top tournament
rankings for a large group of agents has a maxmin property. By following this tactic, the
agents obtain top rankings no matter what outsiders do.

The set of outcomes described in Theorem 5.3 plays an important role in Theo-
rem 5.6, as suggested by condition (3). Suppose that (3) does not hold. If agents are
in a stable set P , either P = R (and an efficient outcome is not inside the set) or the out-
comes in P block the outcomes in R. In the latter case, these outcomes either block or
are blocked by an efficient outcome.

In mainstream models of tournaments with costly effort and no possibility of col-
laboration, equilibrium outcomes are usually inefficient. In those models, every agent
in the efficient outcome has an individual incentive to raise his effort and collect a higher
tournament prize. My model rules out this source of inefficiency: Agents are capable of
coordination and individual incentives yield to collective interests. Indeed, if one re-
moves the possibility of collaboration from the current model, the outcome in which
every agent exerts an effort,

xa = arg max
x≥0

{
f
(
g(x)

) − cx
}
�

is a singleton stable set. Therefore, the inefficiency highlighted in Theorems 5.3 and 5.6
is caused by agents’ cooperative behavior in the presence of competition.
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5.2 The role of transfers

A common intuition suggests that the ability to use transfers should allow agents to
reach an efficient outcome and stay in it. As shown in Theorem 5.3, when tournament
prizes are large, agents create gaps in stable collaborative networks to sustain the dif-
ference in rankings between the fully connected majority and the rest of the population.
This difference in ranking results in an extra payoff. One may argue that the minority can
offer transfers to the majority in exchange for missing links; it is possible for agents to
emulate an unequal division of tournament prizes through a system of transfers, while
enjoying the maximum value of collaboration. However, this does not always happen
in stable outcomes. More precisely, the outcomes that I find in Theorem 5.3 are stable
independent of whether agents can use voluntary bilateral transfers.

Remark 5.7. Suppose that the set of feasible outcomes is

U0 = {
(X�T) ∈RN×N+ × 0n�n

}
�

Outcome R is a stable set if every outcome (X�T) ∈ R has a group structure induced by
a group-optimal sequence.

This remark follows directly from the proof of Theorem 5.3.
Note that a central planner can easily implement an efficient outcome by collecting

the total surplus in every outcome and redistributing it uniformly across agents. How-
ever, if the process of setting up transfers is decentralized, the efficiency of a stable out-
come is guaranteed only when the prizes in the tournament are small. In that case,
transfers play no role, as stated in Remark 5.7.

Transfers do not necessarily help with efficiency and do not realize potential gains
from trade, because they lack endogenous credibility. A minority may pay a majority to
restore missing links, but there exists a similar outcome in which members of the mi-
nority swap roles with some members of the majority: the latter should pay the former.
Note that this argument does not rely on symmetry; even in a model with moderate
heterogeneity, agents are imperfect substitutes for each other and the same argument
applies. Alternatively, one may think of this situation as a competition a là Bertrand, in
which every agent is both a buyer and a seller of missing links.

The lack of credibility is neither a general property of transfers nor an artifact of the
solution concept. It is tournament-induced externalities that make transfers endoge-
nously noncredible. To see that transfers may be endogenously credible in similar en-
vironments without externalities, consider the following modification of the model. For
simplicity, suppose that there are n = 2 agents who have an opportunity to collaborate
with each other. Let the prize in the tournament be zero. Also, suppose that the agents
differ in terms of their cost of effort. In particular, suppose that c1 > c2 > 0. For simplic-
ity, assume that for all x, f (x) = x. If transfers are allowed, an efficient outcome (X∗�T )
must satisfy X∗

1�2 =X∗
2�1 and

X∗
1�2 = arg max

x≥0

{
g(x)− c1 + c2

2
x

}
�
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It is very costly for agent 1 to collaborate at this level. For agent 1, the optimal choice of
X1�2 is

X1
1�2 = arg max

x≥0

{
g(x)− c1x

}
<X∗

1�2�

Similarly, for agent 2, the optimal choice of X2�1 (conditional on agent 1 fully reciprocat-
ing) is

X2
2�1 = arg max

x≥0

{
g(x)− c2x

}
>X∗

1�2�

If transfers are not allowed, for any x ∈ [X1
1�2�X

2
2�1] that is individually rational for

agent 1, i.e., that satisfies g(x)− c1x≥ 0, an outcome (X�02�2) such that

X =
(
X∗

1�1 x

x X∗
2�2

)

is a singleton stable set. All of these outcomes, except for at most one, are inefficient.
However, if transfers are allowed, none of these networks of collaboration remains stable
except for the efficient ones (X∗�T ). In this case, agents use transfers to exploit gains
from trade (i.e., to compensate agent 1 for the extra effort he is exerting in the efficient
outcome) and to depart from inefficient outcomes. Transfers do restore efficiency in this
simple example,13 but do not necessarily do it in the main model, because a tournament
introduces an externality that large groups of agents may exploit to divert surplus from
the remaining agents.

It is useful to look at the main model from a coalition-formation perspective. The
conditions for a nontrivial group-optimal sequence in Theorem 5.3 have the same fla-
vor as the condition of unbalancedness in the Bondareva–Shapley theorem for total util-
ity (TU) games (with the difference that once the group is formed in my model, group
members choose their collaborative effort levels). Indeed, define a coalition as a set of
all agents who belong to the same component and define the value of that coalition as
a maximum sum of agents’ utilities. In this case, for a coalition S of size m > n/2, the
value is V (S)= m[r(1�m)+v(m�n−m)]. The condition for the nontrivial group-optimal
sequence {mk}Kk=1 boils down to the absence of balance, V (S)/|S|> V (N)/n. When con-
sidering small coalitions, one must recall that the value of a coalition depends, in gen-
eral, on the whole coalition structure; therefore, when computing the value, one must
assume that other coalitions are structurally sound, i.e., they do not want to merge or
split.

The model is not neutral to the introduction of transfers. Transfers may allow agents
to exploit some gains from trade if these gains are not associated with externalities. Also,
the presence of transfers imposes a restriction on the payoffs in various outcomes inside
a stable set. In particular, in the presence of transfers, outcomes in any stable set must
induce at least two distinct vectors of payoffs.

Theorem 5.8. If the group-optimal sequence is such that m1 < n, there exists no stable
set R such that for any (X�T)� (X ′�T ′) ∈ R and for all i ∈N , Ui(X�T) =Ui(X

′�T ′).

13This result holds for an arbitrary number of agents and an arbitrary increasing function f .
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Proof. I show that any set of outcomes characterized by a single payoff vector neces-
sarily violates external stability.

Take a set R such that for any (X�T)� (X ′�T ′) ∈ R and for all i ∈ N , Ui(X�T) =
Ui(X

′�T ′). Without loss of generality, assume that agents are enumerated in such a way
that i > j implies that Ui(X�T) ≥Uj(X�T). Note that nV1 >

∑
i∈N Ui(X�T).

I construct an outcome (X̂� T̂ ) such that it is not blocked by any outcome in R. Parti-
tion a set {1� � � � � n} into two sets, N1 = {1� � � � �m1} and N2 = {m1 +1� � � � �N}, and consider
an outcome (F̂� T̂ ) such that

(i) X̂i�j = x1I{{i� j} ⊂ N1}
(ii) X̂i�j = 0 implies Ti�j = 0

(iii) for all i ∈N1, Ui(X̂� T̂ ) > Ui(F�T).

There always exists a system of transfers that satisfies condition (iii), because

1
m1

m1∑
i=1

Ui(X�T) ≤ 1
n

n∑
i=1

Ui(X�T) < V1 = 1
m1

m1∑
i=1

Ui(X̂� T̂ )�

By construction, for any S ⊂ N2 and for all (X ′�T ′), (X̂� T̂ )
S→ (X ′�T ′), UN1(X

′�T ′) =
UN1(X̂� T̂ ) > UN1(X�T). Therefore, (X̂� T̂ ) is not blocked by any outcome that induces
the payoff vector U(X�T). �

This theorem, when applied to efficient outcomes, dictates that when the optimal
group sequence is nontrivial, an efficient outcome cannot constitute a singleton stable
set.

5.3 Extensions and special cases of the model

One important feature of the current model is that the existence of stable outcomes with
group structure does not rely on the assumption of costly collaboration. Formally, the
current model does not cover the case in which c = 0, because the agent’s maximization
problem (2) does not have a solution. However, one can extend the model to accom-
modate this case. This extension of the model generalizes the example presented in
Section 3.

Suppose that c = 0. Allow the agents to choose the infinite effort, set g(∞) = g, and
normalize g to be 1. For simplicity, assume that agents cannot exert any intermediate ef-
fort level. i.e., for all i, j, Xi�j ∈ {0�∞}. In this case, a collaboration can be fully described
by an undirected graph G ∈ {0�1}n×n.

The payoff of agent i in outcome (G�T) is

Ui(G�T) = r
(
pi(G)�qi(G)

) + f
(
y(G� i)

) +
∑
j∈N

(Tj�i − Ti�j)�

where y(G� i) = ∑
j∈N Gi�j is the output of agent i in outcome (G�T). All of the other

definitions carry over to this extension without modification.



Theoretical Economics 13 (2018) Competition and networks of collaboration 1101

A group-optimal sequence {mk}Kk=1 solves

mk ∈ arg max
n−Mk−1

2 <m≤n−Mk−1

{
r(1 +Mk−1�m+Mk−1)+ f (m)

}
�

In this extension, the choice of collaborative intensity is limited; therefore, when defin-
ing the group optimal sequence, I can omit the first maximization problem that defines
function v. Similar to the main model, the set of all networks that have a group structure
induced by a group-optimal sequence is a stable set, independent of whether transfers
are allowed. Also, in the winner-takes-all tournaments, the efficient outcome, which
is a complete network of collaboration, belongs to a stable set if and only if the group
optimal sequence is {n},

n ∈ arg max
n
2 <m≤n

{
r(1�m)+ f (m)

}
or, equivalently,

R(1) ≤ min
m>n

2

{
mn

n−m

(
f (n)− f (m)

)}
�

These results extend Theorems 5.3 and 5.6 and Remark 5.7 to the case of costless collab-
oration.

This version of the model can also be extended to allow for the agent’s output to
depend on his indirect connections. Given a network of collaboration G, let each agent i
produce output y(G� i), which depends on the amount of indirect collaboration in which
the agent is involved, i.e.,

y(G� i) =
∞∑
k=0

n∑
j=1

αk

(
Gk

)
ji
�

where αk represents the weight that is assigned to an indirect collaboration with agents
who are k connections away from agent i. I normalize α0 = α1 = 1 and I assume that
αk is decreasing in k. There are two special commonly used cases for this formulation:
(i) when αk = 0 for all k > 1, the output is equal to the degree of the agent in G, and
(ii) when αk = αk, the output is equal to the Katz centrality measure of node i in net-
work G.

As shown in the Supplemental Appendix, the results remain qualitatively the same
compared to the case in which only direct connections contribute to the agents’ output.
This happens for two reasons. First, indirect connections are assumed to contribute less
than direct ones (αk is decreasing in k). Second, an agent’s output does not depend
on the connections of agents who do not belong to the same component ((Gk)ji = 0
for all k if agents i and j belong to different components of network G). Intuitively,
Theorem 5.3 characterizes the stable set of outcomes in which agents are connected
if and only if they have the same payoff and ranking. From this perspective, indirect
connections are not different from direct ones: If there are two indirectly connected
agents who have different payoffs, there must exist two directly connected agents who
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have different payoffs. The formal statements and proofs of these results are relegated
to the Supplemental Appendix.

Another interesting special case of the model is when f (z) = 0 for all z. This is the
opposite of the case with costless links, and it corresponds to the situation in which col-
laboration is costly and has no direct benefits to the participants. Therefore, the only
reason that agents would want to collaborate is to gain an advantage over their com-
petitors in the tournament. When collaboration provides no direct benefit to the partic-
ipants, there is no welfare loss from the fact that agents are not collaborating between
the groups in the stable set characterized in Theorem 5.3. However, there are welfare
losses from the excessively intensive collaboration within the larger groups. In this case,
the role of inequality (1) is particularly stark: It puts a lower bound on the amount of
inefficiency in this stable set. The trade-off between making a dominant group smaller
or larger becomes a trade-off between a higher expected ranking and a smaller cost of
dominating the remaining agents in the tournament. This case is extensively studied in
the literature on R&D collaboration. As in this literature, the smallest group of agents in
this stable set does not collaborate at all (xK = 0).

5.4 Other forms of competition

Unfortunately, studying a model that nests several forms of competition is quite diffi-
cult, for both theoretical and expositional reasons. Here I present a very simple example
that points in the direction of a condition on payoffs that one can use to extend the
results of this paper to other forms of competition, such as Tullock contests or monop-
olistic, Cournot, or Bertrand competition. Using the same example, I argue that stable
sets may not exist if this condition is not satisfied.

Consider three agents who are competing with each other in a Tullock contest for a
prize R. Each agent chooses a vector of collaborative efforts. For simplicity, I assume
that any effort level is restricted to either 0 or 1, and therefore collaboration between
the agents can be fully described by a graph G ∈ {0�1}3×3. As in the main model, Gi�i

represents agent i’s effort toward working solo. The per-unit cost of effort is c and agent
i’s output is

yi(G) =
(∑

j

Gi�j

)α

�

where α > 0, and the direct value of the agent’s output is zero. To further simplify this
example, I assume that the agents cannot use transfers.

The probability of agent i winning the contest (and getting the prize R) is propor-
tional to his output; therefore, the payoff of agent i is

Ui(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∑
j

Gi�j

)α

∑
k

(∑
j

Gk�j

)αR− c
∑
j

Gi�j if
∑
k�j

Gk�j > 0�

1
3
R otherwise.
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Agent i’s expected share of the prize increases in his own degree and decreases in the
average degree of all agents. In contrast to the main model, the agent’s payoff is sensitive
to the efforts of all other agents in any outcome.

For the purpose of this example, I consider two cases: A set of outcomes, each of
which features a group structure (similar to the one in Theorem 5.3), is stable if α = 1;
the same set is not stable if α = 3. The difference between the two cases is due to a
condition that enables the internal stability of this set in the case of α = 1. Intuitively, this
condition ensures that the agents in the smaller group can maximize their own payoffs
by minimizing the payoffs of the members of the larger group. A similar condition is
satisfied in the main model.

If α = 1, there exists a stable set that is similar to the one characterized in Theo-
rem 5.3. For instance, if R > 30c, the set of all outcomes in which only two out of three
agents collaborate with each other is stable.14 This example satisfies the condition used
in Grandjean and Vergote (2015): The agent’s payoff is increasing in his degree and de-
creasing in the degree of others. In pure network-formation models, this condition is
sufficient for the existence of stable sets of outcomes with dominant-group architec-
ture. Note, however, that this condition is not necessary and is not satisfied in the main
model of this paper.

If α = 3, the results obtained in the main model no longer hold. Let R ∈ (12c�17c).
In this case, the group-optimal sequence is {2�1}, but any set of outcomes in which only
two out of three agents collaborate is unstable. To see this, consider the three outcomes

G =
⎛
⎜⎝1 1 0

1 1 0
0 0 0

⎞
⎟⎠ � G′ =

⎛
⎜⎝0 1 0

1 0 0
0 0 0

⎞
⎟⎠ � and G′′ =

⎛
⎜⎝1 1 0

1 1 0
0 0 1

⎞
⎟⎠ �

Agent 3 strictly prefers outcome G over G′′, and, therefore, G blocks G′′ and G′′ does not
block G. Thus, an externally stable set that consists of outcomes with only two agents
collaborating must include at least two outcomes that are obtained by a permutation of
G or G′. However, any such set does not satisfy internal stability. For example, agent 3
can initiate a blocking transition from G to a permutation of G′: At G, he may unilater-
ally lower the payoffs of agents 1 and 2 by increasing his solo effort.

Moreover, if α = 3, stable sets may fail to exist altogether.15 The difference between
this paper’s results and those of Grandjean and Vergote (2015) suggests that the exis-
tence of stable sets can be obtained by restricting either a payoff structure (i.e., as in this
paper, by specifying a particular form of competition) or a set of feasible outcomes (i.e.,
as in Grandjean and Vergote 2015, by focusing on a pure network-formation model).

If α = 3, the agent’s solo effort level that maximizes his payoff is different from the
effort level that minimizes the payoffs of his rivals. Because of this difference, large ex-
ternally stable sets tend to be internally unstable. If α = 1 (or if agents participate in a
tournament rather than a Tullock contest), these two effort levels are the same.

14In every outcome of this stable set, all agents exert the maximum effort toward working solo.
15For instance, if R ∈ (12c�17c), stable sets do not exist in this example.
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To fully generalize the results of Theorem 5.3, one must first provide a general suf-
ficient condition for the existence of farsighted stable sets. This important criterion is
currently unresolved, even in a narrower class of models such as characteristic function
games (see Ray and Vohra 2015), and is beyond the scope of this paper.

6. Discussion of the results

This paper contributes to the literature on network formation and its applications to
R&D collaboration, discrimination, and tournaments.

The paper is closely related to Goyal and Joshi (2003), Goyal and Moraga-Gonzalez
(2001), and Marinucci and Vergote (2011). These papers develop models of R&D collab-
oration between market competitors. In these models, firms can resort to joint research
to save on R&D costs. The common finding in this literature is that networks of collabo-
ration that consist of several components are possible in equilibrium.

My model produces several important results that do not appear in the literature
on R&D collaboration. First, I argue that under certain conditions, efficient outcomes
may be unstable. More precisely, I provide a necessary and sufficient condition for the
existence of a farsighted stable set that contains an efficient outcome. If this condition is
not satisfied, efficient outcomes cannot be stable. Results in the previous literature often
do not rule out efficient networks as equilibrium outcomes under similar conditions.

Second, in my model, the sizes of the complete components in stable networks are
uniquely determined by the shape of payoff functions, whereas in Goyal and Joshi (2003)
and Marinucci and Vergote (2011), the local incentives of individual agents put bounds
on the sizes of the components. Also, the mechanics of my model are different from
those in prior papers on R&D collaboration. In Goyal and Joshi (2003), a link is missing
from a stable outcome because forming it is individually costly for at least one of the two
nodes.16 Decreasing the cost of the link leads to larger stable components. In particular,
if one assumes that links are beneficial rather than costly, the unique stable outcome is a
complete network. In my paper, the links are missing because of the positive externality
on the rest of the agents. Therefore, even when links are beneficial, complete networks
may not be stable.

In addition, it is worth pointing out that Goyal and Joshi (2003), Goyal and Moraga-
Gonzalez (2001), and Marinucci and Vergote (2011) model competition differently from
this paper (the closest being Marinucci and Vergote 2011, who model competition as a
winner-takes-all tournament with stochastic outcomes). Finally, the literature focuses
mainly on the case of pure network formation, whereas my model allows for a richer
description of collaborative relationships between agents.

This paper helps to explain the difference in results between R&D models that use
a coalition- or network-formation approach. An extensive literature on collaboration
between firms looks at coalitions of firms rather than at bilateral agreements between
them (e.g., Bloch 1995, 1996, Yi 1998, 1997, Yi and Shin 2000, and Joshi 2008). Surveys of
the literature can be found in Bloch (2002) and Ray (2007). The predictions obtained in

16Other papers on networks of R&D collaboration, such as Goyal and Moraga-Gonzalez (2001) and
Marinucci and Vergote (2011), share this feature with Goyal and Joshi (2003).
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this literature are different from the findings obtained in the network-formation models
discussed above. In particular, the grand coalition (which is the analog of the complete
network) is usually not stable, because there exists a smaller coalition that prefers to re-
duce the amount of collaboration in exchange for greater market power. For example,
Bloch (1995) employs a dynamic game in which firms sequentially propose to form al-
liances to reduce the marginal cost of production. Once the alliances are formed, firms
engage in Cournot competition. Bloch (1995) shows that the alliance structure in the
market is usually asymmetric and inefficient. These results are obtained under the as-
sumption that participation in a coalition is exclusive. I obtain similar results, but I do
not use the exclusivity assumption: In my paper, groups are endogenously exclusive.
Therefore, my model is useful for understanding the relationship between coalition- or
alliance-formation and network-formation models.

Grandjean and Vergote (2015) consider a network-formation model in which the
agent’s payoff is increasing in his own degree and decreasing in the degree of his com-
petitors. They show that if the payoff of any two agents with the same degree always in-
creases when they are connected by a link and if the payoff of agents in a small clique in-
creases in the size of the clique, there exists a stable set of networks. These networks are
either two-clique networks or dominant-group networks. In contrast to Grandjean and
Vergote (2015), this paper looks at a particular form of competition—tournaments—but
allows for a richer set of actions available to agents. It also provides necessary and suffi-
cient conditions for the stability of efficient outcomes in winner-takes-all tournaments.

My theoretical findings successfully capture some properties of collaborative net-
works that are observed in practice. One salient illustration that supports my theoretical
results is a study of the early GSM market by Bekkers et al. (2002), who examine the emer-
gence of GSM technology in the 1990s. They document that large portfolios of standard-
essential patents for GSM technology were owned by several companies: Nokia, Mo-
torola, Alcatel, Phillips, Bull, Telia, and others. Five of these companies—Ericsson,
Nokia, Siemens, Motorola, and Alcatel—signed numerous cross-licensing agreements
that allowed them to use each other’s patents without paying royalties. This network
of cross-licensing agreements provided its participants with a market advantage over
firms that were not included. Not surprisingly, the same five companies later domi-
nated the market for GSM infrastructure and terminals, having a total market share of
85% in 1996. At the same time, three other companies—Phillips, Bull, and Telia—held
roughly as many patents as Alcatel, but were not able to convert them into a signifi-
cant market share. Moreover, they performed worse than Ericsson and Siemens, which
had considerably smaller patent portfolios, yet were ranked the largest and third-largest
GSM companies, respectively, in 1996.

My model suggests that if the stakes in the winner-takes-all competition are high
enough, the efficient network of collaboration, in which agents sign all available collab-
orative agreements, is not stable. Moreover, there are stable networks in which a group
of firms that dominates the market (let us call them insiders) does not collaborate with
other, outsider firms. Despite the fact that this tactic destroys the value of collaboration
between insiders and outsiders, it is profitable for the insiders because it allows them to
maintain their dominant position in the market. Indeed, Bekkers et al. (2002) claim that
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the structure of cross-licensing agreements in the GSM industry in the 1990s, directed by
Motorola, was instrumental in crowding out potential rivals such as Phillips. This story
is not unique; for instance, the 2009–2013 smart phone patent war had similar features.

More generally, my model provides several important insights into such phenom-
ena as patent wars and other types of market competition outside of the price domain.
First, bilateral agreements such as cross-licensing are a powerful instrument in shaping
a landscape for future market competition. For instance, they can be used to create per-
sistent asymmetric market outcomes in symmetric environments. Second, if the stakes
in the competition are high, asymmetric inefficient outcomes (e.g., an inefficient level
of cross-licensing) are inevitable. Finally, the prospect of these outcomes forces firms
to join exclusive alliances in which bilateral agreements play the role of a skeleton that
holds alliances together.

My results relate to the program proposed by Salop and Scheffman (1983), who state
that firms can capture the market by increasing the costs of production for their rivals.
In another paper, Salop and Scheffman (1987) describe various strategies that firms can
use to raise their competitors’ costs. They find that some of these strategies can be more
effective than predatory pricing. For instance, a coalition of firms can use the mecha-
nism described in my model to gain control over the market. This coalition does not
need to engage in predatory pricing to raise the joint share of the market; instead, it can
limit access to its intellectual property and, hence, create a competitive advantage for
its members.

The findings in my paper complement the results in the literature on sabotage in
tournaments. Lazear (1989), Chen (2003), and Konrad (2000) suggest that agents may
sabotage their rivals if the cost of sabotage is low. I argue that if costs are large, agents
still can sabotage their rivals, but they must coordinate their actions to save on costs.
This gives rise to a collective sabotage. I show that when the competition is for a large
prize, collective sabotage is self-enforcing and often unavoidable, i.e., it takes place in
every stable outcome.

Another application of my model is related to the theory proposed by McAdams
(1995), who suggests that racial discrimination in the United States is fueled by the desire
to maintain the gap in social status between the white majority and the ethnic and racial
minorities. According to McAdams, if people value high social status, they may sacrifice
mutually beneficial interracial interactions so as to gain higher status. Note that in this
theory, race is a marker that is irrelevant for the fundamental economic characteristics
of agents. However, since it is easily observable, it is convenient to use it for specifying
social norms that support the difference in social status. In other countries, in which the
population is more racially homogeneous, other markers, such as nationality, ethnicity,
or religion, are used for discrimination. Sometimes the markers are almost artificial and
are not derived from any observable characteristics of an individual. Examples of such
markers are the castes in India, Pakistan, Nepal, and Sri Lanka.

McAdams (1995) provides evidence that discrimination is often sustained through
threats of exile. If a member of a discriminating majority interacts with members of a
discriminated minority, he or she risks being ostracized. My paper provides a mecha-
nism for sustaining such social norms when agents are allowed to undertake collective
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deviations from the social norm. Despite the fact that my theoretical findings are quali-
tatively the same for any number of agents, the model is better suited to small commu-
nities in which coordination between individuals is easier to implement.

7. Conclusion

This paper proposes a model of bilateral collaboration between farsighted agents in
tournaments. The model sheds light on the tension between agents’ objectives to out-
perform their rivals and to obtain as much help from their rivals as possible. When tour-
nament rewards are large, this trade-off is resolved in favor of the former objective: In
stable outcomes, agents engage in fewer collaborative relationships than required by ef-
ficiency. A refusal to engage in efficiency-improving collaboration serves an important
purpose: It allows some agents to secure high rankings in the tournament. In the stable
outcomes I find, missing collaboration is not arbitrary. Agents endogenously sort into
several groups of different sizes and refuse to collaborate with anyone who belongs to
smaller groups. As a result, the network of collaboration consists of multiple complete
components. I characterize the size of each group and the intensity of within-group
collaboration in these outcomes.

The other main contribution of this paper is a necessary and sufficient condition
for the stability of efficient outcomes in winner-takes-all tournaments. I find that the
unique efficient outcome is not stable whenever the tournament prize is large enough.
This result supports the observation that agents may collectively sacrifice collaboration
to obtain higher rankings in tournaments. In fact, this result suggests that if agents suf-
ficiently value high tournament rankings, such destructive behavior is unavoidable.

I also find that the ability to use transfers to compensate for missing collaboration
does not necessarily restore efficiency. More precisely, there are stable outcomes in
which there are gains from trade (i.e., in which restoring a missing collaborative link
generates a surplus), but agents cannot agree on a self-enforcing system of transfers
that is compatible with efficiency.

The setup of my model is close to that of existing models of network formation, but
the results I obtain are more in agreement with results in coalition-formation models.
Therefore, my paper contributes to settling the differences between conflicting results
in these two strands of the literature.

The results in this paper can provide insights into many seemingly unrelated phe-
nomena, ranging from R&D collaboration to discrimination and promotion tourna-
ments. Even though the model is relatively stylized, I believe that it pins down a common
feature that unites the aforementioned applications. In situations in which individual
incentives unambiguously point to an efficient outcome, there is still scope for inef-
ficiency. In the environments described above, economic agents can make proposals
to many participants simultaneously—proposals that open doors for coalitional devia-
tions. My findings suggest that when this happens, efficient outcomes may be unachiev-
able, as there may exist a coalition that benefits from a deviation to a stable inefficient
outcome.
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