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We characterize the complete set of equilibrium allocations to an intrinsic com-
mon agency screening game as the set of solutions to self-generating optimiza-
tion programs. We provide a complete characterization of equilibrium outcomes
for regular environments by relying on techniques developed elsewhere for aggre-
gate games and for the mechanism design delegation literature. The set of equi-
libria includes those with nondifferentiable payoffs and discontinuous choices,
as well as equilibria that are smooth and continuous in types. We identify one
equilibrium, the maximal equilibrium, which is the unique solution to a self-
generating optimization program with the largest (or “maximal”) domain, and
the only equilibrium that is supported with biconjugate (i.e., least-concave) tar-
iffs. The maximal equilibrium exhibits a n-fold distortion caused by each of the
n principal’s non-cooperative behavior in overharvesting the agent’s information
rent. Furthermore, in any equilibrium, over any interval of types in which there
is full separation, the agent’s equilibrium action corresponds to the allocation in
the maximal equilibrium. Under reasonable conditions, the maximal equilibrium
maximizes the agent’s information rent within the class of equilibrium allocations.
When the principals’ most-preferred equilibrium allocation differs from the max-
imal equilibrium, we demonstrate that the agent’s choice function exhibits an in-
terval of bunching over the worst agent types, and elsewhere corresponds to the
maximal allocation. The optimal region of bunching trades off the principals’ de-
sire to constrain inefficient n-fold marginalizations of the agent’s rent against the
inefficiency of pooling agent types.
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1. Introduction

We consider a canonical class of common agency games in which principals simulta-
neously offer contracts to a privately informed common agent whose action is publicly
observable and contractible by all principals, and who must either accept all contract
offers from the principals or choose not to participate. Common agency is thus public
and intrinsic.1 As a motivating example, suppose there are multiple government agen-
cies (principals) that regulate a polluting public utility (the common agent) that has pri-
vate information about the cost of production. If the firm decides to produce, it is under
the joint control of all regulators. Regulators, however, may have conflicting objectives.
For example, an environmental agency wishes on the margin to reduce output and neg-
ative externalities, while a public-utility commission instead prefers to increase output
and consumer surplus. In this game regulators simultaneously offer menus of transfer–
output pairs so as to influence the choice of the public utility. The public utility must
either choose an output and abide by the consequences of each principal’s menu or exit
the market entirely.

One of the main theoretical difficulties of modeling non-cooperative scenarios is to
characterize the multitude of equilibrium outcomes that can arise. In more familiar
single-principal screening environments, the revelation principle defines the set of rele-
vant communication strategies and describes feasible allocations by means of incentive
compatibility constraints.2 With multiple principals, however, the revelation principle
is neither simple to apply nor particularly useful. Even though the delegation principle
proposed in Martimort and Stole (2002)3 does offer a simple and universal representa-
tion of the strategy spaces available to mechanism designers in common agency envi-
ronments, this tool fails to give a complete representation of equilibrium allocations. As
a result, the literature on common agency has primarily focused on specific equilibria
in structured games rather than exploring the entire set of equilibrium possibilities. In
particular, previous analyses have often restricted attention to differentiable equilibria
both because of their tractability and because of the attractiveness of the simple eco-
nomic insights that emerge. This restriction, however, is with loss of generality and the
arbitrariness of such a selection raises concerns about the robustness of any implica-
tions deduced from the refined set. A more complete approach—the task of the present
paper—is to characterize the entire set of equilibria, to make welfare comparisons across
equilibria, and, where possible, to make broader statements that apply to all equilibria.

Insights from aggregate games

Our first step toward a full characterization of equilibria relies on the fundamental struc-
ture of intrinsic common agency games. As noted by Martimort and Stole (2012), these

1See Martimort (2006) for a review of these definitions and modeling choices in common agency games.
2Myerson (1982).
3Also sometimes referred to as menu theorems in the parlance of Peters (2001).
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games are special cases of aggregate games. Because the agent only cares about the sum
of the payments offered by the non-cooperating principals, incentive compatibility and
participation constraints can only depend on the resulting aggregate contract. As a con-
sequence, principal i’s expected payoff depends only upon his own contract and the
aggregate contract (i.e., the sum of contracts) offered by the other principals. Because
each principal can always undo the aggregate contract offered by others using only his
own tariff, a principal can implement any incentive-feasible allocation he would like.
It follows that a necessary condition for any equilibrium is that all principals agree on
inducing the same allocation. Such agreement has remarkable consequences. In partic-
ular, because each principal’s virtual surplus function is maximized by the equilibrium
allocation, it must also be that the sum of the principals’ individual virtual surpluses is
also maximized by this allocation. This aggregate virtual surplus function, however, is
not the same as the virtual surplus function that would arise in a cooperative setting in
which the principals jointly contract with the agent. Critically, the former corresponds to
what a fictional principal would maximize if this principal valued rent extraction n times
more than is the case. In equilibrium, everything happens as if the individual principals
were to delegate their choice of allocation to a surrogate principal whose payoffs are dis-
torted relative to the collective preference of the principals. This aggregate concurrence
principle, as coined by Martimort and Stole (2012), is a key ingredient to characterize
the set of equilibrium outcomes.4

Self-generating maximization programs

The aggregate concurrence principle provides necessary conditions for equilibria. We
are, however, interested in the set of equilibria that may be decidedly smaller. To this
end, we demonstrate that the solution set of carefully chosen self-generating maximiza-
tion (hereafter SGM) programs corresponds to the equilibrium set of our common-
agency game.5 In our common-agency game, following the approach in Martimort
and Stole (2012), we first establish that the solution set to an infinite-dimensional SGM
program corresponds to the set of equilibrium allocations (Proposition 1).6 Here, the

4The implication of aggregate concurrence was used by Bernheim and Whinston (1986) in a moral haz-
ard setting, but it applies to a larger class of aggregate games and, in particular, to our present screening
model.

5To be clear at the outset about our concept of an SGM program, consider a canonical maximization
program with objective function φ defined over a domain X , with the additional feature that φ is param-
eterized by an arbitrary reference point, x̂, which also lies in the choice domain X . We denote φ(x� x̂) to
be the value of this objective evaluated at the choice x, given the reference point x̂. The pair (φ�X) gives
rise to a self-generating maximization program whose solution set is defined by the requirement that each
element, x∗, satisfies

x∗ ∈ arg max
x∈X

φ
(
x�x∗)�

Hence, self-generating problems are optimization problems with a fixed point.
6Martimort and Stole (2012) used self-generating programs to prove equilibrium existence in intrinsic

common-agency games under quite general conditions (general type spaces, action sets, and preferences)
but they did not characterize equilibrium strategies and allocations. This paper goes beyond existence and
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self-generating objective function is found by aggregating the principals’ virtual pro-
grams, taking the aggregate contract as given. We demonstrate that the solutions to
the SGM program in Proposition 1 are those incentive-compatible allocations of out-
put and agent utility that maximize an objective function, which, in turn, depends upon
an aggregate tariff that implements the given output–utility pair. Our main characteri-
zation result (Proposition 2) introduces an assumption on the bilinearity of the agent’s
preferences to reduce the SGM program to a remarkably simple, pointwise optimization
program over the set of equilibrium actions. Characterizing equilibria with SGM pro-
grams embeds the fixed-point nature of equilibrium but it also imports the tractability
and techniques found in solving simpler optimization problems in lower dimensions.

From an economic viewpoint, SGM problems look like the problem that n cooper-
ating principals would face. There are two key differences, however. First, as already
noted, in the SGM program, reductions in the agent’s rent are weighted n times more
than in the cooperative program. It is as if there is a surrogate principal that maxi-
mizes a payoff that is biased toward overharvesting the agent’s information rent. This
n-fold excess weighting captures the fact that, in the non-cooperative scenario, each
principal attempts to extract the agent’s information rent without consideration of the
distortionary costs imposed on the other principals’ payoffs. Second, unlike the coop-
erative program, nondifferentiabilities in the equilibrium aggregate tariff appear in the
SGM program and can be self-enforcing in an equilibrium. As we will see, the lack of
smoothness is the source of equilibrium multiplicity.

From a technical viewpoint, the fact that there is a single optimization problem
(what we refer to as the “surrogate” problem) that summarizes equilibrium behavior
(and not a collection of n different optimization problems, one for each principal) al-
lows us to derive important properties of the surrogate principal’s value function (e.g.,
absolute continuity, envelope condition). These properties, in turn, help us character-
ize equilibrium output with only minimal regularity conditions on the set of available
contracts (i.e., upper semicontinuity). In particular, we do not impose differentiability
of the tariffs at the outset. Indeed, making such an assumption a priori would prevent
us from exhibiting nondifferentiable equilibria even though, as we will see below, there
is a plethora of such equilibria, including some with attractive welfare properties.

Maximal equilibrium

Following our characterization of the equilibrium set, we focus on a single equilibrium—
the maximal equilibrium—that we will see, forms a basis for all equilibria. We define
and construct the maximal equilibrium as the allocation in which the agent’s equilib-
rium choice set is at its largest (i.e., maximal) and the optimization program is uncon-
strained (Proposition 1). In regular environments characterized by a monotone hazard
rate of the types distribution, the maximal equilibrium features an n-fold asymmetric

describes all equilibrium allocations in more structured environments than those analyzed in Martimort
and Stole (2012). To get sharp predictions, we assume that the agent’s preferences are bilinear in output
and type. This allows us to import powerful tools from convex analysis and duality at minimal cost for
exposition.
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information distortion. This allocation is remarkable for at least two reasons. First, it
has been the implicit focus of all applied research in public screening environments to
date (Laffont and Tirole 1993, Chapter 17, Martimort and Semenov 2008, Martimort and
Stole 2009a, 2009b, among others). Second, we establish in Proposition 4 that this equi-
librium allocation is the unique equilibrium allocation that is supported with biconju-
gate (i.e., least-concave) tariffs: the maximal equilibrium is smooth, its choice allocation
is continuous, and each principal offers a continuous, concave tariff.

Complete set of equilibria

Using the properties of the SGM program allows us to characterize specific features of
any equilibrium. Because Proposition 2 establishes that an equilibrium is completely
identified with the range of equilibrium choices made by the various types of agents,
we can view the set of equilibrium allocations as a surrogate principal’s optimization
program given an equilibrium set of outputs. In this sense, the optimization program
shares techniques that were recently developed in the mechanism design literature on
delegated decision-making.7 This literature has shown that the solutions to the opti-
mal delegation problem are allocations that are either independent of the privately in-
formed party’s information or that instead correspond to the individuals’ ideal point.
This important insight carries over into our setting. At points where the equilibrium
output is continuous and separating, the allocation can be identified with the maximal
equilibrium allocation in Proposition 1. Elsewhere, equilibrium allocations entail dis-
continuities and bunching (Proposition 3). It is worth noting that the discontinuous
equilibria can be constructed from the maximal allocation by introducing gaps in the
range of equilibrium outputs. These allocations exhibit bunching, even in regular envi-
ronments satisfying the monotone hazard rate condition, and discontinuities at points
where the surrogate surplus nevertheless remains constant. Tariffs in these equilibria
are not biconjugate. They entail large negative payments over the discontinuity gaps.
These punishments prevent not only the agent from choosing outputs in the gap, but
also the principals from deviating with contracts that would induce the agent to choose
outputs in the gap. Imposing biconjugacy rules out the implicit coordination that prin-
cipals might reach by specifying offers with infinitely negative payments. Biconjugacy
makes more deviations attractive. It acts thus as a refinement of the equilibrium set.

Welfare comparisons

We conclude our analysis with a consideration of the welfare properties of the equilib-
rium set, viewed from both the agent’s and the principals’ perspectives. In Proposition 5,
we show that the agent prefers the maximal equilibrium allocation to all neighboring,
discontinuous equilibrium outcomes.

The preferred equilibrium of the principals (i.e., what they would choose collectively
to maximize the sum of their payoffs) may differ from the maximal equilibrium. Because

7See Holmström (1984), Melumad and Shibano (1991), Martimort and Semenov (2006), Alonso and Ma-
touschek (2008), and Amador and Bagwell (2013), among others.
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equilibria must be solutions to the SGM program, we can determine the principals’ op-
timal equilibrium as the solution to a delegation game in which the principals delegate
to the surrogate (with distorted preferences) to select an equilibrium on their behalf.
Indeed, everything happens as if non-cooperating principals were jointly delegating to
their surrogate representative the decision to choose an output for each possible real-
ization of the agent’s type. Of course, the difference in objectives between the principals
acting collectively and their fictional surrogate captures the loss due to non-cooperative
behavior. Viewed as a delegation design problem, we draw on recent advances in the
delegation literature (Amador and Bagwell 2013) to determine the optimal equilibrium.
In Proposition 6, we demonstrate that the principals’ preferred equilibrium generally
differs from the maximal equilibrium, inducing a “floor” on outputs (by means of suf-
ficiently large punishments for outputs below this floor), which prevents excessive rent
extraction. Intuitively, by refusing to pay the agent for outputs that are too low, prin-
cipals reach a minimal amount of coordination and attenuate their incentives to over-
harvest the agent’s information rent. The optimal region of bunching trades off the prin-
cipals’ desire to constrain inefficient, n-fold marginalizations of the agent’s rent against
the inefficiency of pooling agent types.

Literature review

Existing characterization results for common agency models are quite fragmented and
cover various contracting scenarios. Assuming symmetric information and delegated
common agency with public contracts, Bernheim and Whinston (1986) and Laussel
and Le Breton (1998, 2001) described payoffs for the so-called truthful equilibria, while
Chiesa and Denicolò (2009) investigated the case of private contracts. The former au-
thors focus on truthful tariffs with one justification being that they are coalition-proof
as proved in Bernheim and Whinston (1986) to ensure that each principal’s contribu-
tion exactly reflects his preferences over possible alternatives. Efficiency follows. The
only remaining question is how the possibility that the agent may reject some offer re-
distributes surplus among players.

Under asymmetric information, the distributions of equilibrium payoffs can no
longer be disentangled from the allocative distortions that arise at equilibrium. Mar-
timort and Stole (2015) present necessary conditions that are satisfied by all equilib-
rium outcomes of a delegated public common agency game. Compared with the in-
trinsic counterpart, delegated public common agency games allow the agent to refuse
any strict subset of the principals’ offers if he wishes so. Martimort and Stole (2015)
derive maximal equilibria in those contexts and observe that they differ from max-
imal equilibria in intrinsic games because these additional strategic possibilities re-
quire that tariffs must remain nonnegative. The necessary conditions in Martimort
and Stole (2015) remain compact enough to describe both continuous and discontin-
uous equilibrium allocations just as in the intrinsic scenario that is our focus hereafter.
Yet, these conditions differ from those presented below because there are fewer devia-
tions available under delegated common agency. Moreover, these necessary conditions
are not sufficient; sufficiency has to be checked directly in contrast with the analysis
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of intrinsic games developed hereafter where sufficiency is immediate. The difference
comes from the fact that intrinsic games are bijective aggregate games in the parlance
of Martimort and Stole (2012). Knowing the solution to the self-generating problem is
enough to recover solutions to all principals’ optimization problems. Delegated agency
games do not satisfy bijectivity since the possibility of rejecting any offer implies that
contracts are necessarily nonnegative. This makes it impossible for principals to undo
all aggregate offers, while undoing aggregate tariffs is always feasible under intrinsic
common agency.

Among others, Stole (1991), Martimort (1992), Martimort and Stole (2009a), and Cal-
zolari and Denicolò (2013) for private contracting and Laffont and Tirole (1993, Chapter
17), Laussel and Le Breton (1998), Martimort and Semenov (2008), Martimort and Stole
(2009b) and Hoernig and Valletti (2011) for public contracting describe various differen-
tiable equilibria that arise under asymmetric information in intrinsic common agency
games with a continuum of types. None of these papers investigates the full set of equi-
libria as we do here. This step is possible by building on techniques similar to those
in Martimort and Stole (2015) but now specialized to intrinsic common agency games.
Laussel and Resende (2018) also tackle this problem in the specific context of compet-
ing manufacturers. Beside other technical differences, their approach in characterizing
equilibrium allocations proceeds by deriving necessary conditions based on individual
best responses that are stricter than ours. This leaves aside the issue of whether the allo-
cations so found are indeed equilibria. Necessary and sufficient conditions are obtained
altogether with our approach based on viewing equilibria as solutions to self-generating
problems for bijective aggregate common agency games. Moreover, our approach al-
lows us to directly identify equilibrium output profiles with implementable allocations
of a simple mechanism design problem of delegated decision-making. This allows us to
leverage valuable tools from this literature, first to describe all equilibrium allocations
and second to find the best one from the principals viewpoint.

Organization

Section 2 presents the model. Section 3 describes the set of incentive-feasible alloca-
tions. We present there some of the duality tools that are used throughout the paper,
defining in particular the notion of biconjugacy. We also briefly review the cooperative
benchmark. Section 4 presents the self-generating optimization problems that repre-
sent equilibria. Section 5 characterizes those equilibria. Section 6 discusses equilibrium
selection and welfare. Proofs are relegated to an Appendix.

2. An intrinsic common agency game

The focus of this paper is on common agency games with n > 1 principals (indexed by
i ∈ {1� � � � � n}), each of whom contracts with a single common agent. We assume that
common agency is intrinsic and the choice variable of the agent is public (i.e., com-
monly observable and contractible by all principals). For some of the interpretations
below, it is useful to think of the agent as producing a good or service on behalf of the
principals.
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Preferences

All principals and the agent have quasi-linear preferences over output q and payments
ti that are defined, respectively, as

Si(q)− ti (principal i) ∀i ∈ {1� � � � � n} and
n∑
i=1

ti − θq (common agent)�

The agent produces a good on behalf of the principals by selecting a q from an interval of
feasible outputs, Q = [0� qmax]. We assume that the payoff functions Si (for i ∈ {1� � � � � n})
are strictly concave and twice continuously differentiable over Q, and that nonpartic-
ipation by the agent is equivalent to a choice of q = 0. Without loss of generality, we
normalize principal payoffs so that Si(0) = 0. Thus, Si(q) represents the net utility of
principal i relative to the outside option of q = 0.8 We denote the aggregate princi-
pals’ payoffs by S(q) = ∑n

i=1 Si(q) and the aggregate payoff for all principals except i
by S−i(q)= ∑

j �=i Sj(q).

Contracts

Using the delegation principle, Martimort and Stole (2002) demonstrate that there is no
loss of generality in studying pure-strategy common agency equilibria to require that
principals’ strategy spaces are restricted to tariffs from output to transfers. Let T be
the set of all upper semicontinuous mappings, Ti, from Q into R (for i ∈ {1� � � � � n}). We
denote an arbitrary array of contracts by T = (T1� � � � �Tn) ∈ T n.9 An aggregate contract
(or, in short, an aggregate) is defined as T(q)= ∑n

i=1 Ti(q). We also use the notation T−i
and T−i(q)= ∑

j �=i Tj(q) to denote, respectively, an array of contracts and the aggregate
contract from all principals but i.

Timing and information

The timing is typical of principal–agent screening games, but now with n principals con-
tracting instead of one. First, the agent privately learns his type (a cost parameter), θ,

8That the agent’s utility function is bilinear in θ and q allows us to import many direct results from du-
ality theory from convex analysis (for instance, our notion of biconjugacy below). These findings could
be generalized to preferences for the agent of the sort ti + u(θ�q) for some u function. The relevant gen-
eralization of convexity is u-convexity as discussed in Carlier (2001) and Basov (2005, Chapter 3). We can
also easily generalize the agent’s preferences to allow for the addition of a nonlinear function of q. Specifi-
cally, suppose that the agent’s payoff is

∑n
i=1 ti + S0(q)− θq, where S0 is a concave function normalized at

S0(0)= 0 that represents the agent’s intrinsic benefit of production. Redefine payments from each princi-
pal and their respective payoff functions so that t̃i = ti − S0(q)

n and S̃i(q) = Si(q)+ S0(q)
n (for i ∈ {1� � � � � n}).

One can verify that S̃i(0)= 0 and the expressions for the principals’ and the agent’s utility functions can be
written, respectively, as S̃i(q)− t̃i and

∑n
i=1 t̃i − θq, which is the simpler form that we have adopted.

9We do not consider stochastic payment schedules because they have no value in our context with risk
neutral players. Any stochastic payment schedule that would offer a lottery over payments for a given value
of the agent’s output could be replaced by the corresponding expected payment without changing payoffs
and incentives. Also, we do not consider the possibility of writing contracts on contracts as in Szentes
(2015). In some contexts (regulatory environments or competition in nonlinear pricing), such referencing
of contracts is ruled out by institutional constraints.
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that is distributed over the support �= [θL�θH] according to a continuous, commonly
known distribution F(θ), with corresponding positive density f (θ). Let Eθ[·] denote the
expectation operator with respect to the distribution of types.

Second, principals simultaneously offer the agent the tariffs, Ti : Q → R, which are
promises to pay Ti(q) to the agent following the choice of q ∈ Q = [0� qmax]. Our assump-
tion that common agency is public is captured by the fact that all principals contract on
the same observed choice by the agent.

Third, the agent either accepts or rejects all of the principals’ offers (i.e., common
agency is intrinsic).10 Refusing to participate results in zero transfers and a reservation
payoff of zero to all players. Formally, we denote the agent’s participation decision by
the strategy δ, where δ= 1 indicates acceptance and δ= 0 indicates rejection. Thus, the
agent’s strategy is a pair of functions, {δ�q}, mapping agent types and principal contract
offers into {0�1} × Q. If all contracts are accepted (δ= 1), the agent then chooses q ∈ Q
to maximize his utility and receives payments from each principal according to their
contractual offers. Upper semicontinuity, together with the compactness of Q, ensures
that an optimal output exists. If, however, contracts are rejected (δ= 0), then by default
q= 0, all transfers are zero, and each player earns a normalized payoff of 0.

Equilibrium

Our focus in this paper is on equilibrium allocations that arise in a pure-strategy Perfect
Bayesian equilibrium.

Definition 1. An equilibrium is an n + 2-tuple {T 1� � � � �T n�q0� δ0} (with aggregate
T(q)= ∑n

i=1 T i(q)) such that the following statements hold:

(i) The functions q0(θ�T) and δ0(θ�T) jointly maximize the agent’s payoff:{
q0(θ�T)�δ0(θ�T)

} ∈ arg max
q∈Q�δ∈{0�1}

δT(q)− θq ∀θ ∈��∀T ∈ T �

(ii) The tariff T i maximizes principal i’s expected payoff given the other principals’
contracts T−i:

T i ∈ arg max
Ti∈T

Eθ
[
Si

(
q0(θ�Ti�T−i)

) − δ0(θ�Ti�T−i))Ti
(
q0(θ�Ti�T−i)

)] ∀θ ∈��

For any equilibrium, {T� q0� δ0}, we define the associated equilibrium allocation as
the triplet δ(θ)= δ0(θ�T), q(θ)= q0(θ�T), and U(θ)= δ(θ)T(q(θ))− θq(θ).

In what follows, it will be useful to refer to the set of type-allocation mappings that
are implementable for some aggregate tariff, denoted I , and to the subset of those type-
allocation mappings that arise in some equilibrium, denoted Ieq.

10Partial participation is not an option contrary to the scenario studied in Martimort and Stole (2015).
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Definition 2. An allocation (U�q�δ), U : �→ R, q : �→ Q, and δ : �→ {0�1}, is im-
plementable if there is an aggregate tariff, T : Q → R such that(

q(θ)�δ(θ)
) ∈ arg max

q∈Q�δ∈{0�1}
δT(q)− θq�

U(θ)= max
q∈Q�δ∈{0�1}

δT(q)− θq�

The set of all implementable allocations is denoted I .
An allocation (U�q�δ) is an equilibrium allocation, or equilibrium implementable,

if it is implementable by an aggregate tariff, T , that arises at an equilibrium.

Proposition 1 below shows that, for any equilibrium allocation (U�q�δ), there exists
another equilibrium allocation in which the agent always participates, δ(θ)= 1 for all θ.
For this reason, we subsequently focus our attention on the pair (U�q) and suppress
the type-allocation mapping for δ. Yet, our more general formulation remains useful
for two reasons. First, it allows us to incorporate the agent’s decision to participate as a
requirement of implementability.11 Second, it accounts for the possibility of equilibria
where principals make nonserious offers. Indeed, there always exist uninteresting, triv-
ial equilibria induced by a coordination failure in which two or more principals require
sufficiently negative payments for each q ∈ Q so that it is not profitable for any principal
to induce agent participation and δ= 0 for such equilibrium allocations.

Full information allocation

The first-best allocation (U fb� qfb) is obtained when principals cooperate and know the
agent’s cost parameter. In this scenario, principals jointly request production at the first-
best level, qfb(θ), and set transfers that extract the agent’s surplus. Assuming S′(0)≥ θH
and S′(qmax)≤ θL to avoid corner solutions,12 we obtain

S′(qfb(θ)
) = θ and U fb(θ)= 0 ∀θ ∈��13

3. Implementability, duality and cooperative benchmark

The following lemma provides a standard characterization of the set of implementable
allocations by means of familiar incentive and participation constraints.

11This is item (iii) in Lemma 1 below. This requirement was left implicit in the description of incentive-
feasible allocations given in Martimort and Stole (2012). We find it useful to make this requirement explicit
for completeness and clarity.

12In the sequel, we assume that the second condition (which prevents a corner at the upper bound of
the feasible outputs) always holds. The first condition will be sometimes modified below to account for the
fact that output remains positive under stringent conditions when there is asymmetric information. In this
case, we will be explicit about such modification.

13This outcome is also one possible equilibrium of the intrinsic common agency game when it takes
place under complete information. In sharp contrast to the analysis under asymmetric information that
will follow, the principals’ non-cooperative behavior need not entail any welfare loss. However, many other
inefficient equilibria exist.
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Lemma 1. An allocation (U�q) belongs to I if and only if

(i) U(θ) is absolutely continuous and differentiable almost everywhere with

U̇(θ)= −q(θ) (1)

(ii) U(θ) is convex (equivalently, q(θ) is nonincreasing)

(iii) agent participation is optimal for all types:

U(θ)≥ 0 ∀θ ∈��

Tariffs

Once given an allocation with convex U satisfying (1), simple duality arguments allow
us to recover the expression of a nonlinear tariff that implements this allocation. As a
first step, we observe that any aggregate contract T ∈ T that implements an allocation
(U�q) satisfies the inequality

U(θ)= T (
q(θ)

) − θq(θ)≥ T(q)− θq ∀q ∈ Q�∀θ ∈��

Equivalently,

T(q)≤U(θ)+ θq ∀q ∈ Q�∀θ ∈�
with equality at q = q(θ). From this, we immediately obtain an upper bound T ∗(q) on
all implementing contracts as

T ∗(q)= min
θ∈�

U(θ)+ θq ∀q ∈ Q� (2)

In fact, T ∗ is the least-concave upper semicontinuous tariff implementing (U�q) and
thus

U(θ)= max
q∈Q

T ∗(q)− θq ∀θ ∈�� (3)

Using the language of convex analysis, the dual conditions (2) and (3) show that U and
T ∗ are conjugate functions. Because T ∗ is a minimum of linear functions, it is itself
concave.

Since the high-cost type’s participation constraint is binding—a property that holds
both in the common agency equilibria explored below and when principals cooperate—
we have U(θH) = 0. Hence, T ∗(0) = 0 and the agent is always indifferent between ac-
cepting such offer T ∗ while producing zero output, and refusing to participate.

For further reference, observe also that (2) can be written by means of (3) in a more
compact form that highlights the fact that U and T ∗ are conjugate functions:

T ∗(q)= min
θ∈�

{
max
q′∈Q

{
T ∗(q′) − θq′} + θq

}
�

Broadening the applicability of this biconjugacy property, we offer the following definition.
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Definition 3. An aggregate contract T is biconjugate if and only if T(0)= 0 and

T(q)= min
θ∈�

{
max
q′∈Q

{
T

(
q′) − θq′} + θq

}
∀q ∈ Q�

An allocation (U�q) ∈ Ieq is a biconjugate equilibrium if and only if it is equilibrium
implemented by an aggregate biconjugate tariff T .

Remarks

Biconjugate functions are concave functions such that T ∗(0) = 0.14 Observe that a bi-
conjugate contract, T ∗, takes finite values since Q is bounded. The tariff T ∗ is also con-
cave over the convex hull of q(�)∪{0} and is linear for intervals of q that lie outside q(�).
As a comparison, consider now the following tariff T0, taking values over the extended
real line:

T0(q)=
{
T ∗(q) if q ∈ q(�)∪ {0}�
−∞ otherwise�

(4)

It is straightforward to check that T0 also implements the allocation (U�q). But while T0

inherits the concavity of T ∗ over all connected subsets of q(�), T0 is not itself biconju-
gate. The tariff T0 differs from T ∗ in the sense that, had the agent trembled in choosing
outputs, choices outside of the equilibrium range q(�) would be severely punished. To
illustrate, had q(�) taken only a finite number of values, T0 would be a familiar forcing
contract. Such forcing contracts are inconsistent with biconjugacy.

Cooperative outcome

Suppose that principals cooperate in designing contracts. Under asymmetric informa-
tion, the optimal cooperative allocation (U

c
�qc) is a solution to(

Pc
)

max
(U�q)∈I

Eθ
[
S
(
q(θ)

) − θq(θ)−U(θ)]�
The solution to this monopolistic screening problem is well known. For tractability,

we assume the distribution of types satisfies the standard monotone hazard rate prop-
erty.15 Formally, we assume

H(θ)= F(θ)

f (θ)

14The reader may wonder why we refer to these functions using the property of biconjugacy rather than
the more evocative notion of minimally concave functions through the origin. In an earlier version of this
paper, we explored common-agency games with discrete type spaces. Equilibrium contracts in this setting
are equivalent to menus with finite output–tariff pairs and so the appropriate notion of concavity over
the domain Q is unclear without more details. Biconjugacy provides the exact notion of concavity that is
required for analogous results in the discrete type setting.

15See Bagnoli and Bergstrom (2005).
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is nondecreasing and differentiable for all θ ∈ �. Equipped with this regularity condi-
tion, we state the well known characterization of the cooperative solution. The cooper-
ative output satisfies {

S′(qc(θ)) = θ+H(θ) if S′(0)≥ θ+H(θ)�
qc(θ)= 0 otherwise�

The agent’s corresponding rent profile for the cooperative setting is

Uc(θ)=
∫ θH

θ
qc(θ̃)dθ̃�

The monotone hazard condition ensures that qc is everywhere nonincreasing (and
hence Uc is convex) as required by Lemma 1. The expression of the least-concave non-
linear tariff Tc that implements this cooperative allocation is easily recovered from (2).

4. Equilibria as solutions to self-generating problems

Martimort and Stole (2012) demonstrate that intrinsic common agency games are ag-
gregate games whose equilibria can be identified with the solution set to self-generating
maximization problems. Specializing the necessary and sufficient conditions in their
Theorem 2′ to our present setting, we obtain the following characterization of the entire
set of equilibrium allocations as solutions of such problems.16

Proposition 1. The pair (U�q) is an equilibrium allocation if and only if there exists
an aggregate tariff T satisfying T(0)= 0, which implements (U�q) and is such that (U�q)
solves the self-generating maximization problem

(P) max
(U�q)∈I

Eθ
[
S
(
q(θ)

) − θq(θ)− nU(θ)+ (n− 1)
(
T

(
q(θ)

) − θq(θ))]�
The maximization problem (P) bears some strong similarity with the cooperative

mechanism design problem (Pc). The difference comes from the fact that (P) is now
self-generating : its solution is implemented by an aggregate T that also appears in the
maximand, embedding the fixed-point nature of equilibrium. Importantly, the fact that
intrinsic common agency games are aggregate games allows a significant reduction of
the difficulties faced when characterizing such fixed points. Instead of having n opti-
mality conditions determining individual best responses for each principal, only one
optimization problem remains after aggregation. This simplification allows us to im-
port powerful techniques from optimization. In particular, this maximization problem
defines a value function (the value of the maximand for each possible realization of θ)
that is more regular than what we a priori imposed on aggregate tariffs. While aggregate
tariffs are only restricted to be upper semicontinuous, the value function is absolutely
continuous and admits a derivative almost everywhere; this is a critical step in the proof

16It is worth noting that this proposition does not rely on the monotone hazard rate assumption.
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of Proposition 2 below where we are able to get an even more precise description of
equilibrium allocations.

In contrast to (Pc), the objective function in (P) now features n-times the extraction
of the agent’s information rent. Each principal individually introduces distortions to ex-
tract this rent, ignoring the costs of such distortions on rivals. The n-fold term captures
the resulting tragedy of the commons that arises with each principal overharvesting the
agent’s information rent. Because this strategic effect is embedded in the self-generating
maximization (SGM) program, everything thus happens as if a surrogate principal was
now in charge of maximizing the principals’ collective payoff with the proviso that the
agent’s information rent is now weighted negatively by n. The final term in the max-
imand consists of n − 1 times the agent’s payoff at the induced allocation and is the
source of multiple equilibria. This term has no consequence if either there is only one
principal or the aggregate tariff is differentiable.17 If, however, multiple principals of-
fer nondifferentiable (possibly discontinuous) tariffs, then it is possible the third term
generates an allocation that is consistent with these nonsmooth tariffs. For example, if
multiple principals set sufficiently negative payments for some set of outputs, then it is
an equilibrium for each principal to do so and the solution to the optimization program
will not implement such outputs.

Necessity

The necessity part of Proposition 1 can be obtained by summing the individual opti-
mization problems of all principals. An equilibrium allocation, since it maximizes each
principal’s problem, also maximizes his/her sum. This summation introduces the n-
fold distortion. In any equilibrium with nonzero output, the agent’s information rent
will thus be overweighted by a factor of n (instead of a coefficient of 1 that would arise
had principals cooperated). It is this noncooperative information-rent externality that
the principals would like to mitigate in their equilibrium selection; an issue we come
back to in Section 6.2 below.

Sufficiency

Establishing the sufficiency argument is more subtle. Sufficiency bears on the fact that,
under intrinsic agency, the objectives of every principal are aligned in equilibrium with
that of the surrogate principal who maximizes (P). In other words, nothing is lost by
aggregating individual objectives. From a more technical point of view, sufficiency is
obtained by reconstructing each principal’s individual maximization problem from (P)
itself. Doing so requires us to propose expressions of individual equilibrium tariffs that
are derived from the aggregate, that solve the self-generating problem (P), and that are
individual best responses to the tariffs other principals are offering. To this end, consider
the construction of tariffs

T j(q)= Sj(q)− 1
n

(
S(q)− T(q)) ∀j ∈ {1� � � � � n}� (5)

17If the tariff is differentiable, incentive compatibility implies this term has zero marginal contribution
in equilibrium.
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Summing over j yields an aggregate of T . Summing instead over all principals but i gives

T−i(q)= S−i(q)− n− 1
n

(
S(q)− T(q))�

By undoing the aggregate offer T−i of his rivals, principal i can always offer any aggregate
T he likes, thereby inducing any implementable allocation (U�q). This construction
gives principal i an expected payoff of

Eθ
[
Si

(
q(θ)

) − T (
q(θ)

) + T−i
(
q(θ)

)]
≡ Eθ

[
S
(
q(θ)

) − T (
q(θ)

) − n− 1
n

(
S
(
q(θ)

) − T (
q(θ)

))]
�

where the right-hand side equality follows from our previous equation for T−i. Express-
ing payments in terms of the agent’s rent, we may simplify this payoff as

1
n

Eθ
[
S
(
q(θ)

) − θq(θ)− nU(θ)+ (n− 1)
(
T

(
q(θ)

) − θq(θ))]� (6)

The objective function (6) exactly replicates that of the surrogate principal up to a factor
1
n . Therefore, principal i’s incentives to induce a particular implementable allocation
(U�q) are identical to those of this representative. As a result, all principals get the same
payoffs with the above construction:

Si(q)− T i(q)= 1
n

(
S(q)− T(q)) ∀i ∈ {1� � � � � n}�

5. Characterization of the equilibrium set

This section characterizes the complete equilibrium set. This set is large and diverse. In
addition to the differentiable equilibria that have been the focus of the existing litera-
ture, there is an infinity of equilibria with discontinuous outputs or bunching of types.
We provide a characterization theorem for the entire set, illuminating economic fea-
tures common to all equilibria and characterizing features that are unique to particular
equilibrium selections.

The solution set to the self-generating program (P) is difficult to characterize. Lever-
aging our assumption of bilinear preferences and our regularity assumption onH, how-
ever, we can simplify the SGM program, reducing it to problem in pointwise optimiza-
tion. This affords us a much sharper characterization of the equilibrium allocations. The
main characterization result of this paper follows:

Proposition 2. An allocation (U�q) belongs to Ieq if and only if

q(θ) ∈ arg max
q∈q(�)

S(q)− (
θ+ nH(θ))q ∀θ ∈�� (7)

U(θ)=
∫ θH

θ
q(θ̃)dθ̃ ∀θ ∈�� (8)
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Surrogate principal’s incentive constraints

Condition (7) represents a greatly simplified, pointwise SGM program that embeds the
strategic interactions of the principals into a simple optimization program. Note that
the domain of this program is restricted to a self-generating set of equilibrium outputs.
In contrast, the self-generation in Proposition 1 was over the more complicated object
of an aggregate tariff. It is as if a surrogate representative of the principals is optimiz-
ing on their behalf but with an overemphasis on rent extraction (n weight rather than
unity). At any type realization θ, this surrogate principal, whose decisions reflect the
non-cooperative behavior of the principals, should prefer to choose the equilibrium
output q(θ) rather than any other output that would have been chosen had any other
type realized. This explains why in the maximand of (7), the domain of maximization is
over q(�).

To evaluate those best choices, the surrogate principal a priori considers the maxi-
mand of the self-generating problem (P). The first remarkable finding is that the sur-
rogate principal’s incentive constraints (7) are now written ex post instead of ex ante as
in the maximand (P). This transformation requires to replacing the cost parameter θ
by a new expression that entails an n-fold information distortion due to the principals’
non-cooperative behavior, namely θ+nH(θ). The monotone hazard rate condition that
this modified virtual cost parameter remains nondecreasing and thus q is itself nonin-
creasing. Henceforth, any solution to a self-generating problem (P) is obtained as the
solution to the relaxed problem (Pr), where the convexity requirement for U can be
omitted.

The second remarkable simplification incorporated into (7) is that the extra term
(n−1)(T (q)−θq) that is found in the maximand of (P) has now disappeared. Intuitively,
q(θ) is also a maximizer for this last term since it has to be the agent’s equilibrium choice.
Although no assumption on differentiability of the equilibrium aggregate tariff T(q) is
ever made, everything happens as if an envelope condition could be used to simplify the
writing of the surrogate principal’s incentive constraints.

The third notable fact is that, although the optimization domain in (P) is Q, only
outputs in q(�) are used to write (7). This is so because q(�) certainly differs from Q
when T specifies sufficiently large, negative payments over Q/q(�).

Equilibrium allocations

The characterization of equilibrium allocations by means of the surrogate principal’s in-
centive constraints (7) bears strong similarities to the characterization of implementable
allocations found in the literature on mechanism design for delegated decision-making
problems as in Holmström (1984), Melumad and Shibano (1991), Martimort and Se-
menov (2006), Alonso and Matouschek (2008), and Amador and Bagwell (2013). This lit-
erature demonstrates how an uninformed party can delegate decision-making to a pri-
vately informed party in circumstances of conflicting preferences, asymmetric informa-
tion, and when no incentive payments are available to align objectives. In our context,
the conflict of interest comes from the fact that, although principals would like to coop-
erate, they are unable to do so when each of them can deviate to a bilateral agreement
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with the agent. The non-cooperative outcome is captured by the optimizing behavior
of a surrogate principal. Yet, while cooperating principals maximize a virtual surplus
worth

S(q)− (
θ+H(θ))q� (9)

the surrogate principal cares about a surrogate surplus that entails the modified virtual
cost parameter

S(q)− (
θ+ nH(θ))q� (10)

This surrogate surplus accounts for the fact that non-cooperating principals extract n
times the agent’s rent while cooperating principals only care about extracting that rent
once. This difference in their concerns for rent extraction is the source of conflict be-
tween cooperating principals and their surrogate representative.

Although there is no asymmetric information per se between the cooperating prin-
cipals and their surrogate, the latter implements at equilibrium an allocation that is a
pointwise optimum of the surrogate surplus. This maximization thus induces a set of
incentive constraints that are reminiscent of those found in the aforementioned del-
egation design literature. Borrowing techniques that were developed there provides a
clear characterization of equilibrium outputs. Everything happens thus as if the surro-
gate principals was informed on the agent’s cost himself although he replaces this cost
parameter by its non-cooperative virtual version.

Maximal equilibrium

Following a path taken by Martimort and Stole (2015) in their analysis of delegated com-
mon agency games, one may select among all equilibria described in Proposition 2 by
considering maximization in (7) over the full domain Q. We denote this output alloca-
tion by qm, i.e., the unconstrained maximum of the strictly concave objective (10):

qm(θ) ∈ arg max
q∈Q

S(q)− (
θ+ nH(θ))q ∀θ ∈��

The resulting range of optimal outputs in this unconstrained optimization program is
also a self-generating solution to the program in (7), and so we term it the maximal
solution.18 Thanks to the monotone hazard rate assumption, this maximal output allo-
cation, which is characterized by{

S′(qm(θ)) = θ+ nH(θ) if S′(0)≥ θ+ nH(θ)�
qm(θ)= 0 otherwise,

(11)

18While we use the same notion of maximal solutions in Martimort and Stole (2015) as in the present
paper, note that the virtual surpluses in the SGM program of the delegated agency setting of Martimort
and Stole (2015) and in the present paper are different. In particular, the space of contracts in the intrinsic
common agency game is larger than in the delegated scenario since the latter only includes nonnegative
tariffs.
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is again nonincreasing. Compared with a cooperative outcome, the maximal equilib-
rium allocation features a distortion that is now proportional to n times the hazard rate.
This captures the fact that, at equilibrium, each principal adds his own distortion for
rent extraction reasons.

Define now the rent allocation Um as

Um(θ)=
∫ θH

θ
qm(θ̃)dθ̃�

Given our construction of the surrogate’s unconstrained optimal allocation, (Um�qm),
it is an immediate consequence of Proposition 2 that this allocation is an equilibrium
outcome in the common agency game.

Corollary 1. The maximal allocation (Um�qm) is an equilibrium allocation.

Observe that any equilibrium allocation must satisfy requirement (7), and therefore
on any interval where it is continuous and separating, it must equal the maximal alloca-
tion.

This maximal equilibrium has been the focus of the earlier common agency liter-
ature. For instance, Martimort and Stole (2012) used this particular selection to prove
existence of an equilibrium to intrinsic common agency games under broad conditions,
though they made no attempt to characterize the properties of the equilibrium set, in
sharp contrast to the present paper. In more applied work, Laffont and Tirole (1993,
Chapter 17) modeled privatization as a common agency game between shareholders
and regulators controlling the firm’s manager. Their conclusion that joint control leads
to low-powered incentives relies on the selection of the smooth maximal equilibrium or
an extreme discontinuous forcing equilibrium.

More detailed characterization

The next proposition provides a complete and detailed characterization of all equilib-
rium output profiles.

Proposition 3 (General characterization of equilibrium output profiles). An output al-
location q :�→ Q is an equilibrium outcome if and only if it satisfies the following prop-
erties:

(i) The allocation q is nonincreasing, differentiable a.e. with at most a countable
number of downward-jump discontinuities.

(ii) At any point of differentiability,

q̇(θ)
(
S′(q(θ)) − θ− nH(θ)) = 0� (12)

(iii) At any discontinuity for an interior type, θ0 ∈ (θL�θH), bunching arises on both
sides of θ0 satisfying

q(θ)= qm(θ1) ∀θ ∈ [θ1� θ0) and q(θ)= qm(θ2) ∀θ ∈ (θ0� θ2]
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for some θ1 and θ2 such that θ1 < θ0 < θ2.19 The surrogate surplus is continuous
around θ0:

S
(
qm(θ1)

) − (
θ0 + nH(θ0)

)
qm(θ1)= S(qm(θ2)

) − (
θ0 + nH(θ0)

)
qm(θ2)� (13)

Equilibrium outputs

From (12), any equilibrium output profile is either flat over some range, in which case it
is unresponsive to the agent’s private information, or when it is decreasing and continu-
ous in θ, it corresponds to the maximal equilibrium output. To illustrate with a scenario
of some relevance for what follows, an equilibrium output profile can be obtained sim-
ply by putting a floor on the maximal equilibrium output. In that case, principals are
unable to implement outputs that are too low.

Discontinuities in the equilibrium output q have also a quite specific structure. First,
the fact that q is nonincreasing (from incentive compatibility) implies that such discon-
tinuities are necessarily countable in number. Second, the fact that the surrogate prin-
cipal’s surplus is maximized at an optimal choice implies that such discontinuities must
nonetheless preserve the continuity of the surrogate surplus:

max
q∈q(�)

S(q)− (
θ+ nH(θ))q�

Outputs on both sides of such discontinuities satisfy the simple condition (13), which
expresses the fact that the surrogate principal should be indifferent between moving
output on either side of the gap.

Equilibrium ranges

Introducing a discontinuity of q at a given type θ0 amounts to withdrawing an interval
(qm(θ2)�q

m(θ1)) from the range of qm to obtain the range of q. This may be done by im-
posing sufficiently negative payments for every q ∈ (qm(θ2)�q

m(θ1)). Clearly, each prin-
cipal is willing to offer such payments if other principals are expected to do so. In this
manner, we may generate arbitrary equilibrium allocations by introducing gaps in the
maximal allocation. The maximal equilibrium contains the ranges of all discontinuous
equilibria that are constructed by introducing gaps.20

Another immediate consequence of Proposition 3 is that for any subset Q of qm(�)
that is the union of a countable number of intervals, there is a unique equilibrium al-
location q whose range is Q itself. A specific case arises when principals offer forcing
contracts at a finite number of outputs. Even though they do not provide any in-depth
analysis of those equilibria, Laffont and Tirole (1993, Chapter 17) already devoted an ap-
pendix to discuss an interesting subclass of equilibria that are implemented by means

19The output q can be made either right-continuous (q(θ0)= qm(θ1)) or left-continuous (q(θ0)= qm(θ2))
with, of course, no consequences on payoffs for both the agent and the principals.

20There are discontinuous equilibria that feature degenerate pooling on a single point and cannot be
generated by introducing gaps into the maximal equilibrium. The simplest such equilibrium is one in which
q(θ)= 0 for all types, Ti(0)= 0 and Ti(q)= −∞ for all q �= 0.



1170 Martimort, Semenov, and Stole Theoretical Economics 13 (2018)

of forcing contracts. Their analysis is unfortunately incomplete. Forcing contracts in-
duce allocations with exhibit bunching almost everywhere, but they only represent a
special case of the more complete analysis of Propositions 2 and 3 above. Moreover, and
in sharp contrast to ours, their analysis is silent on the possible welfare comparison of
those nondifferentiable equilibria to the smooth maximal allocation.

Tariffs

An aggregate payment T can easily be reconstructed from any equilibrium allocation
(U�q), where q satisfies (12) outside discontinuities and (13) at any discontinuity point.
First, using the rent profile U obtained from (8), the duality argument in (2) gives us a
nonlinear price schedule T ∗ that implements (U�q). Second, principals are prevented
from deviating to a contract that would induce the agent to choose outputs within a
discontinuity gap by imposing that the aggregate tariff T entails infinitely negative pay-
ments for q /∈ q(�)∪{0} as requested from (4). Finally, conditions (5) allow one to recon-
struct from this aggregate tariff the equilibrium tariffs offered by each principal.

Comparison with the cooperative outcome

It is interesting to ascertain the validity of our findings in Propositions 2 and 3 in the
limiting case where n = 1 (recall that our maintained assumption has been n > 1). Of
course, the maximal equilibrium allocation corresponds to the cooperative solution for
this case. When n = 1, the necessary conditions in Propositions 2 and 3 continue to
hold, but the sufficient conditions are no longer valid. In fact, when n > 1, some of the
equilibrium allocations are obtained by the very fact that a given principal may not be
free to choose any output because other principals have stipulated infinitely negative
payments at this output; a threat that is only available when n > 1.

A simple numerical example

As an illustration of the various allocations that were characterized above, let us consider
the following uniform-quadratic example. Suppose that n= 2, S1(q)= S2(q)= 4q− 1

4q
2,

and θ is distributed uniformly on [1�5] so thatH(θ)= θ−1. It is straightforward to derive
the allocations for the first-best outcome, the cooperative optimum, and the maximal
noncooperative equilibrium as

qfb(θ)= 8 − θ� qc(θ)= max{9 − 2θ�0}� qm(θ)= max{10 − 3θ�0}�

which are illustrated in Figure 1. The range of the maximal equilibrium is qm(�)= [0�7].
The (aggregate) tariff for the cooperative solution and the maximal equilibrium are, re-
spectively, given by

Tc(q)= 9
2
q− q2

4
and Tm(q)= 10

3
q− q2

6
�
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Figure 1. Numerical example: Output allocations for the first-best benchmark, the cooperative
benchmark, and the maximal equilibrium.

Now consider taking off some outputs in that range so as to construct an equilibrium
whose range is q(�) = qm(�)/(2�5). It is straightforward to check that q is discontinu-
ous at θ0 = 13

6 , which leaves the agent indifferent between moving on either side of the
discontinuity. The corresponding equilibrium output is thus

q(θ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

qm(θ) if θ ∈
[

1�
5
3

]
∪

[
8
3
�5

]
�

5 if θ ∈
[

5
3
�

13
6

]
�

2 if θ ∈
(

13
6
�

8
3

]
�

(14)

In this uniform-quadratic setting, we can also verify that an implementing aggregate
tariff satisfies

T(q)=
{
Tm(q) if q ∈ qm(�)[0�2] ∪ [5�7]�
−∞ otherwise�

6. Equilibrium selection

We now present two approaches to possibly select within the large set of equilibria found
above. First, under reasonable assumptions, the maximal equilibrium is also the best
equilibrium from the agent’s viewpoint. In sharp contrast, under mild conditions the
best equilibrium from the principals’ viewpoint is never the maximal equilibrium.

6.1 Maximal equilibrium, biconjugacy, and agent optimality

The maximal equilibrium is implemented by a biconjugate tariff Tm(q) =
minθ∈�Um(θ) + θq. To the contrary, other equilibria that feature discontinuity gaps
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within the range of qm(�) cannot be implemented in an equilibrium with the corre-
sponding biconjugate tariff T ∗(q)= minθ∈�U(θ)+ θq. These equilibria are instead im-
plemented by an aggregate tariff T such that T < T ∗ over some range.

To see why, consider an equilibrium allocation q whose range q(�) is obtained by
withdrawing an interval (qm(θ2)�q

m(θ1)) from qm(�). Let us again denote by θ0 the
type who is indifferent between qm(θ2) and qm(θ1). Suppose now that the correspond-
ing aggregate equilibrium tariff T , which entails infinitely negative payments over this
discontinuity gap, is replaced with the least-concave tariff T ∗ that also implements q. By
construction, T induces a self-generating program whose solution is (U�q). However,
replacing T by T ∗ in that self-generating program, although it changes nothing from the
agent’s viewpoint, may modify its solution. Since T ∗ entails finite payments, an output
q ∈ (qm(θ2)�q

m(θ1)) may now become more attractive. More precisely, T ∗ is linear over
(qm(θ2)�q

m(θ1)) and the agent with type θ0 is actually indifferent between all options in
(qm(θ2)�q

m(θ1)). In this case, a principal may now find it attractive to induce this type
to choose an output within this discontinuity gap so that (U�q) is no longer a solution
of a new self-generating program obtained with T ∗ replacing T .

Imposing biconjugacy on the aggregate tariff thus certainly refines the equilibrium
set. Indeed, it limits the possibility that principals have to collectively prevent a devia-
tion by offering an aggregate tariff with infinitely negative payments over a discontinuity
gap.

Proposition 4. The maximal equilibrium (Um�qm) is the only equilibrium sustained
by a biconjugate aggregate tariff.

Geometry and welfare properties

Consider an equilibrium (U�q)whose range q(�) is obtained by withdrawing an interval
(qm(θ1)�q

m(θ2)) from qm(�) and let us again denote by θ0 the point of discontinuity
for q. We now want to compare the rent profiles U and Um. (See also Figure 2.)

A first observation is that those profiles are of course identical on [θ2� θH] since
U(θ) = ∫ θH

θ q(θ̃)dθ̃, Um(θ) = ∫ θH
θ qm(θ̃)dθ̃ and outputs are the same on that interval;

q(θ̃)= qm(θ) on [θ2� θH]. Second, from Proposition 3, the equilibrium output q lies be-
low (resp. above) qm over [θ0� θ2] (resp. [θ1� θ0]). The overall impact of those distortions
on how U compares with Um is thus ambiguous. The next example nicely illustrates
how this ambiguity can be solved.

Numerical example (continued). Take the equilibrium output q defined in (14). We
can check that∫ 8

3

5
3

q(θ̃)dθ̃=
(

13
6

− 5
3

)
× 5 +

(
8
3

− 13
6

)
× 2 ≡ 7

2
=

∫ 8
3

5
3

qm(θ̃)dθ̃�

That equality is remarkable. It means that the rent profiles U and Um are the same not
only on [ 8

3 �5], but also on [1� 5
3 ]. Over the interval ( 5

3 �
8
3), insteadU <Um. The argument

could be generalized in a straightforward manner to any possible countable number
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Figure 2. Numerical example: Output and informational rent for the maximal equilibrium
(dashed) and the discontinuous equilibrium (solid).

of discontinuities and to any quadratic surplus function if the types distribution is uni-
form. In other words, the maximal equilibrium yields an upper bound on all equilibrium
rent profiles.

The geometry of these results is interesting in itself. The graph of the rent profile
U is obtained from that of Um by replacing the strictly convex part of Um over [ 5

3 �
8
3 ]

by the maximum of the two tangents at the points 5
3 and 8

3 , namely
max{Um( 5

3) − 5(θ − 5
3);Um( 8

3) − 2(θ − 8
3)}. At the discontinuity point θ0, the two tan-

gents cross, capturing the fact that θ0 is indifferent between choosing qm( 5
3) = 5 and

qm( 8
3)= 2. ♦

The fact that the aggregate surplus function is quadratic and the distribution of types
is uniform plays a key role in the example above. Provided that the addition of the dis-
continuity gap remains small enough–the surplus function is locally quadratic and the
distribution is uniform—we might thus hope to get similar striking results. To this end,
consider introducing a discontinuity gap around a given point θ0 ∈ (θL�θH) and the cor-
responding equilibrium (U�q). This gap again takes the form (qm(θ1(ε))�q

m(θ2(ε))),
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where θ2(ε) = θ0 + ε. We are interested in the case where ε is small enough and index
accordingly the equilibrium rent and output (Uε�qε).

21

Proposition 5. Suppose that H is twice differentiable with Ḧ ≥ 0 and that S is thrice
differentiable with S′′′ ≤ 0. Then, for ε sufficiently small,

Uε(θ)≤Um(θ) ∀θ ∈��
Moreover, if preferences are quadratic and types are uniformly distributed, the agent
prefers the maximal equilibrium globally.

Under mild conditions, introducing a small discontinuity gap in the equilibrium
range of outputs cannot improve the agent’s rent. Using familiar duality arguments, the
corresponding (least-concave) aggregate tariffs can be ranked as

T ∗
ε (q)= min

θ∈�
Uε(θ)+ θq≤ T ∗(q)= min

θ∈�
U(θ)+ θq�

The tariff in the maximal equilibrium is thus the upper envelope of all least-concave
aggregate tariffs that implement other equilibria. Going further, Proposition 5 states
that the uniform-quadratic assumption is sufficient to extend the ε-discontinuity result
globally.

6.2 Principals’ ex ante optimality

Another possibility is to select among equilibria in terms of the expected net surplus
they give to the principals. Indeed, if principals could meet ex ante and negotiate over
the equilibrium to be played, a reasonable prediction would be that they would agree to
play the equilibrium that maximizes their ex ante collective payoff. Therefore, we now
investigate what this ex ante best equilibrium allocation is for the principals. In this
respect, Proposition 3 shows that for any set Q such that Q ⊂ qm(�) and Q is a union of
countable intervals, there is a unique equilibrium allocation q such that q(�)= Q. This
allocation fully defines the corresponding aggregate transfer as we have seen. Thus, the
equilibrium selection problem can be reduced to the principals optimally choosing a
delegation set Q to offer to the surrogate representative, who then chooses an allocation
that solves a self-generating maximization program (P), where the equilibrium tariff T
has domain Q. Restated in this form, we may apply a recent result from Amador and
Bagwell (2013)22 to conclude that the optimal delegation set is a connected interval that
puts a floor on outputs. To do so, it is sufficient to make the following assumption on the
types distribution.

Assumption 1. For almost all θ ∈�,(
nḢ(θ)+ 1

)(
Ḣ(θ)+ 1

) ≥ (n− 1)H(θ)Ḧ(θ)�

21Although Proposition 5 deals with the case of a single discontinuity gap, it is straightforward to again
generalize these findings to account for more discontinuities.

22See Martimort and Semenov (2006) and Alonso and Matouschek (2008) for earlier, slightly stronger
conditions along those lines.
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In tandem with our assumption of a monotone hazard rate, Assumption 1 requires
that H is not too convex. It is satisfied by several well known distributions with positive
supports, including uniform, exponential, Pareto, inverse Weibull, and chi-square.23

Proposition 6. Suppose that Assumption 1 holds. The principals’ best equilibrium from
an ex ante point of view is characterized by an output interval, Q = [qm(θ̂)�qm(θL)], with
θ̂ > θL and

Eθ
[
S′(qm(θ̂)) − θ−H(θ)|θ≥ θ̂] = 0� (15)

When qm(θH) > 0, we have θ̂ < θH and the maximal equilibrium is never ex ante optimal.

Proposition 6 tells us that the range of the maximal equilibrium, qm(�), generates
too much informational-rent distortion from an ex ante point of view for the principals.
They would prefer to put a floor on the set of equilibrium outputs, thereby reducing the
sensitivity of the output allocation on the agent’s underlying type, so as to mitigate the
problem of excessive rent extraction. Such a floor can be implemented by an aggregate
tariff that sets T(q)= −∞ for any q ∈ (0� qm(θ̂)).

Numerical example (continued). Using the definition of qm given in (11), condition
(15) can be written in terms of the cutoff θ̂ only as

Eθ(2θ− 1|θ≥ θ̂)= min{8�3θ̂− 2}�

Tedious computations show that the cutoff is θ̂ = 3. The output profile at the ex ante
best non-cooperative equilibrium is a truncation of the maximal equilibrium profile:

q(θ)= max{1�10 − 3θ}�

At that best equilibrium, the principals shut down payments for q less than q̂ =
qm(3)= 1. Bunching arises over the upper tail of the distribution [3�5]:

T(q)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if q= 0,

11
6

+ 10
3
q− q2

6
if q ∈ [1�7],

−∞ otherwise�

Observe also that q̂ > qm(5) = 0, so that by restricting the equilibrium set of outputs,
principals are able to implement outputs that are sometimes above the cooperative
solution.

23This property is verified for the chi-square distributions using numerical methods for degrees of free-
dom d �= 2.
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Appendix: Proofs

The proof of Lemma 1 is standard and thus omitted. See Rochet (1987) or Milgrom and
Segal (2002).

Proof of Proposition 1. The proof follows similar steps to those in Martimort and
Stole (2012, Theorem 2′), though for completeness, we explicitly treat here the agent’s
participation decision δ, which was left implicit in this paper.

Necessity. Given the aggregate tariff T−i offered by competing principals, principal
i’s net gain with the agent of type θ when (q�δ) ∈ Q× {0�1} is chosen is given by

Si(q)− δT(q)≡ Si(q)− θq+ δT−i(q)− (
δT(q)− θq)�

For (U�q�δ) to be an equilibrium allocation, it must be that principal i desires to imple-
ment this allocation, which must thus solve

(U�q�δ) ∈ arg max
(U�q�δ)∈I

Eθ
[
Si

(
q(θ)

) − θq(θ)+ δ(θ)T−i
(
q(θ)

) −U(θ)]�
Note that every principal i faces the same domain of maximization, I . The difference
between the programs of any two principals, i and j, is entirely embedded in the differ-
ences in the aggregates T−i and T−j . Following Martimort and Stole’s (2012) analysis of
general aggregate games, an equilibrium allocation must necessarily maximize the sum
of the principals’ programs. Thus, (U�q�δ)must solve

(U�q�δ) ∈ arg max
(U�q�δ)∈I

Eθ
[
S
(
q(θ)

) − θq(θ)− nU(θ)+ (n− 1)
(
δ(θ)T

(
q(θ)

) − θq(θ))]� (16)

The solution to this problem always has at least one type, say θ̂, such that

U(θ̂)= 0� (17)

Indeed, if it were not the case, then the whole rent profileU could be reduced uniformly
by ε > 0 without modifying output, and this modification would improve the value of
the program. This means that, at least one principal would have an incentive to deviate
by uniformly reducing his payment to the agent by ε.

From a remark in the text, any aggregate tariff that implements an equilibrium (U�q)

solution to the SGM problem above must satisfy

T(q)≤ T ∗(q)= min
θ∈�

U(θ)+ θq

with equality at all q ∈ q(�). In particular, this condition should hold for the equilibrium
aggregate tariff T . From (17), it follows that T ∗(0)= minθ∈�U(θ)= 0 and, thus,

T(0)≤ 0� (18)

Consider now the new tariff T̃ obtained from T as

T̃ (q)=
{

0 if q= 0�

T (q) otherwise�
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Because of (18), T̃ is itself upper semicontinuous. Moreover, we have

T(q)≤ T̃ (q)≤ T ∗(q) ∀q ∈ Q�

Because both T and T ∗ implement (U�q�δ), we deduce from those inequalities that
T̃ also does so. Under T̃ , every agent type chooses to participate, δ̃(θ) = 1, because
he always has the option to choose q = 0 and thereby get his reservation payoff that is
normalized at zero. Because the objective function in (16) has the same expected value
at (U�q�δ) using T as it does at (U�q� δ̃) using T̃ , we conclude that

(U�q) ∈ arg max
(U�q)∈I

Eθ
[
S
(
q(θ)

) − θq(θ)− nU(θ)+ (n− 1)
(
T̃

(
q(θ)

) − θq(θ))]�
This new problem is again self-generating and (U�q) is equilibrium implemented by T̃ .

Sufficiency. Consider a solution (U�q) to (P) that is implemented by the aggregate
tariff T . Note that because (U�q) is implemented by T with T(0)= 0, we are considering
the case where the agent always participates, δ = 1. Let us now construct individual
tariffs T i satisfying

T i(q)= Si(q)− 1
n

(
S(q)− T(q)) ∀i ∈ {1� � � � � n}�

By construction,
n∑
i=1

T i(q)= T(q)�

We show that this contract profile (T 1� � � � �T n) is an equilibrium. Suppose indeed
that all principals j for j �= i offer T j . At a best response, principal i induces an allocation
(U�q�δ) that solves

(Pi) max
(U�q�δ)∈I

Eθ
[
Si

(
q(θ)

) − θq(θ)−U(θ)+ T−i
(
q(θ)

)]
�

Inserting the expressions of T j (for j �= i) using our construction above, the allocation
that principal i would like to induce should solve

max
(U�q�δ)∈I

Eθ
[
S
(
q(θ)

) − θq(θ)− nU(θ)+ (n− 1)
(
T

(
q(θ)

) − θq)]�
But this is the same maximization program in (16), and hence principal i’s choice T i is a
best response against T−i.

Proof of Proposition 2. Necessity. Because of (1), any implementable rent profile is
nonincreasing. It follows that, necessarily, for any solution to (P) where the agent’s rent
is minimized, we must have

U(θH)= 0� (19)

From (1) and (19), we thus get (8). Inserting this expression of the rent into the max-
imand of (P) and integrating by parts shows that any solution to the relaxed problem
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(Pr) obtained when the convexity requirement onU has been omitted should also solve
pointwise the problems

q(θ) ∈ arg max
q∈Q

S(q)− (
θ+ nH(θ))q+ (n− 1)

(
T(q)− θq) a.e.� (20)

where T implements (U�q).
Because the monotone hazard rate property holds (i.e., Ḣ(θ) ≥ 0), θ+ nH(θ) is in-

creasing in θ. Therefore, it immediately follows from standard revealed preferences ar-
guments that q(θ) that solves (20) is necessarily nondecreasing. Thus, the solution to
the relaxed problem (Pr) also solves (P)with the addition of the convexity requirement
for U .

Define now the value function for the program (20) as

V (θ)≡ max
q∈Q

S(q)− (
θ+ nH(θ))q+ (n− 1)

(
T(q)− θq)� (21)

Because the maximand on the right-hand side of (21) is absolutely continuous in θ,
upper semicontinuous in q, and Q is compact, V (θ) is itself absolutely continuous (Mil-
grom and Segal 2002). Moreover, given that (U�q) is an incentive-compatible allocation
that solves this program, we have

V (θ)= S(q(θ)) − (
θ+ nH(θ))q(θ)+ (n− 1)U(θ)�

Because V is absolutely continuous, it is almost everywhere differentiable and it ad-
mits the integral representation

V (θ)− V (
θ′) = −

∫ θ

θ′

[(
1 + nḢ(θ̃))q(θ̃)+ (n− 1)q(θ̃)

]
dθ̃ ∀(

θ�θ′)�
Because U is also absolutely continuous, we have

U(θ)−U(
θ′) = −

∫ θ

θ′
q(θ̃)dθ̃ ∀(

θ�θ′)�
Note that

S
(
q(θ)

) − (
θ+ nH(θ))q(θ)− [

S
(
q
(
θ′)) − (

θ′ + nH(
θ′))q(θ′)]

= V (θ)− V (
θ′) − (n− 1)

[
U(θ)−U(

θ′)]�
Thus S(q(θ)) − (θ + nH(θ))q(θ) is also absolutely continuous and admits the integral
representation

S
(
q(θ)

) − (
θ+ nH(θ))q(θ)− [

S
(
q
(
θ′)) − (

θ′ + nH(
θ′))q(θ′)]

= −
∫ θ

θ′

(
1 + nḢ(θ̃))q(θ̃)dθ̃�

Observe that (
H(θ)−H(

θ′))q(θ′) =
∫ θ

θ′
Ḣ(θ̃)q

(
θ′)dθ̃�
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Using this latter condition, the monotone hazard rate property Ḣ(θ) ≥ 0, and the fact
that q is nonincreasing, we obtain

S
(
q(θ)

) − (
θ+ nH(θ))q(θ)− [

S
(
q
(
θ′)) − (

θ+ nH(θ))q(θ′)]
=

∫ θ

θ′

(
1 + nḢ(θ̃))(q(θ′) − q(θ̃))dθ̃≥ 0�

Because any q′ ∈ q(�) can be identified with some θ′ ∈� so that q′ = q(θ′), the inequality
implies that q(θ) satisfies (7) pointwise in θ.

Sufficiency. Consider any allocation (U�q) that satisfies (7), and (8). Simple re-
vealed preferences arguments from (7) together with the monotone hazard rate prop-
erty Ḣ(θ)≥ 0 imply that q is nonincreasing. Then (8) implies that U is convex. We now
prove that this allocation is equilibrium implementable. First, we construct an aggregate
transfer by duality as in (2) and obtain T from (4). By construction q(θ) is a maximizer
of T(q) − θq over q(�). Second, individual contracts are then recovered by using (5).
Third, we need to check that the optimality conditions (20) for the surrogate principal’s
optimization problem are satisfied. This last step is an immediate consequence of the
fact that q(θ) is a maximizer for both S(q)− (θ + nH(θ))q and T(q)− θq over q(�) so
that it also maximizes a convex combination of both objectives.

Proof of Corollary 1. Consider Tm(q)= minq∈QUm(θ)+ θq. We now define a SGM
problem associated to that tariff and check that (Um�qm) is a solution. Indeed, once one
has taken care of the expression of the rent and integrating by parts, this SGM problem
can be rewritten as in (20) in terms of output only as

qm(θ) ∈ arg max
q∈Q

S(q)− (
θ+ nH(θ))q+ (n− 1)

(
Tm(q)− θq)�

That qm is indeed a solution then follows from the fact that qm(θ) ∈ arg maxq∈Q S(q) −
(θ+ nH(θ))q and qm(θ) ∈ arg maxq∈Q(n− 1)(Tm(q)− θq).

Proof of Proposition 3. Necessity. That q should be nonincreasing follows from the
first step in the proof of Proposition 2. Thus, q is almost everywhere differentiable
(countable number of possible discontinuities). At any point θ where q is differentiable,
the first-order necessary condition for optimality of the incentive problem

θ ∈ arg max
θ̂∈�

S
(
q(θ̂)

) − (
θ+ nH(θ))q(θ̂) ∀θ ∈�

gives us (12).
Consider now the value function V as defined in (21). The function V is continuous

and, thus, at a point of discontinuity θ0 for q, we have

lim
θ→θ−

0

V (θ)= lim
θ→θ+

0

V (θ)� (22)

Because q is nonincreasing, it is almost everywhere differentiable and such points of
discontinuity are necessarily isolated. On the right- and the left-hand neighborhoods of
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θ0, (12) thus applies and either q̇(θ)= 0 or q(θ)= qm(θ). Moreover, at a point at which q
is continuous but not differentiable, it must be that either the right or the left derivative
is zero. We are going to prove that bunching arises both on a right- and a left-hand
neighborhood of θ0. We proceed by contradiction.

To this end, suppose first that bunching arises on the left neighborhood only and,
thus, call it q(θ−

0 )= limθ→θ−
0
q(θ) with q(θ−

0 ) > q
m(θ0) because q cannot be nondecreas-

ing at such a discontinuity. Observe that q(θ−
0 )= qm(θ1) for some type θ1 < θ0 such that

θ1 = max{θ s.t. qm(θ)≥ q(θ−
0 )} and that qm(θ1)= q(θ) for all θ ∈ [θ1� θ0).

Because the agent’s rent U is also continuous at θ0, we have

U(θ0)= lim
θ→θ−

0

T
(
q(θ)

) − θq(θ)= T (
q
(
θ−

0

)) − θq(θ−
0

)
and

U(θ0)= lim
θ→θ+

0

T
(
q(θ)

) − θq(θ)= T (
qm(θ0)

) − θqm(θ0)�

Therefore, we get

T
(
q
(
θ−

0

)) − θq(θ−
0

) = T (
qm(θ0)

) − θqm(θ0)�

Inserting this equality into (22) and simplifying yields

lim
θ→θ−

0

S
(
q(θ)

) − (
θ+ nH(θ))q(θ)= lim

θ→θ+
0

S
(
qm(θ)

) − (
θ+ nH(θ))qm(θ)�

Expressing those right- and left-hand side limits gives us

S
(
q
(
θ−

0

)) − (
θ0 + nH(θ0)

)
q
(
θ−

0

) = S(qm(θ0)
) − (

θ0 + nH(θ0)
)
qm(θ0)� (23)

Because S is strictly concave, qm(θ0) is the unique maximizer of S(q)− (θ0 + nH(θ0))q

and (23) necessarily implies that q(θ−
0 ) = qm(θ0). A contradiction with our starting

premise that q(θ−
0 ) > q

m(θ0) at a discontinuity.
Similarly, we could also rule out the case where bunching only arises on the right-

hand neighborhood of θ0 at a value q(θ+
0 )= limθ→θ+

0
q(θ).

Taking stock of these findings, we necessarily have q(θ−
0 ) > q

m(θ0) > q(θ
+
0 ) at a dis-

continuity point θ0. This implies in passing that θ0 must be such that qm(θ0) > 0 and dis-
continuities do not lie on the lower boundary of the output space. Moreover, bunching
arises on both sides of θ0, which means q(θ) = q(θ−

0 ) (resp. q(θ) = q(θ+
0 )) for θ on this

left-hand (resp. right-hand) neighborhood. Because qm is strictly decreasing, there thus
exist θ1 < θ0 < θ2 such that q(θ−

0 ) = qm(θ1) and q(θ+
0 ) = qm(θ2). In fact q(θ) = qm(θ1)

for all θ ∈ [θ1� θ0). Suppose not. Then q would have a downward discontinuity at some
θ′

0 ∈ (θ1� θ0). The same argument as above shows that at any such putative discontinuity,
we should have q(θ′−

0 ) > q
m(θ′

0) > q(θ
′+
0 ) and q(θ′+

0 ) ≥ qm(θ1). Since qm is decreasing,
this is a contradiction with the definition of θ′

0.
Because the agent’s rent U is continuous at θ0, we now have

U(θ0)= lim
θ→θ−

0

T
(
q(θ)

) − θq(θ)= T (
qm(θ1)

) − θqm(θ1)
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and

U(θ0)= lim
θ→θ+

0

T
(
q(θ)

) − θq(θ)= T (
qm(θ2)

) − θqm(θ2)�

It follows that

T
(
qm(θ1)

) − θqm(θ1)= T (
qm(θ2)

) − θqm(θ2)�

Inserting this equality into (22) and simplifying now yields

lim
θ→θ−

0

S
(
q(θ)

) − (
θ+ nH(θ))q(θ)= lim

θ→θ+
0

S
(
q(θ)

) − (
θ+ nH(θ))q(θ)�

Expressing those right- and left-hand side limits gives us

S
(
qm(θ1)

) − (
θ0 + nH(θ0)

)
qm(θ1)= S(qm(θ2)

) − (
θ0 + nH(θ0)

)
qm(θ2)�

which is (13).
Sufficiency. Sufficiency directly follows from the sufficiency part of the proof

of Proposition 2. From the equilibrium output schedule q, we reconstruct U(θ) =∫ θH
θ q(θ̃)dθ̃, the aggregate tariff T(q) = minθ∈�U(θ)+ θq, and individual tariffs so that
Si(q)− T i(q)= S(q)− T(q).

Proof of Proposition 4. Proposition 1 shows that the maximal equilibrium (Um�qm)

is an equilibrium. Since we have both Tm(q) = minθ∈�Um(θ) + θq and Um(θ) =
maxq∈Q Tm(q) − θq, (Um�qm) is in fact a biconjugate equilibrium. Consider now
another equilibrium (U�q) whose range q(�) presents one discontinuity gap
(qm(θ2)�q

m(θ1)) for some (θ1� θ2). (The case of several discontinuity gaps follows sim-
ilar steps and is omitted.) From our previous analysis, the corresponding disconti-
nuity of q is at some θ0 ∈ (θ1� θ2) with q(θ+

0 ) = qm(θ2) and q(θ−
0 ) = qm(θ1). Clearly,

T �= T ∗, where T ∗ is the least-concave tariff that implements q and that is defined as
T ∗(q)= minθ∈�U(θ)+ θq.

We want to prove that replacing the implementing tariff T as proposed in (4) by
T ∗ changes the solution to the SGM problem (P) and, more precisely, that (U�q) is no
longer a solution to the new SGM problem (P∗

) so constructed. First, observe that T ∗
is concave and linear over (qm(θ2)�q

m(θ1)) with slope θ0 ∈ (θ1� θ2), i.e., T ∗′(q) = θ0 for
q ∈ (qm(θ2)�q

m(θ1)). Second, we notice that the surrogate surplus at θ0 is itself strictly
concave. It writes as

S(q)− (
θ0 + nH(θ0)

)
q+ (n− 1)

(
T(q)− θ0q

)
�

This expression is maximized at qm(θ0) ∈ (qm(θH)�qm(θL)) and, thus, we should have
q(θ0) = qm(θ0) if (U�q) was the solution to the self-generating problem (P∗

). How-
ever, at the nonmaximal equilibrium (U�q), θ0 should be indifferent between the two
boundaries of the discontinuity hold, namely qm(θ1) and qm(θ2), and cannot take any
option within the discontinuity gap (qm(θ1)�q

m(θ2)). A contradiction. Hence, (U�q) is
no longer a solution to (P∗

).
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Proof of Proposition 5. First, we notice that Uε and Um are identical on [θ2(ε)�θH]
since Uε(θ)= ∫ θH

θ qε(θ̃)dθ̃, Um(θ)= ∫ θH
θ qm(θ̃)dθ̃ and outputs are the same on that in-

terval, namely qε(θ̃)= qm(θ) on [θ2(ε)�θH]. Second, observe that over the discontinuity
gap [θ1(ε)�θ2(ε)], the equilibrium rent Uε satisfies

Uε
(
θ1(ε)

) −Uε
(
θ2(ε)

) = qm(
θ2(ε)

)(
θ2(ε)− θ0

) + qm(
θ1(ε)

)(
θ0 − θ1(ε)

)
� (24)

Third, for the discontinuity gap so considered, condition (13) now writes as

S
(
qm

(
θ1(ε)

)) − (
θ0 + nH(θ0)

)
qm

(
θ1(ε)

) = S(qm(
θ2(ε)

)) − (
θ0 + nH(θ0)

)
qm

(
θ2(ε)

)
� (25)

Observe that a discontinuity can only arise at a point θ0 such qm(θ0) > 0. Thus qm

given in (9) is positive and everywhere differentiable (and twice times so when S is three
time so) in a neighborhood of θ0 with q̇m(θ) < 0 there. We thus have(

S′(qm(θ)) − θ)q̇m(θ)= nH(θ)q̇m(θ) ∀θ ∈��
We also have(

S′(qm(θ)) − θ)q̇m(θ)= d

dθ

(
S
(
qm(θ)

) − θqm(θ)) + qm(θ) ∀θ ∈��

Hence,

nH(θ)q̇m(θ)= d

dθ

(
S
(
qm(θ)

) − θqm(θ)) + qm(θ) ∀θ ∈��
Integrating over the interval [θ1(ε)�θ2(ε)], we obtain

n

∫ θ2(ε)

θ1(ε)
H(θ)q̇m(θ)dθ= S(qm(

θ2(ε)
) − θ2q

m
(
θ2(ε)

) − (S(qm(
θ1(ε)

) − θ1q
m

(
θ1(ε)

)
+

∫ θ2(ε)

θ1(ε)
qm(θ)dθ�

Simplifying using (24) and (25), we finally obtain

n

∫ θ2(ε)

θ1(ε)
H(θ)q̇m(θ)dθ= nH(θ0)

(
qm

(
θ2(ε)

) − qm(
θ1(ε)

)) − (
U

(
θ1(ε)

) −U(
θ2(ε)

))
+

∫ θ2(ε)

θ1(ε)
qm(θ)dθ�

Let us now define


(ε)=Uε
(
θ1(ε)

) −Uε
(
θ2(ε)

) − (
Um

(
θ1(ε)

) −Um(
θ2(ε)

))
�

Since Uε and Um are identical on [θ2(ε)�θH], the sign of 
(ε) also measures whether
Uε(θ1(ε))might lie above (when 
(ε)≥ 0) or below (when 
(ε)≤ 0) Um(θ1(ε)).

From the previous steps, we get


(ε)= n(ψ(
θ2(ε)

) −ψ(
θ1(ε)

))
�
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where

ψ(θ)=H(θ0)q
m(θ)−

∫ θ

θ0

H(θ)q̇m(θ)dθ�

Observe that

ψ̇(θ0)= 0� and ψ̈(θ0)= −Ḣ(θ0)q̇
m(θ0) > 0�

We now write θ1(ε) = θ0 − ϕ(ε) for some function ϕ when θ2(ε) = θ0 + ε. Observe
that (25) implies that ϕ(ε) goes to zero with ε. We also define


(ε)= S(qm(θ0 + ε)) − (
θ0 + nH(θ0)

)
qm(θ0 + ε)�

Tedious computations show that


′(0)= 0� 
′′(0)= q̇m(θ0)
(
1 + nḢ(θ0)

)
and


′′′(0)= q̇m(θ0)
(
2S′′(qm(θ0)

)
q̈m(θ0)+ nḦ(θ0)

)
�

Third-order Taylor expansions immediately give us


(ε)= 
(0)+ 
′′(0)
2

ε2 + 
′′′(0)
6

ε3 + o(ε3)
and



(−ϕ(ε)) = 
(0)+ 
′′(0)

2
ϕ2(ε)− 
′′′(0)

6
ϕ3(ε)+ o(ε3)�

Observe that (25) can then be written as 
(ε) = 
(−ϕ(ε)) or, using the above Taylor
expansions,


′′(0)
2

ε2 + 
′′′(0)
6

ε3 = 
′′(0)
2

ϕ2(ε)− 
′′′(0)
6

ϕ3(ε)+ o(ε3)�
Up to terms of order of magnitude greater than 2, we thus obtain

ϕ(ε)= ε+ nḦ(θ0)+ 2S′′(qm(θ0)
)
q̈m(θ0)

1 + nḢ(θ0)

ε2

6
+ o(ε2)�

Turning now to a Taylor expansion of 
(ε) up to terms of magnitude higher than 2,
we get


(ε)= nψ̈(θ0)

2
(
ε−ϕ(ε))2ε+ o(ε2)�

Observe that Ḧ(θ) ≥ 0 and S′′′ ≤ 0 implies q̈m ≤ 0 since S′′′(qm(θ))(q̇m(θ))2 +
S′′(qm(θ))q̇m(θ) = nḦ(θ). Thus ϕ(ε) > ε. Hence, 
(ε) is negative for ε positive and
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small enough. Finally, Uε(θ1(ε))≤Um(θ1(ε)) and thus

Uε(θ)=Uε
(
θ1(ε)

) +
∫ θ1(ε)

θ
qm(θ)dθ≤U(θ)=Um(

θ1(ε)
) +

∫ θ1(ε)

θ
qm(θ)dθ�

which concludes the proof of the first part of the proposition.
To establish global preferences under uniform-quadratic preferences, we first show

that introducing a discontinuity in the maximal equilibrium allocation weakly lowers
the agent’s utility. Suppose that this discontinuity is introduced at θ0 and the associated
intervals of bunching from Proposition 3 are q(θ)= qm(θ1) on [θ1� θ0) and q(θ)= qm(θ2)

on (θ0� θ2]. Following a similar argument to that provided for the numerical example in
the text, it is sufficient to show that∫ θ0

θ1

qm(θ1)dθ+
∫ θ2

θ0

qm(θ2)dθ=
∫ θ2

θ1

qm(θ)dθ

to ensure that the rent profiles U and Um are the same not only on [θ�θ1] and [θ2� θ].
Over the interval (θ1� θ2), instead U <Um, since the rent profile U is obtained from that
of Um by replacing the strictly convex part of Um over [θ1� θ2] by the maximum of the
two tangents at the points θ1 and θ2, namely

U(θ)= max
{
Um(θ1)− qm(θ1)(θ− θ1);Um(θ2)− qm(θ2)(θ− θ2)

}
� θ ∈ [θ1� θ2]�

At the discontinuity point θ0, the two tangents cross, capturing the fact that θ0 is indif-
ferent between choosing qm(θ1) and qm(θ2).

In the uniform-quadratic case, for qm(θ) > 0, qm(θ) is linear. The above condition is
therefore satisfied if and only if

θ0 = θ1 + θ2

2
�

An equilibrium requirement of the new discontinuous allocation is that the surrogate
principal is indifferent between inducing qm(θ1) and qm(θ2) at θ0 (Proposition 3). This
condition is equivalent to

θ0 + nH(θ0)= S
(
qm(θ1)

) − S(qm(θ2)
)

qm(θ1)− qm(θ2)
�

The first-order condition defining qm implies that the left-hand side equals S′(qm(θ0)),
and thus

S′(qm(θ0)
) = S

(
qm(θ1)

) − S(qm(θ2)
)

qm(θ1)− qm(θ2)
�

Because S is quadratic, this requirement reduces to

qm(θ0)= qm(θ1)+ qm(θ2)

2
�

Because qm is linear in θ, this condition is equivalent to θ0 = θ1+θ2
2 . Thus, we have

established that the new equilibrium allocation is unchanged over � \ (θ1� θ2), but
U(θ) <Um(θ) for all θ ∈ (θ1� θ2). The agent is worse off.
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Repeating the above argument, we may introduce a second discontinuity over any
region of full separation and again establish that the new twice-discontinuous equilib-
rium allocation is worse for the agent than the once-discontinuous allocation, which is
worse than the maximal allocation. Proceeding inductively, we can establish that any
arbitrary equilibrium allocation with k discontinuities is worse for the agent than the
original maximal allocation.

Proof of Proposition 6. For the sake of clarity and because we shall soon import
their results, we (mainly) use the notations of Amador and Bagwell (2013). We thus
transform θ into the type, γ = −(θ+ nH(θ)), and let φ(γ) denote the inverse mapping.
The corresponding density for γ is given by f̃ (γ)= f (φ(γ))|φ′(γ)|. Let F̃(γ) denote the
distribution of γ. This distribution has support [γH�γL] with θH =φ(γH) > θL =φ(γL),
where φ is decreasing. Accordingly, we define the surrogate principal’s preferences as

S(q)+ γq�

Observe that this expression is maximized at qm(φ(γ)) such that S′(qm(φ(γ)))+ γ = 0
and that qm(φ(γ)) is everywhere positive when qm(θH) > 0.

Following the notation in Amador and Bagwell (2013), the ex ante cooperating prin-
cipals’ preferences can now be rewritten as

w(γ�q)= S(q)+ γq+ (n− 1)H
(
φ(γ)

)
q�

Because the surrogate principal’s best action, qm(φ(γ)), is strictly positive for all γ when
qm(θH) > 0, the standard regularity conditions stated in Assumption 1 of Amador and
Bagwell (2013) are all satisfied in our setting.

Consider an interval [γ2�γ1] ⊂ [γH�γL], with γ2 < γ1. Following Amador and Bagwell
(2013), we now consider the conditions

(c1*) F̃(γ)−wq(γ�qm(φ(γ)))f̃ (γ) is nondecreasing for all γ ∈ [γH�γL]24

(c2) if γ1 < γL, γ − γ1 ≥ ∫ γL
γ wq(γ̃� q

m(φ(γ1)))
f̃ (γ̃)

1−F̃(γ) dγ̃, ∀γ ∈ [γ1�γL] with equality
at γ1

(c2′) if γ1 = γL, wq(γL�qm(φ(γL)))≥ 0

(c3) if γ2 > γH , γ−γ2 ≤ ∫ γ
γH
wq(γ̃� q

m(φ(γ2))
f̃ (γ̃)

F̃(γ)
dγ̃, ∀γ ∈ [γH�γ2] with equality at γ2

(c3′) if γ2 = γH , wq(γH�qm(φ(γH))≤ 0.

Equipped with these conditions, Proposition 1 in Amador and Bagwell (2013), which
determines whether leaving discretion to the surrogate principal on a particular delega-
tion set is optimal from the point of view of the ex ante cooperating principals, can be
restated in our context as follows.

24Condition (c1*) is a strengthening of condition (c1) in Amador and Bagwell (2013) since it imposes
monotonicity on all the domain [γH�γL] and not only for γ ∈ [γ2�γ1].
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Proposition 7. If conditions (c1*), (c2), (c2′), (c3), and (c3′) are satisfied, then the sur-
rogate principal’s preferred output qm(φ(γ)) is optimal over the interval [γ2�γ1], where
γ1 > γ2.

We wish to prove that the optimal delegation set in our setting is of the form [γ2�γL]
(or, alternatively, that the bunching area expressed in terms of θ is of the form [θ2� θH]).
Consequently, we need to verify conditions (c1*), (c2), (c2′), (c3), and (c3′) at the conjec-
tured solution (γ2 > γH , γ1 = γL > γ2).

First, if γ1 = γL, condition (c2′) becomes wq(γL�qm(φ(γL))) ≥ 0, which holds as an
equality since the cooperating principals and the surrogate representative have perfectly
aligned preferences for γL =φ(θL) (indeed S′(qm(θL))− θL = 0).

Second, if we conjecture that γ2 > γH , it must be that condition (c3) holds, i.e.,

γ− γ2 ≤
∫ γ

γH

wq(γ̃� q
m

(
φ(γ2)

) f̃ (γ̃)
F̃(γ)

dγ̃� ∀γ ∈ [γH�γ2] with equality at γ2.

Observe that

wq
(
γ̃� qm

(
φ(γ2)

)) = S′(qm(
φ(γ2)

)) + γ̃+ (n− 1)H
(
φ(γ̃)

)
�

Since S′(qm(φ(γ2)))+ γ2 = 0, we thus have

wq
(
γ̃� qm

(
φ(γ2)

)) = γ̃− γ2 + (n− 1)H
(
φ(γ̃)

)
�

Condition (c3) can thus be rewritten as

γ− γ2 ≤
∫ γ

γH

(
γ̃− γ2 + (n− 1)H

(
φ(γ̃)

)) f̃ (γ̃)
F̃(γ)

dγ̃� ∀γ ∈ [γH�γ2] with equality at γ2.

Take γ2 =φ(θ̂), where θ̂ is defined in (15). Then observe that (15) also writes as∫ θH

θ̂

(
θ̂+ nH(θ̂)− θ−H(θ))f (θ)dθ= 0�

Changing variables, this condition becomes∫ γ2

γH

(
γ̃− γ2 + (n− 1)H

(
φ(γ̃)

)) f̃ (γ̃)
F̃(γ)

dγ̃ = 0�

Therefore, condition (c3) holds as an equality when γ = γ2, as requested. Observe now
that condition (c3) also holds for γ ∈ [γH�γ2] provided that (c1*) is true.

To see why, notice that

−F̃(γ)(γ− γ2)+
∫ γ

γH

(
γ̃− γ2 + (n− 1)H

(
φ(γ̃)

))
f̃ (γ̃)dγ̃

has a derivative with respect to γ worth

−F̃(γ)+ (n− 1)H
(
φ(γ)

)
f̃ (γ)= −F̃(γ)+wq

(
γ�qm

(
φ(γ)

))
f̃ (γ)�
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Thus that condition (c1*) holds amounts to checking that

F̃(γ)− (n− 1)H
(
φ(γ)

)
f̃ (γ)

is nondecreasing. Differentiating, we shall prove

f̃ (γ)− (n− 1)
(
Ḣ

(
φ(γ)

)
f̃ (γ)φ′(γ)+H(

φ(γ)
)
f̃ ′(γ)

) ≥ 0�

Using f̃ = −fφ′, we have f̃ ′(γ)= −f ′(θ)φ′2 − f (θ)φ′′(γ). Because

φ′(γ)= −1
1 + nḢ(

φ(γ)
) �

we have φ′′(γ)=φ′3nḦ(φ(γ)). Substituting these relationships into our inequality and
simplifying, we reduce our required condition to Assumption 1. Hence, condition (c1*)
is satisfied.

We now prove that condition (15) is the defining first-order condition for finding an
optimal floor delegation set. Consider thus a floor equilibrium with an allocation

q(θ)= max
{
qm(θ)�qm

(
θ∗)} for some θ∗ ∈�

together with the rent minimization requirement (8). The maximal equilibrium is sim-
ply obtained by choosing θ∗ = θH as a special case. The sum of the principal’s profits
evaluated at such equilibria can be expressed in terms of the floor θ∗ only as

V
(
θ∗) =

∫ θ∗

θL

(
S
(
qm(θ)

) − (
θ+H(θ))qm(θ))f (θ)dθ

+
∫ θH

θ∗

(
S
(
qm

(
θ∗)) − (

θ+H(θ))qm(
θ∗))f (θ)dθ�

Differentiating with respect to θ∗ yields

V̇
(
θ∗) = q̇m(

θ∗)∫ θH

θ∗

(
S′(qm(

θ∗)) − θ−H(θ))f (θ)dθ�
From this, we immediately get that

V̇ (θL)= q̇m(θL)
∫ θH

θL

(
θL − θ−H(θ))f (θ)dθ > 0� (26)

where the last inequality follows from θL − θ −H(θ) < 0 and q̇m(θL) < 0. Second, we
also obtain:

V̇ (θH)= 0 with V̈ (θH)= −(n− 1)q̇m(θH) > 0

when Ḣ(θ)≥ 0 and qm(θH) > 0 so that qm(θ) is strictly decreasing in that neighborhood
of θH . Hence, although θH is a local extremum of V , it corresponds to a minimum. It fol-
lows that the maximal equilibrium is never optimal. From (26), we derive the existence
of a maximum θ̂ that is necessarily interior. Rewriting the condition V̇ (θ̂) = 0 gives us
(15).
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