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This paper considers the optimal degree of monetary discretion when the cen-
tral bank conducts policy based on its private information about the state of the
economy and is unable to commit. Society seeks to maximize social welfare by im-
posing restrictions on the central bank’s actions over time, and the central bank
takes these restrictions and the new Keynesian Phillips curve as constraints. By
solving a dynamic mechanism design problem, we find that it is optimal to grant
“constrained discretion” to the central bank by imposing both upper and lower
bounds on permissible inflation, and that these bounds should be set in a history-
dependent way. The optimal degree of discretion varies over time with the severity
of the time-inconsistency problem, and although no discretion is optimal when
the time-inconsistency problem is very severe, it is a transient phenomenon and
some discretion is granted eventually.
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1. Introduction

How much flexibility should society allow a central bank in its conduct of monetary pol-
icy? At the center of the case for flexibility is the argument that central bankers have
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private information (Canzoneri 1985) or “nonruleable” information that is difficult to
encode in a rule (Kocherlakota 2015), perhaps about the economy’s state or structure, or
perhaps about the distributional costs of inflation arising through heterogeneous pref-
erences (Sleet 2004). If central banks have flexibility over policy decisions, then this
gives them the ability to use for the public’s benefit any private or noncontractible in-
formation that they have. However, if central banks face a time-inconsistency problem
(Kydland and Prescott 1977), then it may be beneficial to limit their flexibility. Institu-
tionally, many countries have balanced these competing concerns by delegating mon-
etary policy to an independent central bank that is required to keep inflation outcomes
low and stable, often within a stipulated range, but that is otherwise given the free-
dom to conduct policy without interference. Inflation targeting is often characterized
as “constrained discretion” (Bernanke and Mishkin 1997) precisely because it endeavors
to combine flexibility with rule-like behavior.

This paper examines the optimal degree of discretion in a monetary-policy delega-
tion problem when the central bank has private information on the state of the economy
and is unable to commit. We take the legislative approach of Canzoneri (1985) and Athey
et al. (2005) (AAK hereafter). Specifically, society imposes restrictions on the central
bank’s actions, and the benevolent central bank conducts policy subject to these restric-
tions and to a Phillips curve. Society cannot achieve the first-best because of the central
bank’s private information, but some restrictions on the central bank can ameliorate its
inability to commit and are therefore beneficial. We solve a dynamic mechanism design
problem to examine how much discretion society should grant to the central bank and
to reveal the form of the optimal constrained discretion policy.

A key aspect of our analysis is that inflation outcomes are governed by a forward-
looking new Keynesian Phillips curve. This Phillips curve relates inflation outcomes to
the output gap and to expected future inflation, and allows policy-makers to deliver bet-
ter outcomes today by tailoring future policy according to the current state of the econ-
omy, thereby giving a crucial role to policy promises. We show that the optimal mecha-
nism can be expressed as a function of the central bank’s private information (its type)
and of the previous period’s promised inflation. In other words, unlike AAK, we find the
optimal mechanism to be history-dependent.

Despite its history dependence, at each point in time, the optimal mechanism takes
a rather simple form of “interval delegation,” where society specifies an interval for per-
missible inflation and the central bank chooses from that interval. In general, this in-
terval does not serve as a binding constraint for some types, and we interpret that these
types have discretion. Importantly, this interval, and hence the number of types that
have discretion, varies with the previous period’s promised inflation so that the central
bank is incentivized to deliver inflation that is, on average, consistent with the previous
period’s promised inflation. There are, as a result, only three types of discretionary out-
comes: no discretion when this interval constrains all types, full discretion when the in-
terval does not constrain any type, and bounded discretion when the interval constrains
a subset of types.

How does the optimal degree of discretion vary with the previous period’s promised
inflation? There is one value of promised inflation at which full discretion is granted, and
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social welfare is maximized at that value. The further the previous period’s promised in-
flation departs from this value, the smaller is the degree of discretion that is granted,
and in extreme cases, no discretion is granted. This pattern is naturally explained by the
severity of the time-inconsistency problem. For the central bank, the gain from reneging
on the previous period’s promised inflation depends crucially on the value of promised
inflation. At the welfare-maximizing value for promised inflation, promised inflation is
delivered even if society lets the central bank conduct policy without restriction, and
granting full discretion is optimal. The gain from reneging increases as promised infla-
tion departs from its welfare-maximizing value, making the time-inconsistency problem
more severe, and society must impose tighter restrictions on the central bank’s actions
so as to deliver the promised inflation, reducing the central bank’s degree of discretion.

The optimal mechanism also exhibits an interesting, limited form of history depen-
dence: history as encoded in the state variable is disregarded for types that have dis-
cretion. We find that for each type of central bank there is an interval for promised in-
flation within which that type has discretion. In such an interval, inflation, the output
gap, and the continuation mechanism depend on history only through the current value
of private information, and the history dependence is disposed of. This characteristic
resembles the “amnesia” property that Kocherlakota (1996) finds in a full-information
limited-commitment model of risk-sharing.

Using a quadratic social welfare function, we characterize how the optimal degree
of discretion changes over time. We find that some discretion is always granted in the
ergodic set of promised inflation. This implies that, regardless of the initial condition
for promised inflation, no discretion is at most a short-run, transient phenomenon, and
some discretion is eventually granted. Interestingly, no discretion is given only when the
initial promised inflation is sufficiently far from the value that maximizes social welfare.
The ergodic set contains the peak of the social welfare function, from which the fully
optimal mechanism begins. Therefore, some discretion is always granted in the fully
optimal mechanism and also in the optimal timeless perspective mechanism, which
takes the stationary distribution of promised inflation as its initial distribution.

To implement the second-best with a nondirect mechanism, we propose a history-
dependent inflation targeting regime that stipulates a band for permissible inflation that
varies with the central bank’s promised inflation. This regime allows the central bank to
constrain its future self through its choice of promised inflation, mitigating the time-
inconsistency problem. We show that an appropriately designed regime implements
the outcome of the optimal direct mechanism. Importantly, unlike AAK, there are situa-
tions where a lower limit on inflation imposes a binding constraint on the central bank’s
choice.

It is crucial to constrain the central bank’s policy actions in a history-dependent
manner. If the band for permissible inflation is required to be history-independent, then
it is optimal to set the band as wide as possible so that it never binds. Hence, both strict
inflation targeting and fixed-range targeting are inferior to full flexibility. Although it is
a common practice to focus on a Markov perfect equilibrium when the policy-maker
is unable to commit, limiting attention to Markov perfect mechanisms in our setting
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results in the misleading conclusion that legislation that constrains the policy-maker’s
actions is not useful for improving welfare.

While highlighting the inefficiency of inflation targeting regimes that do not have
state-contingent inflation bands, our results also have implications for the efficacy of
forward guidance. Our optimal mechanism is a dynamic one in which the upper and
lower edges of the permissible inflation range are state-contingent, depending upon
promised inflation. Central bank types for which the inflation range does not bind dis-
pense with history and conduct policy with discretion. For these central bank types,
providing forward guidance is not central to the policy process, because the need to
deliver on the promised inflation is not constraining. As a consequence, our model im-
plies a connection between forward guidance and the degree of discretion. Forward
guidance has greater value and takes on greater importance when the degree of discre-
tion is low, which occurs when the previous period’s promised inflation is further from
its ergodic mean. An implication of our model, therefore, is that central banks should
provide forward guidance in situations where the economy is far from its ergodic mean,
which might occur after the economy has been hit by large shocks.

Finally, we use a numerical example to illustrate visually how the optimal mecha-
nism in our private information framework differs from two benchmarks that are an-
alyzed in the new Keynesian policy literature. One benchmark is the full-information
optimal mechanism, which is identical to the optimal policy with commitment in the
literature; the other benchmark is the optimal discretionary policy. Compared to the op-
timal discretionary policy, the optimal mechanism uses promised inflation to stabilize
the fluctuations in the output gap and to allow inflation to vary with the private informa-
tion. Still, compared to the full-information solution, promised inflation in the optimal
mechanism changes less with the private information, because letting promised infla-
tion move away from the peak of the social welfare function requires a tighter band for
permissible inflation in the next period, which is costly. As a result, inflation in the op-
timal mechanism moves less with the private information than in the full-information
solution.

The remainder of this paper is organized as follows. Section 2 reviews related lit-
erature. Section 3 describes the setup and illustrates how private information enters
the model. Section 4 formulates an optimal (direct) mechanism design problem. In
Section 5, we discuss theoretical results. Section 6 presents the numerical results that
emerge from the benchmark policies and from the optimal mechanism. Section 7 offers
concluding comments. Appendices A–D contain technical material, including proofs of
theoretical results and complete descriptions of how the various solutions were com-
puted. Additional Appendices E and F are available in a supplementary file on the jour-
nal website, http://econtheory.org/supp/2369/supplement.pdf.

2. Related literature

We build on the literature on monetary policy with private information, which includes
Canzoneri (1985), Sleet (2001), and AAK. Like ourselves, they study models in which the
central bank receives a private signal about the state of the economy and conducts pol-
icy subject to a Phillips curve. Their settings are distinct from ours in that they use a

http://econtheory.org/supp/2369/supplement.pdf
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static Phillips curve, containing contemporaneous rather than forward-looking infla-
tion expectation, which severs the connection between time inconsistency and history
dependence.1  McCallum (2003), in discussing AAK’s paper, stresses the importance of
using a forward-looking Phillips curve instead of a static one.2 Using a forward-looking
Phillips curve, we show that the optimal degree of discretion should vary over time in a
history-dependent manner.

Our work is also related to the vast literature on policy-making in new Keynesian
models with symmetric information (Woodford 2003). This literature has generally fo-
cused on settings in which society cannot directly constrain the central bank’s action
set and in which granting the central bank some discretion is suboptimal.3 Our paper
differs from this literature in that it introduces private information on the side of the
central bank and uses the legislative approach to examine the optimal balance between
rules and discretion. By focusing on constrained discretion, our work is related to the
literature on inflation targeting, as summarized in, e.g., Bernanke et al. (2001).

Finally, our paper is related to the literatures on optimal delegation and dynamic
contracting. While static problems are typically considered in the optimal-delegation
literature, our problem is dynamic and we show how the optimality of interval delega-
tion generalizes to dynamic settings.4 Using an approach akin to that of Athey et al.
(2004) and extending the results of AAK, we show that our problem can be formulated
recursively as a function-valued dynamic programming problem in which the previ-
ous period’s promised inflation serves as the state variable. This formulation not only
enables us to characterize theoretically the optimal mechanism, but also reduces sig-
nificantly the computational burden, compared to a set-valued dynamic programming
approach (Abreu et al. 1990), which is common in the dynamic contracting literature.5

1Canzoneri (1985) analyzes the effects of several specific rules that are incentive-compatible but not nec-
essarily optimal. Sleet (2001) considers an optimal incentive-compatible mechanism in a full-fledged gen-
eral equilibrium model with two types, and AAK does the same in a reduced-form model with a continuum
of types.

2He writes, “there is a significant reason to depart from the AAK specification of the example—and also, I
believe, their formal model. That is that it does not include a feature that has been at the center of much re-
cent work in monetary economics, namely, forward-looking behavior by the economy’s individual agents.”

3In Kurozumi (2008), private agents behave strategically, and they may be able to deter the central bank
from taking undesirable actions on the equilibrium path. In some studies, it is assumed that society can
assign a loss function to the central bank and that the central bank is required to minimize it, e.g., Svensson
(1997) and Jensen (2002). Neither approach allows society to remove certain actions from the central bank’s
choice set.

4For static delegation problems, Holmstrom (1984), Alonso and Matouschek (2008), and Amador and
Bagwell (2013) give some sufficient conditions for interval delegation to be optimal. Sleet (2004) and
Amador et al. (2006) consider dynamic delegation problems, and the latter study finds the optimality of
interval delegation. AAK consider a repeated delegation problem, but as the optimal mechanism is shown
to be static, their problem reduces to a static delegation problem.

5A similar result is obtained in Sleet (2004) in a two-type hidden information model of optimal taxation.
We consider a monetary-policy model with a continuum of types. Atkeson (1991) shows a similar result
in a hidden action model of optimal international lending, but his model allows for monetary transfer be-
tween the lender and the borrower. A common feature of Atkeson (1991), Sleet (2004), and this paper is the
assumption that the objectives of the mechanism designer and the agent coincide.
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3. The setup

Our framework is similar to the canonical framework that is used in the new Keyne-
sian policy literature to analyze optimal policy without commitment (see, e.g., Woodford
2003 and Galì 2008). We consider an infinite horizon economy that has a central bank
and the private sector. Time is discrete and goes from t = 0 to infinity.

We depart from the canonical new Keynesian framework in two aspects. First, in
our framework the central bank possesses private information. Specifically, at the be-
ginning of each period, the central bank observes privately the state of the economy, θ,
which is drawn from a compact interval � := [θ�θ] ⊂ R, according to an independent
and identically distributed (i.i.d.) density p. The density is strictly positive everywhere,
i.e., p(θ) > 0 for all θ ∈ �, and its cumulative distribution function is denoted by P . So-
ciety and the private sector never observe the state, θ.

Second, society can design and commit to a mechanism that limits the central bank’s
action each period by specifying the set of acceptable actions from which the central
bank must choose. After the central bank observes θ, public communication takes place.
The central bank sends a message m ∈M , where M is a message space, to society, which
is observed also by the private sector. Society imposes an interest rate mechanism,
which specifies a particular value for the nominal interest rate, i, as a function of the his-
tory of the central bank’s messages. Although the central bank can send any messages
it wants, it is not allowed to set the nominal rate at a level that is inconsistent with its
message history. The central bank has some discretion when the interest rate specified
by the mechanism varies with its current message, whereas it has no discretion when
the mechanism specifies a single value irrespective of its current message.

Inflation, π, and the output gap, x, are determined as a rational expectation equi-
librium (REE) outcome. The interest rate mechanism, the central bank’s reporting strat-
egy, and the stochastic process for private information determine a stochastic process
for messages and nominal interest rates, {(mt� it)}∞t=0. Private agents recognize correctly
this joint process and optimize, taking other agents’ actions and aggregate variables as
given, and a REE realizes. In Appendix E, we detail the model’s microfoundation and
show that a REE given {(mt� it)}∞t=0 is a sequence of measurable functions of message
history for inflation and the output gap, {(πt�xt)}∞t=0, that satisfy the new Keynesian
Phillips curve and the dynamic investment-saving (IS) equation in any period and for
any message history that can occur under the central bank’s reporting strategy. The new
Keynesian Phillips curve (NKPC) is given by

πt = κxt +βEP
t [πt+1]� (1)

where κ is a strictly positive parameter and β ∈ (0�1) is the household’s preference dis-
count factor. This is a standard log-linear NKPC without a cost-push shock, and is
forward-looking in that it involves expected future inflation.6 The dynamic IS equation

6The NKPC constitutes an equilibrium condition in many new Keynesian models, and it can be derived
from various costly price adjustment models, including time-dependent pricing specifications, such as
Calvo-style pricing (Calvo 1983) and quadratic price adjustment costs (Rotemberg 1982), as well as some
state-dependent pricing specifications, such as Gertler and Leahy (2008).
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is given by

xt = E
P
t [xt+1] − ζ

(
it −E

P
t [πt+1] − rn

)
�

where ζ > 0 is the elasticity of intertemporal substitution and rn > 0 is the constant nat-
ural rate of interest. The conditional expectation operator, EP

t , in the two equations is
based on the information available to the private sector in period t after the communica-
tion stage and on the central bank’s reporting strategy. We focus on bounded equilibria
and, therefore, there are compact intervals 	 := [π�π] and X = [x�x], such that πt ∈ 	

and xt ∈X always hold. We assume that X contains both (π −βπ)/κ and (π −βπ)/κ.
Social welfare is time-separable with the discount factor β. The momentary social

welfare function, R(π�x�θ), depends on inflation, the output gap, and the state of the
economy. The central bank is benevolent, so R(π�x�θ) also equals its momentary pay-
off.7 The function R is continuous in (π�x�θ) and is strictly concave in (π�x). We allow R

to depend on θ to reflect the time-varying welfare costs of inflation, a dependence that
can arise, for example, if the redistributional effects of inflation are time-varying.8 Al-
though we do not explicitly model such effects and our welfare specification is reduced
form, it allows us to model the way the state of the economy affects social welfare in a
flexible manner. An example of R is the quadratic specification

R(π�x�θ)= −1
2
(π − θ)2 − 1

2
bx2� b > 0� (2)

where θ represents the inflation rate that minimizes the welfare loss from inflation.
We assume that society is able to commit while the central bank is not. Due to its in-

ability to commit, the central bank is unable to manage the private sector’s expectations
by committing to a particular sequence of interest rates in the future. Society can im-
prove welfare because the mechanism can limit the set of interest rates from which the
central bank can choose in the future, thereby influencing the private sector’s inflation
expectations. However, an overly restrictive mechanism can prevent the central bank
from utilizing its private information and may be undesirable. The question we ask can
be framed as, “how should society design the interest rate mechanism so as to maximize
social welfare?”

3.1 Discussion

Although our framework shares much in common with AAK, a distinct feature of our
setup is the forward-looking NKPC. In contrast, AAK’s benchmark example assumes a
static Phillips curve,

πt = πe
t − (

ut − un
)
� (3)

7Appendix F.2 extends our setup by incorporating an inflation bias.
8AAK make the same assumption and interpret it as follows: “[i]ndividual agents in the economy have

either heterogeneous preferences or heterogeneous information regarding the optimal inflation rate, and
the monetary authority sees an aggregate of that information that the private agents do not see.”



1326 Waki, Dennis, and Fujiwara Theoretical Economics 13 (2018)

where u is the unemployment rate, πe is expected contemporaneous inflation, rather
than expected future inflation, and un is the natural rate of unemployment. Equa-
tion (3) implies that the set of pairs of inflation and the output gap that the central
bank can choose is independent of future policy. We view the forward-looking Phillips
curve in (1) as more relevant, because it is a centerpiece of many new Keynesian mod-
els that are widely used in central banks. Moreover, it captures an important channel
for policy, allowing central banks to use forward guidance to manage inflation expecta-
tions.

This difference in the Phillips curve results in a difference in the nature of a time-
inconsistency problem. In AAK and Sleet (2001), the central bank is subject to an “in-
flation bias” (Barro and Gordon 1983): once the private sector forms inflation expecta-
tions, the central bank is tempted to generate higher than expected inflation to stimu-
late real economic activity. In contrast, the forward-looking NKPC gives rise to a “sta-
bilization bias” (see, e.g., Svensson 1997). When higher inflation is desirable today, the
central bank may promise to make future policy more accommodative to raise infla-
tion expectations, thereby incentivizing price setters to raise prices today. In the fu-
ture, however, because the gains from the promise are already realized, the central bank
faces the temptation to stabilize inflation and the output gap by not delivering on its
promise.

4. Optimal mechanism design problem

Once society has specified an interest rate mechanism, the problem becomes a dynamic
communication game with incomplete information, with the central bank being the
only strategic player. Society’s problem is to choose an interest rate mechanism so that
the best equilibrium given the mechanism yields the highest social welfare.9 We focus
on a public perfect Bayesian equilibrium, where the central bank’s reporting strategy is a
public one that depends only on its message history and the current private information,
i.e., it does not depend on past private information.

Appendix E shows that the revelation principle applies and, therefore, that we can
focus on direct mechanisms that satisfy two constraints that we describe below. A direct
mechanism is a sequence of measurable functions of reports, {(πt�xt� it)}∞t=0, such that
(πt�xt� it) : �t+1 →	×X ×R for any t.10

The first constraint that society must respect is, clearly, that it must choose an
incentive-compatible direct mechanism. A reporting strategy is a sequence of mea-
surable functions σ := {σt}∞t=0 with σt : �t+1 → � for all t. The truth-telling strategy is
a reporting strategy with σt(θ

t) = θt for all t and θt . A direct mechanism is said to be
incentive-compatible if and only if, for any report history θt−1, for any current type θt ,

9In general, there are multiple rational expectation equilibria for a given stochastic process of the nomi-
nal interest rates. Here we are assuming either that society, as the mechanism designer, can choose the best
equilibrium or that all agents in the economy can coordinate on it.

10We abstract from the zero lower bound on the nominal interest rate.
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and for any reporting strategy σ ,

R
(
πt

(
θt−1� θt

)
�xt

(
θt−1� θt

)
� θt

)
+β

∞∑
s=t+1

∫
�s−t

βs−t−1R
(
πs

(
θt−1� θst

)
�xs

(
θt−1� θst

)
� θs

)
μs−t

(
dθst+1

)

≥R
(
πt

(
θt−1�σ0(θt)

)
�xt

(
θt−1�σ0(θt)

)
� θt

)
+β

∞∑
s=t+1

∫
�s−t

βs−t−1R
(
πs

(
θt−1�σs−t

(
θst

))
�xs

(
θt−1�σs−t

(
θst

))
� θs

)
μs−t

(
dθst+1

)
�

(4)

where, for s ≥ t + 1, θst+1 := (θt+1� θt+2� � � � � θs) ∈ �s−t is a history of states from t + 1
to s, μs−t is the product measure that is consistent with density p, and σs−t (θst ) is the
report history from period t to period s when the central bank uses the reporting strategy
σ from period t onward.11 The set of these inequalities is referred to as the incentive-
compatibility constraint.

The second constraint that a direct mechanism must satisfy is the rational expecta-
tion equilibrium condition. Society must choose a direct mechanism such that for any t

and any report history θt := (θ0� θ1� � � � � θt) ∈�t+1, the NKPC

πt
(
θt

) = κxt
(
θt

) +β

∫
θt+1

πt+1
(
θt� θt+1

)
p(θt+1)dθt+1 (5)

and the dynamic IS equation

xt
(
θt

) =
∫
θt+1

xt+1
(
θt� θt+1

)
p(θt+1)dθt+1

− ζ

{
it
(
θt

) −
∫
θt+1

πt+1
(
θt� θt+1

)
p(θt+1)dθt+1 − rn

}
(6)

hold.
As in the canonical new Keynesian model, the dynamic IS equation (6) is redundant

because for any {(πt�xt)}∞t=0 that satisfies the new Keynesian Phillips curve (5), we can
find {it}∞t=0 so that the dynamic IS equation is satisfied. Hence, we drop the the dynamic
IS equation from the constraint and drop the nominal interest rate from the choice.

The mechanism design problem we consider is one that maximizes social welfare,
which is given by

∞∑
t=0

∫
�t+1

βtR
(
πt

(
θt

)
�xt

(
θt

)
� θt

)
μt

(
dθt

)
� (7)

by choosing {(πt�xt)}∞t=0 subject to the incentive-compatibility constraint (4) and the
NKPC (5). For simplicity, we refer to {(πt�xt)}∞t=0 as a mechanism and refer to the NKPC
as the feasibility constraint.

11This history is recursively defined as σ0(θtt ) := σ0(θt) and σs−t (θst ) = (σs−1−t (θs−1
t )�

σs−t (σ
s−1−t (θs−1

t )� θs)) for any s ≥ t + 1.
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4.1 Recursive formulation

Both the incentive-compatibility and the feasibility constraints are forward-looking
constraints. We rewrite these constraints to obtain recursive formulations.

4.1.1 Incentive compatibility First, the incentive-compatibility constraint (4) can be
written recursively by adding the agent’s continuation, or promised, utility as a choice
variable. Let U := ∫

�{minx�π R(π�x�θ)}p(θ)dθ/(1 − β), U := ∫
�{maxx�π R(π�x�

θ)}p(θ)dθ/(1 − β) and U := [U�U], so that the expected discounted value of future
returns always lies in this compact interval. As is standard in the dynamic contracting
literature (e.g., Green 1987), it can be shown that a mechanism {(πt�xt)}∞t=0 is incentive
compatible if and only if the following statements hold:

(i) There exists a sequence of measurable functions {wt}∞t=−1 with wt : �t → U for all
t ≥ −1, such that for all t ≥ 0 and θt ,

wt−1
(
θt−1) =

∫
�

[
R

(
πt

(
θt

)
�xt

(
θt

)
� θt

) +βwt
(
θt

)]
p(θt)dθt� (8)

(ii) For all t, θt−1, θt , and θ′ �= θt ,

R
(
πt

(
θt

)
�xt

(
θt

)
� θt

) +βwt
(
θt

)
≥R

(
πt

(
θt−1� θ′)�xt(θt−1� θ′)� θt) +βwt

(
θt−1� θ′)� (9)

Here {wt}∞t=0 has an interpretation as promised utility.

4.1.2 Feasibility Second, we show that the feasibility constraint (5) can also be written
recursively by adding a new variable to the mechanism. Note that a direct mechanism
{(πt�xt)}∞t=0 satisfies the feasibility constraint if and only if there exists a sequence of
measurable functions of reports {πe

t }∞t=0 such that

πt
(
θt

) = κxt
(
θt

) +βπe
t

(
θt

)
(10)

and

πe
t

(
θt

) =
∫
�
πt+1

(
θt� θt+1

)
p(θt+1)dθt+1� (11)

By treating (xt�πt�π
e
t ) as choice variables in period t, (10) amounts to a static constraint

in period t. In period t + 1, the previously chosen πe
t imposes a constraint, reflected in

(11), on the current choice for inflation, πt+1, i.e., πe
t is a state variable in period t + 1. To

put it differently, in every period, the mechanism promises an expected level of inflation
in the next period, while delivering (on average) the promised inflation in the previous
period. We therefore refer to πe as promised inflation.

4.1.3 Interim problem The mechanism design problem is then equivalent to the prob-
lem of choosing w−1 and the sequence of measurable functions {(xt�πt�π

e
t �wt)}∞t=0 to

maximize social welfare (7) subject to constraints (8), (9), (10), and (11). However, be-
cause the period-0 inflation choice is not subject to a constraint like (11), there is an
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asymmetry between period 0 and all other periods, and the problem is not fully recur-
sive.

We therefore consider the interim problem with the auxiliary initial condition

πe
−1 =

∫
�
π0(θ)p(θ)� (12)

where πe
−1 is a given number in 	 and represents the promised inflation made in pe-

riod −1. The interim problem has, as shown in the next section, a recursive formulation
and therefore enables us to obtain a clear characterization of its solution. We refer to
a solution to the interim problem as an optimal interim mechanism, or, when not it is
confusing, simply as an optimal mechanism, because a solution to the original problem
is obtained from an optimal interim mechanism by choosing the best initial condition
πe

−1. For any πe
−1 ∈ 	, we say that {(xt�πt�π

e
t �wt)}∞t=0 is feasible from πe

−1 if and only if
it satisfies (10), (11), and (12), and that it is incentive-feasible from πe

−1 if and only if it is
feasible from πe

−1 and satisfies (8) and (9).12

5. Theoretical results

In this section, we first establish that, under certain conditions, a solution to the interim
problem can be obtained by solving a function-valued dynamic programming problem
with promised inflation as the state variable. As a result, the optimal mechanism is ob-
tained in the form of time-invariant Markovian policy functions. Then we characterize
its properties. We find that depending on the previous period’s promised inflation, the
optimal degree of discretion is shown to take one of three forms: full discretion, no dis-
cretion, or bounded discretion. It is also shown that the optimal mechanism features
amnesia: history is disposed of for types that have discretion. Finally, we propose an
inflation targeting rule that achieves the same outcome as the optimal mechanism. It is
crucial to design a history-dependent rule, and history-independent rules are shown to
achieve lower welfare than imposing no rule.

In what follows, we make the following assumptions on the return function, R, and
the density function, p.

Assumption 1. The return function R is separable in (π�θ) and x:

R(π�x�θ) =A(π;θ)+B(x)�

Furthermore, A and B are twice continuously differentiable and satisfy Aππ < 0, Aπθ > 0,
and B′′(x) < 0. Moreover, for any θ, Aπθ(·;θ) is nonincreasing.13

12For any πe
−1 ∈	, it is straightforward to prove that the constraint set is nonempty. For a given πe

−1 ∈	,
consider a mechanism such that πt(θ

t) = πe
−1 and xt(θ

t) = (1 − β)πe
−1/κ for all t and θt . These functions

are clearly measurable and satisfy the auxiliary initial condition. As we assume that X is an interval that
contains both (π − βπ)/κ and (π − βπ)/κ, this mechanism satisfies the NKPC after any history. Because
this mechanism is independent of history, it is incentive-compatible.

13For univariate functions we use prime (′) and double prime (′′) to denote its derivative and second
derivative, respectively. For a bivariate function f (x� y), we denote its partial derivatives by fi (i ∈ {x� y})
and second derivatives by fij (i� j ∈ {x� y}).
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Assumption 2. For any nondecreasing function π of θ, Aπθ(π(θ);θ)(1 − P(θ))/p(θ) is
strictly decreasing in θ and Aπθ(π(θ);θ)P(θ)/p(θ) is strictly increasing in θ.

Assumption 3. The function A satisfies the following properties:

(i) For any π, A(π; ·) is absolutely continuous.

(ii) There is an integrable function a : �→ R+ such that |Aθ(π;θ)| < a(θ) for all π and
almost all θ.

The condition Aπθ > 0 in Assumption 1 is akin to the single-crossing condition in
the mechanism design literature. Assumption 2 is akin to the monotone-hazard condi-
tion assumed in AAK and reduces to the standard condition when the cross derivative of
A is constant (e.g., A is a sum of π × θ and a function of π). The quadratic specification
in (2) satisfies Assumption 1 and, together with, e.g., a uniform distribution, Assump-
tion 2. We use the quadratic specification and a uniform distribution for θ later in our
numerical experiments. Assumption 3 allows us to obtain an integral representation of
utility (Milgrom and Segal 2002).

Proofs of lemmas and propositions are presented in Appendix A.

5.1 Dynamic programming

Let � be the set of pairs (πe
−1�w−1), such that there exists a sequence of measurable

functions {(xt�πt�π
e
t �wt)}∞t=0 that is incentive-feasible from πe

−1 and that attains social
welfare of w−1. For any πe− ∈	, the maximized social welfare given πe− is given by

W
(
πe−

) = sup
w− s.t. (πe−�w−)∈�

w−� (13)

which implies that if we obtain �, we also obtain the maximized social welfare. How-
ever, � is difficult to characterize in our setting. In settings with discrete types or discrete
action spaces, � can be characterized as the largest fixed point of some set operator à
la Abreu et al. (1990). In our setup, there are a continuum of types and continuous ac-
tion spaces, and the measurability restriction is difficult to impose on the Abreu–Pearce–
Stacchetti-type set operator.

Instead, we directly characterize W as follows. We first define a Bellman operator, T,
that is a monotone contraction mapping on a Banach space of functions with πe− being
the state variable. Its fixed point, W̃ , is shown to satisfy W ≤ W̃ . We then show that the
optimal policy function associated with T and W̃ is continuous, and that, for any πe−,
we can generate from the policy function an incentive-feasible mechanism that attains
W̃ (πe−). Therefore, W̃ ≤ W . Taken together, W = W̃ holds.

We consider a Bellman operator on the Banach space of bounded functions on 	,
B(	), endowed with the sup norm ‖ · ‖. Define a Bellman operator T, for all F ∈ B(	)

and for all πe− ∈	, as

TF
(
πe−

) = sup
π(·)�x(·)�πe(·)�w(·)

∫ θ

θ

{
R

(
π(θ)�x(θ)�θ

) +βw(θ)
}
p(θ)dθ (14)
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subject to

πe− =
∫ θ

θ
π(θ)p(θ)dθ (15)

π(θ) = κx(θ)+βπe(θ) ∀θ (16)

R
(
π(θ)�x(θ)�θ

) +βw(θ) ≥ R
(
π

(
θ′)�x(

θ′)� θ) +βw
(
θ′) ∀θ�θ′ �= θ (17)

w(θ) ≤ F
(
πe(θ)

) ∀θ� (18)

and (π�x�πe�w) are measurable functions. For any F ∈ B(	) and πe− ∈ 	, we refer to
the maximization problem in (14) as the TF(πe−) problem. It is straightforward that the
operator T satisfies Blackwell’s sufficient condition and, therefore, the following lemma
obtains (see Stokey et al. 1989).

Lemma 1. The Bellman operator T is a monotone β-contraction mapping on (B(	)�‖·‖).

The fixed point of T, which we denote by W̃ , is shown to be weakly larger than W .

Lemma 2. For any positive integer n, W ≤ (T)nW ≤ limn↑∞(T)nW = W̃ .

An intuition is that the recursive problem in (14) relaxes the problem in (13), because the
constraint (18) with F = W is weaker than the constraint that requires promised inflation
and promised utility to satisfy (πe(θ)�w(θ)) ∈�. The relaxation of a constraint, which is
akin to that used in Athey et al. (2004), weakly increases the value, and W̃ ≥ W obtains.

Now we prove that for each πe−, there is an incentive-feasible mechanism that attains
W̃ (πe−), and therefore, that W ≥ W̃ . We begin by showing that the Bellman operator
T preserves concavity, that the optimal policy function is continuous if F is concave,
and that if F is concave, then (18) is always satisfied with equality. We need another
assumption for this purpose.

Assumption 4. In the problem (P1), which relaxes some constraints in the problem (14)
and is defined in Appendix A.2, (i) a maximum is attained and (ii) the bound constraints
do not bind, i.e., a solution satisfies (π(θ)�x(θ)�πe(θ)) ∈ int(	)× int(X)× int(	) for all θ.

Lemma 3. Let V(	) be the set of weakly concave functions on 	. Suppose that F ∈ V(	).
Under Assumptions 1, 2, 3, and 4, (i) TF is a strictly concave C1 function, (ii) the optimal
policy correspondence is a quadruple of continuous functions (π�x�πe�w) :�×	 →	×
X ×	×U , and (iii) w(θ�πe−) = F(πe(θ�πe−)) for all (θ�πe−).

Here we only briefly illustrate our approach; proofs can be found in Appendix A. Under
the stated assumptions, the relaxed problem (P1) has the same structure as the mech-
anism design problem in AAK except that, for given πe−, π(·�πe−) is not required to be a
piecewise C1 function of θ in (P1). We generalize AAK’s theoretical results in Appendix B
so that we can apply them to the problem (P1). The problem (P1) is then shown to be
equivalent to the original TF(πe−) problem, and we proceed to characterize its solution.
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We do not use the approach in Amador and Bagwell (2013) because it requires a stronger
assumption on the function W , which is an endogenous object in our setting (see Ap-
pendix F.1 for details).

Because V(	) is closed and the set of strictly concave C1 functions is a subset of
V(	), the following corollary obtains.

Corollary 1. Under Assumptions 1, 2, 3, and 4, the fixed point W̃ is a strictly concave
C1 function and Lemma 3(ii) and (iii) hold for F = W̃ .

Finally, we use the optimal policy function to construct, for each πe−, an incentive-
feasible mechanism that attains W̃ (πe−). Let (π∗�x∗�πe∗�w∗) be the optimal policy func-
tion associated with W̃ . For each πe

−1 ∈ 	, construct a mechanism recursively, for t = 0,
as

(
π0(θ0)�x0(θ0)�π

e
0(θ0)�w0(θ0)

) = (
π∗

(
θ0�π

e
−1

)
�x∗

(
θ0�π

e
−1

)
�πe∗

(
θ0�π

e
−1

)
�w∗

(
θ0�π

e
−1

))
�

w−1 =
∫
�

[
R

(
π0(θ0)�x0(θ0)�θ0

) +βw0(θ0)
]
p(θ0)dθ0�

and for any t ≥ 1 and θt , as

(
πt

(
θt

)
�xt

(
θt

)
�πe

t

(
θt

)
�wt

(
θt

))
= (

π∗
(
θt�π

e
t−1

(
θt−1))�x∗

(
θt�π

e
t−1

(
θt−1))�πe∗

(
θt�π

e
t−1

(
θt−1))�w∗

(
θt�π

e
t−1

(
θt−1)))�

This mechanism is clearly incentive-feasible from πe
−1, and attains W̃ (πe

−1) because

w−1 = W̃ (πe
−1). Moreover, because (π∗�x∗�πe∗�w∗) are continuous, the mechanism con-

structed above is θt measurable. Therefore, W ≥ W̃ . Thus, we have established the fol-
lowing proposition.

Proposition 1. Under Assumptions 1, 2, 3, and 4, the fixed point of T is W .

The mechanism that we have constructed using the optimal policy function is optimal
because it attains W (πe−) for any πe−.

Under the same set of assumptions, the optimal policy function for inflation, π∗, has
a simple, cutoff representation. We turn to this point next.

5.2 Optimal degree of discretion

We characterize the optimal degree of discretion using the optimal policy function for
inflation, π∗. As a benchmark, we consider the inflation rate that the central bank would
choose if it were given a certain form of policy flexibility, and compare it to the inflation
rate prescribed by the optimal mechanism. This approach is analogous to AAK: they
define the central bank’s “static best response,” i.e., the inflation choice that maximizes
the momentary social welfare for a given inflation expectation, and compare it to the
optimal mechanism. In our setting, expected inflation may vary with the central bank’s
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message, implying that the optimal mechanism is dynamic and that the static best re-
sponse does not provide a useful benchmark for comparison. Instead we introduce the
notion of the “one-shot discretionary best response.”

Imagine that the central bank is allowed to choose any (π�x�πe) for one pe-
riod, subject only to the NKPC and, in particular, not subject to the constraint πe− =∫
π(θ)p(θ)dθ, but faces the optimal mechanism in all subsequent periods. The one-

shot discretionary best response is the inflation rate that would be chosen by the central
bank in this hypothetical situation.

Definition 1. The one-shot discretionary best response is a function πD : �→	 such
that, for all θ, πD(θ) solves

max
π

{
A(π;θ)+ max

(x�πe):π=κx+βπe

(
B(x)+βW

(
πe

))}
� (19)

The one-shot discretionary best response is well behaved.

Lemma 4. The function πD(·) is a strictly increasing, continuous function.

It is natural to interpret that, for a given πe−, a type θ has discretion when π∗(θ;πe−) =
πD(θ). We say that the central bank has full discretion at πe− if π∗(·�πe−) coincides with
πD(·). The next proposition shows that the central bank has full discretion at only one
value for πe−, πe∗− , and that πe∗− is the expected value of the one-shot discretionary best
response.

Proposition 2. Let πe∗− := ∫
πD(θ)p(θ)dθ. The point W is maximized uniquely at πe− =

πe∗− , and the policy function satisfies π∗(θ;πe∗− ) = πD(θ) for all θ.

From Proposition 2, we can think of πe∗− as the most desirable initial condition: if
πe

−1 = πe∗− , then social welfare from time zero onward is maximized. Furthermore, if
the central bank were allowed to renege on previously promised inflation, then it would
behave as if promised inflation were πe∗− . Therefore, for each πe−, we can interpret the
gain from reneging, W (πe∗− )−W (πe−), as the severity of the time-inconsistency problem
at πe−. Because W is strictly concave and has a peak at πe∗− , the severity of the time-
inconsistency problem increases as πe− moves away from πe∗− .

To characterize less than full discretion, it is convenient to define two alternatives:
no discretion and bounded discretion.

Definition 2. The optimal policy has no discretion at πe− if π∗(·;πe−) is constant. It has
bounded discretion at πe− if π∗(·;πe−) is not constant and either π∗(·;πe−) = max{c�πD(·)}
or π∗(·;πe−) = min{c�πD(·)} for some constant c.

Note that bounded discretion is equivalent to a cutoff property: there is a threshold
value for θ such that the optimal inflation is constant either above or below that thresh-
old. It turns out that, for any πe−, the optimal mechanism takes a rather simple form—
full discretion, bounded discretion, or no discretion—and that the optimal degree of
discretion is linked closely to the severity of the time-inconsistency problem. This result
is summarized in the next proposition.
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Figure 1. Policy function π∗(θ�πe−) as a function of θ for different values of πe−.

Proposition 3. There exist two strictly increasing, continuous threshold functions T1 :
(πD(θ)�π

e∗− ) → � and T2 : (πe∗− �πD(θ)) → � such that the policy function for inflation,
π∗, has one of the following features.

(i) Full discretion: π∗(θ;πe−) = πD(θ) for all θ if πe− = πe∗− .

(ii) No discretion: π∗(θ;πe−)= πe− for all θ if πe− ≤ πD(θ) or πe− ≥ πD(θ).

(iii) Bounded discretion: if πe− ∈ (πD(θ)�π
e∗− ),

π∗
(
θ;πe−

) = min
{
πD

(
T1

(
πe−

))
�πD(θ)

}
�

or if πe− ∈ (πe∗− �πD(θ)), then

π∗
(
θ;πe−

) = max
{
πD

(
T2

(
πe−

))
�πD(θ)

}
�

The threshold functions are defined so that πe− = ∫ θ
θ π∗(θ;πe−)p(θ)dθ for all πe−.14

Proposition 3 reveals three important properties. First, there is no discretion when
πe− is sufficiently far from πe∗− (either above or below). This is depicted in panels (i)
and (ii) in Figure 1. Dashed lines represent πD and solid lines represent π∗(·;πe−) for a

14The exact specifications of T1 and T2 are given in Appendix A.3.3.
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Figure 2. Policy function π∗(θ;πe−) as a function of πe−, given θ.

given πe−. Second, when πe− is not too far from πe∗− , the policy function exhibits bounded
discretion, or a cutoff property. When πe− is lower than πe∗− , but not too low, inflation
rates for low-θ types are the same as their one-shot discretionary best response (in this
sense they are unconstrained) while high-θ types are constrained to a single level of in-
flation (panel (iii) in Figure 1). Similarly, when πe− is higher than πe∗− , but not too high, in-
flation rates for high-θ types are the same as their one-shot discretionary best response
while low-θ types are constrained to a single level of inflation (panel (iv) in Figure 1).
As πe− moves away from πe∗− , the time-inconsistency problem becomes more severe, the
degree of discretion becomes smaller, and eventually no discretion is permitted.

Third, when we view the policy function for a given θ as a function of πe−, it is strictly
increasing up to πe− = T−1

1 (θ), is then flat up to πe− = T−1
2 (θ), and is strictly increasing af-

ter that. This property is depicted in Figure 2. Note that between points A (πe− = T−1
1 (θ))

and B (πe− = T−1
2 (θ)), the policy function is flat and its value equals πD(θ). Importantly,

the fact that the policy function is flat on an interval implies that the history depen-
dence, as encoded in the state variable, is disposed of on this interval. If the state vari-
able in period t resides within such an interval for given θt , then the continuation mech-
anism from period t + 1 onward does not depend on θt−1. For all types that have discre-
tion, the optimal mechanism therefore features amnesia in the sense of Kocherlakota
(1996). Intuitively, society imposes an interval restriction on the central bank’s choice of
inflation; the upper and lower limits of this interval are history-dependent. The history-
dependent upper and lower limits do not bind on types whose preferred inflation choice
is contained in the interval. These types have discretion and choose their most preferred
inflation.

Finally, Proposition 4 characterizes the policy functions for the output gap and
promised inflation, x∗ and πe∗ , respectively. The output gap and promised inflation in
the optimal mechanism depend on the central bank’s type only through the inflation
rate. Therefore, when the optimal mechanism implies amnesia for the inflation rate, it
does so for the output gap and promised inflation too.



1336 Waki, Dennis, and Fujiwara Theoretical Economics 13 (2018)

Proposition 4. There exists a pair of strictly increasing, continuous functions, (gx�gπe) :
	 → X × 	, such that the policy functions for the output gap and promised inflation
satisfy, for all (θ�πe−),

x∗
(
θ;πe−

) = gx
(
π∗

(
θ;πe−

))
and πe∗

(
θ;πe−

) = gπe
(
π∗

(
θ;πe−

))
�

These functions, gx and gπe , satisfy, for any π ∈ 	,

(
gx(π)�gπe(π)

) = arg max
x�πe

B(x)+βW
(
πe

)
subject to π = κx+βπe�

5.3 Dynamics of the optimal mechanism

Because the optimal mechanism is inherently dynamic, it is interesting to see how it
changes over time in the short and long run.

Recall that some discretion is given when πe− lies between πD(θ) and πD(θ), and that
inflation, π∗(θ;πe−), takes a value between πD(θ) and πD(θ) whenever some discretion
is granted. According to Proposition 4, current period’s promised inflation is an increas-
ing function of current inflation, πe∗(θ;πe−) = gπe(π∗(θ;πe−)), where gπe is an increasing
function, and, therefore, it lies in an interval between gπe(πD(θ)) and gπe(πD(θ)) when
some discretion is granted. If this interval is contained in (πD(θ)�πD(θ)), once some
discretion is given, the continuation mechanism always prescribes some discretion af-
terward, and the probability of visiting the no-discretion region is zero. Moreover, be-
cause the fully optimal mechanism starts from the optimal initial condition πe∗− , which
is contained in (πD(θ)�πD(θ)), it never visits the no-discretion region, and therefore
some discretion is always given. The following proposition shows these properties for
the quadratic social welfare specification in (2).

Proposition 5 (Dynamics of the optimal mechanism). Assume that the social welfare
function takes a quadratic form specified in (2), that the type distribution satisfies E[θ] = 0
and is symmetric around the mean, and that Assumptions 2 and 4 hold. Then πe∗− = 0 and
the following statements hold.

(i) If πe− ≤ πD(θ), promised inflation strictly increases: πe(θ;πe−) > πe− for all θ.

(ii) If πe− ≥ πD(θ), promised inflation strictly decreases: πe(θ;πe−) < πe− for all θ.

(iii) If πe− lies in the interval (πD(θ)�πD(θ)), promised inflation stays within the same
interval.

Proposition 5 has several implications for the short-run and long-run dynamics of
the optimal mechanism. In the short run, when the previous period’s promised infla-
tion is in the no-discretion region, promised inflation drifts toward the region in which
some discretion is granted, while when the previous period’s promised inflation is in the
nonzero-discretion region, promised inflation varies with the current type of the central
bank, but stays in the same nonzero-discretion region. These short-run dynamics imply
that no matter what πe

−1 is, the optimal mechanism eventually reaches the region where
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some discretion is granted and that no discretion is only a short-run phenomenon. The
support of the long-run stationary distribution of the state variable (promised inflation)
is contained in the interval (πD(θ)�πD(θ)) for which some discretion is given. In the
fully optimal mechanism, which starts with πe− = πe∗− , some discretion is always given.

The new Keynesian monetary-policy literature often considers an optimal timeless
perspective policy (Woodford 1999). For this quadratic specification, we can characterize
the optimal timeless mechanism using Proposition 5. According to the timeless perspec-
tive, the optimal mechanism is assumed to have been in effect for a sufficiently long pe-
riod of time before time 0, which requires treating the long-run stationary distribution of
the state variables as the distribution of these variables at time 0. Proposition 5 implies
that the support of this stationary distribution is contained in the nonzero-discretion re-
gion and that for the optimal timeless perspective mechanism, promised inflation never
escapes from that region.

5.4 Implementation by inflation targeting

The new Keynesian policy literature has analyzed the optimal policy without commit-
ment using a Markov perfect equilibrium (MPE) in the setting where the central bank
chooses inflation and the output gap subject to the NKPC. Here we show that the op-
timal mechanism can be implemented by a history-dependent, yet simple, inflation
targeting rule in that setting, and that imposing a history-independent rule is actually
inferior to imposing no rule.

The inflation targeting rule is designed as follows. Society specifies a time-invariant
correspondence, 
 : M ⇒ 	, of the previous period’s message that constrains the cen-
tral bank’s choice of inflation in the current period. In other words, with m− denot-
ing the previous period’s message, the current period’s inflation must satisfy π ∈ 
(m−).
Then the payoff-relevant state for the central bank is (θ�m−). A Markov perfect equilib-
rium under an inflation targeting rule 
 consists of (i) the central bank’s policy function,
(πIT�xIT�mIT) : �×M → 	×X ×M , and (ii) the central bank’s (ex post) value function
VIT :�×M →R such that the following statements hold.

(i) For all (θ�m−) ∈�×	, taking the function πIT as given,

VIT(θ�m−) = max
π�x�m

R(π�x�θ)+βE
[
VIT

(
θ′�m

)]
subject to π = κx+βE[πIT(θ

′�m)] and π ∈ 
(m−).

(ii) The policy function for the above problem is (πIT�xIT�mIT).

Ex ante social welfare in this equilibrium is simply given by WIT(m−) = E[VIT(θ
′�m−)].

It is worth noting that the expected inflation in the NKPC is correctly specified as the
private sector’s expectation, because given the Markov strategy for inflation, πIT, and
a message in the current period, m, the best forecast for next period’s inflation by the
private sector is given by E[πIT(θ

′�m)] and is independent of the private sector’s belief
about the current private information θ.
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Now we describe the inflation targeting rule that implements the optimal mech-
anism. For this purpose, we confine our attention to the rule in which the central
bank is asked to announce its promised inflation, i.e., M = 	. We say that 
 imple-
ments the optimal policy if there exists a Markov perfect equilibrium given 
 such that
(πIT�xIT�mIT) = (π∗�x∗�πe∗), and WIT = W . Note that the condition mIT = πe∗ means that
promised inflation announced by the central bank is always delivered. Proposition 6
shows that an appropriately chosen 
 can implement the optimal policy.

Proposition 6. Define 
 : 	⇒	 as follows:

(i) If m− ≤ πD(θ), set m− as the upper limit.

(ii) If m− ∈ (πD(θ)�π
e∗− ), set πD(T1(m−)) as the upper limit.

(iii) If m− = πe∗− , set neither an upper nor a lower limit.

(iv) If m− ∈ (πe∗− �πD(θ)), set πD(T2(m−)) as the lower limit.

(v) If m− ≥ πD(θ), set m− as the lower limit.

Then 
 implements the optimal policy.

There are many inflation-range targeting rules other than 
 that implement the op-
timal policy, and 
 is the largest among them. The smallest correspondence is 
(m−) =
{π ∈ 	|π = π∗(θ;m−) for some θ}. It is straightforward to see that a necessary and suf-
ficient condition for 
 to implement the optimal policy is 
(m−) ⊂ 
(m−) ⊂ 
(m−) for
all m− ∈ 	. Note that, for a given m−, the set 
(m−) takes the form of an interval. This
result is closely related to the optimality of interval delegation obtained in many static
delegation problems (Holmstrom 1977, Holmstrom 1984, Alonso and Matouschek 2008,
and Amador and Bagwell 2013).

Proposition 6 highlights the necessity of imposing an upper limit on inflation for
m− < πe∗− and a lower limit for m− > πe∗− . This is in contrast to AAK’s result that an up-
per bound on inflation can implement the optimal mechanism. This difference arises
because, in AAK, the source of the time-inconsistency problem is the inflation bias em-
bodied in the social welfare function, and because the severity of the time-inconsistency
problem is constant. In our setting, an inflation cap suffices only when m− <πe∗− . An in-
flation cap does not suffice generally because the source of the time-inconsistency prob-
lem is a stabilization bias and not an inflation bias. When the previous period’s promised
inflation m− is higher than πe∗− , the central bank wants to renege on its promise and
restart the economy with a lower initial condition, πe∗− . Therefore, the central bank in
our setting has a deflation bias when m− > πe∗, and a lower limit must be imposed to
deliver the promised level of inflation.

Throughout the paper, we have assumed that the central bank is benevolent and
that its payoff is identical to social welfare. In Appendix F.2, we generalize the setup
to incorporate an inflation bias. Society finds it optimal to tighten the upper limit on
inflation when the central bank has an inflation bias compared to when the central bank
is benevolent. As a result, social welfare, as a function of previous period’s promised
inflation, is maximized at a value that is lower than πe∗− .
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5.4.1 Importance of history dependence To illustrate the importance of history depen-
dence of an inflation targeting rule, let us consider a fixed-range inflation targeting rule
such that 
(m−) is a constant interval that is independent of m−.

For simplicity, assume that the social welfare function takes the quadratic form spec-
ified in (2), that the type distribution satisfies E[θ] = 0 and is symmetric around the
mean, and that Assumptions 2 and 4 hold. Then, because the model features symmetry
around 0, we can without loss of generality focus on fixed-range inflation targeting rules
that take the form 
(m−) = [−c� c] with c ≥ 0. This form encapsulates the strict zero in-
flation targeting of always setting πt = πe∗− = 0 when c is set to zero, and the “optimal
discretionary policy” in the new Keynesian policy literature when c is set to so large a
number that the target inflation range never binds.

Because the targeting rule is independent of the the previous period’s message, the
payoff-relevant state in a MPE is θ only, and we drop the message m from the set of
choice variables. In an MPE given 
, the value and the policy functions must satisfy that
(i) for all θ ∈ �, VIT(θ) = maxπ�x R(π�x�θ) + βE[VIT(θ

′)] subject to π = κx + βE[πIT(θ
′)]

and π ∈ [−c� c], and (ii) (πIT�xIT) is the policy function for the above problem.
Interestingly, given history independence, imposing bounds on the central bank’s

choice of inflation is harmful for welfare, because ex ante welfare in the MPE, WIT =
E[VIT(θ)], weakly increases with c. The logic is as follows. First, it is straightforward to
establish that E[πIT(θ

′)] = 0 for any c, due to symmetry around 0. Hence, for each θ,
the pair (πIT(θ)�xIT(θ)) solves maxπ�x R(π�x�θ) subject to π = κx and π ∈ [−c� c]. Be-
cause lower c implies a tighter constraint, when c is reduced, the expected momentary
welfare in the MPE, E[R(πIT(θ)�xIT(θ)�θ)], never increases, and it strictly decreases if
the bound constraint π ∈ [−c� c] binds for some type θ. Finally, ex ante welfare satisfies
WIT = E[VIT(θ)] = E[R(πIT(θ)�xIT(θ)�θ)]/(1 − β) and, therefore, it is weakly increasing
in c. Hence, if society can only use history-independent inflation targeting rules, it is
optimal to give full discretion to the central bank, i.e., to set c so large that the bound
constraint never binds.

The reason why imposing a history-independent inflation targeting rule only hurts
welfare is that it does not help society to mitigate the time-inconsistency problem of
the central bank. When the inflation targeting rule is given by 
, the next period’s con-
straint set for the central bank depends on its current-period promised inflation, and
the central bank can use promised inflation to restrict the action chosen by its future
self, thereby mitigating the time-inconsistency problem. Fixed-range inflation target-
ing rules do not provide such a mechanism and the time-inconsistency problem is left
unsolved. They only restrict the contemporaneous choice of the central bank, which is
unambiguously harmful for welfare.

6. Numerical example

In this section, we use a numerical example to compare the optimal mechanism with
two benchmarks. The numerical procedure is described in Appendix C.
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6.1 Parameter values

Our parameterization of the model is largely standard. We assume that a period cor-
responds to a quarter in length and set the discount factor, β, to 0�99. With the Calvo-
pricing model as our guide, we set the slope of the Phillips curve, κ, to 0�12875. This value
for κ is supported by a Calvo-pricing parameter of 0�75, by an elasticity of substitution
between goods, ε, of 5�00 (i.e., a 25 percent markup), and by a momentary utility func-
tion for the representative household of the form ln ct − h1+ν

t /(1 + ν), where ct denotes
consumption, ht denotes hours worked, and ν, the inverse of the Frisch labor-supply
elasticity, is set to 0�50.

We use the quadratic specification in (2) for the social welfare function, R. We set
b = κ/ε on the basis that the second-order Taylor expansion of the representative agent’s
utility takes that form in the canonical new Keynesian model without private informa-
tion (see, e.g., Woodford 2003).

Turning to the type, θ, we assume that θ has a uniform probability density func-
tion on the interval [−0�5%�0�5%]. These numbers are not annualized, and correspond
approximately to [−2%�2%] per annum. For computational purposes, this continuous
density is approximated using a uniform grid containing 41 points.

6.2 Benchmarks

The first alternative is the aforementioned optimal discretionary policy, and the second
alternative is the full-information solution. These two benchmarks are commonly ana-
lyzed in the new Keynesian literature (see Clarida et al. (1999) and Woodford (2003)) and
are detailed in Appendix D.

6.2.1 Optimal discretionary policy The optimal discretionary policy exhibits no history
dependence because there is no state variable. Policy functions for inflation and the
output gap are strictly increasing in θ, but that for promised inflation is independent of
θ and is constant at zero. As we discussed in Section 5.4.1, welfare achieved by this policy
serves as an upper bound for welfare achievable by any fixed-range inflation targeting
rule.

6.2.2 Full-information benchmark The full-information problem is to choose a mech-
anism to maximize social welfare (7) subject to the feasibility constraint (10) and (11).
The solution corresponds to the optimal commitment policy in the new Keynesian pol-
icy literature.

For each of the three variables—inflation, the output gap, and promised inflation—
the policy function has a constant coefficient on the previous period’s promised infla-
tion, πe−, that is independent of θ and an intercept that varies with θ. This property fol-
lows from the fact that the full-information problem is an example of an optimal linear-
quadratic regulator problem.

All policy functions are strictly increasing in θ and πe−. Optimal inflation naturally
increases with θ because higher θ implies that the marginal social welfare of inflation
is higher. To incentivize the price setters to raise their prices, the central bank raises
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Figure 3. Policy function comparison: π.

the current marginal cost by stimulating the current output gap and the private sector’s
inflation expectations by promising higher future inflation. Hence, both the output gap
and the promised inflation increase with θ. Inflation increases with the previous period’s
promised inflation because inflation has to be on average equal to promised inflation,
and both the output gap and the expected inflation move positively with inflation for
the same reason. Finally, promised inflation moves less than one for one with the pre-
vious period’s promised inflation, implying that promised inflation settles in a compact
interval around zero in the long run.

6.3 Comparison

Considering inflation first, the left panel in Figure 3 displays the policy function for in-
flation, π∗, as a function of the state for different values of θ. The middle and right pan-
els then plot the differences between the optimal mechanism and the full-information
solution, and between the optimal mechanism and the optimal discretionary policy, re-
spectively. To make these plots visible, we report these policy functions for just five val-
ues of θ, including the lowest and the highest values. All numbers are expressed in terms
of percentages, so π = 1 corresponds to an inflation rate of 1% per quarter.

Looking at the policy functions shown in the left panel it is clear that the optimal
mechanism exhibits properties that are largely consistent with the theoretical results
for the continuous-type model despite the fact that we use a discrete-type model for
computation.15

15Figure 3 reveals some behaviors that differ from the theoretical predictions of the continuous-type
model. First, we observe full discretion not only at one point (πe− = πe∗− = 0), but on an interval around 0
(though it is small). Second, on this interval, the policy function is not flat, but increasing slightly. Third,
the policy function for each θ decreases slightly before becoming virtually flat. These features are all likely
to be the result of our use of a discrete-type model for the computations and to the discreteness of our



1342 Waki, Dennis, and Fujiwara Theoretical Economics 13 (2018)

Figure 4. Policy function comparison: πe.

Inflation in the optimal mechanism moves less with θ than it does in the full-
information solution. Recall that the full-information solution increases monotonically
with θ. The middle panel of Figure 3 shows that, at each πe−, the optimal mechanism
tends to be higher (lower) than the full-information solution for low (high, respectively)
values of θ. Loosely speaking, for each value of the previous period’s promised infla-
tion, the optimal mechanism is more compressed vertically than is the full-information
solution. In contrast, when a type θ has discretion in the optimal mechanism, infla-
tion moves more with θ than it does in the optimal discretionary policy. In the right
panel of Figure 3, one can see that, for each value of θ, the flat part has the same sign
as θ. Therefore, the optimal history-dependent mechanism allows inflation to vary more
with the desirable inflation θ than in the optimal discretionary policy, and it is welfare-
enhancing.

Next we turn to promised inflation. In Figure 4, the left panel depicts the optimal
mechanism and the right panel depicts the difference from the full-information solu-
tion.16 As shown in Proposition 4, the policy function for promised inflation is a mono-
tone transformation of that for inflation. Therefore, they are qualitatively very similar.
The right panel implies that promised inflation in the optimal mechanism move less
with θ than in the full-information solution. Thus, one feature of the optimal mech-
anism is that it exhibits less volatility in expected inflation than the full-information
solution. In the private-information setting, changing promised inflation from πe∗− is
more costly than in the full-information setting, because the mechanism imposes some
restrictions on the central bank’s ability to deliver such promises, which lowers social

computational method. The interval of full discretion indeed becomes small as we increase the number of
types.

16Promised inflation is always zero under the optimal discretionary policy and is omitted.
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Figure 5. Policy function comparison: x.

welfare. Accordingly, the private information solution makes less use of promised infla-
tion.

Figure 5 depicts the behavior of the output gap. First observe in the right panel that
for each value of θ, the flat part has the opposite sign to θ. This implies that the out-
put gap moves less with θ in the optimal mechanism when a type has discretion than it
does in the optimal discretionary policy. This difference is due to the fact that the op-
timal mechanism uses θ-dependent promised inflation while the optimal discretionary
policy does not. By generating a positive correlation between promised inflation and θ,
the optimal mechanism can reduce the output gap fluctuations relative to the optimal
discretionary policy. The middle panel of Figure 5 shows that the difference from the
full-information solution is non-monotonic in θ. The reason is simple. Recall the NKPC,
π = κx+βπe. We have seen that both inflation, π, and promised inflation, πe, move less
with θ in the optimal mechanism than they do in the full-information solution. Hence,
the output gap, x, may move more or less with θ.

As a final point, we use the dynamic IS equation to calculate the nominal interest
rate, assuming that the natural rate of interest is constant at 1/β− 1 (approximately 1%
in this example), and plot it as a function of πe− in Figure 6. In the optimal discretionary
policy (the right panel), the nominal rate moves negatively with θ and is independent of
promised inflation. In the full-information solution (the middle panel), the nominal rate
depends negatively on promised inflation and θ, and the dependence is linear. In the
optimal mechanism (the left panel), types that do not have discretion choose the same
value for the nominal rate, while those that have discretion choose a type-specific but
history-independent nominal rate, just as they do for inflation and the output gap. This
suggests that one might also implement the optimal mechanism by imposing history-
dependent upper and lower limits on the nominal interest rate. When promised infla-
tion is lower than πe∗− , a lower limit is imposed so that high-θ types are constrained and
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Figure 6. The nominal interest rate.

are unable to choose high inflation. When promised inflation is higher than πe∗− , an up-
per bound is imposed and low-θ types must inflate more than they desire by choosing a
low nominal interest rate.

7. Conclusion

In the context of the canonical new Keynesian model, we study the optimal degree of dis-
cretion that should be granted to a central bank when it has superior information about
the welfare costs of inflation but is unable to commit. We show that the optimal mecha-
nism depends on history through the previous period’s promised inflation and that the
optimal degree of discretion varies with this state variable. Although the central bank’s
ability to utilize its private information should be curtailed, it is generally not optimal to
grant the central bank either no discretion or full discretion. Full discretion should be
granted only when the previous period’s promised inflation happens to maximize social
welfare, no discretion should be granted when the previous period’s promised inflation
is sufficiently far from the peak of social welfare, and some discretion should be granted
for all intermediate values of the previous period’s promised inflation. We demonstrate
numerically that promised inflation must settle in a region within which some discretion
is granted.

A practical implication of our analysis is that it is optimal to legislate an inflation-
range targeting rule that specifies both upper and lower bounds on permissible infla-
tion. It is essential to impose a lower bound, as the direction of the central bank’s sta-
bilization bias can be negative. Importantly, these bounds must be history-dependent
to achieve the second-best, and a fixed-range targeting regime is suboptimal. One way
to encode history dependence is to make the upper and lower bounds contingent on
promised inflation announced by the central bank in the previous period, a form of in-
flation target. Such history dependence provides the central bank, which is unable to
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commit by itself, with a tool to restrict its future actions, and mitigates the stabilization
bias.

Incorporating a persistent private shock would be an interesting extension of our
analysis. In the full-information model, the gains from commitment do not change
much when the shock persistence increases modestly, but decline sharply when the per-
sistence becomes sufficiently high.17 We therefore conjecture that in the private infor-
mation model it would still be optimal to limit the central bank’s discretion to a similar
extent as in the i.i.d. case when θ is moderately persistent, and that our results serve as
a useful benchmark. When θ is highly persistent, the optimal degree of discretion can
be much higher. A detailed analysis is warranted to examine the precise form of opti-
mal delegation when θ is highly persistent.18 Also warranting a more detailed analysis
is an environment in which the effects of private information can persist endogenously
through inflation indexation or rule-of-thumb pricing. We leave this for future work.

Specifying a time-varying permissible inflation range has been seen in practice. Is-
rael, for example, when adopting inflation targeting, did so by setting a sequence of
decreasing target ranges for the year-ahead inflation in an attempt to bring about dis-
inflation (Bernanke et al. 2001). Other central banks, such as the Reserve Bank of New
Zealand, have changed their target ranges for inflation based on the history of outcomes
generated. Our analysis suggests that fixed inflation targets, while practical, lack the so-
phistication needed to optimally trade off the gains and losses from discretion.

Appendix

Appendix A contains the proofs of the theoretical results presented in the main paper.
Appendix B extends the results in Athey et al. (2005). Appendix C describes our numeri-
cal procedure. Appendix D presents the two benchmarks.

Appendix A: Proofs

A.1 Proof of Lemma 2

Fix any πe− ∈ 	. For any W− such that (πe−�W−) ∈ �, we can find measurable functions
(π�x�πe�w) of θ such that (15), (16), (17), and (18) are satisfied with F = W . Hence,

TW
(
πe−

) ≥ sup
W− s.t. (πe−�W−)∈�

W− =W
(
πe−

)
�

This establishes W ≤ TW . Because T is a monotone operator, it follows that (T)nW ≤
(T)n+1W for any integer n ≥ 0. Because T is a contraction mapping with the fixed point
W̃ , we have W ≤ (T)nW ≤ limn↑∞(T)nW = W̃ .

17We confirmed this by computing the welfare difference between the full-information solution and the
optimal discretionary policy for the quadratic specification with an AR(1) shock θt = ρθt−1 + et .

18A recent paper by Halac and Yared (2014) considers the optimal, self-imposing fiscal rules when the
government has a present bias and persistent private information regarding the marginal value of public
spending.
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A.2 Proofs of Lemma 3(iii) and Proposition 4

We assume Assumptions 1, 2, 3, and 4.
We take the following steps. First, we fix a F ∈ V(	) and an arbitrary πe− ∈ 	. We then

relax the problem in (14) and characterize its solution. The relaxed problem is a static
problem in which society chooses inflation, π, as a function of θ, and a “money burn-
ing” variable, δ≤ 0, also as a function of θ. By generalizing AAK’s theorems and applying
them to the relaxed problem, we show that it has a unique solution, such that π is con-
tinuous and that δ(θ)= 0 for all θ. When the optimal money burning is zero, the original
problem (14) has a solution such that (a) inflation is identical to the optimal inflation in
the relaxed problem, (b) the output gap and promised inflation satisfy the properties
in Proposition 4 with W in the statement being replaced with F , and (c) the continu-
ation utility hits the upper bound, w(θ) = F(πe(θ)). Hence, Lemma 3(iii) follows, and
Proposition 4 is implied once we show Lemma 3(i).

Fix an arbitrary weakly concave function F ∈ V(	) and arbitrary πe− ∈	.
To relax the problem in (14), we define the function S of π: for any π ∈	,

S(π;F) = max
(x�πe)∈X×	

B(x)+βF
(
πe

)
subject to π = κx+βπe. (When obvious, we suppress the dependence of S on F .) Then,
for any quadruple (π�x�πe�w) that satisfies the NKPC and the constraint (18), there
exists δ≤ 0 such that

A(π;θ)+B(x)+βw =A(π;θ)+ S(π;F)+ δ�

Here δ represents money burning: S(π;F) is the maximal welfare from feasible pairs
of the output gap and promised inflation for given inflation, π, and δ < 0 implies that,
conditional on π, the output gap, promised inflation, and the continuation utility are at
suboptimal levels, possibly to incentivize the central bank.

In the relaxed problem, we allow society to choose δ arbitrarily subject only to the
nonpositivity constraint. Let

R̃(π�θ) := A(π;θ)+ S(π;F)�

Then the following problem (P1) relaxes the problem in (14):

sup
π(·)�δ(·)

∫ θ

θ

[
R̃

(
π(θ);θ) + δ(θ)

]
p(θ)dθ� (P1)

subject to the constraints

πe− =
∫

π(θ)p(θ)dθ�

R̃
(
π(θ);θ) + δ(θ) ≥ R̃

(
π

(
θ′);θ) + δ

(
θ′) ∀θ�θ′ �= θ�

δ(θ) ≤ 0 ∀θ�
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As we state in Assumption 4(i), we assume that a maximum is attained in problem (P1)
and replace sup with max in what follows.

Problem (P1) has a unique solution in which π(·) is a continuous function of θ, and
δ(θ)= 0 for all θ. To show these results, we exploit the fact that, interpreting R̃ as the re-
turn function in the social welfare function and interpreting δ as the continuation value,
problem (P1) has the same structure as the best payoff problem in AAK for which the
optimal δ(·) is shown to be constant at its upper bound.19 AAK, however, assume that
π(·) is a piecewise C1 function, while we do not. We generalize their results to dispense
with that assumption.

Lemma 5 (AAK’s result extended). Suppose R̃ and p satisfy the following conditions.

(i) The function R̃ is strictly concave and R̃θ exists.

(ii) The single-crossing condition: R̃θπ(π;θ) > 0 for any (π�θ).

(iii) The monotone-hazard condition: For any nondecreasing π(·),

1 − P(θ)

p(θ)
R̃θπ

(
π(θ);θ)

is strictly decreasing in θ

and
P(θ)

p(θ)
R̃θπ

(
π(θ);θ)

is strictly increasing in θ�

(iv) The Milgrom–Segal condition:

(a) For any π, R̃(π; ·) is absolutely continuous.

(b) There is an integrable function a : � → R+ such that |R̃θ(π;θ)| < a(θ) for all
π and almost all θ.

Assume further that a maximum is attained and the bound constraints are slack in prob-
lem (P1). Then a solution to problem (P1) is unique, and in the solution, (i) π(·) is a
continuous function and (ii) δ(·) is constant at its upper bound of zero.

A proof can be found in Appendix B.
The assumptions in Lemma 5 are implied by Assumptions 1, 2, 3, and 4, and F ∈

V(	).

Lemma 6.

(i) Assumption 1 implies R̃θ = Aθ, and if we further assume F ∈ V , R̃ is strictly con-
cave.

(ii) Assumption 1 implies the single-crossing condition for R̃.

19One difference is that average inflation, πe−, does not enter the return function and is exogenously
fixed in this problem, whereas it enters the return function and is a choice variable in AAK. However, the
constancy of optimal δ(·) in AAK is unaffected by this difference.
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(iii) Assumptions 1 and 2 imply the monotone-hazard condition for (R̃�p).

(iv) Assumption 3 implies the Milgrom–Segal condition for R̃.

Proof. Because R̃(π;θ) = A(π;θ) + S(π), we have R̃θ = Aθ and R̃θπ = Aθπ for any
function S(·). The first part of (i) and parts (ii)–(iv) follow immediately. To prove the re-
maining part of (i), consider the problem that defines S for F ∈ V(	). Because the graph
of the constraint correspondence is convex and the objective function B(x)+βF(πe) is
weakly concave, S is weakly concave. Because A(π;θ) is strictly concave in π for any θ,
it follows that R̃(π;θ) =A(π;θ)+ S(π) is strictly concave in π for any θ. �

Therefore, under the set of assumptions made in Lemma 3, the solution to prob-
lem (P1), (π∗(·)�δ∗(·)), satisfies that δ∗(θ) = 0 for all θ and that π∗(·) is continuous
(Lemma 5).

To construct a solution to the original problem from the solution to problem (P1), we
use a solution to the problem that defines the function S. We turn to its characterization
next.

Lemma 7. Suppose that F ∈ V(	). Then S is weakly concave and the optimal policy cor-
respondence

{(
x�πe

) ∈ X ×	|π = κx+βπe and S(π) = B(x)+βF
(
πe

)}
is single-valued and can be written as a pair of functions of π, (gx(·)�gπe(·)), where both
gx(·) and gπe(·) are nondecreasing, continuous functions.20 If F is further strictly concave
and differentiable, S is strictly concave and C1, both gx and gπe are strictly increasing,
and the envelope condition holds: S′(π) = B′(gx(π))/κ = F ′(gπe(π)).

Proof. Suppose first that F ∈ V(	). Weak concavity of S is already established in
Lemma 6. Note that S(π) = maxπe B((π − βπe)/κ)+ βF(πe). Because F is weakly con-
cave, f (π�πe) := B((π − βπe)/κ) + βF(πe) is strictly concave in πe for given π. There-
fore, the solution to the right-hand side problem is unique for each π and we denote
the policy function by gπe(·). The maximum theorem implies the continuity of gπe(·).
It is straightforward to check that f has increasing differences in (π�πe) and it follows
that gπe(·) is weakly increasing. The same properties of gx can be shown by considering
maxx B(x)+βF((π −κx)/β). Clearly, for each π, (x�πe) is in the policy correspondence
if and only if (x�πe) = (gx(π)�gπe(π)).

If F is further strictly concave and differentiable, first-order necessary conditions
(FONC) imply B′(gx(π))/κ = F ′(gπe(π)). Because both B′ and F ′ are strictly decreas-
ing, and because gx(·) and gπe(·) must satisfy π = κgx(π) + βgπe(π), both gx(·) and
gπe(·) must be strictly increasing. The Benveniste–Scheinkman theorem implies S′(π) =
B′(gx(π))/κ = F ′(gπe(π)). Because B′(gx(·)) is strictly decreasing and continuous, so
is S′. Therefore, S is a strictly concave C1 function. �

20The functions S, gx, and gπe depend on the function F , but we suppress this dependence to simplify
the notation.
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Define the composite functions x∗ = gx ◦ π∗, πe∗ = gπe ◦ π∗, and w∗ = F ◦ gπe ◦ π∗.
Then (π∗�x∗�πe∗�w∗) satisfies all the constraints in the original problem, and the value of
the objective function it achieves is the same as the maximized value of the relaxed prob-
lem (P1). By construction, the quadruple of functions (π∗(·)�x∗(·)�πe∗(·)�w∗(·)) defined
above is continuous in θ. Because problem (P1) has a unique solution, it is a unique
solution to the original problem.

This proves the second and the third parts of Lemma 3. Proposition 4 follows once
we show W ∈ V(	).

A.3 Proofs of Lemma 3(i) and Propositions 2 and 3

We again take an arbitrary weakly concave function F ∈ V(	). Now we characterize the
optimal policy function for inflation given F and the value function TF . For each πe−, the
former, together with a constant function δ(θ) = 0, constitutes the solution to problem
(P1), and the latter equals the maximized value of problem (P1). Hence, we use problem
(P1) with δ(θ)= 0 being imposed:

TF
(
πe−

) = max
π(·)

∫ θ

θ
R̃

(
π(θ);θ)

p(θ)dθ (P2)

subject to (15) and R̃(π(θ);θ) ≥ R̃(π(θ′);θ) for all θ and θ′ �= θ. We call this problem
(P2).

We first show that at each πe−, the solution to (P2) has at most two thresholds, θ1 and
θ2: it is constant below θ1, coincides with the one-shot discretionary best response be-
tween θ1 and θ2, and is constant above θ2. Using this property, we show that TF has a
peak when πe− is at the expected value of the one-shot discretionary best response, that
it is strictly increasing on the left of the peak, and that it is strictly decreasing on the right
of the peak. The shape of TF in turn implies that at each πe−, the solution to problem
(P2) has at most one cutoff point and has the form described in Proposition 3. The cut-
off point is shown to vary with the state variable πe−, implying that the optimal policy
function π∗(θ;πe−) given F is a continuous function of (θ�πe−) (Lemma 3(ii)). Finally,
using the properties of the optimal policy function, the value function TF is shown to be
a strictly concave C1 function, establishing Lemma 3(i).

A.3.1 π∗ takes a simple form Define the one-shot discretionary best response given F as
a policy correspondence πD(·;F) for the maximization problem

max
π

[
A(π;θ)+ max

(x�πe):π=κx+βπe

{
B(x)+βF

(
πe

)}] = max
π

R̃(π�θ)�

Clearly πD(·;F) maps from � to 	.
The next lemma establishes that πD(·;F) is a nondecreasing, continuous function.

For simplicity, we drop the dependence of πD on F hereafter.

Lemma 8. If F ∈ V(	) and Assumption 1 holds, then πD(·) is a weakly increasing, con-
tinuous function. If F is a strictly concave, differentiable function, then πD(·) is strictly
increasing.
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Proof. Suppose that F ∈ V(	). Because R̃(·;θ) is strictly concave, its maximizer is
unique and, thus, πD is a function. The maximum theorem implies the continuity of
πD. Because Aπθ > 0 (Assumption 1), R̃ has increasing differences in (π�θ) and, thus,
πD(·) is weakly increasing. Suppose further that F is strictly concave and differentiable.
Then R̃ is strictly concave and C1 in π. Thus, for each π, the FONC must be satisfied:
0 = R̃π(πD(θ);θ) = Aπ(πD(θ);θ) + S′(πD(θ)). Because Aπθ > 0, πD(·) must be strictly
increasing. �

Now we show that, for any πe−, π∗(·) must be either constant or of the form

π∗(θ)=

⎧⎪⎪⎨
⎪⎪⎩
πD(θ1) ∀θ ∈ [θ�θ1]
πD(θ) ∀θ ∈ (θ1� θ2)

πD(θ2) ∀θ ∈ [θ2� θ]�
(20)

Suppose that π∗(·) is not constant. Then π∗(·) is strictly increasing on some interval
(θ1� θ2). Then for any triple (θ�θ′� θ′′) such that θ1 < θ′′ < θ < θ′ < θ2, the incentive-
compatibility constraint implies R̃(π∗(θ′′);θ) < R̃(π∗(θ);θ) and R̃(π∗(θ′);θ) <

R̃(π∗(θ);θ). Because π∗ is continuous, R̃(·;θ) must have a peak at π = π∗(θ). Therefore,
π∗(·) = πD(·) in an interval in which π∗(·) is strictly increasing, and π∗(·) is constant
when π∗(·) �= πD(·). Because π∗(·) is continuous (Lemma 5(ii)), it follows that it must be
either constant or of the form in (20). Later we show that either θ1 = θ or θ2 = θ must
hold.

A.3.2 TF is single-peaked It follows that TF is single-peaked, that it is strictly increas-
ing to the left of its peak, and that it is strictly decreasing to the right of its peak.

Lemma 9. The function TF :	 →R is uniquely maximized at πe∗− := ∫ θ
θ πD(θ)p(θ)dθ.

Proof. The objective function in problem (P2) is maximized if and only if π = πD a.e.,
because R̃ is strictly concave in π for each θ. However, π = πD satisfies the constraint
(15) if and only if πe− = πe∗− . Thus the function TF is maximized at πe− = πe∗− and the
maximum is unique. �

Corollary 2. The function TF is strictly increasing for πe− <πe∗− and is strictly decreas-
ing for πe− >πe∗− .

Proof. Let πe
1 < πe

2 < πe∗− . We show that TF(πe
1) < TF(πe

2). Let π∗(·;πe
1) be a solution

to problem (P2) at πe− = πe
1 . Then it is of the form of (20) for some θ1 and θ2. Notice

that θ2 < θ, because otherwise π∗(·;πe
1) ≥ πD(·) with strict equality for θ > θ1, and the

expected value of π∗(·;πe
1) satisfies

πe
1 =

∫ θ

θ
π∗

(
θ;πe

1
)
p(θ)dθ ≥

∫ θ

θ
πD(θ)p(θ)dθ = πe∗− �

which is a contradiction.
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Because πe
2 ∈ (πe

1�π
e∗− ) and πD is weakly increasing, there exists θ3 ∈ (θ2� θ) such that

πD(θ3) > πD(θ2) and

πe
2 =

∫ θ1

θ
πD(θ1)p(θ)dθ+

∫ θ3

θ1

πD(θ)p(θ)dθ+
∫ θ

θ3

πD(θ3)p(θ)dθ�

This is because if πD(θ) = πD(θ2) for all θ > θ2, then

πe
1 =

∫ θ1

θ
πD(θ1)p(θ)dθ+

∫ θ

θ1

πD(θ)p(θ)dθ > πe∗− �

which is a contradiction.
For such θ3, define an alternative choice πALT(·) as πALT(θ) = π∗(θ;πe

1) for all
θ < θ2, πALT(θ) = πD(θ) for all θ ∈ [θ2� θ3), and πALT(θ) = πD(θ3), for all θ ∈ [θ3� θ].
Then πALT satisfies the constraints in problem (P2) at πe− = πe

2 . Hence, TF(πe
2) ≥∫ θ

θ R̃(πALT(θ);θ)p(θ)dθ. Because πALT and π∗(·;πe−) are identical up to θ2,

∫ θ

θ
R̃

(
πALT(θ);θ

)
p(θ)dθ−TF

(
πe

1
)

=
∫ θ3

θ2

{
R̃

(
πD(θ);θ

) − R̃
(
πD(θ2);θ

)}
p(θ)dθ

+
∫ θ

θ3

{
R̃

(
πD(θ3);θ

) − R̃
(
πD(θ2);θ

)}
p(θ)dθ�

The first integral on the right-hand side is strictly positive. The second integral on the
right-hand side is also strictly positive, because for all θ > θ3, πD(θ) ≥ πD(θ3) > πD(θ2),
and the concavity of R̃ implies R̃(πD(θ);θ) ≥ R̃(πD(θ3);θ) > R̃(πD(θ2);θ) for all θ > θ3.

Therefore,
∫ θ
θ R̃(πALT(θ);θ)p(θ)dθ > TF(πe

1), establishing TF(πe
2) > TF(πe

1).
An analogous argument shows that TF is strictly decreasing for πe− >πe∗− . �

A.3.3 π∗(·) satisfies the cutoff property in Proposition 3

Lemma 10. (i) For πe− < πe∗− , π∗(·) is either constant or has the form in (20) with θ1 = θ.
(ii) For πe− >πe∗− , π∗(·) is either constant or has the form in (20) with θ2 = θ.

Proof. Suppose to the contrary that, for some πe− <πe∗− , π∗(·) has the form in (20) with
θ1 > θ. Fix such πe− <πe∗− .

First consider the case where πD(θ) = πD(θ1) for all θ < θ1. Then we can replace θ1

with θ without loss of generality.
Suppose next that for some θ̃ < θ1, πD(θ) < πD(θ1) for all θ ≤ θ̃. Because TF is

strictly increasing by Corollary 2, replacing the first constraint in problem (P2) with

πe− ≥ ∫ θ
θ π(θ)p(θ)dθ must not increase the maximized value. Let an alternative choice

πALT(·) be such that πALT(θ) = π∗(θ) for all θ > θ1 and πALT(θ) = πD(θ) for all θ ≤ θ1.
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Then πALT is incentive compatible and πe− >
∫ θ
θ πALT(θ)p(θ)dθ. Moreover, the objective

function increases by

∫ θ1

θ

{
R̃

(
πALT(θ);θ

) − R̃
(
π∗(θ);θ

)}
p(θ)dθ

=
∫ θ1

θ

{
R̃

(
πD(θ);θ

) − R̃
(
πD(θ1);θ

)}
p(θ)dθ > 0�

because the integrand is nonnegative for all θ ≤ θ1 and is strictly positive for all θ < θ̃.
This is a contradiction and, thus, θ1 = θ must hold. Part (ii) can be shown in the same
way, and we omit the proof. �

We introduce two threshold functions, T1 : (πD(θ)�π
e∗− ) → [θ�θ] and T2 : (πe∗− �

πD(θ)) → [θ�θ]. Let

H(b) :=
∫ b

θ
πD(θ)p(θ)dθ+ [

1 − P(b)
]
πD(b)�

J(b) := P(b)πD(b)+
∫ θ

b
πD(θ)p(θ)dθ�

and define, for πe− ∈ (πD(θ)�π
e∗− ),

T1
(
πe−

) := min
{
b ∈�|H(b)= πe−

}
�

and, for πe− ∈ (πe∗− �πD(θ)),

T2
(
πe−

) := min
{
b ∈�|J(b)= πe−

}
�

They are well defined because both H and J are continuous and onto functions.

Lemma 11. Suppose that F ∈ V(	). Then both T1 and T2 are strictly increasing functions,
and the composite functions πD ◦ T1 and πD ◦ T2 are differentiable and their derivatives
are [1 − P(T1(π

e−))]−1 and P(T2(π
e−))−1, respectively. If F is strictly concave and differen-

tiable, T1 and T2 are also continuous, and the functions πD ◦ T1 and πD ◦ T2 are C1.

Proof. We show this for T1 only. Note that H(T1(π
e−)) = πe− for all πe− ∈ (πD(θ)�π

e∗− ).
Therefore, the composite function H ◦T1 must be strictly increasing and continuous. Be-
cause H is a continuous, weakly increasing function, it follows that T1 is strictly increas-
ing. If F is strictly concave and differentiable, H is a strictly increasing and continuous
function, and, therefore, T1 must also be strictly increasing and continuous.

Next we show that the composite function h := πD ◦ T1 is differentiable. Because
H(T1(π

e−)) = πe−, the right and left derivatives of H ◦ T1 are equal to 1 and satisfy

1 = (H ◦ T1)
′(πe−+) = [

1 − P
(
T1

(
πe−

))] × h′(πe−+)
�

1 = (H ◦ T1)
′(πe−−) = [

1 − P
(
T1

(
πe−

))] × h′(πe−−)
�
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It follows that h′(πe−+) = h′(πe−−) = [1 − P(T1(π
e−))]−1. If F is strictly concave and dif-

ferentiable, T1 is a continuous function and, therefore, h is a C1 function. �

Lemma 12. For each πe−, there is a unique solution to problem (P2) and it has the form
described in Proposition 3.

Proof. We have already seen that a solution is unique for πe− = πe∗− . Consider πe− <πe∗− .
Then π∗ at πe− is either constant or satisfies

π∗(θ) =
{
πD(θ) ∀θ ∈ [

θ�θ#)
�

πD

(
θ#) ∀θ ∈ [

θ#� θ
] (21)

for some θ# and πe− = ∫ θ
θ π∗(θ)p(θ)dθ. Clearly, for any πe− ≤ πD(θ), π∗ has to be con-

stant and it satisfies π∗(θ)= πe− for all θ.
Consider πe− ∈ (πD(θ)�π

e∗− ). Then either π∗ is constant and equal to πe− or it has the
form in (21) with θ# = T1(π

e−). We show that a constant π∗ is not a solution. When π has
the form in (21) with θ# = T1(π

e−),

∫ θ

θ
R̃

(
π(θ);θ)

p(θ)dθ−
∫ θ

θ
R̃

(
πe−;θ)

p(θ)dθ

=
∫ θ#

θ

[
R̃

(
πD(θ);θ

) − R̃
(
πe−;θ)]

p(θ)dθ+
∫ θ

θ#

[
R̃

(
πD

(
θ#);θ) − R̃

(
πe−;θ)]

p(θ)dθ�

The first term is strictly positive. The second term is strictly positive, because πD(θ) ≥
πD(θ

#) > πe− for all θ ≥ θ# and R̃ is strictly concave. This proves that there is a unique
solution to problem (P2) for each πe− < πe∗− , and it has the form described in Proposi-
tion 3. The proof for πe− >πe∗− is analogous. �

Clearly π∗(θ;πe−) is continuous in (θ�πe−). Therefore, the composite functions x∗ =
gx◦π∗, πe∗ = gπe ◦π∗, and w∗ = F ◦gπe ◦π∗ are also continuous. This implies Lemma 3(ii).

A.3.4 Proof of Lemma 3(i) Note that, denoting U(θ) = R̃(π∗(θ)�θ),

TF
(
πe−

) = U(θ)+
∫ θ

θ

1 − P(θ)

p(θ)
R̃θ

(
π∗(θ)�θ

)
p(θ)dθ�

We begin by showing that the first derivative of TF is continuous.
For πe− <πD(θ), we have π∗(θ) = πe− for all θ and, hencem

(TF)′
(
πe−

) = R̃π
(
πe−� θ

) +
∫ θ

θ

1 − P(θ)

p(θ)
Aθπ

(
πe−� θ

)
p(θ)dθ�

The right-hand side is continuous because R̃ is C1 and A is C2. It is also strictly decreas-
ing because R̃π is strictly decreasing and Aθπ is nonincreasing in π. The same result
obtains for the left derivative of TF at πe− = πD(θ) with the first term on the right-hand
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side replaced by the left derivative of R̃ at πD(θ), which is zero. Therefore, the left deriva-

tive of TF is continuous for πe− ≤ πD(θ) and equals
∫ θ
θ ((1 − P(θ))/p(θ))Aθπ(πD(θ)�

θ)p(θ)dθ at πe− = πD(θ).
For πe− ∈ [πD(θ)�π

e∗− ], U(θ)= R̃(πD(θ)�θ) is independent of πe−, and

TF
(
πe−

) = U(θ)+
∫ T1(π

e−)

θ

1 − P(θ)

p(θ)
R̃θ

(
πD(θ);θ

)
p(θ)dθ

+
∫ θ

T1(π
e−)

1 − P(θ)

p(θ)
R̃θ

(
πD

(
T1

(
πe−

));θ)
p(θ)dθ�

Recall that h := πD ◦ T1 is differentiable. Therefore, for πe− ∈ (πD(θ)�π
e∗− ), the derivative

of the right-hand side exists and is equal to

h′(πe−
)∫ θ

T1(π
e−)

1 − P(θ)

p(θ)
Aθπ

(
πD

(
T1

(
πe−

));θ)
p(θ)dθ

= 1
1 − P

(
T1

(
πe−

)) ∫ θ

T1(π
e−)

1 − P(θ)

p(θ)
Aθπ

(
πD

(
T1

(
πe−

));θ)
p(θ)dθ

=
∫ θ

T1(π
e−)

1 − P(θ)

p(θ)
Aθπ

(
πD

(
T1

(
πe−

));θ) p(θ)

1 − P
(
T1

(
πe−

)) dθ�
The last expression on the right-hand side is strictly decreasing in πe− because Aθπ is
nonincreasing in its first argument and Aθπ(πD(T1(π

e−));θ)× (1 −P(θ))/p(θ) is strictly
decreasing in θ for a given πe−. Again the analogous equations obtain for the right deriva-
tive of TF at πe− = πD(θ) and for the left derivative of TF at πe− = πe∗− , and their values

are, respectively,
∫ θ
θ ((1 − P(θ))/p(θ))Aθπ(πD(θ)�θ)p(θ)dθ and 0.

Taken together, the first derivative of TF exists for πe− < πe∗− and the left derivative

of TF is zero at πe− = πe∗− . Using the same argument for πe− ≥ πe∗− , one can show that
the first derivative of TF exists for πe− > πe∗− and that the right derivative of TF is zero
at πe− = πe∗− . This proves that TF is a C1 function. We have also shown that ∂TF/∂πe− is
strictly decreasing, implying that TF is strictly concave.

Proposition 1 follows from Lemma 3. Together with Proposition 1, Lemma 9 implies
Proposition 2, and Lemmas 11 and 12 imply Proposition 3.

A.4 Proof of Proposition 5

It is clear that W is maximized at 0 and, therefore, that πe∗− = 0.

Consider πe− ≤ πD(θ). The derivative of W
′

at πe− is given by

W
′(
πe−

) =
∫ θ

θ

{
Aπ

(
πe−;θ) + S′(πe−

)}
p(θ)dθ�
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The envelope condition implies S′(π) = W
′
(gπe(π)). When A(π;θ) = −(π − θ)2/2 and

E[θ] = 0, this implies

W
′(
πe−

) =
∫ θ

θ

{−πe− + θ+W
′(
gπe

(
πe−

))}
p(θ)dθ = −πe− +W

′(
gπe

(
πe−

))
�

Because πe− ≤ πD(θ) < πe∗− = 0, we obtain W
′
(πe−) > W

′
(gπe(πe−)). From the strict con-

cavity of W , it follows that πe− < gπe(πe−). Using the same line of arguments, one can
show πe− > gπe(πe−) if πe− ≥ πD(θ).

It follows that πD(θ) < gπe(πD(θ)) and πD(θ) > gπe(πD(θ)). Therefore, for all θ and
πe− ∈ (πD(θ)�πD(θ)), we have πe(θ;πe−) ∈ [gπe(πD(θ))�gπe(πD(θ))] ⊂ (πD(θ)�πD(θ)).

A.5 Proof of Proposition 6

Let

V (θ�m−) = max
(π�x�m)∈	×X×	

R(π�x�θ)+βW (m) (22)

subject to π = κx + βm and π ∈ 
(m−). Proposition 4 then implies that the maximiza-
tion problem on the right-hand side is equivalent to the problem in (19) with the addi-
tional constraint π ∈ 
(m−). Because the objective function in (19) is strictly concave
in inflation, the optimal inflation choice, given (θ�m−), is (i) πD(θ) if πD(θ) ∈ 
(m−),
(ii) the smallest element of 
(m−) if πD(θ) ≤ π for all π ∈ 
(m−), and (iii) the largest ele-
ment of 
(m−) if πD(θ)≥ π for all π ∈ 
(m−). This implies that π∗ solves the problem in
(19) with the additional constraint π ∈ 
(m−). Proposition 4 then implies that, for each
(θ�m−), (π∗(θ�m−)�x∗(θ�m−)�πe∗(θ�m−)) solves the problem in (22).

Recall that W is the fixed point of T. Hence,

W (m−) = E
[
R

(
π∗(θ�m−)�x∗(θ�m−)�θ

) +βW
(
πe∗(θ�m−)

)]
and, for the function V we defined above, W (m−)= E[V (θ�m−)] holds. Because for any
m, πe∗(θ�m)= E[π∗(θ′�m)], the first constraint in the problem in (22) can be replaced by
π = κx+βE[π∗(θ′�m)]. Therefore, the problem in (22) is identical to

V (θ�m−) = max
(π�x�m)∈	×X×	

R(π�x�θ)+βE
[
V

(
θ′�m

)]

subject to π = κx + βE[π∗(θ′�m)] and π ∈ 
. This establishes that the policy functions
(π∗�x∗�πe∗) and the value function V in (22) constitute an MPE given 
.

Appendix B: Extending the results in Athey et al. (2005)

Problem (P1) is given by

max
π(·)�δ(·)

∫ θ

θ

[
R̃

(
π(θ);θ) + δ(θ)

]
p(θ)dθ
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subject to

πe− =
∫ θ

θ
π(θ)p(θ)dθ�

R̃
(
π(θ);θ) + δ(θ) ≥ R̃

(
π

(
θ′);θ) + δ

(
θ′) ∀θ�θ′ �= θ�

δ(θ) ≤ 0 ∀θ�

Athey et al. (2005) show that a solution to this problem satisfies (i) δ(θ) = 0 for all θ
and (ii) that π(·) is continuous, assuming that π(·) is a piecewise C1 function.21 They
also show that π(·) is either constant or a truncated version of the “static best response,”
πD(·) (πD(θ) = arg maxπ R̃(π;θ) for all θ). In their setting, R̃ is a function that is ex-
ogenously specified and, therefore, by making certain assumptions on R̃, the static best
response is shown to be C1. Hence, a truncated version of the static best response is
piecewise C1. In our setting, R̃ is an endogenous object the properties of which depend
on those of a value function. If we were to assume that π(·) is a piecewise C1 function,
we generally need a value function to be C2 so as to guarantee that πD(·) is C1, and it
requires much stronger assumptions.

Instead, we extend the results of AAK so that we do not have to assume that π(·) is a
piecewise C1 function.

B.1 Preliminaries

To generalize AAK’s proofs of their Lemma 1–3, it is useful to establish key equations they
use in the proofs under the set of assumptions in Lemma 5. We restate these assump-
tions below.

Assumption 5. For any θ, R̃(π;θ) is a strictly concave function of π and R̃θ exists.

Assumption 6 (Single-crossing condition). The function R̃θπ exists and R̃θπ(π;θ) > 0
for any (π�θ).

Assumption 7 (Monotone hazard condition). For any nondecreasing π(·),

1 − P(θ)

p(θ)
R̃θπ

(
π(θ);θ)

is strictly decreasing in θ

and

P(θ)

p(θ)
R̃θπ

(
π(θ);θ)

is strictly increasing in θ.

Assumption 8 (Milgrom–Segal condition). The return function satisfies the following
properties:

21In their setting, the return function R̃ depends on average inflation, πe−, and it is a choice variable.
However, their results hold irrespective of this difference.
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(i) For any π, R̃(π; ·) is absolutely continuous.

(ii) There is an integrable function b :� →R+ such that |R̃θ(π;θ)| < b(θ) for all π and
almost all θ.

It follows that the static best response is a weakly increasing, continuous function.

Lemma 13. Under Assumptions 5, 6, and 8, maxπ R̃(π;θ) has a unique solution for each
θ, and the policy function πD(·) is weakly increasing and continuous.

The proof is essentially identical to that of Lemma 8 and is omitted.
Let U(θ) := R̃(π(θ);θ) + δ(θ) be the utility of type θ. Then it has an integral repre-

sentation.

Lemma 14 (Integral representation (Theorem 2 in Milgrom and Segal (2002))).
Let (π�δ) be an incentive-compatible mechanism. Then under Assumptions 6 and 8,

U is absolutely continuous and, for all θ,

U(θ) = U(θ)+
∫ θ

θ
R̃θ

(
π(z);z)dz (24)

and

U(θ) =U(θ)−
∫ θ

θ
R̃θ

(
π(z);z)dz�

Corollary 3. Let (π�δ) be an incentive-compatible mechanism. Then under Assump-
tions 6 and 8,

lim
θ′↑θ

R̃
(
π

(
θ′);θ) + δ

(
θ′) = lim

θ′↓θ
R̃

(
π

(
θ′);θ) + δ

(
θ′) = U(θ) (25)

for all θ.

Proof. First suppose that π is continuous at θ. Because U is absolutely continuous and
δ(θ)= U(θ)− R̃(π(θ);θ), it follows that δ is also continuous at θ. Then (25) holds at θ.

Next suppose that π is discontinuous at θ. Let θ′ < θ. Then

R̃
(
π

(
θ′);θ) + δ

(
θ′) = R̃

(
π

(
θ′);θ′) +

∫ θ

θ′
R̃θ

(
π

(
θ′);z)dz + δ

(
θ′)

= U
(
θ′) +

∫ θ

θ′
R̃θ

(
π

(
θ′);z)dz�

because R̃(π� ·) is absolutely continuous and differentiable. Therefore,

∣∣R̃(
π

(
θ′)� θ) + δ

(
θ′) −U(θ)

∣∣ ≤ ∣∣U(
θ′) −U(θ)

∣∣ +
∣∣∣∣
∫ θ

θ′
R̃θ

(
π

(
θ′)� z)dz∣∣∣∣

≤ ∣∣U(
θ′) −U(θ)

∣∣ +
∫ θ

θ′
b(z)dz�
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Because U is continuous and b is an integrable function, the right-hand side converges
to zero as θ′ ↑ θ. Using the same argument for θ′ > θ, it follows that (25) holds at θ. �

Finally, the incentive-compatibility constraints can be replaced with a monotonicity
condition for π(·) and an integral representation.

Lemma 15. The set (π�δ) is incentive compatible if and only if (i) π is nondecreasing in
θ and (ii) (24) holds for all θ.

Proof. The only-if part is standard. To show the if part, we assume that (i) and (ii) hold.
Pick any θ and θ′ �= θ. Without loss of generality, assume θ′ > θ. Then

R̃
(
π

(
θ′)� θ) + δ

(
θ′) = U

(
θ′) −

∫ θ′

θ
R̃θ

(
π

(
θ′);z)dz

= U(θ)+
∫ θ′

θ
R̃θ

(
π(z);z)dz −

∫ θ′

θ
R̃θ

(
π

(
θ′);z)dz

= U(θ)+
∫ θ′

θ

(
R̃θ

(
π(z);z) − R̃θ

(
π

(
θ′);z))dz�

Condition (i) implies π(θ′)≥ π(z) for all z ≤ θ′. Together with the single-crossing condi-
tion, R̃θ(π(z);z) − R̃θ(π(θ

′);z) ≤ 0 for all z ∈ [θ�θ′]. It follows that R̃(π(θ′);θ)+ δ(θ′) ≤
U(θ). Because θ and θ′ are arbitrarily chosen, this implies that (π�δ) is incentive com-
patible. �

B.2 Proof of Lemma 5

Now we generalize AAK’s Lemmas 1–3. Throughout, we assume that Assumptions 5, 6,
7, and 8 hold.

Lemma 16 (AAK’s Lemma 1). Let (π(·)�δ(·)) be a mechanism such that all the constraints
in problem (P1) hold and that π(·) is increasing on some interval (θ1� θ2).22 Then the up
variation and the down variation both increase the objective function in problem (P1).

AAK’s proof of Lemma 1 remains valid because it only uses the integral representa-
tion.

Because AAK assume that π(·) is piecewise C1, it automatically follows that each dis-
continuity point of π(·) is isolated. Therefore, for any jump discontinuity point of π(·),
they can choose two intervals on either side of it so that both π(·) and δ(·) are continu-
ous in each of them. AAK’s proofs of their Lemmas 2 and 3 use this implication. Here, al-
though the incentive-compatibility condition implies that π(·) is weakly increasing and,
therefore, that it has at most countably many jump discontinuity points, it is still pos-
sible that π(·) jumps on a dense subset of some interval in �. However, in the optimal
mechanism, each discontinuity point of π(·) is isolated, as the next lemma shows.

22The function π is said to be increasing on an interval (θ1� θ2) if and only if (i) π is nondecreasing on

(θ1� θ2) and (ii) there is some θ̃ in this interval such that π(θ) < π̃ for all θ ∈ (θ1� θ̃) and π(θ) > π̃ for all
θ ∈ (θ̃� θ2), where π̃ := ∫ θ2

θ1
π(θ)p(θ)dθ/(P(θ2)− P(θ1)) is the conditional mean of π on this interval.
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Lemma 17. In an optimal mechanism, each discontinuity point of π(·) is isolated.

Proof. Suppose to the contrary that there is an interval (a�b) ⊂ [θ�θ] of which disconti-
nuity points of π form a dense subset. Then π is strictly increasing on (a�b) and, there-
fore, it is impossible to have π(θ) = πD(θ) for all θ ∈ (a�b) because the static best re-
sponse πD is a continuous function. It follows that there is θ̃ ∈ (a�b) such that either
(i) limθ↓θ̃ π(θ) > πD(θ̃) or (ii) limθ↑θ̃ π(θ) < πD(θ̃).

Let θ̃ ∈ (a�b) be such that condition (i) holds. Then we can find c > θ̃ and d > c

in a neighborhood of θ̃ such that π(c) > πD(θ) for all θ ∈ (c�d). Because π is strictly
increasing on (c�d), we have, for all θ�θ′ ∈ (c�d),

θ > θ′ ⇒ π(θ) > π
(
θ′)>π(c) > πD(θ)

and, thus,

R̃
(
π(θ);θ)

< R̃
(
π

(
θ′);θ)

�

The incentive-compatibility constraint then requires δ(θ) > δ(θ′) for any θ�θ′ > θ in
(c�d), i.e., δ(·) is strictly increasing on (c�d). Thus we can find a subinterval of (c�d)
such that π is strictly increasing and that δ(·) is strictly increasing and is bounded away
from the upper bound of 0 by some ε > 0. Using the line of arguments in AAK’s Lemma 2,
either the up or down variation applied to such a subinterval is feasible, which contra-
dicts the optimality of (π�w).

Next consider θ̃ ∈ (a�b) for which condition (ii) holds. Then we can find d < θ̃ and
c < d in a neighborhood of θ̃ such that π(d) < πD(θ) for all θ ∈ (c�d). Because π is
strictly increasing on (c�d), we have, for all θ�θ′ ∈ (c�d),

θ < θ′ ⇒ π(θ) < π
(
θ′)<π(d) < πD(θ)

and, thus,

R̃
(
π(θ);θ)

< R̃
(
π

(
θ′);θ)

�

The incentive-compatibility constraint then requires δ(θ) > δ(θ′) for any θ�θ′ < θ in
(c�d), i.e., δ(·) is strictly decreasing on (c�d). There exists a subinterval of (c�d) such
that π is strictly increasing and that δ(·) is strictly decreasing and is bounded away from
0 by some ε > 0. Again, either the up or down variation applied to such a subinterval is
feasible, which contradicts the optimality of (π�δ). �

Lemma 18 (AAK’s Lemma 2 extended). In an optimal mechanism, δ(·) is continuous ex-
cept on at most countable, isolated jump discontinuities, and for any subinterval (θ1� θ2)

in which δ(·) is continuous, δ(·) is constant.

Proof. AAK’s proof of Lemma 2 remains mostly valid except that it uses the assumption
that π(·) is piecewise C1 when (and only when) showing that π(·) is increasing on some
interval if δ(·) is continuous but not constant over it. Therefore, we show that π(·) is
increasing on some interval if δ(·) is continuous but not constant over it.
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Note that the integral representation implies

δ(θ) =U(θ)+
∫ θ

θ
R̃θ

(
π(z);z)dz − R̃

(
π(θ);θ)

�

From the previous lemma, all discontinuity points of π(·) are isolated and π(·) is con-
tinuous except for the discontinuity points. It follows that δ(·) is continuous except on
jump discontinuity points that are isolated.

Suppose that there is an interval in which δ(·) is continuous but not constant. Then
there exists an interval over which δ(·) is continuous and either strictly increasing or
strictly decreasing. This further implies that there is a nonempty subinterval (θ1� θ2) of
it such that δ(θ) ≤ −ε for some ε > 0 for all θ ∈ (θ1� θ2). Therefore, from the integral
representation,

0 �= δ
(
θ′) − δ(θ)=

∫ θ′

θ
R̃θ

(
π(z)� z

)
dz − (

R̃
(
π

(
θ′);θ′) − R̃

(
π(θ);θ))

for any θ and θ′ > θ in this interval. It follows that δ cannot be constant over any subin-
terval of (θ1� θ2) and that π is continuous on (θ1� θ2).23 Therefore, π is strictly increasing
on (θ1� θ2) and, therefore, is increasing on an interval (θ1� θ2) as defined in AAK. �

Lemma 19 (AAK’s Lemma 3 extended). In the optimal mechanism, both π(·) and δ(·) are
continuous.

Proof. AAK’s proof of Lemma 3 first defines two types of possible discontinuities and
then rules out each type. In their first type of discontinuity, π(·) and potentially δ(·)
jump at a point θ̃, and both take constant values in some intervals (θ1� θ̃) and (θ̃� θ2) on
either side of θ̃. In their second type of discontinuity, π(·) and δ(·) both jump at θ̃, and
π(·) coincides with the static best response in some interval (θ1� θ̃) or (θ̃� θ2) on either
side of the jump point θ̃.

Because each discontinuity point of π(·) is isolated and the first type of discontinuity
is independent of the nature of the static best response, the first type of discontinuity is
ruled out as in AAK’s proof. However, when ruling out the second type of discontinuity,
AAK use the strict monotonicity of π(·). Their argument is as follows. (A) One can pick
up either interval (θ1� θ̃) or (θ̃� θ2) on which π equals the static best response. (B) Be-
cause the static best response is strictly increasing, π is increasing and δ(·) < 0 on that
interval. (C) Then either the up variation or the down variation is feasible. It is only part
(B) that uses the strict monotonicity of the static best response.

However, the strict monotonicity of the static best response is stronger than is nec-
essary. Let us define the second type of discontinuity slightly differently as follows: π(·)

23Continuity is shown as follows. Observe that

∫ θ′

θ
R̃θ

(
π(z);z)dz − (

δ
(
θ′) − δ(θ)

) = R̃
(
π

(
θ′);θ′) − R̃

(
π(θ);θ)

�

Because the left-hand side is continuous in θ and θ′, so is the right-hand side. Because R is continuous,
neither θ nor θ′ can be a discontinuity point of π.
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and δ(·) both jump at the point θ̃, and π(·) is strictly increasing in some interval (θ1� θ̃)

or (θ̃� θ2) on either side of the jump point θ̃. Clearly, if θ̃ is a discontinuity point of π but
does not satisfy this condition, there are θ1 < θ̃ and θ2 > θ̃ such that π is constant on
(θ1� θ̃) and (θ̃� θ2). Therefore, θ̃ is a discontinuity point of the first type. It follows that
any discontinuity point of π is either of the first or the second type.

Suppose that θ̃ is a discontinuity point of the second type, and that π(·) is strictly
increasing in (θ1� θ̃) and is flat in (θ̃� θ2). Because δ(·) is constant on an interval in which
it is continuous and discontinuity points of δ(·) are isolated, we can choose θ1 and θ2 so
that δ(·) is constant at δ1 over (θ1� θ̃) and at δ2 over (θ̃� θ2). Because δ(·) is flat in (θ1� θ̃),
the incentive-compatibility condition implies that for any θ and θ′ in this interval,

R̃
(
π(θ);θ) ≥ R̃

(
π

(
θ′);θ)

�

Because π(·) is continuous and strictly increasing in (θ1� θ̃), it follows that π(·) co-
incides with the static best response on the same interval. Recall that the incentive-
compatibility condition implies

lim
θ↑θ̃

R̃
(
π(θ); θ̃) + δ(θ) = lim

θ↓θ̃
R̃

(
π(θ); θ̃) + δ(θ)�

As in AAK, it implies that

R̃
(
π(θ̃)� θ̃

) + δ1 = R̃
(
x� lim

θ↓θ̃
π(θ)� θ̃

)
+ δ2�

and that δ1 < δ2 ≤ 0. Therefore, either the up variation or the down variation applied to
(θ1� θ̃) is feasible. �

Appendix C: Computing the private information solution

This appendix details the algorithm we use to compute the private information solu-
tion. We numerically implement the Bellman operator T with discrete types. We also
discretize the choice set for inflation and introduce lotteries/randomization over the set
to convexify the problem.

Our numerical implementation is based on problem (P1). Consider a concave func-
tion F on 	. For each πi ∈ 	̂, let

S(πi;F) := max
(x�πe):πi=κx+βπe

{
B(x)+βF

(
πe

)}
�

We define the Bellman operator Tl, for all πe− ∈	, as

T
lF

(
πe−

) = max
γπ�δ

∑
θ

p̂(θ)

[ ∑
πi∈	̂

γπ(πi|θ)
{
A(πi)+ θπi + S(πi;F)

} + δ(θ)

]

subject to the feasibility constraint

πe− =
∑
θ

p̂(θ)

( ∑
πi∈	̂

γπ(πi|θ)πi

)
�
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the lottery constraints,

γπ(πi|θ) ∈ [0�1] ∀θ ∈ �̂�πi ∈ 	̂�∑
i

γπ(πi|θ) = 1 ∀θ ∈ �̂�

the incentive-compatibility constraint,∑
πi∈	̂

γπ(πi|θ)
{
A(πi)+ θπi + S(πi;F)

} + δ(θ)

≥
∑
πi∈	̂

γπ
(
πi|θ′){A(πi)+ θπi + S(πi;F)

} + δ
(
θ′)

for all (θ�θ′) ∈ �̂2, and the upper-bound constraint

δ(θ)≤ 0 ∀θ ∈ �̂�

The operator Tl satisfies Blackwell’s sufficient condition and, thus, is a contraction
mapping. The dynamic programming problem is a concave problem, allowing us to
apply the method in Fukushima and Waki (2013) to compute its solution. We use a
sufficiently large interval 	e ⊂ 	 as the state space, and then check that the computed
solution is interior. This leads us to the following algorithm:

Step 1. Fix a compact interval 	e ⊂	 and a finite grid 	̂e on 	e.

Step 2. Set the initial condition F0 =U for value function iteration.

Step 3. For each n ≥ 1, take the following actions.

(a) First compute S(πi;Fn−1) for all πi ∈ 	̂.

(b) Then compute T
lFn−1(π

e−) for all πe− ∈ 	̂e, and define Fn as the piecewise
linear interpolant of TFn−1(π

e−) on 	̂e.

Step 4. Stop if a prespecified stopping criterion is satisfied: ||Fn − Fn−1|| < ε for some
constant ε.

Step 5. Use the computed value function Fn to check whether the solution is interior
and whether δ(θ) = 0 for all θ. If these conditions are satisfied, use Fn as an
estimate for the true value function.

It follows that {Fn}∞n=0 is a nondecreasing sequence of concave, continuous, piecewise
linear functions that are bounded by the fixed point of Tl from above. Therefore, the
convergence is guaranteed.

Let {γπ∗ (·|θ�πe−)�δ∗(θ�πe−)}(θ�πe−)∈�̂×	̂e be the solution at a fixed point F = F∗. In our

numerical example, we find δ∗(θ�πe−) = 0 for all (θ�πe−). When plotting the policy func-
tions, we use

π
(
θ;πe−

) =
∑
πi∈	̂

γπ∗
(
πi|θ�πe−

)
πi�
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Figure 7. Benchmarks.

x
(
θ;πe−

) =
∑
πi∈	̂

γπ∗
(
πi|θ�πe−

)
gx(πi;F∗)�

πe
(
θ;πe−

) =
∑
πi∈	̂

γπ∗
(
πi|θ�πe−

)
gπe(πi;F∗)�

Appendix D: Benchmark problems

In this appendix, we define two benchmark problems using the quadratic specification
in (2). Their solutions are depicted in Figure 7.
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D.1 Full-information problem

The full-information problem has the recursive formulation

W FI(πe−
) = max

π(·)�x(·)�πe(·)

∫
θ

{
−1

2
(
π(θ)− θ

)2 − b

2
x(θ)2 +βW FI(πe(θ)

)}
p(θ)dθ

subject to π(θ) = κx(θ)+βπe(θ) for all θ and πe− = ∫
�π(θ)p(θ)dθ.

Because the return function is quadratic and the constraints are linear, the value
function is quadratic and the policy function is linear. For simplicity, we have disposed
of the compactness of 	 and X , and assumed that π and x can be chosen from the real
line.

D.2 Optimal discretionary policy

A Markov perfect equilibrium is unique when the return function has the form in (2),
and we can solve analytically for the optimal discretionary policy. This policy depends
only on the current shock θ, and is given by

(
πMP(θ)�xMP(θ)

) =
(

κ2/b

1 + κ2/b
θ�

κ/b

1 + κ2/b
θ

)
�

The welfare delivered by this policy is given by

W MP = 1
1 −β

E

[
−1

2
1

1 + κ2/b
θ2

]
= − 1

2(1 −β)
(
1 + κ2/b

)E[
θ2]�
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