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A general solution method for moral hazard problems
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Principal–agent models are pervasive in theoretical and applied economics, but
their analysis has largely been limited to the “first-order approach” (FOA), where
incentive compatibility is replaced by a first-order condition. This paper presents
a new approach to solving a wide class of principal–agent problems that satisfy the
monotone likelihood ratio property but may fail to meet the requirements of the
FOA. Our approach solves the problem via tackling a max-min-max formulation
over agent actions, alternate best responses by the agent, and contracts.
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1. Introduction

Moral hazard principal–agent problems are well studied, but unresolved technical dif-
ficulties persist. An essential difficulty is finding a tractable method to deal with the
incentive compatibility (IC) constraints that capture the strategic behavior of the agent.
Incentive compatibility is challenging for at least two reasons. First, when the agent’s ac-
tion space is continuous, there are, in principle, infinitely many IC constraints. Second,
these constraints turn the principal’s decision into an optimization problem over a po-
tentially nonconvex set. Much attention has been given to finding structure in special
cases that overcome these issues. The first-order approach (FOA), where the IC con-
straints are replaced by the first-order condition of the agent’s problem (Rogerson 1985,
Jewitt 1988), applies when the agent’s objective function is concave in the agent’s ac-
tion. Previous studies have proposed various sufficient conditions for the FOA to
be valid (see, e.g., Rogerson 1985, Jewitt 1988, Sinclair-Desgagné 1994, Conlon 2009,
Kirkegaard 2017b, Jung and Kim 2015). Nonetheless, there remain natural settings where
the FOA is invalid (see, for instance, Example 5 below).

When the FOA is invalid, more elaborate methods have been proposed.1
 Grossman

and Hart (1983) explore settings where there are finitely many output scenarios and re-
duce incentive compatibility to a finite number of constraints. However, their method
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does not apply when the agent’s output takes on infinitely many values. An alternate
approach is due to Mirrlees (1999) (which originally appeared in 1975) and is refined in
Mirrlees (1986) and Araujo and Moreira (2001). This method overcomes the limitations
of the FOA by reintroducing a subset of IC constraints, in addition to the first-order con-
dition, to eliminate alternate best responses. These reintroduced constraints—called
no-jump constraints—isolate attention to contract–action pairs that are incentive com-
patible. The main difficulty in Mirrlees’s approach is in producing the required no-jump
constraints. There is a potential to reintroduce many—if not infinitely many—no-jump
constraints. Moreover, a general method for generating these constraints is not known
and brute force enumeration is often difficult. Araujo and Moreira (2001) use second-
order information to refine the search, but the essential difficulties remain.

The procedure described in this paper systematically builds on Mirrlees’s approach.
The problem of determining which no-jump constraints are needed is recast as a mini-
mization problem that identifies the hardest-to-satisfy no-jump constraint over the set
of alternate best responses. This makes the original problem equivalent to an optimiza-
tion problem that involves three sequential optimal decisions: maximizing over the con-
tract, maximizing over the agent’s action, and minimizing over alternate best responses
to that chosen action. We then propose a tractable relaxation to this problem by chang-
ing the order of optimization to max-min-max, where the former maximization is over
agent actions and the latter maximization is over contracts. The analytical benefits of
this new order are clear. The map that describes which optimal contracts support a given
action against deviation to a specific alternate best response has desirable topological
properties, which are explored in Section 3. We call this max-min-max relaxation the
sandwich relaxation since the inner minimization is “sandwiched” between two outer
maximizations.

The main technical work of the paper is to uncover when the sandwich relaxation is
tight. This involves careful consideration of what utility can be guaranteed to the agent
by an optimal contract. In particular, if the individual rationality constraint is not bind-
ing, a family of sandwich relaxations indexed by lower bounds on agent utility that are
larger than the reservation utility must be examined so as to find a relaxation that is
tight. Constructing the appropriate bound and guaranteeing that the resulting relax-
ation is tight comprise a main focus of our development. Our development assumes
monotonicity conditions on the output distribution; namely, the monotone likelihood
ratio property (MLRP) that is defined carefully in the main body of the text.

It should be noted that the MLRP assumption is common in the usual discus-
sion of the FOA. However, it is also well known that the MLRP is insufficient to guar-
antee the validity of the FOA (Grossman and Hart 1983, Rogerson 1985, Jewitt 1988,
Conlon 2009). We illustrate scenarios where the sandwich approach is valid (that is,
the sandwich relaxation is tight) but the FOA is invalid. This is carefully discussed in
Section 5 where it is established that the sandwich approach ensures a stationarity con-
dition for a worst-case alternate best response that is stronger than the stationarity con-
dition in the FOA. This is due to the inner minimization over alternate best responses
in the sandwich approach that is absent from the FOA. However, when the FOA is valid,
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the sandwich approach is also valid and both approaches result in the same optimal
contract.

Finally, we comment here on some similarities with a related paper written by the
authors. In Ke and Ryan (2018), we consider a similar problem setting with similar as-
sumptions. The main focus of that paper is to establish an important structural result,
namely to recover a monotonicity result for optimal contracts under MLRP that holds
even when the FOA is invalid. To that end, that paper takes the approach of Grossman
and Hart (1983) of taking the agent’s action as given and finds structure on those optimal
contracts that implements the given action. Consequently, Ke and Ryan (2018) do not
provide a general solution procedure for moral hazard problems, and instead focus on
establishing structural properties of optimal contracts without explicitly constructing
such policies. By contrast, the current paper is focused on the full problem that allows
the agent’s action to respond optimally to an offered contract. Of course, this adds signif-
icant complication to the analysis, hence the need for another paper. Indeed, consider
the classical example of Mirrlees (1999) that initiated discussion of the failure of the FOA.
If a tight reservation utility and best response are known, a first-order condition is easily
shown to suffice. The failure of the FOA is precisely its inability to identify a target action
of the follower. See also our Example 1 and Proposition 5 below for a related discussion.

A more subtle technical challenge here concerns questions of existence. The inner
minimization in the sandwich problem need not be attained, an issue that is precluded
from the analysis of Ke and Ryan (2018). There, a target best response a∗ is specified and
an assumption is made so that an alternate and distinct best response â∗ exists. This
assumption essentially rules out the validity of the FOA. In other words, the analysis of
Ke and Ryan (2018) does not apply to many problems where the FOA is known to be
valid. This is not a concern in that paper, since the goal there is to devise the structure
of optimal contracts, particularly monotonicity properties, which are already known in
the setting where the FOA is valid (Rogerson 1985). In contrast, the goal of this paper is
to develop a general procedure for solving moral hazard problems that satisfy the MLRP,
and thus should incorporate cases where the FOA additionally holds. Section 5 provides
more detail on how this existence issue is connected to the FOA.

Although there are similarities in the development of both papers (the current paper
and Ke and Ryan 2018), they can largely be read independently. Ke and Ryan (2018)
does not reference the current paper, and there are only several references to Ke and
Ryan (2018) here, all of which appear in the Technical Appendix.2

This paper is organized as follows. Section 2 contains the model and reviews exist-
ing approaches to solve the principal–agent problem. Section 3 describes the sandwich
relaxation and gives sufficient conditions for the relaxation to be tight, given an appro-
priately chosen lower bound on agent utility. Section 4 describes the methodology to
construct such lower bounds. Section 5 discusses existence and its connection the FOA.
Section 6 provides three examples that illustrate the mechanics of our procedure. We
consider a simplified moral hazard example throughout the paper to illuminate the the-
ory. Proofs of all technical results are contained in the Appendix.

2We thank an anonymous referee for raising and shedding light on the question of existence during the
review process of the paper. We also thank another anonymous referee for drawing attention to the simi-
larities and distinctions between the current paper and Ke and Ryan (2018).
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2. Model and existing approaches

2.1 Principal–agent model

We study the classic moral hazard principal–agent problem with a single task and single-
dimensional output. An agent chooses an action a ∈ A that is unobservable to a princi-
pal. This action influences the random outcome X ∈ X through the probability density
function f (x�a), where x is an outcome realization. The principal chooses a wage con-
tract w : X → [w�∞), where w is an exogenously given minimum wage. The value of
output to the principal obeys the function π : X → R.

Given an outcome realization x ∈ X , the agent and principal derive the following
utilities. The agent’s utility under action a is separable in wage w(x) and action cost
c(a). In particular, he derives utility u(w(x))− c(a), where u : [w�∞)→ R and c :A→ R.
The principal’s utility for outcome x is a function of the net value π(x) − w(x) and is
denoted v(π(x) − w(x)), where v : R → R. The agent’s expected utility is U(w�a) =∫
u(w(x))f (x�a)dx − c(a) and the principal’s expected utility is V (w�a) = ∫ v(π(x) −

w(x))f (x�a)dx. The agent has an outside option worth utility U .
The principal faces the optimization problem3

max
w≥w�a∈A

V (w�a) (P)

subject to the conditions

U(w�a)≥U� (IR)

U(w�a)−U(w� â)≥ 0 for all â ∈ A� (IC)

where (IR) is the individual rationality constraint that guarantees participation of the
agent by furnishing at least the reservation utility U and (IC) are the incentive compati-
bility constraints that ensure the agent responds optimally.

Assumption 1. The following statements hold:

A1.1. The outcome set X is an interval in R and the action set is the bounded interval
A≡ [a� ā].

A1.2. The outcomeX is a continuous random variable, and f (x�a) is continuous in x
and twice continuously differentiable in a ∈ A.

A1.3. For a�a′ ∈ A with a 	= a′, there exists a positive measure subset of X such that
f (x�a) 	= f (x�a′).

A1.4. The support of f (·� a) does not depend on a and, hence (without loss of general-
ity), we assume the support is X for all a.

A1.5. Wage w is a measurable function on X .

3The notation w≥w is shorthand for expressing w(x)≥w for almost all x ∈ X .
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A1.6. The value function π is increasing, continuous, and almost everywhere differ-
entiable.

A1.7. The expected value
∫
π(x)f (x�a)dx of output is bounded for all a.

A1.8. The agent’s cost function c is increasing and continuously differentiable in a.

A1.9. The agent’s utility function u is continuously differentiable, increasing, and
strictly concave.

A1.10. The principal’s utility function v is continuously differentiable, increasing, and
concave.

The above assumptions are standard, so we do not spend time to justify them here.

Assumption 2. We also make the following additional technical assumptions:

A2.1. Either limy→∞ u(y)= ∞ or limy→−∞ v(y)= −∞.

A2.2. The minimum wage w, reservation utility U , and least costly action a are such
that u(w)− c(a) < U .

The two conditions in this assumption are required in the proof of Lemma 3 that
uses a Lagrangian duality method and ensures the existence of optimal dual solutions.
Finally, to focus the scope of our paper, we make one additional assumption.

Assumption 3. There exists an optimal solution to (P). Moreover, we assume that the
first-best contract is not optimal.

Existence is a challenging issue in its own right and is not the focus of this paper.
We are interested in how to construct an optimal solution when one is known to ex-
ist. Several existing papers pay careful attention to the issue of existence. For instance,
Kadan et al. (2017) provide weak sufficient conditions that guarantee the existence of an
optimal solution. Moreover, we may assume that the first-best contract is not optimal
without loss of interest, since finding a first-best contract is a well understood problem
that not worthy of additional consideration.

We use the following terminology and notation. Let aBR(w) denote the set of actions
that satisfy the (IC) constraint for a given contractw. That is, aBR(w)≡ arg maxa′ U(w�a′).
Let F denote the set of feasible solutions to (P). That is,

F ≡ {(w�a) :w≥w�a ∈ aBR(w)�U(w�a)≥U}�
Given an action a, contract w is said to implement a if (w�a) ∈ F . An action a is imple-
mentable if there exists aw that implements a. Let val(∗) denote the optimal value of the
optimization problem (∗). In particular, val(P) denotes the optimal value of the original
moral hazard problem (P). The single constraint in (IC) of the form

U(w�a)−U(w� â)≥ 0 (NJ(a� â))

is called the no-jump constraint at â given a.
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2.2 Existing approaches

We discuss the approaches to solve (P) that appear in the literature and their limitations.
The standard-bearer is the FOA, which replaces (IC) with first-order conditions. Every
implementable action a is an optimizer of the agent’s problem and so satisfies necessary
optimality conditions for that problem. In particular, a satisfies the first-order necessary
condition

Ua(w�a)= 0 if a ∈ (a� ā)� Ua(w�a)≤ 0 if a= a� and

Ua(w�a)≥ 0 if a= ā�
(FOC(a))

where the subscripts denote partial derivatives. Replacing (IC) with (FOC(a)), problem
(P) becomes

max
w≥w�a∈A

{
V (w�a) :U(w�a)≥U and (FOC(a))

}
� (FOA)

When (FOA) and (P) have the same value (that is, val(P) = val(FOA)) and the solution
(w�a) to (FOA) has a implemented by w, we say the FOA is valid. Otherwise, the FOA is
invalid.

Following Mirrlees (1999), we consider a special (very simplified) case of the moral
hazard model that facilitates a geometric understanding of the technical issues involved.
We return to this example at several points throughout the paper to ground our intuition.
Section 6 has three additional examples of more general moral hazard problems that
provide additional insights.

Example 1. Suppose the principal chooses contract z ∈ R (following Mirrlees 1999, we
use z to denote a single-dimensional contract instead of w) and the agent chooses an
action a ∈ [−2�2] with reservation utility U = −2. There is no lower bound on z. The
principal obtains utility v(z�a) = za − 2a2 and the agent receives benefit −za, minus
action cost c(a)= (a2 − 1)2, with total agent utility

u(z�a)= −za− (a2 − 1
)2
�

The principal’s problem is

max
(z�a)

{
v(z�a) : u(z�a)≥ −2 and a ∈ arg max

a′ u
(
z�a′)}� (1)

If we use the FOA, the solutions are (z�a) = (3/2�1/2) and (−3/2�−1/2), which are not
incentive compatible. Thus, the FOA is invalid.

Since this problem is so simple, we can solve it by inspection. We show that (z�a)=
{(0�1)� (0�−1)} is the set of optimal solutions to (1). Clearly, a = ±1 is a best response
to z = 0, providing a utility of −2 for the principal. To show that z 	= 0 is not an optimal
choice for the principal, observe that for a fixed z, the agent’s first-order condition yields

a
(
a2 − 1

)= −z/4� (2)
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where

sgn
(
a
(
a2 − 1

))=
⎧⎪⎪⎨
⎪⎪⎩

+ if a > 1 or a ∈ (−1�0)�

− if a <−1 or a ∈ (0�1)�

0 otherwise�

Thus, from (2), if z > 0, then the optimal choice of a is either a < −1 or a ∈ (0�1) (the
corner solution a = 2 is not optimal, since ∂

∂au(z�2) < 0). Also, observe that a ∈ (0�1)
cannot be optimal, since choosing action −a instead only improves the agent’s utility.
Hence, an optimal response to z > 0 must satisfy a < −1. However, this implies that
v(z�a) < −2, and so z > 0 is not an optimal choice of the principal (setting z = 0 gives
the principal a utility of −2). Nearly identical reasoning shows that z < 0 is also not
an optimal choice for the principal. This verifies that (z∗� a∗) = {(0�1)� (0�−1)} are the
optimal solutions to (1). ♦

To handle situations where the FOA is invalid, Mirrlees (1999) recognized that diffi-
culties arise when pairs (w�a) satisfy (FOC(a)) but w fails to implement a. To combat
this, Mirrlees reintroduced no-jump constraints from (IC). The resulting problem (cf.
Mirrlees 1986) is

max
(w�a)

V (w�a) (3a)

subject to U(w�a)≥U (3b)

Ua(w�a)= 0 (3c)

U(w�a)−U(w� â)≥ 0 for all â such thatUa(w� â)= 0 (3d)

(where the complication of corner solutions is ignored for simplicity).4 If a candidate
contract violates a no-jump constraint in (3d), then an optimizing agent can improve
his expected utility by “jumping” to an alternate best response. The best choice of al-
ternate action â∗ given w is included among the no-jump constraints, since such an â∗
satisfies the first-order condition Ua(w� â∗)= 0. Hence, if a candidate contract satisfies
all no-jump constraints, it must implement a∗. The practical challenge in applying Mir-
rlees’s approach is generating all of the necessary no-jump constraints. In principle, it
requires knowing all of the stationary points to the agent’s problem for every feasible
contract. This enumeration of policies may well be intractable, and no general proce-
dure to systematically produce them is known. However, if additional information can
guide the choice of no-jump constraints (such as having a priori knowledge of the op-
timal contract and its best responses), then Mirrlees’s approach can indeed recover the
optimal contract. The following example demonstrates this approach and is in the spirit
of how Mirrlees illustrated his method.

4If corner solutions are considered, (3c) is replaced by (FOC(a)) and instead of (3d), we have one no-jump
constraint for every â such that (FOC(â)) holds.
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Figure 1. Plot for Example 2. The filled curve is the locus of points that satisfy the first-order
conditions. The two heavy curve segments form the best response curve. The region below the
dotted line for a ≥ −1 and above the dotted line for a ≤ −1 captures those points that satisfy
u(z�a)− u(z�−1) ≥ 0. The region above the dashed line for a ≤ 1 and below the dashed line for
a ≥ 1 captures those points that satisfy u(z�a) − u(z�1) ≥ 0. The light curve is the indifference
curve of the principal.

Example 2 (Example 1 (continued)). If we know a priori the two best responses to an
optimal contract, â = 1 and â = −1 (as determined in Example 1), we may solve (1) in
the manner

max
(z�a)

v(z�a)

subject to the first-order condition

ua(z�a)= −4a
(
a2 − 1

)− z = 0

and the no-jump constraints

u(z�a)− u(z� â)≥ 0

for â ∈ {1�−1}. According to (3), we should include many more no-jump constraints, but
in fact we show that these two are sufficient to determine the optimal solution. Figure 1
illustrates the constraint sets and optimal solutions.

We plot the first-order condition curve, the best response set, and the regions for the
two constraints:

u(z�a)− u(z�1) ≥ 0�

u(z�a)− u(z�−1) ≥ 0�
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are described in the caption of the figure. The region {(z�a) : u(z�a) − u(z� â) ≥ 0} lies
below the curve

z = −(â+ a)(â2 + a2 − 2
)

for a > â and above the curve for a < â. These constraints preclude the optimal solution
of the FOA: (z�a) = (3/2�1/2) and (−3/2�−1/2). The only contract–action pairs that
satisfy these conditions are (z∗� a∗) = {(0�1)� (0�−1)}, the optimal solutions to (1) (as
established in Example 1). ♦

In our approach, we show how, under additional monotonicity assumptions, rein-
troducing a single no-jump constraint is all that is required. Moreover, this single con-
straint can be found by solving an optimization problem in the alternate action â. The
next two sections describe and justify this procedure.

3. The sandwich relaxation

We first introduce a family of restrictions on (P) that vary the right-hand side of the (IR)
constraint (for reasons that become clear later). Consider the parametric problem

max
w≥w�a∈A

V (w�a)

subject to U(w�a)≥ b (P|b)

U(w�a)−U(w� â)≥ 0 for all â ∈A

with parameter b≥U . The original problem (P) is precisely (P|U). We restrict b≥U so
that val(P|b) ≤ val(P) and a feasible solution of (P|b) remains feasible to (P). We restate
(P|b) using an inner minimization over â. Observe that (P|b) is equivalent to

max
w≥w�a∈A

V (w�a)

subject to U(w�a)≥ b (4)

inf
â∈A
{
U(w�a)−U(w� â)}≥ 0�

To clarify the relationships between w, a, and â, we pull the minimization operator
out from the constraint (4) and behind the objective function. This requires handling
the possibility that a choice of w does not implement the chosen a, in which case (4) is
violated. We handle this issue as follows. Given b≥U , define the set

W(â� b)≡ {(w�a) :U(w�a)≥ b andU(w�a)−U(w� â)≥ 0
}

and the characteristic function

V I(w�a|â� b)≡
{
V (w�a) if (w�a) ∈ W(â� b)�

−∞ otherwise�
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This is constructed so that if V I(w�a|â� b) is maximized over (w�a) at a finite objective
value, then (w�a) ∈ W(â� b). Similarly, if maximizing infâ∈A V I(w�a|â� b) over (w�a) re-
sults in a finite objective value, then we know (w�a) lies in W(â� b) for all â ∈ A. This
implies that (w�a) is feasible to (P|b), and demonstrates the equivalence of (P|b) and the
problem

max
a∈A

max
w≥w inf

â∈A
V I(w�a|â� b)� (Max-Max-Min|b)

We explore what transpires when we swap the order of optimization in (Max-Max-
Min|b) so that â is chosen before w. That is, we consider

max
a∈A

inf
â∈A

max
w≥wV

I(w�a|â� b)�

which is equivalent to

max
a∈A

inf
â∈A

max
w≥w

{
V (w�a) : (w�a) ∈ W(â� b)

}
� (SAND|b)

since an optimal choice of a precludes a subsequent optimal choice of â that sets
W(â� b) = ∅, implying V I(w�a|â� b) = V (w�a) when w is optimally chosen. We call
(SAND|b) the sandwich problem given bound b, where “sandwich” refers to the fact that
the minimization over â is sandwiched between two maximizations.

Our method allows for the nonexistence of a minimizer to the inner minimization
over â. However, the next lemma shows that the outer maximization over a always pos-
sesses a maximizer. This follows by establishing the upper semicontinuity of the value
function over the inner two optimization problems.

Lemma 1. There exists a maximizer to the outer maximization problem in (SAND|b).

Even when the inner minimization over â does not exist, we call (a∗�w∗), where
V (w∗� a∗) = val(SAND|b)) is an optimal solution to (SAND|b). If the inner minimiza-
tion is attained at an action â∗, then we can say that (a∗� â∗�w∗) is an optimal solution
to (SAND|b) without confusion.

Lemma 2. For every b ≥ U , val(P|b) ≤ val(SAND|b). Moreover, if there exists an optimal
solution (w∗� a∗) to (P) such that U(w∗� a∗)≥ b, then val(P) ≤ val(SAND|b).

From Lemma 2, we are justified in calling (SAND|b) the sandwich relaxation of
(P|b). There are two related benefits to studying the sandwich relaxation. First, chang-
ing the order of optimization from Max-Max-Min to Max-Min-Max improves analytical
tractability. The map that describes which optimal contracts support a given action a
against deviation to a specific alternate best response â has desirable topological prop-
erties. These properties can be used to determine the “minimizing” alternative best re-
sponse without resorting to enumeration, as is required in the worst-case in Mirrlees’s
approach. By contrast, to solve the original problem (Max-Max-Min|b), one must work
with the best-response set aBR(w) as a constraint for the inner maximization overw. The
best-response set is notoriously ill-structured. More details are provided in Section 3.1.
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Second, if b satisfies a property called tightness-at-optimality (defined below) and
other sufficient conditions are met, the sandwich relaxation is equivalent to (P). More
details are provided in Section 3.2.

3.1 Analytical benefit of changing the order of optimization

By changing the order of optimization, we solve for an optimal contractw given a choice
between implementable action a and alternate best response â. The resulting problem
is

max
w≥w

{
V (w�a) :U(w�a)≥ b�U(w�a)−U(w� â)≥ 0

}
� (SAND|a� â� b)

We show that this problem has a unique solution, and provide necessary and sufficient
optimality conditions.

The approach is to use Lagrangian duality. The Lagrangian function of (SAND|a� â� b)
is

L(w�λ�δ|a� â� b)= V (w�a)+ λ[U(w�a)− b]+ δ[U(w�a)−U(w� â)]� (5)

where λ ≥ 0 and δ ≥ 0 are the multipliers for U(w�a) ≥ b and U(w�a) − U(w� â) ≥ 0,
respectively. The Lagrangian dual is

inf
λ�δ≥0

max
w≥wL(w�λ�δ|a� â� b)� (6)

Consider the inner maximization problem of (6) over w. By Assumption A1.4, we can
express the Lagrangian (5) as

L(w�λ�δ|a� â� b)=
∫
L
(
w(x)�λ�δ|x�a� â� b)f (x�a)dx�

where L(·� ·� ·|x�a� â� b) is a function from R
3 → R with

L(y�λ�δ|x�a� â� b)= v(π(x)− y)+ λ(u(y)− c(a)− b)
+ δ
[
u(y)

(
1 − f (x� â)

f (x�a)

)
− c(a)+ c(â)

]

= v(π(x)− y)+ [λ+ δ
(

1 − f (x� â)

f (x�a)

)]
u(y)

− λ(c(a)+ b)− δ(c(a)− c(â))�
where the ratio 1 − f (x� â)/f (x�a) results from factoring f (x�a) from the terms involv-
ing u. This is possible since f (·� a) has the same support for all a.

The inner maximization of L(w�λ�δ|a� â� b) over w in (6) can be done pointwise via

max
y≥w L(y�λ�δ|x�a� â� b) (7)

for each x and setting w(x) = y, where y is an optimal solution to (7). Two cases can
occur. If λ+ δ(1 − f (x� â)/f (x�a)) ≤ 0, then L(y�λ�δ|x�a� â� b) is a decreasing function
of y by Assumptions A1.9 and A1.10. Hence, the unique optimal solution to (7) is y =w.
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Alternatively, if λ + δ(1 − f (x� â)/f (x�a)) > 0, then L(y�λ�δ|x� â) is strictly con-
cave in y (again by Assumptions A1.9 and A1.10). If ∂

∂y L(w�λ�δ|x�a� â� b) ≤ 0, then
the corner solution y = w is optimal; otherwise there exists a unique y such that
∂
∂y L(y�λ�δ|x�a� â� b) = 0 holds. In both cases, (7) has a unique optimal solution w(x).
Hence, the optimal solution w : X → R to the inner maximization of (6) satisfies

w(x)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

solves
∂

∂y
L
(
w(x)�λ�δ|x�a� â� b)= 0

if λ+ δ
(

1 − f (x� â)

f (x�a)

)
> 0 and

∂

∂y
L(w�λ�δ|x�a� â� b) > 0�

=w otherwise�

Expressing the derivatives and dividing by u′(w(x)) (which is valid since u′ > 0 by As-
sumption A1.9) yields

w(x)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

solves
v′(π(x)−w(x))

u′(w(x)) = λ+ δ
(

1 − f (x� â)

f (x�a)

)

if
v′(π(x)−w)

u′(w)
< λ+ δ

(
1 − f (x� â)

f (x�a)

)
�

=w otherwise�

(8)

Since v′ and u′ are both positive, the condition v′(π(x)−w)/u′(w) < λ+ δ(1 − f (x� â)/
f (x�a)) implies λ+ δ(1 − f (x� â)/f (x�a)) > 0, handling both cases detailed above.

We just showed that, given (λ�δ�a� â� b), there is a unique choice w, denoted
wλ�δ(a� â� b), that satisfies (8). Such contracts are significant for our analysis and warrant
a formal definition.

Definition 1. Any contract that satisfies (8) for some choice of (λ�δ�a� â� b) is called a
generalized Mirrlees–Holmstrom (GMH) contract. These contracts are generalized ver-
sions of Mirrlees–Holmstrom contracts known for the special case of a binary action.

Observe that GMH contracts are continuous in x. There are five parameters
(λ�δ�a� â� b) in a GMH contract. However, Lemma 3 below shows that each GMH con-
tract is a function of only three parameters: a, â, and b.

Lemma 3. Suppose Assumptions 1–3 hold. For every (a� â� b) with â 	= a, there exist
unique Lagrangian multipliers λ∗ and δ∗ and a unique contract w∗ such that the fol-
lowing statements hold:

(i) The variable w∗ satisfies (8) for λ∗ and δ∗ (in particular, w∗ is a GMH contract).

(ii) Strong duality between (SAND|a� â� b) and (6) holds and, in particular, the com-
plementary slackness conditions

λ∗ ≥ 0� U
(
w∗� a

)− b≥ 0� and λ∗[U(w∗� a
)− b]= 0� (ii-a)

δ∗ ≥ 0� U
(
w∗� a

)−U(w∗� â
)≥ 0� and

(ii-b)
δ∗[U(w∗� a

)−U(w∗� â
)]= 0

are satisfied.
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Moreover, the following additional properties hold:

(iii) The equality (λ∗� δ∗)= (λ(a� â� b)�δ(a� â� b)) is an upper semicontinuous function
of (a� â� b), and is continuous and differentiable at any (a� â� b)where a 	= â.

(iv) The equality w∗ =wλ(a�â�b)�δ(a�â�b)(a� â� b) is an upper semicontinuous function of
(a� â� b), and is continuous and differentiable at any (a� â� b)where a 	= â.

Lemma 3(iv) leaves open the possibility that there is a jump discontinuity when
a= â. As an illustration, consider the case where the principal is risk-neutral and the
FOA is valid. When â > a, the optimal solution to (SAND|a� â� b) is the first-best contract.
However, as â− a→ 0−, we have

lim
â−a→0− V

(
wλ(a�â�b)�δ(a�â�b)(a� â� b)�a

) = max
w≥w

{
V (w�a) :U(w�a)≥ b�Ua(w�a)= 0

}
<max
w≥w

{
V (w�a) :U(w�a)≥ b}�

Therefore, the value function is not continuous at that point.5

Lemma 3 provides insight into the inner inf of (SAND|b). Given an a ∈A, suppose the
infimizing sequence ân to the inner inf converges to some a′. If a′ 	= a, then, in fact, the
infimum is attained by the continuity of w∗ from Lemma 3(iv). An issue arises if a′ = a

and the infimum is not attained, since this a point of discontinuity of w∗. The following
result analyzes this scenario. We also refer the reader to Section 5 below, which provides
additional discussion of this case.

Lemma 4. If the minimization of infâmaxw≥w{V (w�a) :U(w�a)≥ b�U(w�a)−U(w� â)≥
0} is not attained, then

inf
â

max
w≥w

{
V (w�a) :U(w�a)≥ b�U(w�a)−U(w� â)≥ 0

}
= max

w

{
V (w�a) :U(w�a)≥ b� (FOC(a))

}
�

(9)

where (FOC(a)) is as defined in Section 2.2.

This result shows that when the infimum is not attained for a given action a, it suf-
fices to take a “first-order approach” locally at a.

3.2 Tightness of the sandwich relaxation

The previous subsection provides a toolbox for analyzing the sandwich relaxation
(SAND|b). However, there remains the question of whether that relaxation is worth solv-
ing at all. In particular, we may ask whether there exists a b that makes (SAND|b) a tight
relaxation; i.e., whether an optimal solution (a∗�w∗) to (SAND|b) yields an optimal so-
lution (w∗� a∗) to (P). The following example illustrates a situation where such a choice
is possible.

5We thank an anonymous referee for alerting us to this observation.
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Example 3 (Example 1 (continued)).
We solve the sandwich relaxation (SAND|0) and show that (SAND|0) is a tight relax-

ation.6 That is, we solve

max
a∈[−2�2]

inf
â∈[−2�2]

max
z

{
v(z�a) : u(z�a)≥ 0 and u(z�a)− u(z� â)≥ 0

}
� (10)

where

v(z�a)= za− 2a2 and u(z�a)= −za− (a2 − 1
)2
�

We break up the outermost optimization (over a) across two subregions of [−2�0] and
[0�2]. The optimal value of (10) can be found by taking the larger of the two values across
the two subregions. We consider a ∈ [0�2] first. In this case v(z�a) is increasing in z and
thus â is chosen to minimize z. We show how z relates to the choice of a and â. The
u(z�a)≥ 0 constraint cannot be satisfied when a= 0 and so it is equivalent to

z ≤ −
(
a2 − 1

)2
a

� (11)

since dividing by a 	= 0 is legitimate. The no-jump constraint u(z�a) − u(z� â) ≥ 0 is
equivalent to

z

⎧⎪⎪⎨
⎪⎪⎩

≥ −(â+ a)(â2 + a2 − 2
)

for â > a�

≤ −(â+ a)(â2 + a2 − 2
)

for â < a�

∈ (−∞�∞) for â= a�
(12)

Clearly, â= awill never be chosen in the inner minimization over â in (10) since it cannot
prevent sending z→ ∞, when the goal is to minimize z. When â > a, observe that

inf
â>a

−(â+ a)(â2 + a2 − 2
)

=
⎧⎨
⎩

4a− 4a3 for 1/
√

3 ≤ a≤ 2�
4
27
(
9a− 5a3)+ 4

27

√
2
√(

3 − a2
)3

for 0 ≤ a≤ 1/
√

3�

(13)

When a ∈ [0�1), one can verify that

inf
â>a

−(â+ a)(â2 + a2 − 2
)
> 0>−(a2 − 1

)2
/a

using (13). By (12), this implies z > (a2 − 1)2/a when â > a, violating (11). Hence, when
a ∈ [0�1), the inner minimization over â in (10) will choose â > a and thus make a choice
of z infeasible. This drives the value of the inner minimization over â to −∞. This, in
turn, implies that a ∈ [0�1) will never be chosen in the outer maximization, and so we
may restrict attention to a ∈ [1�2].

6In fact, one can show that setting b=U = −2 does not give rise to a tight relaxation. For details, see the
discussion following (30) below.
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When a ∈ [1�2], we return to (12) and consider the two cases (i) â > a and (ii) â < a.
In case (i), note that

inf
â>a

−(â+ a)(â2 + a2 − 2
)= 4a− 4a3 ≤ −

(
a2 − 1

)2
a

�

when a ∈ [1�2] and so from (11)–(13) we have

4a− 4a3 ≤ z ≤ −
(
a2 − 1

)2
a

�

However, in case (ii), we have from (11) and (12) that

z ≤ min
{(
a2 − 1

)2
a

� inf
â<a

−(â+ a)(â2 + a2 − 2
)}
�

Note that

inf
â<a

−(â+ a)(â2 + a2 − 2
)= 4a− 4a3 for 1 ≤ a≤ 2 (14)

and 4a− 4a3 < −(a2 − 1)2/a when a ∈ [1�2]. Observe that the infimum is not attained
since the only real solution to −(â+ a)(â2 + a2 − 2) = 4a− 4a3 when a ∈ [1�2] is â = a.
Lemma 4 applies and yields

z∗(a)= 4a− 4a3 (15)

via (14). Since the principal’s utility v(z∗(a)�a) is decreasing in a ∈ [1�2], we obtain the
solution a∗ = 1 and the optimal choice of z∗ is thus z∗(1) = 0. One can see this graphi-
cally in Figure 2.7

We return to the case where a ∈ [−2�0]. Nearly identical reasoning (with care to ad-
just negative signs) shows a∗ = −1 and, again, the optimal choice of z is z∗(1)= 0. Hence,
the overall problem (10) gives rise to two optimal choices of (z∗� a∗), namely (0�1) and
(0�−1). However, this is precisely the optimal solution to the original problem (1), as
shown by inspection in Example 1. ♦

Note that by choosing b correctly in the above example we were able to arrive at the
first-order condition curve Ua(z�a) = 0 used in Mirrlees’s approach. This underscores
that we do not need to explicitly include the FOC in our definition of the sandwich re-
laxation. This issue is taken up more carefully in Section 5. Comparing Figure 1 and
Figure 2, we see that the (IR) is not needed to specify the optimal contract in Figure 1,
but is needed (with an adjusted right-hand side) when using the sandwich relaxation in
Figure 2. However, the first-order condition curve does not appear in Figure 2 to char-
acterize the optimal contract.

7This example has the special structure that the FOA applies locally. That is, given an a, the optimal
choice of z is uniquely determined by the first-order condition. The classic example in Mirrlees (1999) also
has this property.
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Figure 2. Plot for Example 3. The non-dashed curve and filled region are those (z�a) that satisfy
the constraintU(z�a)≥ 0. The dashed curves are those (z�a) that satisfy the inner maximization
over z given by (15). Observe that the optimal solution in the region a ∈ [0�2] is (z�a) = (0�1)
since the principal’s utility is increasing in z.

Of course, the question remains as to whether there always exists a b such that
(SAND|b) is a tight relation of (P), and if so, how to determine it. We state the following
definition.

Definition 2. We say b ≥ U is tight at optimality (or simply tight) if there exists an
optimal solution (w∗� a∗) to (P) such that b=U(w∗� a∗).

At least one such b exists by Assumption 3. The main result of this section is to show
that for such a b, the sandwich relaxation (SAND|b) is tight under certain conditions.
The key assumption is that f satisfies the monotone likelihood ratio property (MLRP),
where, for any a, ∂ log f (·�a)

∂a is nondecreasing. This property is well known in the literature
(see Hölmstrom 1979, Rogerson 1985, and others).

Assumption 4. The output distribution f satisfies the MLRP condition.

The following theorem is the key technical result of the paper.
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Theorem 1. Suppose Assumptions 1–4 hold. If b is tight at optimality, then (SAND|b) is
a tight relaxation; that is, val(SAND|b) = val(P) and if (a#� â#�w#) is an optimal solution
to (SAND|b), then (w#� a#) is an optimal solution to (P). If the infimum in (SAND|b) is
not attained, and (a#�w#) is an optimal solution to the inner and outer maximization in
(SAND|b), then (w#� a#) is an optimal solution to (P).

The proof of Theorem 1 is involved and relies on several nontrivial, but largely tech-
nical, intermediate results. Full details are found in the Appendix, along with further
discussion. We note that Lemma 4 is essential for the case where the infimum is not
attained.

For the sake of developing intuition regarding the proof of Theorem 1, we consider
here the special case where X is a singleton and the inner infimum is attained. Of course,
the single-outcome case is not a difficult problem to solve and provides little economic
intuition, but it does highlight some important features of the more general argument
that we discuss below.

When X is a singleton, contracts w are characterized by a single number z = w(x0)

(following the notation of Example 2 and Mirrlees 1999), and so U(w�a) = u(z) − c(a)

and V (w�a) = v(π(x0) − z). For consistency, we denote the minimum wage by z (as
opposed to w).

Proof of Theorem 1 for a single-dimensional contract. Since b is tight at op-
timality, there exists an optimal solution (z∗� a∗) of (P) such that b = U(z∗� a∗). Let
(a#� â#� z#) be an optimal solution to (SAND|b).

There are two cases to consider.

Case 1: U(z#� a#) = b. By Lemma 2, we know that val(P) ≤ val(SAND|b). It suffices to
argue that val(SAND|b) ≤ val(P). By the optimality of (a#� â#� z#) in (SAND|b), we know
that

V
(
z#� a#)= inf

â∈A
max
z≥z
{
V
(
z�a#) :U(z�a#)≥ b�U(z�a#)−U(z� â)≥ 0

}
� (16)

Let â′ be a best response to z#. Then from the minimization over â in (16), we have

V
(
z#� a#)≤ max

z≥z
{
V
(
z�a#) :U(z�a#)≥ b�U(z�a#)−U(z� â′)≥ 0

}
� (17)

Suppose (17) holds with equality. Since V is decreasing in z (under Assumption A1.10)
and the feasible region is single-dimensional, the optimal solution to the right-hand
side problem is unique and, therefore, z# must be that unique optimal solution under
the equality assumption. This implies z# is feasible to the right-hand side problem and
so U(z#� a#) ≥ U(z#� â′). Since â′ is a best response to z#, a# is also. This implies that
(z#� a#) is a feasible solution to (P). Thus, val(SAND|b) ≤ val(P), establishing the result.

Hence, it remains to argue that (17) is satisfied with equality. Suppose otherwise that

V
(
z#� a#)<max

z≥z
{
V
(
z�a#) :U(z�a#)≥ b�U(z�a#)−U(z� â′)≥ 0

}
�
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There must exist a z′ in the argmax of the right-hand side such that V (z#� a#) <

V (z′� a#). Since V is strictly decreasing in z, this implies z# > z′. However, since U is
increasing in z, this further implies that U(z′� a#) < U(z#� a#) = b (where the equality
holds under the assumption of Case 1). That is, U(z′� a#) < b, contradicting the feasibil-
ity of z′ to (SAND|b).

Case 2: U(z#� a#) > b. This case requires the following intermediate lemma, whose
proof is provided in the Appendix.

Lemma 5. Let (a#� z#) be an optimal solution to the single-dimensional version of
(SAND|b) with U(z#� a#) > b (in particular, the infimum in (SAND|b) need not be at-
tained). Then there exists an ε > 0 such that the perturbed problem (SAND|b+ ε) also has
an optimal solution (a#

ε � z
#
ε )with U(z#

ε � a
#
ε )= b+ ε and the same optimal value; that is,

V (z#
ε � a

#
ε )= V (z#� a#)= val(SAND|b).

The proof of this lemma relies on strong duality and the fact that if a constraint is
slack, the dual multiplier on that constraint is 0 by complementary slackness. A small
perturbation of the right-hand side of a slack constraint does not impact the optimal
value. This argument is standard (see, for instance, Bertsekas 1999) in the absence of the
inner minimization problem infâ in (SAND|b). With the inner minimization, the proof
becomes nontrivial.

Returning to our proof of Case 2, by Lemma 5 there exists an ε > 0 and an opti-
mal solution (a#

ε � z
#
ε ) to (SAND|b+ ε), where U(z#

ε � a
#
ε )= b+ ε and val(SAND|b+ ε)=

val(SAND|b). Apply the logic of Case 1 to the problem (SAND|b+ ε) and conclude that
val(SAND|b + ε) = val(P). Hence, since val(SAND|b + ε) = val(SAND|b), (SAND|b) is a
tight relaxation of (P). �

We provide here some intuition behind Theorem 1 in the single-outcome setting.
For a given target action a∗, we can think of the contracting problem as a sequential
game where the principal chooses z and the agent chooses â. The original (IC) con-
straint is equivalent to the situation that the principal chooses z first, followed by the
agent’s choice of â. So the optimal choice of z should take all possible â into consider-
ation. The agent has a second-mover advantage. Now consider a change in the order
of decisions and let the agent choose â first, with the principal choosing z in response.
In this case, the principal has a second-mover advantage since the principal need not
consider all possible â. This provides intuition behind the bound in Lemma 2. However,
if the agent utility bound b is tight given a∗, the principal cannot gain an advantage by
moving second. No choice of contract by the principal can drive the agent’s utility down
any further. Since the principal and agent have a direct conflict of interest over the direc-
tion of z, this means the principal cannot improve her utility. In other words, the order
of decisions does not matter when b is tight and so the sandwich problem provides a
tight relaxation.

This argument relies on the fact that w is unidimensional. In the multidimensional
case, we parameterize the payment function through a unidimensional z using a varia-
tional argument. As long as a conflict of interest exists, we obtain a similar intuition and
result. An analogous result to Lemma 5 is also leveraged in the argument.
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We remark that Assumption 4 is not used in the proof of Theorem 1 for the singleton
case. However, Assumption 4 is essential for continuous outcome sets. The MLRP is
essential for showing that optimal solutions to sandwich relaxations are, in fact, GMH
contracts as defined in Section 3.1. In particular, monotonicity of the output function
greatly simplifies the first-order conditions of (P) to reduce them to the necessary and
sufficient conditions of (8).

Of course, there remains the question of how to find a tight b. The simplest case is
when the reservation utility U itself is tight. The following proposition gives a sufficient
condition for this to hold.

Proposition 1. Suppose Assumptions 1–3 hold. Then the reservation utilityU is tight at
optimality if there exist an optimal solutionw∗ to (P) and an δ > 0 such thatw∗(x) > w+δ
for almost all x ∈X .

A main task of the next section is to provide a systematic approach to finding a b that
is tight at optimality even when the conditions of Proposition 1 fail to hold. We should
remark that it is not uncommon in the FOA literature to focus on the case where the
limited liability constraint is not binding (see Rogerson 1985 and Jewitt et al. 2008). If
that convention is taken here, Proposition 1 is useful in determining optimal contracts.

4. The sandwich procedure

The remaining steps to systematically solve (P) are (i) finding a b that is tight at opti-
mality and (ii) determining a systematic way to solve (SAND|b). We approach both tasks
concurrently using what we call the sandwich procedure. The basic logic of the proce-
dure is to use backward induction, leveraging Lemma 3 and the GMH structure (see Def-
inition 1) of optimal solutions to (SAND|a� â� b). The structure of these optimal solutions
is used to compute a tight b by solving a carefully designed optimization problem.

The Sandwich Procedure

Step 1: Characterize contract. Characterize an optimal solution to the inner maxi-
mization in (SAND|b),

max
w≥w

{
V (w�a) :U(w�a)≥ b�U(w�a)−U(w� â)≥ 0

}
� (SAND|a� â� b)

as a function of a ∈ A, â ∈ A and b ≥ U , where â 	= a. Denote the resulting
optimal contract by w(a� â� b).

Step 2: Characterize actions. Determine optimal solutions to the outer maximization
and minimization,

max
a∈A

inf
â∈A

V
(
w(a� â� b)�a

)
� (18)

as functions of b. If a minimizer â(a�b) exists, find a(b) ∈ argmaxa∈A V (w(a�
â(a�b)�b)�a) and set w(b)=w(a(b)� â(a�b)�b). If a minimizer does not exist,
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solve

max
a∈A

max
w≥w

{
V (w�a) :U(w�a)≥ b� (FOC(a))

}
�

which uses (9) from Lemma 4. Call the resulting solution (a(b)�w(b)).

Step 3: Compute a tight bound. Solve the one-dimensional optimization problem:

b∗ ≡ min
{

argmin
b≥U

{
V
(
w(b)�a(b)

)− max
a∈aBR(w(b))

V
(
w(b)�a

)}}
� (19)

Let a∗ ≡ a(b∗), â∗ ≡ â(a∗� b∗) (when it exists), and w∗ ≡w(b∗).

Proposition 2. For a given b, let a(b), â(a(b)�b) (if it exists), and w(b) be as defined
at the end of Step 2 of the sandwich procedure. Then (a(b)� â(a(b)�b)�w(b)) is an op-
timal solution to the sandwich relaxation (SAND|b). If â(a(b)�b) does not exist, then
(a(b)�w(b)) (as defined in Step 2) solves (SAND|b).

The proof is essentially by definition and thus is omitted. However, to guarantee the
tractability of each step, we must make Assumptions 1–4. These same conditions ensure
that (SAND|b) is, in fact, a tight relaxation.

Theorem 2. Suppose Assumptions 1–4 hold, and let b∗, a∗, andw∗ be as defined in Step 3
of the sandwich procedure. Then b∗ is tight at optimality, (w∗� a∗) is an optimal solution
to (P), and val(SAND|b∗)= val(P).

Note that if a given b is known to be tight at optimality through some independent
means, Step 3 of the procedure can be avoided. A special case of this is when the reser-
vation utility U itself is tight at optimality. Proposition 1 gives a sufficient conditions for
this to hold. In practice, one may try to solve (SAND|U) and if the resulting optimal so-
lution (a#�w#) is implementable (i.e.,w# implements a#), then the complete sandwich
procedure can be avoided.

In the remainder of this subsection, we provide lemmas that justify each step of the
sandwich procedure. This culminates in a proof of Theorem 2 that is relatively straight-
forward given the work up to that point. In the final subsection, we note that even when
all of Assumptions 1–4 do not hold, we can sometimes use the sandwich procedure to
construct an optimal contract. We use our motivating example to illustrate how this can
be done.

4.1 Analysis of Step 1

We undertake an analysis of this step under Assumptions 1–3 following from Lemma 3
in Section 3.1. The optimal contract w(a� â� b) sought in Step 1 is precisely the unique
optimal contract guaranteed by Lemma 3(i). That lemma also guarantees that w(a� â� b)
is a well behaved function of (a� â� b).
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Indeed, by strong duality (Lemma 3(ii)), the optimal value of (SAND|a� â� b) is

val(SAND|a� â� b) = inf
λ�δ≥0

max
w≥wL(w�λ�δ|a� â� b)= L∗(a� â|b)�

where

L∗(a� â|b)≡ L
(
w(a� â� b)�λ(a� â� b)�δ(a� â� b)|a� â� b) (20)

is called the optimized Lagrangian for the sandwich relaxation. The following result, a
straightforward consequence of the theorem of maximum and Lemma 3, shows that the
optimized Lagrangian has useful structure for Step 2 of the procedure.

Lemma 6. The optimized Lagrangian L∗(a� â|b) is upper semicontinuous. Moreover, it is
continuous and differentiable when a 	= â.

4.2 Analysis of Step 2

The case where the inner infimum is not attained is sufficiently handled by Lemma 4 and
existing knowledge of the FOA. Here we examine the case where the inner infimum is at-
tained, and we provide necessary optimality conditions for a and â to optimize (SAND|b)
given the contract w(a� â� b) and its associated dual multipliers λ(a� â� b) and δ(a� â� b).
In particular, we solve (18) in Step 2 by solving

max
a∈A

inf
â∈A

L∗(a� â|b) (21)

using the definition of the optimized Lagrangian L∗ in (20). The optimal solution to
the outer optimization exists since A is compact and L∗ is upper semicontinuous (via
Lemma 6). Moreover, by the differentiability properties of L (when â 	= a), we can obtain
the following optimality conditions for solutions of (21).

Lemma 7. Suppose a∗ and â∗ solve (21) for a given b ≥ U with â∗ 	= a∗. The following
statements hold:

(i) For an interior solution â∗ ∈ (a� ā),
∂

∂â
L∗(a∗� â∗|b)= −δ∗(a∗� â∗� b

)
Ua
(
w
(
a∗� â∗� b

)
� â∗)= 0

and Ua(w(a∗� â∗� b)� â∗)≥ 0 (≤ 0) for â∗ = ā (â∗ = a).

(ii) For an interior solution a∗ ∈ (a� ā), the right derivative is

∂

∂a+ min
â∈A

L∗(a∗� â∗|b)≤ 0

and left derivative is

∂

∂a− min
â∈A

L∗(a∗� â∗|b)≥ 0�

and ∂
∂â
L∗(a∗� â∗|b)≤ 0 (≥ 0) for a∗ = a (a∗ = ā).
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Figure 3. An illustration of Step 3 of the sandwich procedure.

Note that the conditions for a∗ and â∗ are not symmetric in (i) and (ii) above. This
is because a∗ is a function of â∗ and so has weaker topological properties to leverage for
first-order conditions.

4.3 Analysis of Step 3

To work with (19) we reexpress it in a slightly different way. Note that V (w(b)�a(b)) =
val(SAND|b) via Proposition 2. We also denote the optimization problem in the second
term inside the argmin of (19) as (P|w(b)):

max
a∈aBR(w(b))

V
(
w(b)�a

)
� (P|w(b))

Thus, we can reexpress (19) as

b∗ ≡ min
{
argmin
b≥U

{
val(SAND|b) − val(P|w(b))}}�

Note that (P|w(b)) is a restriction of (P|b) and so val(P|w(b)) ≤ val(P|b) ≤ val(SAND|b)
and all three values are decreasing in b. Also from Assumption 3, there exists an optimal
solution (w∗� a∗) to (P) and so there exists a b (namely, b∗ =U(w∗� a∗)) such that all three
problems share the same optimal value. Hence, we must have minb≥U(val(SAND|b) −
val(P|w(b))) = 0 and so b∗ is the first time where val(SAND|b) = val(P|w(b)), forcing
val(SAND|b) = val(P|b) and implying b∗ is tight at optimality. See Figure 3. We make this
argument formally in the proof of the following lemma, which also shows that b∗ is well
defined in the sense that the set argminb≥U {val(SAND|b) − val(P|w(b))} has a minimum.

Lemma 8. If Assumptions 1–4 hold, then there exists a real number b∗ that satisfies (19).
Furthermore, b∗ is tight at optimality.

4.4 Overall verification of the procedure

We are now ready to prove Theorem 2. The proof is a straightforward application of the
lemmas of this section.

Proof of Theorem 2. By Lemma 8, there exists a b∗ that satisfies (19) and is tight
at optimality. Hence, by Theorem 1, val(SAND|b∗) = val(P) and every optimal solu-
tion (w(b∗)�a(b∗)) to (SAND|b∗) is optimal to (P). Note that we need not require that
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the infimum is attained. However, when â∗ is attained with â∗ 	= a∗, the GMH contract
w(a(b∗)� â(b∗)�b∗) resulting from Lemma 3 is precisely one such optimal contract where
a(b∗) and â(b∗) satisfy the optimality conditions of Lemma 7. �

4.5 An illustrative example

Our motivating example serves to illustrate the steps of the sandwich procedure and
how to work with (19), even when Theorem 2 does not apply.

Example 4 (Example 1 (continued)). Recall that our problem is to solve

max
(z�a)

{
v(z�a) : u(z�a)≥ −2 and a ∈ arg max

a′ u
(
z�a′)}�

where v(z�a) = za− 2a2 and u(z�a) = −za− (a2 − 1)2. We apply each step of the pro-
cedure and determine an optimal contract. There is some overlap of analysis from Ex-
ample 3, but our approach here is more systematic and follows the reasoning of the
sandwich procedure.

Step 1: Characterize contract. First, we characterize the optimal solutions z(a� â� b) of

max
z

{
v(z�a) : u(z�a)≥ b�u(z�a)− u(z� â)≥ 0

}
� (22)

where a ∈ [0�2]. The case where a ∈ [−2�0] is symmetric and analogous reasoning holds
throughout. Observe that v(z�a) is increasing in z for fixed a and â, and so (22) can be
solved by simply maximizing z. The constraints on z are (from u(z�a)≥ b)

z ≤Q(a�b) (23)

when a 	= 0, whereQ(a�b)≡ −(b+ (a2 − 1)2)/a, and (from u(z�a)− u(z� â)≥ 0)

z

⎧⎪⎪⎨
⎪⎪⎩

≥R(a� â) if â > a�

≤R(a� â) if â < a�

∈ (−∞�∞) if â= a�
(24)

where R(a� â)≡ −(â+ a)(â2 + a2 − 2). Maximizing z subject to (23) and (24) yields

z(a� â� b)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{
Q(a�b)�R(a� â)

}
if (a 	= 0)∧ (â < a)�

Q(a�b) if (a 	= 0)∧ ((â= a)∨ ((â > a)∧ [Q(a�b)≥R(a� â)]))�
R(a� â) if (a= 0)∧ (b≤ −1)∧ (â < a)�
+∞ if (a= 0)∧ (b≤ −1)∧ (â≥ a)�
−∞ if (a 	= 0)∧ (â > a)∧ [R(a� â) > Q(a�b)]�
−∞ if (a= 0)∧ (b >−1)�
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where ∧ is the logical “and” and ∨ is the logical “or.” The value +∞ comes from the
fact that u(z�a)≥ b does not constrain z when a= 0 and (24) does not constrain z when
â= a. Hence, the value of z can be driven to +∞. The value −∞ comes from two cases
that we separate for clarity. In the first case, z ≤Q(a�b) and z ≥R(a� â)with R(a� â� b) >
Q(a�b), leaving no choice for z and thus we set z = −∞ to denote the maximizer of an
empty set. In the second case, a= 0 and b > 1, so the constraint u(z�a)≥ 0 is assuredly
violated and so again z = −∞. The case where z(a� â� b)=R(a� â� b) comes from the fact
(23) does not constrain z when a= 0 as long as u(z�0)= −1 ≥ b. Since â < a, z is driven
to the upper bound R(a� â� b) from (24).

Step 2: Characterize actions. The next step is to solve

inf
â∈[−2�2]

v
(
z(a� â� b)�a

)
�

As noted in Example 3, this infimum may not be attained and so we work with the
possibility that no â(a�b) exists. For fixed a, v(z(a� â� b)�a) is an increasing function
of z(a� â� b) and so â should be chosen to minimize z(a� â� b). This eliminates the case
where z(a� â� b)= +∞. A key step is to remove the dependence ofR(a� â� b) on â through
optimization. To this end, we define

R↑(a)≡ sup
â>a

R(a� â)�

R↓(a)≡ inf
â<a

R(a� â)�

Since â is chosen to minimize z(a� â� b), we have

z(a�b)≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
{
Q(a�b)�R↓(a)

}
if (a 	= 0)∧ [R↑(a)≤Q(a�b)]�

R↓(0) if (a= 0)∧ (b≤ −1)�

−∞ if (a= 0)∧ (b >−1)�

−∞ if (a 	= 0)∧ [R↑(a) >Q(a�b)
]
�

(25)

If it exists, we may set

â(a�b)=
{
â↑(a) if (a 	= 0)∧ [R↑(a) >Q(a�b)

]
�

â↓(a) otherwise�

where

â↑(a) ∈ argmax
â>a

R(a� â)�

â↓(a) ∈ argmin
â<a

R(a� â)

if they exist. The rest of the development is not contingent on the existence of â(a�b),
â↑(a), and â↓(a). In the case where the infimum is not attained, Lemma 4 can be used
to determine w(b) given a(b) directly. Whether the infimum is attained or not depends
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on b, but does not impact the analysis that follows, which simply works with the values
R↑(a) and R↓(a).

Finally, we choose a(b) to maximize v(z(a�b)�a). We first examine the choice of b. If
b is such that infa(R↑(a)−Q(a�b)) > 0, then z(a�b)= −∞ and so v(z(a�b)�a) is −∞, no
matter the choice of a. Moreover, since Q(a�b) is decreasing in b, any larger b will also
not be chosen. Let b̄ := infb≥−2{infa(R↑(a)−Q(a�b)) > 0}. As discussed, any b > b̄ will
not be chosen. To compute b̄, we can use the expressions

R↑(a)=
⎧⎨
⎩

4a
(
1 − a2) if 1/

√
3 ≤ a≤ 2�

4
27
(
9a− 5a3 + √

2
(
3 − a2)3/2) if 0 ≤ a≤ 1/

√
3�

R↓(a)=
⎧⎨
⎩

4a
(
1 − a2) if 1 ≤ a≤ 2�

− 4
27
(
9a− 5a3 + √

2
(
3 − a2)3/2) if 0 ≤ a≤ 1�

The reader may verify that b̄ is finite and strictly greater than 0. We can write an expres-
sion for a(b) as

a(b)

⎧⎪⎪⎨
⎪⎪⎩

= 0 if − 2 ≤ b≤ −1�

= a↑(b) if − 1 ≤ b < b̄�
∈ [0�2] if b≥ b̄�

(26)

where a↑(b) is an optimal solution to

max
a∈(0�2]

min
{
Q(a�b)�R↓(a)

}
a− 2a2

s.t. R↑(a)≤Q(a�b)�
(27)

Our expression for a(b) in (26) follows since if b ≤ −1, then v(z(a�b)�a) < 0 if a > 0 be-
cause we are in the first case of (25) and min{Q(a�b)�R↓(a)}< 0. Hence, a(b)= 0 since
v(z(a�b)�a) = 0. When −1 ≤ b < b̄, we cannot set a = 0; otherwise z(a�b) = −∞ and
the problem is infeasible. The only other option is the first case of (25) where a(b) solves
(27). Finally, when b≥ b̄, then z(a�b)= −∞ from (25) and so the choice of a is irrelevant.

With a(b) as defined above we may write

z(b)≡ z(a(b)�b)=
⎧⎪⎪⎨
⎪⎪⎩
R↓(0) if − 2 ≤ b≤ −1�

min
{
Q
(
a↑(b)�b

)
�R↓(a↑(b)

)}
if − 1 ≤ b < b̄�

−∞ if b≥ b̄

and finally

val(SAND|b) = v(z(b)�b)=
⎧⎪⎪⎨
⎪⎪⎩

0 if − 2 ≤ b≤ −1�

z(b)a↑(b)− 2
(
a↑(b)

)2
if − 1 ≤ b < b̄�

−∞ if b≥ b̄�
(28)
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Since the original problem is feasible, we can eliminate b≥ b̄ from consideration. In (28)
we now have the first term in the “inner” minimization of (19) for determining b∗. The
second term can be expressed as

max
a∈aBR(z(b))

v
(
z(b)�a

)
� (29)

We claim that b= 0 solves (19) in Step 3 of the sandwich procedure. To see this, we
make the observation

b < 0 implies a(b) < 1 and z(b) < 0� (30)

This follows by observing that when b < 0, there are two cases: b ≤ −1 and −1< b< 0.
When b ≤ −1, then a(b) = 0 and z(b) = R↓(0) < 0. When −1 < b < 0, observe that
min{Q(a�b)�R↓(a)} < 0 for all a ∈ (0�2], and so z(b) < 0 and the objective function
in (27) is decreasing in a, which implies that the constraint in (27) is tight; that is,
R↑(a) = Q(a�b). The reader may verify that this implies a < 1 and so a(b) = a↑(b) < 1.
This yields (30).

Returning to (29), suppose b < 0. Consider the set aBR(z(b)) when (from (30))
z(b) < 0. Taking the derivative of u(z�a) with respect to a when a≤ 1 yields

∂

∂a
u
(
z(b)�a

)= −z(b)− 4a
(
a2 − 1

)
> 0

and so any a ≤ 1 cannot be a best response to z(b). This implies that a(b) (which is
greater than 1 from (30)) is not a best response to z(b) and, hence,

val(SAND|b)> max
a∈aBR(z(b)

v
(
z(b)�a

)
(31)

when b < 0. In Example 3, we showed (SAND|b) when b = 0 is a tight relaxation. In
particular, this means that (z(0)�a(0)) is an optimal solution to (P) and thus a(0) is a
best response to z(0). Thus,

val(SAND|0)= max
a∈aBR(z(0))

v
(
z(0)�a

)
and so b = 0 is in the argmin in (19). Since (31) holds for any b < 0, this implies that
b∗ = 0. ♦

5. Nonexistence of the inner minimization and the relationship with

the FOA

In this section, we comment on a few connections between the sandwich approach and
the FOA. We show how this relationship is connected to the issue of nonexistence of
a minimizer to the inner minimization in the definition of (SAND|b). We have already
remarked (and Example 5 below confirms) that our procedure applies when the FOA
is invalid. However, there is more to say about the connection between these two ap-
proaches.
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The astute reader will have noticed that (SAND|b) does not include the first-order
constraint (FOC(a)) common to both the FOA and Mirrlees’s approach. The fact that
(FOC(a)) is not present is connected to how we handled the agent’s optimization prob-
lem via (4) and how this optimization was pulled into the objective in (Max-Max-Min|b).
Indeed, the minimization over the alternate best response included in (Max-Max-Min|b)
and (SAND|b) can be understood as our way to account for the optimality of the agent’s
best response. In this perspective, first-order conditions are not explicitly necessary in
the formulation; they are implied when the sandwich approach is valid.

We already discussed the case when the inner minimization over â in (SAND|b)
is not attained in Lemma 4, where the sandwich problem is equivalent to a prob-
lem with a local stationarity condition. In the case where the inner minimization
is attained for some â∗ 	= a∗ and the first-best contract is not optimal (the remain-
ing case), we recover first-order conditions via Lemma 7 when â∗ is an interior point.
In this case, −δ∗(a∗� â∗� b)Ua(w(a∗� â∗� b)� â∗) = 0 and δ∗(a∗� â∗� b) = 0 would imply
that the first-best contract is optimal, contradicting Assumption 3. We conclude that
Ua(w(a

∗� â∗� b)� â∗) = 0. This implies that the first-order condition holds for â∗. Since
U(w(a∗� â∗� b)�a∗) ≥ U(w(a∗� â∗� b)� â∗) from the no-jump constraint in (SAND|b), this
further implies that Ua(w(a∗� â∗� b)�a∗)= 0 must also be satisfied since a∗ will also be a
best response (here we have assumed for simplicity that a∗ is an interior point).

We examine this phenomenon from a more basic perspective. Suppose the sand-
wich approach is valid (for instance, because b is tight at optimality) and sandwich re-
laxation (SAND|b) has an optimal solution (a∗� â∗�w∗). Moreover, suppose (i) the La-
grangian multiplier δ(a∗� â∗� b) from Lemma 3 is strictly positive and (ii) â∗ < a∗. Con-
dition (ii) is reasonable since typically an alternate best response is to deviate to a lower
effort level, not a higher effort level. Recall that cost is assumed to be nondecreasing in
Assumption A1.8. In a special case we can show this formally.

Proposition 3. If the principal is risk-neutral and the FOA is not valid, then there exists
an alternate best response â such that â < a∗.

In other words, with a risk-neutral principal, unless the FOA is valid, the agent will
have a best-response “shirking” action. Observe that this assumption does not require
any monotonicity assumptions on the output distribution f .

Given this scenario, we have the equivalence

val(SAND|b) = inf
â∈A

max
w≥w

{
V
(
w�a∗) :U(w�a∗)≥ b�U(w�a∗)−U(w� â)≥ 0

}
= inf
â≤a∗ max

w≥w
{
V
(
w�a∗) :U(w�a∗)≥ b�U(w�a∗)−U(w� â)≥ 0

}
�

To understand the above equivalence, we note that the ≤ direction is always true since
the right-hand side has an additional restriction on the minimization, but â = â∗ ≤ a∗
attains the minimum that is achieved by the left-hand side problem.

The right-hand side problem above is equivalent to

inf
â≤a∗ max

w≥w

{
V
(
w�a∗) :U(w�a∗)≥ b� U

(
w�a∗)−U(w� â)

a∗ − â ≥ 0
}
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since a∗ − â≥ 0 in the range of choices for â. Since U(w�a) is differentiable in a, by the
mean-value theorem, there exists an ã ∈ [â� a∗] such that (U(w�a∗)−U(w� â))/(a∗ − â)=
Ua(w� ã). Therefore, we have the equivalence

val(SAND|b) = inf
â≤a∗ max

w≥w

{
V
(
w�a∗) :U(w�a∗)≥ b� U

(
w�a∗)−U(w� â)

a∗ − â ≥ 0
}

= max
w≥w inf

â≤a∗

{
V
(
w�a∗) :U(w�a∗)≥ b� U

(
w�a∗)−U(w� â)

a∗ − â ≥ 0
}

= max
w≥w inf

ã≤a∗
{
V
(
w�a∗) :U(w�a∗)≥ b�Ua(w� ã)≥ 0

}
≤ inf
ã≤a∗ max

w≥w
{
V
(
w�a∗) :U(w�a∗)≥ b�Ua(w� ã)≥ 0

}
≤ max

a∈A
inf
ã≤a

max
w≥w

{
V (w�a) :U(w�a)≥ b�Ua(w� ã)≥ 0

}
≤ max

a∈A
max
w≥w

{
V (w�a) :U(w�a)≥ b�Ua(w�a)≥ 0

}
= val(FOA)�

(32)

The second equality follows from the tightness of b, the third equality uses the main-
value theorem, and the first inequality is simply the min-max inequality. Note that the
constraintUa(w� ã)≥ 0 usually is binding for the problem maxw≥w{V (w�a∗) :U(w�a∗)≥
b�Ua(w� ã)≥ 0}, particularly if the principal is risk-neutral (Rogerson 1985, Jewitt 1988).
Then

inf
ã≤a∗ max

w≥w
{
V
(
w�a∗) :U(w�a∗)≥ b�Ua(w� ã)≥ 0

}
= inf
ã≤a∗ max

w≥w
{
V
(
w�a∗) :U(w�a∗)≥ b�Ua(w� ã)= 0

}
�

which means that the sandwich relaxation must satisfy the stationary condition Ua(w�
ã) = 0 as a constraint. Note that in the FOA, ã must be taken as a∗ and so is a weaker
requirement.

Note that even when the sandwich approach is not valid, (32) reveals that it is a
stronger relaxation than the FOA. Indeed, the FOA requires Ua(w�a) = 0, whereas the
sandwich approach requires Ua(w� ã) = 0, where ã is a minimizer. The latter is a more
stringent condition to satisfy.

These observations provide an interpretation of the sandwich relaxation as a
strengthening of the FOA, where we are required to satisfy an additional first-order con-
dition over a worst-case choice of alternate best response.

There remains the question of how the sandwich procedure proceeds when the FOA
is, in fact, valid. The next result shows that the two approaches are compatible in this
case.

Proposition 4. When the FOA is valid, val(SAND|U)= val(FOA) = val(P). That is, both
the sandwich approach and the FOA recover the optimal contract of the original problem.
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Observe that the validity of the FOA implies that the starting reservation utility U is
tight at optimality. The next result reveals a partial converse in the case where the infi-
mum in (SAND|b) is not attained. We emphasize that the MLRP assumption is needed
to establish the following result, which we pull out of a proof of an earlier result that is
stated and proved in the Appendix.

Proposition 5. Suppose b is tight optimality and the sandwich problem (SAND|b) has
solution (a∗�w∗), where the inner minimization does not have a solution. Then, given the
action a∗ and with modified (IR) constraint U(w�a∗)≥ b, the FOA is valid. That is,

val(P) = max
w≥w

{
V
(
w�a∗) :U(w�a∗)≥ b and

(
FOC

(
a∗))}

and the optimal solution to the right-hand side implements a∗.

6. Additional examples

In this section, we provide three additional examples that further illustrate the sand-
wich procedure. The first example is where the FOA is invalid but nonetheless satisfies
Assumptions 1–4 and so is amenable to the sandwich procedure.

Example 5. Consider the following principal–agent problem. The distribution of out-
put X is exponential with f (x�a)= e−x/a/a for x ∈ X = R+ and a ∈ A := [1/10�1/2]. The
principal is risk-neutral (and so v(y)= y), the value of output isπ(x)= x, the agent’s util-
ity is u(y)= 2

√
y, the agent’s cost of effort is c(a)= 1 − (a− 1/2)2, and the outside reser-

vation utility is U = 0. The minimum wage is w = 1/16. It is straightforward to check
that Assumptions 1 and 2 are satisfied. Existence of an optimal solution is guaranteed
by Kadan et al. (2017) and so Assumption 3 is also satisfied. Finally, the monotonicity
conditions in Assumption 4 hold trivially for f . This means that Theorems 1 and 2 apply.

Note also that the FOA is invalid. To see this, using the first-order condition
Ua(w�a)= 0 to replace the original IC constraint, the resulting solution is afoa = 1/2 and
wfoa(x)= 1/4. Clearly, wfoa(x) is a constant function and under wfoa(x), the agent’s op-
timal choice is a= 1/10, not afoa = 1/2. Hence, the FOA is invalid.

Now we apply the sandwich procedure to derive an explicit solution. We start with
b=U and show that Proposition 1 holds.

Step 1. Characterize contract. According to Lemma 3 the unique optimal contract to
(SAND|a� â�U) is of the form

wλ�δ(a� â�U)=
[
λ+ δ

(
1 − f (x� â)

f (x�a)

)]2
�

assuming that w(x) > w for all x (we verify this is the case below). Plugging the above
contract into the two constraints U(wλ�δ(a� â�U)�a) = U and U(wλ�δ(a� â�U)�a) =
U(wλ�δ(a� â�U)� â), we find

λ(a� â�U) = 1
2
(
1 − (a− 1/2)2

)
�
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δ(a� â�U) = (2a− â)â(a+ â− 1)

2(a− â)2 �

Step 2. Characterize actions. We plug wλ(a�â�U)�δ(a�â�U)(a� â�U) from Step 1 into the prin-
cipal’s utility function to obtain the optimized Lagrangian from (20):

L∗(a� â|U)= a− 1
4
[
1 − (a− 1/2)2

]2 − 1
4
(2a− â)â(a+ â− 1)2�

Now we solve the max-min problem in (21), where L∗(a� â|U) is a fourth-order polyno-
mial equation of â with first-order condition

∂

∂â
L∗(a� â|U)= 1

4
(a+ â− 1)

[
â(a+ â− 1)− (2a− â)(a+ â− 1)− 2(2a− â)â]= 0�

This yields three solutions: â= a− 1, â= (a+ 1/2 −√3a2 − a+ 1/4)/2, and â= (a+ 1
2 +√

3a2 − a+ 1/4)/2. Since â ∈ [1/10�1/2], the only feasible interior minimizer is

â(a�U)= 1
2

(
a+ 1

2
−
√

3a2 − a+ 1/4
)
�

Plugging the â(a�U) into L∗, we can solve the outer maximization problem in (21) over
a, which yields a∗ = 1/2 and, hence, â∗ = (2 − √

2)/4. This implies

w∗(x)=

⎡
⎢⎢⎣1

2
+ 1

16

⎛
⎜⎜⎝1 −

f

(
x�

1
4
(2 − √

2)
)

f (x�1/2)

⎞
⎟⎟⎠
⎤
⎥⎥⎦

2

=
[

1
2

+ 1
16
(
1 − (2 +√

2)e−2x(1+√
2))]2

>
1
16
�

Hence, Proposition 1 implies that U is tight at optimality and so by Theorem 1 we
have found an optimal contract. ♦

Second, the equivalence of the sandwich approach and the FOA when the FOA
is valid (from Proposition 4) is illustrated by examining the classical example of
Hölmstrom (1979).

Example 6. The distribution of output X is exponential with f (x�a) = e−x/a/a for x ∈
X = R+ and a ∈ A := [0� ā]. The principal is risk-neutral (and so v(y) = y), the value of
output is π(x)= x, the agent’s utility is u(y)= 2

√
y, the agent’s cost of effort is c(a)= a2,

minimum wage is w= 0, and the outside reservation utility is U ≥ 7−2/3.8

Hölmstrom (1979) showed that the FOA applies to this problem. Now we apply the
sandwich procedure to derive an explicit solution.

Step 1. Characterize contract. According to Lemma 3, the unique optimal contract to
(SAND|a� â� b) is of the form

wλ�δ(a� â�U)=
[
λ+ δ

(
1 − f (x� â)

f (x�a)

)]2
�

8This number is chosen to ensure that the minimum wage constraint is strictly satisfied at the optimal
solution, as explicitly assumed in Hölmstrom (1979). For example, U = 0 may lead to a positive probability
that the contract equals w.
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assuming that w(x) > w for all x (we verify this is the case below). Plugging the above
contract into the two constraints U(wλ�δ(a� â�U)�a) = U and U(wλ�δ(a� â�U)�a) =
U(wλ�δ(a� â�U)� â) yields

λ(a� â�U) = 1
2
(
a2 +U)�

δ(a� â�U) = max
{

0�
(2a− â)â(a2 − â2)

2(a− â)2
}

= max
{

0�
(2a− â)â(a+ â)

2(a− â)
}
�

Step 2. Characterize actions. We plug wλ(a�â�U)�δ(a�â�U)(a� â�U) from Step 1 into the prin-
cipal’s utility function to obtain the optimized Lagrangian from (20):

L∗(a� â|U)=

⎧⎪⎪⎨
⎪⎪⎩
a− 1

4
(
a2 +U)2 − 1

4
(2a− â)â(a+ â)2 if

(2a− â)â(a+ â)
2(a− â) > 0�

a− 1
4
(
a2 +U)2 if

(2a− â)â(a+ â)
2(a− â) ≤ 0�

Now we solve the max-min problem in (21), where L∗(a� â|U) is a fourth-order poly-
nomial equation of â with first-order condition

∂

∂â
L∗(a� â|U)= −(a+ â)(a2 + 2aâ− 2â2)= 0�

This yields two solutions: â= (1 − √
3)a/2 and (1 + √

3)a/2. Since a > 0, â= (1 − √
3)a/2

is not feasible. It is not optimal to choose â≥ 2a as a minimizer, and so −(2a− â)â(a+
â)2/4 ≥ 0. Also a ≤ â < 2a is not optimal, since with this choice, L∗(a� â|U) = a− (a2 +
U)2/4. So the minimizer should be taken in 0 ≤ â < a, where −(a+ â)(a2 + 2aâ− 2â2) is
decreasing in â. Therefore, the infimum is not attained and we have

inf
â
L∗(a� â|U)= a− 1

4
(
a2 +U)2 − a4�

This yields a solution a∗(U) that is specified by the first-order condition of the above
optimization problem:

1 − 5a3 − 2aU = 0�

where we may assume U ≥ 7−2/3 so that

w∗(x= 0)= 1
2
(
a∗2 +U)− a∗2 = 1

2
(
U − a∗(U)2

)≥ 0�

By l’Hôpital’s rule, we have

lim
â→a

δ(a� â�U)

(
1 − f (x� â)

f (x�a)

)
→ a3

(
x− a
a2

)
= a(x− a)�

so the optimal GMH contract according to the sandwich procedure is

w∗(x)= 1
2
a∗2 + a∗(x− a∗2).
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The resulting solution is consistent with the FOA solution, where the resulting La-
grangian multiplier for the first-order condition is μ(a)= a3 (Hölmstrom 1979) and the
principal’s value function is exactly the same:

V
(
wfoa(a)�a

)= a− λ(a)2 −μ(a)2E
(
∂ log f (X�a)

∂a

)2
= a− 1

4
(
a2 +U)2 − a4�

This completes the example. ♦

Note the similarity in the setups of Examples 5 and 6. The first can be seen as a
relatively minor variation on the second, and yet the FOA approach fails in the first but
holds in the second. In both cases the sandwich procedure applies. This illustrates, in
a concrete way, aspects of the rigidity of the FOA and the robustness of the sandwich
approach.

In our final example, we solve an adjustment of the problem proposed by Araujo
and Moreira (2001), who show that the FOA fails but nonetheless construct an optimal
solution by solving a nonlinear optimization problem with 20 constraints using Kuhn–
Tucker conditions. Although this problem fails the conditions of Theorem 2 (it fails
Assumption A1.1 since there are only two outcomes), we can nonetheless use our ap-
proach (specifically Lemma 2 and Proposition 2) to construct an optimal contract. We
remark that this example has the nice feature that all best responses are interior to the
interval of actions A = [−1�1], in contrast to all previous examples. Moreover, there are
multiple alternate best responses. As can be seen below, and in relation to remarks in
Section 5, stationarity conditions at these interior points are implicitly recovered via the
sandwich approach.

Example 7. The principal has expected utility V (w�a) = ∑2
i=1pi(a)(xi − wi), where

p1(a) = a2, p2(a) = 1 − a2 for a ∈ [−1�1], and there are two possible outcomes x1 = 1
and x2 = 3/4, denoting wi =w(xi) for i= 1�2. The minimum wage is w = 0. The agent’s
expected utility is U(w�a) =∑2

i=1pi(a)
√
wi − 2a2(1 − 2a2 + (4/3)a4) with reservation

utility U = 0. We apply Step 1 and Step 2 of the sandwich procedure.

Step 1. Characterize contract. The first-order conditions (8) imply that an optimal solu-
tion (SAND|a� â�0)must satisfy

w∗
i =w∗(xi)= 1

4

[
λ+ δ

(
1 − pi(â)

pi(a)

)]2
for i= 1�2� (33)

assuming that w∗
i ≥ w for i = 1�2 (we check below that this is the case) for some choice

of λ and δ. To characterize these λ and δ, we plug the above contract into the two con-
straints of (SAND|a� â� b), U(w∗� a)= 0 and U(w∗� a)=U(w∗� â), to find

λ(a� â�0)= 4a2
(

1 − 2a2 + 4
3
a4
)
�

δ(a� â�0)= 4a2(1 − a2)[3 + 4a4 + 4â4 + 4a2â2 − 6
(
â2 + a2)]

3
(
a2 − â2) �

(34)
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Step 2. Characterize actions. We solve (21), where

L∗(a� â|0) =
2∑
i=1

pi(a)
(
xi −w(a� â�0)i

)

=
2∑
i=1

pi(a)xi − 1
4
λ(a� â�0)2 − 1

4
δ(a� â�0)2

2∑
i=1

(
1 − pi(â)

pi(a)

)2
pi(a)

= a2 + 3
4
(
1 − a2)− 4

9
a4(3 − 6a2 + 4a4)2

− 4
9
a2(1 − a2)[3 + 4a4 + 4â4 + 4a2â2 − 6

(
â2 + a2)]2

by leveraging Lemma 7. Note that only the last term t(a� â) ≡ [3 + 4a4 + 4â4 + 4a2â2 −
6(â2 + a2)]2 in the last line of the above expression involves â. By taking the first-order
condition with respect to â, we obtain three solutions:

â= 0� â=
√

3 − 2a2

2
� â= −

√
3 − 2a2

2
�

One can verify that for any a ∈ [−1�1],

t(a�0)= (3 − 6a2 + 4a4)2 < 9
16
(
1 − 2a2)4 = t

(
a�

√
3 − 2a2

2

)
= t
(
a�−

√
3 − 2a2

2

)
�

Therefore, the unique minimizer of L∗(a� â|0) over â is â∗(a)≡ 0. Then

L∗(a�0|0)= a2 + 3
4
(
1 − a2)− 4

9
a4(3 − 6a2 + 4a4)2 − 4

9
a2(1 − a2)[3 + 4a4 − 6a2]2

has a maximum at a∗ = √
3/2 (there are three maximizers, a∗ = ±√

3/2 and a∗ = 0, all in-
terior to A; we just pick a∗ = √

3/2). This completes the sandwich procedure and we have
produced an optimal solution to (SAND|0) of the form (a∗� â∗�w∗), where a∗ = √

3/2,
â∗ = 0, andw∗

1 = 1 andw∗
2 = 0 (using the fact λ(

√
3/2�0�0)= 3/4 and δ(

√
3/2�0�0)= 1/4).

Note, in particular, that w∗
i ≥w= 0 for i= 1�2.

Second, we show that (w∗� a∗) is feasible to (P). It suffices to show that a∗ is a best re-
sponse to w∗. The agent’s expected utility under the contract w∗ =w(a� â�0) and taking
action ã is (using (33) and (34))

U
(
w∗� ã

)= 4
3
(
a2 − ã2)(ã2 − â2)(2a2 + 2â2 + 2ã2 − 3

)
�

Given a∗ = √
3/2 and â∗ = 0,U(w∗� ã) is indeed maximized at ã= ±√

3/2 and ã= 0. This
shows that a∗ is a best response to w∗ and, hence, (w∗� a∗) is feasible to (P).

Finally, by Lemma 2 we know that val(SAND|0)≥ val(P) and this implies that (w∗� a∗)
achieves the best possible principal utility in (P). We conclude that w∗ is an optimal



1458 Ke and Ryan Theoretical Economics 13 (2018)

contract. However, one can check that the FOA is not valid. The solution to (FOA) will
yield afoa = 0�798, which cannot be implemented by the corresponding wfoa. Details are
suppressed. ♦

7. Conclusion

We provide a general method to solve moral hazard problems when output is a contin-
uous random variable with a distribution that satisfies the MLRP (Assumption 4). This
involves solving a tractable relaxation of the original problem using a bound on agent
utility derived from our proposed procedure.

We do admit that, in general, Step 3 of the sandwich procedure may be a priori diffi-
cult unless sufficient structural information is known about the set aBR(w(b)). However,
as the examples in this paper illustrate, this may not be an issue in sufficiently well be-
haved cases.

Indeed, Proposition 1 is helpful in this regard. If one initially assumes b=U , and the
resulting optimal contract can be shown to strictly satisfy the limited liability constraint,
there is no need for Step 3 of the sandwich procedure. This method is on display in
Example 5. As mentioned in the paper, there is precedence in the moral hazard literature
to restrict analysis to cases where the limited liability constraint is guaranteed not to
bind.

Finding additional criteria for the (IR) constraint to be tight is an important area for
further investigation. Moreover, finding other scenarios where (19) is tractable is also of
interest. Examples 4–7 show that the basic framework of our approach can help solve
problems that may not satisfy all the assumptions used in our theorems.

Appendix: Proofs

A.1 Proof of Lemma 1

We set the notation V ∗(a� â) = maxw≥w{V (w�a) : (w�a) ∈ W(â� b)} and V ∗(a) =
infâ V ∗(a� â). The result follows by establishing the following claim.

Claim 1. The term V ∗(a) is upper semicontinuous in a.

Indeed, if V ∗(a) is upper semicontinuous, then, since A is compact, an outer maxi-
mizer a exists by the Weierstrass theorem.

We now establish the claim. By definition of upper semicontinuity, we want to show
that for any constant α ∈ R, {a|V ∗(a) < α} is open, where α is independent of a. This
shows that there exists an ε > 0 such that for all a′ ∈ Nε(a), V ∗(a′) < α, where Nε(a) is an
open neighborhood of a. Now we pick any a0 ∈ {a|V ∗(a) < α}. Note that infâ V (a0� â) < α

implies that there exists some â0 such that

V (a0� â0) < α�

Alternatively, since V (a� â) is upper semicontinuous by the theorem of maximum, the
set {

(a� â)|V (a� â) < α}
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is open. Therefore, there exists an ε > 0 such that V (a′� â′) < α for any (a′� â′) ∈
Bε(a0� â0), where Bε(a0� â0) is an the open ball in R

2 centered at (a0� â0) with radius ε.
Thus, we can find an open neighborhood Nε1(a0) of a0 and Nε2(â0) of â0 such that

Nε1(a0)×Nε2(â0)⊆ Bε(a0� â0)�

Therefore, we have V (a′� â′) < α for any a′ ∈ Nε1(a0) and â′ ∈ Nε2(â0). As a result, for any,
a′ ∈ Nε1(a0), we have

V ∗(a′)= inf
â
V
(
a′� â

)≤ V (a′� â′)<α
for a given â′ ∈ Nε2(â0), which shows that {a|V ∗(a) < α} is open. We thus obtain the
desired upper semicontinuity of infâ V (a� â).

A.2 Proof of Lemma 2

Observe that

val(P|b) = val(Max-Max-Min|b)

= max
a∈A

max
w≥w inf

â∈A
V I(w�a|â� b)

≤ max
a∈A

inf
â∈A

max
w≥wV

I(w�a|â� b)

= val(SAND|b)�

where the inequality follows by the min-max inequality. If there exists an optimal solu-
tion (w∗� a∗) to (P) such that U(w∗� a∗)≥ b (and thus is also a feasible solution to (P|b)),
then val(P) ≤ val(P|b). However, we already argued in the main text that val(P) ≥ val(P|b).
This implies val(P) = val(P|b) and so the above inequality implies val(P) ≤ val(SAND|b).

A.3 Proof of Lemma 3

The proof of (i) and (ii) is analogous to the proof of Theorem 3 in Ke and Ryan (2018). In
both cases, a, â, and b are fixed constants. The difference here is that the no-jump con-
straint defining (SAND|b) is an inequality, while in Ke and Ryan (2018) the no-jump con-
straint is an equality. However, this only changes the complementary slackness proper-
ties, as detailed in the lemma. Moreover, in Ke and Ryan (2018) we need not entertain
the case where â = a. Fortunately, the case where â = a is straightforward, since then
(SAND|a� â� b) is solved by the first-best contract, which is unique. Further details are
omitted.

The proof of (iii) and (iv) is standard by applying the theorem of maximum. Details
are omitted.

Assumption 2 is required in the proof of Theorem 3 in Ke and Ryan (2018), and that
is also why it is required here.
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A.4 Proof of Lemma 4

For convenience, we denote

V ∗(a� â|b)= max
w≥w

{
V (w�a) :U(w�a)≥ b�U(w�a)−U(w� â)≥ 0

}
�

If infâ V ∗(a� â|b) is not attained, it must be that the infimizing sequence converges to a
(for more details on this argument, see the discussion following Lemma 3 is the main
text of the paper). We can decompose the minimization problem as

inf
â

max
w≥w

{
V (w�a) :U(w�a)≥ b�U(w�a)−U(w� â)≥ 0

}
= inf

{
inf
â≤a

V ∗(a� â|b)� inf
â≥a

V ∗(a� â|b)
}
�

Case 1: infâ≤a V ∗(a� â|b)= infâ V ∗(a� â|b). We begin by observing that if infâ≤a V ∗(a� â|b)
has an infimizing sequence that does not converge to a, then by the supposition of
nonexistence, we must have

inf
â≤a

V ∗(a� â|b) > inf
â
V ∗(a� â|b)�

In this case, we switch to consider infâ≥a V ∗(a� â|b), which is discussed in Case 2 below.
By the mean-value theorem, there exists an ã ∈ [â� a] such that (U(w�a)−U(w� â))/

(a− â)=Ua(w� ã). Therefore, we have the equivalence

inf
â≤a

V ∗(a� â|b)= inf
â≤a

max
w≥w

{
V
(
w�a∗) :U(w�a)≥ b� U(w�a)−U(w� â)

a− â ≥ 0
}

= lim
â→a− max

w≥w

{
V
(
w�a∗) :U(w�a)≥ b� U(w�a)−U(w� â)

a− â ≥ 0
}

= lim
ã→a− max

w≥w
{
V (w�a) :U(w�a)≥ b�Ua(w� ã)≥ 0

}
�

(35)

Note that maxw≥w{V (w�a) :U(w�a)≥ b�Ua(w� ã)≥ 0} is continuous in ã (sinceU is con-
tinuously differentiable in a) and, as mentioned above, the infimizing sequence con-
verges to a and so a minimizer exists to (35), yielding

inf
â≤a

V ∗(a� â|b)= max
w≥w

{
V (w�a) :U(w�a)≥ b�Ua(w�a)≥ 0

}
�

It remains to show that the constraint Ua(w�a)≥ 0 is binding for any a ∈ intA and slack
only if a= ā. Suppose that the constraint in the above problem is slack at the optimum,
i.e., Ua(w�a) > 0. Then the Lagrangian multiplier is zero and we have

max
w≥w

{
V (w�a) :U(w�a)≥ b�Ua(w�a)≥ 0

}= max
w≥w

{
V (w�a) :U(w�a)≥ b}�

This means that wfb(a|b) solves maxw≥w{V (w�a) : U(w�a) ≥ b�Ua(w�a) ≥ 0}, where
wfb(a|b) is the first-best contract. Equivalently, we have

inf
â
V ∗(a� â|b)= max

w≥w
{
V (w�a) :U(w�a)≥ b}� (36)
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We now claim that wfb(a|b) implements a. Continuing from (36) and letting â′ ∈
aBR(wfb(a|b)), we have

inf
â
V ∗(a� â|b)≤ V ∗(a� â′|b)≤ max

w≥w
{
V (w�a) :U(w�a)≥ b}= inf

â
V ∗(a� â|b)�

where the first inequality is by the definition of minimization and the second inequality
is straightforward by withdrawing a constraint from the maximization problem. There-
fore, all inequalities become equalities and wfb(a|b) satisfies the no-jump constraint
U(w�a) − U(w� â′) ≥ 0. This implies a ∈ aBR(wfb(a|b)). Therefore, for any a ∈ intA,
Ua(w

fb(a|b)�a)= 0, and Ua(wfb(a|b)�a) > 0 only occurs when a= ā, where wfb(ā|b) im-
plements ā. This completes Case 1.

Case 2: infâ≥a V ∗(a� â|b)= infâ V ∗(a� â|b). In this case, we have the equivalence

inf
â≥a

V ∗(a� â|b)= lim
â→a+ max

w≥w

{
V
(
w�a∗) :U(w�a)≥ b� U(w�a)−U(w� â)

a− â ≤ 0
}

= lim
â→a+ max

w≥w
{
V (w�a) :U(w�a)≥ b�Ua(w� ã)≤ 0

}
�

The rest of the argument is quite similar to Case 1 and thus is omitted. Combining these
two cases, we have the desired conclusion.

A.5 Proof of Lemma 5

We require the following lemma.

Lemma 9 (Theorem 6 in Section 8.5 of Lasdon (2011)). Consider a maximization prob-
lem

max
y

{
f (y) : g(y)≥ 0

}
�

where f : Y→R and g : Y→R
k for some compact subset Y⊂ R

n. Assume that both f and
g are continuous and differentiable. If the Lagrangian L(y�α)= f (y)+ α · g(y) is strictly
concave in y, then

max
y

{
f (y) : g(y)≥ 0

}= inf
α≥0

max
y
L(y�α)�

where we assume the maximum of L(y�α) over y exists for any given α.

Proof of Lemma 5. When the infimum in (SAND|b) is not attained or attained at a#,
the result follows a standard application of duality theory via Lemma 9, due to Lemma 4.

We now consider the case where the infimum is attained. Let (a∗� â∗� z∗) be an opti-
mal solution (SAND|b); that is,

V
(
z∗� a∗)= max

a∈A
inf
â∈A

max
z≥z
{
V (z�a) :U(z�a)≥ b�U(z�a)−U(z� â)≥ 0

}
�
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Given a∗, consider the Lagrangian dual of the inner maximization problem over z;
that is,

L
(
z�λ�δ|a∗� â∗� b

)= V (z�a∗)+ λ[U(z�a∗)− b]+ δ[U(z�a∗)−U(z� â∗)]�
Note that L is strictly concave in z since V (z�a∗) = v(π(x0) − z) is concave and
U(z�a∗) = u(z) is strictly concave in z, and the term involving δ is a function only of
a sinceU(z�a∗)−U(z� â)= u(z)− c(a∗)− (u(z)− c(â))= c(â)− c(a∗). Lemma 9 implies

inf
â∈A

max
z≥z
{
V
(
z�a∗) :U(z�a∗)≥ d�U(z�a∗)−U(z� â)≥ 0

}
= inf
â∈A

inf
λ�δ≥0

max
z≥z L

(
z�λ�δ|a∗� â� d

) (37)

for all d ∈ [b�b+ε). We now consider three cases. We show that the first two cases do not
occur, leaving only the third case where we can establish the result. The cases consider
how perturbing b can effect the primal and dual problems in (37).

Case 1. The set
⋂
â∈A{z : U(z�a∗) ≥ b+ ε�U(z�a∗)−U(z� â) ≥ 0} is empty for any arbi-

trarily small ε > 0. Here, the Lagrangian multiplier

λ
(
a∗� â∗

ε

) ∈ arg inf
λ�δ≥0

max
z≥z L

(
z�λ�δ|a∗� â� b+ ε)

is unbounded, where â∗
ε ∈ arg minâ infλ≥0�δ≥0 maxz≥z L(z�λ�δ|a∗� â� b + ε). Also, U(z∗

ε�

a∗) < b+ ε for any z∗
ε such that

L
(
z∗
ε�λ
(
a∗� â∗

ε

)
� δ
(
a∗� â∗

ε

)|a∗� â∗
ε� b+ ε)= inf

λ≥0
inf
δ≥0

max
z≥z L

(
z�λ�δ|a∗� â� b+ ε)�

Therefore, we choose a sequence εn = ε/n and we have

U
(
z∗
εn
� a∗)− b− εn < 0�

where z∗
εn

is a sequence such that

V
(
z∗
εn
� a∗)= inf

â∈A
inf

λ≥0�δ≥0
max
z≥z L

(
z�λ�δ|a∗� â� b+ εn

)
�

Note that (z∗
ε� a

∗
ε� â

∗
ε) is upper hemicontinuous in ε by the theorem of maximum.

Then as n → ∞, the limit (z∗
0� a

∗
0� â

∗
0;λ(a∗

0� â
∗
0)�δ(a

∗
0� â

∗
0)) is a solution to the problem

without perturbation (ε= 0). Without loss of generality, we choose(
z∗� a∗� â∗;λ(a∗� â∗)� δ(a∗� â∗))= (z∗

0� a
∗
0� â

∗
0;λ
(
a∗

0� â
∗
0
)
� δ
(
a∗

0� â
∗
0
))
�

Then, passing to the limit (taking a subsequence if necessary), z∗
εn

→ z∗ and we have

lim
n→∞

[
U
(
z∗
εn
� a∗)− b− εn

]=U(z∗� a∗)− b≤ 0�

which contradicts the supposition U(z∗� a∗) > b.

Case 2. The set
⋂
â∈A{z : U(z�a∗) ≥ b + ε�U(z�a∗) − U(z� â) ≥ 0} is nonempty and

λ(a∗� â∗
ε) > 0, for any ε > 0. Note that λ(a∗� â∗

ε) > 0 implies that the constraintU(z∗
ε� a

∗)≥
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b+ε is binding given strong duality. We choose a sequence εn = ε/n. Passing to the limit
(taking a subsequence if necessary), z∗

εn
→ z∗ and we have

0 = lim
n→∞

[
U
(
z∗
εn
� a∗)− b− εn

]=U(z∗� a∗)− b�
which contradicts with the supposition U(z∗� a∗) > b.

Case 3. The set
⋂
â∈A{z : U(z�a∗) ≥ U∗ + ε�U(z�a∗) − U(z� â) ≥ 0} is nonempty and

λ(a∗� â∗
ε)= 0 for some arbitrarily small ε > 0. Given λ(a∗� â∗

ε)= 0, we have

V
(
z∗
ε� a

∗) = max
z
V
(
z�a∗)+ λ(a∗� â∗

ε

)(
U
(
z�a∗)− b− ε)+ δ(a∗� â∗

ε

)(
U
(
z�a∗)−U(z� â∗

ε

))
= max

z
V
(
z�a∗)+ λ(a∗� â∗

ε

)(
U
(
z�a∗)− b)+ δ(a∗� â∗

ε

)(
U
(
z�a∗)− u(z� â∗

ε

))
≥ inf

â
inf
λ�δ≥0

max
z
V
(
z�a∗)+ λ(U(z�a∗)− b)+ δ(U(z�a∗)−U(z� â∗

ε

))
= V

(
z∗� a∗)�

We already know that V (z∗� a∗) ≥ V (z∗
ε� a

∗) since ε > 0. Therefore, we have shown
V (z∗

ε� a
∗)= V (z∗� a∗), as required.

The above argument shows that as we increase b to b+ ε, we can find a new optimal
contract that does not change the objective value. This can be repeated until we find a
sufficiently large ε such that U(z∗

ε� a
∗
ε)= b+ ε. �

A.6 Proof of Theorem 1

There are two cases to consider. The first is when the inner inf in (SAND|b) is not at-
tained. This is handled by the following lemma.

Lemma 10. Suppose b is tight at optimality and the sandwich problem (SAND|b) has
solution (a∗�w∗), where the inner minimization does not have a solution. Then, given the
action a∗ and with modified (IR) constraint U(w�a∗)≥ b, the FOA is valid. That is,

val(P) = max
w≥w

{
V
(
w�a∗) :U(w�a∗)≥ b and

(
FOC

(
a∗))}= val(SAND|b)�

Proof. We first argue that aBR(w(b)) is not a singleton. Suppose there exists an â∗ 	=
a∗ such that the GMH contract w(a∗� â∗� b) implements a∗ (see Proposition 6 and also
Remark 4 in Ke and Ryan 2018), i.e., V (w(a∗� â∗� b)�a∗)= val(P). Note that for any â ∈A,

val
(
SAND|a∗� â� b

)≥ max
(w�a∗)

{
V
(
w�a∗) :U(w�a∗)≥U∗� a∗ ∈ aBR(w)

}
�

Therefore, â∗ is the solution to the inner minimization problem

â∗ ∈ arg min
â
V ∗(a∗� â|b)�

which contradicts the supposition of nonexistence. Therefore, the best-response set
aBR(w(b)) must be a singleton, i.e., a∗ is the unique best response at the optimal so-
lution. In this case, according to Mirrlees (1999), all no-jump constraints are slack at
optimality and the FOA is valid (up to the modified IR constraint U(w�a∗)≥ b).
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Finally, by Lemma 4, we know that val(SAND|b) is equal to the value of the FOA with
modified IR constraint U(w�a∗)≥ b. �

We now return to the case where the infimum in (SAND|b) is attained. The proof
proceeds in two stages. In the first stage, we examine a subclass of problems where the
agent’s action a is given. In the second stage, we illustrate how to determine the right
choice for a.

Remark 1. We remark that the analysis of the first stage of the proof is drawn from re-
sults in Ke and Ryan (2018). In that paper it is assumed that an action a∗ is given and
is implemented by an optimal contract w∗ such that U(w∗� a∗)= U . In this setting, the
assumption that U(w∗� a∗)= U is without loss of interest, since we assume that a∗ and
w∗ are given, and so U can be defined as U(w∗� a∗). The assumption that U(w∗� a∗)=U
is critical in Section 4 of Ke and Ryan (2018). See Remark 4 of that paper for further dis-
cussion of this point. This is an important difference with our current analysis. Here we
no longer assume that a target a∗ is given and so we cannot assume without loss of gen-
erality that U(w∗� a∗)= U . Indeed, uncovering a method to find w∗ and a∗ is the focus
of this paper.

Accordingly, the analysis here proceeds in a different manner than Ke and Ryan
(2018). First, Ke and Ryan (2018) consider a simpler version of (Min-Max|a�b′) where
the no-jump constraint is an equality. This is sufficient in that setting because they do
not need to further analyze this problem to determine a∗; it is simply given. This over-
simplifies the current development. Moreover, Stage 2 is not needed to analyze the sit-
uation in Ke and Ryan (2018). The added complexity of Stage 2 arises precisely because
the optimal action for the agent and the utility delivered to the agent at optimality are
both a priori unknown.

A.6.1 Analysis of Stage 1 Define the following intermediate problem, which is the
parametric problem (P|b′) with b′ ≥U and the agent’s action a fixed:

max
w≥w V (w�a)

subject to U(w�a)≥ b′ (P|a�b′)

U(w�a)−U(w� â)≥ 0 for all â ∈A�

We restrict attention to where the above problem is feasible; that is, a is an imple-
mentable action that delivers at least utility b′ to the agent. Note that we need not take
b′ equal to the b that is tight at optimality provided in the hypothesis of the theorem. It
is an arbitrary b′ ≥U with the above property.

We can define the related problem

inf
â∈A

max
w≥w

{
V (w�a) :U(w�a)≥ b′�U(w�a)−U(w� â)≥ 0

}
� (Min-Max|a�b′)

We denote an optimal solution to (Min-Max|a�b′) by â(a�b′) and wa�b′ .
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Note that (P|a�b′) is analogous to (P|b) and (Min-Max|a�b′) is analogous to (SAND|b),
however with a given. The key result is an implication of Theorem 4 in Ke and Ryan
(2018) carefully adapted to this setting.

Proposition 6. Suppose Assumptions 1–4 hold. Let a be an implementable action and
let b′ = U(wa�U�a), where wa�U is an optimal solution to (P|a�U). Then wa�b

′
is equal to

wa�b′ , an optimal solution to (Min-Max|a�b′). In particular, wa�b′ is a GMH contract that
implements a,U(wa�b�a)= b′, and â(a�b′) is an alternate best response towa�b′ . Moreover,
the Lagrange multipliers λ(a�b′) and δ(a�b′) in problem (SAND|a� â(a�b′)�b′) are both
positive.

Proof. The proof mimics the development in Section 4 of Ke and Ryan (2018) with two
key differences. First, Ke and Ryan (2018) do not work with problem (Min-Max|a�b′), but
instead with a relaxed problem where â is given.9 Moreover, the relaxed problem (P|â)
in Ke and Ryan (2018) was defined where the no-jump constraint was an equality. This
suffices there because the target action a∗ is given. We need more flexibility here and,
hence, to follow the logic of Ke and Ryan (2018), we must establish the following claims.

Claim 2. Let (wa�b′� â(a�b′)) be an optimal solution to (Min-Max|a�b′). Then

U(wa�b′� a)−U(wa�b′� â
(
a�b′))= 0� (38)

Proof. We argue that the Lagrangian multiplier δ∗ in Lemma 3 applied to (SAND|a�
â(a�b′)�b′) is strictly greater than zero. Then complementary slackness (Lemma 3(ii-b))
implies that (38) holds.

Suppose δ∗ = 0. This implies that wa∗ is the first-best contract, denoted wfb(b′). We
want to show that a∗ is implemented by wfb(b′). This, in turn, implies that the first-best
contract is optimal, contradicting Assumption 3. Let â′ ∈ aBR(wfb(b′)) and observe that

val
(
SAND|a∗� â

(
a∗)� b′)

= V (wfb(b′)� a∗)
= inf
â∈A

inf
λ�δ

max
w≥wL

(
w�λ�δ|a∗� â� b′)

≤ inf
λ�δ

max
w≥wL

(
w�λ�δ|a∗� â′� b′)

= max
w≥w

{
V
(
w�a∗) :U(w�a∗)≥ b′�U

(
w�a∗)−U(w� â′)≥ 0

}
≤ max
w≥w

{
V
(
w�a∗) :U(w�a∗)≥ b′}

= V (wfb(b′)� a∗)�

(39)

where the second equality is by strong duality, the first inequality is by the definition of
a minimizer, the third equality is again by strong duality, and the final inequality follows

9In that paper (Ke and Ryan 2018), which determines the optimal choice of â∗, see the definition of â∗ in
equation (39).
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since we have relaxed a constraint. Therefore, all inequalities in the above expression
are equalities.

If U(wfb(b′)�a∗) = U(wfb(b′)� â′), then a∗ is a best response to wfb(b′) and we
are done. Otherwise, from (39) we must assume δ(a∗� â′) = 0. This follows by the
uniqueness of Lagrangian multipliers (Lemma 3). Therefore, wfb(b′) is the solution
to arg maxw≥w{V (w�a∗) : U(w�a∗) ≥ b′�U(w�a∗) − U(w� â′) ≥ 0} and U(wfb(b′)�a∗) −
U(wfb(b′)� â′) ≥ 0 is satisfied. Since â′ ∈ aBR(wfb(b′)), we have a∗ ∈ aBR(wfb(b′)) as de-
sired. �

The next two claims are adapted from Ke and Ryan (2018). To state them, we need
some additional definitions. We let

T(x)≡ v′(π(x)−w∗(x)
)

u′(w∗(x)
)

and

R(x)≡ 1 − f
(
x� â

(
a�b′))

f (x�a)
�

Let

X ∗
w = {x ∈ X :w∗(x)=w}�

We say two functions ϕ and ψ with shared domain X are co-monotone on the set
S ⊆ X if ϕ and ψ are either both nonincreasing or both nondecreasing in S. If ϕ and ψ
are co-monotone on all of X , we simply say that ϕ and ψ are co-monotone.

Claim 3. If both T(x) and R(x) are co-monotone functions of x on X \ X ∗
w, then w∗ is

equal to wa�b′ . Moreover, the Lagrangian multipliers λ and δ associated with the dual of
(SAND|a� â(a�b′)�b′) are strictly positive.

Proof. This proof is Corollary 5 of Ke and Ryan (2018), setting U in that paper to b′.
The condition that a is an implementable action and b′ = U(wa�U�a), where wa�U is an
optimal solution to (P|a�U), is required for this proof to hold. �

The next result is to establish how our assumptions on the output distribution (As-
sumption 4) guarantee co-monotonicity.

Claim 4. If Assumptions 1–4 hold, then T(x) and R(x) are co-monotone on X \X ∗
w.

Proof. This proof is Lemma 4 of Ke and Ryan (2018). Note that the condition that a
be an implementable action and b′ = U(wa�U�a), where wa�U is an optimal solution to
(P|a�U), is required for this proof to hold. Moreover, this also requires Claim 2, where the
equality of the no-jump constraint is used to establish (C.14) in the online e-companion
of Ke and Ryan (2018). �
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Putting the last two claims together yields Proposition 6. �

An easy implication of the above proposition is that

val(Min-Max|a�b′) = val(P|a�b′)

whenever a is implementable and delivers the agent utility b′ in optimality. This will
prove to be a useful result in the rest of the proof of Theorem 1. It remains to determine
the right implementable a. This is the task of Stage 2.

A.6.2 Analysis of Stage 2 Recall that we are working with a specific b = U(w∗� a∗),
where (w∗� a∗) is an optimal solution to (P) (guaranteed to exist by Assumption 3). The
goal of the rest of the proof is to show that val(P) = val(SAND|b).

We divide this stage of the proof into two further substages. The first substage (Stage
2.1) shows the equivalence between the original problem and a variational max-min-
max problem. This intermediate variational problem allows us to leverage the single-
dimensional reasoning on display in the proof of Theorem 1 in the single-outcome case
in the main body of the paper.

The second substage (Stage 2.2) shows the equivalence between this variational
max-min-max and the sandwich problem (SAND|b).

Stage 2.1. We lighten the notation of Stage 1 and let wa denote an optimal solution to
(Min-Max|a�b)with optimal alternate best response â(a)when b is our target agent util-
ity. We construct a variational problem based on wa as follows. Given z ∈ [−1�1], define
a set of variations

H(a� z)≡ {h≤ h̄(x) : h(x)= 0 if wa(x)=w and wa + zh≥w otherwise
}
�

where h̄(x) > wa(x) is sufficiently large, but also where
∫
h̄(x)f (x�a)dx < K < ∞ for

someK. We add an additional restriction:

M(a� z) =
{
h ∈ H(a� z) :

∫
v′(π(x)−wa(x)

)
h(x)f (x�a)dx≥ 0�

∫
u′(wa(x))h(x)f (x�a)dx≥ 0

}
�

If h ∈ M(a� z), then it is not plausible for both the principal and agent to be strictly bet-
ter off under the variational problem as compared to the original problem. They have
a direct conflict of interest in z. This puts us into a situation analogous to the single-
outcome case.

We now show the equivalence

val(P) = val(Var|b)� (40)

where (Var|b) is the variational optimization problem

max
a∈A

inf
â∈A

max
z∈[−1�1]

max
h∈M(a�z)

{
V (wa + zh�a) : (wa�a) ∈ W(â� b)

}
� (Var|b)
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The ≤ direction of (40) is straightforward since

max
a∈A

inf
â∈A

max
z∈[−1�1]

max
h∈M(a�z)

{
V (wa + zh�a) : (wa�a) ∈ W(â� b)

}
≥ inf
â∈A

max
z∈[−1�1]

max
h∈M(a∗�z)

{
V
(
wa∗ + zh�a∗) : (wa∗ + zh�a∗) ∈ W(â� b)

}
≥ V (wa∗� a∗)= val(P)�

where the first inequality follows since the optimal action a∗ is a feasible choice for a
in the outer maximization, the second inequality follows by taking z = 0, and the final
equality holds from Proposition 6.

It remains to consider the ≥ direction of (40). The following claim is analogous
Lemma 9 in the proof of Lemma 5.

Claim 5. Given any â and a, strong duality holds for (Var|b). That is, for a given z ∈
[−1�1],

max
h∈M(a�z)

{
V (wa + zh�a) : (wa + zh�a) ∈ W(â� b)

}
= inf
λ�δ�γ≥0

max
h∈H(a�z)

Lh(zh�λ�δ�γ|a� â� b)�
(41)

where

Lh(zh�λ�δ�γ|a� â� b)= V (wa + zh�a)+ λ[U(wa + zh�a)− b]
+ δ[U(wa + zh�a)−U(wa + zh� â)]
+ sgn(z)γ1

∫
v′(π(x)−wa(x)

)
zh(x)f (x�a)dx

+ sgn(z)γ2

∫
u′(wa(x))zh(x)f (x�a)dx

is the Lagrangian function (which combines the choice of z and h into the product zh since
this is how z and h appear in both the objective and the constraints), and λ ≥ 0, δ ≥ 0,
and γ = (γ1�γ2) ≥ 0 are the Lagrangian multipliers for the remaining constraints that
define M(a� z). Moreover, given that h∗(·|z) solves (41) as a function of z, complementary
slackness holds for the optimal choice of z ∈ argmaxz∈[−1�1] maxh∈M(a�z){V (wa + zh�a) :
(wa + zh�a) ∈ W(â� b)}; that is,

λ
[
U
(
wa + zh∗(·|z)�a)− b]= 0� λ≥ 0�U

(
wa + zh∗(·|z)�a)− b≥ 0�

δ
[
U(wa + zh�a)−U(wa + zh∗(·|z)� â)]= 0�

δ≥ 0�U
(
wa + zh∗(·|z)�a)≥U(wa + zh∗(·|z)� â)�

γ1

∫
v′(π(x)−wa(x)

)
h∗(x|z)f (x�a)dx= 0�

γ1 ≥ 0�
∫
v′(π(x)−wa(x)

)
h∗(x|z)f (x�a)dx≥ 0�

γ2

∫
u′(wa(x))h∗(x|z)f (x�a)dx= 0� γ2 ≥ 0�

∫
u′(wa(x))h∗(x|z)f (x�a)dx≥ 0�
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Proof. By weak duality the ≤ direction of (41) is immediate. It remains to consider
the ≥ direction. For every λ, δ, and γ, maxh∈H(a�z)Lh(zh�λ�δ�γ|a� â� b) is convex in
(λ�δ�γ). Let ((zh)∗�λ∗� δ∗�γ∗) denote an optimal solution to the right-hand side of (41).
To establish strong duality, we want to show a complementary slackness condition with
(λ∗� δ∗�γ∗).

The optimization of Lh(zh�λ�δ�γ|a� â� b) over zh can be done in a pointwise manner
similar to how we approached (SAND|a� â� b). Given z, by the concavity and monotonic-
ity of v and u, the optimal solution h(x|z) to maxh∈H(a�â�z)Lh(zh�λ�δ�γ|a� â� b) must
satisfy the following necessary and sufficient conditions:

(i) When z ≥ 0, zh(x|z) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v′(π(x)−wa(x)− zh(x|z))
u′(wa(x)+ zh(x|z)) =

[
λ+ δ

(
1 − f (x� â)

f (x�a)

)]
+ γ1v

′(π −wa)+ γ2u
′(wa)

zu′(wa(x)+ zh(x|z))
if
v′(π(x)−wa(x)

)
u′(wa(x))

(
1 − γ1

z

)

< λ+ δ
(

1 − f (x� â)

f (x�a)

)
+ γ2

z

≤ v′(π(x)−wa(x)− zh̄(x))
u′(wa(x)+ zh̄(x)) − γ1v

′(π −wa)+ γ2u
′(wa)

zu′(wa(x)+ zh̄(x)) �

h(x|z)= 0

if
v′(π(x)−wa(x)

)
u′(wa(x))

(
1 − γ1

z

)
≥ λ+ δ

(
1 − f (x� â)

f (x�a)

)
+ γ2

z
�

h(x|z)= h̄(x)
if λ+ δ

(
1 − f (x� â)

f (x�a)

)
+ γ2

z
>
v′(π(x)−wa(x)− zh̄(x))

u′(wa(x)+ zh̄(x)) − γ1v
′(π −wa)+ γ2u

′(wa)
zu′(wa(x)+ zh̄(x)) �

(ii) When z ≤ 0, zh(x|z) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v′(π(x)−wa(x)− zh(x|z))
u′(wa(x)+ zh(x|z)) =

[
λ+ δ

(
1 − f (x� â)

f (x�a)

)]
+ γ1v

′(π −wa)+ γ2u
′(wa)

u′(wa(x)+ zh(x|z))
if
v′(π(x)−wa(x)

)
u′(wa(x))

(
1 − γ1

z

)

> λ+ δ
(

1 − f (x� â)

f (x�a)

)
+ γ2

z

≥ v′(π(x)−wa(x)− zh̄(x))
u′(wa(x)+ zh̄(x)) − γ1v

′(π −wa)+ γ2u
′(wa)

zu′(wa(x)+ zh̄(x)) �

h(x|z)= 0

if
v′(π(x)−wa(x)

)
u′(wa(x))

(
1 − γ1

z

)
≤ λ+ δ

(
1 − f (x� â)

f (x�a)

)
+ γ2

z
�

h(x|z)= h̄(x)
if λ+ δ

(
1 − f (x� â)

f (x�a)

)
+ γ2

z
<
v′(π(x)−wa(x)− zh̄(x))

u′(wa(x)+ zh̄(x)) − γ1v
′(π −wa)+ γ2u

′(wa)
zu′(wa(x)+ zh̄(x)) �
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Now we show that, given z, we have the strong duality

max
h∈M(a�z)

{
V (wa + zh�a) : (wa + zh�a) ∈ W(â� b)

}= inf
λ�δ�γ≥0

max
h∈H(a�z)

L̃h(zh�λ�δ�γ|a� â� b)�

where the Lagrangian is

L̃h(zh�λ�δ�γ|a� â� b) = V (wa + zh�a)+ λ[U(wa + zh�a)−U∗]
+ δ[U(wa + zh�a)−U(wa + zh� â)]
+ γ1

∫
v′(π(x)−wa(x)

)
h(x)f (x�a)dx

+ γ2

∫
u′(wa(x))h(x)f (x�a)dx�

This result follows the uniqueness of h(x|z) as the maximizer of L̃h(zh�λ�δ�γ|a� â� b)
over h. Therefore, the Lagrangian dual functionψ(λ�δ�γ|z)= maxh∈H(a�z)Lh(zh�λ�δ�γ|
a� â� b) is continuous, differentiable, and convex in (λ�δ�γ). This allows us to establish
strong duality using similar reasoning as in the proof of Lemma 3.

Let z∗ denote the optimal choice of z. We discuss the case where z∗ > 0. The case
where z∗ < 0 is similar and thus is omitted. In this case, the constraint∫

v′(π(x)−wa(x)
)
h(x)f (x�a)dx≥ 0

is equivalent to
∫
v′(π(x) − wa(x))zh(x)f (x�a)dx ≥ 0 and

∫
u′(wa(x))h(x)f (x�a)dx is

equivalent to
∫
u′(wa)zhf (x�a)dx≥ 0. Since h(x|z) is uniquely determined, it is contin-

uous in z. Let

h∗(x|z∗) ∈ arg max
h∈H(a�z)

{
V
(
wa + z∗h�a

) : (wa + z∗h�a
) ∈ W(â� b)

}
be the unique solution to the problem given z∗. Note that

∫
v′(π(x)−wa(x))h∗(x|z∗)f (x�

a)dx > 0 and
∫
u′(wa(x))h∗(x|z∗)f (x�a)dx > (1/z)

∫
(u(wa(x)+z∗h∗(x|z))−u(wa(x))×

f (x�a)dx≥ 0, and

−
∫
v′(π(x)−wa(x)− z∗h

(
x|z∗))h∗(x|z∗)f (x�a)dx

<−
∫
v′(π(x)−wa(x)

)
h∗(x|z∗)f (x�a)dx

< 0�

Then there must exist Lagrange multipliers (λo�δo�γo) such that

0 = ∂

∂z
Lh
(
z∗h∗(x|z∗)�λo�δo�γo|a� â� b)

=
∫ (

−v′(π(x)−wa(x)− z∗h∗(x|z∗))
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+
[
λo + δo

(
1 − f (x� â)

f (x�a)

)]
u′(wa(x)+ z∗h∗(x|z∗))

+ γo1 v′(π(x)−wa(x)
)+ γo2u′(wa(x))

)
h
(
x|z∗)f (x�a)dx

and (λo�δo�γo) satisfies the complementarity slackness condition. �

The above claim is used to establish another important technical result. The proof
is completely analogous to the proof of Lemma 5 in the single-outcome case and thus
isomitted.

Claim 6. Let (a∗� â∗� z∗�h∗) be an optimal solution to (Var|b) such that U(wa∗ +
z∗h∗� a∗) > b. Then there exists an ε > 0 and optimal solution (a∗

ε� â
∗
ε� z

∗�h∗
ε) such that

U(wa∗
ε
+ z∗h∗

ε� a
∗
ε)= b+ ε and V (wa∗ + z∗h∗� a∗)= V (wa∗

ε
+ z∗h∗

ε� a
∗
ε).

Via Claim 6, there exists a b∗ ≥ b and an optimal solution (ã∗� â∗� z∗�h∗) to (Var|b)
such that val(Var|b) = val(Var|b∗) and U(wã∗ + z∗h∗� ã∗) = b∗. It then suffices to argue
that ã∗ is implementable (and thus feasible to (P)), thus satisfying (40).

To establish implementability, we let â′ ∈ aBR(wã∗ + z∗h∗) and claim

V
(
wã∗ + z∗h∗� ã∗)
= max
z∈[−1�1]

max
h∈M̃(ã∗�z)

{
V
(
wã∗ + z∗h∗ + zh� ã∗) :

(
wã∗ + z∗h∗ + zh� ã∗) ∈ W

(
â′� b∗)}�

(42)

where

M̃
(
ã∗� z

)=
⎧⎪⎪⎨
⎪⎪⎩h ∈ H̃

(
ã∗� z

) :
∫
v′(π(x)−wã∗(x)− z∗h∗(x)

)
h(x)f

(
x� ã∗)dx≥ 0�

∫
u′(wã∗(x)+ z∗h∗(x)

)
h(x)f

(
x� ã∗)dx≥ 0

⎫⎪⎪⎬
⎪⎪⎭

and

H̃(a� z) ≡ {h≤ h̄(x) : h(x)= 0 if wa(x)+ z∗h∗(x)+ zh(x)=w and

wa + z∗h∗ + zh≥w otherwise
}
�

If (42) holds, then ã∗ is indeed implementable since zh = 0 is a solution to the
right-hand side problem. The condition in the right-hand side that (wã∗ + z∗h∗� ã∗) ∈
W(â′� b∗) implies U(wã∗ + z∗h∗� ã∗) ≥ U(wã∗ + z∗h∗� â′) and so ã∗ itself must be a best
response to wã∗ + z∗h∗.

To establish (42), note that ≤ follows immediately since (ã∗� â∗� z∗�h∗) solves the left-
hand side of (40), whereas in the right-hand side of (42), a particular â is chosen (namely
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â′) and there is an additional degree of freedom zh. Next suppose that

V
(
wã∗ + z∗h∗� ã∗)
< max
z∈[−1�1]

max
h∈M̃(ã∗�z)

{
V
(
wã∗ + z∗h∗ + zh� ã∗) :

(
wã∗ + z∗h∗ + zh� ã∗) ∈ W

(
â′� b∗)}

(43)

and derive a contradiction.
Let (z∗′�h∗′) denote an optimal solution to maxz∈[−1�1] maxh∈M̃(ã∗�z){V (wã∗ + z∗h∗ +

zh� ã∗) : (wã∗ +z∗h∗+zh� ã∗) ∈ W(â′� b∗)}. If (43) holds, then V (wã∗ +z∗h∗� ã∗) < V (wã∗ +
z∗h∗ + z∗′h∗′� ã∗) and, thus,

0 < V
(
wã∗ + z∗h∗ + z∗′h∗′� ã∗)− V (wã∗ + z∗h∗� ã∗)

≤ −z∗′
∫
h∗′(x)v′(π(x)−wã∗(x) − z∗h∗(x)

)
f
(
x� ã∗)dx

since v is concave. Note that
∫
h∗′v′(π − wã∗ − z∗h∗)f (x� ã∗)dx = 0 will generate the

contradiction 0< 0. This further implies z∗′ ≤ 0 since
∫
h∗′v′(π−wã∗ −z∗h∗)f (x� ã∗)dx≥

0 by design of the variation set M̃(ã∗� z). This, in turn, implies b∗ =U(wã∗ + z∗h∗� ã∗) >
U(wã∗ + z∗h∗ + z∗′h∗′� ã∗) since u is concave and

∫
h∗′u′(wã∗ + z∗h∗)]f (x� ã∗)dx ≥ 0 by

design of the variation set M̃(ã∗� z):

U
(
wã∗ + z∗h∗ + z∗′h∗′� ã∗)−U(wã∗ + z∗h∗� ã∗)
=
∫ [
u
(
wã∗(x)+ z∗h∗(x)+ z∗′h∗′(x)

)− u(wã∗(x)+ z∗h∗(x)
)]
f
(
x� ã∗)dx

<

∫
z∗′h∗′(x)u′(wã∗(x)+ z∗h∗(x)

)]f (x� ã∗)dx�
≤ 0�

This is a contradiction, since the constraint (wã∗ + z∗h∗ + z∗′h∗′� ã∗) ∈ W(â′� b∗) implies
U(wã∗ + z∗h∗ + z∗′h∗′� ã∗)≥ b∗. This completes Stage 2.1.

Stage 2.2. It remains to show

val(Var|b) = val(SAND|b)� (44)

Combined with (40), this shows that val(P) = val(SAND|b), finishing the proof. The di-
rection

val(Var|b) = max
a∈A

inf
â∈A

max
z∈[−1�1]

max
h∈M(a�z)

{
V (wa + zh�a) : (wa + zh�a) ∈ W(â� b)

}
≤ max

a∈A
inf
â∈A

max
w≥w

{
V (w�a) : (w�a) ∈ W(â� b)

}= val(SAND|b)

follows immediately. It remains to show the ≥ direction of (44).
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Let (a#� â#�wa#) be an optimal solution to (SAND|b) that delivers utility b′ ≥ b to the
agent. That is, the constraint U(w�a)= b′ is binding in (SAND|b′). We have

val(Var|b) ≥ inf
â∈A

max
z∈[−1�1]

max
h∈M(a#�z)

{
V
(
wa# + zh�a#) : (wa# + zh�a#) ∈ W(â� b)

}
(45)

≥ inf
â∈A

max
z∈[−1�1]

max
h∈M(a#�z)

{
V
(
wa# + zh�a#) : (wa# + zh�a#) ∈ W

(
â� b′)} (46)

= max
z∈[−1�1]

max
h∈M(a#�z)

{
V
(
wa# + zh�a#) : (wa# + zh�a#) ∈ W

(
â0� b′)}� (47)

where â0 is any action in the argmin of the right-hand side of (46). If such an action does
not exist, we use a first-order condition following Lemma 4. The details of this case are
analogous and thus are omitted. Let (z#�h#) be in the argmax of the right-hand side
of (47). It suffices to show that val(SAND|b) is equal to the value of the right-hand side
of (47). Observe that val(SAND|b) = val(SAND|b′) and so in the sequel we work with b′
without loss.

We argue this in two further substages: (i) We argue that val(47) = val(Min-Max|a#�

b#), where b# =U(wa# + z#h#� a#)≥ b′; for this we use Proposition 6 of Stage 1. (ii) We
argue that, in fact b′ = b#. In this case, val(Min-Max|a#� b#) = val(Min-Max|a#� b′) =
val(SAND|b′) since (a#� â#�w#) is an optimal solution to (SAND|b′). From (i), this
implies val(47) = val(SAND|b′). In light of (45)–(47) and the fact val(SAND|b) =
val(SAND|b′), this implies val(Var|b) ≥ val(SAND|b) and completes the proof. It remains
to establish (i) and (ii) in Stages 2.2.1 and 2.2.2, respectively.

Stage 2.2.1: (i) val(47) = val(Min-Max|a#� b#). Using similar arguments as in Stage 2.1,
we can conclude that a# is implemented by wa# + z#h#, using the fact that U(wa# +
z#h#� a#)= b# to construct a contradiction.

Given that wa# + z#h# implements a# and delivers utility b# to the agent, we can
apply Proposition 6 to construct an optimal contract wa#�b# to (P|a#� b#) with alternate
best response â(a#� b#). We then claim that

V
(
wa#�b#� a#)= val(47)� (48)

To establish this, we show that h= wa#�b# −wa# belongs to M(a#� z) for z = 1. Clearly

wa# + h= wa#�b# ≥ w is satisfied, and wa#�b# −wa# ≤ h̄(x) by defining K appropriately
large (recall its size was previously left unspecified). Next, we use the concavity of v to
see that ∫ [

wa#�b#(x)−wa#(x)
]
v′(π(x)−wa#(x)

)
f
(
x�a#)dx

≥
∫ [
v
(
π(x)−wa#(x)

)− v(π(x)−wa#�b#
)
(x)
]
f
(
x�a#)dx

= val(SAND|b)− V (wa#�b#� a#)
≥ val(SAND|b) − V (wa#�b′� a#)
= 0�
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since V (wa#�b� a
#) is decreasing in b and using the fact that b# ≥ b′. Next, we note that

∫ [
wa#�b#(x)−wa#(x)

]
u′(wa#(x)

)
f
(
x�a#)dx

≥
∫ [
u
(
wa#�b#(x)

)− u(wa#(x)
)]
f
(
x�a#)dx

= b# − b′

≥ 0

by the concavity of u. This shows h = wa#�b# − wa# ∈ M(a#� z) for z = 1. Letting zh =
wa#�b# −wa# , it is immediate thatwa# +zh=wa#�b# ∈ W(â0� b). Indeed,U(wa#�b#� a#)=
b# ≥ b′ and U(wa#�b#� a#)−U(wa#�b#� â0)≥ 0, since a# is implemented by wa#�b# . This
implies that zh=wa#�b# −wa# is a feasible choice to (47) and so

val(47) ≥ V (wa#�b#� a#)�
Similarly, since wa# + z#h# is a feasible solution to (P|a#� b#) (and wa#�b# is an optimal
solution), we get the reverse direction of the above and conclude that

V
(
wa# + z#h#� a#)= V (wa#�b#� a#)�

This yields (48) and completes Stage 2.2.1. This implies that â(a#� b#) can be chosen
as â0.

Stage 2.2.2: (ii) b′ = b#. It suffices to show that U(wa# + z#h#� a#) = b′. To do so, we
leverage the Lagrangian dual in (41) and argue that the Lagrangian multiplier λz# for
constraint U(wa# + z#h#� a#) ≥ b′ is strictly positive. Then by complementary slack-
ness, this implies U(wa# + z#h#� a#)= b′, as required.

Note that V (wa# + z#h#� a#) < V (wa#� a#) (otherwise this already establishes the
≥ direction of (40)) and so we have z# > 0, again using a concavity argument as above.
Then z#h# is uniquely determined by the first-order condition (i) in Claim 5.

Suppose U(wa# + z#h#� a#) > b′. Then we have λz# = 0. Then h# = wa#�b# −
wa# 	= 0 implies

∫ [wa#�b#(x)−wa#(x)]u′(wa#(x))f (x�a#)dx > 0 and thus γ∗
2 = 0. More-

over, val(SAND|b)> V (wa#�b#� a#) implies
∫ [wa#�b#(x)−wa#(x)]v′(π(x)−wa#(x))f (x�

a#)dx > 0, which yields γ∗
1 = 0. Therefore, the first-order condition for wa#�b# becomes

v′(π(x)−wa#�b#(x)
)

u′(wa#�b#(x)
) = λz# + δz#

(
1 − f

(
x� â0)

f
(
x�a#)

)

= δz#

(
1 − f

(
x� â0)

f
(
x�a#)

)
� whenever w

(
a#� â0� b#)>w�

(49)

where λz# and δz# are the Lagrangian multipliers for the variation problem given z#.
In the case where â0 → a#, Lemma 4 applies and the same structure as (49) holds with
the second term equal to δz#fa(x�a

#)/f (x�a#). The argument for this case is equivalent
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and so we omit it. However, from Proposition 6, we know there is a positive Lagrangian
multiplier λ(a#� b#) for optimal contract wa#�b# . By (49) and the fact wa#�b# is a GMH
contract, we have

v′(π(x)−wa#�b#(x)
)

u′(wa#�b#(x)
) = δz#

(
1 − f

(
x� â0)

f
(
x�a#)

)
= λ(a#� b#)+ δ(a#� b#)(1 − f

(
x� â0)

f
(
x�a#)

)

for all x such that wa#�b#(x) > w. However, if (1 − f (x� â0)/f (x�a#)) is not a constant for
almost all x, the above equalities cannot hold since λ(a#� b#) > 0. This contradicts the
supposition that U(wa# + z#h#� a#) > b′ and λz# = 0.

It only remains to consider the case where (1 − f (x� â0)/f (x�a#)) is a constant
for almost all x such that wa#�b#(x) > w. In this case, by the continuity of v′(π(x) −
wa#�b#(x))/u′(wa#�b#(x)) in x (wa#�b# is continuous in x because it is a GMH con-
tract), we know that v′(π(x) − wa#�b#(x))/u′(wa#�b#(x)) is a constant and, thus, char-

acterizes the first-best contract w(a#� b#) = wfb. Then wa#�b# implements a# and
U(wa# + z#h#� a#)= b′. This completes Stage 2.2.2.

Stage 2.2, Stage 2, and Theorem 1 now follow.

A.7 Proof of Proposition 1

It suffices to prove the (IR) constraint is binding in (P). Our proof that (IR) is binding
is inspired by the proof of Proposition 2 in Grossman and Hart (1983), but adapted to a
setting where there are infinitely many (rather than a finite number of) outcomes.

Suppose to the contrary that (w∗� a∗) is an optimal contract where (IR) is not binding;
i.e.,

U
(
w∗� a∗)=U + γ� (50)

where γ > 0. We construct a feasible contract that implements a∗ but makes the princi-
pal better off, revealing a contradiction.

Under the assumption of the theorem, there exists a δ > 0 such that w∗(x) > w + δ

for almost all x. Since u is continuous and increasing, for ε > 0 sufficiently small there
exists a contract wε such that

wε(x)≥w (51)

and

u
(
wε(x)

)= u(w∗(x)
)− ε� (52)

Observe that for all a ∈ A,

U
(
wε�a

)= ∫ u
(
wε(x)

)
f (x�a)dx− c(a)

=
∫ (
u
(
w∗(x)

)− ε)f (x�a)dx− c(a) (53)
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=
∫
u
(
w∗(x)

)
f (x�a)dx− ε

∫
f (x�a)dx− c(a)

=U(w∗� a
)− ε�

where the first equality is by the definition of U , the second equality is by definition of
wε, the third equality is by the linearity of the integral, and the fourth equality collects
terms to form U(w∗� a) and uses the fact

∫
f (x�a)dx= 1 since f is a probability density

function.
We are now ready to show that there exists an ε > 0 such that (wε�a∗) is a feasi-

ble solution to (P). We already know that wε satisfies the limited liability constraint for
sufficiently small ε by (51). We now argue that (IR) and (IC) also hold. For individual
rationality, observe that

U
(
wε�a∗)=U(w∗� a∗)− ε

=U + γ− ε
≥U if ε < γ�

where the first equality follows from (53) and the second equality uses (50). Since (51)
holds for arbitrarily small ε, the condition that ε < γ can easily be granted.

Finally, for incentive compatibility, observe that for all a ∈A,

U
(
wε�a∗)−U(wε�a)= [U(w∗� a∗)− ε]− [U(w∗� a

)− ε]
=U(w∗� a∗)−U(w∗� a

)− ε+ ε
≥ 0�

where the first equality holds from (53) (noting that ε is uniform in a). Hence, we
conclude that (wε�a∗) is a feasible solution to (P). Since u is an increasing function,
(52) implies wε(x) < w∗(x) for all x. Hence, V (w�a) is a decreasing function of w and
wε(x) < w∗(x), which contradicts the optimality of (w∗� a∗) to (P).

A.8 Proof of Lemma 7

For part (i), since

inf
â∈A

inf
λ�δ≥0

max
w≥wL(w�λ�δ|a� â� b)= inf

λ�δ≥0
inf
â∈A

max
w≥wL(w�λ�δ|a� â� b)�

the desired result follows from the envelope theorem. For part (ii), note that infâL∗(a�
â|b) is continuous and directionally differentiable in a (see, e.g., Corollary 4.4 of Dempe
2002). Since a∗ is a maximum, ∂

∂a+ (infâL∗(a∗� â|b))≤ 0 and ∂
∂a− (infâL∗(a∗� â|b))≥ 0.

A.9 Proof of Lemma 8

Let b∗ be as defined in (19). First, our goal is to show that b∗ is tight at optimality,
assuming that it exists (we return to existence later in the proof). We first show that
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b∗ ≤ U(w∗� a∗) for all optimal solutions (w∗� a∗) to the original problem (P). Letting
U∗ =U(w∗� a∗) for some arbitrary optimal solution (w∗� a∗), we show b∗ ≤U∗ by arguing
that U∗ is in the argmin in (19). Our goal is thus to show

U∗ ∈ argmin
b≥U

{
val(SAND|b) − (P|w(b))}� (54)

First, observe that

val(P|w(b)) ≤ val(P|b)� (55)

where (P|b) is defined at the beginning of Section 3. This follows since (P|w(b)) considers
a problem with a fixed contract w(b) that delivers utility at least b to the agent, whereas
(P|b) is an unrestricted version of this problem. Moreover, from Lemma 2 we know that

val(P|b) ≤ val(SAND|b)� (56)

Putting (55) and (56) together implies

min
b≥U

{
val(SAND|b) − val(P|w(b))}≥ 0�

With this inequality in hand, we argue that U∗ satisfies

val
(
SAND|U∗)− val

(
P|w(U∗))= 0� (57)

implying our target condition (54). Note that this will also imply that the inner argmin
in (19) gives a minimum value of

min
b≥U

{
val(SAND|b) − val(P|w(b))}= 0� (58)

By Theorem 1, we know that (w∗� a∗) is an optimal solution to (P). Also, by Proposi-
tion 2, (w(U∗)�a(U∗)) is an optimal solution to (P). Note, however, that (w(U∗)�a(U∗))
is also an optimal solution to (P|w(U∗)), since feasibility of (w(U∗)�a(U∗)) to (P) im-
plies a(U∗) ∈ aBR(w(U∗)). This, in turn, implies val(P|w(U∗)) = val(SAND|U∗) since,
as we have just argued, both values are equal to val(P). This establishes (57) and,
hence, we can conclude (54). This shows b∗ ≤ U∗, since b∗ is the least element in
argminb≥U {val(SAND|b) − (P|w(b))}. For any tight U∗, since val(SAND|b) is a weakly de-
creasing function of b and val(P) = val(SAND|U∗) for any tight U∗, we have

val
(
SAND|b∗)≥ val(P)� (59)

Also, by definition (assuming b∗ exists), b∗ is in the argmin in (19) and so from (58)
we know that val(P|w(b∗)) = val(SAND|b∗). However, since val(P|w(b∗)) ≤ val(P),
from (59) we can conclude that val(SAND|b∗) = val(P). In particular, this means that
(w(b∗)�a(b∗)) is an optimal solution to (P). Moreover, from Proposition 6, we know that
U(w(b∗)�a(b∗))= b∗. Thus, b∗ is tight at optimality.
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We now show that such a b∗, in fact, exists. Let

b̂= inf
{
b ∈ [U�∞) : val(SAND|b) − val(P|w(b)) = 0

}
�

For ease of notation let s(b)= val(SAND|b) and t(b)= val(P|w(b)). Let B denote the set
{b ∈ [U�∞) : s(b) = t(b)} and, thus, b̂ is the infimum of B. The goal is to show b̂ ∈ B
and, hence, b̂ = b∗ as defined in (19) using (58). This is achieved by showing that B
is closed and bounded below. Clearly B is bounded below by U . It remains to show
closedness. We consider the topological structure of s(b) and t(b). By the theorem of
maximum, s(b) is a continuous function of b. Also by the theorem of maximum, w(b)
is continuous and aBR(b) is upper hemicontinuous, and so t(b) is upper semicontinu-
ous. To show that B is closed, consider a sequence bn in B converging to b̄. Since s is
a continuous function of b, limn→∞ s(bn)= s(b̄). Also, since t is upper semicontinuous,
we have limn→∞ t(bn)≥ t(b̄). However, since t(b)≤ s(b) for all b (by (55)), we know that
t(b̄)≤ s(b̄). Conversely, since s(bn)= t(bn), we have limn→∞ t(bn)= limn→∞ s(bn)= s(b̄)
and so s(b̄) ≤ t(b̄). This implies s(b̄) = t(b̄), which establishes that B is closed. This
completes the proof.

A.10 Proof of Proposition 3

Suppose that for all alternate best responses â we have â ≥ a. Observe that when w is
a constant function (the same wage for all outputs x), we know that all no-jump con-
straints

U
(
w�a∗)−U(w� â)≥ 0

are redundant. Indeed,

U(w�a)−U(w� â)= c(â)− c(a)≥ 0

since â≥ a and c is an increasing function. Next, observe that when the principal is risk-
neutral, the first-best contract is a constant contract. This implies that this constant
first-best contract is feasible to (P) and thus optimal, yielding a contradiction.

A.11 Proof of Proposition 4

We now claim that val(SAND|U)= val(FOA). First we argue that

val(SAND|U)≥ val(FOA)� (60)

When the first-order approach is valid, we have val(FOA) = val(P). Moreover, by
Lemma 2, we also know that val(SAND|U)≥ val(P). Putting these together implies (60).

We now turn to showing the reverse inequality of (60); that is,

val(SAND|U)≤ val(FOA)� (61)

By similar reasoning to the proof of Lemma 3, the Lagrangian approach also applies to
(FOA), and strong duality holds for (FOA) and its Lagrangian dual (see also Jewitt et al.
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2008 for a proof of a setting with certain boundedness assumptions). Let μ∗ be the cor-
responding multiplier for constraint (FOC(a)) in problem (FOA). Let (a#� â#�w#) be an
optimal solution to (SAND|U).

Ifμ∗ = 0, then (SAND|U) has a smaller value than (FOA) by strong duality. This yields
(61).

We are left to consider the case where μ∗ 	= 0. Suppose a# is not a corner solution
(similar arguments apply to the corner solution case). If μ∗ > 0, we choose some â to
approach a# from below. If μ∗ < 0, we choose â to approach a# from above. Note that
the solution â# is a global minimum (given the choices of the other variables) and so for
very small ε= a# − â, for â sufficiently close to a#, we have

val(SAND|U)
= inf

â
inf
(λ�δ)

max
w≥wL

(
w�λ�δ|a#� â�U

)
= inf
(λ�δ)

inf
â

max
w≥wL

(
w�λ�δ|a#� â�U

)
≤ inf
(λ�δ)

max
w≥w

{
V
(
w�a#)+ λ[U(w�a#)−U]+ δεUa(w�a#)+ o(ε)}�

(62)

The first equality follows by strong duality of (SAND|a#� â�U) with its dual (via Lem-
ma 3). The inequality follows from the mean value theorem. Since â approaches a# in
the direction we chose, we have

inf
(λ�δ)

max
w≥wV

(
w�a#)+ λ[U(w�a#)−U]+ δεUa(w�a#)

= inf
λ

inf
μ∈Rmax

w≥wV
(
w�a#)+ λ[U(w�a#)−U]+μUa(w�a#)

≤ max
a∈A

inf
λ

inf
μ∈Rmax

w≥wV (w�a)+ λ[U(w�a)−U]+μUa(w�a)= val(FOA)�

where we simply redefine δε = μ, without loss of generality. Note that the right-hand
side is the statement of the Lagrangian dual of (FOA), and so by strong duality of (FOA)
and (62), this implies (61). Combined with (60), this implies val(SAND|U) = val(FOA),
as required.
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