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Full surplus extraction and within-period ex post
implementation in dynamic environments

Shunya Noda
Department of Economics, Stanford University

We study full surplus extraction and implementation in dynamic environments.
We exploit intertemporal correlations of agents’ types to construct within-period
ex post incentive compatible mechanisms. First, we formulate one-shot envi-
ronments, in which a single agent has a hidden type and the planner observes
a public signal about the agent’s type after a type-contingent allocation is chosen.
We propose necessary and sufficient conditions for full surplus extraction (strong
detectability) and for implementability of the targeted allocation rule (weak de-
tectability) in this one-shot problem. We decompose the general dynamic prob-
lem into one-shot problems, and obtain sufficient conditions for surplus extrac-
tion and implementation.
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1. Introduction

This paper investigates the possibility of full surplus extraction and the implementabil-
ity of general allocation rules in dynamic environments in which the agents may have
interdependent values and their hidden types evolve over time. For such environments,
we establish a way to use correlations among agents’ types to induce truthful revelation
of type realizations.

For static problems, Crémer and McLean (1985, 1988) prove that full surplus extrac-
tion is possible whenever beliefs are convex independent : for each agent i and for each
agent i’s type (θi ∈ �i), his belief about the other agents’ types (θ−i) that is associated
with θi is not in the convex hull of the beliefs about θ−i that are associated with the other
types of agent i (�i \ {θi}). Under this condition, the planner can detect agents’ private
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types without leaving information rent; therefore, full surplus extraction is achievable.
Their convex-independence condition is generically satisfied in static environments.

However, many real-world problems are dynamic. We consider the following dy-
namic environment. In each period t, each agent i ∈ I privately observes his type, θit .
Hence, the state in period t is the profile of agents’ types in t, θt ≡ (θit)i∈I . The planner
needs to collect information about the state θt so as to decide an allocation. The state in
the next period, θt+1, depends on the state as well as on the allocation decision in t.

The goal of this paper is to provide (reasonably tight) sufficient conditions for full
surplus extraction and implementation in dynamic environments by extending the
convex-independence condition of Crémer and McLean. We allow interdependent val-
ues, with which implementation of an efficient allocation rule itself is not trivial (see,
e.g., Jehiel and Moldovanu 2001). We require the mechanisms to be within-period ex post
incentive compatible (wp-EPIC); that is, truthtelling would remain optimal if agents ob-
served all the private information up to the current reports (including the other agents’
current types), as long as the other agents make truthful reports from this point on.

We require wp-EPIC for three reasons. First, wp-EPIC is desirable because truth-
telling constitutes a perfect Bayesian equilibrium under every assumption about the
observability of the current states. Second, wp-EPIC seems to be the strongest incentive
compatibility notion that we can hope for in our setting.1 Third, wp-EPIC is satisfied
by the private-value benchmarks proposed by Athey and Segal (2013), Bergemann and
Välimäki (2010), and Cavallo et al. (2009).

To satisfy wp-EPIC, we cannot use the intraperiod correlation of agents’ types (i.e.,
the correlation between θit and θ−i

t ) because we must incentivize agent i to make a truth-
ful report even when he observes θ−i

t . However, we can instead use the future types as ex
post signals to construct a payment rule that provides an incentive for truthtelling. No
one knows the realization of future types at the timing of the report. Therefore, incentive
payments contingent on future types are useful for constructing wp-EPIC mechanisms.

We start by formulating the one-shot problem, which concentrates on a reporting
problem of a single agent (say, i) in a single period (say, t). The reported θit determines
a type-contingent allocation. An ex post signal, which may be correlated with the re-
alization of θit , is then publicly observed. Realizations of ex post signals stand for re-
alizations of the state profiles in the next period (θt+1). For such a one-shot problem,
we study the condition on the correlation between private types and ex post signals
that enables the planner to construct a truthful (one-shot) mechanism. We propose two
necessary and sufficient conditions—the strong-detectability condition and the weak-
detectability condition. (The precise definitions and statements are provided in Sec-
tion 4.)

Strong detectability is the necessary and sufficient condition for (i) the targeted al-
location rule to be implementable with arbitrary valuations over allocations, and
(ii) the planner to be able to provide arbitrary equilibrium payoffs for each type
(Lemma 1). Under strong detectability, each agent’s payoff can be set to zero, leav-
ing him with no information rent.

1For example, Athey and Segal (2013, p. 2472) state that “requiring the mechanism to be robust to obser-
vation of future types would be too strong for the dynamic setting, even with a single agent.”
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Weak detectability is the necessary and sufficient condition for the targeted al-
location rule to be implementable with arbitrary valuations over allocations
(Lemma 2). It is useful for implementing an efficient allocation rule that maxi-
mizes the social surplus.2

Weak detectability is weaker than strong detectability: strong detectability implies weak
detectability. In the Supplemental Material, available in a supplementary file on the
journal website, http://econtheory.org/supp/2226/supplement.pdf, we also show that
weak detectability is generically satisfied under a weaker condition (about dimension-
ality of the signal space) than is strong detectability.

Next, we decompose the general dynamic problem into one-shot problems to ap-
ply Lemmas 1 or 2 and obtain one-shot mechanisms. Then we combine the one-shot
mechanisms to construct a dynamic mechanism.

First, we specify θ−i
t+1 as ex post signals of θit (Section 5.1). The other agents’ future

type θ−i
t+1 is a tractable ex post signal of θit because an incentive payment for θit does

not influence the reporting problem of his future types as long as it is independent of
agent i’s own future type (θit+1). We show that (i) if strong detectability is satisfied in
the initial period, we do not have to leave any information rent (Proposition 1), and
(ii) if weak detectability is satisfied for all periods, we can implement a targeted alloca-
tion rule (Proposition 2). When both conditions are satisfied, full surplus extraction is
guaranteed.

In Section 5.2, we weaken the sufficient conditions further. Even when the correla-
tion between θit and θ−i

t+1 does not satisfy either strong or weak detectability, the correla-

tion between θit and θt+1 = (θit+1� θ
−i
t+1)may satisfy these detectability conditions. Recall

that strong detectability guarantees that we can provide arbitrary continuation payoffs.
Therefore, if strong detectability in period t + 1 is satisfied, the planner can use the con-
tinuation payoff at t + 1 as a “contingent incentive payment” to induce a truthful report
of θit . In this case, we can use θt+1 = (θit+1� θ

−i
t+1) rather than θ−i

t+1 as the ex post signal.
This yields our weakest assumptions, which are used in our main theorems (Theorems 1
and 2).

2. Related literature

Assuming private values, Athey and Segal (2013), Bergemann and Välimäki (2010), and
Cavallo et al. (2009) construct dynamic versions of Vickrey–Clarke–Groves (VCG) mech-
anisms, which implement an efficient allocation rule. They use distinct assumptions
and their mechanisms display distinct properties, but all three mechanisms are wp-EPIC
under some assumptions, including private values. Our formulation of dynamic envi-
ronments is close to theirs. However, we construct a dynamic version of the Crémer–
McLean mechanism; thus, we assume neither private values nor efficiency of the tar-
geted allocation rule, while we impose detectability conditions on the state transition.

2For static environments, Aoyagi (1998) shows that if each agent has a different belief whenever his type
is different, then any allocation rules can be implemented by a Bayesian incentive compatible mechanism.
Weak detectability is different from his condition for implementation since in our environment, (i) the
signal distribution also depends on the selected allocation and (ii) we do not have to give a strong incentive
for truthtelling over misreporting that does not change the resultant allocation.

http://econtheory.org/supp/2226/supplement.pdf
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Furthermore, our mechanism satisfies wp-EPIC, the same as dynamic VCG mechanisms
they establish.

Mezzetti (2007) and Obara (2008) study full surplus extraction using ex post signals.
Mezzetti (2004, 2007) examines a static single-unit auction problem, in which agents’
valuations are interdependent, while types are independent. He establishes that the
planner can implement an efficient allocation (Mezzetti 2004) and extract full surplus
(Mezzetti 2007) under a wide variety of settings in which she can use a payment rule
that depends on the agents’ realized payoffs. For these static problems with ex post
signals (which correspond to realized payoffs), our Lemmas 1 and 2 provide necessary
and sufficient conditions for surplus extraction and implementability when the ex post
signals need not be realized payoffs.3  Obara (2008) studies a two-stage allocation prob-
lem in which agents privately choose actions before their payoff-relevant types are re-
alized, and he derives the necessary and sufficient condition for efficiency to be imple-
mentable, without leaving information rents.

Independent of our work, Liu (2018) also analyzes the implementation of an efficient
allocation rule in an interdependent-value setting using the intertemporal correlation
of agents’ types. He provides a condition, essentially equivalent to strong detectability,
under which the planner can align individual and collective social incentives, as in the
canonical VCG mechanism. In contrast, we show that weak detectability is crucial for
implementing an efficient allocation rule, rather than strong detectability; in this sense,
our condition for implementability is weaker than Liu’s. Our contribution relative to
Liu’s is discussed further in Remark 3 and Section 6.2.4

It is well known that (i) full surplus extraction in static mechanism design with mon-
etary transfers and (ii) folk theorems in repeated games without monetary transfers are
closely related; when the discount factor is sufficiently large, we can treat continuation
payoffs as monetary transfers, as seen in Fudenberg and Levine (1994) and Fudenberg
et al. (1994). Recently, Hörner et al. (2015) show that this relationship is readily gener-
alized to mechanism design and dynamic (stochastic) Bayesian games. Now this paper
provides a dynamic mechanism to extract the full surplus in a wide rage of environ-
ments. Applying Hörner et al.’s (2015) method to replace the monetary transfer with the
continuation payoff would allow us to prove a new folk theorem in dynamic Bayesian
games. In particular, if strong detectability holds for every T periods and weak de-
tectability holds for every period, then by applying the method of Hörner et al. (2015) in

3More recently, Nath et al. (2015) and He and Li (2016) extend Mezzetti (2004) to implement the efficient
allocation rule in dynamic environments. In their settings, the valuations are interdependent, types evolve
independently, and agents observe their actual flow valuations after allocations. In this environment, Nath
et al. (2015) develop an efficient dynamic mechanism in which truthtelling is strictly wp-EPIC. He and Li
(2016) show that a within-period budget balance can also be achieved with interim incentive compatibility
(which requires that truthful strategies constitute a perfect Bayesian equilibrium) in such environments. To
accommodate our model assumption that the agents can recognize the realized flow valuation (or signals
about that) between periods in our model, we can redefine the time horizon as 2T , and let θt represent the
true payoff characteristics if t is even and the valuations realized if t is odd.

4In contrast to this paper, which focuses on finite type spaces, Liu also studies a way to implement the
targeted allocation rule when the type space is infinite.
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every T periods, we can construct an efficient equilibrium in dynamic Bayesian games
without monetary transfers.5

3. Environment: The original problem

Consider an environment with a finite set of agents, indexed by i ∈ I = {1�2� � � � � I},
where I ≥ 2. For now, we focus on a finite horizon, where time is indexed by t ∈ T =
{0�1� � � � �T�T + 1} and where T ∈ Z+. We can extend the results to an infinite horizon,
under some additional assumptions (see Section 6.3 and the Supplemental Material). In
period t, agent i observes his private state (or type) θit ∈�it , and the planner can directly
observe θ0

t ∈ �0
t , where �it is assumed to be finite for all i ∈ I ∪ {0} and t ∈ T .6 Hence,

the state space in t, �t = ×I
i=0�

i
t , is also finite. After θt is realized, the allocation xt ∈Xt

(whereXt is also assumed to be finite), and the transfer (y1
t � � � � � y

I
t ) ∈R

I are determined
based on the mechanism to which the planner commits ex ante.

Agent i wants to maximize the expectation of his payoff,

T+1∑
t=0

δt
[
vit(xt� θt)+ yit

]
�

which is determined by the sequence of state profiles θ0:T+1 ≡ (θ0� θ1� � � � � θT+1) ∈
�0:T+1 ≡ ×T+1

t=0 �t , allocations x0:T+1, and agent i’s monetary transfers yi0:T+1. Through-
out this paper, zt:s ≡ (zt� � � � � zs) (Zt:s ≡ ×s

k=tZk) denotes the sequence of variables
(sets) zk (Zk) from period t to period s. The discount factor δ ∈ (0�1] is common and
vit :Xt ×�t → R is agent i’s flow valuation function in t. We assume that the flow valua-
tion functions are Markov, in the sense that vit does not depend on θ0:t−1.

We assume that agents do not face an allocation problem in period T + 1, but that
they receive additional signals θT+1 for the type realizations until T , θ0:T . Formally, we
assume |XT+1| = 1, and viT+1(xT+1� θT+1)= 0 for all i ∈ I , θT+1 ∈�T+1.7

The type distribution in period 0 is given by μ0 ∈ �(�0) and subsequent states
evolve according to the transition probability function μt : Xt−1 × �t−1 → �(�t). For
simplicity, we assume that μt has full support, that is, μ0(θ0) > 0 for all θ0 ∈ �0 and
μt(θt;xt−1� θt−1) > 0 for all (xt−1� θt−1� θt) ∈Xt−1 ×�t−1 ×�t . We call (�t�μt)

T+1
t=0 the in-

formation structure. The roles of these assumptions are discussed in the Supplemental
Material.

5To be more precise, we need some additional conditions for satisfying within-period budget balance,
because this is a condition required for the mechanism to be convertible into a dynamic Bayesian game.

6Superscripts denote the names of the agent and subscripts denote time periods.
7This assumption simplifies the analysis for the last period (t = T ), in which we cannot make use of the ex

post signals to induce truthtelling. Except for the last period, our mechanism does not rely on this assump-
tion. To guarantee incentive compatibility in the last period, we can alternatively assume the existence of
a (static) ex post incentive compatible mechanism in T + 1 (which can leave arbitrarily large information
rents). For all the mechanisms presented in this paper, agent i’s payment in period T + 1 does not depend
on his own type in T + 1, θiT+1; thus, (static) ex post incentive compatibility in T + 1 is not affected by the
incentive scheme for t = 0�1� � � � �T .
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We focus on direct mechanisms, in which agent i reports his state θit in period t. The
sequence of mappings (χt�ψt)

T+1
t=0 denotes the mechanism where χt :�t →Xt is the al-

location rule in period t, and ψt = (ψ1
t � � � � �ψ

I
t ), where ψit :�0:t → R is agent i’s payment

rule in period t. Slightly abusing terminology, we also call (χt�ψit)
T+1
t=0 a mechanism. We

concentrate on Markov allocation rules, i.e., we assume that χt is determined by the re-
port in period t, θt , but is not affected by the reported type profile until t−1, θ0:t−1. There
exists an efficient Markov allocation rule since we assume that neither the flow valuation
function vit nor the transition probability function μt is affected by θ0:t−1. In the Supple-
mental Material, we discuss how our results are generalized to the case of non-Markov
allocation rules.

We define V it (·; (χk)T+1
k=0 ) :�t →R as agent i’s expected present value (hereafter EPV)

from valuations by

V it
(
θt; (χk)T+1

k=0

) ≡ E

[
T+1∑
s=t

δs−tvis
(
χs(θs)�θs

)∣∣∣∣(χk)T+1
k=0 � θt

]
�

Recall that once we specify (�s�μs�χs)
T+1
s=0 and θt , the probability that θs realizes

for s ≥ t is determined. Given allocation rule (χt)
T+1
t=0 , the expected social wel-

fare is E[∑i∈I V i0 (θ0; (χt)T+1
t=0 )]. An allocation rule (χt)

T+1
t=0 is efficient if it maximizes

E[∑i∈I V i0 (θ0; (χt)T+1
t=0 )].

Similarly, we define agent i’s EPV from payments
it(·; (χk)T+1
k=0 ) :�0:t → R by


it
(
θ̂0:t−1� θt; (χk)T+1

k=0

) ≡ E

[
T+1∑
s=t

δs−tψis(θ̂0:t−1� θt� θt+1:s)
∣∣∣∣(χk)T+1

k=0 � θt

]
�

Since the state transition is Markov, conditional on θt , 
it is independent of realizations
of θ0:t−1. However,
it depends on the reported θ̂0:t−1 because we do not assume that ψit
is Markov.

In this paper, we sometimes decompose the transfer rule ψit into several parts, e.g.,
ψit(θ0:t )= git(θ0:t)+φit(θ0:t ). Analogous to the relationship between ψ and 
, we repre-
sent the EPVs of the parts of payment rules g andφ by the capital lettersG and�, respec-
tively. For notational convenience, when we write EPV terms such as V it (θt; (χk)T+1

k=0 ) and


it(θ0:t; (χk)T+1
k=0 ), we drop (χt)

T+1
t=0 and simply write V it (θt) and
it(θ0:t).

We require a dynamic version of ex post incentive compatibility. In dynamic en-
vironments, there are many ways to model what agent i learns about the past reports
and realized type profiles of the other agents, (θ̂−i

0:t−1� θ
−i
0:t). Here, we take a conservative

approach: we construct mechanisms in which truthful reporting of agent i’s type, θit , is
optimal even if he observed all of the past reports θ̂0:t−1 as well as the current type profile
θt (including the types of the other agents).8 We do not exploit an agent’s information
about the other agents’ types. Instead, we construct mechanisms that are robust against
the leakage of the other agents’ private information. We also require truthtelling on and

8Note that conditional on the realization of the current type profile θt , agent i’s expected payoff from
period t is independent of the realizations of θ0:t−1 and the past allocation x0:t−1.



Theoretical Economics 14 (2019) Extraction in dynamic environments 45

off the equilibrium path, i.e., truthful reporting maximizes each agent’s payoff as long as
other agents tell the truth from this point on. This notion of incentive compatibility is
called within-period ex post incentive compatibility (wp-EPIC), which is the incentive-
compatibility notion that dynamic versions of VCG mechanisms (Athey and Segal 2013,
Bergemann and Välimäki 2010, and Cavallo et al. 2009) satisfy.

Definition 1 (wp-EPIC). The mechanism (χt�ψ
i
t)
T+1
t=0 is within-period ex post incentive

compatible (wp-EPIC) for agent i at (θ0:t−1� θ
i
t� θ

−i
t ) ∈�0:t if, for all θ̂it ∈�it ,

V it
(
θit� θ

−i
t

) +
it
(
θ0:t−1� θ

i
t� θ

−i
t

)
≥ vit

(
χt

(
θ̂it � θ

−i
t

)
� θit� θ

−i
t

) +ψit
(
θ0:t−1� θ̂

i
t � θ

−i
t

)
(1)

+ δ ·E[
V it+1(θt+1)+
it+1

(
θ0:t−1� θ̂

i
t � θ

−i
t � θt+1

)|χt(θ̂it � θ−i
t

)
� θit� θ

−i
t

]
�

The mechanism (χt�ψ
i
t)
T+1
t=0 is wp-EPIC for agent i if it is wp-EPIC for agent i for every

t and (θ0:t−1� θt) ∈�0:t . A mechanism (χt�ψt)
T+1
t=0 is wp-EPIC if for all i ∈ I , (χt�ψit)

T+1
t=0 is

wp-EPIC for i.

We define the no-information-rent property and full surplus extraction as follows.

Definition 2 (No information rent). The mechanism (χt�ψ
i
t)
T+1
t=0 leaves no information

rent for agent i if

V i0
(
θ0; (χt)T+1

t=0

) +
i0
(
θ0; (χt)T+1

t=0

) = 0

for all θ0 ∈�0.

Definition 3 (Full surplus extraction). The mechanism (χt�ψt)
T+1
t=0 extracts the full sur-

plus if (i) the allocation rule (χt)
T+1
t=0 is efficient and (ii) for each i ∈ I , (χt�ψit)

T+1
t=0 leaves

no information rent.

Here, we assume that each agent’s outside option in period 0 is zero for all θ0 ∈�0.9

Hence, −
i0(θ0; (χt)T+1
t=0 )= V i0 (θ0; (χt)T+1

t=0 ) is the largest period-0 expected revenue col-

lected from agent i when the allocation rule (χt)
T+1
t=0 is implemented. It is natural to

assume that the planner maximizes the ex ante expected revenue from the agents, since
the planner commits to a mechanism (χt�ψt)

T+1
t=0 ex ante.10

We do not impose participation constraints for t ≥ 1. Since we consider a finite-
horizon problem with finite types, for all (χt�ψit)

T+1
t=0 there exists the worst-case EPV

for agent i, namely, Mi ≡ mint�θ0:t [V it (θt) + 
it(θ0:t)]. When this is negative, agent i
leaves the mechanism once such θ0:t realizes. However, consider a modified mechanism

9We set the outside option to zero for simplicity’s sake. We can still achieve full surplus extraction even if
the outside option depends on the state profile, θt .

10The impossibility of satisfying the participation constraints with equality at every node θ0:t (instead of
only in period 0) is explained in the Supplemental Material.
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(χt� ψ̄
i
t)
T+1
t=0 defined by

ψ̄i0(θ0)≡ψi0(θ0)+Mi�

ψ̄it(θ0:t )≡ψit(θ0:t ) for all t ∈ {1� � � � �T }�
ψ̄iT+1(θ0:T+1)≡ψiT+1(θ0:T+1)− δ−(T+1)Mi�

Then 
̄i0(θ0)=
i0(θ0) holds in period 0. Furthermore, 
̄it(θ0:t)=
it(θ0:t )− δ−tMi holds
for all t ≥ 1; thus, V it (θt)+ 
̄it(θ0:t) ≥ 0 for all t ≥ 1. Intuitively, the planner additionally
requires a deposit to make sure that agents do not leave the mechanism until it termi-
nates. The deposit changes neither the agents’ EPV in the initial period nor the planner’s
revenue, because the deposit will be paid back with appropriate interest in the last pe-
riod as long as agents stay in. Using this “deposit scheme,” we can satisfy participation
constraints for t ≥ 1 without increasing the rent.

4. Necessary and sufficient conditions for the one-shot problem

4.1 Formulation

To explain our main results for the original problem, we introduce the following
one-shot problem, which consists of two stages, and is characterized by (ui� δ) and
(X��i�χ�S�π).

Stage 1. A single agent, say, agent i, observes his private type θi ∈�i. He makes a type
report to the planner, θ̂i ∈ �i. The planner chooses an allocation x = χ(θ̂i)

according to a committed allocation rule χ :�i →X .

Stage 2. An ex post signal s ∈ S (where S is assumed to be finite) is drawn according to
π :X ×�i → �(S), which depends on the allocation and agent i’s true type.
According to the payment rule, pi : �i × S → R, agent i receives a monetary
transfer. Agent i’s payoff is ui(χ(θ̂i)� θi) + δpi(θ̂i� s), where ui : X × �i → R

denotes the agent’s valuation.

We call (X��i�χ�S�π) the signal structure. Importantly, the planner has to choose an
allocation when the agent reports θ̂i, while the payment can also depend on the realiza-
tion of the ex post signal s. Just like Crémer and McLean (1988), we exploit the correla-
tion between θi and s to induce truthtelling. However, in contrast to Crémer and McLean
(1988), in our model, (i) the signal is observable only after the allocation is determined,
and (ii) its distribution also depends on the allocation.

There are two ways to interpret this one-shot problem.

(a) When T = 0, the original problem can be decomposed into
∑
i∈I |�−i

0 | one-shot
problems. Each one-shot problem is identical to the reporting problem of θi0,
given for each (i� θ−i

0 ) ∈ I × �−i
0 . The other agents’ types θ−i

0 cannot be used as
a signal for achieving wp-EPIC, because agent i must tell the truth even when he
observes θ−i

0 . The only available ex post signal to induce the truthtelling of θi0
is θ−i

1 . Thus, by choosing X ≡ X0, �i ≡ �i0, χ ≡ χ0, S ≡ �−i
1 , π ≡ μ−i

1 (·� ·� θ−i
0 ),



Theoretical Economics 14 (2019) Extraction in dynamic environments 47

ui ≡ vi0(·� ·� θ−i
0 ), and pi ≡ψi1(·� θ−i

0 ), the one-shot problem becomes equivalent to
agent i’s reporting problem of θi0, given that θ−i

0 is realized.

(b) For the general original problem, we can still use θ−i
t+1 as an ex post signal to solve

the reporting problem of θit (given an agent i, a particular sequence of type reports
θ̂0:t−1, and a type profile of the other agents θ−i

t ). Hence, defining S ≡ �−i
t+1 and

π ≡ μ−i
t+1(·� ·� θ−i

t ) and applying the results for one-shot problems, we can derive
a (loose) sufficient condition for full surplus extraction and implementation of an
allocation rule (Section 5.1). Furthermore, under a certain condition (described
later), we can also use θit+1 as an ex post signal to induce the truthtelling of θit . As

an extreme case, we can even take S ≡�t+1 and π ≡ μt+1(·� ·� θ−i
t ), which yields a

weaker sufficient condition than the case of S ≡ �−i
t+1 and π ≡ μ−i

t+1(·� ·� θ−i
t ). See

Section 5.2.

Remark 1. While θ−i is dropped from the notation, we are not assuming private values.
When we apply the result from the one-shot problem to the original problem, we can
choose a different ui for each θ−i

t , which allows us to model interdependency of the
valuation function. Similarly, since we can choose a different payment rule pi for each
history (θ0:t−1� θ

−i
t ), the payment rule does not need to be Markov either.

4.2 Extraction

First, we study the condition on (X��i�χ�S�π) that guarantees that for all ui, there ex-
ists pi such that truthtelling is induced with arbitrary expected payoffs. Then, in par-
ticular, we can provide a zero expected payoff to each agent for all θi; i.e., there is no
information rent left in the one-shot problem.

Definition 4 (Strong detectability). The type space �i is strongly detectable with
(X��i�χ�S�π) if, for all θi ∈�i,

π
(
χ
(
θi

)
� θi

)
/∈ co

({
π

(
χ
(
θi

)
� θ̂i

)}
θ̂i∈�i\{θi}

)
� (2)

Parallel to the convex-independence condition of Crémer and McLean (1988), strong
detectability is the necessary and sufficient condition for the existence of a lottery
λ : �i × S → R that provides (i) a zero expected payoff when the agent tells the truth
and (ii) a negative expected payoff when the agent misreports. The construction of λ is
described in the Supplemental Material.11 Using this lottery, we can punish any mis-
report. The existence of such lotteries is necessary and sufficient for truthtelling, while
providing arbitrary expected payoffs.

Lemma 1. The following statements are equivalent:

(i) The type space �i is strongly detectable with (X��i�χ�S�π).

11See the proof of Lemma 3.
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(ii) For all δ ∈ (0�1], ui :X ×�i →R, andUi :�i → R, there exists pi :�i × S→ R such
that

Ui
(
θi

) = ui(χ(
θi

)
� θi

) + δ ·E[
pi

(
θi� s

)|χ(
θi

)
� θi

]
(3)

for all θi ∈�i and

Ui
(
θi

) ≥ ui(χ(
θ̂i

)
� θi

) + δ ·E[
pi

(
θ̂i� s

)|χ(
θ̂i

)
� θi

]
(4)

for all (θi� θ̂i) ∈�i ×�i.
All proofs are provided in the Appendix. As shown in the proof, when strong de-

tectability is violated, we can always find (ui� δ) such that Ui(θi)= 0 for all θi cannot be
achieved when (3) and (4) are satisfied.

4.3 Implementation

Next, we consider the condition on (X��i�χ�S�π) that guarantees that for all ui, the
planner can induce truthtelling for some payoffs.

Definition 5 (Weak detectability). The type space�i is weakly detectable with (X��i�χ�
S�π) if, for all nonempty �̄i ⊂�i, there exists θ̄i ∈ �̄i such that

π
(
χ
(
θ̄i

)
� θ̄i

)
/∈ co

({
π

(
χ
(
θ̄i

)
� θ̂i

)}
θ̂i∈�̄i s.t. χ(θ̂i)�=χ(θ̄i)

)
� (5)

Since we do not have to achieve arbitrary payoffs, weak detectability is weaker than
strong detectability. More precisely, if�i is strongly detectable with (X��i�χ�S�π), then
�i is also weakly detectable with (X��i�χ�S�π). This is because (i) the convex hull that
appears in the definition of strong detectability includes the convex hull of weak de-
tectability as a subset; and (ii) while strong detectability requires that for all θi ∈ �i,
π(χ(θi)� θi) is not in the (larger) convex hull, weak detectability requires only that (for
every �̄i ⊂�i) there exists θ̄i ∈ �̄i ⊂�i such that π(χ(θ̄i)� θ̄i) is not in the (smaller) con-
vex hull. In the Supplemental Material, we further (i) prove that weak detectability is
generic under a weaker condition than strong detectability, and (ii) show some numeri-
cal simulations that help us to understand the extent to which weak detectability is more
likely to be satisfied than strong detectability.

Weak detectability is necessary and sufficient to implement χ with arbitrary (ui� δ).

Lemma 2. The following statements are equivalent:

(i) The type space �i is weakly detectable with (X��i�χ�S�π).

(ii) For all δ ∈ (0�1] and ui :X ×�i → R, there exist Ui : �i → R and pi : �i × S → R

such that

Ui
(
θi

) = ui(χ(
θi

)
� θi

) + δ ·E[
pi

(
θi� s

)|χ(
θi

)
� θi

]
(3′)

for all θi ∈�i and

Ui
(
θi

) ≥ ui(χ(
θ̂i

)
� θi

) + δ ·E[
pi

(
θ̂i� s

)|χ(
θ̂i

)
� θi

]
(4′)

for all (θi� θ̂i) ∈�i ×�i.
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Whereas Lemma 1 says that we can induce truthtelling while providing for all on-
path payoff functions Ui : �i → R (with strong detectability), Lemma 2 only says that
there exists Ui :�i → R. Hence, while weak detectability implies wp-EPIC, it guarantees
neither full surplus extraction nor flexible control of on-path expected payoffs.

The following two examples illustrate the sufficiency and necessity of weak de-
tectability.

Example 1 (Sufficiency). Assume that X = {l� r}, �i = {L�R1�R2}, χ(L) = l, χ(R1) =
χ(R2) = r, and π(l�L) = π(l�R1) = π(l�R2), but π(r�L) �= π(r�R1) = π(r�R2). In this
example,�i is not strongly detectable with (X��i�χ�S�π), for two reasons: (i)π(r�R1)=
π(r�R2) implies violations of (2) with θi = R1�R2 and (ii) π(l�L) = π(l�R1) = π(l�R2)

implies a violation of (2) with θi = L. However, weak detectability is satisfied. To see
this, if we take �̄i such that {R1�R2} ∩ �̄i �=∅, then we can choose either θ̄i =R1 or R2 to
show (5) (the convex hull becomes either {π(r�L)} or ∅). Otherwise, �̄i = {L} and (5) is
trivially satisfied.

How can we induce truthtelling? First, recall that to induce truthtelling, we do not
have to distinguish the reports of R1 and R2 because these reports lead to the same al-
location, r. If we set pi(R1� s) = pi(R2� s) for all s, then the reports of R1 and R2 result
in an identical allocation and payment; thus, the agent becomes indifferent between re-
porting R1 and R2. Accordingly, he has a (weak) incentive for truthtelling. Hereafter, we
regard the type reports of R1 and R2 as the identical report, say, R.12

Even after R1 and R2 are clustered, strong detectability is still not satisfied because
χ(L) = l and π(l�L) = π(l�R) imply a violation of (2). Although, if agent i reports θ̂i =
R, the allocation r is chosen, and π(r�L) �= π(r�R). Therefore, we have the following
situations.

• Type R can pretend to be L. If the agent reports L when his true type is R, the
signal distribution is π(l�R) = π(l�L). The planner cannot statistically identify
the agent’s true type.

• TypeL cannot pretend to beR. WhenL reportsR, the resultant signal distribution
is different from that generated when R reports R, i.e., π(r�L) �= π(r�R). Hence,
the planner can statistically identify this deviation.

Formally, we can construct a lottery such that, when R is reported (and χ(R)= r is cho-
sen), it follows that (i) if i’s true type is R (i.e., the expectation is taken with respect to
π(r�R)), the lottery’s expected value is zero, and (ii) if i’s true type is L (i.e., the expec-
tation is taken with respect to π(r�L)), the lottery’s expected value is negative. Using
this lottery as a part of the payment rule when R is reported, we can provide arbitrarily
strong punishment to prevent L from reporting R. Since L cannot pretend to be R, we

12To be more precise, we must still require agent i to distinguish between R1 and R2 because the pay-
ments of the other agents may be different. However, the reports of R1 and R2 lead to the same allocation
and payment for agent i; as a result, when we consider agent i’s problem, we do not have to distinguish be-
tween them. Once agent i has an incentive to report R≡ {R1�R2}, agent i is indifferent between reporting
R1 and R2, i.e., he has a weak incentive for truthtelling.
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can induceR’s truthful report by giving a “constant” subsidy (independent of s) when the
agent reports R. Here, the planner needs to distribute a subsidy (so weak detectability
does not guarantee thatUi can be controlled arbitrarily), but truthtelling can be induced
with arbitrary valuation functions. ♦

More generally, when weak detectability is satisfied, the planner can construct a
weak order of the agent’s types and a set of lotteries that enable the planner to pun-
ish the agent’s “upward misreport” (i.e., the agent would be punished if he pretended to
be of a higher type) without changing each agent’s on-path payoffs. Furthermore, ac-
cording to the constructed order, types are equivalent only if they lead to an identical
allocation and lottery (e.g., R1 and R2 of Example 1 are equivalent and lead to the same
allocation and payment).

When ex post signals are absent, an allocation rule χ is implementable if and only if
along with the endowed valuation function ui, χ satisfies the cycle-monotonicity condi-
tion of Rochet (1987): for all finite cycles θi(0)� θ

i
(1)� � � � � θ

i
(K)� θ

i
(K+1) = θi(0) in �i, we have

K+1∑
k=1

{
ui

(
χ
(
θi(k)

)
� θi(k)

) − ui(χ(
θi(k)

)
� θi(k−1)

)} ≥ 0�

Weak detectability guarantees that we can artificially generate cycle monotonicity from
the signal structure. Formally, weak detectability ensures the existence of a lottery λ :
�i × S→ R such that for all finite cycles θi(0)� � � � � θ

i
(K)� θ

i
(K+1) = θi(0) in �i, we have

K+1∑
k=1

⎧⎨
⎩

(
ui

(
χ
(
θi(k)

)
� θi(k)

) +E
[
λ
(
θi(k)� s

)|χ(
θi(k)

)
� θi(k)

])
− (
ui

(
χ
(
θi(k)

)
� θi(k−1)

) +E
[
λ
(
θi(k)� s

)|χ(
θi(k)

)
� θi(k−1)

])
⎫⎬
⎭ ≥ 0� (6)

If all types in a cycle are equivalent (with respect to the constructed order), then they lead
to the same allocation and lottery; thus, (6) is trivially satisfied with equality. Otherwise,
the cycle contains at least one upward misreport (i.e., there exists k such that θi(k) is

a higher type than θi(k−1)). Weak detectability enables the planner to punish such an
upward misreport to satisfy (6). Accordingly, we can implement χ as if it satisfies cycle
monotonicity.

Weak detectability is not only sufficient but also necessary for signal structures to
generate such a lottery. Accordingly, if weak detectability is not satisfied and χ does not
satisfy cycle monotonicity with respect to the valuation function ui, truthtelling may not
be induced. Example 2 illustrates this fact.

Example 2 (Necessity). We assume X = {a�b� c}, �i = {A�B�C}, χ(A) = a, χ(B) = b,
and χ(C)= c. Furthermore, we assume

π(a�A) ∈ co
({
π(a�C)�π(a�B)

})
�

π(b�B) ∈ co
({
π(b�A)�π(b�C)

})
�

π(c�C) ∈ co
({
π(c�B)�π(c�A)

})
�
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Clearly, taking �̄i =�i produces a violation of weak detectability. We assume that δ= 1,
and that ui(χ(θi)� θi) = 0 and ui(x�θi) = 1 for x �= χ(θi). Note that χ does not satisfy
cycle monotonicity with respect to ui.13

Toward a contradiction, suppose that there exists pi that satisfies (3) and (4). Since
π(a�A) ∈ co({π(a�B)�π(a�C)}), there exists α ∈ [0�1] such that

π(a�A)= απ(a�B)+ (1 − α)π(a�C)�
Regarding pi(A) : S→R as a |S|-dimensional vector and multiplying it from the left, we
have

pi(A) ·π(a�A)= αpi(A) ·π(a�B)+ (1 − α)pi(A) ·π(a�C)
or, equivalently,

E
[
pi(A� s)|a�A] = αE[

pi(A� s)|a�B] + (1 − α)E[
pi(A� s)|a�C]

� (7)

Equation (7) indicates that either E[pi(A� s)|a�B] ≥ E[pi(A� s)|a�A] holds or E[pi(A� s)|
a�C] ≥ E[pi(A� s)|a�A] does. Otherwise, αE[pi(A� s)|a�B] + (1 − α)E[pi(A� s)|a�C] <
E[pi(A� s)|a�A], which contradicts (7).

Without loss of generality, we assume E[pi(A� s)|a�B] ≥ E[pi(A� s)|a�A]. For B to
make a truthful report against misreportingA, the following relationships must hold:

Ui(B)= 0 +E
[
pi(B� s)|b�B] ≥ 1 +E

[
pi(A� s)|a�B]

�

When this is taken together with the fact that Ui(A) = 0 + E[pi(A� s)|a�A], we obtain
that Ui(B) > Ui(A) is necessary.

Applying the above argument to B, we obtain either E[pi(B� s)|b�A] ≥ E[pi(B� s)|
b�B] or E[pi(B� s)|b�C] ≥ E[pi(B� s)|b�B]. If the former inequality holds, we obtain
Ui(A) >Ui(B), which contradictsUi(A) <Ui(B). If the latter inequality holds, we have
Ui(C) >Ui(B) (>Ui(A)). However, applying the above argument to C, we obtain either
Ui(A) >Ui(C) or Ui(B) > Ui(C). In every case, there is a contradiction. Hence, there is
no pi and Ui that satisfy (3) and (4). ♦

Generalizing the argument in Examples 1 and 2, we can prove that weak detectability
is the necessary and sufficient condition for the implementability of the targeted alloca-
tion rule χ of the one-shot problem.

5. Sufficient conditions for the original problem

5.1 Without backup: A basic but loose sufficient condition

We now construct a dynamic mechanism for the original problem (defined in Section 3).
It is instructive to begin by constructing simpler mechanisms from stronger conditions.

13Such an allocation rule cannot be efficient under private values. However, without the assumption
of private values, the flow valuation function of the other agents could be affected by θi . In that case, if
the other agents strongly preferred such an allocation rule, then this allocation rule would maximize social
welfare. See the Supplemental Material.
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To consider the reporting problem of θit , we can always use θ−i
t+1 as an ex post signal

for the realization of θit because agent i’s incentive for reporting after period t + 1 is not
disturbed by such payments.14 In this subsection, we describe a sufficient condition
that relies only on the correlation between θit and θ−i

t+1.

First, we formulate the one-shot problem for detecting θit (for each θ−i
t ). The plan-

ner chooses an allocation in period t from Xt . The type space of agent i is trivially �it .
The allocation rule in the one-shot problem is χt(·;θ−i

t ) : �it → Xt . In this subsection,
we specify the set of ex post signals as �−i

t+1. Given θ−i
t , θ−i

t+1’s (marginal) distribution,

conditional on (xt� θit), is μ−i
t+1(·; ·� θ−i

t ) :Xt ×�it → �(�−i
t+1), where

μ−i
t+1

(
θ−i
t+1;xt�θt

) =
∑

θit+1∈�it+1

μt+1
(
θit+1� θ

−i
t+1;xt�θt

)
�

Hence, the signal structure for detecting θit given θ−i
t is

�̄it
(
θ−i
t

) ≡ (
Xt��

i
t�χt

(·;θ−i
t

)
��−i

t+1�μ
−i
t+1

(·� ·;θ−i
t

))
�

Given that there exists a wp-EPIC mechanism (χt� gt)
T+1
t=0 , under what conditions can

we modify it to satisfy the no-information-rent property? Since we consider period-0 full
surplus extraction (i.e., to exploit all the expected payoffs from participation in period
0), it suffices to incentivize truthful reporting of types in the initial period.

Proposition 1. Given an allocation rule (χt)
T+1
t=0 , suppose that for all i ∈ I and θ−i

0 ∈
�−i

0 , �i0 is strongly detectable with �̄i0(θ
−i
0 ). Suppose also that there exists a payment rule

(gt)
T+1
t=0 such that the mechanism (χt� gt)

T+1
t=0 is wp-EPIC. Then there exists a mechanism

(χt�ψt)
T+1
t=0 that is wp-EPIC and leaves no information rent.

To construct (χt�ψt)
T+1
t=0 , (i) for t = 0, we define ψ0 ≡ 0, and (ii) for t = 2� � � � �T + 1,

we fix some θ̄0 ∈ �̄0 arbitrarily and define ψit(θ1:t )≡ git(θ̄0� θ1:t) for all (i� θ1:t ) ∈ I ×�1:t .
This makes ψit for t ≥ 2 independent of the report in period 0. To obtain ψi1, for each
(i� θ−i

0 ) ∈ I ×�−i
0 , we apply Lemma 1 where we set

ui
(
x0� θ

i
0;θ−i

0

) ≡ vi0(x0� θ0)+ δE[
V i1 (θ1)+Gi1(θ̄0� θ1)|x0� θ0

]
�

Ui
(
θi0;θ−i

0

) ≡ 0

to obtain pi(·� ·;θ−i
0 ) :�i0 ×�−i

1 → R that satisfies (3) and (4). Define

ψi1
(
θi0� θ

−i
0 � θ1

) ≡ pi(θi0� θ−i
1 ;θ−i

0

) + gi1(θ̄0� θ1)�

Importantly, pi(·� ·;θ−i
0 ) is independent of agent i’s own report in period 1, θi1.

This mechanism, (χt�ψt)
T+1
t=0 , leaves no information rent. From

0 ≡Ui(θ0)= V i0 (θ0)+ δ ·E[
Gi1(θ̄0� θ1)+pi(θi0� θ−i

1 ;θ−i
0

)|x0� θ0
]

14Note that this property is not always guaranteed when we also use θit+1 as an ex post signal for θit .
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and


i0(θ0)= δ ·E[

i1(θ0� θ1)|x0� θ0

]
= δ ·E[

Gi1(θ̄0� θ1)+pi(θi0� θ−i
1 ;θ−i

0

)|x0� θ0
]

it follows that for all θ0 ∈�0,

Ui(θ0)= V i0 (θ0)+
i0(θ0)= 0� (8)

Furthermore, this mechanism, (χt�ψt)
T+1
t=0 , satisfies wp-EPIC. For t = 1� � � � �T + 1,

the fact that (χt�ψt)
T+1
t=0 satisfies wp-EPIC at θ0:t immediately follows from the fact that

(χt� gt)
T+1
t=0 satisfies wp-EPIC at (θ̄0� θ1:t). In addition, for t = 0, we substitute (8) and

ui
(
χ0

(
θ̂i0;θ−i

0

)
� θi0;θ−i

0

)
= vi0

(
χ0

(
θ̂i0;θ−i

0

)
� θ0

) + δE[
V i1 (θ1)+Gi1(θ̄0� θ1)|χ0

(
θ̂i0;θ−i

0

)
� θ0

]
= vi0

(
χ0

(
θ̂i0;θ−i

0

)
� θ0

) + δE[
V i1 (θ1)+
i1

(
θ̂i0� θ

−i
0 � θ1

) −pi(θ̂i0� θ−i
1 ;θ−i

0

)|χ0
(
θ̂i0;θ−i

0

)
� θ0

]
for (4) to verify (1). Accordingly, we also have wp-EPIC for i in period 0.

Remark 2. Assuming private values, Athey and Segal (2013) establish an efficient
mechanism that satisfies wp-EPIC, irrespective of the transition probability functions,
(μt)

T+1
t=0 . This is an example of efficient mechanisms (χt� gt)

T+1
t=0 , whose surplus is ex-

tracted by strong detectability in the initial period.

Next we consider a condition for a targeted allocation rule to be implementable. As
we discussed in Section 4, weak detectability is crucial.

Proposition 2. Given an allocation rule (χt)
T+1
t=0 , suppose that for all i ∈ I , t ∈

{0� � � � �T }, and θ−i
t ∈�−i

t , �it is weakly detectable with �̄it(θ
−i
t ). Then there exists a mech-

anism (χt�ψt)
T+1
t=0 that satisfies wp-EPIC.

We can construct (χt�ψt)
T+1
t=0 by applying Lemma 2 backward. Since we apply

Lemma 2 multiple times, we add subscripts to (ui�pi�Ui) to denote periods. For t = T

and for each θ−i
T ∈�−i

T , we apply Lemma 2 with

uiT
(
xT �θ

i
T ;θ−i

T

) ≡ viT (xT �θT )

to obtain piT+1 and UiT that satisfy (3) and (4). We set ψiT+1(θT �θ
−i
T+1)≡ piT+1(θ

i
T �θ

−i
T+1;

θ−i
T ). Here ψiT+1 does not depend on the reports until T − 1.

After constructing (ψis)
T+1
s=t+2 such that each ψis is independent of the reports until

s− 2, we construct ψit+1 in the following manner. For each θ−i
t ∈�−i

t , we apply Lemma 2
with

uit
(
xt�θ

i
t;θ−i

t

) ≡ vit(xt� θt)+ δE[
V it+1(θt+1)|xt�θt

] + δ2
E

[

it+2(θt+1� θt+2)|xt�θt

]
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to obtain pit+1 and Uit that satisfy (3) and (4). Note that 
it+2 is independent of

the report of θit because (ψis)
T+1
s=t+2 does not depend on the reports until t. We set

ψit+1(θ
i
t� θ

−i
t � θ

−i
t+1)≡ pit+1(θ

i
t� θ

−i
t+1;θ−i

t ). Here, ψit+1 does not depend on the reports until
t − 1 either.

Iterating this process and setting ψi0 ≡ 0, we obtain a wp-EPIC mechanism (χt�

ψt)
T+1
t=0 .

Remark 3. Liu (2018) also studies implementability of allocation rules in dynamic en-
vironments. His Theorem 3.1 claims that when one assumes his Assumption 2 (con-
vex independence), which is essentially equivalent to strong detectability with �̄it(θ

−i
t )

for all (i� t� θ−i
t �χt), we can implement arbitrary allocation rules. Recall that (i) strong

detectability implies weak detectability and (ii) Proposition 2 relies only on weak de-
tectability. Hence, Proposition 2 uses a weaker assumption than Theorem 3.1 in Liu
(2018).

Liu (2018) also proves that his Assumption 2 is a sufficient condition for full surplus
extraction. Propositions 1 and 2 also provide a sufficient condition but a weaker one. We
need strong detectability only in the initial period (for t = 0) to make the participation
constraint binding, and we implement an efficient allocation rule with weak detectabil-
ity in later periods (for t = 1�2� � � � �T ).

5.2 Backup by strong detectability in later periods

We can further weaken the assumptions of Propositions 1 and 2. In Section 5.1, we have
used only the correlation between θit and θ−i

t+1 to induce truthtelling of θit . From now
on, we also use agent i’s own type in the next period, θit+1, as an ex post signal for the
reporting problem of θit to obtain weaker conditions. Example 3 illustrates the idea.

Example 3. Consider a three-stage problem in which |�−i
0 | = |�−i

1 | = |�i2| = 1, �i0 =
{L0�R0}, �i1 = {A1�B1�C1�D1}, �−i

2 = {E2�F2�G2}, and |Xt | = 1 for t = 0�1�2. The state
transition functions μ1 and μ2 are described in Table 1.

Since the allocation spaces are singleton, the targeted allocation rule is trivially im-
plementable. We consider whether full surplus extraction is guaranteed for this prob-
lem. If we consider only the correlation between θit and θ−i

t+1, there are no ex post signals

in period 0 (because |�−i
1 | = 1). Hence, agent i’s type is not strongly detectable with �̄i0.

However, there exists a mechanism that leaves no information rent. The following
two observations are crucial.

(a) The type space �i0 is strongly detectable with (X0��
i
0�χ0��1�μ1) (although �i0 is

not strongly detectable with �̄i0 = (X0��
i
0�χ0��

−i
1 �μ

−i
1 )). In words, if we regard

agent i’s own type in period 1, θi1, as an ex post signal of θi0, strong detectability is
satisfied in period 0.

(b) The type space �i1 is strongly detectable with �̄i1 = (X1��
i
1�χ1��

−i
2 �μ

−i
2 ), indicat-

ing that we can achieve arbitrary EPV in period 1.
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A1 B1 C1 D1

μ1(·;L0) 0�1 0�4 0�4 0�1
μ1(·;R0) 0�4 0�1 0�1 0�4

E2 F2 G2

μ2(·;A1) 0�6 0�2 0�2
μ2(·;B1) 0�4 0�5 0�1
μ2(·;C1) 0�4 0�1 0�5
μ2(·;D1) 0�2 0�4 0�4

Table 1. The state transition of Example 3.

Using strong detectability with (X0��
i
0�χ0��1�μ1) (rather than (X0��

i
0�χ0��

−i
1 �μ

−i
1 )),

we apply Lemma 1 to the reporting problem of θi0, with Ui0(θ
i
0) ≡ 0 and ui0(x0� θ

i
0) =

vi0(x0� θ
i
0). Then we obtain pi1 :�i0 ×�i1 →R such that

0 = vi0
(
χ0

(
θi0

)
� θi0

) + δE[
pi1

(
θi0� θ

i
1
)|χ0

(
θi0

)
� θi0

]
�

0 ≥ vi0
(
χ0

(
θ̂i0

)
� θi0

) + δE[
pi1

(
θ̂i0� θ

i
1
)|χ0

(
θ̂i0

)
� θi0

]
for all θ̂i0 ∈�i0�

Importantly, unlike the analysis in the previous section, pi1 depends on agent i’s own
type in the next period. The equation and inequality above imply that if we can set each
agent’s EPV in period t to the one specified by pi1 (i.e., if we can set V i1 (θ

i
1)+
1(θ

i
0� θ

i
1)=

pi1(θ
i
0� θ

i
1)), then wp-EPIC in period 0 and the no-information-rent property are satisfied.

In this case, it is indeed possible because �i1 is strongly detectable in period 1
(with �̄i1 = (X1��

i
1�χ1��

−i
2 �μ

−i
2 )). For each θi0 ∈ �i0, we apply Lemma 1 to the re-

porting problem of θi1 with Ui1(θ
i
1;θi0) ≡ pi1(θ

i
0� θ

i
1) and ui1(x1� θ

i
1;θi0) = vi1(x1� θ

i
1). Us-

ing pi2(·� ·;θi0) obtained from Lemma 1 as the payment rule in period 2 (i.e., defining
ψi2(θ

i
0� θ

i
1� θ

−i
2 )≡ pi2(θ

i
1� θ

−i
2 ;θi0)), we can satisfy wp-EPIC in period 1, achieving the EPV

specified by pi1. The constructed (χt�ψit)
2
t=0 satisfies wp-EPIC for i and leaves no infor-

mation rent for i. ♦

As illustrated in Example 3, if strong detectability is satisfied in period t + 1, we can
use the EPV from t + 1 itself as an “incentive payment” for the period-t report because
we can provide an arbitrary EPV in period t + 1 (without collapsing wp-EPIC in period
t + 1). In this case, we can use not only θ−i

t+1, but also θit+1 as the ex post signal of θit .
As we can see in Proposition 2, strong detectability in later periods is not a necessary
condition for implementing a targeted allocation rule. However, if it is satisfied in later
periods, we can generate finer signal spaces with which strong and weak detectability
are more likely to be satisfied in earlier periods.

In general, strong detectability with (Xt+1��
i
t+1�χt+1(·;θ−i

t+1)��
−i
t+2�μ

−i
t+2(·� ·;θ−i

t+1))

might be satisfied only if θ−i
t+1 belongs to a particular subset, say, B−i

t+1 ⊂ �−i
t+1. In such

a case, we can use a partial approach. If θ−i
t+1 ∈ B−i

t+1 is realized, then we also use θit+1
as an ex post signal of θit . Otherwise, we use only the event “θ−i

t+1 is realized” as the ex

post signal of θit , and we do not distinguish between the realization of (θit+1� θ
−i
t+1) and

(θ̂it+1� θ
−i
t+1) for θit+1 �= θ̂it+1. To make the above argument formally, we introduce the

following notation.
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Definition 6. Given B−i
t+1 ⊂�−i

t+1, we define �t+1[B−i
t+1] as a partition of �t+1 such that

{(
θit+1� θ

−i
t+1

)} ∈�t+1
[
B−i
t+1

]
for all θ−i

t+1 ∈ B−i
t+1 and θit+1 ∈��{(

θ̂it+1� θ
−i
t+1

)}
θ̂it+1∈�it+1

∈�t+1
[
B−i
t+1

]
for all θ−i

t+1 /∈ B−i
t+1�

We define μt+1[B−i
t+1] : Xt × �t → �(�t+1[B−i

t+1]) as the conditional probability func-

tion such that μt+1[B−i
t+1](s;xt�θt) represents the probability that the event that s ∈

�t+1[B−i
t+1] occurs after (xt� θt). Formally, we define

μt+1
[
B−i
t+1

]
(s;xt�θt)≡

∑
θt+1∈s

μt+1(θt+1;xt�θt)�

We callB−i
t+1 a backup set. We also define the signal structure generated by (θ−i

t �B
−i
t+1)

as

�it
(
θ−i
t �B

−i
t+1

) ≡ (
Xt��

i
t�χt

(·;θ−i
t

)
��t+1

[
B−i
t+1

]
�μt+1

[
B−i
t+1

](·� ·;θ−i
t

))
�

Note that (�t+1[�−i
t+1]�μt+1[�−i

t+1]) is equivalent to (�t+1�μt+1) and (�t+1[∅]�μt+1[∅]) is

equivalent to (�−i
t+1�μ

−i
t+1). Accordingly, �it(θ

−i
t �∅)= �̄it(θ−i

t ).

Example 4. Figure 1 illustrates�t+1[B−i
t+1] and μt+1[B−i

t+1] given some (xt� θt) ∈Xt ×�t .
In this example, �−i

t+1 = {L�R} and B−i
t+1 = {R}. Since L /∈ B−i

t+1, we do not distinguish

between (T�L) and (B�L). In contrast, since R ∈ B−i
t+1, the realizations of (T�R) and

(B�R) can be used as distinct realizations of ex post signals. It follows that

�−i
t+1

[{R}] = {{
(T�L)� (B�L)

}
�
{
(T�R)

}
�
{
(B�R)

}}
and

μt+1
[{R}]({(T�L)� (B�L)};xt�θt) = 0�1 + 0�2 = 0�3�

μt+1
[{R}]({(T�R)};xt�θt) = 0�3�

μt+1
[{R}]({(B�R)};xt�θt) = 0�4�

Hence, μt+1[{R}](·;xt�θt)= (0�3�0�3�0�4), and we can check the detectability conditions
with such three-dimensional vectors. ♦

When we apply Lemmas 1 and 2 for �it(θ
−i
t �B

−i
t+1), the payment rule pit+1 which is

thereby generated satisfies

pit+1
(
θit� θ

i
t+1� θ

−i
t+1;θ−i

t

)
= pit+1

(
θit� θ̂

i
t+1� θ

−i
t+1;θ−i

t

)
for θ−i

t+1 /∈ B−i
t+1 and for all θit+1� θ̂

i
t+1 ∈�it+1
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Figure 1. An example of �t+1[B−i
t+1] and μt+1[B−i

t+1]; �it+1 = {T�B}, �−i
t+1 = {L�R}, and

B−i
t+1 = {R}.

because pit+1 :�it ×�t+1[B−i
t+1] → R. As a result, pit+1 can be expressed in the following

manner

ψit+1
(
θt� θ

−i
t+1

) + 1{θ−i
t+1∈B−i

t+1} · (V it+1(θt+1)+
it+1(θt� θt+1)
)

= pit+1
(
θit� θt+1;θ−i

t

)
�

Hence, if the planner can set an arbitrary on-path EPV V it+1(θt+1)+
it+1(θt� θt+1) to ev-

ery θ−i
t+1 ∈ B−i

t+1 (i.e., if strong detectability is satisfied at every θ−i
t+1 ∈ B−i

t+1), then (i) strong

detectability with �it(θ
−i
t �B

−i
t+1) guarantees that the planner can also choose an arbi-

trary on-path EPV at θ−i
t and (ii) weak detectability with �it(θ

−i
t �B

−i
t+1) guarantees that

the planner can implement the targeted allocation rule at θ−i
t .

Checking strong detectability sequentially, we can construct a sequence of backup
sets.

Definition 7. The sequence of subsets (B−i
t )

T+1
t=1 , where B−i

t ⊂ �−i
t for each t, is a se-

quence of backup sets for agent i along (χt)
T+1
t=1 if both of the following relationships

hold:

(i) We have B−i
T+1 =∅.

(ii) For t = 1�2� � � � �T , θ−i
t ∈ B−i

t only if �it is strongly detectable with �it(θ
−i
t �B

−i
t+1).

When B−i
t+1 becomes larger, the generated partition, �t+1[B−i

t+1], becomes finer. Ac-

cordingly, for all B̂−i
t+1 ⊃ B−i

t+1, if�it is strongly (weakly) detectable with �it(θ
−i
t �B

−i
t+1),�

i
t is

also strongly (weakly) detectable with �it(θ
−i
t � B̂

−i
t+1). Hence, we can obtain the sequence

of the largest backup sets by replacing condition (ii) of Definition 7 with this revised
condition:

(ii′) For t = 1�2� � � � �T , θ−i
t ∈ B−i

t if and only if �it is strongly detectable with �it(θ
−i
t �

B−i
t+1).

The sequence of the largest backup sets forms an upper envelope of all sequences of
backup sets. That is, if (B̂−i

t )
T+1
t=1 is the sequence of the largest backup set and (B−i

t )
T+1
t=1

is a sequence of backup sets, then B̂−i
t ⊃ B−i

t holds for t = 1�2� � � � �T + 1. If we want to
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maximize the chance to satisfy strong or weak detectability, we can concentrate on the
sequence of the largest backup sets.

If �i0 is strongly detectable with �i0(θ
−i
0 �B

−i
1 ) for every θ−i

0 ∈ �−i
0 where (B−i

t )
T+1
t=1 is

a sequence of backup sets, then we can choose agent i’s EPV in period 0, {V i0 (θ0) +

i0(θ0)}θ0∈�0 , arbitrarily. In particular, we can select V i0 (θ0)+
i0(θ0)= 0 for all θ0 ∈�0.
We now generalize Proposition 1.

Theorem 1 (Extraction). Let (B−i
t )

T+1
t=1 be a sequence of backup sets for agent i along

(χt)
T+1
t=0 . Suppose that (i) there exists a payment rule (git)

T+1
t=0 that makes (χt� git)

T+1
t=0 satisfy

wp-EPIC for i and (ii) for all θ−i
0 ∈�−i

0 , �i0 is strongly detectable with �i0(θ
−i
0 �B

−i
1 ). Then

there exists (ψit)
T+1
t=0 such that (χt�ψit)

T+1
t=0 satisfies wp-EPIC and leaves no information

rent for i.

Similarly, for a sequence of backup sets (B−i
t )

T+1
t=1 , if weak detectability is satisfied

for every period and at every θ−i
t ∈�−i

t \ B−i
t , then the implementability of the targeted

allocation rule (χt)
T+1
t=0 is guaranteed. This generalizes Proposition 2.

Theorem 2 (Implementation). Let (B−i
t )

T+1
t=1 be a sequence of backup sets for agent i

along (χt)
T+1
t=0 . Suppose that for all t ∈ {0�1� � � � �T } and for all θ−i

t ∈�−i
t \B−i

t ,�it is weakly

detectable with �it(θ
−i
t �B

−i
t+1). Then there exists (git)

T+1
t=0 such that (χt� git)

T+1
t=0 satisfies wp-

EPIC for i.15

Theorems 1 and 2 include Propositions 1 and 2 as special cases: Propositions 1 and
2 fix B−i

t = ∅ for t = 1� � � � �T .
Combining Theorems 1 and 2, we obtain a condition for full surplus extraction that

is guaranteed solely by the properties of the information structure (�t�μt)
T+1
t=0 .

6. Discussion

6.1 Tightness

Theorems 1 and 2 are “tight” in the following sense. Detectability conditions are the
most likely to be satisfied if the signal space is the finest; i.e., the backup set is full: B−i

t+1 =
�−i
t+1 if t < T and B−i

t+1 = ∅. Accordingly, if strong or weak detectability is not satisfied
with the finest signal space generated by the full backup set, some information rent must
be left or implementation is impossible with some valuations.

Formally, first, if strong detectability in the initial period is violated even with the
full backup set, then we can always find a sequence of flow valuation functions (vit)

T
t=0

with which we must leave some information rent to agents to implement the targeted
allocation rule.

15Since strong detectability (satisfied at B−i
t ) implies weak detectability, the condition of Theorem 2 en-

sures that weak detectability is satisfied for all t ≤ T and θ−i
t ∈�−i

t .
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Theorem 3. Given (χt)
T+1
t=0 , suppose either (i) that there exists θ−i

0 ∈�−i
0 such that �i0 is

not strongly detectable with �i0(θ
−i
0 ��

−i
1 ) or (ii) that T = 0 and there exists θ−i

0 ∈�−i
0 such

that �i0 is not strongly detectable with �i0(θ
−i
0 �∅). Under either hypothesis, there exists

(vit)
T
t=0 with which all wp-EPIC mechanisms leave at least some information rent for i.

Second, if weak detectability is violated in some periods even with the full backup
set, then we can always find (vit)

T
t=0 with which we cannot satisfy wp-EPIC along with

the targeted allocation rule.

Theorem 4. Given (χt)
T+1
t=0 , suppose either (i) that there exists t ∈ {0�1� � � � �T − 1} and

θ−i
t ∈�−i

t such that �it is not weakly detectable with �it(θ
−i
t ��

−i
t+1) or (ii) that there exists

θ−i
T ∈�−i

T such that�iT is not weakly detectable with �iT (θ
−i
T �∅). Under either hypothesis,

there exists (vit)
T
t=0 with which no mechanism is wp-EPIC for i.

The proof follows immediately from Lemmas 1 and 2, so it is omitted here.
The necessary conditions provided in Theorems 3 and 4 coincide with the sufficient

conditions provided in Theorems 1 and 2, respectively, when T = 0 (the case of static
allocation problems with ex post signals, as considered in Mezzetti 2004, 2007). Accord-
ingly, the proposed hypotheses are the tight necessary and sufficient conditions for the
conclusions when T = 0.

When T > 0, the sufficient conditions of Theorems 1 and 2 are strictly stronger than
the necessary conditions of Theorems 3 and 4, which indicates that they are not tight
necessary and sufficient conditions. This is because in Theorems 1 and 2, we do not
attempt to control the EPV in t + 1 when θ−i

t+1 ∈ �−i
t+1 \ B−i

t+1 is realized. For such θ−i
t+1,

although the set of EPV V it+1(·� θ−i
t+1)+
it+1(θt� ·� θ−i

t+1) that is sustainable with wp-EPIC
in s ≥ t + 1 is difficult to characterize, there still remain some degrees of freedom. Here,
while we have only limited control of EPV in t+ 1, a specific vector of EPV in t+ 1, which
we want to use for inducing truthtelling in t, may be available.16

 Example 5 illustrates
this difficulty.

Example 5. Consider a three-stage problem, in which |�−i
0 | = |�−i

1 | = |�i2| = 1, �i0 =
{A0�B0}, �i1 = {C1�D1�E1}, �−i

2 = {F2�G2}, and |Xt | = 1 for t = 0�1�2. The state transi-
tion μ1, μ2 is summarized in Table 2. Since the allocation space is singleton, the imple-
mentability of the targeted allocation rule is trivial. We will consider whether or not we
can detect θi0 without leaving information rent.

In this example, the assumption of Theorem 1 is not met. Since |�−i
1 | = 1), ex post

signal that we can use for detecting agent i’s type in period 0 is agent i’s own type
realization in period 1, θi1. However, since �i1 is not strongly detectable in period 1
(μ2(D1)= [μ2(C1)+ μ2(E1)]/2), the backup set in period 1 is empty. Therefore, the as-
sumption of Theorem 1 is not satisfied; thus, it cannot guarantee full surplus extraction
in this example.

16If θ−i
t+1 ∈ B−i

t+1, we can use an arbitrary EPV, (V it+1(·� θ−i
t+1)+
it+1(θt � ·� θ−i

t+1)) ∈ R
|�it+1|; thus, we do not

have this problem.



60 Shunya Noda Theoretical Economics 14 (2019)

C1 D1 E1

μ1(·;A0) 0�5 0�3 0�2
μ1(·;B0) 0�2 0�3 0�5

F2 G2

μ2(·;C1) 0�7 0�3
μ2(·;D1) 0�5 0�5
μ2(·;E1) 0�3 0�5

Table 2. State transition of Example 5.

However, full surplus extraction is achievable for all valuation functions in Exam-
ple 5. This is because (i) we do not have any restriction on the ratio of the con-
tinuation payoff from C1 to that from E1 because μ2(C1) /∈ co({μ2(D1)�μ2(E1)}) and
μ2(E1) /∈ co({μ2(C1)�μ2(D1)}), and (ii) it follows fromμ1(D1;A0)= μ1(D1;B0)= 0�3 that
agent i’s incentive for reporting in period 0 is independent of the EPV atD1. Here, while
it is impossible to achieve an arbitrary EPV vector (Ui1(C1)�U

i
1(D1)�U

i
1(E1)) depending

on the report in period 0, an arbitrary (Ui1(C1)�U
i
1(E1)) is available (for some Ui1(D1))

and this is sufficient for detecting θi0 without leaving information rent. ♦

6.2 The direct use of distant intertemporal correlations

The incentive for truthtelling of θit is ultimately provided by the correlation between θit
and θ−i

t+s for s ≥ 1. Hence, we can obtain a sufficient condition by considering the condi-
tional probability that (θ−i

t+1� θ
−i
t+2� � � � � θ

−i
T+1) given θit . To study the above idea, Liu (2018)

introduced the marginal state distributions of the distant future periods:

μ−i
t�t+s

(
θ−i
t+s;xt�xt+1� � � � � xt+s−1� θt

)
≡

∑
θ̃it+s

∑
θt+1:t+s−1

μt+1(θt+1;xt�θt) · · ·μt+s−1(θt+s−1;xt+s−2� θt+s−2)

×μt+s
(
θ̃it+s� θ−i

t+s;xt+s−1� θt+s−1
)
�

Liu (2018) proposed a sufficient condition for detecting agent i’s types by checking
strong detectability with this μ−i

t�t+s. This approach complements ours. In Example 5,

μ−i
0�2(A0) = (0�56�0�44) �= μ−i

0�2(B0) = (0�44�0�56). Since each θi0 generates a convex-

independent belief of θ−i
2 , Liu’s approach is applicable to Example 5.

Conversely, in Example 3, our backup-set approach is applicable while Liu’s is not.
As we have seen, Theorem 1 is applicable. However, each type in the initial period gener-
ates the same belief about all the future types of the other agents: μ−i

0�2(L0)= μ−i
0�2(R0)=

(0�4�0�3�0�3). Accordingly, Liu’s approach is inapplicable.17

6.3 Infinite horizon

So far, for simplicity, we have focused on a finite horizon. Nevertheless, our results can
be extended to environments with an infinite horizon. First, we can straightforwardly

17We cannot obtain a tight necessary and sufficient condition by combining our approach with Liu’s. See
the Supplemental Material for the details.
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extend our results for satisfying the no-information-rent property without substantial
changes. Second, to implement an allocation rule in a problem with an infinite horizon,
we need some additional conditions. It is well known that one should scale up Crémer–
McLean lotteries as the correlation between agents’ types becomes weaker. Accordingly,
when the intertemporal correlation between agents’ types vanishes as t → ∞, the incen-
tive payment may be unbounded; therefore, we cannot use either the one-shot deviation
principle or the deposit scheme for keeping the participation constraint. In the Supple-
mental Material, we propose a sufficient condition for implementing allocation rules in
an infinite horizon, imposing the uniform lower bound on correlation intensity.

7. Concluding remarks

We have proposed mechanisms that implement a targeted allocation rule and achieve
full surplus extraction from conditions on the intertemporal correlation of agents’ types.
In our mechanism, unlike that of Crémer and McLean (1988), no one wants to deviate
even if he observed all the information available at each time point.

We believe that we can apply the techniques developed in this paper to some real-
world problems. Nevertheless, if we accept that the generic possibility of full surplus
extraction “cast[s] doubt on the value of the current mechanism design paradigm as a
model of institutional design” (McAfee and Reny 1992, p. 400), our results suggest that
this critique of Crémer–McLean might be more severe in dynamic environments.

Appendix A: Proofs

A.1 Proof of Lemma 1

Sufficiency By strong detectability with (X��i�χ�S�π) and the separating hyperplane
theorem, there exists λ :�i × S→R such that

E
[
λ
(
θi� s

)|χ(
θi

)
� θi

] = 0� (9)

E
[
λ
(
θi� s

)|χ(
θi

)
� θ̂i

]
< 0 for all θ̂i ∈�i \ {

θi
}
� (10)

Let

pi
(
θi� s

) ≡ δ−1[Ui(θi) − ui(χ(
θi

)
� θi

)] + α · λ(θi� s)�
where α ∈ R++ is a sufficiently large scalar.

By (9), for all α, (3) is satisfied for all θi ∈�i. Furthermore, by (10), letting α be suffi-
ciently large, (4) is also satisfied for all (θi� θ̂i) ∈�i ×�i, as desired.

Necessity Assume that there exists θ̄i ∈�i such that

π
(
χ
(
θ̄i

)
� θ̄i

) ∈ co
({
π

(
χ
(
θ̄i

)
� θ̂i

)}
θ̂i∈�i\{θ̄i}

)
� (11)

Pick δ= 1 and ui such that for all x ∈X , ui(x� θ̄i)= 0 and ui(x�θi)= 1 for all θi �= θ̄i. Take
pi :�i × S→ R arbitrarily. By (11), there exists α ∈ �(�i \ {θ̄i}) such that∑

θi �=θ̄i
α
(
θi

)
E

[
pi

(
θ̄i� s

)|χ(
θ̄i

)
� θi

] = E
[
pi

(
θ̄i� s

)|χ(
θ̄i

)
� θ̄i

] =Ui(θ̄i)�
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Hence, there exists η(pi) ∈�i \ {θ̄i} such that

Ui
(
θ̄i

) ≤ E
[
pi

(
θ̄i� s

)|χ(
θ̄i

)
�η

(
pi

)]
� (12)

In addition, to satisfy (3) and (4) for (θ̄i�η(pi)),

Ui
(
η

(
pi

)) = 1 +E
[
pi

(
η

(
pi

)
� s

)|χ(
η

(
pi

))
�η

(
pi

)] ≥ 1 +E
[
pi

(
θ̄i� s

)|χ(
θ̄i

)
�η

(
pi

)]
(13)

is necessary. By combining (12) and (13), we obtain that Ui(η(pi)) ≥ Ui(θ̄i)+ 1 is nec-
essary. Therefore, there is no pi that satisfies (3), (4), and

Ui
(
θi

)
<Ui

(
θ̄i

) + 1 (14)

for all θi ∈�i \ {θ̄i}.

Remark 4. In particular, Ui(θi)= 0 for all θi ∈�i is not achievable, as it satisfies (14).

A.2 Proof of Lemma 2

Sufficiency First, we construct an ordered partition {H(k)}Kk=1 of�i and corresponding
lotteries λ : {1� � � � �K} × S → R. By assumption, we can find θ̄i ∈ �i that satisfies (5) for
�̄i =�i. By the separating hyperplane theorem, there exists λ(1� ·) that satisfies

E
[
λ(1� s)|χ(

θ̄i
)
� θ̄i

] = 0�

E
[
λ(1� s)|χ(

θ̄i
)
� θi

]
< 0 for θi ∈�i s.t. χ

(
θi

) �= χ(
θ̄i

)
�

Let

H(1)≡ {
θi ∈�i : E[

λ(1� s)|χ(
θ̄i

)
� θi

] ≥ 0
}
�

Note that by construction, χ(θi)= χ(θ̄i)must hold for all θi ∈H(1).
Given H(1)�H(2)� � � � �H(k − 1), we construct H(k) as follows. Again, by assump-

tion, we can find θ̄i ∈�i \ (⋃k−1
l=1 H(l)) that satisfies (5) for �̄i =�i \ (⋃k−1

l=1 H(l)). By the
separating hyperplane theorem, there exists λ(k� ·) that satisfies

E
[
λ(k� s)|χ(

θ̄i
)
� θ̄i

] = 0�

E
[
λ(k� s)|χ(

θ̄i
)
� θi

]
< 0 for θi ∈�i

∖ (
k−1⋃
l=1

H(l)

)
s.t. χ

(
θi

) �= χ(
θ̄i

)
�

(15)

Let

H(k)≡
{
θi ∈�i

∖ (
k−1⋃
l=1

H(l)

)
: E[

λ(k� s)|χ(
θ̄i

)
� θi

] ≥ 0

}
�

We can proceed with this until
⋃K
k=1H(k)=�i.

Using this λ, we specify pi given arbitrary ui; Ui is always defined by (3). First, let
pi(θi� s)= 0 for all θi ∈H(K). Since the allocation, payments and continuation payoffs
are fixed for the reports within H(K), (4) is satisfied for (θi� θ̂i) ∈H(K)×H(K).
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Suppose that pi(θi� s) is defined for θi ∈ ⋃K
l=k+1H(l) and (4) is satisfied for (θi� θ̂i) ∈

(
⋃K
l=k+1H(l))× (⋃K

l=k+1H(l)). For θi ∈H(k), let

pi
(
θi� s

)
≡ max
θ̌i∈H(k)�θ̂i∈⋃K

l=k+1H(l)

{
δ−1[ui(χ(

θ̂i
)
� θ̌i

) − ui(χ(
θ̌i

)
� θ̌i

)] +E
[
pi

(
θ̂i� s

)|χ(
θ̂i

)
� θ̌i

]}

+ α · λ(k� s)�

where α ∈ R++ is a sufficiently large scalar.
Since χ(θi) = χ(θ̂i) and pi(θi� s) = pi(θ̂i� s) holds for all θi� θ̂i ∈ H(k), (4) is sat-

isfied for (θi� θ̂i) ∈ H(k) × H(k). Furthermore, by construction of the terms in the
max operator and λi, (4) is satisfied for (θi� θ̂i) ∈ H(k) × (

⋃K
l=k+1H(l)) as well. Fi-

nally, by (15), changing the value of α, we can provide type θi ∈ ⋃K
l=k+1H(l) arbitrar-

ily strong punishment when he misreports θ̂i ∈ H(k). Therefore, (4) is satisfied for
(θi� θ̂i) ∈ (⋃K

l=k+1H(l)) × H(k) with a large, but fixed α. Hence, (4) is satisfied for

(θi� θ̂i) ∈ (⋃K
l=kH(l))× (⋃K

l=kH(l)).
Since {H(k)}Kk=1 is a partition of �i, at the end, we can construct pi (and Ui) that

satisfies (3) for all θi ∈�i and (4) for all (θi� θ̂i) ∈�i ×�i, as desired.

Necessity Assume that there exists �̄i ∈�i such that for all θi ∈ �̄i,

π
(
χ
(
θi

)
� θi

) ∈ co
({
π

(
χ
(
θi

)
� θ̂i

)}
θ̂i∈�̄i s.t. χ(θ̂i)�=χ(θi)

)
� (16)

Let δ= 1 and

ui
(
x�θi

) =
{

0 if x= χ(
θi

)
�

1 otherwise�

It follows from (16) that for each θi ∈ �̄i, there exists η(θi;pi) ∈ �̄i such that χ(θi) �=
χ(η(θi;pi)) and

E
[
pi

(
θi� s

)|χ(
θi

)
� θi

] ≤ E
[
pi

(
θi� s

)|χ(
θi

)
�η

(
θi;pi)]� (17)

Alternatively, to satisfy (3) and (4),

Ui
(
θi

) = 0 +E
[
pi

(
θi� s

)|χ(
θi

)
� θi

] ≥ 1 +E
[
pi

(
θ̂i� s

)|χ(
θ̂i

)
� θi

]
(18)

is necessary for each θi� θ̂i ∈�i such that χ(θi) �= χ(θ̂i).
From (17) and (18), we have that

Ui
(
η

(
θi;pi))>Ui(θi) (19)

for all θi ∈�i is necessary. Recall that we can find such a η(θi;pi) for all θi ∈ �̄i.

Claim. There exists a cycle of i’s type, h(1)�h(2)� � � � �h(N) ∈ �̄i such that N > 1, h(n +
1)= η(h(n);pi) for n= 1�2� � � � �N − 1, and h(1)= η(h(N);pi).
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Proof. Start from an arbitrary element of �̄i and name it h(1). Let h(2)≡ η(h(1);pi).
By definition of η, h(2) �= h(1). For k > 1, after constructing h(1)� � � � �h(k), if η(h(k);
pi)= h(l) for some l ∈ {1�2� � � � �k− 1}, h(l)�h(l + 1)� � � � �h(k) constitutes a cycle. Oth-
erwise, let h(k + 1) ≡ η(h(k);pi). By definition of η, h(k + 1) �= h(k). Finally, when
k = |�̄i|, it follows from {h(1)� � � � �h(|�̄i| − 1)} = �̄i \ {h(|�̄i|)} and η(h(|�̄i|);pi) ∈ �̄i \
{h(|�̄i|)} that there exists l ∈ {1� � � � � |�̄i| − 1} such that η(h(|�̄i|);pi)= h(l). Accordingly,
we can always find a cycle.

Proof of the necessity part of Lemma 2 (continued) Suppose toward a contradiction that
there exists pi such that (19) holds for all (θi� θ̂i) ∈ �i × �i. By the claim, we can find
h(1)�h(2)� � � � �h(N) ∈ �̄i such that

Ui
(
h(1)

)
<Ui

(
h(2)

)
< · · ·<Ui(h(N))<Ui(h(1))�

This is a contradiction.

A.3 Proof of Propositions 1 and 2

Propositions 1 and 2 are the special cases of Theorems 1 and 2.

A.4 Proof of Theorem 1

For t ∈ {1� � � � �T + 1}, fix θ̄0:t−1 ∈�0:t−1 arbitrarily and define git�s :�t:s → R by

git�s(θt:s)≡ gis(θ̄0:t−1� θt:s)�

Since (χs�gs)
T+1
s=0 is wp-EPIC for i at (θ̄0:t−1� θt:s), (χs�gt�s)T+1

s=t is wp-EPIC for i at all θt:s ∈
�t:s.

For t ∈ {1� � � � �T +1} for all θ0:t−1 ∈�i0:t−1 ×�−i
0 ×B−i

1:t−1 (i.e., θ−i
s ∈ B−i

s for all s ≤ t−1),

once θ−i
t ∈�−i

t \B−i
t realizes, we set

ψit
(
θ0:t−1� θ

i
t� θ

−i
t

) = git�t
(
θit� θ

−i
t

) +φit
(
θ0:t−1� θ

−i
t

)
for some φit(θ0:t−1� θ

−i
t ) (the value is specified later, but it does not depend on θit ) and

ψis
(
θ0:t−1� θ

i
t� θ

−i
t � θt+1:s

) = git�s
(
θit� θ

−i
t � θt+1:s

)
for all s ≥ t + 1, θt+1:s ∈ �t+1:s. Then wp-EPIC of (χs�gt�s)

T+1
s=t ensures wp-EPIC

of (χs�ψs)
T+1
s=t for agent i at (θ0:t−1� θ

i
t� θ

−i
t ) ∈ �i0:t × �−i

0 × B−i
1:t−1 × (�−i

t \ B−i
t ) and

(θ0:t−1� θ
i
t� θ

−i
t � θt+1:s) ∈�i0:s ×�−i

0 ×B−i
1:t−1 × (�−i

t \B−i
t )×�−i

t+1:s for s ∈ {t+ 1� � � � �T + 1}.

This construction guarantees wp-EPIC of i at θ0:t ∈ �0:t \ (�i0:t × �−i
0 × B−i

1:t) for t ∈
{1� � � � �T + 1}.

To satisfy wp-EPIC at θ0 ∈�0 and θ0:t ∈�i0:t ×�−i
0 × B−i

1:t for t ≥ 1, we construct φit :
�i0:t−1 ×�−i

0 × B−i
1:t−1 ×�−i

t → R for t = 0�1� � � � �T by the following procedure and then

set ψit(θ0:t )=φit(θ0:t−1� θ
−i
t ) for t = {0�1� � � � �T }, θ0:t ∈�i0:t ×�−i

0 ×B−i
1:t .
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Step 0 Let φi0(θ
−i
0 )= 0 for all θ−i

0 ∈�−i
0 . By assumption, for all θ−i

0 ∈�−i
0 , �i0 is strongly

detectable with �i0(θ
−i
0 �B

−i
1 ). Hence, applying Lemma 1 with Ui0(θ

i
0;θ−i

0 )= 0 for all θi0 ∈
�i0 and

ui0
(
x0� θ

i
0;θ−i

0

) = vi0(x0� θ0)+ δE[
1{θ−i

1 /∈B−i
1 }

(
V i1 (θ1)+Gi1�1(θ1)

)|χ0(θ0)�θ0
]
�

we obtain pi1(·� ·;θ−i
0 ) :�i0 ×�1 → R that satisfies

pi1
(
θi0� θ

i
1� θ

−i
1 ;θ−i

0

) = pi1
(
θi0� θ̂

i
1� θ

−i
1 ;θ−i

0

)
for all θi1� θ̂

i
1 ∈�i1 and θ−i

1 /∈ B−i
1 � (20)

0 = vi0
(
χ0(θ0)�θ0

)
+ δE[

1{θ−i
1 /∈B−i

1 }
(
V i1 (θ1)+Gi1�1(θ1)

) +pi1
(
θi0� θ1;θ−i

0

)|χ0(θ0)�θ0
] (21)

for all θi0 ∈�i0, and

0 ≥ vi0
(
χ0

(
θ̂i0� θ

−i
0

)
� θ0

)
+ δE[

1{θ−i
1 /∈B−i

1 }
(
V i1 (θ1)+Gi1�1(θ1)

) +pi1
(
θ̂i0� θ1;θ−i

0

)|χ0
(
θ̂i0� θ

−i
0

)
� θ0

] (22)

for all (θi0� θ̂
i
0) ∈�i0 ×�i0. Let φi1(θ0� θ

−i
1 )≡ 0 for θ−i

1 ∈ B−i
1 and

φi1
(
θ0� θ

−i
1

) ≡ pi1
(
θi0� θ

i
1� θ

−i
1 ;θ−i

0

)
for θ−i

1 /∈ B−i
1 �

Note that (20) ensures that φi1 is independent of θi1. Moreover, since

V i1 (θ1)+
i1(θ0� θ1)= V i1 (θ1)+Gi1�1(θ1)+φi1
(
θ0� θ

−i
1

)
for θ−i

1 /∈ B−i
1 �

if V i1 (θ1) + 
i1(θ0� θ1) = pi1(θ
i
0� θ1;θ−i

0 ) holds for θ−i
1 ∈ B−i

1 , (21) implies the no-infor-
mation-rent property, and (21) and (22) imply wp-EPIC for i at (θi0� θ

−i
0 ) for all θi0 ∈�i0.

Step t (for 0 < t < T ) Fix each (θ0:t−1� θ
−i
t ) ∈ �i0:t−1 × �−i

0 × B−i
1:t . Since θ−i

t ∈ B−i
t , �it

is strongly detectable with �it(θ
−i
t �B

−i
t+1). Hence, applying Lemma 1 with Uit (θ

i
t;θ0:t−1�

θ−i
t )= pit(θ

i
t−1� θ

i
t� θ

−i
t ;θ0:t−2� θ

−i
t−1) (whose value is specified in Step t − 1) for all θit ∈�it

and

uit
(
xt�θ

i
t;θ0:t−1� θ

−i
t

)
= vit(xt� θt)+ δE[

1{θ−i
t+1 /∈B−i

t+1}
(
V it+1(θt+1)+Git+1�t+1(θt+1)

)|χt(θt)� θt]�
we obtain pit+1(·� ·;θ0:t−1� θ

−i
t ) :�it ×�t+1 → R that satisfies

pit+1
(
θit� θ

i
t+1� θ

−i
t+1;θ0:t−1� θ

−i
t

)
= pit+1

(
θit� θ̂

i
t+1� θ

−i
t+1;θ0:t−1� θ

−i
t

)
for all θit+1� θ̂

i
t+1 ∈�it+1 and θ−i

t+1 /∈ B−i
t+1�

(23)
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pit
(
θit−1� θt;θ0:t−2� θ

−i
t−1

)
= vit

(
χt(θt)� θt

)
+ δE[

1{θ−i
t+1 /∈B−i

t+1}
(
V it+1(θt+1)+Git+1�t+1(θt+1)

)
+pit+1

(
θit� θt+1;θ0:t−1� θ

−i
t

)|χt(θt)� θt]
(24)

for all θit ∈�it , and

pit
(
θit−1� θt;θ0:t−2� θ

−i
t−1

)
≥ vit

(
χt

(
θ̂it � θ

−i
t

)
� θt

)
+ δE[

1{θ−i
t+1 /∈B−i

t+1}
(
V it+1(θt+1)+Git+1�t+1(θt+1)

)
+pit+1

(
θ̂it � θt+1;θ0:t−1� θ

−i
t

)|χt(θ̂it � θ−i
t

)
� θt

]
(25)

for all (θit� θ̂
i
t) ∈�it ×�it . Let φit+1(θ0:t−1� θt� θ

−i
t+1)≡ 0 for θ−i

t+1 ∈ B−i
t+1 and

φit+1
(
θ0:t−1� θt� θ

−i
t+1

) ≡ pit+1
(
θit� θ

i
t+1� θ

−i
t+1;θ0:t−1� θ

−i
t

)
for θ−i

t+1 /∈ B−i
t+1�

Note that (23) ensures that φit+1 is independent of θit+1. Moreover, since

V it+1(θt+1)+
it+1(θ0:t+1)

= V it+1(θt+1)+Git+1�t+1(θt+1)+φit+1
(
θ0:t � θ−i

t+1

)
for θ−i

t+1 /∈ B−i
t+1�

if V it+1(θt+1)+
it+1(θ0:t+1)= pit+1(θ
i
t� θt+1;θ0:t−1� θ

−i
0 ) holds for θ−i

t+1 ∈ B−i
t+1, (24) implies

that V it (θt)+
it(θ0:t)= pit(θit−1� θt;θ0:t−2� θ
−i
t−1), and (24) and (25) imply wp-EPIC for i at

(θ0:t−1� θ
i
t� θ

−i
t ) for all θit ∈�it .

Step T Fix each (θ0:T−1� θ
−i
T ) ∈ �i0:T−1 × �−i

0 × B−i
1:T . Since θ−i

T ∈ B−i
T , �iT is strongly

detectable with �iT (θ
−i
T �∅). Hence, applying Lemma 1 with UiT (θ

i
T ;θ0:T−1� θ

−i
T ) =

piT (θ
i
T−1� θT ;θ0:T−2� θ

−i
T−1) (whose value is specified in Step T − 1) for all θit ∈�it and

uiT
(
xT �θ

i
T ;θ0:T−1� θ

−i
T

) = viT (xT �θT )�

we obtain piT+1(·� ·;θ0:T−2� θ
−i
T−1) :�iT ×�−i

T+1 →R (recall that it is independent of θiT+1)
that satisfy

piT
(
θiT−1� θT ;θ0:T−2� θ

−i
T−1

)
= viT (xT �θT )+ δE[

piT+1
(
θiT �θ

−i
T+1;θ0:T−1� θ

−i
T

)|χT (θT )�θT ] (26)

for all θiT ∈�iT and

piT
(
θiT−1� θT ;θ0:T−2� θ

−i
T−1

)
≥ viT

(
xT � θ̂

i
T � θ

−i
T

) + δE[
piT+1

(
θ̂iT � θ

−i
T+1;θ0:T−1� θ

−i
T

)|χT (
θ̂iT � θ

−i
T

)
� θT

] (27)
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for all (θiT � θ̂
i
T ) ∈�iT ×�iT . Let φiT+1(θ0:T �θ−i

T+1)≡ piT+1(θ
i
T �θ

−i
T+1;θ0:T−1� θ

−i
T ). Then (26)

and (27) imply wp-EPIC for i at (θ0:T−1� θ
i
T �θ

−i
T ) for all θiT ∈ �iT . Furthermore, (26) im-

plies that V iT (θT )+
iT (θ0:T )= V iT (θT )+�iT (θ0:T )= piT (θiT−1� θT ;θ0:T−1� θ
−i
T−1) holds, as

demanded in Steps 0–T − 1.

A.5 Proof of Theorem 2

We will show that for t = 0� � � � �T + 1, there exists (gt�k)
T+1
k=t that makes (χk�gis�k)

T+1
k=s wp-

EPIC for i and is independent of the reports until t−1. By assumption on viT+1 andXT+1,
by letting giT+1�T+1(θT+1)= 0 for all θT+1 ∈�T+1, (χT+1� g

i
T+1�T+1) is trivially wp-EPIC.

Suppose that for s = t + 1� � � � �T + 1, there exists a continuation payment rule
(gis�k)

T+1
k=s that makes (χk�gis�k)

T+1
k=s wp-EPIC for i. We will construct (git�k)

T+1
k=t that makes

(χk�g
i
t�k)

T+1
k=t wp-EPIC for i. Let git�t(θt) = 0 for all θt . When θ−i

t+1 ∈ �−i
t+1 \ B−i

t+1 real-

izes, we set git�t+1(θt� θ
i
t+1� θ

−i
t+1) = git+1�t+1(θ

i
t+1� θ

−i
t+1) + φit+1(θt� θ

−i
t+1), where the value

of φit+1(θt� θ
−i
t+1) is specified later, and git�k(θt� θt+1� θt+2:k) = git+1�k(θt+1� θt+2:k) for all

k ∈ {t + 2� � � � �T + 1}, θt+2:k ∈ �t+2:k. By the induction hypothesis, wp-EPIC for i at
(θt� θt+1� θt+2:k) ∈�t ×�it+1 × (�−i

t+1 \B−i
t+1)×�t+2:k is satisfied for k= {t + 1� � � � �T + 1}.

For each θ−i
t ∈ �−i

t , by assumption, �it is weakly detectable with �it(θ
−i
t �B

−i
t+1).

Hence, applying Lemma 2 with

uit
(
xt�θ

i
t;θ−i

t

) = vit(xt� θt)+ δE[
1{θ−i

t+1 /∈B−i
t+1}

(
V it+1(θt+1)+Git+1�t+1(θt+1)

)|χt(θt)� θt]�
we can obtain Uit (·;θ−i

t ) :�it →R and pit+1(·� ·;θ−i
t ) :�it ×�t+1 →R that satisfy

pit+1
(
θit� θt+1;θ−i

t

)
= pit+1

(
θit� θ̂

i
t+1� θ

−i
t+1;θ−i

t

)
for all θit+1� θ̂

i
t+1 ∈�it+1 and θ−i

t+1 /∈ B−i
t+1�

Uit
(
θit;θ−i

t

)
= vit

(
χt(θt)� θt

)
(28)

+ δE[
1{θ−i

t+1 /∈B−i
t+1}

(
V it+1(θt+1)+Git+1�t+1(θt+1)

) +pit+1
(
θit� θt+1;θ−i

t

)|χt(θt)� θt]
for all θit ∈�it , and

Uit
(
θit;θ−i

t

)
≥ vit

(
χt

(
θ̂it � θ

−i
t

)
� θt

)
+ δE[

1{θ−i
t+1 /∈B−i

t+1}
(
V it+1(θt+1)+Git+1�t+1(θt+1)

)
+pit+1

(
θ̂it � θt+1;θ−i

t

)|χt(θ̂it � θ−i
t

)
� θt

]
(29)

for all θit� θ̂
i
t ∈�it .

For θ−i
t+1 /∈ B−i

t+1, we set

φit+1
(
θit� θ

−i
t � θ

−i
t+1

) ≡ pit+1
(
θit� θ

i
t+1� θ

−i
t+1;θ−i

t

)
for θ−i

t+1 /∈ B−i
t+1�
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Note that (23) ensures that φit+1 is independent of θit+1. Moreover, since

V it+1(θt+1)+Git�t+1(θt:t+1)

= V it+1(θt+1)+Git+1�t+1(θt+1)+φit+1
(
θ0:t � θ−i

t+1

)
for θ−i

t+1 /∈ B−i
t+1�

if V it+1(θt+1)+Git�t+1(θt:t+1)= pit+1(θ
i
t� θ

i
t+1� θ

−i
t+1;θ−i

t ) holds for θit+1 ∈ B−i
t+1, (28) and (29)

imply that (χk�git�k)
T+1
k=t is wp-EPIC for i at (θit� θ

−i
t ) for all θit ∈�it .

Such EPV can actually be given for θ−i
t+1 ∈ B−i

t+1 keeping wp-EPIC. Applying the

same argument as Theorem 1 and fixing (θt� θ
−i
t+1) ∈ �t × B−i

t+1, we can construct

{cis(·� ·;θt� θ−i
t+1)}T+1

s=t+1, where cis(·� ·;θt� θ−i
t+1) : �it+1 × �t+2 → R, such that it is wp-EPIC

at (θit+1� θ
−i
t+2� θt+2:s) for all (θit+1� θt+2:s) ∈ �it+1 × �t+2:s and pit+1(θ

i
t� θ

i
t+1� θ

−i
t+1;θ−i

t ) =
V it+1(θ

i
t+1� θ

−i
t+1)+Cit+1(θ

i
t+1;θt� θ−i

t+1) for all θ−i
t+1 ∈ B−i

t+1. Define

gt�s(θt:s)≡ cis
(
θit+1� θt+2:s;θt� θ−i

t+1

)
for s = t+1� � � � �T+1� θt:s ∈�t×�it+1 ×B−i

t+1 ×�t+2:s�

The constructed (χk�git�k)
T+1
k=t is wp-EPIC for i at every θt:s ∈�t:s for s ≥ t.

Iterating this process, finally we can obtain (gi0�t)
T+1
t=0 that makes (χt� gi0�t)

T+1
t=0 wp-

EPIC for i. Defining git ≡ gi0�t , we obtain wp-EPIC (χt� git)
T+1
t=0 .
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