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Observational learning in large anonymous games

Ignacio Monzón
Collegio Carlo Alberto, Università degli Studi di Torino

I present a model of observational learning with payoff interdependence. Agents,
ordered in a sequence, receive private signals about an uncertain state of the
world and sample previous actions. Unlike in standard models of observational
learning, an agent’s payoff depends both on the state and on the actions of others.
Agents want both to learn the state and to anticipate others’ play. As the sample
of previous actions provides information on both dimensions, standard informa-
tional externalities are confounded with payoff externalities. I show that in spite
of these confounding factors, when signals are of unbounded strength, there is
learning in a strong sense: agents’ actions are ex post optimal given both the state
of the world and others’ actions. With bounded signals, actions approach ex post
optimality as the signal structure becomes more informative.

Keywords. Observational learning, payoff interdependence, information aggre-
gation, position uncertainty.
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1. Introduction

In several economic environments, the utility of an agent is affected both by some un-
certain state of the world and by the actions of others. Consider a brand new operating
system, of unknown quality. Each consumer cares not only about its quality, but also
about whether others will adopt it. A consumer who considers buying the new system
does not know how many after him will also adopt it, and may not know exactly how
many before him have already adopted it. Alternatively, consider a farmer who must
decide to plant either corn or soybeans at the start of the season, but is uncertain about
their relative demand by the end of the season. Even though he does not know what
other farmers will choose, the choices of others affect the relative profitability of each
crop: if most farmers plant corn, then the price of corn will be lower and so it is more
profitable to plant soybeans. Similar stories apply to investment in assets with unknown
fundamentals, voting, contributions to public goods of uncertain quality, network con-
gestion, and many other environments.

Ignacio Monzón: ignacio@carloalberto.org
I am grateful to Bill Sandholm for his advice, suggestions, and encouragement. I thank Nageeb Ali, Andrea
Gallice, Leandro Gorno, Daniel Hauser, Toomas Hinnosaar, Eeva Mauring, Giorgio Martini, Alexei Parakho-
nyak, Lones Smith, and Aleksey Tetenov for valuable comments and suggestions. I also thank two anony-
mous referees for their very thoughtful reports. Some early ideas that led to this paper were present in
“Social Learning in Games,” the third chapter of my dissertation, which was joint work with Michael Rapp.
I especially thank him.

© 2019 The Author. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://econtheory.org. https://doi.org/10.3982/TE3014

http://econtheory.org/
mailto:ignacio@carloalberto.org
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://econtheory.org
https://doi.org/10.3982/TE3014


404 Ignacio Monzón Theoretical Economics 14 (2019)

By observing a sample of the actions of others, an agent obtains information both
about the state of the world and about how others behave. The farmer deciding between
crops may have private information on how the demand will be at the end of the season.
He may also observe the decisions of some of his neighbors. With these two sources of
information, he must form beliefs about both the future demand and about the actions
of those farmers he does not observe. When a farmer observes that one of his neighbors
plants corn, this might mean that his neighbor believes corn to be in high demand, as
in standard models of observational learning. It may also mean that most farmers are
planting corn.

I study the outcomes of observational learning in large games. In the standard setup
of observational learning, (complete) learning has a simple definition: the fraction of
adopters of the superior action must approach 1. When payoffs depend on others’ ac-
tions, the right action depends not only on the state of the world, but also on what others
do. I focus then on whether realized actions are ex post optimal. I say that strategic learn-
ing occurs when agents’ actions are ex post optimal given both the state of the world
and the realized actions of others. The main message of this paper, as stated formally in
Proposition 2, is simple: Strategic learning occurs, provided that the signal structure is
sufficiently informative.

The notion of strategic learning is demanding: it requires that agents not only learn
about the state of the world, but also that they correctly anticipate others’ actions and
best respond to them. In what follows I describe the framework and I present the intu-
ition behind this result.

Agents are exogenously ordered in a sequence and are uncertain about their position
in it. There are two, a priori equally likely, states of the world. Each agent receives a
private signal about the underlying state of the world and observes the actions of some
of his predecessors. Then he makes a once-and-for-all decision between two actions (0
and 1). The main innovation with respect to the standard setup is that an agent’s payoff
depends not only on his own action and the unknown state of the world, but also on
the proportion X of agents who choose action 1. My framework applies to the examples
described before (coordination games, such as the adoption of a new operating system,
and anti-coordination games, such as the example of farmers). I do not impose any
particular functional form on how payoffs depend on X .

Payoff interdependence adds a strategic consideration to observational learning:
each agent understands that since his own action is observed by some of his successors,
it partly determines their decisions. An agent who can affect aggregate outcomes needs
to take into account the effect of his decision on others’ actions. Gallice and Monzón
(forthcoming) show that this strategic component can have a strong effect on the aggre-
gate play when there is a finite number of agents who never make mistakes.1 However,
this should intuitively be less relevant in large games. Individual farmers do not expect
to be able to affect aggregate supply, and individual consumers typically do not believe

1In Gallice and Monzón (forthcoming), a finite number of agents must decide sequentially whether to
contribute to a public good. Since there are no mistakes, each individual agent can determine the aggre-
gate outcome. This allows for full contribution in equilibrium (see Example 3 in Section 4.1 for a detailed
explanation).
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that they can determine the overall adoption rate of a new operating system. In this pa-
per, I assume that agents make mistakes with arbitrarily small probability. I show that
this implies that agents cannot individually determine the aggregate play.

The intuition behind strategic learning is simple and has two components. First, al-
though each agent could, in principle, affect aggregate outcomes, in practice there are
no butterfly effects. As the number of agents grows large, each individual’s action has a
smaller effect on the proportion X . Second, as each agent foresees that each action has
a small effect on X , he can treat the proportion X as given. Realized payoffs depend (ap-
proximately) only on the state of the world and his own action. In this sense, I translate
a game of observational learning with payoff externalities into a game of observational
learning without them. Then I use tools of standard observational learning to show that
strategic learning occurs. I develop this intuition in detail in what follows.

The first main result (Proposition 1) shows that as the number of agents grows large,
the proportion X converges to its expectation in each state of the world. This proposi-
tion addresses two challenges that result from the additional strategic factors associated
with payoff externalities. First, each agent needs to anticipate how others will behave.
Second, each agent may need to account for the effect of his own action on others’ deci-
sions.

I develop a novel approach to show convergence of the proportion X . If the equi-
librium strategy profile were the same regardless of the number of agents, Proposition 1
would be straightforward. Agents make mistakes with positive probability, so a fixed
strategy profile would create an irreducible and aperiodic Markov chain over actions.
Thus, a standard ergodic argument would lead to this result. However, as the number
of agents grows, the game changes, so the equilibrium strategy profile varies with the
number of agents. I use a coupling argument to show that any Markov chain induced by
a strategy profile converges to its stationary distribution. The speed of convergence has
a geometric lower bound that is independent of the particular equilibrium strategy pro-
file. Thus, the effect of one individual’s action on the proportion X wanes as the num-
ber of agents grows, even with strategy profiles that change with the number of agents.
I show through this argument that the proportion X converges to its expectation. As a
direct consequence, no individual agent can affect the aggregate outcome. This result
holds true for all payoff specifications.

The second main result (Proposition 2) explains why strategic learning must occur in
equilibrium when signals are of unbounded strength. Since the proportion X converges
to its expectation in each state of the world, each agent can anticipate the payoffs he
would get from each action in each state of the world. Optimality considerations limit
the possible combinations of proportions X and payoffs that can occur in equilibrium.
To see this, consider first a long-run outcome where in both states of the world, the pay-
off from choosing action 1 exceeds that from choosing action 0. Any agent who chooses
action 0 regrets it ex post. Intuitively, an agent could instead choose action 1 always
and obtain higher payoffs. It follows that no positive proportion of agents can choose a
dominated action.

The final step in Proposition 2 deals with long-run outcomes where agents want to
choose different actions in different states of the world. I provide an improvement prin-
ciple that applies to environments with payoff externalities. An individual can always
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copy a random action from the sample he observes. Moreover, when his private signal is
strong enough, he can go against the observed action and do (in expected terms) strictly
better than the observed agent. Then, as the number of agents grows large, it must be
the case that either (i) the fraction of agents who choose the superior action approaches
1 or (ii) the extra payoff from choosing the right action approaches 0. In either case, there
is strategic learning.

Proposition 2 provides a unique prediction of play for games with only one Nash
equilibrium (e.g., an anti-coordination game). In the farmers’ example, the proportion
of crops planted correctly matches the demand. If instead there are several equilibria in
each state of the world, Proposition 2 does not select among them. I illustrate this point
through a coordination game (Example 8).

Finally, I show that some degree of information aggregation also occurs with signals
of bounded strength. Lemma 7 presents a notion of bounded strategic learning. Al-
though actions may be ex post suboptimal with bounded signals, there is a bound on
how far actions can be from optimality. This bound depends on the information struc-
ture, and approaches zero as signals’ informativeness increases.

1.1 Related literature

There is a large literature that studies observational learning, starting from the seminal
contributions of Bikhchandani et al. (1992) and Banerjee (1992). In these papers, a set
of rational agents choose sequentially between two actions. An agent’s payoff depends
on whether his action matches the unknown state of the world, but not on others’ ac-
tions. The actions of others are relevant only because of their informational content. In
Bikhchandani et al. (1992) and Banerjee (1992), each agent knows that his own signal is
not better than the signals others have received. Agents eventually follow others’ behav-
ior and disregard their own signals. Then the optimal behavior of rational agents can
prevent complete learning. Smith and Sørensen (2000) show that when signals are of
unbounded strength, individuals never fully disregard their own information and com-
plete learning occurs. Monzón and Rapp (2014) present conditions for information ag-
gregation when agents are uncertain both about their own position in the sequence and
about the positions of those they observe.

Starting with Dekel and Piccione (2000), a line of research focuses on the outcomes
of sequential voting. In Dekel and Piccione (2000), a finite sequence of agents cast votes
between two alternatives. Their focus is on the comparison between simultaneous and
sequential voting. Dekel and Piccione show that any equilibrium of a simultaneous vot-
ing game is also an equilibrium when voting is sequential. In Callander (2007), agents
vote sequentially and care not only about electing the superior candidate, but also about
voting for the winning candidate. Callander shows that a bandwagon eventually starts:
voters ignore their private information and vote for the leading candidate. Ali and Kartik
(2012) present a model motivated by sequential voting, but that encompasses the class
of collective preferences: an agent’s utility increases when others choose an action that
matches the unknown state. Ali and Kartik show how herds can arise. My paper differs
from this line of research in several dimensions. First, I allow for payoff externalities that
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can be either positive or negative. My model can accommodate both incentives to con-
form and incentives to go against the crowd. Second, agents observe a sample of past
behavior instead of the whole history of play. Together with position uncertainty and a
positive probability of mistakes, this implies that agents cannot individually determine
the aggregate outcome. Third, my focus is not on herds, but rather on whether agents
are ex post satisfied with their action.

Several recent papers have highlighted the importance of payoff externalities in
other environments. Eyster et al. (2014) present a model of observational learning with
congestion. As usual, agents want to match their action to the state of the world. But
when previous agents in the sequence choose an action, they make it less attractive for
those coming later. Eyster et al. study whether learning occurs as a function of conges-
tion costs. Cripps and Thomas (forthcoming) present a model of (possibly informative)
queues. Service to those in the queue is provided only in the good state of the world, but
at a stochastic rate. Cripps and Thomas study the dynamics of the queue. Arieli (2017)
focuses on recurring games: successive generations of agents play the same game. As in
my paper, payoffs depend on the unknown state of the world and also on the actions of
others. However, payoff externalities are only local: an agent’s utility is affected by the
actions of others in the same generation. Arieli studies when complete learning occurs.
In addition to the points already mentioned, my paper differs from Eyster et al. (2014),
Cripps and Thomas (forthcoming), and Arieli (2017) in that an agent’s payoff depends
on the actions of those before and also after him in the sequence. This adds a strategic
consideration to the analysis, as agents may affect future decisions.

2. Model

Let I = {1� � � � �T } be a set of agents, indexed by i. Agents are exogenously placed in a se-
quence in positions indexed by t ∈ {1� � � � �T }. The random variable Q assigns a position
Q(i) to each agent i. Let q : {1� � � � �T } → {1� � � � �T } be a permutation and let Q be the set
of all possible permutations. All permutations are ex ante equally likely: Pr(Q = q) = 1

T !
for all q ∈ Q. Each individual has no ex ante information about his position in the se-
quence.2

There are two equally likely states of the world, θ ∈ � = {0�1}. Agents must choose
between two possible actions a ∈ A = {0�1}.3 The timing of the game is as follows. First,
nature chooses the state of the world θ and the order of the sequence q. Agents do not
observe these directly. Instead, each agent i receives a noisy signal about the state of the
world and a sample of past actions. Then he makes a once-and-for-all choice.

Payoffs may depend on the actions of others. Let X ≡ 1
T

∑
j∈I aj denote the propor-

tion of agents who choose action 1, with realizations x ∈ [0�1]. Agent i obtains utility
u(ai�X�θ) : A× [0�1] ×�→R, where u(ai�X�θ) is a continuous function in X .4

2This setup corresponds to the case of symmetric position beliefs as defined in Monzón and Rapp (2014).
3In the Supplemental Material, which is available in a supplementary file on the journal website, http://

econtheory.org/supp/3014/supplement.pdf, I extend the results to any finite number of states and actions.
4Note that an agent’s payoff depends on the actions of both those who came before him and those who

come after him in the sequence.

http://bit.ly/stratlearn
http://econtheory.org/supp/3014/supplement.pdf
http://econtheory.org/supp/3014/supplement.pdf
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2.1 Private signals

Each agent i receives a private signal SQ(i), with realizations s ∈ S . Conditional on the
true state of the world, signals are independent and identically distributed (i.i.d.) across
individuals and distributed according to F0 if θ = 0 or F1 if θ = 1. I assume that F0 and
F1 are mutually absolutely continuous. Then, no perfectly revealing signals occur with
positive probability, and the likelihood ratio (Radon–Nikodym derivative) l(s) ≡ dF1

dF0
(s)

exists. Let Gθ be the distribution function for this likelihood ratio: Gθ(l) ≡ Pr(l(S) ≤
l | θ). Since F0 and F1 are mutually absolutely continuous, the support supp(G) of G0
coincides with the support of G1. I define signal strength as follows.

Definition (Signal strength). Signal strength is unbounded if 0 <G0(l) < 1 for all like-
lihood ratios l ∈ (0�∞); signal strength is bounded if the convex hull of supp(G) is given
by co(supp(G)) = [l� l], both with 0 < l < 1 < l <∞.5

2.2 The sample of past actions

Agents observe others’ actions through a simple sampling rule. Let ht = (a1� a2� � � � � at−1)

denote a possible history of actions up to period t − 1. Let Ht be the (random) history at
time t, with realizations ht ∈ Ht . Agent i in position q(i)= t receives a sample ξt : Ht →�

containing the ordered choices of his M predecessors (if available):

ξt =

⎧⎪⎪⎨⎪⎪⎩
∅ if t = 1

(a1� � � � � at−1) if 1 < t ≤M

(at−M� � � � � at−1) if t >M�

The first agent observes nobody’s action, so he receives an empty sample. Agents in
positions t ∈ {2� � � � �M} observe the actions of all their predecessors. Subsequent agents
observe the actions of their M immediate predecessors.6

2.3 Strategies, mistakes, and equilibrium existence

All information available to an agent is summarized by {s� ξ}, which is an element of
S × �. I assume that individuals make mistakes with small probability ε > 0, so their
strategies are ε-constrained. Formally, agent i’s strategy is a function σi : S × � →
[ε�1 − ε] that specifies a probability σi(s� ξ) for choosing action 1 given the informa-
tion available. The set of ε-constrained strategies is denoted by 
. Let σ−i denote the
strategies for all players other than i. Then the profile of play is given by σ = (σi�σ−i).7

5I disregard intermediate cases, since they do not add much to the understanding of observational strate-
gic learning.

6I present alternative sampling rules in Appendix A.9. First, I consider the case where agents sample
from all predecessors. I show that Propositions 1 and 2 also hold whenever closer predecessors are more
likely to be sampled. Second, I allow for the sample size M to grow as the number of agents T increases.
I show that as long as M does not grow too fast, Propositions 1 and 2 also hold.

7Mistakes are rationally anticipated. This model is equivalent to one in which agents choose from [0�1],
but they know in advance that there is a 2ε chance that their decision will be overruled by a coin flip. An
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Every profile σ induces a probability distribution Pσ over histories Ht and, conse-
quently, over proportions X . Profile σ∗ = (σ∗

i �σ
∗
−i) is a Bayes–Nash equilibrium of the

game if

Eσ∗
[
u(ai�X�θ)

] ≥E(σi�σ
∗
−i)

[
u(ai�X�θ)

]
for all σi ∈ 
 and for all i�

A profile of play is symmetric if σi = σj for all i� j ∈ I .

Lemma 1. For each T there exists a symmetric equilibrium σ∗�T .

The Appendix contains most of the proofs.

2.4 Definition of strategic learning

I study the outcomes of large anonymous games, so I let the number of agents grow
large and study symmetric equilibria. Agents face a different stage game in each state
of the world. Ex ante, each agent is uncertain not only about the state of the world θ,
but also about the realization of the proportion X . An agent receives his private signal
and observes the actions of some predecessors. Given this information, he forms beliefs
both about the underlying state of the world and about the possible realizations of the
proportion X . Then he chooses an action.

I study whether agents can successfully learn both about the state of the world and
about the proportion X . In standard observational learning models, complete learning
occurs when the fraction of adopters of the superior action approaches 1. When payoff
externalities exist, I say strategic learning occurs whenever agents’ actions are ex post
optimal given both the state of the world and the realization of the proportion X . I first
present two simple examples that illustrate when agents will be ex post satisfied with
their actions. I then introduce the formal definition of strategic learning.

Example 1 (Anti-coordination). Let u(1�X�0) = 1
5 −X , u(1�X�1) = 4

5 −X , and u(0�X�

θ)= 0.

Example 1 presents an environment where choosing action 1 becomes less attractive
as more agents also choose it. In state θ = 0, action 1 is preferred as long as X ≤ 1

5 , while
in state θ = 1, action 1 is preferred whenever X ≤ 4

5 . Let xθ be the realized proportion in
state θ, so x= (x0�x1) is the vector of realized proportions in each state. When (x0�x1) =
( 1

5 �
4
5) agents are ex post satisfied with their choices. For example, if (x0�x1) = (0� 4

5)

instead, an agent would prefer to (ex post) switch his action from 0 to 1 in state θ = 0. In
fact, ( 1

5 �
4
5) is the only vector of realized proportion that makes all agents ex post satisfied

with their actions in both states of the world.
Formally, define the excess utility from choosing action 1 in state θ given X as

vθ(X) ≡ u(1�X�θ) − u(0�X�θ). I say that xθ corresponds to a Nash equilibrium (NE)

alternative interpretation of this model is as follows. With probability 1 − 2ε, an agent chooses rationally
from [0�1]. With probability 2ε, the agent is a “behavioral” type. Half of behavioral types always choose
action 0, while the others always choose action 1.
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Figure 1. The NE sets in Examples 1 and 2.

of the stage game θ (and denote it by xθ ∈ NEθ) whenever vθ(xθ) > 0 ⇒ xθ = 1 and
vθ(xθ) < 0 ⇒ xθ = 0. Similarly, x ∈ NE whenever xθ ∈ NEθ for θ ∈ {0�1}.

The circle in Figure 1(a) depicts the set NE for Example 1. There is a unique xθ ∈
NEθ for each θ ∈ {0�1}, so NE is the singleton {( 1

5 �
4
5)}. Other games can have multiple

elements in NE. Consider, for example, the following simple coordination game.

Example 2 (Coordination). Let u(1�X�0) = X − 2
3 , u(1�X�1) = X − 1

3 , and u(0�X�θ) =
0.

In Example 2, NE0 = {0� 2
3 �1} and NE1 = {0� 1

3 �1}. Then there are nine elements in
NE, which are depicted in Figure 1(b) with circles.

It is not obvious a priori whether the realized proportion will be close to elements
of NE. The main result in this paper (Proposition 2) shows that this is, in fact, the case.
Intuitively, there is strategic learning when, as the number of agents grows large, the
(random) proportion X gets close to NE. Because mistakes occur with positive proba-
bility, the proportion X may not get arbitrarily close to elements in NE. This is why I
first take the number of agents to infinity and then take the probability of mistakes to
zero. Let the distance between the realized proportion x and the set NE be defined by
d(x�NE)≡ miny∈NE |x− y|.

Definition (Strategic learning). There is strategic learning when for all δ > 0, there ex-
ists ε̃ > 0 such that

lim
T→∞

Pσ∗�T
(
d(X�NE) < δ

) = 1

for all sequences of symmetric equilibria {σ∗�T }∞T=1 in games with probability of mis-
takes ε < ε̃.

The main result in the paper (Proposition 2) shows that strategic learning occurs
when signals are of unbounded strength.
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3. Results

3.1 Average action convergence

The (random) proportion X converges to its expectation in both states of the world.
Let the random variable Xθ|σ represent the proportion of agents who choose action 1,
conditional on the state of the world θ, and given the strategy σ .8 The random vector
X|σ = (X0|σ�X1|σ) has realizations x = (x0�x1). A sequence of symmetric strategy pro-
files {σT }∞T=1 induces a sequence of proportions {X|σT }∞T=1 and a sequence of expected
proportions {(E[X0|σT ]�E[X1|σT ])}∞T=1. As highlighted by the notation, the expected
proportions may change with T . I show that in spite of this, X|σT converges in proba-
bility to its expectation.

Proposition 1 (Average action converges in probability). Take any sequence of sym-

metric strategy profiles {σT }∞T=1. Then Xθ|σT − E[Xθ|σT ] p−→ 0. More generally, take any
sequence {σ̃T

i }∞T=1 of alternative strategies for agent i. Let the profile of play σ̃T = (σ̃T
i �σ

T
−i)

include i’s alternative strategy. Then Xθ|σ̃T −E[Xθ|σT ] p−→ 0.

A symmetric strategy profile σT induces a Markov chain over M-period histories of
play. Any agent in positions t > M observes the actions of his M immediate predeces-
sors. As σT is symmetric, the likelihood that agent i in position Q(i) >M chooses action
1 given sample ξ is independent of both his identity and his position. Then σT induces
a Markov chain {Yt}M<t≤T over M-period histories. Moreover, as agents make mistakes
with probability ε > 0, the Markov chain is irreducible and aperiodic. If σT was fixed
for all T , a standard argument (ergodic theorem) would suffice to show Proposition 1.
However, there is no guarantee that the equilibrium play is independent of the number
of agents. In fact, it is easy to find examples where this is not the case.

A Markov chain induced by an ε-constrained symmetric strategy profile σT con-
verges to its unique stationary distribution geometrically. Fix a strategy profile σT and
its induced Markov chain {Yt}t>M , but let t → ∞. A coupling argument provides a geo-
metric lower bound on the speed of convergence to the stationary distribution. More-
over, for any ε > 0, this lower bound is independent of the particular strategy profile
σT . As a result, although {Yt}M<t≤T depends on a particular σT , it must approach its
expectation as T grows. In fact, Xθ|σT − E[Xθ|σT ] converges in the L2 norm, so it also
converges in probability.

Finally, the long-run behavior of the proportion X does not change when one agent
deviates and picks a different strategy. To see this, compare the random proportion
X|σT induced by the symmetric profile to the random proportion X|σ̃T induced by
one agent deviating. Let i be the agent who deviates and chooses strategy σ̃i. Agents
in positions earlier than Q(i) are not affected by agent i’s strategy. Agents in positions

8The underlying random variables in this model are the state of the world θ, the positions Q, the private
signals {St}Tt=1, and draws from a randomizing device. The action a1 is determined by σQ−1(1), the signal
s1, and a draw from the randomizing device. This in turn determines the sample ξ2 and affects action a2.
Recursively, this affects all actions at and the proportion X = 1

T

∑T
t=1 at . The notation Xθ|σ highlights that

the distribution of X is for a given strategy profile σ and depends on the state of the world θ.
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right after Q(i) are directly affected. Because of mistakes, the effect that agent i’s action
has on subsequent actions t > Q(i) vanishes (geometrically) as t increases. So as the to-
tal number of agents T increases, the fraction of agents who are directly affected by i’s

action goes to zero. Then also Xθ|σT −Xθ|σ̃T p−→ 0.
The ε-mistakes are a necessary ingredient for Proposition 1: with ε = 0, an individ-

ual’s action can determine the proportion X .9 As I show next, Proposition 1 allows for a
simple approximation to the utility agents obtain from playing this game.

3.2 Utility convergence

Agents’ expected utility under symmetric profile σT is simply

u
(
σT

) ≡EσT

[
u(ai�X�θ)

] = 1
2

∑
θ∈{0�1}

EσT

[
Xθ · u(1�Xθ�θ)+ (1 −Xθ) · u(0�Xθ�θ)

]
�

Define the utility of the expected average action ūT by

ūT ≡ 1
2

∑
θ∈{0�1}

EσT [Xθ] · u(
1�EσT [Xθ]� θ

) + (
1 −EσT [Xθ]

) · u(
0�EσT [Xθ]� θ

)
.

Agents’ expected utility converges to the utility of the expected average action.

Lemma 2 (Expected utility convergence). Take any sequence of symmetric strategy pro-
files {σT }∞T=1. Then limT→∞[u(σT )− ūT ] = 0.

Proof. By Proposition 1, Xθ|σT − E[Xθ|σT ] p−→ 0. The function u(ai�X�θ) is con-

tinuous in X . Then Xθ|σT · u(ai�Xθ|σT �θ)
p−→ EσT [Xθ] · u(ai�EσT [Xθ]� θ) because

of the continuous mapping theorem. Moreover, u(ai�X�θ) is bounded, so Xθ|σT ·
u(ai�Xθ|σT �θ) is also bounded. Then limT→∞EσT [Xθ ·u(ai�Xθ�θ)] = limT→∞EσT [Xθ] ·
u(ai�EσT [Xθ]� θ) by the portmanteau theorem. This leads directly to limT→∞[u(σT ) −
ūT ] = 0.

Proposition 1 also allows for a simple approximation of the expected utility of devia-
tions. Suppose that agent i chooses an alternative strategy σ̃i and let u(σ̃T

i �σ
T
−i) denote

the resulting expected utility from this deviation. Define the approximate utility of the
deviation ũT as

ũT ≡ 1
2

∑
θ∈{0�1}

∑
a∈A

Pσ̃T (ai = a | θ) · u(
a�EσT [Xθ]� θ

)
.

9A simple example illustrates this. To fix ideas, consider the standard herding model. Let M = 1, so each
agent observes his immediate predecessor. There are two signals S = {0�1}, with dF1(1) = dF0(0) = 0�8.
For any T , let all agents follow σT

i (s� ξ) = s if ξ = ∅ and σT
i (s� ξ) = ξ if ξ 
= ∅. The first agent observes

an empty sample and follows his signal. Agents later in the sequence copy the action they observe. It
is simple to see that the action of the first agent determines X . In this example PσT (X1 = 1) = 0�8 and
PσT (X1 = 0) = 0�2 for all T . The random proportion X1|σT does not converge in probability. A similar
example can be constructed to show that the second part of Proposition 1 can fail with ε = 0, even if the
first part holds (that is, even if X|σT converges in probability to its expectation).
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Lemma 3 (Expected utility of deviations). Take any sequence of symmetric strategy
profiles {σT }∞T=1 and a sequence of alternative strategies for agent i: {σ̃T

i }∞T=1. Then
limT→∞[u(σ̃T

i �σ
T
−i)− ũT ] = 0.

The proof closely follows that of Lemma 2; see Appendix A.4 for the details.

3.3 The set of limit points

Different profiles of play σT induce different distributions over X . I study the set
L of limit points for sequences of equilibrium strategies {σT }∞T=1. Let E[X|σ] =
(Eσ [X0]�Eσ [X1]) denote the vector of expected proportions.

Definition (Limit points). The vector x = (x0�x1) is a limit point if there exists a se-
quence of symmetric equilibrium strategy profiles {σT }∞T=1 such that for some subse-
quence {σTτ }∞τ=1, limτ→∞ E[X|σTτ ] = x.

The following corollary, which is an immediate consequence of Proposition 1, shows
why one should focus on the set L of limit points. As the number of agents grows large,
only proportions X close to L occur with positive probability

Corollary 1. Take any sequence of symmetric equilibrium strategy profiles {σT }∞T=1 and
any δ > 0. Then limT→∞ PσT (d(X�L) < δ) = 1.

The set of limit points L is generated by equilibrium strategies. Optimality consid-
erations allow for a partial characterization of L. Pick a sequence of symmetric equi-
libria {σT }∞T=1 and also a sequence of (alternative) ε-constrained strategies for agent i:
{σ̃T

i }∞T=1. Since σT are equilibrium strategies, u(σ̃T
i �σ

T
−i) − u(σT ) ≤ 0 for all σT

−i and for
all T . Computing exactly u(σ̃T

i �σ
T
−i) and u(σT ) is not possible in general. It requires

specifying payoffs, the signal structure, and the number M of agents sampled, and then
also computing the equilibrium play. Fortunately, Lemmas 2 and 3 together make it easy
to work with alternative strategies. Let the approximate improvement 
T be given by


T ≡ ũT − ūT = 1
2

∑
θ∈{0�1}

[
Pσ̃T (ai = 1 | θ)−EσT [Xθ]

] · vθ
(
EσT [Xθ]

)
�

No alternative strategy can do better than the equilibrium strategy. The following
corollary formalizes this intuition for the approximate improvement 
T .10

Corollary 2. Take any sequence of symmetric equilibrium strategy profiles {σT }∞T=1 and
a sequence of ε-constrained strategies {σ̃T

i }∞T=1 for agent i. Then lim supT→∞
T ≤ 0.

I present two simple alternative strategies that restrict the possible elements of the
set L of limit points. The first strategy is to always choose a particular action, regardless
of the information received. This strategy proves useful when one action dominates

10Since agents make mistakes with positive probability, alternative strategies must be ε-constrained.
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the other in the limit. The second strategy is to copy the action of one of the observed
agents, unless the signal received is extremely informative. This strategy resembles the
standard improvement principle in observational learning and is useful when no action
strictly dominates the other in the limit.

3.4 Alternative Strategy 1: Always follow a given action

The first alternative strategy is simple: follow a given action, regardless of the informa-
tion received. Lemma 4 shows how this strategy imposes restrictions on the elements
of L.

Lemma 4 (Dominance). Any limit points (x0�x1) ∈L must satisfy

(x0 − ε)v0(x0)+ (x1 − ε)v1(x1)≥ 0 (1)

(1 − ε− x0)v0(x0)+ (1 − ε− x1)v1(x1)≤ 0� (2)

Moreover, let one action be weakly dominant in the limit: v0(x0)v1(x1) ≥ 0. Then vθ(xθ) >

0 implies (x0�x1) = (1 − ε�1 − ε) and vθ(xθ) < 0 implies (x0�x1) = (ε�ε).

To illustrate how Lemma 4 partially characterizes the long-run outcomes of large
games, consider first (2). When (2) is not satisfied, always playing action 1 leads to a
utility that is strictly higher than the expected utility of the game. Then points that do
not satisfy (2) cannot be limit points. Take again the simple anti-coordination game
presented in Example 1. The shaded area in Figure 2(a) shows all points that satisfy (2).11

Take, for example ( 4
5 �

1
5). For a large enough number of players, agents’ expected payoffs

become arbitrarily close to 1
2 [ 4

5u(1�
4
5 �0) + 1

5u(1�
1
5 �1)] = − 1

2(
3
5)

2. An agent who always

Figure 2. Applying Lemma 4 to Example 1 (anti-coordination).

11The exact shape of the sets depicted in Figures 2 and 3 depend on the value of ε. I present them with
ε = 0.
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Figure 3. Applying Lemma 4 to Example 2 (coordination).

chooses action 1 obtains instead payoffs arbitrarily close to 1
2 [u(1� 4

5 �0)+ u(1� 1
5 �1)] = 0.

Then there cannot be a sequence of equilibria that induces ( 4
5 �

1
5) as a limit point.

Equation (1) describes the outcomes not dominated by action 0 instead. In the case
of Example 1, (1) generates an area symmetric to that presented in Figure 2(a). In fact, it
is easy to see that ( 4

5 �
1
5) is also dominated by always playing action 0. The shaded area

in Figure 2(b) represents the possible outcomes that remain after applying Lemma 4 in
Example 1.

Outcomes that make agents indifferent between actions in one state but not in the
other can only be in L if all agents choose the nondominated action in both states, so
either x = (1 − ε�1 − ε) or x = (ε�ε). Figure 3 illustrates this for the coordination game
from Example 2. The shaded area in Figure 3(a) shows the points that are not domi-
nated by action 1. The shaded area in Figure 3(b) depicts the outcomes that remain after
applying Lemma 4. The nonshaded circles in Figure 3(b) such as ( 2

3 �1) cannot be limit
points. These points are not (strictly) dominated by always playing some action. For ex-
ample, as Figure 3(a) shows, ( 2

3 �1) is not (strictly) worse than always choosing action 1.
However, ( 2

3 �1) cannot be a limit point because of the last result in Lemma 4.

3.5 Alternative Strategy 2: Improve upon a sampled agent

The second alternative strategy deals with the most interesting case: nondominated ac-
tions. Consider a general x= (x0�x1) with v0(x0)v1(x1) < 0. At such a point, agents want
to choose different actions in different states of the world. For simplicity, assume first
that v0(x0) < 0 and v1(x1) > 0, so agents want their action to match the state of the world.
In what follows, I show that unless x = (0�1), an improvement holds for sufficiently in-
formative signals and small probability of mistakes ε. This environment resembles one
from observational learning without payoff externalities, so the approach that I follow
takes advantage of tools from those environments.

I introduce an improvement principle based on a simple strategy. Each individual
selects one individual at random from his sample. Let ξ̃ = 1 if the action of the selected
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individual is a = 1 and let ξ̃ = 0 otherwise. The simple strategy mandates that the sam-
pled action must be copied unless a strong enough signal is received. Formally, focus on
T big enough so that v0(EσT [X0]) < 0 and v1(EσT [X1]) > 0. The simple strategy σ̃T is

σ̃T (̃ξ� s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if ξ̃ = 1 and l(s) ≥ kT ≡ −v0
(
EσT [X0]

)
v1

(
EσT [X1]

) PσT (̃ξ = 1 | θ = 0)
PσT (̃ξ = 1 | θ = 1)

1 if ξ̃ = 0 and l(s) ≥ k
T ≡ −v0

(
EσT [X0]

)
v1

(
EσT [X1]

) PσT (̃ξ = 0 | θ = 0)
PσT (̃ξ = 0 | θ = 1)

0 otherwise.

This simple strategy improves upon the average utility ūT whenever signals are suf-
ficiently informative and mistakes are not that common. This is derived from two intu-
itive reasons. First, as long as signals more informative than the observed action ξ̃ exist,
the strategy σ̃ is strictly better than just imitating ξ̃. Second, without mistakes, the util-
ity of imitating the observed action ξ̃ approaches the average utility ūT as the number
of agents grows large.

Lemma 5 (Improvement principle). Any limit point (x0�x1) ∈ L with v0(x0) < 0 and
v1(x1) > 0 must satisfy

−v0(x0)
[
(1 − 2ε)x0

[
G0(k)− (k)−1G1(k)

] − ε(1 − 2x0)
]

+ v1(x1)
[
(1 − 2ε)(1 − x1)

[[
1 −G1(k)

] − k
[
1 −G0(k)

]] − ε(2x1 − 1)
] ≤ 0 (3)

with k = −v0(x0)
v1(x1)

x0
x1

and k≡ −v0(x0)
v1(x1)

1−x0
1−x1

.

Whenever a point x does not satisfy (3), agents can profit from following the simple
strategy σ̃ , so such an x cannot be a limit point. The term G0(k) − k−1G1(k) ≥ 0 in (3)
increases in k. Symmetrically, the term [1 −G1(k)]−k[1 −G0(k)] ≥ 0 in (3) decreases in
k. With signals of unbounded strength, both terms are strictly positive. Then, whenever
a positive proportion of agents choose an action that does not match the state of the
world (that is, whenever x0 > 0 or x1 < 1), an agent can do better than a random sampled
individual. The existence of mistakes may prevent such an improvement.12 With signals
of bounded strength, the term G0(k) − k−1G1(k) ≥ 0 is strictly positive whenever k > l

and the term [1 −G1(k)]−k[1 −G0(k)] is strictly positive whenever k< l. Then, as long
as k > l or k< l, there is potential for improvement upon those observed.

To illustrate how Lemma 5 provides a partial characterization of the outcomes
of large games, consider first the anti-coordination game presented in Example 1.
Lemma 5 applies when v0(x0) < 0 and v1(x1) > 0, which holds whenever x0 > 1

5 and

x1 < 4
5 . Take a signal structure with l

−1 = l = 1
2 . Points outside of the lightly shaded

area in Figure 4(a) have k > l. The term G0(k) − k−1G1(k) is strictly positive there, so
for ε small enough, (3) cannot hold. Next, take a more informative signal structure:

12Because of mistakes, it can happen that v0(x0) < 0 and v1(x1) > 0 but (x0�x1) 
= (ε�1 − ε). Example 4
in the next section shows how this can happen in the standard observational learning setup.
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Figure 4. Applying Lemma 5 to Example 1 (anti-coordination).

l
−1 = l = 1

5 . Points outside of the dark shaded area have k > l. As the bounds on the in-
formativeness of the signal become less restrictive, the shaded area becomes smaller.13

Symmetrically, whenever k < l, then [1 − G1(k)] − k[1 − G0(k)] is strictly positive.
The area determined by this condition is not depicted in Figure 4(a), but is symmetric
to those depicted therein. The shaded areas in Figure 4(b) depict outcomes (x0�x1) that

satisfy both conditions k ≤ l and l ≤ k. As l
−1 = l gets smaller, the area satisfying k ≤

l < l ≤ k shrinks. Figure 4(b) provides a preview of the main result of this paper. Only
outcomes close to NE remain after applying Lemmas 4 and 5.

For simplicity, I have so far discussed only the case with v0(x0) < 0 and v1(x1) > 0.
Lemma 6 presents an improvement principle that applies when v0(x0) > 0 and v1(x1) <

0, so agents want their action to match the opposite state of the world. The argument
behind Lemma 6 is symmetric to that of Lemma 5. See the Supplemental Material for
details.

Lemma 6. Take a limit point (x0�x1) ∈L with v0(x0) > 0 and v1(x1) < 0. Then

v0(x0)
[
(1 − 2ε)(1 − x0)

[
G0(k)− (k)−1G1(k)

] − ε(2x0 − 1)
]

− v1(x1)
[
(1 − 2ε)x1

[[
1 −G1(k)

] − k
[
1 −G0(k)

]] − ε(1 − 2x1)
] ≤ 0�

3.6 Strategic learning

Lemmas 4, 5, and 6 jointly lead to the main result of this paper: there is strategic learning.
I illustrate this result with the coordination game presented in Example 2. Consider first
signals of bounded strength. The shaded areas in Figure 5(a) depict the possible out-

comes that satisfy (3) in Lemma 5 for different values of l
−1 = l. Lemma 5 applies to out-

comes with v0(x0) < 0 and v1(x1) > 0, which correspond to x0 <
2
3 and x1 >

1
3 . Lemma 6

13As before, the exact shape of the sets shown in Figures 4 and 5 depends on the value of ε. I present
them with ε = 0.

http://bit.ly/stratlearn
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Figure 5. Observational learning in games. Example 2 (coordination).

applies when v0(x0) > 0 and v1(x1) < 0, which correspond to x0 > 2
3 and x1 < 1

3 . Fig-
ure 5(b) shows the set of possible limit points that remain after applying Lemmas 4, 5,
and 6. The shaded areas shrink when signals become more informative. Then, with
signals of unbounded strength, only points arbitrarily close to NE can be limit points.
Proposition 2 formalizes this intuition.

Proposition 2. Assume signals are of unbounded strength. Then there is strategic learn-
ing.

3.7 Signals of bounded strength

With signals of bounded strength, agents’ play need not become arbitrarily close to el-
ements of NE. I show, however, that there must be some degree of learning through the
observations of others. I provide a bound on how far long-run outcomes can be from
elements of NE. This result is a direct consequence of Lemmas 4, 5, and 6. Intuitively,
whenever an agent’s choice is ex post suboptimal, it is because he was wrong about the
state. To fix ideas, let there be a positive proportion of agents who choose action 1 in
state 0 (x0 > 0), but who are ex post dissatisfied (v0(x0) < 0). Those agents would have
preferred choosing action 0. The loss in the population is approximately −v0(x0)x0. In-
stead, the gain in the population from choosing action 1 in state 1 is v1(x1)x1. I show
that the ratio between the loss and the gain must be bounded above by the informative-
ness of signals. This ratio is given by k = [−v0(x0)x0]/[v1(x1)x1]. It must happen that
k ≤ l. Similarly, the ratio between the gain and the loss from choosing action 0 is given
by k= [−v0(x0)(1 − x0)]/[v1(x1)(1 − x1)], and it must happen that k≥ l.

In general, let the set NE(l�l) contain all outcomes with ratios bounded by (l� l):

x ∈ NE(l�l) if

⎧⎪⎪⎨⎪⎪⎩
v0(x0)v1(x1) ≥ 0 ⇒ x ∈ NE

v0(x0) < 0 and v1(x1) > 0 ⇒ k≤ l < l ≤ k

v0(x0) > 0 and v1(x1) < 0 ⇒ k≤ l < l ≤ k�
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The following result shows that bounded strategic learning must occur. Its definition
is analogous to the definition of strategic learning, with NE replaced by NE(l�l).

Lemma 7 (Bounded strategic learning). For all δ > 0, there exists ε̃ > 0 such that

lim
T→∞

Pσ∗�T
(
d(X�NE(l�l)) < δ

) = 1

for all sequences of symmetric equilibria {σ∗�T }∞T=1 in games with probability of mistakes
ε < ε̃.

The argument behind Lemma 7 is similar to that of Proposition 2. See the
Supplemental Material for details.

Lemma 7 highlights the continuity of information aggregation. Strategic learning is
a limit result of bounded strategic learning: as I relax the bounds on the signal strength,
NE(l�l) approaches NE.

4. Examples and applications

This paper studies the long-run outcomes of observational learning in games. The ex-
amples that follow shed further light in this direction. First, I show how strategic learning
need not occur without mistakes. Second, I explore the role of mistakes in an example of
pure observational learning (without payoff externalities). The third example illustrates
the key role of the observation of others to attain strategic learning. Fourth, I provide
an example of a coordination game with multiple equilibria. In one equilibrium, agents
coordinate on the superior technology, but in a different equilibrium, agents coordinate
on a given technology, regardless of its inherent quality. Finally, I illustrate the long-run
outcomes of games with preferences like those from Callander (2007) and Eyster et al.
(2014).

4.1 Strategic learning can fail with ε = 0

Example 3 (Gallice and Monzón (forthcoming)). Each agent observes his immediate
predecessor: M = 1. Let u(1�X�θ) = 3( 1

T

∑
j 
=i aj + 1) − 1 and u(0�X�θ) = 3( 1

T

∑
j 
=i aj).

Individuals make no mistakes: ε = 0.

In this example, agents must sequentially decide whether to contribute to a public
good. They observe the action of their immediate predecessor but they do not know
their position in the sequence. Each agent must choose whether to contribute a fixed
amount 1 to a common pool or to refrain from contributing. After all agents choose
an action, the total amount invested gets multiplied by 3 and equally shared among all
agents. There is only one state of the world in Gallice and Monzón (forthcoming), so
signals play no role. Contribution by all agents is socially optimal. However, if an agent
takes the actions of others as given, then he strictly prefers not to contribute. As a result,
NE = {(0�0)} is a singleton in Example 3. In stark contrast to Proposition 2 in this paper,
Gallice and Monzón show that full contribution can occur in equilibrium. Since there
are no mistakes, each individual agent can determine the aggregate outcome. Each in-
dividual contributes to induce his potential successors to do the same.

http://bit.ly/stratlearn
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Figure 6. Examples 4 and 5.

4.2 Mistakes in observational learning without payoff externalities

Example 4 (Standard observational learning). Let u(1�X�1) = u(0�X�0) = 1 and u(1�
X�0) = u(0�X�1) = 0. Each agent observes his immediate predecessor: M = 1. The
signal structure is described by F1[(0� s)] = s2 and F0[(0� s)] = 2s − s2 with s ∈ (0�1).

In this symmetric example, the average action X1 represents the fraction of agents
who choose the right action. Signals are of unbounded strength and the set NE = (0�1)
is a singleton. Then Proposition 2 guarantees that X1 will be δ-close to 1 for low enough
ε. This example provides a simple environment to illustrate what happens when ε is
positive. What is the link between δ and ε? Is it true that (as the number of agents grows
large) X1 must approach 1 − ε? This example shows that this is not the case.

The simple signal and observational structure in Example 4 allow for an analytical
solution. As the number of agents grows large, the fraction of adopters of the superior

technology approaches x̄1 ≡ 1−ε
1−2ε(1 −

√
ε

1−ε). See the Supplemental Material for details.

Figure 6(a) shows the long-run fraction of adopters of the superior technology x̄1 as a
function of the probability of mistakes ε. For example, when ε = 0�01, x̄1 ≈ 0�91 < 1−ε.14

4.3 No observation of others’ actions

Consider next an anti-coordination game like that presented in Example 1, but with
agents who do not observe others’ actions.

14Why can mistakes lead to such a low fraction X1? Intuitively, agents learn whenever they can improve
upon those they observe. Let π denote the likelihood that an observed agent chooses the right technol-
ogy. Without mistakes and with signals of unbounded strength, agents can always improve (as long as
π < 1). Let I(π) denote the improvement without mistakes. With mistakes, the improvement becomes
Pr(mistakes)(1/2 −π)+ [1 − Pr(mistakes)]I(π) = −2ε(π − 1/2)+ (1 − 2ε)I(π). Although the second term
is always positive, the first term is negative. Then the magnitude of I(π) becomes relevant: two signal
structures, both with unbounded strength, will lead to different fractions X1.

http://bit.ly/stratlearn
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Example 5 (No observation of others). Let u(1�X�0) = 1
5 − X , u(1�X�1) = 4

5 − X , and
u(0�X�θ) = 0. Agents do not observe others’ actions. The signal structure is as fol-
lows. Let S = {0� 1

2 �1}, with dF1(
1
2) = dF0(

1
2) = 99/100, dF1(1) = dF0(0) = (1 − γ)/100,

and dF1(0) = dF0(1) = γ/100. Let γ < 1/2.

A signal s = 1
2 is uninformative about the state of the world. Signals s = 0 and s = 1

are instead informative. As γ gets smaller, signals become closer to being of unbounded
strength. So Lemma 7 guarantees that the lower the γ, the closer one gets to strategic
learning if agents observe the actions of some predecessors. When there is no observa-
tion of others, information cannot get transmitted through actions. It is easy to see that
at most |E[X1]−E[X0]| ≤ 1/100. Outcomes outside of the shaded area in Figure 6(b) can
never be attained without observing others.

4.4 Application to common payoff functions in the literature

Example 6 (Congestion. Example 1 in Eyster et al. (2014)). Payoffs are given by
u(1�X�θ) = θ−kX and u(0�X�θ) = 1−θ−k(1−X). Signals are of unbounded strength.

An agent obtains a utility of 1 when he chooses the superior technology. On top of
it, others who choose the same action as him exert a congestion effect of amount k.15

The excess utility function is vθ(X) = 2θ − 2kX − (1 − k). When k < 1, v0(X) < 0 and
v1(X) > 0 for all X . Then NE = {(0�1)}. If instead k ≥ 1, NE = {( 1

2 − 1
2k�

1
2 + 1

2k)}. Signals
are of unbounded strength, so Proposition 2 guarantees that there is strategic learning.
The long-run outcome will be the unique element of NE. The analysis is analogous to
that for the anti-coordination game presented in Example 1.

Example 7 (Desire to conform with the majority. Callander (2007)). Payoffs are given by
u(ai�X�θ)= θf (X)+ (1−θ)(1−f (X))+k[aif (X)+ (1−ai)(1−f (X))]. The continuous
and monotonically increasing function f (X) has f (0) = 0 and f (1) = 1. Signals are of
unbounded strength.

There is an election with two candidates: 0 and 1. The function f (X) denotes the
probability that candidate 1 wins the election given that a fraction X choose him.16

Each voter obtains a payoff of 1 if the better candidate gets elected. On top of it, he
obtains a payoff of k if he votes for the better candidate. The excess utility function is
vθ(X) = k(2f (X) − 1). An individual cannot affect the result of the election. Then only
the cooperation component remains. The possible long-run outcomes are analogous to
those in Example 2.

15In Eyster et al. (2014), only predecessors’ actions have a negative effect. Instead, in this paper, it is both
predecessors and successors. I have adapted the payoff function to account for this.

16In Callander (2007), f (X) = 1 if X < 1
2 , f (X) = 0 if X < 1

2 , and f (X) = 1
2 if X = 1

2 . Instead, in this paper,
payoffs are continuous, so f (X) must be continuous.
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4.5 Multiple equilibria in coordination games

Example 8 (Coordination. No selection of equilibria). Payoffs are as in Example 2:
u(1�X�0) = X − 2

3 , u(1�X�1) = X − 1
3 , and u(0�X�θ) = 0. The signal structure is as fol-

lows. Let S = {0� 1
2 �1}, with dF1(

1
2) = dF0(

1
2) = 99/100, dF1(1) = dF0(0) = (1 − γ)/100,

and dF1(0) = dF0(1) = γ/100. Let γ < 1/2. Each agent observes his immediate predeces-
sor: M = 1.

It is easy to show that there is an equilibrium where all agents choose action 1, re-
gardless of what they observe. Under such strategy of play, when the number of agents
grows large, the proportion X is close to 1 − ε in both states of the world. Then it is
always optimal to choose action 1.17

Interestingly, there is another equilibrium where agents coordinate on the superior
technology. This equilibrium has a simple form. Take a sequence of symmetric strategy
profiles where σT (s�ξ) = σ(s�ξ) does not change with T and is given by

σ(s�ξ) =
{
s if s = {0�1}
ξ if s = 1/2�

Agents follow an informative signal and mimic their predecessor if the signal is unin-
formative. Under this profile of play, the proportion X is close to γ in state 0 and to
1 − γ in state 1 (for T large and ε small). This implies that an agent wants his action to
match the state of the world. Moreover, the sample is informative about the state of the
world. So indeed an agent who receives an uninformative signal copies the action of his
predecessor. To sum up, for large enough T , strategy σ is an equilibrium.

5. Discussion

I study the long-run outcomes of observational learning with payoff externalities. In
several economic situations, payoffs depend both on an uncertain state of the world
and on others’ actions. Individuals obtain information about their environment from
private signals and also by observing others. Agents need to learn both about the state
of the world and about the play of others. Thus, the actions of others exert a direct payoff
externality on top of the standard informational externality from observational learning.
Even if agents knew the state, they would still not observe the aggregate play, so it would
not be obvious which action to choose. Finally, a new strategic consideration arises with
payoff externalities: agents may change their behavior so as to influence others.

I show that in spite of these confounding factors, there is strategic learning: agents’
actions are ex post optimal given the state of the world and the actions of others. As long
as the number of agents grows large and they sometimes make mistakes, each agent’s in-
dividual influence on the aggregate outcome becomes negligible. Individuals are aware

17This example illustrates how the proportion X can converge to a Nash equilibrium of the true state
without agents learning the state. In this equilibrium, past actions do not provide any information about
the state of the world. In spite of this, agents are ex post satisfied by choosing action 1 in both states, and so
strategic learning occurs.
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of this and so they act as if they could not influence the aggregate play. In large games,
the aggregate behavior becomes almost deterministic. I can then translate an environ-
ment with payoff externalities into one without them. I then use standard arguments in
observational learning to show that information aggregates. Agents are ex post satisfied
with their actions in both states of the world.

Appendix: Proofs and alternative sampling rules

A.1 Proof of Lemma 1

The proof of existence of a symmetric equilibrium builds upon Theorem 3 in Cheng
et al. (2004). Cheng et al. (2004) show that a pure strategy symmetric equilibrium exists
in symmetric infinite games with compact, convex strategy sets and continuous and
quasiconcave utility functions. I first present Theorem 3 in Cheng et al. (2004) and then
show how it applies to the environment in the present paper.

For each player i ∈ I , let Ri be a set of strategies (with ρi ∈Ri). Agent i’s payoffs from
profile (ρ1� � � � � ρT ) are denoted by ui(ρ1� � � � � ρT ). The tuple [I� {Ri}Ti=1� {ui}Ti=1] denotes
a game.

Definition (Symmetric games (Definition 2 in Cheng et al. (2004))). A normal-form
game is symmetric if the players have identical strategy spaces (Ri = R for all i ∈ I)
and ui(ρi�ρ−i) = uj(ρj�ρ−j) for ρi = ρj and ρ−i = ρ−j for all i� j ∈ I . Thus we can write
u(ρi�ρ−i) for the utility to any player playing strategy ρi in profile ρ. Then the tuple
[I�R�u()] denotes a symmetric game.

Theorem 1 (Theorem 3 in Cheng et al. (2004)). A symmetric game [I�R�u()] with R a
nonempty, convex, and compact subset of some Euclidean space and u(ρi�ρ−i) continu-
ous in (ρi�ρ−i) and quasiconcave in ρi has a symmetric pure-strategy equilibrium.

In the current paper, agent i’s strategy is a function σi : S × � → [ε�1 − ε], with σi ∈

. I collapse the strategy σi into the likelihood ρi(ξ�θ) of choosing action 1 given the
sample received and the state of the world. Formally, define ρi(ξ�θ) ≡ Pσi(ai = 1 | θ�ξ).
There is a many-to-one mapping σi �→ ρi. It is without loss of generality to work directly
with agents who choose ρi from the feasible set

Ri =
{
ρi : ρi(ξ�θ) =E

[
σi(SQ(i)� ξ) | θ]

for some σi ∈ 
i

}
�

The set of strategies 
 is the same for all agents, so Ri =R for all i ∈ I . Conveniently, R is
a subset of a Euclidean space of dimension |�| · |�|, and is nonempty and compact (see
Appendix A.2 in Monzón and Rapp (2014) for the proof). Next, take ρi ∈ R and ρ′

i ∈ R,
with ρi derived from σi and ρ′

i derived from σ ′
i . Then

αρi(ξ�θ)+ (1 − α)ρ′
i(ξ�θ) = αE

[
σi(SQ(i)� ξ) | θ] + (1 − α)E

[
σ ′
i (SQ(i)� ξ) | θ]

=E
[
ασi(SQ(i)� ξ)+ (1 − α)σ ′

i (SQ(i)� ξ) | θ]
�



424 Ignacio Monzón Theoretical Economics 14 (2019)

As 
 is convex, then αρi(ξ�θ) + (1 − α)ρ′
i(ξ�θ) ∈ R, so R is convex. Agent i’s expected

utility as a function of ρ becomes

ui(ρi�ρ−i) = 1
2

∑
θ∈�

1
T

T∑
t=1

∑
ht∈Ht

Pρ−i (Ht = ht | θ)
∑
ξ∈�

Pr(ξ | ht)

× [
ρi(ξ�θ)Eρ−i

[
u(1�X�θ) | θ�ht� at = 1

]
+ (

1 − ρi(ξ�θ)
)
Eρ−i

[
u(0�X�θ) | θ�ht� at = 0

]]
�

It is simple to see that ui(ρi�ρ−i) is continuous in ρi. Others’ ρ−i affect ui(ρi�ρ−i)

through two channels: first, they affect the distribution of Ht ; second, they affect the
distribution of Xθ. Utility ui(ρi�ρ−i) is continuous in ρ−i through both channels (note
that u(ai�X�θ) is continuous in X). Therefore, payoffs ui(ρi�ρ−i) are continuous in ρ.
Finally, note that ui(ρi�ρ−i) is linear in ρi(ξ�θ), so u(ρi�ρ−i) is quasiconcave in ρi. Then,
by Theorem 3 in Cheng et al. (2004), there exists ρ∗ ∈R such that ρ∗ is a best response to
ρ−i = (ρ∗� � � � � ρ∗). Thus, if each agent plays a strategy σ∗ that maps to ρ∗, all play a best
response. As a result, there exists a symmetric equilibrium σ∗ of the game.

A.2 Proof of Proposition 1

I present first an intermediate lemma. Let P = (pij) be a transition matrix on a finite
state space Y . Assume that the Markov chain Y = (Yn)

∞
n=0 associated with P is aperiodic

and irreducible. Let μ denote the unique stationary distribution of Y .

Lemma 8. Let Y1 ⊆ Y be a nonempty subset of the state space and let μ1 ≡ ∑
y∈Y1 μy .

Then there exists K < ∞ such that ρ = mini�j p
(K)
ij > 0. Moreover, for any distribution over

states in period t, ∣∣Pr
(
Yt+n ∈ Y1) −μ1∣∣ ≤ (1 − 2ρ)(n−K)/K�

This lemma follows directly from Corollary 4.1.5 in Kemeny and Snell (1983).
With Lemma 8 in hand, I turn to the proof of Proposition 1. Let {στ}∞τ=1 be a sequence

of symmetric strategy profiles. After the first M periods, all samples are of size M . Let
Y = {0�1}M be the set of all possible histories of length M . Each symmetric strategy
profile στ induces a Markov chain Yτ = (Yt)t≥M over Y . Since mistakes occur with pos-
itive probability, these Markov chains are irreducible and aperiodic. Then each Yτ has a
unique stationary distribution, which I denote by μτ . After exactly M periods, transition
probabilities are bounded below: miny�y ′∈Y×Y Pr(Yn+M = y ′ | Yn = y) ≥ εM . The lower
bound εM is independent of the strategy profile στ .

Let Y1 be all histories where the last agent chose action a= 1 and let μ̄τ ≡ ∑
y∈Y1 μτ

y .
Then Lemma 8 guarantees that for any distribution over states in period t,∣∣Pr

(
Yτ
t+n ∈ Y1) − μ̄τ

∣∣ ≤ (
1 − 2εM

) n−M
M = (

1 − 2εM
)−1[(1 − 2εM

) 1
M

]n ≡ cδn� (4)

This bound holds for any symmetric strategy profile στ .
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In what follows, I fix a state of the world θ, so from now on I drop the subindex θ.
Also, I fix a strategy profile στ . I use τ to index strategy profiles and use T to index the
number of agents. Let V (στ) denote the variance of X|στ for any number of players T :
V (στ) ≡ Eστ [(X − Eστ [X | θ])2 | θ]. I show that for any δ̃ > 0, there exists T̃ < ∞ such
that Eστ [X2 | θ] − (Eστ [X | θ])2 < δ for all T > T̃ and for all τ. This implies that

lim
T→∞

EσT

[
X2 | θ] − (

EσT [X | θ])2 = 0�

that is, Xθ|σT −E[Xθ|σT ] converges to zero in the L2 norm, which implies convergence
in probability.

Fix a strategy profile στ and define

V
(
στ

) ≡Eστ

[(
1
T

T∑
t=1

at

)2]
−

(
Eστ

[
1
T

T∑
t=1

at

])2

= 1

T 2

[
T∑
t=1

(
Eστ

[
a2
t

] −Eστ [at]2)

+ 2
T∑
t=1

T−t∑
n=1

(
Eστ [atat+n] −Eστ [at]Eστ [at+n]

)]
� (5)

It is easy to see that
∑T

t=1(Eστ [a2
t ] − Eστ [at]2) ≤ T . Regarding the remaining terms,

note that

Eστ [atat+n] −Eστ [at]Eστ [at+n] = Pστ(at = 1)Pστ(at+n = 1 | at = 1)

− Pστ(at = 1)Pστ(at+n = 1)

= Pστ(at = 1)
[
Pστ(at+n = 1 | at = 1)− Pστ(at+n = 1)

]
≤ ∣∣Pστ(at+n = 1 | at = 1)− Pστ(at+n = 1)

∣∣�
Given (4), |Pστ(at+n = 1 | at = 1)− μ̄| < cδn and |Pστ(at+n = 1)− μ̄| < cδ(t+n) for any στ .
Then ∣∣Pστ(at+n = 1 | at = 1)− Pστ(at+n = 1)

∣∣ < cδn + cδt+n ≤ 2cδn�

So the second term in (5) becomes

2
T∑
t=1

T−t∑
n=1

(
Eστ [atat+n] −Eστ [at]Eστ [at+n]

) ≤ 2
T∑
t=1

T−t∑
n=1

2cδn = 4c
T∑
t=1

T−t∑
n=1

δn

≤ 4c
T∑
t=1

δ
(
1 − δT−t

)
1 − δ

≤ 4c
T∑
t=1

δ

1 − δ

= 4c
δ

1 − δ
T�
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Then, for all στ ,

V
(
στ

) ≤ 1
T

(
1 + 4c

δ

1 − δ

)
�

where (1 + 4c δ
1−δ) is independent of σ .

Then pick any b > 0. There exists T̃ such that for all T > T̃ and for all στ , V (στ) < b.
So in particular, for all b > 0, there exists T̃ such that for all T > T̃ , V (σT ) < b; that is,
V (σT ) → 0.

The proof of the second part of Proposition 1 is as follows. Let agent i be in position
t = Q(i). Define two Markov chains, both with the same transition matrix P . These
chains start right after agent i plays. Their only difference is the starting distribution
over states. First, (Yn)n≥t+1 has agent i following strategy σi. Second, (Ỹn)n≥t+1 has
agent i following strategy σ̃i. Let N be the first period in which these two chains meet.
By (4), Pr(N > n)≤ cδn. Note that for any N = n,

X|σT −X|σ̃T = 1
T

[
Q(i)−1∑
t=1

(
at |σT − at |σ̃T

) +
Q(i)+n−1∑
t=Q(i)

(
at |σT − at |σ̃T

)

+
T∑

t=Q(i)+n

(
at |σT − at |σ̃T

)]
�

But at |σT = at |σ̃T for t ∈ {1�Q(i)− 1} and for t ∈ {Q(i)+ n�T }. Then∣∣∣∣X|σT −X|σ̃T
∣∣ =

∣∣∣∣∣ 1
T

Q(i)+n−1∑
t=Q(i)

(
at |σT − at |σ̃T

)∣∣∣∣∣ ≤ n

T
�

To sum up, for any strategy profile σT ,

Pr
(∣∣X|σT −X|σ̃T

∣∣ ≥ n

T

)
≤ cδn� (6)

Then for all b > 0, there exists n such that b ≥ cδn. Fix b and n. There is always a T , so
that n/T < b. Then

Pr
(∣∣X|σT −X|σ̃T

∣∣ ≥ b
) ≤ Pr

(∣∣X|σT −X|σ̃T
∣∣ ≥ n

T

)
≤ cδn ≤ b�

Finally, note that both Xθ|σT − Xθ|σ̃T p−→ 0 and Xθ|σT − E[Xθ|σT ] p−→ 0. Then also

Xθ|σ̃T −E[Xθ|σT ] p−→ 0.

A.3 Proof of Corollary 1

The distance d(X�L) can be bounded above as

d(X�L) = min
y∈L

|X − y| ≤ min
y∈L

[∣∣X −EσT [X]∣∣ + ∣∣EσT [X] − y
∣∣]

≤ ∣∣X −EσT [X]∣∣ + min
y∈L

∣∣EσT [X] − y
∣∣ = ∣∣X −EσT [X]∣∣ + d

(
EσT [X]�L)

�
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The set L includes all limit points for convergent subsequences of {EσT [X]}∞T=1. Then
limT→∞ d(EσT [X]�L) = 0. For some T̃ large enough, d(EσT [X]�L) < δ/2 for all T > T̃ .
Then PσT (d(X�L) < δ) ≥ PσT (|X − EσT [X]| < δ/2). Finally, Proposition 1 guarantees
that limT→∞ PσT (|X −EσT [X]| < δ/2)= 1.

A.4 Proof of Lemma 3

Agent i’s expected utility u(σ̃T
i �σ

T
−i) is given by

u
(
σ̃T
i �σ

T
−i

) = Eσ̃T

[
u(ai�X�θ)

] = 1
2

∑
θ∈{0�1}

∑
a∈A

Eσ̃T

[
u(a�X�θ)1{ai = a} | θ]

= 1
2

∑
θ∈{0�1}

∑
a∈A

Eσ̃T

[
u(a�Xθ�θ) | ai = a

]
Pσ̃T (ai = a | θ)�

Then

u
(
σ̃T
i �σ

T
−i

) − ũT = 1
2

∑
θ∈{0�1}

∑
a∈A

Pσ̃T (ai = a | θ)

× [
Eσ̃T

[
u(a�Xθ�θ) | ai = a

] − u
(
a�EσT [Xθ]� θ

)]
�

If limT→∞ Pσ̃T (ai = a | θ)= 0, then trivially

lim
T→∞

Pσ̃T (ai = a | θ)[Eσ̃T

[
u(a�Xθ�θ) | ai = a

] − u
(
a�EσT [Xθ]� θ

)] = 0�

Assume instead that there exists δ > 0 such that Pσ̃T (ai = a | θ) ≥ δ infinitely often.
By Proposition 1, for any δ > 0, limT→∞ Pσ̃T (|Xθ −EσT [Xθ]| ≥ δ)= 0. Then it is also true
that for any δ > 0, limT→∞ Pσ̃T (|Xθ − EσT [Xθ]| ≥ δ | ai = a) = 0.18 So by the portman-
teau theorem, limT→∞Eσ̃T [u(a�Xθ�θ) | ai = a] = limT→∞ u(a�EσT [Xθ]� θ). This leads
directly to limT→∞[u(σ̃T

i �σ
T
−i)− ũT ] = 0.

A.5 Proof of Corollary 2

We have

lim sup
T→∞


T = lim sup
T→∞

[
ũT − u

(
σ̃T
i �σ

T
−i

) + u
(
σ̃T
i �σ

T
−i

) − u
(
σT

) + u
(
σT

) − ūT
]

≤ lim sup
T→∞

[
ũT − u

(
σ̃T
i �σ

T
−i

)] + lim sup
T→∞

[
u
(
σ̃T
i �σ

T
−i

) − u
(
σT

)]
+ lim sup

T→∞
[
u
(
σT

) − ūT
]
�

18To see this, note that Pσ̃ (|Xθ −Eσ [Xθ]|> δ)= ∑
a∈A Pσ̃ (|Xθ −Eσ [Xθ]|> δ | θ�ai = a)Pσ̃ (ai = a | θ). By

Proposition 1, limT→∞ Pσ̃T (|Xθ − EσT [Xθ]| > δ) = 0. Then if Pσ̃T (ai = a | θ) ≥ δ infinitely often, it must be
the case that limT→∞ Pσ̃T (|Xθ −EσT [Xθ]| > δ | ai = a) = 0.
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Lemmas 2 and 3 imply that limT→∞[u(σT ) − ūT ] and limT→∞[ũT − u(σ̃T
i �σ

T
−i)] = 0, re-

spectively. Next, σT are equilibrium strategies, so u(σ̃T
i �σ

T
−i)− u(σT ) ≤ 0 for all σT

−i and
for all T . These two facts together imply that

lim sup
T→∞


T ≤ lim sup
T→∞

[
u
(
σ̃T
i �σ

T
−i

) − u
(
σT

)] ≤ 0�

A.6 Proof of Lemma 4

Lemma 4 deals with the case in which an action is dominant (either weakly or strictly)
in the limit. Consider two alternative strategies: σ̃0, “always play action 0,” and σ̃1, “al-
ways play action 1.” Define accordingly 
0�T ≡ 1

2
∑

θ∈{0�1}(ε−EσT [Xθ])vθ(EσT [Xθ]) and


1�T ≡ 1
2
∑

θ∈{0�1}(1 − ε−EσT [Xθ])vθ(EσT [Xθ]). Then, by Corollary 2,

lim sup
T→∞


0�T = 1
2

∑
θ∈{0�1}

(ε− xθ)vθ(xθ)≤ 0

lim sup
T→∞


1�T = 1
2

∑
θ∈{0�1}

(1 − ε− xθ)vθ(xθ)≤ 0�

Next assume v0(x0)v1(x1) ≥ 0. Then if vθ(xθ) < 0, (1) requires xθ = ε. If, alternatively,
vθ(xθ) > 0, (2) requires xθ = 1 − ε.

The rest of the proof is a direct result of the following lemma.

Lemma 9. If xθ = ε for some θ ∈ {0�1}, then x = (ε�ε). Similarly, if xθ = 1 − ε for some
θ ∈ {0�1}, then x= (1 − ε�1 − ε).

Proof. Assume that x1 = 1−ε, but x0 
= 1−ε. The proof is analogous for all other cases.
The expected proportion EσT [Xθ] can be expressed as

EσT [Xθ] =EσT

[
1
T

T∑
t=1

at | θ
]

= 1
T

T∑
t=1

EσT [at | θ] = 1
T

T∑
t=1

PσT (at = 1 | θ)

= PσT (ai = 1 | θ)=
∑
ξ∈�

PσT (ξ | θ)
∫
s∈S

σT (s�ξ)dFθ(s)�

Let �M ⊂ � be the set of all samples with exactly M actions. All agents in positions M <

t ≤ T receive samples ξt ∈ �M . Since mistakes occur with positive probability ε > 0, all
samples ξ ∈ �M occur with positive probability: PσT (ξ | θ) ≥ εM for any strategy profile
σT . Then limT→∞

∫
s∈S σ

T (s�ξ)dF1(s) = 1 − ε for all ξ ∈�M . Since σT (s�ξ) ≤ 1 − ε, then,
for any c̃ > 0,

lim
T→∞

∫
s∈S

1
{
σT (s�ξ) ≥ 1 − ε− c̃

}
dF1(s) = 1�

I show next that the previous equation must also hold for measure F0. That is, for all
c̃ > 0,

lim
T→∞

∫
s∈S

1
{
σT (s�ξ) ≥ 1 − ε− c̃

}
dF0(s) = 1� (7)
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which implies that limT→∞
∫
s∈S σ

T (s�ξ)dF0(s) = 1 − ε for all ξ ∈�M and so x0 = 1 − ε.
To see why (7) must hold for measure F0, consider the sequence of sets {St}∞t=1 with

St = 1{σT (s�ξ) < 1−ε− c̃}. We know that limT→∞
∫
s∈St dF1(s) = 0. Assume that for some

c > 0,
∫
s∈St dF0(s) ≥ c > 0 for all t. Pick l ∈ (0�∞) such that19

0 <

∫
{s:l(s)≤l}

dF0(s) ≤ c�

Then ∫
{s:l(s)≤l}

dF0(s) ≤ c ≤
∫
s∈St

dF0(s)∫
{s:l(s)≤l�s /∈St }

dF0(s) ≤
∫

{s:l(s)>l�s∈St }
dF0(s)∫

{s:l(s)≤l�s /∈St }
l(s)−1 dF1(s) ≤

∫
{s:l(s)>l�s∈St }

l(s)−1 dF1(s)

l−1
∫

{s:l(s)≤l�s /∈St }
dF1(s) ≤ l−1

∫
{s:l(s)>l�s∈St }

dF1(s)

G1(l) =
∫

{s:l(s)≤l}
dF1(s) ≤

∫
{s∈St }

dF1(s)�

Because of absolute continuity, since G0(l) > 0, then G1(l) > 0. So for all elements
of {St}∞t=1,

∫
s∈St dF1(s) ≥G1(l) > 0. Then

∫
s∈St dF1(s) cannot converge to zero.

A.7 Proof of Lemma 5

Let πT
θ ≡ PσT (̃ξ = 1 | θ). I show first the following intermediate lemma.

Lemma 10. For any sequence of strategy profiles {σT }∞T=1, limT→∞πT
θ − EσT [Xθ] = 0 for

θ ∈ {0�1}.

Proof. Fix the state of the world θ and consider T ≥ 2M :

πT
θ = 1

T

T∑
t=1

PσT (̃ξt = 1)

= 1
T

[
M∑
t=2

1
t − 1

t−1∑
τ=1

PσT (aτ = 1)+
T∑

t=M+1

1
M

t−1∑
τ=t−M

PσT (aτ = 1)

]

= 1
T

[
T−1∑
τ=1

PσT (aτ = 1)
min{τ+M�T }∑

t=τ+1

[
min{t − 1�M}]−1

]

19It may happen that the lowest possible interval {s : l(s) ≤ l} with positive mass starts with a mass

point (say at l̃). If so, its mass may be
∫
{s:l(s)≤l̃} dF0(s) > c. In such a case, consider α ∈ (0�1) with

α
∫
{s:l(s)≤l̃} dF0(s) = c. The same argument holds.
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= 1
T

[
M−1∑
τ=1

PσT (aτ = 1)
τ+M∑
t=τ+1

(t − 1)−1 +
T−M∑
τ=M

PσT (aτ = 1)
τ+M∑
t=τ+1

M−1

+
T−1∑

τ=T−M+1

PσT (aτ = 1)
T∑

t=τ+1

M−1

]

= 1
T

T∑
τ=1

PσT (aτ = 1)

+ 1
T

[
M−1∑
τ=1

PσT (aτ = 1)

(
τ+M−1∑
t=τ

t−1 − 1

)
−

T∑
τ=T−M+1

PσT (aτ = 1)
(

1 − T − τ

M

)]
�

So

πT
θ −EσT [Xθ] = 1

T

[
M−1∑
τ=1

PσT (aτ = 1)

(
τ+M−1∑
t=τ

t−1 − 1

)
(8)

−
T∑

τ=T−M+1

PσT (aτ = 1)
(

1 − T − τ

M

)]
�

Then it follows directly that limT→∞πT
θ −EσT [Xθ] = 0.

With Lemma 10 in hand, I turn to the proof of Lemma 5. Given the simple strategy,
the approximate improvement is given by


T = 1
2

∑
θ∈{0�1}

vθ
(
EσT [Xθ]

)[
ε+ (1 − 2ε)

[
πT
θ

[
1 −Gθ

(
kT )] + (

1 −πT
θ

)[
1 −Gθ

(
k
T )]]

−EσT [Xθ]
]

= 1
2

∑
θ∈{0�1}

vθ
(
EσT [Xθ]

)[
πT
θ −EσT [Xθ] + (

1 − 2πT
θ

)
ε
]

+ 1 − 2ε
2

∑
θ∈{0�1}

vθ
(
EσT [Xθ]

)[−πT
θ Gθ

(
kT ) + (

1 −πT
θ

)[
1 −Gθ

(
k
T )]]

= 1
2

∑
θ∈{0�1}

vθ
(
EσT [Xθ]

)[
πT
θ −EσT [Xθ] + (

1 − 2πT
θ

)
ε
]

+ 1 − 2ε
2

[(−v0
(
EσT [X0]

))
πT

0

[
G0

(
kT ) − v1

(
EσT [X1]

)
−v0

(
EσT [X0]

) πT
1

πT
0

G1
(
kT )]

+ v1
(
EσT [X1]

)(
1 −πT

1
)[[

1 −G1
(
k
T )] − −v0

(
EσT [X0]

)
v1

(
EσT [X1]

) 1 −πT
0

1 −πT
1

[
1 −G0

(
k
T )]]]

= 1
2

∑
θ∈{0�1}

vθ
(
EσT [Xθ]

)[
πT
θ −EσT [Xθ]

]
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+ 1 − 2ε
2

[(−v0
(
EσT [X0]

))[
πT

0
[
G0

(
kT ) − (

kT )−1
G1

(
kT )] − ε

1 − 2ε
(
1 − 2πT

0
)]

+ v1
(
EσT [X1]

)[(
1 −πT

1
)[[

1 −G1
(
k
T )] − k

T [
1 −G0

(
k
T )]] − ε

(
2πT

1 − 1
)

1 − 2ε

]]
�

Let k ≡ −v0(x0)
v1(x1)

x0
x1

and k ≡ −v0(x0)
v1(x1)

1−x0
1−x1

. Note that limT→∞ kT = k and limT→∞ k
T = k.

However, Gθ(l) may be discontinuous if there are mass points. In spite of this,

lim
T→∞

G0
(
kT ) − (

kT )−1
G1

(
kT ) = G0(k)− (k)−1G1(k)� (9)

To see this, first let liml↘kGθ(l) denote the limit when l approaches k from the right.
Since Gθ(l) is always right-continuous, then (9) holds. Next, let liml↗kGθ(l) denote the
limit when l approaches k from the left. If Gθ(l) is left-continuous at k, then again (9)
holds. Recall that l(s) = dF1

dF0
(s). For l ∈ (0�∞), if Gθ(l) is not left-continuous at k, then∫

l(s)=k dFθ(s) > 0 for both θ ∈ {0�1}. Then

lim
l↗k

G0(l)− l−1G1(l)

=
∫
l(s)<k

dF0(s)− k−1
∫
l(s)<k

dF1(s)

=
∫
l(s)≤k

dF0(s)−
∫
l(s)=k

dF0(s)

− k−1
(∫

l(s)≤k
dF1(s)−

∫
l(s)=k

dF1(s)

)
=G0(k)− (k)−1G1(k)−

∫
l(s)=k

dF0(s)+ k−1
∫
l(s)=k

dF1(s)

=G0(k)− (k)−1G1(k)−
∫
l(s)=k

dF0(s)+ k−1
∫
l(s)=k

dF1(s)

dF0(s)
dF0(s)

=G0(k)− (k)−1G1(k)−
∫
l(s)=k

dF0(s)+ k−1
∫
l(s)=k

kdF0(s)

=G0(k)− (k)−1G1(k)�

The same argument guarantees that

lim
T→∞

[
1 −G1

(
k
T )] − k

T [
1 −G0

(
k
T )] = [

1 −G1(k)
] − k

[
1 −G0(k)

]
� (10)

Given (9) and (10),

lim
T→∞


T = −v0(x0)

2
[
(1 − 2ε)x0

[
G0(k)− (k)−1G1(k)

] − ε(1 − 2x0)
]

+ v1(x1)

2
[
(1 − 2ε)(1 − x1)

[[
1 −G1(k)

] − k
[
1 −G0(k)

]] − ε(2x1 − 1)
]
�

So Corollary 2 leads directly to (3).
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A.8 Proof of Proposition 2

I present first the following proposition.

Proposition 3 (Proposition 11 in Monzón and Rapp (2014)). For all l ∈ (l� l), Gθ(l) sat-
isfies

l >
G1(l)

G0(l)
and l <

1 −G1(l)

1 −G0(l)
�

Moreover, if k′ ≥ k, then[
1 −G1(k)

] − k
[
1 −G0(k)

] ≥ [
1 −G1

(
k′)] − k′[1 −G0

(
k′)]

G0
(
k′) −G1

(
k′)(k′)−1 ≥G0(k)−G1(k)(k)

−1�

See Monzón and Rapp (2014) for the proof.
Let NEδ = {x ∈ [0�1]2 : d(x�NE) ≤ δ} be the set of all points that are δ-close to ele-

ments of NE and let Lε denote the set of limit points in a game with mistake probability
ε > 0. I show first the following lemma.

Lemma 11 (Limit set approaches NE). For any δ > 0, there exists ε̃ > 0 such that Lε ⊆ NEδ

for all ε < ε̃.

Proof. The proof is by contradiction. Assume that there exists (i) a sequence of mistake
probabilities {εn}∞n=1 with limn→∞ εn = 0 and (ii) an associated sequence {xn}∞n=1 with
xn ∈ Lεn for all n, but (iii) xn /∈ NEδ for all n. Since xn ∈ [0�1]2 for all n, this sequence has
a convergent subsequence {xnm}∞m=1 with limm→∞ xnm = x̄. If v0(x̄0) = v1(x̄1) = 0, then
x̄ ∈ NE, so for m large enough, xnm ∈ NEδ. Then it must be the case that vθ(x̄θ) 
= 0 for
some θ.

Assume that v1(x̄1) > 0. I show next that this requires x̄1 = 1. Pick m̃ large enough so
that v1(x

nm
1 ) > 0 for all m> m̃. For all m with v0(x

nm
0 ) ≥ 0, Lemma 4 implies that xnm =

(1 − εnm�1 − εnm). So if v0(x
nm
0 ) ≥ 0 infinitely often, then x̄1 = 1. Similarly, for all m with

v0(x
nm
0 ) < 0, by Lemma 5, (3) must hold:

−v0
(
xnm0

)
2

[ →1︷ ︸︸ ︷(
1 − 2εnm

) ≥0︷ ︸︸ ︷
xnm0

[
G0

(
knm

) − (
knm

)−1
G1

(
knm

)]−
→0︷ ︸︸ ︷

ε(1 − 2x0)
]

+ v1
(
xnm1

)
2

[(
1 − 2εnm

)︸ ︷︷ ︸
→1

(
1 − xnm1

)[[
1 −G1

(
k
nm)] − k

nm[
1 −G0

(
k
nm)]]︸ ︷︷ ︸

≥0

− εnm
(
2xnm1 − 1

)︸ ︷︷ ︸
→0

] ≤ 0� (11)

Proposition 3 guarantees both that [[1 − G1(k
nm

)] − k
nm[1 − G0(k

nm
)]] ≥ 0 and that

[G0(k
nm)− (knm)−1G1(k

nm)] ≥ 0. Then, as (11) shows, when εnm → 0, only nonnegative
terms may remain. Assume next that x̄1 < 1. Then limm→∞ v1(x

nm
1 )(1−xnm1 ) = v1(x̄1)(1−
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x̄1) > 0. As k = −[v0(x0)(1 − x0)]/[v1(x1)(1 − x1)], this implies that limm→∞ k
nm

< ∞.
Since signals are of unbounded strength, then

lim
m→∞

[[
1 −G1

(
k
nm)] − k

nm[
1 −G0

(
k
nm)]]

> 0�

To summarize, whenever x̄1 < 1, (11) is not satisfied for small enough εnm . This proves
that x̄1 = 1.

Analogous arguments (using also Lemma 6) imply that if vθ(x̄θ) > 0, then x̄θ = 1 and
that if vθ(x̄θ) < 0, then x̄θ = 0. So x̄ ∈ NE and, thus, I have reached a contradiction.

With Lemma 11, the proof of Proposition 2 is straightforward. Fix δ/2 > 0 and let ε̃
be as given by Lemma 11. Write

d(X�NE)= min
y∈NE

|X − y| = min
y∈NE

|X − l + l − y| ≤ |X − l| + min
y∈NE

|l − y| for any l

≤ d
(
X�Lε

) + min
y∈NE

|l − y| for l ∈ arg min
l∈Lε

|X − l|

≤ d
(
X�Lε

) + δ/2 ∀ε < ε̃� by Lemma 11�

Then, for any σ , Pσ(d(X�NE) < δ) ≥ Pσ(d(X�Lε) < δ/2). By Corollary 1, for all δ/2 > 0
and all sequences of symmetric equilibria,

lim
T→∞

PσT�∗
(
d(X�NE) < δ

) ≥ lim
T→∞

PσT�∗
(
d
(
X�Lε

)
< δ/2

) = 1�

A.9 Alternative sampling rules

I consider first geometric sampling from all predecessors. Each individual observes the
action of exactly one predecessor. Agent i in position q(i) = t observes the action of a
predecessor in position Ot . He receives sample ξt = aO(t), but does not learn the position
Ot of the observed predecessor. The position Ot follows

Pr(Ot = τ)=

⎧⎪⎪⎨⎪⎪⎩
γ − 1
γ

γτ

γt−1 − 1
if γ 
= 1

1
t − 1

if γ = 1

for all t ≥ 2. The first agent in the sequence receives an empty sample: ξ1 =∅.
The family of geometric sampling rules is characterized by a parameter γ > 0. This

allows for two interesting cases: either those closer in the sequence are more likely to be
observed (γ > 1), or those early in the sequence (and, thus, further from the observer)
are more likely to be observed (γ < 1). The knife-edge case γ = 1 corresponds to uni-
form random sampling. Finally, as γ → ∞, sampling approaches the observation of the
immediate predecessor.

I present next an intermediate result that extends Proposition 1 to environments
with geometric sampling whenever γ ≥ 1. Lemma 12 provides a result analogous to
Lemma 8. With Lemma 12 in hand, the proof of Proposition 1 also applies whenever
γ ≥ 1.
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Lemma 12. Assume γ ≥ 1. There exists c < ∞ and δ < 1 such that for any strategy σ ,∣∣Pσ(at+n = 1 | at = 1� θ)− Pσ(at+n = 1� θ)
∣∣ ≤ cδn�

See the Supplemental Material for details.
Finally, Lemma 10 also holds with geometric sampling when γ > 1. Since weights are

geometric, limT→∞πT
θ −EσT [Xθ] = 0. See Proposition 3 in Monzón and Rapp (2014) for

a formal argument. Then Proposition 2 extends to geometric sampling rules. Strategic
learning occurs if those closer are more likely to be observed.

The knife-edge case of γ = 1 (uniform random sampling) requires some further ex-
planation. Although Proposition 1 extends to it, the current proof of Proposition 2 does
not. Lemma 10 does not holds when γ = 1. The reason for this is simple: with uni-
form random sampling, those early in the sequence are observed more often. Then the
likelihood πT

θ that an observed agent chooses action 1 and the (expected) proportion
EσT [Xθ] in the population choosing action 1 do not necessarily coincide. If instead those
closer are more likely to be observed (even slightly), then the likelihood of sampling an
agent who chooses action 1 approaches EσT [Xθ] as the number of agents grows large.

Next, I study the case when the sample size is an increasing function M(T) : N → N

of the number of players T . The following lemma shows that when the growth rate of
the sample size is slow enough, the main results of this paper hold.

Lemma 13. Let M(T) be o(log(T)). Then Propositions 1 and 2 hold.

See the Supplemental Material for details.
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