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This paper explores the properties of the notions of A-efficiency and P-efficiency,
which were proposed by Golosov et al. (2007), to evaluate allocations in a gen-
eral overlapping generations setting in which fertility choices are endogenously
selected from a continuum and any two agents of the same generation are iden-
tical. First, we show that the properties of A-efficient allocations vary depend-
ing on the criterion used to identify potential agents. If one identifies potential
agents by their position in their siblings’ birth order, as Golosov, Jones, and Ter-
tilt do, then A-efficiency requires that a positive measure of agents use most of
their endowment to maximize the utility of the dynasty head, which, in environ-
ments with finite-horizon altruism, implies that some agents—the youngest in
every family—obtain an arbitrary low income to finance their own consumption
and fertility plans. If potential agents are identified by the dates in which they may
be born, then A-efficiency reduces to dynastic maximization, which, in environ-
ments with finite-horizon altruism, drives the economy to a collapse in finite time.
To deal with situations like those arising in economies with finite-horizon altru-
ism, in which A-efficiency may be in conflict with individual rights, we propose
to evaluate the efficiency of a given allocation with a particular class of specifi-
cations of P-efficiency for which the utility attributed to the unborn depends on
the utility obtained by their living siblings. Under certain concavity assumptions
on value functions, we also characterize every symmetric, P-efficient allocation
as a Millian efficient allocation, that is, as a symmetric allocation that is not A-
dominated—with the birth-order criterion—by any other symmetric allocation.
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1. Introduction

The most commonly used optimality notion in normative economic analysis—the no-
tion of Pareto efficiency—relies on the well known Pareto criterion to compare social
alternatives. The Pareto criterion allows one to construct a partial ordering on a set of
alternatives from the complete preference orderings (defined on this set) of a fixed group
of agents. An efficient allocation can be described as a maximal element of the partial
ordering induced by the Pareto criterion on the set of feasible allocations.

When fertility is endogenous, one can still use the Pareto criterion to rank feasible
allocations using the partial orderings of all potential agents, represented by the util-
ity functions of the living agents. However, any two allocations with different fertility
choices cannot be ranked, since there is no way to know whether an agent who lives
in one allocation a but not in another allocation a′ is better off in the latter than he is
in the former. To avoid this problem and preserve the partial ordering induced by the
Pareto criterion, one needs to extend it to compare also allocations with different fertility
choices.

Although the issue seems to concern policymakers everywhere, the theoretical foun-
dations of many proposals to alter fertility rates are rather weak. Most of the literature
simply identifies optimal allocations with the solutions to alternative social welfare max-
imization problems, referred to as Millian or Benthamite, according to whether or not
the welfare weight given to a generation in the social welfare function depends on the
size of that generation.1 But this approach does not take into account the fact that the
Pareto criterion is not directly applicable to environments in which the set of agents is
endogenous. Unlike this literature, Lang (2005) and Michel and Wigniolle (2007) have
provided normative principles to evaluate population policies in the context of an over-
lapping generations framework without altruism. These papers restrict their analysis to
symmetric allocations, that is, to allocations in which any two agents of the same genera-
tion obtain the same consumption bundle, and focus on a notion of efficiency—referred
to as modified Pareto optimality by Lang and as representative consumer efficiency by
Michel et al.—based on an extension of the Pareto criterion that ranks any two sym-
metric allocations of different population size by comparing the welfare obtained by all
generations of living consumers.

But the restriction to symmetric allocations in environments without altruism lim-
its the scope of these papers. To fill this gap, Golosov et al. (2007) have proposed two
alternative extensions of the Pareto criterion in the context of a general model in which
the set of fertility choices is discrete. The first criterion, referred to as the A-dominance
criterion, ranks any two allocations by comparing the welfare profiles of all agents alive

1For a discussion on the different notions of optimality arising in settings with endogenous fertility, see,
e.g., Razin and Sadka (1995, Chapter 5).
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in the two allocations. The second, referred to as the P-dominance criterion, is con-
structed from a preliminary assumption on the utility level obtained by potential un-
born agents. These two extensions of the Pareto criterion give rise to two notions of
efficiency, respectively referred to as A-efficiency and P-efficiency, to evaluate alloca-
tions with endogenous populations. Golosov, Jones, and Tertilt (henceforth GJT) pro-
vide partial characterizations of the two notions of efficiency as the solutions to welfare
maximization problems and prove that under relatively mild assumptions, A-efficient
allocations are either P-efficient or are arbitrarily close to allocations that are also P-
efficient (see Golosov et al. 2007, Section 4.3, Result 3). Thus, the P-efficiency of A-
efficient allocations is robust to different specifications of the utility levels attributed
to the unborn. The extension of the Pareto criterion proposed by Lang and Michel and
Wigniolle can be seen as the restriction of the partial order induced by the A-dominance
criterion to the set of symmetric allocations, as we show in Conde-Ruiz et al. (2010). We
also propose to call the notion of efficiency arising with that criterion Millian efficiency,
since it generalizes the notion of Millian optimality used in the early literature.

A seemingly irrelevant feature of GJT’s work deserves some discussion. The authors,
for whom fertility choices are represented by the number of children that parents decide
to bear during a child-rearing period, identify the agents who may be potentially alive
in an economy by the identities of their parents and their position in their siblings’ birth
order. For example, agent i = (1�2) identifies the second child of the first child of the dy-
nasty head. There are, however, other possibilities. If people are born at different points
in time (as GTJ implicitly assume when they identify potential agents by their position
in their siblings’ birth order) and parents are able to choose not only the number of chil-
dren they are willing to rear, but also the specific points in time—within a child-rearing
period—at which they want to give birth to these children, one may identify potential
agents by their parents’ identities and the points in time at which they may be born. Un-
der this criterion, for example, agent i = (1�2) identifies the child born at t2 = 2 from the
descendant of the dynasty head born at t1 = 1. One might think that if none of the agents
potentially alive in an economy cares about the specific dates at which they give birth
to their children, then the criterion used to distinguish among potential agents should
be irrelevant. However, from the points of view of the A- and P-dominance criteria, it is
not. As we explain throughout the paper, if one evaluates an increase in the family size
using the A-dominance or the P-dominance criterion and potential agents are identi-
fied by their positions in the birth order, then the eldest children in a family will be alive
in all allocations in which their parents have children and, therefore, their preferences
must be taken into account. In contrast, when potential agents are identified by their
birth dates, the eldest children in a family might not even be born in many alternative
allocations in which their parents have more children. Therefore, their preferences need
not be taken into account in welfare comparisons between allocations in which they are
alive and allocations in which they are not.

To understand the differences in the set of A-efficient allocations that arise with the
two criteria to identify potential agents, it might be useful to think of a couple who would
like to have two children, who they wish to call Alex and Robin—irrespective of their
gender—in order of birth. They would also like to treat them equally and provide them
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with the same support and bequests after they pass away. In such a context, an allo-
cation in which only Alex is born, say, in November 2018, and receives resources as if
he/she were the family’s only heir may be A-efficient if agents are identified by their
positions in the birth order. To see this, suppose Alex’s parents are desperate to have
(at least) one child, so not having any children would make them worse off. However,
having more children may not be welfare improving if agents are identified by their po-
sitions in the birth order. Why? Because Alex must be alive in any reallocation of re-
sources in which Robin is also born, and providing him/her with fewer resources would
make him/her worse off. But even if the agents’ order at birth determines their names,
it is conceivable to think of an individual as being determined by birth date, because
randomness in the environment make the genetic mix and the upbringing of a child
different when conception, hence birth date, is anticipated or delayed by just 1 month.
Under this perspective, Alex’s identity would not be the same if his/her parents decide
to anticipate his/her birth date by a month or to postpone it and give birth to Alex after
Robin is born. Taking this into account, the allocation in which the Alex born in Novem-
ber 2018 is the only child in his/her family can be easily A-dominated by an allocation
in which two children—named Alex and Robin—are born and their parents divide the
inheritance equally between the two siblings.

In this paper, we study the properties of different notions of efficiency in a general,
overlapping generations setting in which (a) there is a single individual or a continuum
of identical individuals, referred to as the dynasty head, alive when the economy starts;
(b) the number of children within each family is endogenously selected from a bounded
interval in the positive real line, the child-rearing period, that also represents the con-
tinuum of time instants at which children may be born; (c) the agents are able to de-
cide, possibly, with constraints, not only the number of children they bear, but also the
set of specific points in time at which they want to give birth to their children; (d) any
two living agents of the same generation have the same labor endowment and the same
preferences, which depend on their own consumption of a homogeneous good, on the
number of children they decide to bear and on the welfare obtained by their descen-
dants. Thus, our setting generalizes GJT’s continuous model of fertility choices in two
respects. First, it covers, as particular cases, a wide range of positive models of fertil-
ity choice, including not only Barro and Becker’s (1989), but also others in which al-
truism lies between the two polar representations (no altruism and dynastic altruism)
mainly considered in the literature. Second, even though, in our general framework,
agents choose the dates at which their children are born, potential agents may be iden-
tified, for normative purposes, with the two criteria described above. That is, potential
agents may be identified by their positions in their siblings’ birth order, a criterion re-
ferred to as the birth-order criterion, or by their birth dates, a criterion referred to as the
birth-date criterion. The two criteria to identify potential agents give rise to two notions
of A-dominance (and, hence, of A-efficiency) and two notions of P-dominance (and,
hence, of P-efficiency). To distinguish among them, we refer to the notions of A- and
P-dominance that arise with the birth-date criterion as AD- and PD-dominance, while
the notions of dominance that arise with the birth-order criteria are referred to as AO-
and PO-dominance. Our results can be gathered in two blocks.
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A-efficiency Our general framework allows for a constrained setting in which parents
cannot postpone the dates at which they decide to have children. Since, in such a set-
ting, the date at which an agent may be born coincides with the agent’s position in
his/her siblings order, the birth-date and the birth-order criteria to identify potential
agents give rise to the same set of A-efficient (and P-efficient) allocations. When the
agents’ fertility choices are unconstrained and parents can decide the dates at which
their children are born, the two criteria to identify potential agents give rise to a different
set of efficient allocations. To be more precise, every AO-efficient allocation is equiv-
alent to an allocation that arises as AD-efficient in the constrained setting described
above; that is, for the two allocations, every agent who occupies the same position in
the siblings’ birth order obtains the same consumption bundle and, hence, the same
utility. Thus, when fertility choices are unconstrained, an allocation that is AO-efficient
may be AD-dominated by a fertility choice that was not feasible in the constrained set-
ting. It follows that an AD-efficient allocation must also be AO-efficient, although the
converse is not, in general, true. Identifying the agents by their position in their siblings’
birth order gives rise, therefore, to a larger set of efficient allocations.

(i) Taking this into account, we provide first a necessary condition for A-efficiency
that applies to both criteria to identify potential agents. To be more precise, for every
AO-efficient or AD-efficient allocation, the youngest individuals in every family must
devote most of their entire income to maximize not their own utility, but the utility of
their parents and, hence, of the dynasty head (Theorem 1). When altruism of the agents
is of the finite-horizon type, Theorem 1 implies that every A-efficient allocation is char-
acterized by providing a positive measure of agents of every generation born after period
t = 2 with almost no resources to finance their own consumption (Corollary 1).

Indeed, starting from an allocation a in which none of the agents uses his/her in-
come to maximize the utility of the dynasty head, it is always possible to find another
allocation a′ that has more individuals that makes all people living under both a and
a′ better off than they were under a, irrespective of how potential agents are identified.
Welfare improvements of this type (in the sense given by the A-dominance criterion) can
be achieved by enforcing every newcomer, that is, every individual living under a′ who
is not born under a, to use his/her endowment to maximize his/her parents’ utilities.
Newcomers can provide their parents with at least the same utility as those already living
in a. Moreover, since marginal agents already living in a were not maximizing their par-
ents’ utilities, newcomers require fewer resources so as to achieve this objective. Finally,
even though newcomers would rather prefer to obtain the same consumption bundles
as those already living in a, this involves no welfare losses from the point of view of the
A-dominance criterion.

(ii) When potential agents are identified with the birth-date criterion, fertility
choices are unrestricted, and the child-rearing period is long enough, every allocation
arising as AD-efficient can be characterized as a dynastic optimum (Theorem 2), that is,
as an allocation that maximizes the utility of the dynasty head among all feasible alloca-
tions. This result can be extended to discrete settings and, therefore, contrasts with GJT’s
examples showing that A-efficiency differs from dynastic maximization. If, in addition,
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altruism of the agents is of the finite-horizon type, Theorem 2 implies that in every AD-
efficient allocation, the economy collapses in finite time and no economic activity takes
place thereafter. The argument behind Theorem 2 is simple: if some of the agents born
in a given allocation do not use their endowment to maximize the utility of the dynasty
head, she can always replace these agents by a set of agents of equal measure who do
behave as she wishes.

As the example described above illustrates, determining which of the two notions
of A-efficiency we should opt for depends on whether the ith child in a family should
be considered as the same person independently of when he/she is born, a difficult
question indeed. In any case, the fact that achieving A-efficiency always requires that
some—and perhaps all—of the agents must devote their entire endowment to maximize
the utility of the dynasty head shows that there are significant differences between the
notion of A-efficiency and the notion of Pareto efficiency. These differences might in-
troduce difficulties in the implementation of A-efficient outcomes, not only because,
in some environments, achieving A-efficiency may leave some of the living agents with
almost no resources, but also because, even in environments with dynastic altruism, A-
efficiency might require that the agents bequeath their debts to their children, which
might be incompatible with the agents’ rights to use some of their resources, for exam-
ple, their labor capacities, as they wish. But beyond these differences on the properties
of efficient allocations, our analysis of A-efficiency in different environments raises, in
our view, some doubts on the very notion of A-dominance as a criterion to aggregate
individual preferences: with this criterion, increasing the population size increases so-
cial welfare as long as all (already) living agents are better off, irrespective of the living
conditions of the newborn.

Millian efficiency as robust P-efficiency In this paper, we also explore whether the re-
sults in the preceding statements (i) or (ii) hold for the notions of P-efficiency that arise
from the two criteria—birth order or birth date—to identify potential agents. Differ-
ently from GJT, for whom the utility of the unborn is a constant value u, we explore the
possibility that the utility attributed to the unborn is a symmetric function of the utility
achieved by the agent’s living siblings. By making the utility attributed to the unborn de-
pend on the utility obtained by those alive in a given allocation, we introduce, in welfare
evaluation, principles such as “An increase in the population size is not welfare improv-
ing if the newborns are worse off than any, most, or the average of their siblings already
alive.” Under certain (concavity) conditions and independently on the criterion cho-
sen to identify potential agents, a symmetric allocation is P-efficient if and only if it is
Millian efficient (see Theorem 3). Furthermore, the P-efficiency of Millian efficient al-
locations holds for a wide range of specifications of the utility attributed to the unborn;
that is, for a wide range of principles that determine under what conditions a new life is
welfare improving. By assuming that the utility attributed to an unborn agent depends
exclusively on the utility obtained by the agent’s living siblings, we avoid cardinal assess-
ments in welfare comparisons. Finally, using a weaker notion of efficiency might be the
best option available if altering the agents’ property rights on their labor capacities is
not viable.
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The paper is organized as follows. In the following section (Section 2), we antici-
pate and discuss our main results in the context of a simple, two-period economy. In
Section 3, we introduce our general model. In Section 4, we explore the properties of
A-efficient allocations in the context of the model described in the previous section.
In Section 5, we explore the properties of P-efficiency when the utility obtained by the
unborn is a function of the utility obtained by his/her living siblings. In Section 6, we
present our main conclusions and discuss several possibilities for further research.

2. Efficient fertility choices in a simple, two-period example

To illustrate the two notions of A- and P-efficiency, we present a simple, two-period
economy with two generations of agents: the dynasty head and her potential children.
The economy is analogous to those described in Examples 2 and 3 in GJT, the differences
being that, in our case, (a) the number of children that the dynasty head decides to raise
is a real number n1 ∈ [0� n], where n represents the length of the time interval in which
the dynasty head may have children and, therefore, the maximum number of children
that she can bear, and (b) the dynasty head is able to decide not only the number of
descendants n1 that she wants to bear, but also the (set of) points in time at which she
wants to give birth to these descendants, represented by a Borel set D1 ∈ B[0� n] such that

n1 =
∫

D1

di�

In general, a potential agent is represented by the date i ∈ [0�n] at which he/she may
be born; that is, potential agents are represented, therefore, by the birth-date criterion.
Yet, the setting includes a particular specification in which birth dates cannot be post-
poned and the set of feasible fertility choices D adopts the form D = DO ≡ {[0� n] : n ∈
[0�n]}. Note that in this constrained case, the agents’ birth dates and their positions in
their siblings’ birth order coincide, and a fertility choice is completely described by the
number of individuals. In what follows, we assume that DO ⊆ D is satisfied.

At time t = 0, there are e0 units of a homogeneous good that can be used to finance
the dynasty head’s consumption, cm0 , as well as capital investments, ko

1 , and child bear-
ing activities, represented by a linear cost function b(n1) = bn1, with b > 0. The resource
constraint at time 0 is cm0 +bn1 +ko

1 ≤ e0, which, by writing k1 for capital per worker (that
is, k1 = ko

1/n1), can be written equivalently as

cm0 + n1(b+ k1)≤ e0�

At time t = 1, total output is given by Y1 = F(ko
1 � n1). In this simple example, we fo-

cus on a linear technology F(ko
1 � n1) =Rko

1 +wn, with R> 0 and w> 0 satisfying Rb>w.
This output is used to provide the consumption good to each of descendants of the dy-
nasty head in case these descendants are alive. Since fertility choices are selected from
a continuum, consumption choices made by the descendants of the dynasty head are
represented by an (Lebesgue) integrable function cm1 : [0� n] → R+, where cm1 (i) repre-
sents the amount of the consumption good available to the ith descendant. Denote by
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e1 the average consumption available to the dynasty head’s descendants, that is,

e1 = 1
n1

∫
D1

cm1 (i)di� (1)

The resource constraint, in per capita terms, that arises at time t = 1 adopts the form

e1 ≤ F(k1�1)= f (k1) =Rk1 +w.

Finally, by letting k(e1) = f−1(e1) = [e1 − w]/R, the resource constraint at time t = 0
becomes

cm0 + n1
[
b+ k(e1)

] ≤ e0� (2)

In the economy described, an allocation a = (a�D1� cm1 ) is a vector a = (n1� c
m
0 � e1) ∈

[0� n]×R
2+, a set of points in time at which children are born, D1 ∈ D, and a consumption

plan cm1 : [0� n] → R+ that satisfy (1) and (2). Write F(D) for the set of feasible allocations.
An allocation a ∈ F(D) is ex post symmetric (or simply symmetric) if it provides every de-
scendant with the same consumption bundle and, hence, satisfies cm1 (i) = e1 for every
i ∈ D1.

While each potential descendant i, if alive (i.e., if i ∈ D1), cares monotonically about
her own consumption cm1 (i), the dynasty head is concerned with her own consumption,
the number of descendants she decides to bear, and the amount of the consumption
good available to each of her descendants. Her preferences on feasible allocations are
represented by a utility function of the form

U0(a) =U

(
cm0 � n1�

1
n1

∫
D1

UD
(
cm1 (i)

)
di

)
�

where U is nondecreasing, continuously differentiable, and concave, and UD is a non-
decreasing, strictly concave function. In this simple example, the preferences of the
dynasty head are represented by the altruistic utility function

U0(a) = α

σ

[
cm0

]σ +β

∫
D1

1
σ

[
cm1 (i)

]σ
di�

which adapts GJT’s Examples 1 and 2 to allow for a continuous set of fertility choices.
We take the same parametrization as in GJT. Specifically, e0 = 100, b = 24, R = 1, w = 0,
and α = β = γ = σ = 1/2.

A- and P-efficiency Even though, in our setting, the agents’ birth dates can be post-
poned and their order at birth becomes an endogenous variable, it is not clear which
of the two criteria to identify potential agents should be taken as the reference to un-
dertake welfare comparisons with the A- and the P-criteria proposed by GJT. To avoid
confusion, we use the superscripts D (for the birth-order criterion) and O (for the birth-
order criterion) to make clear which of the two criteria is taken as the reference.

For expository convenience, the birth-date criterion is considered first. As in GJT, an
allocation â = (̂a� D̂1� ĉm1 ) is said to AD-dominate an allocation a = (a�D1� cm1 ) if it makes
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all potential agents—identified by their birth dates—living in both â and a better off
without making any one of them worse off; that is, if (i) U0(̂a) ≥ U0(a), (ii) ĉm1 (i) ≥ cm1 (i)

for every i ∈ D̂1 ∩ D1, and (iii) either U0(̂a) > U0(a) or ĉm1 (i) > cm1 (i) is satisfied for a
set D ⊆D̂1 ∩ D1 of positive measure. As in GTJ, the A appearing in the notion of AD-
dominance may be justified because it refers to alive agents. An allocation â ∈ F(D) is
referred to as AD-efficient if it is not AD-dominated by any other allocation a ∈ F(D).

Analogous to the notion of P-dominance proposed by GTJ, the notion of PD-do-
minance is associated to a utility function UN

1 , which determines the utility UN
1 (a� i) at-

tributed to the ith descendant—identified by the date at which he/she may be born—in
the case that this descendant is not born. Complemented by the utility function de-
fined by U1(a� i) = cm1 (i), which represents the preferences of every descendant i in those
allocations in which i is alive, the preferences of a potential descendant are given by

UP
1 (a; i) =

{
cm1 (i) if i ∈ D1�

UN
1 (a; i) otherwise.

Using this notation, an allocation â PD-dominates an allocation a if it is unanimously
preferred by all potential agents in the economy and strictly preferred by a positive
measure of potential agents; that is, if (i) U0(̂a) ≥ U0(a), (ii) UP

1 (̂a; i) ≥ UP
1 (a; i) for every

i ∈ [0�n], and (iii) either U0(̂a) > U0(a) or UP
1 (̂a; i) > UP

1 (a; i) is satisfied for a set D ⊆[0� n]
of positive measure. Also as in GTJ, the P appearing in the notion of PD-efficiency may
stand for population or potential. An allocation â ∈ F(D) is referred to as PD-efficient if
it is not PD-dominated by any other allocation a ∈ F(D).

Next, we consider the birth-order criterion. So as to define formally the notion of
AO-efficiency in a setting in which the agents’ position in the birth order is endogenous,
given a feasible allocation a, for every i ∈ [0� n], write o(i) for the position in the siblings’
order held by the agent born at date i, that is,

o(i) =
∫

D1∩[0�i]
ds�

Also, given an allocation a ∈ F(D), for each i ∈ [0� n], write cmO
1 (i) for the amount of

the consumption good available to the agent occupying the ith position in the siblings’
order, that is,

cmO
1 (i) =

{
cm1

(
o−1(i)

)
if i ∈ [0� n1]�

0 if i > n1�

With this notation, an allocation a AO-dominates an allocation â if U0(a) ≥U0(̂a) and
cmO

1 (i) ≥ ĉmO
1 (i) for every i ≤ min{̂n1� n1}, and either U0(a) >U0(̂a) or cmO

1 (i) > ĉmO
1 (i) is

satisfied for some i ≤ min{̂n1� n1}. An allocation â ∈ F(D) is AO-efficient if it is not AO-
dominated by any other allocation a ∈ F(D).

Given an allocation a =(a� cmO
1 �D1) ∈ F(D), we refer to the pair aO = (a� cmO

1 ) ∈
F(DO) as the birth-order representation of a� Observe that every AO-efficient alloca-
tion can be equivalently defined as an allocation whose birth-order representation can-
not be dominated by any a ∈ F(DO); that is, for any allocation that is feasible in an
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economy in which the dynasty head’s choices are restricted (i.e., births cannot be post-
poned) and D ≡ DO is satisfied. The notion of PO-dominance can be defined analo-
gously, and an allocation is referred to as PO-efficient if its birth-order representation is
not PO-dominated by any other allocation a ∈ F (DO).

Note that every AO-efficient or PO-efficient allocation is equivalent to an allocation
that arises as AD-efficient or PD-efficient in the constrained setting in which D ≡ DO

holds. Hence, an allocation that is AO-efficient may be AD-dominated by an alloca-
tion that is not feasible in such a constrained setting. Thus, AD-efficient (respectively,
PD-efficient) allocations satisfy all the requirements that AO-efficient (respectively, PO-
efficient) allocations must satisfy, which implies that the set of AD-efficient (respec-
tively, PD-efficient) allocations is contained in the set of AO-efficient (respectively, PO-
efficient) allocations.

Dynastic optima and Millian efficient allocations. So as to explore the properties of
AO-efficient allocations, we assume without loss of generality that D ≡ DO is satisfied.
Taking into account that the dynasty head is alive in every feasible allocation, any alloca-
tion a∗ that maximizes the utility of the dynasty head among all feasible allocations must
be both AO-efficient and AD-efficient. Moreover, since the function UD is strictly con-
cave, such a dynastic optimum must be symmetric. The pair (n∗

1� e
∗
1) that corresponds

to a dynastic optimum a∗ must, therefore, solve

max
(n1�e1)∈[0�n]×R+

{
U

(
e0 − n1

[
b+ k(e1)

]
� n1�U

D(e1)
)} ≡ V0(e0)� (3)

which, in our parametric example, yields

(
cm∗

0 � n∗
1� e

∗
1
) =

(
24�

61/2

12
�24

)
�

Are there other AO-efficient allocations? A class of seemingly good candidates is
the class of Millian efficient allocations; that is, the class of symmetric allocations that
cannot be AO-dominated by any other symmetric allocation. A Millian efficient alloca-
tion â gives the dynasty head the maximum utility that she can obtain with a symmetric
allocation if she is restricted to provide at least ê1 units of resources to each of her de-
scendants, i.e., e1 ≥ ê1. That is, the pair (̂n1� ê1) that corresponds to a Millian efficient
allocation solves

max
(n1�e1)∈[0�n]×R+

{
U

(
e0 − n1

[
b+ k(e1)

]
� n1�U

D(e1)
) : e1 ≥ ê1

}
� (4)

It is also easy to see that, if ê1 ≥ e∗
1, then the constraint e1 ≥ ê1 in (4) must be binding.

Therefore, Millian efficient allocations are those for which n̂1 solves, for some ê1 ≥ e∗
1,

max
n1∈[0�n]

{
U

(
e0 − n1

[
b+ k(̂e1)

]
� n1�U

D(̂e1)
)} ≡W0

(
e0� ê1�U

D(̂e1)
)
� (5)
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In our parametric example, for any ê1 ≥w, the solution (̂cm0 � n̂1� ê1) = (cm0 (̂e1)�n1(̂e1)�

k1(̂e1)) to the optimization problem in the definition of W0(e0� ê1�U
D(̂e1)) is

(̂
cm0 � n̂1� ê1

) =
( [24 + ê1]2

16̂e1
�

100 −
[

24 + ê1

16̂e1

]2

24 + ê1
� ê1

)
�

which implies that the fertility rate arising in the dynastic optimum is always higher
than that corresponding to any other Millian efficient allocation. Clearly, starting from
a symmetric allocation â for which (̂n1� ê1) solves the optimization problem in (4), the
only way to increase the utility of the dynasty head with a symmetric allocation is by
decreasing e1, which, taking into account that a lower income e1 < ê1 brings with it a
higher fertility level n1 ≥ n̂1, would make all the descendants who where already living
in the original allocation worse off.

Perhaps surprisingly, the only Millian efficient allocation that is also AO-efficient is
the dynastic optimum. To see why, let â= (̂cm0 � n̂1� ê1) be Millian efficient allocation that
satisfiesy ê1 > e∗

1. Now suppose the dynasty head is given the opportunity to choose an
asymmetric allocation ã with more children than those living in â (that is, satisfying ñ1 ≥
n̂1) constructed in such a way that the already living children obtain the same consump-
tion bundle (that is, c̃m1 (i) = ê1 for each i ∈ [0� n̂1]) while the newborn obtains ẽ1 (that
is, c̃mO

1 (i) = ẽ1 for each i ∈ (̂n1� n1]). The dynasty head will choose c̃m0 , ñ1, k̃1, and ẽ1 to
maximize

U0(a) = U

(
cm0 � n1�

(
n̂1

n1

)
UD(̂e1)+

(
1 − n̂1

n1

)
UD(e1)

)
subject to the constraints

cm0 + n1(b+ k1) ≤ e0�

(
n̂1

n1

)
ê1 +

(
1 − n̂1

n1

)
e1 ≤ f (k1) and n1 ≥ n1 ≥ n̂1�

In our example, the solution to this problem satisfies ñ1 = n∗
1 − n̂1[̂e1 −e∗

1]/[Rb−w+e∗
1]>

n̂1 and ẽ1 = e∗
1 < ê1. Thus, even though the dynasty head would rather not discriminate

among her children, she finds it optimal to do so and increase the number of children if
she is constrained to provide each of her already living children with an amount of the
consumption good ê1 > e∗

1. The possibility to discriminate against the children who are
not born in â makes these children cheaper, as their marginal costs—given by b+ k(̂e1)

in the original allocation—jump down to b + k[(̂n1/ñ1)̂e1 + (1 − n̂1/ñ1)e
∗
1]. Therefore,

every Millian efficient allocation â is AO-dominated by an asymmetric allocation ã with
more individuals, in which all the people born in â obtain at least the same utility as that
obtained in ã, while the dynasty head obtains strictly higher utility. Since the dynastic
optimum is trivially AO-efficient, this implies, in turn, that the only symmetric, AO-
efficient allocation is the dynastic optimum.

Other AO-efficient allocations Observe that, in addition to the dynastic optimum,
there are many other AO-efficient allocations. The asymmetric allocation ã constructed
above (where ẽ1 is chosen to maximize the dynasty head’s utility) is an example. With
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the allocation ã, the dynasty head cannot obtain higher utility with an allocation with
more or with fewer descendants, provided she has to provide the first n̂1 surviving de-
scendants with ê1 units of the consumption good.

In Theorem 1, we show, in the context of a more general model, that in every
AO-efficient allocation, a positive measure of descendants—to be more precise, the
youngest individuals in every family—must devote most of their income to maximize the
utility of the dynasty head. In the context of the two-period example analyzed here, The-
orem 1 implies that in every AO-efficient allocation a ∈F(D), the consumption scheme
cm1 (·) must satisfy

lim
i→n1
i<n1

cm1 (i) = e∗
1� (6)

Note that if (6) were not satisfied, the dynasty head might obtain higher utility by altering
her fertility choice to provide the youngest descendants with cm1 (i) = e∗

1 units of the con-
sumption good. This might be problematic if, in our example, the dynasty head is not
altruistic and β = 0 is satisfied. In this case, the dynastic optimum must satisfy e∗

1 = 0.
Moreover, for any other AO-efficient allocation ã, a positive measure of agents obtain
an arbitrarily small amount of resources. Of course, one might argue that non-altruistic
preferences are rare, but as we show in Corollary 1, the same result arises in a more gen-
eral setting with infinite periods of time when the altruism of the agents extends to a
finite number of generations of their descendants.

AD-efficiency The fact that most AO-efficient allocations are asymmetric seems to be
at odds with imposing the assumption that all living descendants have identical pref-
erences and capacities. We note, however, that if feasible fertility constraints are un-
constrained and the child-bearing period is long enough, none of these asymmetric,
AO-efficient allocations is AD-efficient. To be more precise, if D ≡ B[0� n] and n ≥ 2n∗

1
are satisfied, then the only AD-efficient allocations are dynastic optima.

To see why, recall that the set of AO-efficient allocations is isomorphic to the set of
AD-efficient allocations that arise in the restricted setting in which D ≡ DO is satisfied.
Thus, in an AO-efficient allocation a, (i) the youngest children in every family cannot
obtain more utility than the utility that he/she would obtain in a dynastic optimum, and
(ii) the number of children n1 cannot be higher than the optimal number n∗

1. Therefore,
if n > 2n∗

1 holds and cm1 (i) > e∗
1 is satisfied for a positive measure of agents alive in a� the

dynasty head can always replace these agents by a set of agents of equal measure that
obtain cm1 (i) = e∗

1. Clearly, the allocation resulting from such a replacement constitutes
an AD-improvement, since the dynasty head—the only agent living in the two alloca-
tions under comparison—will be better off with such replacement. In the absence of
altruism, achieving AD-efficiency requires that cm1 (i) = 0 is satisfied for every alive de-
scendant i ∈ D1. As we show in Section 4, in the absence of altruism or in the presence
of finite-horizon altruism, achieving AD-efficiency may drive an economy to a collapse,
as no more individuals are born thereafter.
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A-efficiency and individual property rights Even if the dynasty head is altruistic toward
her descendants, both AO- and AD-efficiency may be incompatible with the existence
of property rights on the resources to be allocated in a given economy, as Schoonbroodt
and Tertilt (2014) have observed. To see why, suppose we slightly modify the model de-
scribed above in such a way that the amount of the consumption good ko

1 accumulated
as capital by the dynasty head may be negative, in which case d0

1 = −ko
1R represents the

dynasty head’s debt in period 1. Suppose also that in such a model, the dynastic opti-
mum satisfies e∗

1 < w. Finally, suppose that all descendants of the dynasty head born
in any allocation cannot be forced to repay their parent’ debts. As none of these agents
cares about the welfare enjoyed by the dynasty head, they will all use their entire labor
capacity to obtain w units of the consumption good. As e∗

1 <w holds, the dynasty head
would rather not provide any of her descendants with more resources than the resources
they are endowed with. Therefore, the existence of property rights drives the economy
to the Millian efficient allocation â for which ê1 = w > e∗

1. As explained above, such an
allocation is both AO- and AD-inefficient. Yet, while such an allocation â can be AD-
dominated by a dynastic optimum, provided all agents living in such dynastic optimum
are different than those living in â, it can only be AO-dominated by some asymmet-
ric allocations in which only some of the agents—the youngest children of the dynasty
head—are forced to repay the debt accumulated by their parent to finance her fertility
choices.

Discrete choices. Comparison with GJT In the example discussed above, the difference
between the fertility choices, ñ1 and n̂1, which correspond to the allocations ã and â,
is always strictly positive, and it might become arbitrarily small as ê1 approaches e∗

1.
That is, ruling out some Millian efficient allocations as being AO-inefficient may require
that the population is increased in arbitrary small amounts. Therefore, the arguments
used to characterize the only symmetric, AO-efficient allocation as a dynastic optimum
cannot be applied when the set of fertility choices is discrete, as GJT assume in their
examples.

To make this clear, suppose that the the dynasty head is restricted to choose the
number of children n1 she decides to bear out of a discrete set {0�1�2�3� � � � � n}, so that
the set D1 ⊆ ∅∪ {1�2�3� � � � � n} of dates at which children of their children are born must
satisfy D1 = ∅ if n1 = 0 and #{D1} = n1 if n1 > 0. Suppose also that the average income
received by the dynasty head’s descendants is now given by

e1 = 1
n1

∑
D1

cm1 (i)�

and that the dynasty head’s preferences are represented by a utility function of the form

U0(a) = U

(
cm0 � n1�

1
n1

∑
D1

UD
(
cm1 (i)

))
�

In such a setting, the dynastic optimum a∗ and every Millian efficient allocation â can be
characterized, respectively, as the solutions to optimization problems closely analogous
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to those in the definitions of V0(e0) and W0(e0� ê1�U
D(̂e1)) (see (3) and (5), respectively),

which differ from those in that the optimal choices n∗
1 and n̂1, must now satisfy a con-

straint of the form n1 ∈ {0�1�2�3� � � � � n}. Thus, as in the model in which fertility choices
are drawn from a continuum, the income e∗

1 (respectively, the fertility rate n∗
1) that cor-

responds to a∗ provides a lower bound (respectively, an upper bound) for the average
consumption (respectively, the fertility rate) that arises with a Millian efficient alloca-
tion. Taking this into account, it is straightforward to notice that in the discrete case,
many Millian efficient allocations may be AO-efficient even though they are not dynas-
tic optima. Golosov et al. (2007, Example 2) provide an example in which this occurs.

However, if parents are able to choose any subset of the set of dates {1�2�3� � � � � n}
and n ≥ 2n∗

1 holds, then every AO-efficient allocation that is AD-efficient must be a dy-
nastic optimum. As in the continuous case, the fertility rate n∗

1 that corresponds to a
dynastic optimum provides an upper bound for the fertility rate that arises in an AO-
efficient allocation. Thus, if an allocation a is not a dynastic optimum, the dynasty head
is always better off to replace all agents living in a with a new set of agents and provide
each of them with the level of consumption e∗

1 that corresponds to a dynastic optimum.
Such a reallocation of resources is a welfare improvement, since the dynasty head is the
only agent alive in the two allocations under comparison, which establishes the result.

AO-efficiency versus AD-efficiency. Final remarks In view of the differences between
the two criteria to confer the agents their identity, a question arises: Which criterion
should we opt for? A possible justification of the birth-order criterion is that the eldest
children in a family already are alive when their younger siblings are born. However, in
the models presented in this paper, all descendants are already alive by the time par-
ents decide whether they are willing to provide them with any resources. In addition,
the objective behind extending the Pareto criterion is to evaluate allocations that result
from decisions such as increasing the size of a family before potential agents are born,
not while potential agents are being born or after they are all already born. Finally, even
if, in our model, all children have the same preferences and the dynasty head is will-
ing to treat her children symmetrically, the use of the birth-order criterion delivers a
highly asymmetric set of utility possibilities for the agents. To be more precise, while the
youngest children in a family cannot obtain, in an AO-efficient allocation, more utility
than the utility they obtain in a dynastic optimum, the oldest may obtain, in the contin-
uous case, arbitrarily high utility. In contrast, the frontier of the set of utility possibilities
that correspond to the birth-date criterion is symmetric, although it reduces to a single-
ton.

The two criteria differ also in many other settings, which, to save on space, we do
not analyze formally. For example, consider a setting in which the dynasty head’s pref-
erences on her children’s utilities depend on their positions in the birth order. With
such preferences, dynastic optima, which—for a sufficiently high n—are the only AD-
efficient allocations, are asymmetric, and those children who occupy higher positions
in the birth order obtain higher resources. But this asymmetry is caused by parental
preferences, not by the notion of efficiency applied. The birth-order criterion to iden-
tify potential agents delivers a much larger set of efficient allocations, in some of which



Theoretical Economics 14 (2019) Efficiency and endogenous fertility 489

the utility obtained by the eldest child is much higher than that obtained by other sib-
lings. Finally, consider a setting in which parents are concerned about their children’s
characteristics and these characteristics depend—possibly stochastically—on potential
children’s birth dates. In such a framework, parent’s optimal plans, which may adopt the
form “keep having children until you have two kids with a characteristic θ,” still charac-
terize AD-efficiency, but applying the birth-order criterion seems arbitrary. One might
argue that applying AD-efficiency in this type of settings might be in conflict with cur-
rent laws or with other ethical principles, but it is not clear how applying the birth-order
criterion may solve those conflicts.

P-efficient allocations When the function UN
1 is constant and UN

1 (a� i) = e1 holds, the
properties of P-efficient allocations—with either criterion—are similar to those arising
in GJT’s setting. If, for example, e1 < 0 is satisfied, then the only Millian efficient al-
location that is also PD-efficient or PO-efficient is the dynastic optimum. There are,
however, many other allocations that are PD-efficient and, hence, PO-efficient. For any
fertility level n̆1 above the fertility level n∗

1 that corresponds to the dynastic optimum, an
allocation that maximizes the utility of the dynasty head among all allocations for which
n1 ≥ n̆1 is satisfied must be P-efficient. Therefore, fertility levels that arise with PD- or
PO-efficient allocations can be arbitrarily high. As the utility attributed to the unborn
e1 is higher, a Millian efficient allocation for which e∗

1 ≤ ê1 < e1 is satisfied is also PD-
efficient and PO-efficient, and other allocations that are not Millian efficient might be
PD-efficient as well.

The two notions of P-efficiency—with constant utility levels attributed to the
unborn—bring with them another difficulty: Who sets e? To avoid this difficulty, Golosov
et al. (2007, p. 1054) suggest to take e1 = e∗

1, which leaves the dynastic optimum as the
only PD-efficient allocation and the only symmetric, PO-efficient allocation. In Sec-
tion 4, we explore the possibility that the utility attributed to the unborn depends on the
utility obtained by their living siblings.

3. Feasible fertility choices in a general, overlapping generations setting

3.1 A benchmark framework

Throughout the remaining of the paper, we focus on a particular class of overlapping
generations (OLG) economies with infinite periods of time. Each individual in an econ-
omy lives for at most three of these periods, so that individuals living at t = 0�1�2� � � �
are referred to as children, middle-aged adults, or old adults, depending on whether it
is their first, second, or third period of life. As in GJT, the set of potential agents who
are actually alive at any given period is endogenous and depends on the fertility plans
selected by the agents. In contrast to these authors, we assume that each middle-aged
adult potentially alive at t = 1 is identified by a nonnegative number i1 ∈ [0� n] that de-
termines the instant, in the child-rearing period [0� n], in which the agent may be born.
For t = 1�2�3� � � � � each middle-aged adult potentially alive at t is identified by a vector
it = (it−1� it) ∈ [0�n]t , where it specifies the instant at which the agent may be born and
it−1 = (i1� � � � � it−1) identifies the agent’s parent. To simplify things, all agents belong to
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the same dynasty, initiated by the only agent who is middle aged at t = 0—the dynasty
head, hereafter represented by i0. Let B[0� n]t be the class of Borel sets in [0� n]t . For
every set D ∈ B[0� n], the Lebesgue measure of D is denoted by μ{D} ≡ ∫

D di, while for
every set Dt ∈ B[0� n]t of potential middle-aged agents at t, the Lebesgue measure of Dt is
denoted by μt{Dt} ≡ ∫

Dt dit . For intervals of the form Dt=[at� bt] ∈ B[0� n]t , the Lebesgue

integral
∫
[at �bt ] di

t may also be written as
∫
[at�bt ] di

t = ∫ bt

at dit .
The set of feasible fertility choices is represented by a set D ⊆ B[0� n]. Thus, although

potential agents are identified, in general, with the birth-date criterion, we allow, as a
particular specification, that the set of fertility choices adopts the form DO ≡ {[0� n] : n ∈
[0�n]}. Note that in this case, the agents’ birth dates and their positions in their siblings’
birth order coincide. In what follows, we assume that DO ⊆ D is satisfied.

A fertility plan D is a sequence of mappings D = {Dt+1 : [0� n]t −→ D}t≥0. Each map-
ping Dt+1 : [0� n]t −→ D represents a schedule that determines, for each it ∈ [0� n]t , the
set of subperiods Dt+1(i

t) in the child-rearing period in which agent it ’s children are
born. We assume that at each point in time, only one child may be born, so that the
number of children that agent it decides to bear, which we denote by nt+1(i

t), is given by

nt+1
(
it
) ≡ μ

{
Dt+1

(
it
)} =

∫
Dt+1(it )

di� (7)

For each t and every it = (it−1� it) ∈ [0� n]t , agent it is said to be alive with fertility
plan D if agent it−1 is also alive and it ∈ Dt(i

t−1) is satisfied. For every individual it ∈ R
t+

and every τ ≥ t + 1, the set of descendants of it at their middle age at τ is denoted by
Dτ(it). The set of middle-aged adults actually living at t with a fertility plan D is denoted
by Dt (i0) and its measure is given by

μt
{
Dt

(
i0

)} =
∫

Dt (i0)
dit =

∫
Dt−1(i0)

(∫
Dt (it−1)

di

)
dit−1 =

∫
Dt−1(i0)

nt
(
it−1)dit−1�

In addition to children, there is only one homogenous good produced at every pe-
riod t ≥ 1. This consumption good is produced at each period t ≥ 0 using, as inputs,
a given amount Kt of the same good invested in the previous period t − 1 as physi-
cal capital and a given amount of labor Lt provided by middle-aged adults. That is,
Yt ≤ Ft(Kt�Lt), where Yt is total output and Ft : R2+ −→ R+ exhibits constant returns to
scale, and it is nondecreasing, concave, and continuously differentiable. Rearing chil-
dren is a production activity that takes place within each household and its costs are
represented by a strictly increasing, convex, and continuously differentiable function
bt : [0� n] −→ R+. Thus, a middle-aged adult who decides to rear nt+1 children at period
t needs to spend bt(nt+1) units of the consumption good. Fertility and consumption
plans of potential agents are represented by a fertility plan D and a sequence of inte-
grable functions c = {(cmt � cot+1) : [0� n]t −→ R

2+}t≥0 that determines, for each t ≥ 0 and
each potential agent it ∈ R

t+, the consumption vector (cmt (i
t)� cot+1(i

t)) chosen by agent
it through her life cycle. Thus, it is assumed that children do not make consumption
decisions.

The resource constraint faced by potential agents is described as follows. At time t =
0, the amount of resources available to finance consumption (cm0 (i0)), fertility (n1(i

0)),
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and investment decisions (ko1(i
0)) of the dynasty head is bounded by an initial endow-

ment e0 available for the dynasty head, that is,

cm0
(
i0

) + b0
(
n1

(
i0

)) + ko1
(
i0

) ≤ e0� (8)

For each period t ≥ 0, each living agent is endowed with 1 unit of labor time when
he/she reaches middle age. Then labor is supplied inelastically, so that labor supply
at any given period coincides with the measure of middle-aged agents alive at t, that is,
Lt = μt{Dt (i0)}. By writing, for each t and each it ∈ Dt (i0), the capital invested per old
adult kot+1(i

t) for kot+1(i
t) = nt+1(i

t)Kt+1/μ
t{Dt (i0)}, the resource constraint at each date

t ≥ 1 is

∫
Dt−1(i0)

cot
(
it−1)dit−1 +

∫
Dt (i0)

[
cmt

(
it
) + bt

(
nt+1

(
it
)) + kot+1

(
it
)]
dit

≤
∫

Dt−1(i0)
Ft

(
kot

(
it−1)�nt

(
it−1))dit−1� (9)

In what follows, an allocation a = (D� c� ko) is a fertility plan D� a consumption plan c =
{(cmt � cot+1) : [0� n]t −→ R

2+}t≥0 that determines consumption choices of every potential
agent, and an investment plan ko = {kot+1 : [0�n]t −→R+}t≥0 that determines investment
decisions in every period. An allocation a is feasible if it satisfies the initial condition
in (8), the resource constraint in (9), and condition (7). The set formed by all feasible
allocations is denoted by F(D).

Write R
∗ for the set of extended real numbers R∗ ≡ {−∞} ∪R, and write xt (it) for the

consumption–fertility bundle

xt
(
it
) = (

cmt
(
it
)
� cot+1

(
it
)
� nt+1

(
it
))
�

Throughout this paper, we assume that preferences of every potential agent of gener-
ation t on the set of allocations in which the agent is alive are represented by a utility
function Ut : F(D)×R

∗ −→ R
∗ that satisfies, for every a ∈ F(D) and it ∈ Dt (i0),

Ut
(
a; it) =U

(
xt

(
it
)
�

1
nt+1

(
it
) ∫

Dt+1(it )
UD
t+1

(
a; it � it+1

)
dit+1

)
�

where U : R3+ × R
∗ −→ R

∗ is nondecreasing, concave, and continuously differentiable,
and UD

t+1 is a function that represents the agents’ preferences on fertility and consump-
tion choices made by his/her living descendants. Thus, as the functions Ut and UD

t may
not coincide, parents’ preferences regarding their children’s decisions might differ from
the preferences of the children themselves.

We assume that for each t, UD
t : F(D) × R

t+ −→ R
∗ is recursively defined, for every

a ∈ F(D) and every it ∈ Dt(i0), by

UD
t

(
a; it) =UD

(
xt

(
it
)
�

1
nt+1

(
it
) ∫

Dt+1(it )
UD
t+1

(
a; it � it+1

)
dit+1

)
�
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where UD : R3+ × R
∗ −→ R

∗ is also nondecreasing, concave, and continuously differen-
tiable. The fact that each function UD

t is defined recursively implies that the preferences
of any agent of generation t and those of their children regarding the consumption and
fertility choices of any common descendant coincide.

3.2 The birth-order representation of an allocation

Even though the agents are identified by their birth dates, one might be interested, for
normative purposes, in identifying the agents by the order at which they may be born.
Given a feasible allocation a, for every t ≥ 0 and every it = (it−1� it) ∈ Dt (i0), write ot (it)

for the vector that determines the identity of agent it according to the birth-order crite-
rion. To be more precise, ot (it) is recursively defined by ot (it) = (ot−1(it−1)�ot (it−1� it)),
with

ot
(
it−1� it

) =
∫

Dt (it−1)∩[0�it ]
ds�

Also, given an allocation a ∈ F(D), we refer to the birth-order representation of a to the
allocation aO ∈ F(DO) as satisfying, for every t ≥ 0 and every it ∈ [0�n]t ,

(
xOt

(
it
)
� koOt+1

(
it
)) =

{
(xt

((
ot

)−1(
it
))
� kot+1

((
ot

)−1(
it
))

if it ∈ Dt
(
i0

)
�

0 otherwise.

3.3 On types of altruism

Our general setting admits a wide range of particular specifications, or environments,
frequently studied in the literature of endogenous fertility.

Dynastic altruism. By an environment with dynastic—or perfect—altruism, we refer
to the class of particular specifications of the model for which UD ≡ U and U is strictly
increasing in cmt , nt+1, and uDt+1. In this particular environment, every agent cares about
the utility of his/her immediate descendants, which, proceeding recursively, implies
that every agent cares about consumption and fertility decisions of all her descendants.
Observe that we are not imposing that U(·) is strictly monotonic in cot+1, which allows
us to consider, as different specifications of dynastic altruism, (a) models in which the
agents live for one period and provide bequests to their immediate descendants, as well
as (b) models in which the different generations of agents are truly overlapping and
parents provide their immediate descendants with gifts. Examples of the first type of
model—although they both restrict their analysis to symmetric allocations—are given
in the pioneering work by Razin and Ben-Zion (1975), for whom

U
(
xt�u

D
t+1

) =UD
(
xt�u

D
t+1

) = v
(
cmt

) + γ(nt+1)+βuDt+1�

as well as the model developed in Barro and Becker (1989), for whom

U
(
xt�u

D
t+1

) =UD
(
xt�u

D
t+1

) = v
(
cmt

) + α(nt+1)nt+1u
D
t+1�
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with α(nt+1) = αn−ε
t+1 being the endogenous discount rate. Finally, an example of a model

with dynastic altruism and truly overlapping generations is given by Schoonbroodt and
Tertilt (2014), for whom

U
(
xt�u

D
t+1

) =UD
(
xt�u

D
t+1

) = v
(
cmt

) +βv
(
cot+1

) +�
(
nt+1�u

D
t+1

)
�

No altruism. In many other models that study fertility, the agents are not altruis-
tic at all, and children are viewed as a consumption good.2 Since we are not impos-
ing that U or UD must be strictly monotonic in uDt+1, a setting with no altruism is a
particular specification of our general framework, for which U(xt�u

D
t+1) = u(xt) and

UD(xt�u
D
t+1) = u(xt).

Non-dynastic altruism. Other possibilities do exist. In the exogenous fertility litera-
ture, some authors3 have studied environments with limited (or non-dynastic) altruism
to study the extent to which the positive (for example, Ricardian equivalence) or nor-
mative (efficiency) properties of the equilibria that arise with dynastic altruism can be
extended to more general settings. Endogenous fertility literature also has abundant
specifications of altruism in which the quality of children, from which parents derive
utility, is not necessarily identified with the children’s utilities, and may take the form
of goods spent on each child as in Becker and Lewis (1973), income as in Galor and
Weil (2000), human capital as in de la Croix and Doepke (2003), or consumption as in
Kollmann (1997).

A particular specification of non-dynastic altruism is that for which an agent’s al-
truism extends toward all her future descendants, which corresponds, for example, to
the case in which UD(xt�u

D
t+1) = U(xt�βu

D
t+1), with 0 < β < 1 and U , and, hence, UD,

being strictly increasing in uDt+1. We refer to this type of altruism as infinite-horizon,
non-dynastic altruism. However, the function UD need not be strictly increasing in uDt+1,
that is, the agents might be altruistic only toward their immediate descendants. We refer
to this type of non-dynastic altruism as finite-horizon, non-dynastic altruism, which is
represented by utility functions of the form

U
(
xt�u

D
t+1

) = v(xt)+ δuDt+1 and UD
(
xt�u

D
t+1

) = v(xt)�

with v being strictly increasing in cmt and nt+1, and δ ∈ (0�1).
Although the preferences considered in the present paper allow for non-dynastic

altruism, we impose two additional assumptions on preferences that ensure that the
agents’ preferences and those of their parents are, in a sense that we clarify below, con-
sistent.4 The first of these assumptions (formalized below) imposes that, keeping fixed
the total amount of resources available to any given agent and the decisions taken by the
agent’s descendants, the agent’s preferences on how to distribute these resources among
consumption, fertility, and investment coincide with those of her parents.

2Examples of this approach, which focus exclusively on symmetric allocations, are Eckstein and Wolpin
(1985), Michel and Wigniolle (2007), and Conde-Ruiz et al. (2010).

3See, e.g., Bernheim and Ray (1989) and the references therein.
4These conditions are needed to obtain the necessary conditions of A-efficiency in Theorem 1 and are

also needed to establish Theorem 3, which characterizes symmetric, P-efficient allocations as Millian effi-
cient allocations.
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Assumption 1. For any fixed uD ∈ R
∗ and any two (x� x̃) ∈ R

3+ × R
3+, UD(x�uD) ≥

UD(x̃�uD) is satisfied whenever U(x�uD)≥U(x̃�uD) is satisfied.

The second assumption imposes that children are not loved by their grandparents
more than by their parents. To be more precise, it imposes that the agents discount
the utility obtained by their grandchildren at least at the same rate as their parents do,
which ensures that whenever an agent is willing to increase the total resources available
to any of her grandchildren and, hence, to increase the utility that the agent obtains
from consumption decisions of her grandchildren, then the agent’s children agree on
that decision.

Assumption 2. For any two (x�uD) ∈ R
3+ × R

∗ and (x̃� ũD) ∈ R
3+ × R

∗�U(x�uD) >

U(x̃� ũD) is satisfied whenever UD(x�uD) >UD(x̃� ũD) is satisfied.

Observe that all the examples of the different specifications of preferences given
above satisfy Assumptions 1 and 2.

3.4 Dynastic optima and value functions

Since we are assuming that DO ⊆ D is satisfied and the agents care only about the num-
ber of children they bear and not about the specific points in time at which their children
are born, the maximum utility that the dynasty head can obtain with a feasible alloca-
tion is not affected by the constraints in fertility choices that parents may face. To char-
acterize dynastic optima, for every allocation a ∈ F(D) and every t ≥ 0 and it ∈ Dt(i

0),
write et (it) for the amount of physical resources (income) available to finance agent it ’s
consumption, fertility, and investment decisions at period t; that is,

et
(
it
) := cmt

(
it
) + bt

(
nt+1

(
it
)) + kot+1

(
it
)
�

Consider now an arbitrary it and an arbitrary et , and let F(et; it) be the set formed by all
sequences

at = {(
cmτ � coτ+1� koτ+1�Dτ+1

) : [0� n]τ −→R
3+ ×D

}
τ≥t

that satisfy et (it) ≤ et as well as the feasibility constraints that all potential descendants
of agent it would face at τ if they were not allowed to obtain resources from other agents
in the economy, that is, that satisfy∫

Dτ−1(it )
coτ

(
iτ−1)diτ−1 +

∫
Dτ(it )

[
cmτ

(
iτ

) + bτ
(
nτ+1

(
iτ

)) + koτ+1
(
iτ

)]
diτ

≤
∫

Dτ−1(it )
Fτ

(
koτ

(
iτ−1)�nτ

(
iτ−1))diτ−1

for τ ≥ t. Also, for each t ≥ 1 and et ≥ 0, let VD
t (et) be defined as the maximum utility

that the dynasty heads can obtain from their descendants born at t by endowing any of
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their immediate descendants with et units of resources, that is,5

VD
t (et) := max

it∈[0�n]t
{

max
at∈F(et ;it )

UD
t

(
at; it

)}
�

With this notation, the maximum utility that the dynasty head can obtain with a feasible
allocation can be characterized as the solution to

V0(e0)= max
(ko1 �x0)∈R3+×[0�n]

e1:R+−→R+

{
U

(
x0�

1
n1

∫ n1

0
VD

1
(
e1(i)

)
di

)
: cm0 + b0(n1)+ ko

1 ≤ e0;

co1 +
∫ n1

0
e1(i)di ≤ F1

(
ko

1 � n1
)}

�

Throughout this paper, it is assumed that V0(e0) is well defined.

3.5 Symmetric allocations

As preferences and labor capacities of any two agents of the same generation are identi-
cal, it seems innocuous, both from normative and positive concerns, to restrict attention
to ex post symmetric allocations, that is, to allocations for which any two agents of the
same generation choose the same consumption and fertility bundles. Formally, a feasi-
ble allocation a ∈ F(D) is said to be ex post symmetric (or simply symmetric) if for any t

and any two agents it � ı̃t ∈ Dt(i0), one has xt (it) = xt (ı̃t) = xt and kot+1(i
t)= kot+1(ı̃

t)= ko
t+1.

A symmetric allocation is, therefore, represented by a pair of sequences a≡ {(ko
t+1�xt) ∈

R
3+ × [0�n]}t=0�1�2���� that satisfy the initial condition cm0 + b0(n1) + ko

1 ≤ e0 and, for each
t ≥ 1, the feasibility constraint

cot + nt+1
[
cmt + bt(nt+1)+ ko

t+1
] ≤ Ft

(
ko
t �nt

)
�

Denote by S the set that contains all feasible, symmetric allocations. Note that for
every t, the utility obtained by the dynasty head from consumption and fertility de-
cisions of the living agents with a symmetric allocation a satisfies UD

t (a; ı̃t ) = UD
t (a),

where UD
t : S −→ R

∗ is recursively defined, for each t, by UD
t (a) = UD(xt�U

D
t+1(a)).

The utility obtained by an agent of generation t with a symmetric allocation is Ut(a) =
U(xt�U

D
t+1(a)). A symmetric allocation â is Millian efficient if there does not exist an

alternative symmetric allocation a that makes all generations of agents better off with-
out making any of these generations worse off, that is, if there does not exist a ∈ S that
satisfies Ut(a) ≥Ut(̂a) for t ≥ 0 and Uτ(a) > Uτ(̂a) for some τ ≥ 0.

Some allocations can be regarded as being symmetric in a weaker, ex ante sense.
Given a sequence e of income schemes that correspond to a feasible allocation a� for
every t ≥ 0, it ∈ Dt(i0), let Ee

t+1 : Rt+1 −→ [0�1] be the function that is determined, for
each it ∈R

t+1, by

Ee
t+1

(
e� it

) = μ
{
i ∈ Dt+1

(
it
) : et+1

(
it � i

) ≤ e
}

μ
{
Dt+1

(
it
)} �

5Since the utility received by the dynasty head from consumption of any of her descendants is the same,
any choice of it+1 in the optimization problem in the definition of VD

t (et) is optimal.
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Thus, Ee
t+1(e� i

t) determines the probability that a randomly chosen, immediate descen-
dant of it spends on consumption, fertility, and investment decisions at most e units of
the homogeneous good at time t + 1 with the income scheme et+1(i

t� ·).
With this notation, an allocation a is referred to as ex ante symmetric if the distri-

bution of income among any agent’s descendants is determined randomly, so that the
income accumulated by, say, the eldest n children of an agent is the same as the av-
erage income accumulated by the youngest [nt+1(i

t) − n] children; that is, if for each
t = 0�1�2� � � � each it ∈R

t , and each Dt+1 ⊆ Dt+1(i
t), one has∫

Dt+1

et+1
(
it+1)dit+1 = μ{Dt+1}

∫
R+

edEe
t+1

(
e� it

)
�

In fact, dynastic maximization may require randomization. To see this, let 
R+ be
defined as the set formed by all nondecreasing, measurable (distribution) functions E :
R+ −→ [0�1] that satisfy lime→∞ E(e) = 1. Taking this into account, it is straightforward
to show that the expenditure function Ee∗

1 (·� i0) that corresponds to a dynastic optimum
must solve

V0(e0) = max
E:R+−→[0�1]∈
R+

{
W0

(
e0�

∫
R+

edE(e)�

∫
R+

VD
t+1(e)dE(e)

)}
� (10)

where W0 : R2 ×R
∗ →R+ is defined, for each (e0� e1�u

D
1 ), by

W0
(
e0� e1�u

D
1

)
= max

(koτ+1�xτ)∈R3+×[0�n]
{
U

(
x0�u

D
1

) : cm0 + b0(n1)+ ko
1 ≤ e0; co1 + n1e1 ≤ F1

(
ko

1 � n1
)}
�

Also, by writing VD
t+1(et+1) for the maximum utility that the dynasty head obtains by

providing a positive measure of her immediate descendants with an average income
et+1, that is,

VD
t+1(et+1)= max

E:R+−→[0�1]∈
R+

{∫
R+

VD
t+1(e)dE(e) :

∫
R+

edE(e) = et+1

}
�

the value function V0 can be written as

V0(e0) = max
e1≥0

{
W0

(
e0� e1�V

D
1 (e1)

)}
� (11)

With this representation, it becomes clear that although dynastic optima may be always
symmetric in the weaker, ex ante sense, they might be nonsymmetric in the stronger,
ex post sense. Dynastic optima are (ex post) nonsymmetric when the sequence of value
functions {VD

t+1}t≥0 differs from the sequence of value functions {V D
t+1}t≥0 that arise from

a dynastic maximization problem in which the dynasty head is restricted to select (ex
post) symmetric allocations. To be more precise, let â be any allocation that maximizes
the utility of the dynasty head among symmetric allocations and suppose that there ex-
ists a period t ≥ 0 for which VD

t+1(̂et+1) > V D
t+1(̂et+1). In this case, a dynastic optimum
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cannot be (ex post) symmetric. It is straightforward to show, using (10) and Jensen’s
inequality, that a sufficient condition that ensures that dynastic optima are ex post sym-
metric is that each value function VD

t+1 is concave.

Observe, alternatively, that each value function VD
t+1 must be concave6 and, hence,

absolutely continuous and differentiable almost everywhere.7 Taking this into account,
it follows from (11) that a sufficient condition that ensures the concavity of the value
function V0 is that the indirect utility function W0 is also concave. Unfortunately, the
non-convexities that appear in the feasibility constraints in the definition of W0 may
give rise to nonconcave value functions.8

4. A-efficiency

In this section, we explore the properties of A-efficient allocations in the context of the
general framework described in Section 3. As in the previous example, we distinguish
between AD- and AO−-efficiency, depending on whether potential agents are identi-
fied with the birth-date or the birth-order criterion. An allocation â is AD-efficient if it
is not AD-dominated by an allocation a ∈F(D), that is, if there does not exist a feasi-
ble allocation a ∈F(D) such that (i) for every t ≥ 0 and every it ∈ D̂t(i0) ∩ Dt (i0), one has
Ut (a; it) ≥ Ut (̂a; it), and (ii) there exists a period τ and a set Dτ ⊆ D̂τ(i0) ∩ Dτ(i0) of pos-
itive measure for which Ut (a; iτ) > Ut (̂a; iτ) holds for every iτ ∈ Dτ . As in Section 2, an
allocation â is AO-efficient if its reduced form representation âO is not AD-dominated
by an allocation a ∈F(DO).

In Theorem 1, we provide a necessary condition for A-efficiency that applies to the
two criteria to identify potential agents considered in this paper. Given an allocation â�

for each t and each it ∈ Dt (i0), write ı̂
y
t+1(i

t) for the birth date of the youngest descendant
of it in the allocation â, that is,

ı̂
y
t+1

(
it
) = sup

{
i : i ∈ D̂t+1

(
it
)}
�

Assume, without loss of generality, that in any feasible allocation a, et (it) = 0 and
UD
t (a; it) = 0 hold for every it /∈ Dt(i0). Taking this into account, the total welfare of the

dynasty head’s living descendants born at period t+1 in allocation a can be equivalently
written as ∫

Dt+1(it )
UD
t+1

(
a; it � i)dii = ∫ ı̂

y
t+1(i

t )

0
UD
t+1

(
a; it � i)di�

6Note that if a distribution function Et+1 solves the optimization problem in the definition of VD
t+1(et+1)

and a distribution function E′
t+1 solves the optimization problem in the definition of VD

t+1(e
′
t+1), then for

any α ∈ (0�1), the distribution function Eα
t+1 ≡ αEt+1 + (1 − α)E′

t+1 is feasible in the optimization problem

in the definition of VD
t+1(αet+1 + (1 − α)e′

t+1), which establishes that VD
t+1 must be concave.

7See, e.g., Theorem 10 in Royden (1988, p. 107).
8An example of an economy for which value functions are nonconcave is available from the authors

upon request.
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With this notation, Theorem 1 states that in every A-efficient allocation, some of the
agents—specifically, the youngest within each family—must devote most of their en-
tire income to maximize not their own utility, but their parents’ utility and, hence, the
dynasty head’s utility. All the proofs in this paper are relegated to the Appendix.

Theorem 1 (A necessary condition for A-efficiency). Irrespective of the criterion used to
identify potential agents, every A-efficient (i.e., AD- or AO-efficient) allocation â satisfies,
for each t ≥ 1,

lim
it+1−→ı̂

y
t+1(i

t )

it+1∈Dt+1(it )

(∫ ı̂
y
t+1(i

t )

it+1

UD
t+1

(̂
a; it � i)di

ı̂
y
t+1

(
it
) − it+1

)
= lim

it+1−→ı̂
y
t+1(i

t )

it+1∈Dt+1(it )

VD
t+1

(∫ ı̂
y
t+1(i

t )

it+1

et+1
(
it � i

)
di

ı̂
y
t+1

(
it
) − it+1

)
� (12)

which, in environments in which VD
t+1 is concave, yields

lim
it+1−→ı̂

y
t+1(i

t )

it+1∈Dt+1(it )

UD
t+1

(̂
a; it � it+1

) = lim
it+1−→ı̂

y
t+1(i

t )

it+1∈Dt+1(it )

VD
t+1

(
et+1

(
it � it+1

))
� (13)

The intuition behind Theorem 1 is as follows. If marginal children, that is, the
youngest individuals in each family, living in a given allocation a do not use their in-
come to maximize the utility of the dynasty head, she can improve on a by having more
children who do use their endowment to maximize her utility. Since these newborn chil-
dren require a lower income to provide the dynasty head with at least the same utility,
they are, in a sense, “cheaper” than those children already living in a.

To understand the role played by the function VD
t+1 in Theorem 1, a brief remark is in

order. For an arbitrary agent it , write e
y
t+1(i

t) for the limit of the average income available
to the youngest children of it as it+1 approaches ı̂yt+1(i

t), that is,

lim
it+1−→ı̂

y
t+1(i

t )

it+1∈Dt+1(it )

∫ ı̂
y
t+1(i

t )

it+1

et+1
(
it � i

)
di

ı̂
y
t+1

(
it
) − it+1

= e
y
t+1

(
it
)
�

Recall that VD
t+1(et+1) represents the maximum utility that the dynasty head can obtain

by providing a set Dt+1—of positive measure—of her descendants with an average in-

come et+1. Additionally observe that the function VD
t+1 coincides with the function VD

t+1
if the latter is concave, but not in general. Moreover, when they do not coincide at a

given point et+1, achieving VD
t+1(et+1) > VD

t+1(et+1) is feasible because the dynasty head
can select randomly the income available to each of her descendants in Dt+1. By Theo-
rem 1, the average utility obtained from the youngest descendants of it must converge to

VD
t+1(e

y
t (i

t)). Therefore, if VD
t+1(e

y
t (i

t)) > VD
t+1(e

y
t (i

t)) holds, then achieving A-efficiency
may require that the income available to the youngest descendants is determined ran-
domly. Thus, non-convexities in the feasible set associated to endogenous fertility may
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cause the only efficient allocations to be possibly stochastic, a result also present (for
Pareto efficiency) in Rogerson (1988).

Another implication of Theorem 1 is that every symmetric (in an ex ante or ex post
sense), A-efficient allocation must be a dynastic optimum, which, in turn, implies that
all Millian efficient allocations that are not dynastic optima are A-inefficient. To save on
space, we do not prove this claim here.

Corollary 1 below states another implication of Theorem 1, which arises in environ-
ments without altruism9 or with finite-horizon altruism. In both environments, each
function VD

t is concave and the path {eτ}τ≥t+1 that solves the optimization problem in
the definition of VD

t (et) satisfies eτ = 0 for τ ≥ t + 1. Theorem 1 states that for each agent
it alive at any given time, there must be a positive measure of agents whose income and
utility are arbitrarily close to the the income and utility obtained by the agent’s marginal
child i

y
t+1(i

t). Therefore, all descendants of these agents must also receive an income
close to that received by the marginal child’s descendants, that is, close to zero.

Corollary 1. Suppose that utility functions adopt the finite-horizon altruistic forms
U(xt�u

D
t+1) = v(xt) + δuDt+1 and UD(xt�u

D
t+1) = v(xt), with δ ∈ [0�1] and v being strictly

increasing in cmt and nt+1. In this environment, for every A-efficient (i.e., AD- or AO-
efficient) allocation a, every t ≥ 2 for which μt{Dt (i0)} > 0 holds, and every εt > 0, there
exists a set Dt ⊆ Dt (i0) of agents alive at t of strictly positive measure for whom

0 ≤ et
(
it
)
< εt (14)

is satisfied for all it ∈ Dt .

Two more comments are in order. First of all, observe that Corollary 1 requires that
the utility function v is strictly increasing in cmt and nt+1. Without this assumption, the
set of agents for whom (14) holds might not even be born. With this assumption, par-
ents who exhibit finite-horizon altruistic preferences would like their descendants to
have some grandchildren, so that they can use the labor capacities of the latter to ob-
tain resources not for themselves, but for their parents. Thus, condition (14) must hold
for a positive measure of alive agents born after t = 2. Second of all, we note that in
our benchmark model, each function UD

t is defined recursively and, therefore, the only
environment that exhibits finite-horizon altruism in our general setting is that in which
agents care only about consumption decisions by their immediate descendants. How-
ever, Corollary 1 suggests that a similar result characterizes A-efficiency in every model
in which the agents care about the welfare of a finite number of generations of their
descendants.

9Apparently, Theorem 1 has no implications in environments with no altruism in which Ut (x� it ) =
u(x(it)) holds for every it and the function UD

t does not need to be well defined. Yet, it does have impli-
cations if we assume that in this type of environments, the function UD

t represents the preferences of those
born at t and, therefore, it satisfies UD

t (x� it) = Ut (x� i
t) = u(x(it)) for every it . Note that in this case, the

functions VD
t and VD

t coincide and adopt the form VD
t (et) = VD

t (et) = W (et�0) for every t ≥ 1 and every
et ≥ 0.
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When fertility choices are unrestricted (i.e., D ≡ B[0� n]), the set of AD-efficient allo-
cations is strictly smaller than the set of AO-efficient allocations. In such environments,
if the child-rearing period [0� n] is long enough to allow the dynasty head to replace all
her living children in a dynastic optimum, n∗

1, then AD-efficiency can be characterized
as dynastic maximization, as Theorem 2 below shows.

Theorem 2 (AD-efficiency as dynastic maximization). Assume that D ≡ B[0� n] and
n∗

1 < n/2 hold. In this setting, an allocation a∗ is AD-efficient if and only if it is a dynastic
optimum.

The intuition behind Theorem 2 is simple: the necessary condition in Theorem 1
implies that the number of children that correspond to an AD-efficient allocation can-
not be higher than the number of children of the first generation, n∗

1, that the dynasty
head would choose as optimum. Thus, if any dynasty head’s children can be “replaced,”
i.e., 2n∗

1 < n is satisfied, then any allocation a, which is not a dynastic optimum, is always
A-dominated by a dynastic optimum with a different set of living agents maximizing the
utility of the dynasty head.

In environments with no altruism or finite-horizon altruism, a straightforward im-
plication of Theorem 2 is that every AD-efficient allocation must collapse in finite time.
We state this result formally in Corollary 2 below.

Corollary 2. Assume that D ≡ B[0� n] and n∗
1 < n/2 hold. If, in addition, preferences

exhibit no altruism or finite-horizon altruism, then every AD-efficient allocation a∗ must
satisfy e∗

t (i
t) = 0 and x∗

t (i
t) = 0 for each t ≥ 2 and almost all it ∈ Dt(i0). That is, in every

AD-efficient allocation, the economy collapses in finite time.

To summarize the results in this section, the notion of A-efficiency is sensitive to
the criterion by which potential lives are distinguished from one another. To be more
precise, identifying potential agents by the date at which they may be born, rather than
by the agents’ position in their siblings’ birth order, reduces the set of allocations that
can be regarded as A-efficient. Yet, even the weakest form of A-efficiency, that is, AO-
efficiency, might be too demanding in environments with finite-horizon altruism, as it
requires that some of the agents obtain an arbitrarily low income.

5. Millian efficiency as robust P-efficiency

As for A-efficiency, we distinguish between two notions of P-efficiency, each of them
associated to a criterion to identify potential agents. Both notions are associated to a
sequence of functions UN = {Ut : F(D) × [0� n]t −→ R

∗} that determine the utility at-
tributed to the unborn. Then, for any t and any potential agent of generation t, let
UP
t :F(D)× [0� n]t −→R

∗ be defined, for all (a� it), by

UP
t

(
a; it) =

{
Ut

(
a; it) if it ∈ Dt

(
i0

)
�

UN
t

(
a; it) otherwise.
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With this notation, an allocation â PD-dominates an allocation a if for every t and every
it ∈ [0� n]t , one has UP

t (̂a; it) ≥ UP
t (a; it), and there exists a period τ and a set of individ-

uals Dt ∈ B[0� n]t of positive measure for which UP
τ (̂a; iτ) > UP

τ (a; iτ) is satisfied for all
iτ ∈ Dt . An allocation â ∈ F(D) is PD-efficient if it is not PD-dominated by an allocation
a∈F(D), and it is PO-efficient if its birth-order representation is not PD-dominated by
an allocation a∈F(DO).

In their applications, GJT restrict the use of the term P-dominance to a particular
specification of the utilities attributed to the unborn for which the utility attributed to
the unborn is constant, that is, UN

t (a; it) = u, and their conclusions are analogous to
those discussed in the two-period economy discussed in Section 2. The main problem
is that determining whether an allocation is optimal (i.e., P-efficient) becomes heavily
dependent on the specific value attributed to the unborn—an unknown number.

There are, however, other possibilities. For example, the utility level attributed to an
unborn agent might correspond to the lowest utility obtained by the agent’s living sib-
lings, that is, the utility function attributed to a potential agent it = (it−1� it), if unborn,
adopts the form

UN
t

(
a; it−1� it

) =
{

inf
{
Ut

(
a; it−1� i

) : i ∈ Dt
(
it−1)} if nt

(
it−1)> 0�

inf
{
Ut

(
a; it) : it ∈ Dt

(
i0

)}
if nt

(
it−1) = 0�

(15)

Alternatively, we might assume that the utility attributed to an unborn agent is the aver-
age utility obtained by his/her living siblings, that is,

UN
t

(
a; it−1� it

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

nt
(
it−1)

(∫
Dt (it−1)

Ut
(
a; it−1� i

)
di

)
if nt

(
it−1) > 0�

1

μt
{
Dt

(
i0

)}(∫
Dt (i0)

Ut
(
a; it−1� i

)
di

)
if nt

(
it−1) = 0�

(16)

With such specifications of the utility attributed to the unborn, an allocation a′ with
more individuals than an allocation a might not PD-dominate or PO-dominate a, even
though all individuals living in both a and a′ are better off in the new allocation a′.

The specifications of the utility for the unborn given in (15) or (16) might not repre-
sent the true preferences of potential agents and are, therefore, questionable. But any
specification is, in our view, equally questionable. This is the initial stumbling block for
any attempt to extend the Pareto criterion to compare allocations with different popu-
lation size: there is no way to know whether a potential agent is willing to be alive in
any given allocation. Thus, rather than as assumptions on the utility obtained by non-
born agents, we regard these specifications as a means to represent normative princi-
ples that determine the conditions under which increasing or reducing the population
size increases aggregate welfare. For example, according to the principle underlying the
notions of P-dominance that arise when each function UN

t is defined as in (15), a new
life increases aggregate welfare only when the agent is not worse off than any of his/her
living siblings with the same tastes and capacities. After all, one might argue that the
notion of AD-dominance also represents a questionable normative principle, according
to which a potential life should be worth living if the dynasty head decides that it is.
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We should also emphasize that the P-dominance criteria that arise, for example,
when each function UN

t is defined as in (15), do not state that replacing an allocation a
by an allocation a′ with more individuals obtaining lower utility than any of their living
siblings decreases aggregate welfare. If the dynasty head is better off with the alloca-
tion a′, then a and a′ become noncomparable with the two P-dominance criteria. De-
spite the analogies of the functions defined in (15) or (16) with well known social welfare
functions, as an extension of the Pareto criterion, the P-dominance criteria associated
to each of these functions say nothing about whether any two living agents should re-
distribute their resources. Thus, basing the P-dominance criteria on the specification
given in (15) does not imply that a P-efficient allocation must be symmetric, and us-
ing (16) does not mean that a P-efficient allocation must maximize the average welfare
obtained by the living agents. In fact, AO-efficient allocations, which as we have seen
in the previous sections, are not necessarily symmetric, are always PO-efficient, and
there are many other nonsymmetric allocations that may be PO-efficient but are not
AO-efficient.

It is true that while the Pareto criterion does not introduce distributive concerns at
all, when complemented with either (15) or (16), the notions of P-dominance do intro-
duce weak distributive concerns to determine the conditions under which altering the
population size is better from the point of view of aggregate welfare. And why not? It
would surely be odd to reject a reallocation of resources involving a unanimous welfare
gain because some of the agents would envy those most favored by such a reallocation,
when the agents themselves have the opportunity to accept or reject it. But again, one can-
not be sure that an increase in population size that makes the newborn envy all his/her
living siblings is a true welfare improvement, as the newborn will never have the oppor-
tunity to accept or reject that decision.

In the context of the two-period example in Section 2, it is easy to show that (i) for
each of the functions that determine the utility of the unborn defined in (15) or (16),
the two P-dominance criteria rule out many allocations as being P-inefficient, (ii) the
P-efficiency of a given allocation depends on whether potential agents are identified
with the birth-order criterion or with the birth-date criterion, and (iii) the P-efficiency
of an allocation depends, in general, on the utility function that determines the utility
of the unborn. Yet, Millian efficient allocations arise as P-efficient independently of the
criterion used to distinguish among potential agents and also of the function that deter-
mines the utility of the unborn. That is, the P-efficiency of Millian efficient allocations
holds regardless of the principle that determines whether altering the population size
increases aggregate welfare is that captured by (15) or that captured by (16). In fact, in
the context of the example, the P-efficiency of Millian efficiency holds if the utility at-
tributed to the unborn coincides with the median, the qth quantile, or the average utility
obtained by the agent’s elder siblings. In summary, to determine the utility attributed to
the unborn UN

t , one might take any symmetric function of the utility obtained by the
agent’s living siblings, as the following property formally states.

Property S. For every t ≥ 1, every it ∈ [0� n], and every ex post symmetric allocation a

such that xt (ı̃t) = xt and nt+1(ı̃
t) = nt+1 for every ı̃t ∈ Dt(i0) one has

UN
t

(
a; it) = Ut

(
a; it) ≡Ut(a)�
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This property turns out to be a sufficient condition to ensure the Millian efficiency of
symmetric P-efficient allocations (Theorem 3(i)). To establish the equivalence between
Millian efficiency and symmetric P-efficiency in the context of the general setting de-
scribed in Section 3 (Theorem 3(ii)) requires an additional weak (concavity) condition.
Given a sequence ê ≡ {̂et}∞t=0, for an arbitrary t ≥ 0 and each et , let the restricted value
function VD

ê�t : [̂et�+∞)−→ R be defined, for every et ∈ [̂et�+∞), by

VD
ê�t(et) := max

it∈[0�n]t
{

max
at∈F(et ;it )

{
UD
t

(
at; it

) : eτ
(
iτ

) ≥ êτ for all τ ≥ t + 1
}}

�

Note that in contrast to the unconstrained value function VD
t , the constrained value

function VD
ê�t determines the maximum utility that agents born before t can obtain from

the consumption decisions of their descendants, provided each of these descendants is
endowed with at least êτ units of resources.

Theorem 3 (A characterization of symmetric, P-efficient allocations as Millian efficient
allocations). Assume Property S holds.

(i) If â is a symmetric, P-efficient (i.e., PD- or PO-efficient) allocation, with either
criteria to identify potential agents, then â is Millian efficient.

(ii) If â is a Millian efficient allocation and, for each t, the function VD
ê�t is concave on

[̂et�+∞), then â is P-efficient with either criterion to identify potential agents, i.e.,
PD- or PO-efficient.

Observe that a characterization of any symmetric and nonsymmetric P-efficient
allocation seems subtler, since determining whether a nonsymmetric allocation is P-
efficient depends on the specific functional form given to each function UN

t . Yet, Theo-
rem 3 suffices to rule out any symmetric allocation that is not M-efficient (for example,
Benthamite optima) as being P-inefficient.

Theorem 3(ii) establishes that in regular settings in which value functions are con-
cave on a certain range, Millian efficient allocations are P-efficient as long as each func-
tion UN

t belongs to the class of functions that satisfy Property S. Thus, just as an A-
efficient allocation can be described as a P-efficient allocation for which P-efficiency
holds irrespective of the utility attributed to the unborn, Millian efficient allocations can
be described as P-efficient allocations for which P-efficiency holds for a wide range of
specifications of the utility attributed to the unborn and, therefore, for a wide range of
principles to compare allocations with different population size.

P-efficiency and property rights In Section 2, we express our concerns regarding the
possibility that A-efficiency might be incompatible with individual rights. In the two-
period economy, this occurs when the amount of resources that children can obtain
with the labor capacity they are endowed with, w, is higher than average income re-
ceived by children in a dynastic optimum, e∗

1. Also, the allocation that arises with said
distribution of rights is Millian efficient and, in view of Theorem 3, is P-efficient. There-
fore, as in those environments in which achieving Pareto efficiency is incompatible with



504 Pérez-Nievas, Conde-Ruiz, and Giménez Theoretical Economics 14 (2019)

a distribution of rights and achieving Pareto efficiency from an initial status quo is not
Pareto improving (as occurs, for example, in environments with asymmetric informa-
tion or in overlapping generations economies facing macroeconomic risks), it might be
convenient to adopt weaker notions of efficiency such as P-efficiency, just as it is use-
ful to adopt interim (incentive-constrained) efficiency10 in the presence of asymmetric
information or interim (conditional) efficiency in stochastic, overlapping generations
economies (see, e.g., Chattopaday and Gotardi 1999). In the latter setting, achieving
Pareto efficiency (ex ante efficiency in this case) from an initial status quo requires poli-
cies (e.g., social security) that make a generation of agents worse off than they would
be in the absence of such policies. In our example, an analogous problem may occur,
since achieving A-efficiency (or, with the birth-date criterion, dynastic maximization)
requires that the dynasty head accumulates debts that his/her descendants may not be
willing to repay.

6. Conclusions

In this paper, we explored the properties of the notions of A-efficiency and P-efficiency,
proposed by Golosov et al. (2007), to evaluate allocations in a general overlapping gen-
erations setting with endogenous fertility and descendant altruism. We first argued that
achieving A-efficiency may have different implications depending on the criterion we
use to distinguish potential agents from one another. If we identify potential siblings
by their birth order, the set of A-efficient allocations, which we refer to as AO-efficient
allocations, is large, although the youngest siblings in every family must devote most
of their income to maximize the utility of their parents. Therefore, A-efficiency might
conflict with the individuals’ rights to use their labor capacity as they wish, and in en-
vironments with finite horizon altruism, it implies that the youngest children in almost
every family obtain almost zero resources to finance their own consumption and fertil-
ity plans. Things might get worse—for everyone except the dynasty head—if we identify
potential agents by their birth dates. In this case, achieving A-efficiency (which we re-
fer to as AD-efficiency) requires that all children, who in our setting are equal in their
tastes and capacities, are treated symmetrically and, therefore, it requires that all agents
in the economy must devote their entire income to maximize the utility of their parents.
Since, in our setting, the preferences of any agent on consumption decisions of his/her
descendants coincide with those of the dynasty head, AD-efficiency reduces, therefore,
to dynastic maximization. In environments with finite-horizon altruism, for example,
AD-efficiency is characterized by a collapse.

In this paper, we also showed that these properties might not hold for P-efficiency—
at least if the welfare attributed to the unborn (which we regard as a device that rep-
resents different principles that determine the circumstances under which new lives
increase welfare) depends on the welfare enjoyed by those living in a given allocation.
More specifically, if the welfare attributed to the unborn is a symmetric function of the
welfare obtained by their living siblings, then every Millian efficient allocation, that is,

10See Holmström and Myerson (1983).
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every symmetric allocation that is not A-dominated by any other symmetric allocation,
is P-efficient independently of the criterion to identify potential agents.

There are several directions that might be worth exploring. A first direction would
be to study the efficiency properties of equilibria. Schoonbroodt and Tertilt (2014) have
shown, in an environment with dynastic altruism, that an equilibrium in which the non-
negativity constraints on transfers are binding cannot be A-efficient or, using our dis-
tinction, AO-efficient. Yet, in their setting, the equilibrium that arises from the inter-
action of markets and families is symmetric. Thus, our results suggest that such equi-
librium might be Millian efficient and, hence, both PD- and PO-efficient. Accordingly,
an important qualitative conclusion of Golosov, Jones and Tertilt may prevail: in the ab-
sence of non-convexities, externalities, missing markets, dynamic efficiency problems,
etc., the fact that fertility decisions are endogenous does not mean that markets fail to
deliver efficient allocations.

A second direction would be to extend the results to environments in which the
agents are heterogeneous. While an environment populated by agents with identical
preferences and exhibiting no altruism or finite-horizon altruism is probably extremely
rare, an environment populated by heterogeneous agents in which some of the agents’
preferences have these properties are probably less rare. Thus, Corollary 1 may become
more relevant in models with heterogeneous dynasties. We should also point out that
the symmetry restriction that underlies the Millian notion of efficiency requires that
every two agents with the same characteristics be treated equally, but this does not
mean that agents with different characteristics are treated equally. Thus, in models
in which agents are heterogeneous in their characteristics (preferences, endowments,
preferences and endowments of their ancestors, and, finally, the agents’ birth dates or
the agents’ order of birth with respect to their siblings), the Millian notion of efficiency
may be still applicable if we regard the symmetry restriction as requiring that any two
agents of the same generation with the same preferences and endowments—and for
whom the preferences and endowments of all their ancestors are also equal—must be
treated symmetrically. If the utility attributed to an unborn agent depends only on the
utility attributed to those among the agent’s siblings who have the same characteristics,
then the equivalence between Millian efficiency and symmetric P-efficiency will prevail.
As in the setting studied here (in which many asymmetric allocations might be regarded
as PD-efficient even when they are not A-efficient), PD-efficiency is consistent with
symmetry but it does not impose symmetry.

Finally, as a third direction, it might be worthwhile to explore the consequences of
different fertility policies in environments in which other potential market failures arise,
such as pollution problems and missing markets.

Appendix: Proofs

Proof of Theorem 1. Let â be an A-efficient allocation. To show that (12) must be
satisfied, assume first that for the allocation â, all fertility choices chosen at t belong to
the set D0, so that ı̂yt+1(i

t) = n̂t+1(i
t) is satisfied. Note that this assumption is without loss

of generality: since the agents do not care about the specific points in time at which their
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children are born, for every A-efficient allocation, there must be an allocation whose
fertility choices satisfy this property and that is also A-efficient.

Write now x̂t and k̂t+1, respectively, for x̂t = x̂t (it) and k̂t+1 = k̂ot+1(i
t). Also, for

each n ∈ [0� n], write êa
t+1(n) and Dâ

t+1(n), respectively, for êa
t+1(n) = ∫ n

0 êt+1(i
t� i)di and

Dâ
t+1(n) = ∫ n

0 UD
t+1(̂a; it � i)di. With this notation, observe that the welfare obtained by the

dynasty head by choosing a feasible allocation with n ≤ n̂t+1 individuals born at period
t+1, if all descendants in the interval [0� n] take the same decisions as those correspond-
ing to the allocation â, can also be written as

UDâ
t (n) =UD

(
e0 − bt(n)− k̂o

1 �Ft+1
(
k̂o
t+1� n

) − êa
t+1(n)�n�

Dâ
t+1(n)

n

)
= Dâ

t (n)

n
�

From the definition of A-efficiency, any allocation differing from â at a single point or,
in general, on a set of measure zero must be also A-efficient. Therefore, since both êa

t+1
and DDâ

t+1 are integrable and the Lebesgue integrals êa
t+1 and DDâ

t+1 are differentiable al-
most everywhere,11 there is no loss of generality in assuming that both functions are
differentiable from the left—and, hence, continuous from the left—at n̂t+1; that is,

d−êa
t+1(̂nt+1)

dn
= lim

n→n̂t+1
n<n̂t+1

∫ n̂t+1

n
êt+1

(
it � i

)
di

n̂t+1 − n
= êt+1

(
it � n̂t+1

)
�

d−Dâ
t+1(̂nt+1)

dn
= lim

n→n̂t+1
n<n̂t+1

∫ n̂t+1

n
UD
t+1

(̂
a; it � i)di

n̂t+1 − n
= UD

t+1
(̂
a� it� n̂t+1

)
�

Moreover, since â is A-efficient and the dynasty head cannot obtain higher utility by
reducing the population size, the left-hand side derivative of U â

0 at n̂t+1 satisfies

d−UDâ
t (̂nt+1)

dnt+1
= −b′

t (̂nt+1)D1U
D

(
x̂t �U

Dâ
t+1(̂nt+1)

)
+ [

D2Ft+1
(
k̂o
t+1� n̂t+1

) − êt+1
(
it � n̂t+1

)]
D2U

D
(
x̂t �U

Dâ
t+1(̂nt+1)

)
+D3U

D
(
x̂�UDâ

t+1(̂nt+1)
)

+ 1
n̂t+1

[
UD
t+1

(̂
a� it� n̂t+1

) −UDâ
t+1(̂nt+1)

]
D4U

D
(
x̂�UDâ

t+1(̂nt+1)
)

≥ 0�

With this observation in mind, we now show that condition (12), that is,

lim
n→n̂t+1
n<n̂t+1

(∫ n̂t+1

n
UD
t+1

(̂
a; it � i)di

n̂t+1 − n

)

11See, e.g., Theorem 10 in Royden (1988, p. 107).
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= VD
t+1

(
lim

n→n̂t+1
n<n̂t+1

∫ n̂t+1

n
êt+1

(
it � i

)
di

n̂t+1 − n

)
= VD

t+1
(̂
et+1

(
it � n̂t+1

))
� (17)

must be satisfied. To prove this statement, suppose it is false. Then select ẽt+1 <

êt+1(i
t� n̂t+1) in such a way that

lim
n→n̂t+1
n<n̂t+1

(∫ n̂t+1

n
UD
t+1

(̂
a; it � i)di

n̂t+1 − n

)
= VD

t+1(̃et+1)

is satisfied, and consider an allocation a such that (i) at time t, agent it chooses ñt+1 >

n̂t+1, (ii) those individuals who were already living in â receive exactly the same bundle,
and (iii) those individuals born at t who were not living under â receive an endowment
et+1(i

t� it) = ẽt+1 and use this endowment to maximize the utility of the dynasty head, so
that êa

t+1(n) = ∫ n
0 êt+1(i

t� i)di+[̃nt+1 −n]̃et+1 is satisfied. Since the number of individuals
alive in the new allocation a is higher than the number of individuals living in â, the left-
hand side derivative of UD�a

t at n = n̂t+1 coincides with that of UDâ
t+1. Also, the right-hand

side derivative of UD�a
t+1 at n = n̂t+1 is given by

d+UDâ
t (̂nt+1)

dnt+1
= d−UDâ

t (̂nt+1)

dnt+1
+D2U

D
(
x̂�UDâ

t+1(̂nt+1)
)[̂

et+1
(
it � n̂t+1

)−ẽt+1
]
> 0�

which implies that there exists ñt+1 > n̂t+1 for which the dynasty head—and, under As-
sumption 2, agent it—obtains more utility with the allocation a than the utility she ob-
tains with â. Thus, some of the agents living in both a and â are better off with the former
allocation than they are with the latter, and no agent living in the two allocations is worse
off. This contradicts the assumption that imposes that â is A-efficient, a contradiction
that establishes that (17) and, hence, the equivalent condition in (12), must be satisfied.

Note that if the value function VD
t+1 is concave and, hence, satisfies VD

t+1 = VD
t+1, then (13)

follows straightforwardly from (12), which completes the proof of Theorem 1.

Proof of Corollary 1. Let a be an A-efficient allocation that arises in an environ-
ment with no altruism or with finite-horizon altruism, and let t ≥ 1 and it be arbitrary.
As in the proof of Theorem 1, we assume, without loss of generality, that D ≡ DO holds.
As in this type of environment, UD

t (a� it) = u(xt(i
t)) is satisfied, it is straightforward to

show that the function VD
t can be equivalently defined, for each et ≥ 0, by

VD
t (et) = max

{
Wt(et� et+1) : et+1 ≥ 0

}
�

where, in turn, Wt :R2+ →R is defined, for each (et� et+1) ∈R
2+, by

Wt(et� et+1)= max
(kot+1�xt+1)∈R3+×[0�n]

{
u(xt) : cmt + b0(n1)+ko

1 ≤ et; co1 +nt+1et+1 ≤ F1
(
ko

1 � n1
)}
�
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It is straightforward to show that Wt is strictly increasing in et and strictly decreasing in
et+1 , so that VD

t is a concave function that satisfies VD
t (et) =Wt(et�0).

Alternatively, as the agents care only about consumption–fertility decisions of their
immediate descendants, it is also straightforward to show that, in every A-efficient allo-
cation, for each t ≥ 1 and each it alive at t, it (and, by Assumption 1, the dynasty head as
well) must choose (xt (it)� kot+1(i

t)) to solve the optimization problem in the definition of
Wt(et�

∫
R+ edEe

t+1(e� i
t)), which yields

UD
t

(
a� it

) =Wt

(
et�

∫
R+

edEe
t+1

(
e� it

))
�

Therefore, Theorem 1 implies that

lim
it+1→nt+1(it )

it+1<nt+1(it )

Wt+1

(
et+1

(
it � it+1

)
�

∫
R+

edEe
t+1

(
e� it� it+1

))

= lim
it+1→nt+1(it )

it+1<nt+1(it )

Wt+1
(
et+1

(
it � it+1

)
�0

)
(18)

must be satisfied. Observe that the fact that Wt+1 is continuous, together with the fact
the two limits in (18) exist imply that the limit

lim
it+1→nt+1(it )

it+1<nt+1(it )

et+1
(
it � it+1

)

is also well defined. Taking this into account, to complete the proof of Corollary 1, sup-
pose it does not hold for, say, period τ = t + 2; that is, there exists εt+2 > 0 such that, for
(almost) every agent of generation τ = t + 2 alive in a, one has et+1(i

t+1� it+2) ≥ εt+2. Ob-
serve that this implies that

∫
R+ edEe

t+1(e� i
t+1) ≥ εt+2 must be satisfied for (almost) every

agent it alive at τ = t + 1. But the fact that Wt+1 is strictly decreasing in et+2 implies that

lim
it+1→nt+1(it )

it+1<nt+1(it )

Wt+1

(
et+1

(
it � it+1

)
�

∫
R+

edEe
t+1

(
e� it� it+1

))
< lim

it+1→nt+1(it )

it+1<nt+1(it )

Wt+1
(
et+1

(
it � it+1

)
�0

)

must hold, which contradicts Theorem 1, a contradiction that completes the proof of
Corollary 1.

Proof of Theorem 2. Let â be an AD-efficient allocation in an economy for which
D ≡ B[0� n] holds, and assume 2n∗

1 < n is satisfied. To prove Theorem 2, we proceed by
steps. In the first step, we show that in the allocation â, the number of individuals who
obtain an income above the average income e∗

1 that corresponds to a dynastic optimum
is lower than the number of individuals n∗

1 that correspond to such a dynastic optimum.
In the second step, we show that under the qualifying condition 2n∗

1 < n, we must have
n̂1(i

0) = n∗
1, which, in turn, implies that â must be a dynastic optimum.
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Step 1. To prove Step 1, for each t ≥ 1, each it ∈ D̂t (i
0), and each e ≥ 0, let VD�̂a

t (et� i
t)

be defined as the maximal utility that agent it ’s parent—or, in models with infinite-
horizon altruism, the dynasty head—can obtain from it ’s descendants by endowing it

with et units of resources, provided each descendant iτ of it has to be provided with at
least the same resources as the resources she receives in â; that is,

VD�̂a
t

(
et� i

t
) := max

at∈F(et ;it )
{
UD
t

(
a; it) : eτ

(
iτ

) ≥ êτ
(
iτ

) : τ > t; iτ ∈ Dτ
(
i0

)}
�

With this notation, it is straightforward to show that since â is AD-efficient, one must
have, for every t ≥ 1 and every it ∈ D̂t(i0),

UD
t

(̂
a; it) = VD�̂a

t

(̂
et

(
it
); it)�

With this observation in mind, note that for any allocation a that arises as AD-efficient
in this unrestricted setting, there is an allocation â that satisfies D̂t+1(i

t) = [0� n̂t+1(i
t)]

for every it ∈ Dt(i0) that provides the dynasty head with the same utility as the utility
that she obtains with a, that, consequently, is also AD-efficient. Thus, we can assume,
without loss of generality, that D̂1(i

0) adopts the form [0� n̂1(i
0)]. Taking this is this into

account, the fact that â is AD-efficient implies that the utility obtained with â by the
dynasty head can be written as

U0
(̂
a; i0) = max

(e
y
1�k

o
1 �x0)∈R4+×[0�n]

{
U

(
x0�

1
n1

∫ n1

0
VD�̂a

1

(̂
e1(i)� i

)
di+ (n1 − n1)V

D
1

(
e
y
1

)) :

cm0 + b0(n1)+ ko
1 ≤ e0; co1 +

∫ n1

0
e1(i)di+ (n1 − n1)e

y
1 ≤ F1

(
ko

1 � n1
)}

for some n1 ∈ [0� n̂1(i
0)]. Note that if n1 = 0, the allocation â is a dynastic optimum.

Therefore, for the remainder of the proof, we assume that n1 > 0.

Write now êo1 and VD�̂a�n1
1 (eo1), respectively, for êo1 = [1/n1]

∫ n1
0 ê1(i)di and

VD�̂a�n1
1

(
eo1

) = max
e1:[0�n1]→R+

{
1
n1

∫ n1

0
VD�̂a

1

(
e1(i)� i

)
di : 1

n1

∫ n1

0
e1(i)di = eo1

}
�

Using this notation, it can be shown that the utility obtained with â by the dynasty head
can be written as

U0
(̂
a; i0) = max

(eo1 �e
y
1�k

o
1 �x0)∈R5+×[0�n]

{
U

(
x0�

(
n1
n1

)
VD�̂a�n1

1 (e1)+
(

1 − n1
n1

)
VD

1
(
e
y
1

)) :

e1 ≥ êo1 ; cm0 + b0(n1)+ ko
1 ≤ e0; co1 +

(
n1
n1

)
e1 +

(
1 − n1

n1

)
e
y
1 ≤ F1

(
ko

1 � n1
)}

�

Using the first-order conditions that characterize a dynastic optimum, together with
those that characterize a solution (x̂0� k̂

o
1 � ê

o
1 � ê

y
1) to the optimization problem in (19)

and take into account that both VD
1 and VD�̂a�n1

1 are concave—even if VD�̂a
1 and VD

1 are
not concave—it can be shown that êo1 ≥ ê

y
1 and êo1 ≥ e∗

1 must be satisfied.
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It can be shown, using the first-order conditions of (19) and those that characterize a
dynastic optimum, that if êo1 ≥ ê

y
1 > e∗

1, then n̂1 < n∗
1 must be satisfied. Also, if êo1 ≥ e∗

1 > ê
y
1

is satisfied, then n1 < n∗
1 must be satisfied. Therefore, in the allocation â, the number of

individuals who obtain an income above the average income e∗
1 that corresponds to a

dynastic optimum is lower than the number of individuals n∗
1 that correspond to such a

dynastic optimum, which completes the proof of Step 1.
Step 2: n̂1(i

0) = n∗
1. Taking Step 1 into account, it is easy to see that â cannot be AD-

efficient unless it is a dynastic optimum. If it was AD-efficient but was not a dynastic
optimum, it would be easy to replace â by a dynastic optimum a∗ such that most of the
agents living in a∗, except the dynasty head and all those who obtain ê

y
1 < e∗

1, are not alive
in â. Such allocation a∗ would trivially provide all agents living in both a∗ and â with
more utility than the utility that they obtain with â, which contradicts the hypothesis
that states that â is AD-efficient but is not a dynastic optimum.

Thus, every AD-efficient allocation must be a dynastic optimum. Since dynastic
optima are trivially AD-efficient, it follows that in a setting in which D ≡ B[0� n] holds,
an allocation is AD-efficient if and only if it is a dynastic optimum, which completes the
proof of Theorem 2.

Proof of Corollary 2. Observe, that under the qualifying conditions, D ≡ B[0� n] and
n∗

1 < n/2, every AD-efficient allocation a∗ must be a dynastic optimum by Theorem 2.
Also, proceeding as in the proof of Corollary 1, one must have VD

t (et) = Wt(et�0) for
each t. It follows that et = 0 must be satisfied for t ≥ 2, which completes the proof.

Proof of Theorem 3. To prove (i), assume Property S holds and let â be an ex post
symmetric, PD-efficient and, hence PO-efficient, allocation that satisfies x̂t (it) = x̂t for
each t and each it ∈ Dt(i

0). To show that â must be Millian efficient, suppose it is not; that
is, suppose there exists an alternative symmetric allocation a that provides all genera-
tions of agents living in â with higher utility. Since Property S holds, choosing a instead
of â involves a welfare improvement from the point of view of the PD-dominance crite-
rion, which contradicts the assumption that imposes that â is PD-efficient and, hence,
completes the proof of statement (i) in Theorem 3.

To prove (ii), assume Property S holds and let â be a Millian efficient allocation such
that each function VD

ê�t is concave on [̂et�+∞). To show that â is PD-efficient, let t be

arbitrary and write VD
ê�t (̂et) as

VD
ê�t (̂et)= max

E:[̂et+1�∞]→[0�1]∈
R+
W D

t

(
êt �

∫
dE(e)�

∫
VD
ê�t+1(e)dE(e)

)
�

which, taking into account that VD
ê�t+1 is concave on [̂et+1�+∞), implies that êt+1

solves the sequence of optimization problems in the definition of {VD
ê�t (̂et)}t≥1. There-

fore, UD
t (̂a� it) = VD

ê�t (̂et) must be satisfied for each t and each it ∈ Dt(i0). Analogously,

U0(̂a; i0) = Vê�0(e0) must hold for t = 0. Taking this into account, observe that if â is
not PD-efficient, then it should be PD-dominated by the allocation that solves the se-
quence of optimization problems in the definition of {VD

ê�t (̂et)}t≥1, a contradiction that
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establishes that â is PD-efficient (and, hence, PO-efficient) and completes the proof of
Theorem 3.
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