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Communication and cooperation in repeated games
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We study the role of communication in repeated games with private monitoring.
We first show that without communication, the set of Nash equilibrium payoffs
in such games is a subset of the set of ε-coarse correlated equilibrium payoffs (ε-
CCE) of the underlying one-shot game. The value of ε depends on the discount
factor and the quality of monitoring. We then identify conditions under which
there are equilibria with “cheap talk” that result in nearly efficient payoffs outside
the set ε-CCE. Thus, in our model, communication is necessary for cooperation.
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1. Introduction

The proposition that communication is necessary for cooperation seems quite natural,
even self-evident. Indeed, in the old testament story of the Tower of Babel, God thwarted
the mortals’ attempt to build a tower reaching the heavens merely by dividing the lan-
guages. The inability to communicate with each other was enough to doom mankind’s
building project. At a more earthly level, antitrust laws in many countries prohibit or
restrict communication among firms. Again, the premise is that limiting communica-
tion limits collusion. Organizations seek to design internal communication protocols to
improve performance. Many use subjective peer evaluations—nonverifiable commu-
nication among employees and managers—to compensate employees and it is felt that
such schemes provide stronger incentives for hard work (cooperation).

Despite its self-evident nature, it is not clear how one may formally establish the
connection between communication and cooperation. One option is to consider the
effects of pre-play communication in one-shot games. This allows players to coordinate
and even correlate their play in the game.1 But in many games of interest, this does not
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enlarge the set of equilibria to allow for cooperation. For instance, pre-play communi-
cation has no effect in the prisoners’ dilemma. It also has no effect in a differentiated-
product price-setting oligopoly with linear demands.2

In this paper, we study the role of in-play communication in repeated games—the
basic framework for analyzing the prospects for cooperation among self-interested par-
ties. The main idea of the theory of repeated games is that players are willing to forgo
short-term gains to reap future rewards. But this relies on the ability of players to moni-
tor each other well. If monitoring is poor, cooperative outcomes are hard to sustain be-
cause players can cheat with impunity, and we study whether, in these circumstances,
communication can help. Specifically, we show how in-play communication improves
the prospects for cooperation in repeated games with imperfect private monitoring. In
such settings, players receive only noisy private signals about the actions of their rivals.3

Our main result (Theorem 6.1) identifies monitoring structures—the stochastic
mapping between actions and signals—with the property that communication is nec-
essary for cooperation. An informal statement of the result is

Theorem I.1. For any high but fixed discount factor, there exists a nonempty and open
set of monitoring structures such that there is an equilibrium with communication whose
welfare exceeds that from any equilibrium without communication.

What kinds of monitoring structures lead to this conclusion? Two conditions are
needed. First, private signals should be rather noisy so that in the absence of com-
munication, monitoring is poor. Second, private signals of players should be strongly
correlated when they play efficient action profiles and less so otherwise.4 The second
condition is natural in many economic environments. In an earlier paper Awaya and Kr-
ishna (2016), we explored a price-setting duopoly in which firms’ sales were correlated in
this manner and showed how this arose naturally because of randomness in consumers’
search costs. Another class of situations in which the second condition is natural is the
following. Suppose that players can play cooperatively—expend effort, contribute to
a public good, or gather information—or play selfishly and free ride on other players.
These choices result in noisy private signals about an unknown state of nature. The
stochastic structure is such that when a player plays cooperatively, the signal is more
informative about the state than if he or she were to play selfishly. In any such situation,
the players’ signals will be more correlated when all cooperate than when this is not the
case.5 This kind of structure is common to many economic situations of interest. For
instance, Fleckinger (2012) and Deb et al. (2016) study a moral hazard situation in which
agents’ outputs are highly correlated when all agents work and less corelated if anyone

2This is a potential game in the sense of Monderer and Shapley (1996) and a result of Neyman’s (1997)
then implies that the set of correlated equilibria coincides with the unique Nash equilibrium.

3A classic example is Stigler’s (1964) model of secret price cuts, where firms choose prices that are not
observed by other firms. The prices (actions) then stochastically determine firms’ sales (signals). Each firm
observes only its own sales and must infer its rivals’ actions only via these.

4Example 2 below shows that communication does not help if the reverse is true, that is, if correlation
actually increases following a deviation.

5In Example 1 below, we provide a simple derivation of this structure.
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shirks. Deb et al. study the role of communication—in the form of peer evaluations—
in providing incentives. Similarly, Gromb and Martimort (2007) study the incentives of,
say, two experts to gather information. When both experts expend effort, they learn
more about a true state of the world than otherwise. This also results in the features
outlined above.

How exactly does communication facilitate cooperation in such settings? The basic
idea is that players can monitor each other not only by what they “see”—the signals—but
also by what they “hear”—the messages that are exchanged. But since the messages are
just cheap talk—costless and unverifiable—one may wonder how these can be used for
monitoring. We construct equilibria in which the messages are cross-checked to ensure
truthful reporting of signals. Moreover, the cross-checking is sufficiently accurate so that
deviating players find it difficult to lie effectively. These essential properties rely on the
second condition on the monitoring structure mentioned above. We use these ideas to
construct an equilibrium that is nearly efficient.

Our main result requires two steps. The first task is to find an effective bound on
equilibrium payoffs that can be achieved without communication. But the model we
study is that of a repeated game with private monitoring and there is no known char-
acterization of the set of equilibrium payoffs. This is because with private monitoring,
each player knows only his own history (of past actions and signals) and has only noisy
information about the private histories of other players. Since players’ histories are not
commonly known, these cannot be used as state variables in a recursive formulation
of the equilibrium payoff set. In Section 4, we borrow an equilibrium notion from al-
gorithmic game theory—that of a coarse correlated equilibrium—and are able to relate
(in Proposition 4.1) the Nash equilibrium payoffs of the repeated game to the coarse
correlated equilibrium payoffs of the one-shot game. The notion of a coarse correlated
equilibrium was introduced by Moulin and Vial (1978).6 The set of coarse correlated
equilibria is larger than the set of correlated equilibria and so has less predictive power
in one-shot games. But because it is very easy to compute, in some cases it is never-
theless useful in bounding the set of Nash equilibria, for instance, in congestion games
(Roughgarden 2016). Here we show that it is useful in bounding the set of Nash equilibria
of repeated games as well. Precisely,

Proposition I.1. The set of Nash equilibrium payoffs of the repeated game without com-
munication is a subset of the set of ε-coarse correlated equilibrium payoffs of the one-shot
game.

The ε is determined by the discount factor and the monitoring structure of the re-
peated game, and we provide an explicit formula for this. When the monitoring quality is
poor—it is hard for other players to detect a deviation—ε is small and the set of ε-coarse
correlated equilibrium payoffs provides an effective bound to the set of equilibrium pay-
offs in the repeated game.

6While a formal definition appears in Section 2, a coarse correlated equilibrium is a joint distribution
over players’ actions such that no player can gain by playing a pure action under the assumption that the
other players will follow the marginal distribution over their actions.
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The second task is to show that with communication, equilibrium payoffs above the
bound can be achieved. To show this, we construct a cooperative equilibrium explic-
itly in which, in every period, players publicly report the signals they have received (see
Proposition 5.1). Players’ reports are aggregated into a single score and the future course
of play is completely determined by this summary statistic. Deviations result in low
scores and trigger punishments with higher probability. The score function lets us con-
struct an equilibrium with communication to be of a particularly simple trigger-strategy
form. When signals are very informative about each other, the constructed equilibrium
is nearly efficient.

We emphasize that the analysis in this paper is of a different nature than that under-
lying the so-called folk theorems (see Sugaya 2015), which show that for a fixed moni-
toring structure, as players become increasingly patient, near-perfect collusion can be
achieved in equilibrium. In this paper, we keep the discount factor fixed and change the
monitoring structure so that the set of equilibria with communication is substantially
larger than the set without. A difficulty here is that monitoring structures, which are
stochastic mappings from actions to signals, are high-dimensional objects. We show,
however, that only two easily computable parameters—one measuring how noisy the
signals are and the other measuring how strongly correlated they are—suffice to identify
monitoring structures for which communication is necessary for cooperation.

Related literature

The current paper builds on our earlier work (Awaya and Krishna 2016), where we ex-
plored some of the same issues in the special context of Stigler’s (1964) model of secret
price cuts in a symmetric duopoly with noisy sales. This is, of course, the canonical ex-
ample of a repeated game with private monitoring. Much of the analysis in our earlier
paper, however, relied on the assumption that sales were (log-) normally distributed and
that the two firms were symmetric. This paper considers general n-person finite games
and general signal distributions. More importantly, the bound on payoffs without com-
munication that is developed here is tighter than the bound constructed in the earlier
paper as well as being easier to interpret.7 Moreover, the construction of equilibria with
communication is entirely different and does not rely on any symmetry among players.
Finally, we show in this paper (see Example 2 below) that communication does not al-
ways help cooperation. Awaya (2014) explores some of the same issues in a repeated
prisoners’ dilemma in continuous time.

There is a vast literature on repeated games under different kinds of monitoring.
Under perfect monitoring, given any fixed discount factor, the set of perfect equilibrium
payoffs with and without communication is the same. Under public monitoring, again
given any fixed discount factor, the set of (public) perfect equilibrium payoffs with and
without communication is also the same. Thus, in these settings, communication does
not affect the set of equilibria.8

7See Section 4.4.
8To be precise, these equivalences require that in the absence of communication, players have access to

a public randomizing device (“sunspots”) and that all communication is public.
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Compte (1998) and Kandori and Matsushima (1998) study repeated games with pri-
vate monitoring that allow, as we do, for communication among players. In this setting,
they show that the folk theorem holds: any individually rational and feasible outcome
can be approximated as the discount factor tends to 1. These results are derived un-
der specific assumptions about the detectability of deviations by other players and can
be satisfied only if there are at least three players. This line of research has been pur-
sued by others as well (see Aoyagi 2002, Fudenberg and Levine 2007, Zheng 2008, and
Obara 2009) in environments different from, and sometimes more general than, those
of Compte (1998) and Kandori and Matsushima (1998). Particularly related to the cur-
rent paper is the work of Aoyagi (2002) and Zheng (2008), who assume, as we do, that
players’ signals exhibit greater correlation when efficient actions are played than when
actions are inefficient. All of these papers thus show that communication is sufficient
for cooperation when players are sufficiently patient. But as Kandori and Matsushima
(1998, p. 648; their italics) recognize, “One thing which we did not show is the necessity
of communication for a folk theorem.”

In a remarkable paper, Sugaya (2015) shows the surprising result that in very general
environments, the folk theorem holds without communication. Thus, in fact, communi-
cation is not necessary for a folk theorem. Although Sugaya’s result was preceded by folk
theorems for some limiting cases where the monitoring was almost perfect or almost
public, the generality of its scope was unanticipated.

Unlike the folk theorems, in our work we do not consider the limit of the set of equi-
librium payoffs as players become arbitrarily patient. We study the set of equilibrium
payoffs for a fixed discount factor. Key to our result is a method of bounding the set of
payoffs without communication using the easily computable set of ε-coarse correlated
equilibria. Pai et al. (2017) also develop a bound that depends on a measure of mon-
itoring quality based on the computer-science notion of “differential privacy.” But the
bound so obtained applies to equilibrium payoffs with communication as well as those
without, and so does not help distinguish between the two. Sugaya and Wolitzky (2017)
find sufficient conditions under which the equilibrium payoffs with private monitor-
ing are bounded by the equilibrium payoffs with perfect monitoring. This bound again
applies whether or not there is communication and so is also unable to distinguish be-
tween the two.

Spector (2018) shows that communication can be beneficial in a model of price com-
petition with private monitoring. Firms see their own current sales, but, unlike in our
model, can see other firms’ sales with some delay. Communication is helpful in reducing
this delay in monitoring. In our model, all communication is pure cheap talk: private
signals remain so forever.

Kandori (2003) establishes a folk theorem with communication in a repeated game
with public monitoring. With public monitoring, the only useful communication con-
cerns the privately known actions that players have taken. In equilibrium, such actions
remain private when players randomize and the outcomes of these randomizations are
known only to the player in question. Kandori shows how with private strategies and
communication, a folk theorem may be established under weaker conditions than re-
quired when only public strategies are used. But again, this does not show the necessity
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of communication, since it is not known what can be achieved with private strategies
without communication. Rahman (2014) derives a similar result in a duopoly model.

The role of communication in fostering cooperation has also been the subject of nu-
merous experiments in varied informational settings. Of particular interest is the work
of Ostrom et al. (1994, Chapter 7), who find that in-play communication in repeated
common-pool resource games leads to greater cooperation than does pre-play commu-
nication. In recent work, Aryal et al. (2018) study how public communication affects
collusion among airlines.

The remainder of the paper is organized as follows. The next section outlines the
formal model of repeated games with private monitoring. To motivate the subsequent
analysis, in Section 3 we present some of the main ideas, as well as some subtleties, by
means of some simple examples. Section 4 analyzes the repeated game without com-
munication, whereas Section 5 does the same with communication. The benefits of
communication are established in Section 6. Section 7 concludes. Appendix A contains
proofs omitted from Section 4 regarding the no-communication bound. Appendix B
analyzes the score function that forms the basis of the equilibrium with communication
that is constructed in Section 5.

2. Preliminaries

As mentioned in the Introduction, we study repeated games with private monitoring.

Stage game

The underlying game is defined by (I� (Ai�Yi�wi)i∈I� q), where I = {1�2� � � � � n} is the set
of players, Ai is a finite set of actions available to player i, and Yi is a finite set of sig-
nals that i may observe. The actions of all the players a ≡ (a1� a2� � � � � an) ∈ A ≡ ×iAi

together determine q(· | a) ∈ �(Y), a probability distribution over the signals of all play-
ers.9 A vector of signals y ∈ Y is drawn from this distribution and player i observes
only yi. Player i’s payoff is then given by the function wi : Ai × Yi → R so that i’s pay-
off depends on other players’ actions only via the induced signal distribution q(· | a).
We refer to wi(ai� yi) as i’s ex post payoff.10

Prior to any signal realizations, the expected payoff of player i is then given by the
function ui : A→R, defined by

ui(a) =
∑
yi∈Yi

wi(ai� yi)qi(yi | a)�

9We adopt the following notational conventions throughout: capital letters denote sets with typical ele-
ments denoted by lowercase letters. Subscripts denote players and unsubscripted letters denote vectors or
cartesian products. Thus, xi ∈ Xi and x = (x1�x2� � � � � xn) ∈ X = ×iXi. Also, x−i denotes the vector obtained
after the ith component of x has been removed and (x′

i� x−i) denotes the vector where the ith component
of x has been replaced by x′

i . Finally, �(X) is the set of probability distributions over X .
10This ensures that knowledge of one’s ex post payoff does not carry any infomation beyond that in the

signal. For instance, in Stigler’s (1964) model, a firm’s profits depend only on its own actions (prices) and its
own signal (sales).
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where qi(· | a) ∈ �(Yi) is the marginal distribution of q(· | a) on Yi so that qi(yi | a) =∑
y−i∈Y−i

q(yi� y−i | a). As usual, ‖u‖∞ denotes the sup-norm of u. In what follows, we
merely specify the expected payoff functions ui, not the underlying ex post payoff func-
tions wi. The latter can be derived from the former for generic signal distributions;
specifically, as long as {qi(· | a) : a ∈A} is a linearly independent set of vectors.

We refer to G ≡ (Ai�ui)i∈I as the stage game. The set of feasible payoffs in G is F =
cou(A), the convex hull of the range of u. A payoff vector v∗ ∈ F is (strongly) efficient if
there does not exist a feasible v 	= v∗ such that v ≥ v∗.

The collection {q(· | a)}a∈A is referred to as the monitoring structure. We suppose
throughout that for all i, the marginal distribution over i’s signals, qi(· | a) ∈ �(Yi) has
full support, that is, for all yi ∈ Yi and a ∈A,

qi(yi | a) > 0� (1)

Quality of monitoring

Let q−i(· | a) ∈ �(Y−i) be the marginal distribution of q(· | a) ∈ �(Y) over the joint signals
of the players j 	= i. The quality of a monitoring structure q is defined as

η= max
i

max
a�a′

i

∥∥q−i(· | a)− q−i

(· | a′
i� a−i

)∥∥
TV� (2)

where ‖μ− ν‖TV denotes the total variation distance between the probability measures
μ and ν.11 It is intuitively clear that when the quality of monitoring is poor, it is hard for
players other than i to detect a deviation by i.

Coarse correlated equilibrium

The distribution α ∈ �(A) is a coarse correlated equilibrium (CCE) of G if for all i and all
ai ∈Ai,

ui(α) ≥ ui(ai�α−i)�

where α−i ∈ �(A−i) denotes the marginal distribution of α over A−i (see Moulin and
Vial 1978).

The notion of a CCE is best understood by contrasting it with the notion of a classical
correlated equilibrium (CE). A correlated equilibrium can be thought of as a mediated
solution: a mediator draws a joint action a ∈ A from a distribution α ∈ �(A) and sends
a private recommendation to each player. The distribution α constitutes a CE if for ev-
ery a in the support of α, no player can gain by choosing a different action than the one
recommended. A coarse correlated equilibrium α can also be thought of as a mediated
solution but with commitment: the players have to decide whether to sign on to the
mediated solution without knowing anything other than the distribution α. A CCE in-
volves greater commitment on the part of the players than does a CE: they agree to play
according to a joint agreement α knowing nothing else.12

11The total variation distance between two probability measures μ and ν on X is defined as ‖μ− ν‖TV =
1
2
∑

x∈X |μ(x)− ν(x)|. This is, of course, equivalent to the metric derived from the L1 norm.
12Further discussion along these lines can be found in Moulin et al. (2014).
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The distribution α ∈ �(A) is an ε-coarse correlated equilibrium (ε-CCE) of G if for all
i and all ai ∈Ai,

ui(α) ≥ ui(ai�α−i)− ε� (3)

Define ε-CCE(G) = {u(α) ∈ F : α is an ε-CCE of G} to be the set of ε-coarse correlated
equilibrium payoffs of G.

Repeated game

We study an infinitely repeated version of G, denoted by Gδ, defined as follows. Time
is discrete and indexed by t = 1�2� � � � and in each period t, the game G is played. Pay-
offs in the repeated game Gδ are discounted averages of per-period payoffs using the
common discount factor δ ∈ (0�1). To be precise, if the sequence of actions taken is
(a1� a2� � � �), player i’s ex ante expected payoff is (1 − δ)

∑
t δ

tui(a
t). A (behavioral) strat-

egy for player i in the game Gδ is a sequence of functions σi = (σ1
i �σ

2
i � � � �), where

σt
i : At−1

i × Yt−1
i → �(Ai). Hence, a strategy determines a player’s current, possibly

mixed, action as a function of his private history, i.e., his own past actions and past sig-
nals.

Repeated game with communication

We also study a version of Gδ, denoted by Gcom
δ , in which players can communicate

with each other after every period by sending public messages mi from a finite set Mi.
The communication phase in period t takes place after the signals in period t have been
observed. Thus, a strategy of player i in the game Gcom

δ consists of two sequences of
functions σi = (σ1

i �σ
2
i � � � �) and ρi = (ρ1

i � ρ
2
i � � � �), where σt

i : At−1
i ×Yt−1

i ×Mt−1 → �(Ai)

determines a player’s current action as a function of his own past actions, past signals,
and past messages from all the players. The function ρti : At

i ×Yt
i ×Mt−1 → �(Mi) deter-

mines a player’s current message as a function of his own past and current actions and
signals as well as past messages from all the players. The messages mi themselves have
no direct payoff consequences.

Equilibrium notion

We consider sequential equilibria of the two games. For Gδ, the repeated game with-
out communication, the full support condition (1) ensures that the set of sequential
equilibrium payoffs coincides with the set of Nash equilibrium payoffs (see Sekiguchi
1997). In both situations, we suppose that players have access to public randomization
devices.

3. Some examples

Before beginning a formal analysis of equilibrium payoffs in the repeated game Gδ and
its counterpart with communication, Gcom

δ , it will be instructive to consider a few ex-
amples. The first example illustrates, in the simplest terms, the main result of the paper.
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The other examples then point to some complexities. A word of warning is in order. All
of the following examples have the property that the marginal distributions of players’
signals are the same regardless of players’ actions. This means that the expected pay-
off functions ui(a) cannot be derived from underlying ex post payoff functions wi(ai� yi)

and, of course, expected payoffs are not observed. The examples have this property only
to illustrate some features of the model in the simplest way possible. This is not essen-
tial: the examples can easily be amended so that underlying ex post payoff functions,
which are observed, exist.

Example 1 (Communication is necessary for cooperation). Consider the following pris-
oners’ dilemma as the stage game with expected payoffs:

c d

c 2, 2 −1, 3
d 3, −1 0, 0

Each player has two possible signals y ′ and y ′′, and suppose that the monitoring struc-
ture q is

q(· | cc) =
y ′ y ′′

y ′ 1
2 − ε ε

y ′′ ε 1
2 − ε

q(· | ¬cc) =
y ′ y ′′

y ′ 1
4

1
4

y ′′ 1
4

1
4

� (4)

where ¬cc denotes any action profile other than cc. ♦

We argue below that without communication, it is impossible for players to “coop-
erate,” that is, to play cc, and that the unique equilibrium payoff is (0�0). With commu-
nication, however, it is possible for the players to cooperate (with high probability) and,
in fact, attain average payoffs close to (2�2).

The monitoring structure here has two key features. First, the marginal distribu-
tions qi(· | a) are identical no matter what action a is played, so that the quality of
monitoring η (defined in (2)) is zero. Second, if cc is played, each player’s signal is
very informative about the other player’s signal. If something other than cc is played,
a player’s signal is completely uninformative about the other player’s signal.13 At the
end of this example, we derive this monitoring structure from more basic considera-
tions.

Claim 1. Without communication, cooperation is not possible; for all δ, the unique equi-
librium payoff of Gδ is (0�0).

Fix any strategy of player 2. Since the marginal distribution on player 2’s signals is
not affected by what player 1 does, his ex ante belief on what player 2 will play in any

13The term “informative” is used in the sense of Blackwell (1951). From player i’s perspective, the signals
of the other players y−i constitute the state of nature and his own signal carries information about this.
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future period is also independent of what he plays today. Thus, in any period, player 1 is
better off playing d rather than c. Cooperation is impossible.14

Claim 2. With communication, cooperation is possible: given any δ > 1
2 , there exists an

ε such that for all ε < ε, there exists an equilibrium of Gcom
δ whose payoffs are ε-close to

(2�2).

Now suppose that players report their signals during the communication phase, that
is, Mi = Yi. Consider the following variant of a trigger strategy. Play c in period 1 and in
the communication phase, report the signal that was received. In any period t, play c if
in all past periods, the reported signals have agreed, that is, if both players reported y ′ or
both reported y ′′. If the reports disagreed in any past period, play d. In the communica-
tion phase, report your signal.

To see that these strategies constitute an equilibrium, note first that if all past reports
have agreed and a player has played c in the current period, then there is no incentive to
misreport one’s signal. Misreporting only increases the probability of triggering a pun-
ishment from 2ε to 1

2 and so there is no gain from deviating during the communication
phase.

Finally, if all past reports agreed, a player cannot gain by deviating by playing d. Such
a deviation will trigger a punishment with probability 1

2 , no matter what he reports in the
communication phase. It is routine to verify that when ε is small, this is not profitable.
Each player’s payoff in this equilibrium is

v = 1 − δ

1 − δ+ 2δε
× 2�

which converges to 2 as ε converges to 0.
The monitoring structure in this example can be derived from more basic consider-

ations, as outlined in the Introduction. Suppose that there are two equally likely states
of nature ω′ and ω′′, and players get a noisy private signal y ′ or y ′′ about the state. Con-
ditional on the state, players’ signals are independent. If a player plays c in state ω′, then
he receives signal y ′ with probability 1−λ > 1

2 and signal y ′′ with probability λ. Likewise,
if a player plays c in state ω′′, then he receives y ′′ with probability 1 −λ and y ′ with prob-
ability λ. Alternatively, if a player plays d, then the two signals are equally likely regard-
less of state. Thus, cooperating provides information about the state whereas defecting
does not. A routine computation shows that the monitoring structure in (4) results for
ε = λ(1 − λ).

Example 2 (Cooperation is impossible even with communication). The first example
exhibited some circumstances in which cooperation was not possible without commu-
nication, but with communication, it was. Does communication always facilitate coop-
eration? As the next example shows, this is not always the case: the signal structure q

matters.

14The equality of the marginals violates one of Sugaya’s (2015) conditions and so his folk theorem does
not apply.



Theoretical Economics 14 (2019) Communication and cooperation in repeated games 523

Consider the prisoners’ dilemma of Example 1 again, but with the “flipped” signal
structure

q(· | ¬dd)=
y ′ y ′′

y ′ 1
4

1
4

y ′′ 1
4

1
4

q(· | dd)=
y ′ y ′′

y ′ 1
2 − ε ε

y ′′ ε 1
2 − ε

�

where again ¬dd denotes any action profile other than dd. ♦

The marginal distribution of signals qi(· | a) is, as before, unaffected by players’ ac-
tions: η is zero again. But now the signal distribution when dd is played is more informa-
tive than when any other action is played; in fact, the former is completely informative.

Claim 3. With or without communication, cooperation is not possible: for all δ, the
unique equilibrium payoff in both Gδ and Gcom

δ is (0�0).

Suppose that there is an equilibrium with communication in which after some his-
tory, player 1 is supposed to play c with probability 1 and report his signal truthfully.
Suppose player 1 plays d instead of c and at the communication stage, regardless of his
private signal, reports with probability 1

2 that his signal was y ′ and with probability 1
2

that his signal was y ′′. Now regardless of whether player 2 plays c or d in that period,
the joint distribution over player 1’s reports and player 2’s signals is the same as if player
1 had played c; that is, q(· | ¬dd). Thus, player 1 can deviate and lie in a way that his
deviation cannot be statistically detected.15

Thus, with the flipped monitoring structure, no cooperation is possible even with
communication. A fortiori, no cooperation is possible without communication either.
In this example, therefore, communication is unable to facilitate cooperation.

Example 3 (Communication is not necessary for cooperation). Our final example il-
lustrates the possibility that full cooperation is possible without communication even
though monitoring is very poor, in fact, nonexistent.16 Consider the following version of
rock–paper–scissors:

r p s

r 10, 10 0, 11 11, 0
p 11, 0 10, 10 0, 11
s 0, 11 11, 0 10, 10

�

The stage game has a unique correlated equilibrium, and hence a unique Nash equilib-
rium as well, in which players randomize equally among the three actions and a payoff

15This argument can be extended to include randomized strategies. Details can be obtained from the
authors.

16This trivally holds in games where there is an efficient one-shot Nash equilibrium, of course. In this
example, that is not the case.
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of (7�7) results. Suppose the monitoring structure is

q(· | a1 = a2) =

yr yp ys

yr 1
3 0 0

yp 0 1
3 0

ys 0 0 1
3

q(· | a1 	= a2)=

yr yp ys

yr 1
9

1
9

1
9

yp 1
9

1
9

1
9

ys 1
9

1
9

1
9

so that if players coordinate on the same action, then the signals are perfectly informa-
tive; otherwise, they are uninformative. Once again η = 0 since the marginal distribu-
tions of signals are not affected by players’ actions. ♦

Claim 4. Cooperation is possible without communication: for any δ ≥ 3
11 , there exists an

equilibrium of Gδ with a payoff of (10�10).

In what follows, we say that the players are coordinated if they take the same action
and so the resulting signal distribution is q(· | a1 = a2); otherwise, they are said to be
miscoordinated.

Consider the following strategy. In period 1, play r. In period t, play action a ∈ {r�p� s}
if the signal received in the last period was ya.

The average payoff from this strategy is clearly 10 since the players are always co-
ordinated. Now suppose player 1 deviates once from the prescribed strategy and then
reverts back to it.

Player 1’s immediate payoff from the deviation is 11, but the deviation also causes the
players to become miscoordinated. So no matter what signal player 1 receives, player 2 is
equally likely to play each of his actions. As a result, once the players are miscoordinated,
the continuation payoff is

w = 1
3

10 + 1
3
(
(1 − δ)11 + δw

) + 1
3
(
(1 − δ)0 + δw

)
�

This is because with probability 1
3 , the players will become coordinated again in the

next period and then remain coordinated thereafter. With probability 1
3 , they will re-

main miscoordinated, and player 1 will get 11 and then the continuation payoff w; with
probability 1

3 , he will get 0 and then w again. Thus the continuation payoff after misco-
ordination is

w = 21 − 11δ
3 − 2δ

�

The original deviation is not profitable as long as

(1 − δ)11 + δw ≤ 10

and this holds as long as δ ≥ 3
11 . The one-deviation principle for games with private

monitoring (Mailath and Samuelson 2006, p. 397) then ensures that the prescribed
strategies constitute an equilibrium. The example thus demonstrates that in a repeated
setting, players can sometimes achieve outcomes far superior to the set of correlated
equilibria of the stage game even though there is zero monitoring.
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4. Equilibrium without communication

In this section, we develop a method to bound the set of equilibrium payoffs in games
with private monitoring. We show that the set of equilibrium payoffs of the repeated
game without communication Gδ is contained within the set of ε-coarse correlated
equilibrium payoffs of the stage game G. In our result, we give an explicit formula for ε
involving (a) the discount factor and (b) the quality of monitoring (as defined in (2)).

The main result of this section is the following proposition.

Proposition 4.1. For any game and any monitoring structure,

NE(Gδ) ⊆ ε- CCE(G)�

where ε = ‖u‖∞ × 2ηδ2/(1 − δ).

The proposition is of independent interest because repeated games with private
monitoring do not have a natural recursive structure and so a characterization of the
set of equilibrium payoffs seems intractable. So one is left with the task of finding effec-
tive bounds for this set. Proposition 4.1 provides such a bound and one that is easy to
compute explicitly: the set ε-CCE is defined by

∑
i |Ai| linear inequalities. Moreover, the

bound does not use any detailed information about the monitoring structure; it depends
only on the monitoring quality parameter η.17

Proposition 4.1 relates Nash equilibria of the repeated game to coarse correlated
equilibria of the one-shot game. It is clear that the signals that players receive result
in their actions being correlated and so the relationship to some mediated solution is
not unnatural. To see why CCE is the right notion, consider a monitoring technology
for which η = 0, that is, a situation in which player i’s actions do not affect the distribu-
tion of signals of other players. This means, of course, that any deviation by player i will
go undetected. Consider a repeated game equilibrium strategy that is stationary and
so results in a fixed distribution of actions α ∈ �(A) in every period. Because deviations
cannot be detected, each player i can guarantee that his or her payoff is maxai ui(ai�α−i),
which implies immediately that α must be a coarse correlated equilibrium. The formal
proof below allows for both η> 0 as well as nonstationary strategies.

The “ε-coarse correlated equilibrium” in the statement cannot simply be replaced
with “ε-correlated equilibrium.” To be precise, if the set of ε-correlated equilibrium pay-
offs of G is denoted by ε-CE(G), then the statement NE(Gδ) ⊆ ε-CE(G) is false for the
same value of ε as above. For instance, in Example 3, the set of correlated equilibrium
payoffs is a singleton CE(G) = {(7�7)}, while the set of coarse correlated equilibria is as
depicted in Figure 1. For the monitoring structure in Example 3, η = 0 and, hence, ε = 0
as well. But for δ ≥ 3

11 , the repeated game has an equilibrium payoff of (10�10), which is
in CCE(G) but not in CE(G).

17Sugaya and Wolitzky (2017) show that the set of equilibrium payoffs with perfect monitoring and a
meditor is a bound for large enough δ. Unlike ours, their bound is independent of the quality of monitoring.
Our method results in tighter upper bounds to payoffs when the quality of monitoring is poor.
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Figure 1. Rock–paper–scissors: CE = (7�7) and CCE is the shaded area.

Sketch of the Proof of Proposition 4.1. We indicated how the CCE bound arises
naturally when there is zero monitoring (η = 0) and the equilibrium strategy of the re-
peated game is stationary. We now show how the argument is extended to permit both
η > 0 and nonstationary strategies. So consider strategy profile σ of the repeated game
with a payoff v(σ) that is not an ε-CCE payoff in the one-shot game. Suppose that some
player i deviates to a strategy σi in which i chooses ai in every period regardless of his-
tory; that is, σi consists of a permanent deviation to ai. We decompose the (possible)
gain from such a deviation into two bits. Consider a fictitious situation in which the play-
ers j 	= i are replaced by a nonresponsive “machine” that, in every period, and regardless
of history, plays the ex ante distribution αt

−i ∈ �(A−i) that would have resulted from the
candidate strategy σ . In the fictitious situation, player i’s deviation is unpunished in the
sense that the machine continues to play as if no deviation had occurred. Note that this
lack of response is what would have occurred if η were zero. We can then write

vi(σi�σ−i)− vi(σ)︸ ︷︷ ︸
gain from deviation

= vi(σi�σ−i)− vi(σi�α−i)︸ ︷︷ ︸
loss from punishment

+ vi(σi�α−i)− vi(σ)︸ ︷︷ ︸
gain when unpunished

� (5)

The first component on the right-hand side represents the payoff difference from facing
the real players j 	= i versus facing the nonresponsive machine. If σ−i is an effective de-
terrent to the permanent deviation, then this should be negative, and in Lemma 4.1 we
calculate a lower bound to this loss. The second component is the gain to player i when
his permanent deviation goes unpunished. As we show below in Lemma 4.2, this gain
can be related to the coarse correlated equilibria of the one-shot game (see (3)). The
lemma establishes that a permanent deviation, which is, of course, stationary, is best
deterred by a stationary distribution.

Nonresponsive strategies

We begin with a formal definition of the nonresponsive strategy played by the fictitious
machine. Given a strategy profile σ , the induced ex ante distribution over A in period t
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is

αt(σ) = Eσ

[∏
j

σt
j

(
ht−1
j

)] ∈ �(A)

and the corresponding marginal distribution over A−i in period t is

αt
−i(σ)= Eσ

[∏
j 	=i

σt
j

(
ht−1
j

)] ∈ �(A−i)�

where the expectation is defined by the probability distribution over t − 1 histories de-
termined by σ . Note that α−i depends on the whole strategy profile σ and not just on
the strategies σ−i of players other than i. Note also that because players’ histories are
correlated, it is typically the case that αt

−i(σ) /∈ ∏
j 	=i �(Aj). Given σ , let α−i(σ) denote

the (correlated) strategy of players j 	= i in which they play αt
−i(σ) in period t following

any t−1 period history. The strategy α−i, which is merely a sequence {αt
−i} of joint distri-

butions in �(A−i), replicates the ex ante distribution of actions of players j 	= i resulting
from σ , but is nonresponsive to histories.

We now proceed to decompose the gain from a permanent deviation.

4.1 Loss from punishment

In this subsection we provide a bound on the absolute value of vi(σi�σ−i)− vi(σi�α−i),
the difference in payoffs between being punished by strategy σ−i of the real players j 	= i

versus not being punished by the fictitious machine. It is clear that the magnitude of
this difference depends crucially on how responsive σ−i is compared to the α−i and this,
in turn, depends on how well the players j 	= i can detect i’s permanent deviation.

We show below that this loss can, in fact, be bounded by a quantity that is a posi-
tive linear function of η. Moreover, the bound is increasing in δ. The following result
provides an exact formula for the trade-off between the quality of monitoring and the
discount factor.

Lemma 4.1. Suppose i plays ai always. The difference in i’s payoff when others play σ−i

versus when they play the nonresponsive strategy α−i derived from σ satisfies

∣∣vi(σi�σ−i)− vi(σi�α−i)
∣∣ ≤ ‖u‖∞ × 2η

δ2

1 − δ
�

See Appendix A for the proof.

4.2 Gain when unpunished

We now relate the second component in (5) to the ε-coarse correlated equilibria of the
one-shot game (see (3)). We begin by characterizing the set of ε-CCE payoffs.

For any v ∈F , define

�(v)≡ min
β∈�(A)

max
i

max
ai

[
ui(ai�β−i)− ui(β)

]
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subject to

u(β) = v�

where β−i ∈ �(A−i) denotes the marginal distribution of β over A−i.
In words, no matter how the payoff v is achieved via a correlated action, at least one

player can gain at least �(v) by deviating. It is easy to see that v ∈ ε-CCE(G) if and only
if �(v) ≤ ε. This is because �(v) ≤ ε is the same as the following statement: there exists
a β ∈ �(A) satisfying u(β) = v such that

max
i

max
ai∈Ai

[
ui(ai�β−i)− ui(β)

] ≤ ε

and this is equivalent to v ∈ ε-CCE(G).
Note that �(v) is also the value of an artificial two-person zero-sum game � in which

player I (“deviator”) chooses a pair (i� ai) and player II (“mediator”) chooses a joint dis-
tribution β ∈ �(A) such that u(β) = v. The idea is that the mediator chooses a joint
distribution and the deviator chooses a player and a pure strategy for that player as a
deviation. The payoff to player I is then ui(ai�β−i)− ui(β). The fact that �(v) ≤ 0 is the
same as v ∈ CCE(G) is analogous to a result of Hart and Schmeidler (1989) on correlated
equilibria.

The following important result shows that the function �, which measures the static
incentives to deviate, also measures the dynamic incentives to permanently deviate
from a nonresponsive strategy. Formally, consider a dynamic analogue �δ of the two-
person zero-sum game � outlined above. In �δ, player I (deviator) chooses a pair
(i�σi), where σi denotes the constant sequence ai (a permanent deviation) and player
II (mediator) chooses a nonresponsive strategy, that is, a sequence of joint distributions
α ∈ �(A)∞, such that its discounted average v(α) = v. The payoff to player I in �δ is
vi(σi�α−i) − vi(α). Lemma 4.1 shows that the value of �, that is, �(v), is also the value
of �δ. This relies on the fact that the deviation is permanent (stationary). Since the
maximized payoff function of player I is convex in player II’s strategy, player II’s opti-
mal response is stationary as well. This last step resembles the familiar consumption
smoothing argument.

Lemma 4.2. The value

�(v)= min
α∈�(A)∞

max
i

max
σi

[
vi(σi�α−i)− vi(α)

]
subject to the constraint that the discounted average payoff from α is

v(α) = v�

where vi(σi�α−i) is i’s payoff when he plays ai always and others play the nonresponsive
strategy α−i = (α1

−i� α
2
−i� � � �) ∈ �(A−i)

∞ derived from α = (α1�α2� � � �) ∈ �(A)∞.

Proof. It is clear that �(v) is at least as large as the right-hand side of the equality
above. This is because the set of strategies available to player II in �δ includes all sta-
tionary strategies and the latter are equivalent to all strategies in �. The set of strategies
available to player I in � and �δ are the same.
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Given a sequence α = (α1�α2� � � �) ∈ �(A)∞, let vt = u(αt) be the ex ante payoffs in
period t. Then if v(α)= v, we have (1 − δ)

∑∞
t=1δ

tvt = v.
For any payoff vector w ∈ F , define θi(w�ai) = minβ∈�(A)[ui(ai�β−i)−ui(β)] subject

to u(β) =w. Then, for all i and all ai,

vi(σi�α−i)− vi(α) = (1 − δ)

∞∑
t=1

δt
[
ui

(
ai�α

t
−i

) − ui
(
αt

)]
≥ (1 − δ)

∞∑
t=1

δtθi
(
vt� ai

)
� (6)

where the second inequality follows from the definition of θi.
Now since θi(·� ai) is convex,18 it is the case that a solution to the problem

min
vt

(1 − δ)

∞∑
t=1

δtθi
(
vt� ai

)
subject to

(1 − δ)

∞∑
t=1

δtvt = v

is to set vt = v for all t. Thus, we have that

(1 − δ)

∞∑
t=1

δtθi
(
vt� ai

) ≥ θi(v�ai)�

which when combined with (6) yields that for all i and ai,

vi(σi�α−i)− vi(α) ≥ θi(v�ai) = min
β:u(β)=v

[
ui(ai�β−i)− ui(β)

]
�

This implies that

min
α:v(α)=v

[
vi(σi�α−i)− vi(α)

] ≥ min
β:u(β)=v

[
ui(ai�β−i)− ui(β)

]
and, thus,

max
π∈�(∪Aj)

min
α:v(α)=v

Eπ
[
vi(ai�α−i)− vi(α)

] ≥ max
π∈�(∪Aj)

min
β:u(β)=v

Eπ
[
ui(ai�β−i)− ui(β)

]
�

Applying the minmax theorem Sion (1958) in the game �δ on the left-hand side and in
the game � on the right-hand side, we obtain

min
α:v(α)=v

max
i

max
ai

vi(σi�α−i)− vi(α) ≥ min
β:u(β)=v

max
i

max
ai

[
ui(ai�β−i)− ui(β)

]
=�(v)�

18The convexity of θi(·� ai) is a consequence of the fact that u is linear in α.
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4.3 Payoff bound

With Lemmas 4.1 and 4.2 in hand, we can now complete the proof of the result (Propo-
sition 4.1) that the set of Nash equilibrium payoffs of the repeated game is contained in
the set of ε-coarse correlated equilibrium payoffs of the one-shot game.

Suppose σ is a strategy profile in Gδ such that v ≡ v(σ) /∈ ε-CCE(G) for ε = ‖u‖∞ ×
2ηδ2/(1 − δ). Then we know that �(v) > ε. Lemma 4.2 implies that

min
α∈�(A)∞

max
i

max
σi

[
vi(σi�α−i)− vi(α)

]
> ε

and so

max
i

max
σi

[
vi(σi�α−i)− vi(σ)

]
> ε�

where α is the nonresponsive strategy derived from σ as above. Thus, there exists a
player i and a permanent deviation for that player such that vi(σi�α−i)− vi(σ) > ε. Ap-
plying Lemmas 4.1 and 4.2 we have

vi(σi�σ−i)− vi(σ) = vi(σi�σ−i)− vi(σi�α−i)+ vi(σi�α−i)− vi(σ)

> −‖u‖∞ × 2η
δ2

1 − δ
+ ε

= 0�

Thus, σ is not a Nash equilibrium of Gδ. This completes the proof of Proposition 4.1.

4.4 Bound comparison

The bound in Proposition 4.1 is related to, but (weakly) tighter than, the bound obtained
in our earlier work, Awaya and Krishna (2016), which is called the � bound, as it depends
on a function � defined there. The � bound was obtained by considering a permanent
deviation to a single deviating action ai = aBR

i , a one-period best response to a∗ that
uniquely achieves an efficient payoff u∗. The new CCE bound derived in this section
also considers a permanent deviation, but both the identity of the deviator i and the
deviating action ai are chosen optimally.

In the prisoners’ dilemma, there is no difference in the bounds, but in many other
games, the resulting improvement can be substantial. For instance, in the game

b c d

b 8, 8 0, 0 −10, 7
c 0, 0 8, 8 −10, 10
d 10, −10 7, −10 0, 0

�

the � bound is trivial. It says merely that all equilibrium payoffs of the repeated game
satisfy 1

2v1 + 1
2v2 ≤ 8 (the symmetric efficient payoff in the one-shot game). The reason

the earlier � bound is trivial is that there is an efficient mixed action that places proba-
bility 1

2 on (b�b) and probability 1
2 on (c� c), resulting in a payoff of (8�8). But when (b�b)
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is played, player 1 has the incentive to deviate to d, and when (c� c) is played, player 2
has the incentive to deviate to d. The � bound does not allow the deviator to be chosen
dependent on which of (b�b) and (c� c) is played: the single deviator must be chosen
once and for all. Thus, the � bound underestimates the incentive to deviate. In this
game, however, the unique CCE payoff is (0�0) and the highest symmetric ε-CCE payoff
is (16ε�16ε). Proposition 4.1 now implies that equilibrium payoffs of the repeated game
satisfy 1

2v1 + 1
2v2 ≤ 16ε.

The improvement in the bound can be calculated in any game (both the function �

and the set of CCE payoffs can be computed via linear programs). To get some sense
of the improvement in a game of economic interest, consider a duopoly in which firms
compete by setting prices for differentiated products. This was the model studied in
Awaya and Krishna (2016). Suppose that the firms’ demands are linear in prices: for
i = 1�2 and j 	= i,

di =A− bpi +pj�

where b > 1. Note that since b > 1, the own-price effect on a firm’s demand is greater
than the cross-price effect. In this example, the difference in total profits given by the
two bounds when there is zero monitoring (η= 0) can be obtained in closed form:

� bound − CCE-bound =A2
(

1
8

1

b2(2b− 1)2
4b− 1
b− 1

)
�

The � bound for this game can be calculated using the derivation in Awaya and Krishna
(2016, p. 305). In the case of linear demand, the set of CCE of this game coincides with
the unique Nash equilibrium (see Gérard-Varet and Moulin 1978) and is easily calcu-
lated.

To get a sense of the improvement, suppose b = 2. Then the � bound says that when
the monitoring is poor in any equilibrium of the repeated game, the total profits of the
two firms cannot exceed approximately 44% of the gap between total monopoly profits
and total Nash profits. But the CCE bound is much tighter. It says that with poor moni-
toring, total profits in any equilibrium cannot exceed approximately 1% of the gap.

5. Equilibrium with communication

In what follows, we consider efficient actions a∗ that Pareto dominate some Nash equi-
librium of the stage game, that is, u(a∗) � u(αN), where αN ∈ ×i�(Ai) is a (possibly
mixed) Nash equilibrium of the stage game.19 In Section 5.1, we display a particular
strategy profile for the game with communication. Then in Section 5.2, we identify con-
ditions on the signal structure q and the discount factor δ that guarantee that the profile
constitutes an equilibrium which is nearly efficient (see Proposition 5.1). We empha-
size that our result is not a folk theorem. In the latter, the signal structure is held fixed
and the discount factor is raised sufficiently so that any feasible outcome can arise in

19This condition can be easily weakened to require only that u(a∗) Pareto dominate some convex com-
bination of one-shot Nash equilibrium payoffs.
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equilibrium. In our result, the discount factor is held fixed (perhaps at some high level)
and the monitoring structure is varied so that efficient outcomes can be sustained in
equilibrium.

In what follows, it will be convenient to assume that all players have the same set of
signals, that is, for all i and j, Yi = Yj , and without loss of generality, we suppose that for
all i, the set of signals Yi = {1�2� � � � �K}.

5.1 A simple equilibrium

We now construct a nearly efficient equilibrium with communication. Define YD to be
the set of (diagonal) signal profiles such that y1 = y2 = · · · = yn, that is, profiles in which
all players’ signals are the same.

The proposed equilibrium strategy resembles a trigger strategy and is very simple:
In period 1, play a∗

i and report the signal received truthfully. In any period t > 1, play a∗
i

and report the signal yti truthfully if all players have reported the same signal in all past
periods, that is, if all players have reported the same signal in every period s < t, that
is, if for all s < t, ys ∈ YD. Otherwise, play the one-shot Nash action αN

i and report yti
truthfully.

The strategy thus requires that all players unanimously agree on a signal so as to
continue cooperating. Any dissent results in infinite punishment. Another way to write
this, useful for later comparisons, is that the strategy calls on players to cooperate in
period t if and only if IYD(ys) = 1 in all periods s < t, where IYD is the indicator function
of the set of diagonal profiles YD.

Fix the set of signal distributions {q(· | a) : a 	= a∗} and suppose that for all a 	= a∗,
q∗(· | a) has full support.

As a first step, consider a signal distribution q∗ = q(· | a∗) that is degenerate on signal
profiles in which all the players’ signals agree and assigns positive probability to all such
profiles. Formally, q∗(y) > 0 if and only if y1 = y2 = · · · = yn. We call such a distribution
perfectly informative since any player’s signal provides perfect information about others’
signals. Thus, the terminology is consistent with that of Blackwell (1951).

First, suppose that all players follow the suggested strategies. Then the payoff of
player i is ui(a∗) since punishments are never triggered. We now argue that if no one has
deviated until now, then no player has any incentive (i) to misreport his signal or (ii) to
deviate to another action.

Suppose that the suggested strategies are being played and we are in a situation in
which in all past periods, players’ reports have agreed. If player i plays a∗

i in period t and
then receives the signal yi, she is sure that all other players’ signals are the same as hers.
Reporting yi truthfully is then strictly better than reporting any other signal since doing
the latter is sure to trigger a punishment. Thus, no player has the incentive to lie along
the equilibrium path. After a disagreement, the play is independent of the reports.

Finally, provided that the discount factor is high enough, no player has any incentive
to deviate if we are along the equilibrium path. This is because following any deviation to
ai 	= a∗

i , the distribution q(· | ai�a∗
−i) will assign positive probability to all signal profiles

and, in particular, to profiles where not all signals agree. Thus any deviation will trigger
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punishment with positive probability: even by optimally tailoring her report following
a deviation, a player cannot reduce this to zero. Provided the discount factor is high
enough, no deviation will be profitable and all the incentives can be made strict.

Thus we have argued that if q∗ is perfectly informative, there is a high enough dis-
count factor so that the repeated game with communication has an equilibrium that
is fully efficient. Now suppose that q∗ is nearly informative in the sense that it is close
to a perfectly informative distribution q0. Then by continuity we obtain the following
proposition.

Proposition 5.1. Fix {q(· | a) : a 	= a∗}. There exists a δ such that for all δ > δ and for
all perfectly informative q0 ∈ �(Y), there exists a γ such that if ‖q0 − q∗‖TV < γ, there is a
nearly efficient equilibrium of the game with communication.

Note that the distributions q(· | a) for a 	= a∗ are fixed and it is only q(· | a∗) that is
required to be nearly informative.20

Some shortcomings of the equilibrium The equilibrium constructed above, however,
has some shortcomings. First, with the suggested strategies, the likelihood that coop-
eration may break down even though no one has deviated may be substantial: players
will revert to noncooperation whenever there is any discrepancy in the reported sig-
nals. Such discrepancies occur, with probability γ, even if all players have conformed
to the equilibrium strategy. Second, the strategies guarantee truth-telling only when
‖q0 − q∗‖TV is small, that is, when q∗ is very close to being perfectly informative.

The first deficiency is particularly acute when the number of signals or the number
of players is large.

(i) To see this in the case of a large number of signals, suppose that there are two play-
ers and suppose, as a limiting case, that there is a continuum of signals in [0�1].
The probability that the signals of the two players are the same is clearly zero and
so the probability of continuing cooperation is zero as well. A discrete approxima-
tion to the continuous distribution will have the property that the probability of
cooperation is small. A similar phenomenon arises with a large number of play-
ers (for a fixed signal generating process). As an example, suppose the set of sig-
nals for all n players is Yi = {1�2} and players’ signals are independent conditional
on an underlying state ω ∈ {ω1�ω2}. Given ω = ωk, each player independently
receives the signal k with probability 1 − λ > 0�5 and the other signal 3 − k with
probability λ. Routine calculations show that the probability of continuing to play
a∗ if no one has deviated so far is (1 − λ)n + λn, which decreases rapidly to zero as
the number of players n increases.

(ii) The magnitude of the second deficiency can be seen by considering the following
example. Suppose that Yi = {1�2�3} and the joint distribution of signals is, for

20This means that the setting we study is not one with almost-public signals as in Mailath and Morris
(2002) or Hörner and Olszewski (2009).
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ε ∈ (0� 1
15 ],

q∗ =

1 2 3

1 1
2(1 − 15ε) 2ε 3ε

2 2ε ε 2ε

3 3ε 2ε 1
2(1 − 15ε)

� (7)

For this joint distribution, the indicator function (or unanimity rule) does not in-
duce truth-telling no matter how small the value of ε is. This is because for all ε,
q∗(2�2) < q∗(1�2) and so a player receiving the signal yi = 2 would be better off
reporting zi = 1. The reason is that if we fix a q0 satisfying q0(y) > 0 if and only if
all signals in y agree, then for any ε, the total variation distance between q∗ and q0

is at least 1
2q

0(2�2).

We now construct a different equilibrium that is not subject to these deficiencies.

5.2 Another equilibrium

As before, the new strategy profile is also similar to the trigger strategy above but with a
different trigger. The play in any period is governed by a state variable that takes on two
values—“normal” and “punishment.” The players’ strategies depend only on the state:
if the state in period t is normal, play a∗

i ; if the state is punishment, play the one-shot
Nash action αN . The state transitions from period t to t + 1 are determined solely by the
players’ reports of their signals in period t.

The initial state, in period 1, is normal. If the state is normal in period t and the
players report signals y at the end of the period, then the probability that the state re-
mains normal in period t + 1 is p∗(y); how the reports y are aggregated to yield p∗(y) is
specified in detail below. The punishment state is absorbing: if the state is punishment
in any period, it remains so in every subsequent period. Unlike the indicator function
used in the previous subsection, here the probability of punishment is not just 0 and 1.
Following a vector of reports, the probability of punishment could be positive but not 1.

It is simplest to suppose that following the exchange of signals, for every y ∈ Y , play-
ers have access to a public correlation device (a biased coin) that indicates whether the
state is normal (with probability p∗(y)) or punishment (with probability 1 − p∗(y)). In
fact, the public correlation device can be replicated by face-to-face communication by
making use of jointly controlled lotteries, as in Aumann, Maschler and Stearns (1995).

Specifically, for all i, consider the following strategy (σ∗
i � ρ

∗
i ) in the repeated game

with communication. The set of messages is the same as the set of signals, that is,
Mi = Yi.

The actions chosen according to σ∗
i are as follows:

• In period 1, choose a∗
i .

• In any period t > 1, if the state is normal, choose ati = a∗
i ; otherwise, choose αN

i .

The messages sent according to ρ∗
i are as follows:
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• In any period t ≥ 1, if the action chosen is ati = a∗
i , then report mt

i = yti .

• In any period t ≥ 1, if the action chosen is ati = ai 	= a∗
i and the signal received is yi,

then report mt
i ∈ arg maxzi∈Yi E[p∗(zi� ỹ−i) | yi], where the expectation is taken with

respect to the distribution q(· | (ai� a∗
−i)).

We will show that there exists a score function p∗(y) with the following key proper-
ties:

(a) Along the equilibrium path, p∗ induces truthful reporting of signals.

(b) If a player deviates from a∗
i in the normal state, then the expected value of p∗ falls

(the probability of going to the punishment state increases) regardless of his or her
report.

(c) If the signals are close to being perfectly informative along the equilibrium path,
then the probability of punishment is small.

The first two properties are required for the strategies outlined above to constitute
an equilibrium. The third property guarantees that the equilibrium is nearly efficient.
Figure 2 is a schematic depiction of the play resulting from the given strategies.

Until now we have made no assumptions about the signals and their distribution.
In particular, the bound on payoffs without communication, obtained in the previous
section, applies without any specific assumptions about the signal structure. In this
section, however, we use some specific features of the signals: that the distribution q∗ =
q(· | a∗) is “positively correlated” in a sense made precise subsequently.

Recall that the set of signals of any player is Yi = {1�2� � � � �K} and that this has a
natural order. Denote by E∗ all expectations with respect to q∗. We suppose that for all i
and j,

E∗[̃yj | yi] (8)

is a strictly increasing function of yi.21

We now study circumstances in which the strategies given above constitute an equi-
librium. This involves two steps. First, we construct a particular score function p∗ and
show that a player who conforms to the equilibrium strategy has no incentive to lie in
the communication stage. Next, we show that no player has any incentive to deviate
from the given strategy determined by the particular score function p∗.

Figure 2. Equilibrium strategy.

21This would be guaranteed, for instance, if the distribution q∗ were (strictly) affiliated.



536 Awaya and Krishna Theoretical Economics 14 (2019)

5.2.1 Optimality of reports We now turn to the construction of a score function p∗,
which will be used to support the equilibrium with communication. This requires that
players have the incentive to report their signals truthfully.

Given q∗ ∈ �(Y), consider a payoff function P∗ : Y → R, which is common for all
players, defined by

P∗(y) = 1
2

n∑
i=1

∑
j 	=i

yiyj −
n∑

i=1

∑
xi<yi

E∗
[∑
j 	=i

ỹj | xi
]

− 1
2

n∑
i=1

E∗
[∑
j 	=i

ỹj | yi
]
� (9)

where E∗ is the expectation operator with respect to the distribution q∗. We argue that if
all players have the same payoff P∗(y) when the reports are y, then they have the incen-
tive to report truthfully. The function P∗ is thus a potential function as in Monderer and
Shapley (1996). Some understanding of the function may be obtained by considering
the case of two players and suppose player 1’s true signal is yi = k. The difference in P∗
if player 1, say, reports yi = k+ 1 rather than yi = k, is then

�P∗
1 (k) = y2 − 1

2
(
E∗[̃y2 | ỹ1 = k] +E∗[̃y2 | ỹ1 = k+ 1])�

and this represents the error in player 1’s forecast—the conditional expectation—of
player 2’s signal averaged over ỹ1 = k and ỹ1 = k + 1. Player 1’s expected gain from re-
porting k+ 1 versus k conditional on his true signal is

E
[
�P∗

1 (k) | ỹ1 = k
] = 1

2
(
E∗[̃y2 | ỹ1 = k] −E∗[̃y2 | ỹ1 = k+ 1])�

and since the conditional expectations—the forecasts—are increasing in his own signal,
this is not profitable if the payoffs are given by P∗. Similarly, reporting k− 1 is not prof-
itable either and condition (8) guarantees that large deviations are unprofitable as well.
Proposition B.1 in Appendix B shows formally that if q∗ ∈ int�(Y) satisfies (8), then each
player has a strict incentive to tell the truth if others are doing so.

The normalized version of P∗, called the score function, is

p∗(y) = P∗(y)− minP∗

maxP∗ − minP∗ � (10)

where minP∗ (resp. maxP∗) denotes the minimum (resp. maximum) value of P∗ over Y .
Since Y is finite, the minimum and maximum exist, and because of Proposition B.1,
maxP∗ > minP∗. Thus, for all y, p∗(y) ∈ [0�1]. Note that p∗ is just an affine transforma-
tion of P∗ and so players’ incentives are not affected by this renormalization.

5.2.2 Optimality of actions Having shown that if a player has not deviated, then it is
optimal to report truthfully, we now turn to the optimality of actions. We first show that
it is optimal to follow the suggested strategies in the limit case where the distribution
q∗ = q(· | a∗) is perfectly informative: a player’s signal gives precise information about
others’ signals. We then show that the same is true if q∗ is near a perfectly informative
distribution.
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A limit case Recall that a distribution q ∈ �(Y) is perfectly informative if q(y) > 0 if
and only if y1 = y2 = · · · = yn. When the distribution is perfectly informative, then ev-
ery player’s individual signal provides perfect information about the signals of the other
players.

Now consider the function

P0(y) = −1
4

n∑
i=1

∑
j 	=i

(yi − yj)
2

and note that P0 is just P∗ when the signals are perfectly correlated.
Now suppose player i deviates to ai in period t and thereby induces the signal dis-

tribution q = q(· | ai�a∗
−i). Denote by E all expectations with respect to the new signal

distribution q with full support over Y . Further suppose that after the deviation, player
i follows the strategy of reporting that his signal is zi(yi) when it is actually yi. Denoting
by p0 the normalized version of P0 (analogous to (10)), it is easy to verify that no matter
what reporting strategy zi the deviating player follows, the expected score is

E
[
p0(zi(̃yi)� ỹ−i

)] = 1 + 1
2 minP0

(∑
j 	=i

E
[(
zi(̃yi)− ỹj

)2] +
∑
k	=i

∑
j 	=k�i

E
[
(̃yk − ỹj)

2])
< 1

because we have assumed that q has full support, and so E[(zi(̃yi) − ỹj)
2] > 0 and

minP0 < 0.
Player i’s expected payoff from such a deviation is, therefore,

(1 − δ)ui
(
ai�a

∗
−i

)
+ δ

[
E

[
p0(zi(̃yi)� ỹ−i

)]
ui

(
a∗) + (

1 −E
[
p0(zi(̃yi)� ỹ−i

)])
ui

(
αN

)]
� (11)

and this is strictly smaller than ui(a
∗) once δ is large enough.

Choose δi such that all possible deviations ai 	= a∗
i and all misreporting strategies zi

for i are unprofitable. Since both the actions and the signals are finite in number, such
a δi exists. The same is true for all players j. Let δ = maxj δj . Then we know that for all
δ > δ, the proposed strategy profile constitutes an equilibrium. Note that δ depends on
the distributions q(· | a) for a 	= a∗ and not on q(· | a∗).

Nearly informative signals We can complete the proof that the given strategies form an
equilibrium when q∗ is nearly informative by appealing to continuity.

Recall that after renormalization, we can suppose that each Yi = {1�2� � � � �K}. Recall
that YD denotes the set of all diagonal profiles, that is, profiles in which all players get
the same signal and that a perfectly informative distribution q0 ∈ �(Y) is one where
q0(y) > 0 if and only if y ∈ YD. Let Q0 ⊂ �(Y) be the set of all perfectly informative
distributions.

Fix q(· | a∗) ≡ q∗ ∈ int�(Y). First, find a perfectly informative distribution q0 ∈ Q0

such that

q0 ∈ arg min
q∈Q0

∥∥q∗ − q
∥∥

TV
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and let

γ = ∥∥q∗ − q0∥∥
TV� (12)

It is routine to verify that

γ = 1 −
∑
y∈YD

q∗(y)�

the total probability mass that q∗ assigns to nondiagonal signal profiles. Moreover,
γ = ‖q∗ −q‖TV for any q ∈Q0 such that for all y ∈ YD, q(y)≥ q∗(y). Thus, in the total vari-
ation metric, q∗ is equidistant from any perfectly informative distribution, which places
greater probability mass on all diagonal profiles. This means that given q∗ ∈ int�(Y), we
can always choose a q0 such that q0(y) > 0 for all y ∈ YD.

Now as γ → 0, Lemma B.1 in Appendix B guarantees that for all y ∈ Y , the score
functions

p∗(y) → p0(y)

and so

E∗[p∗(̃y)
] → 1

as well. Moreover,

max
zi

E
[
p∗(zi(̃yi)� ỹ−i

)] → max
zi

E
[
p0(zi(̃yi)� ỹ−i

)]
�

Let v∗
i denote player i’s payoff in the equilibrium described above. Then we have that

v∗
i = (1 − δ)ui

(
a∗) + δ

[
E∗[p∗(̃y)

]
v∗
i + (

1 −E∗[p∗(̃y)
])
ui

(
αN

)]
or

v∗
i = (1 − δ)ui

(
a∗) + δ

(
1 −E∗[p∗(̃y)

])
ui

(
αN

)
1 − δE∗[p∗(̃y)

] � (13)

Thus, there exists a γ such that for all γ < γ, for all i,

(1 − δ)ui
(
ai�a

∗
−i

)
+ δ

[
max
zi

E
[
p∗(zi(̃yi)� ỹ−i

)]
v∗
i +

(
1 − max

zi
E

[
p∗(zi(̃yi)� ỹ−i

)])
ui

(
αN

)]
< (1 − δ)ui

(
a∗) + δ

[
E∗[p∗(̃y)

]
v∗
i + (

1 −E∗[p∗(̃y)
])
ui

(
αN

)]
� (14)

We have established the strategies using that the score function also constitute an
equilibrium, thereby providing a different proof of Proposition 5.1 (under the additional
condition that E∗[̃yj | yi] is increasing). Of course, the threshold values δ and γ will be
different than if the simple equilibrium construction were used.
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Some advantages of the score function The equilibrium construction using the score
function p∗ overcomes some of the difficulties associated with the equilibrium using
indicator function IYD . First, the score function is more forgiving: a slight discrepancy
in the reported signals only increases the probability of punishment slightly. Second,
and perhaps more important, the score function guarantees truth-telling along the path
even if q∗ is far from being perfectly informative (assuming, of course, that E∗[̃yj | yi]
is strictly increasing). The indicator function guarantees truth-telling only when q∗ is
nearly informative. Specifically, the following statements hold:

(i) When there is a continuum of signals and q∗ has a positive density everywhere,
cooperation breaks down immediately if players use the indicator function to de-
cide on future play. This does not happen if future play is decided using the score
function: now a slight disagreement in reports results in only a slight increase in
the probability of future cooperation. Similarly, with a large number of players,
the indicator function results in a rapid breakdown of cooperation. Again this is
not the case with the score function.

(ii) Recall that for the q∗ defined in (7), the indicator function cannot induce truth-
telling no matter how small ε is. But the score function for this example is

p∗ =

1 2 3

1 1 3−31ε
4−20ε 0

2 3−31ε
4−20ε

1−13ε
1−5ε

3−31ε
4−20ε

3 0 3−31ε
4−20ε 1

and this induces truth-telling for all ε < 1
21 (this ensures that E∗[̃yj | yi] is increas-

ing). Moreover, the conclusion of Proposition 5.1 obtains (even though q∗ does
not converge to a perfectly informative q0 as ε goes to zero since q∗(2�2) → 0).

6. Benefits of communication

Suppose that a∗ is an efficient action and u(a∗) � u(αN), where αN is a Nash equilibrium
of the one-shot game. The result below provides conditions under which payoffs close
to u(a∗) can be achieved with communication and not without. This requires the game
to not have an efficient coarse correlated equilibrium.22

The first condition ensures that the bound developed in Proposition 4.1 is useful;
that is, if the quality of monitoring is zero (η = 0), equilibrium welfare without commu-
nication is bounded away from efficient payoffs u(a∗). Proposition 5.1 provides condi-
tions under which there exists an equilibrium with communication in which players re-
port their signals truthfully. When q(· | a∗) is perfectly informative, the equilibrium with
communication results in payoffs equal to u(a∗). We then have the following theorem.

22Most games of interest, such as the prisoners’ dilemma, chicken, Cournot oligopoly (with discrete
quantities), and Bertrand with or without differentiated products, satisfy the condition. Alternatively, the
rock–paper–scissors game in Example 3 does not satisfy the condition. In that example, α(rr) = α(pp) =
α(ss) = 1

3 constitutes a coarse correlated equilibrium (but not a correlated equilibrium) that is efficient.
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Theorem 6.1. Fix {q(· | a) : a 	= a∗} and let δ be defined by (11). For any δ > δ, there exist
η and γ such that if the quality of monitoring (see (2)) η < η and the informativeness of
q(· | a∗) (see (12)), γ < γ, then there is an equilibrium with communication whose welfare
exceeds that from any equilibrium without communication.

Note that since q(· | a) for all a 	= a∗ remain fixed and q∗ becomes increasingly cor-
related as γ goes to zero, the conditions of the theorem guarantee that signals are more
informative at a∗ than at actions a 	= a∗. This feature of the signal structure is stronger
than is necessary for the theorem to hold. In particular, it would be enough that q∗ is
more correlated than q(· | ai�a∗

−i) for all i and all ai 	= a∗
i . This is because only unilateral

deviations need to be considered. But as Example 2 shows, to obtain the conclusion of
the theorem, these features of the signal structure cannot be dispensed with entirely. We
end with an example where the mechanics of Theorem 6.1 can be seen at work.

Example 4. Again consider the prisoners’ dilemma

c d

c 2, 2 −1, 3
d 3, −1 0, 0

�

but now with a monitoring structure where for both players, the set of signals is Yi =
{y ′� y ′′� y ′′′} and the signal distributions are

q∗ ≡ q(· | cc) =

y ′ y ′′ y ′′′

y ′ 1
3(1 − γ) 1

6γ
1
6γ

y ′′ 1
6γ

1
3(1 − γ) 1

6γ

y ′′′ 1
6γ

1
6γ

1
3(1 − γ)

and

q ≡ q(· | ¬cc) =

y ′ y ′′ y ′′′

y ′ ( 1
3 −η)2 1

9 −η2 1
9 − 1

3η

y ′′ 1
9 −η2 ( 1

3 +η)2 1
9 + 1

3η

y ′′′ 1
9 − 1

3η
1
9 + 1

3η
1
9

�

The parameter γ is such that ‖q∗ − q0‖TV = γ, where q0 is a perfectly informative distri-
bution that places equal weight only on the diagonal elements. The parameter η < 1

3 is
such that for both i, ‖q∗

i − qi‖TV = η. Affiliation requires that γ < 2
3 . ♦

No-communication bound

For the prisoners’ dilemma, the set of ε-coarse correlated equilibrium payoffs is de-
picted in Figure 3. From Proposition 4.1, it follows that in any equilibrium of Gδ, i.e., the



Theoretical Economics 14 (2019) Communication and cooperation in repeated games 541

Figure 3. ε-CCE of the prisoners’ dilemma.

repeated game without communication, symmetric equilibrium payoffs v1 = v2 satisfy

vi ≤ 2 × ‖u‖∞ × 2η
δ2

1 − δ

= 12η
δ2

1 − δ
�

since in the prisoners’ dilemma, ‖u‖∞ = 3.

Equilibrium with communication

Routine calculations show that for the monitoring structure given above, the score func-
tion p∗ : Y1 ×Y2 → [0�1] corresponding to q∗ is

p∗ =

y ′ y ′′ y ′′′

y ′ 1 3
4 − 3

8γ 0

y ′′ 3
4 − 3

8γ 1 − 3
4γ

3
4 − 3

8γ

y ′′′ 0 3
4 − 3

8γ 1

and so the expected score if no one deviates is E∗[p∗(̃y)] = 1 − 3
4γ. Using (13), we then

obtain that the payoff in the equilibrium constructed in Section 5 is

v∗
i = 2(1 − δ)

1 − δ

(
1 − 3

4
γ

) �

Note that if instead of the score function p∗, we required that signals match in order
to continue cooperating (as in Section 5.1), then the probability of continuation, 1 − γ,
would be lower than with the score function. The resulting equilibrium payoff would be
lower as well.
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If player 1, say, deviates from cc in a normal state, then regardless of his true signal, it
is best for him to report y1 = y ′′ in the communication phase (assuming that both γ and
η are small, specifically, 4η+ 3γ < 2). This implies that after a deviation, the probability
of the state being normal in the next period is

max
z1

E
[
p∗(z1(̃y1)� ỹ2

)] =E
[
p∗(y ′′� ỹ2

)]
= 5

6
+ 1

4
η

(
1 − 3

2
γ

)
− 1

2
γ�

When used in (14), this implies that the suggested strategies form an equilibrium if and
only if

B ≡ (1 − δ)
(
u1(cc)− u1(dc)

) + δ
[
E∗[p∗(̃y)

] − max
zi

E
[
p∗(zi(̃yi)� ỹ−i

)]]
v∗
i

≥ 0�

Using the expressions derived above, it is easy to verify that a necessary condition for
this to hold is that δ≥ 3

4 .

Payoff comparison

For there to be gains from communication, i.e., equilibrium payoffs from communica-
tion exceed those from no communication, it is sufficient that

C ≡ v∗
i − 12η

δ2

1 − δ
≥ 0�

For δ= 0�8, Figure 4 depicts the set of parameters (γ�η) for which both B ≥ 0 (below
the B = 0 curve) and C ≥ 0 (left of the C = 0 curve) as the shaded region labelled R.
For (γ�η) ∈ R, there is an equilibrium with communication whose payoffs exceed the

Figure 4. In Example 4, if δ = 0�8, the conclusion of Theorem 6.1 holds when the monitoring
structure is in R.
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no-communication bound. For instance, if γ = 0�02 = η, equilibrium payoffs without
communication are at most 0�768, whereas with communication, there is an equilibrium
with payoffs of 1�887.

Our main result requires poor monitoring without communication (small η) and
high correlation of signals when the actions are efficient (small γ). The roles of the two
parameters are apparent in the example. A small η, of course, results in a tighter bound
on the set of equilibrium payoffs without communication. A small γ has two beneficial
effects when communication is possible. First, it means that the probability of staying
on the equilibrium path when no one has deviated is close to 1 (in the example, it is 1 −
3
4γ). Second, a small γ increases the ability of players to detect deviations. A measure of
this detection ability is E∗[p∗(̃y)] − maxz1 E[p∗(z1(̃y1)� ỹ2)] = 1

24(2 − 3γ)(2 − 3η) and this
is a decreasing function of γ. This illustrates how communication improves monitoring
when η and γ are small.

7. Conclusion

The general methodology of this paper is to compare the set of equilibria under two
regimes: a base case without communication and an alternative regime in which play-
ers can communicate. This methodology can be used in a variety of applications. As
already mentioned in the Introduction, one may ask whether and to what extent subjec-
tive peer evaluations incentivize workers. The general methodology—especially using
payoff bounds developed in Section 4—can also be used to address issues other than
communication. Antitrust authorities in many countries are interested in the effects
of multi-market interaction among conglomerates. One may ask what the social loss
from such multi-market contact is. There is a substantial literature on this subject, but
most of it supposes that conglomerates can perfectly monitor each other. With perfect
monitoring, however, multi-market contact seems to have minimal effects.23 How and
whether multi-market contact facilitates collusion in a private monitoring setup is an
open question, which may be addressed by first using our CCE-bound on profits with-
out such contact and then seeing whether there are equilibria with multi-market contact
that are better for the conglomerates.

Appendix A: No-communication bound

This appendix contains the proof of Lemma 4.1 from Section 4, which provides an es-
timate of the loss from punishment. In other words, it measures the payoff difference
to a permanently deviating player from facing the actual strategy versus the fictitious
nonresponsive strategy. Each of these generate different distributions over histories and
we begin by estimating the distance between these distributions. Lemma A.1 shows that
the distance between these distributions grows at most linearly. Lemma A.2 then derives
the bound in Lemma 4.1.

23Matsushima (2001) analyzes multi-market contact with public monitoring.
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For a fixed strategy profile σ , let μt(ht) be the probability that a history ht is realized.
Then

μt
(
ht

) = μt−1(ht−1)σ(
at | ht−1)q(

yt | at)�
where ht = (ht−1� at� yt). Let

μt
−i

(
ht

−i

) =
∑
hti

μt
(
ht

)
=

∑
ht−1
i

∑
ati

μt−1(ht−1)σ(
at | ht−1)q−i

(
yt−i | at

)

be the marginal distribution of μt on the private histories ht
−i = (ht−1

−i � a
t
−i� y

t
−i) of players

j 	= i.
Similarly, let μt be the probability of history ht that results when i permanently de-

viates to ai, that is, from the strategy profile (σi�σ−i). Then

μt
(
ht

) =
{
μt−1(ht−1)σ−i

(
at−i | ht−1

−i

)
q
(
yt | at) if ati = ai

0 otherwise.

Analogously, let μt
−i be the marginal distribution of μt on player −i’s private histories

ht
−i so that

μt
−i

(
ht

−i

) =
∑
hti

μt
(
ht

)
= μt−1

−i

(
ht−1

−i

)
σ−i

(
at−i | ht−1

−i

)
q−i

(
yt−i | ai�at−i

)
�

Lemma A.1. For all t, ‖μt
−i −μt

−i‖TV ≤ tη.

Proof. The proof is by induction on t. For t = 1, we have

μ1
−i

(
h1

−i

) −μ1
−i

(
h1

−i

) =
∑
a1
i

σ
(
a1)q−i

(
y1
−i | a1) − σ−i

(
a1

−i

)
q−i

(
y1
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≤ 1
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The last inequality follows from our assumption that the quality of the monitoring does
not exceed η.

Now suppose that the statement of the lemma holds for t − 1. We can write

� = μt
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(
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Combining terms, we have
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where we have used the fact that
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ati
σ(at | ht−1) = ∑
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Thus,∥∥μt
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The second term equals
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This completes the proof.

Lemma 4.1 is restated as follows.

Lemma A.2. Suppose i plays ai always. The difference in i’s payoff when others play σ−i

versus when they play the nonresponsive strategy α−i derived from σ satisfies

∣∣vi(σi�σ−i)− vi(σi�α−i)
∣∣ ≤ 2

δ2

1 − δ
η× ‖u‖∞�
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Proof. We have
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where the second inequality follows from the fact that given any two measures μ and

μ, |Eμ[f ] − Eμ[f ]| ≤ 2‖μ − μ‖TV × ‖f‖∞ for any f such that the expectations are well

defined (see, for instance, Levin et al. 2009).24

Now Lemma A.1 shows that ‖μt−1
−i −μt−1

−i ‖TV ≤ (t − 1)η. Thus, we obtain25

∣∣vi(σi�σ−i)− vi(σi�α−i)
∣∣ ≤ ‖u‖∞ × 2η(1 − δ)

∞∑
t=1

δt(t − 1)

= ‖u‖∞ × 2η
δ2

1 − δ
�

Appendix B: Communication equilibrium

In this appendix, we first show that the score function defined in (9) has the property that

every player has the strict incentive to report his private signal truthfully at the commu-

nication stage, provided that the player chose a∗
i , his part of the efficient action a∗ (see

Proposition B.1).26

A second result, Lemma B.1 below, establishes a continuity result used in the proof

of Proposition 5.1. It shows that the score functions associated with distributions that

are nearly informative are close to score functions of perfectly informative distributions.

Let Yi = {1�2� � � � �K}. Given a distribution q ∈ �(Y), consider the score function (as

in (9))

P(y) = 1
2

n∑
i=1

∑
j 	=i

yiyj −
n∑

i=1

∑
xi<yi

φi(xi)− 1
2

n∑
i=1

φi(yi)� (15)

Proposition B.1. Suppose q ∈ int�(Y) satisfies the condition that E[̃yj | yi] is increasing

in yi. Then the score function defined in (15) induces strict truth-telling.

Proof. Given q, define φi : Yi → R by

φi(yi) =E

[∑
j 	=i

ỹj | yi
]

as the expectation (with respect to q) of the sum of the other players’ choices, condi-

tional on ỹi = yi.

24The property that a linear function of the TV distance is an upper bound to the difference in payoffs
accounts for the fact that the bound in the statement of Lemma A.1 is linear in this distance.

25The bound below is, of course, an overestimate, since the TV distance between two measures is always
less than or equal to 1.

26The fact that all players have the same score distinguishes this result from that of Crémer and McLean
(1988).
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Suppose all players j 	= i report truthfully. When player i receives a signal yi and
reports y ′

i , his expected score is27

E
[
P

(
y ′
i� ỹ−i

) | ỹi = yi
] = y ′

iE
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2
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) −Ci(yi)

= y ′
iφi(yi)−
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2
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(
y ′
i

) −Ci(yi)�

where Ci(yi) are the terms that depend on the conditional distribution q(· | yi) ∈ �(Y−i)

but do not depend on player i’s action y ′
i . Alternatively, if after receiving a signal yi,

player i tells the truth and reports yi, his expected score is

E
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2
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Let
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P(yi� ỹ−i) | yi

] −E
[
P

(
y ′
i� ỹ−i
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First, suppose y ′
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since φi is strictly increasing.
Now suppose y ′

i > yi. Then

�= −(
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)
φi(yi)+

∑
yi<x≤y ′

i

φi(x)+ 1
2
(
φi

(
y ′
i

) −φi(yi)
)

=
∑

yi<x≤y ′
i

(
φi(x)−φi(yi)

) + 1
2
(
φi

(
y ′
i

) −φi(yi)
)

> 0�

again since φi is strictly increasing.

27Note that 1
2
∑

i 	=j yiyj = yi
∑

j 	=iyj + 1
2
∑

j 	=k yjyk, where in the last sum j 	= i and k 	= i.
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Thus, upon receiving the signal yi, player i has a strict incentive to report truth-
fully.

The next result establishes the continuity of score functions in the underlying distri-
butions.

Lemma B.1. Let {ql} ∈ int�(Y) be a sequence such that ql → q0 and q0 ∈ �(Y) is a per-
fectly informative distribution. Then the corresponding score functions pl → p0.

Proof. Analogous to (9), we have that

Pl(y) = 1
2

n∑
i=1

∑
j 	=i

yiyj −
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∑
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2
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ỹj
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where El denotes expectations under ql. Alternatively, notice that

P0(y)= 1
2

n∑
i=1

∑
j 	=i

yiyj −
n∑

i=1

∑
xi<yi

(n− 1)xi − 1
2
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because the right-hand side equals

1
2

n∑
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yiyj − (n− 1)
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(yi − 1)yi
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− 1
2
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= 1
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2
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y2
i
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4

n∑
i=1

∑
j 	=i
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2�

Comparing terms in (16) and (17) shows that as ql → q0, El [̃yj | ỹi = xi] → xi (recall
that each xi occurs with positive probability).

Finally, note that since maxP0 − minP0 > 0, lim(maxPl − minPl) > 0, and limpl is
well defined. Thus, pl (the normalized version of Pl) converges to p0 (the normalized
version of P0) as well.
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