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Strategic experimentation in queues
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We analyze the social and private learning at the symmetric equilibria of a queue-
ing game with strategic experimentation. An infinite sequence of agents arrive at
a server that processes them at an unknown rate. The number of agents served
at each date is either a geometric random variable in the good state or zero in the
bad state. The queue lengthens with each new arrival and shortens if the agents
are served or choose to quit the queue. Agents can observe only the evolution
of the queue after they arrive; they, therefore, solve a strategic experimentation
problem when deciding how long to wait to learn about the probability of service.
The agents, in addition, benefit from an informational externality by observing
the length of the queue and the actions of other agents. They also incur a negative
payoff externality, as those at the front of the queue delay the service of those at
the back. We solve for the long-run equilibrium behavior of this queue and show
there are typically mass exits from the queue, even if the server is in the good state.
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1. Introduction

This paper considers a model that combines individual experimentation, observational
learning, and payoff externalities. Such a combination arises in many economic and so-
cial contexts. Consider firms engaged in research and development (R&D) projects in
related areas. If one firm has a success, this is good news for other firms, since it indi-
cates that the entire area of research is worthwhile. However, the greater is the number
of firms that are competing in the area, the less lucrative is the value of any patent that
the firm secures. Similar concerns arise in other contexts, such as firms drilling for oil in
the same geographical area or lenders to venture capitalists in a nascent industry.

The model we analyze has a countable infinity of individuals who arrive sequentially
and join a queue for service. The queue grows at each new arrival and shrinks if service
occurs or if an individual decides to stop waiting and leaves. Individuals arrive uncertain
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about the state of the world, which determines whether service occurs. Service occurs
with positive probability only in the good state of the world. An individual has no direct
information about events taking place before her arrival, but learns subsequently by
observing the server activity and the behavior of other agents in the queue.

This is a situation faced by most of us as we approach counters for service or as
we wait for taxis in unfamiliar places. Are short taxi queues a good sign because they
indicate a high service rate, or a bad sign because informed individuals know that it is
better to walk or take public transport?

As she waits in line without observing service, an individual revises downward the
likelihood she attributes to service ever occurring. This is the usual private learning that
occurs in strategic experimentation models. Additionally, the behavior of other agents
in this game is itself a source of information. Social learning takes two different forms.
Once in the queue, an individual learns from the behavior (leave or keep queueing) of
those ahead of her in the queue. For instance, observing an agent ahead of her leave the
queue is bad news about the state of the world. A more subtle aspect of social learning
arises from the inference drawn by an arriving individual when she observes the queue
length. Given a strategy profile, the server state determines an invariant distribution
over queue lengths. Thus, the queue length observed on arrival is also informative about
the server state.

While the presence of other individuals—those in the queue who are ahead of her—
is beneficial for an individual since they generate positive information externalities, it is
detrimental in terms of payoffs, as the agent must wait for them to be served before she
is.1 Thus our model combines observational learning and payoff externalities in a novel
manner.

Our main results are as follows. We study equilibria in a class of strategies that com-
bine herding and individual experimentation in a natural way.2 The first agent in line
engages in optimal individual experimentation, choosing the amount of time she waits
for service before quitting the queue and taking the outside option. Later arrivals in the
queue copy the decisions of the first in line and quit whenever she quits. For each agent,
the decision whether to join the queue or balk upon arrival is determined by a threshold
queue length, and agents agree to join the queue only up to that threshold. We provide
sufficient conditions for the existence of a symmetric equilibrium in such strategies.

For later arrivals, quitting the queue when the first in line does is optimal in equi-
librium because the agents in the queue typically have nested information sets. Those
at the front of the line have spent more time in the system and know strictly more than
those behind them. This gives a novel equilibrium prediction: there is mass quitting of
the queue, even when the server is good.

We show that equilibria can take two qualitatively different forms. When agents are
sufficiently patient and/or good queues have sufficiently fast service, agents are willing
to join the queue even when it is very long. In equilibrium, the persistence of the first
in line reveals that she is sure that the state is good, and long queues can thus perfectly

1We study first-come–first-served (FCFS) queues.
2We do not assume that deviations must be within that class.
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reveal the good state of the world to new arrivals. At a good server, the system will typ-
ically alternate between successions of uninformed queues in which the agents renege
en masse once the uninformed first in line becomes too pessimistic about the server
state, and lengthy spells in which all individuals in the queue infer that the server is good
and are willing to let the queue grow long. These perfectly informed spells end if the en-
tire queue is served. At a bad server, we would only observe the cycle of uninformed
queues.

In contrast, agents are unwilling to let the queues grow long when they are less pa-
tient and/or good queues are slow. In this case, there is no queue length that perfectly
reveals the state to new arrivals, even if the first in line knows that the server is good. We
then say that the equilibrium exhibits imperfect revelation. The equilibrium behavior of
the queue at a good and at a bad server are then very similar. At a bad server, the queue
cyclically repeats the following behavior. It grows to a limited length and stagnates there
for a while before collapsing in a mass exit. At a good server, the queue would stagnate
longer in that second stage if the individuals in the queue know that the state is good,
but no further individuals are willing to join the queue.

This interplay of private and social learning means that, at our equilibria, relatively
quiet periods of private learning alternate with bursts of activity at which social learning
triggers herds. As a result, the queue lengths in our equilibria are more variable than
in the cases where agents do not behave strategically or if the behavior of other agents
in the queue were not observable. Hence, if designers care about the variability of the
queue length, they may wish to limit the visibility of the queue.

Finally, it is important to note that at our equilibria, learning never ends. Every time
the queue clears—either because the entire queue is served or because of mass exit—the
next individual to arrive is unable to free-ride on the actions of better-informed individ-
uals further up the line. The “social memory” is reset and individuals have to re-learn
what past generations may already have learnt. Consequently if queues tend to empty
out frequently, then on average there is poorer retention of past information. If queues
tend to fill up, then social memory is improved and it is less necessary for new arrivals
to duplicate past generations’ learning.

The paper is organized as follows. In Section 2, we set up our queuing model. In Sec-
tion 3, we introduce two concepts in the context of two auxiliary individual optimization
problems. These concepts are then used to analyze the game.

Section 4 provides the main results of this paper. Equilibria with perfect revelation
exist when agents are sufficiently patient. We derive necessary and sufficient conditions
for the existence of a particular equilibrium with imperfect revelation, and show that,
more generally, an equilibrium with imperfect revelation cannot exist if agents are too
patient. These results are summarized in Proposition 1 in Section 4.3.

In Section 7, we discuss sufficient conditions that exclude the existence of equilibria
in more general herding strategies. In Section 8, we show that faster servers encourage
individual learning but are worse for social memory. Section 9 concludes and provides
directions for further research.
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1.1 Related literature

Queues are a pervasive feature of modern life and individuals join queues even when
there is uncertainty about the service rate. When joining such a queue, an individual en-
gages in optimal experimentation: while standing in line, she can learn about the arrival
rate of service and, if this is poor, quit the queue and take her outside option. This prob-
lem also arises in many noneconomic situations3 (queueing for service in computer and
communication networks, pipeline scheduling).

In addition to this private experimentation, individuals in the queue can see the be-
havior of others and this is informative about the service rate. The presence of other
agents generates information externalities. Moreover, it is well known that in queues op-
erating under a first-come–first-served (FCFS) regime, an individual who decides to join
the queue imposes a negative payoff externality on those behind her (see Naor (1969)
and Hassin (1985)).

This paper attempts to consider both types of externalities simultaneously. While
combining these externalities leads to many analytical difficulties in general, queues
provide a tractable structure within which this problem can be tackled. Strategic exper-
imentation with information externalities has been widely studied (Bolton and Harris
(1999), Keller et al. (2005), Murto and Välimäki (2011)). More recently, Strulovici (2010)
and Thomas (2018) consider games of experimentation with direct payoff externalities.

Our model departs from much of the literature on herding and social learning4 in
that we assume that each agent observes only the actions of other agents after she joins
the queue.5 The queue length she observes upon arrival is her only summary statistic of
previous behavior. Models assuming that agents do not observe the entire history of pre-
vious actions include Banerjee and Fudenberg (2004) and Smith and Sorensen (2013),
where each new arrival observes only a random sample from the set of past observa-
tions, or Çelen and Kariv (2004), where each new arrival observes only her predecessor’s
action.

Research closely related to ours considers herding and social learning in the context
of queues. Debo et al. (2012) consider a model in which the length of a queue reveals
agents’ private information about the unknown quality of a product for sale and explore
a firm’s incentive to manipulate the service rate. In this model, the equilibrium joining
strategy is not of the threshold type: an uninformed individual joins a queue only if its
length is strictly below or strictly above a certain threshold. In the latter case, the queue
length reveals that the product is of high quality. Thus, as in our model, long queues
can be a fully informative signal of the good state of the world. In a similar setup, Debo
et al. (2018) explore a firm’s incentive to manipulate prices. They prove the existence
of a pooling equilibrium in which, even though the high and low quality firms set the
same price, the queue grows long only when the quality is high. Eyster et al. (2014) study
herding when a sequence of agents have the choice between two actions and bear a
congestion cost determined by how many agents have previously chosen the action.

3See Percus and Percus (1990) or Chaudhry and Gupta (1996) for examples.
4See Banerjee (1992), Bikhchandani et al. (1992), Smith and Sørensen (2000), Callander and Hörner

(2009). See Chamley (2004) for a survey.
5We thank an anonymous referee for this observation.



Theoretical Economics 14 (2019) Strategic experimentation in queues 651

In all these models, the underlying uncertainty is about the value of service. As a
result, all learning is done prior to the individuals’ decision whether to join the queue
(in Debo et al. (2012) and Debo et al. (2018)) or which action to take (in Eyster et al.
(2014)). Once an individual has made this decision, there is no further learning, public
or private. As a consequence, there is no experimentation and no reneging.

Reneging is an important feature of “real life” queuing decisions, and it occurs fre-
quently in the equilibrium of our model—even when the state of the server is good. In
the operations research literature on strategic behavior in queues (see Hassin and Haviv
(2003) for a summary), a few articles provide an explanation for reneging. The model
closest to ours is that of Mandelbaum and Shimkin (2000), where, with some probabil-
ity, an arriving customer is diverted from an M/M/s queue and directed to a faulty server
where she will never get served. Just as in our model, agents are uncertain about the ser-
vice speed. The main difference is that in their model, the queue is not observable. An
agent in the queue knows only that she has not yet been served, but she does not know
whether she has been diverted. She also does not observe whether others have been
served or whether others have left the queue. Because of this, a quitting agent would
never trigger a herd. Nevertheless, the fact alone that she spends time in the queue
without being served causes an agent to revise upward the probability she attributes to
having been diverted, and makes her more inclined to renege. In equilibrium an indi-
vidual might renege even if she has not been diverted.

An altogether different way to motivate reneging from an unobservable FCFS queue
is to assume that the conditions in the system deteriorate exogenously. In Hassin and
Haviv (1995), the value of being served exogenously drops to zero after some time T . In
Haviv and Ritov (2001), individuals’ waiting costs are increasing and convex with time.
Shimkin and Mandelbaum (2004) allow for more general nonlinearities in the waiting
cost function.

When the queue is observable, reneging from a FCFS M/M/s queue is harder to ex-
plain as equilibrium behavior. When other agents renege on the queue, an individual’s
prospects either remain the same or improve over time. In both cases, if it was worth
joining the queue, then it is worth staying until service is completed. Assaf and Haviv
(1990) and Altman and Shimkin (1998) show that reneging and balking may happen at
egalitarian processor sharing systems (where the service capacity is split evenly among
all agents present in the queue), because conditions in the system might deteriorate en-
dogenously due to a slowdown in the service rate as more and more individuals join the
queue. To our knowledge, our model is the first in which reneging is caused endoge-
nously at an observable FCFS queue, namely through private and public learning about
the service rate.6

When the entire queue is served and clears or if all agents in the queue leave en
masse, new arrivals find that there are no agents from which to learn. These events hap-
pen with positive probability so that in this game learning never stops. The frequency of
the events resetting social learning measures the persistence of social memory. Similar
issues, although in a different context, are discussed in Herrera and Hörner (2013).

6We thank two anonymous referees for this observation.
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Finally, in our equilibria, information can aggregate “in waves”: in between infor-
mational cascades and ensuing herds, there will be periods of relative inactivity during
which learning occurs gradually. Our model shares this feature with Bulow and Klem-
perer (1994), Toxvaerd (2008), and Murto and Välimäki (2011).

2. The model

Time is discrete, doubly infinite, and indexed by τ ∈ Z. At each date τ, one new agent ar-
rives at the queue.7 The state of the server of our queue is either good or bad. The server
is selected by nature once and for all at the outset of the game: nature selects the good
server with probability μ ∈ (0�1). A bad server never produces service capacity,8 and
gτ = 0 for all τ, where gτ ∈ N

0 = {0�1� � � �} denotes the service capacity produced by the
server at date τ. Only a good server produces service. In this state gτ is an independent
and identically distributed (i.i.d.) geometric9 random variable with commonly known
parameter α ∈ (0�1): Pr(gτ = i)= (1 − α)αi for i ∈N

0.
Let nτ ∈ N

0 be the number of agents in the queue at the beginning of period τ. The
queue discipline is first-come–first-served (FCFS), that is, agents are served in the order
of the queue. At each date τ, we distinguish three consecutive stages: service (S), exit
(E), and arrival (A). The S, E, andA stages proceed as follows.

Service. If nτ > gτ , then the agents at the first gτ positions in line are served at the
service stage of date τ and disappear from the queue. Each remaining agent observes
this and advances by gτ positions. If nτ ≤ gτ , the entire queue is served and the excess
service capacity, gτ−nτ , disappears. (It cannot be stored for use in subsequent periods.)

Exit. This is the only stage of date τ at which an agent still in the queue after the
service stage may leave the queue and take the outside option. (This is called reneging
on the decision to queue.) Any exit is observed by all agents who are still in the queue.
Multiple rounds of exit are allowed at this stage.

Arrival. At this final stage, one new agent arrives and observes the number of agents
remaining in the queue after the exit stage of date τ. This new agent can then choose
either to join the queue at the last position or to take the outside option immediately.
(Not joining the queue upon arrival is called balking.) The agent’s decision is observed
by all agents in the queue, although this information turns out not to matter. Once the
arrival stage is concluded, the game moves to the next time period, τ+ 1.10

7Our timing choice allows us to clearly disentangle the two aspects of social learning from one another
and from private learning. The assumption that arrival is deterministic simplifies our analysis of the agents’
belief updating, as it ensures the existence of closed-form expressions for the state-dependent stationary
distributions of queue lengths described in Section 5.1. See Wolff (1982) for properties of queues in contin-
uous time.

8In an alternative model where, in the bad state, service does occur, but at a slower rate than in the good
state, the steady-state behavior of queue lengths is more complicated. Since in such a model, observing
service does not conclusively reveal that the server is good, an agent might eventually renege on the queue,
even if she has previously observed service. This means that mass reneging can occur for many possible
queue lengths.

9This discrete-time geometric distribution service model for queues is widely used to model computer
communication systems: see, for example, Chaudhry and Gupta (1996).

10The ordering of these stages appears to be the most natural. However, there are other possible mod-
elling choices that could be made: If the S stage came after the E stage, then it would not be possible for
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While agents wait in line they receive a flow payoff of zero. An agent who is served
obtains an instantaneous payoff of w > 1. Any agent who exits, either initially or after
waiting for some time (balks or reneges), receives an instantaneous payoff normalized
to 1. Each agent discounts each unit of calendar time by the common discount factor
δ ∈ (0�1).

The agent who arrives at date τ is uncertain about the state of the server. Each agent
attaches prior probability μ to the server being in the good state. Agents in the queue at
the start of period τ observe gτ and the exit decisions of all agents at the exit stage. They
must decide when, if ever, to renege on the queue and irrevocably take the payoff of 1.
We analyze the steady state of this game.

In this model, agents must wait in line for at least one period before they have the
opportunity to be served. The average rate at which agents are served in the good state
is α/(1 − α). We define the parameter φ to be the inverse of the average service rate:

φ := 1 − α
α

� (1)

Much of the analysis below is done using φ rather than α. At a good server, if α> 1/2 (or
φ< 1), the average service rate is greater than the arrival rate, and queues tend to empty.
If α< 1/2 (φ> 1), queues tend to grow.

3. Two auxiliary optimization problems

We begin by describing the solutions to two individual optimization problems for an
agent at the nth position in the line. In both of these optimizations, the behavior of all
agents ahead of the nth in line is fixed: it is assumed that they remain in the queue until
they are served.

The first optimization problem answers the following question: given that agents
ahead of her never renege and she knows that the server is good, should an agent arriv-
ing at the nth position join the queue or balk and take the outside option? This individ-
ual problem is solved in Naor (1969). In our framework it determines M, the maximum
rational queue length at a server known to be good.

The second optimization is one of experimentation in the absence of social learn-
ing. It answers the following question: assuming that agents ahead of her never renege,
how many periods should an agent at the nth position, holding the beliefμ0

n on the good
server, wait without observing service before reneging on the queue and taking the out-
side option? We interpret the solution to this problem, N (n�μ0

n), as the nth in line’s will-
ingness to experiment, based only on her private observation of the server (in)activity.

The variables M and N (n�μ0
n) are used in later sections, when studying an agent’s

problem in our game of incomplete information.

those in the queue to exit immediately after bad news (no service) was observed; instead, they would need
to wait one period before they could exit. This would reduce the equilibrium amount experimentation. If
the A stage preceded the S stage, then new arrivals would immediately be able to observe the service be-
havior of the queue. This would make balking less likely and equilibrium queues would typically be longer.
Finally, if the A stage preceded the E stage, then joining the queue would become more attractive as new
arrivals could get to observe the exit behavior of others in the queue; again balking would be less common.
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3.1 The maximal rational queue length at a good server: M

Let Vn denote the expected payoff of an agent who knows that the server is in the
good state, is nth in line following the current period’s service stage, and assumes that
all agents ahead of her remain in the queue until served. It satisfies the recursion
Vn = (1 − α)δ∑n−1

t=0 α
tVn−t + αnδw, with V1 = (1 − α)δV1 + δαw. Solving iteratively,

Vn =ψnδw� where ψ := α

1 − δ(1 − α)� (2)

Each additional agent ahead of her in the queue discounts the nth agent’s payoff by
the factor ψ< 1.11 Hence, the parameter ψ captures the congestion cost imposed by an
agent on those behind her. This congestion cost is mitigated as the service rate increases
and it entirely disappears as α, and so ψ, approach unity. In contrast when service is
slow, the congestion costs become extreme.

The threshold M is the last position at which an agent accepts to join the queue at a
server known to be good. It is the integer that satisfies

VM+1 < 1 ≤ VM� (3)

It depends12 on the parameters α, δ, and w, but not the prior. The threshold M grows
without bound as congestion costs vanish, that is, as the agents become more patient
(δ→ 1) or as the service rate increases (α→ 1). These arguments are summarized in the
following lemma, where �x� denotes the integer part of x.

Lemma 1 (Naor (1969)). The last position at which an agent agrees to join the queue at a
server known to be good is given by

M =
⌊− ln(δw)

lnψ

⌋
� (4)

(a) We have M ≥ 1 if and only if V1 ≥ 1. (b) For all α ∈ (0�1), limδ→1 M = +∞. For all
δ ∈ [1/w�1), limα→1 M = +∞.

Proof. Part (a) is immediate from (3). Part (b) follows from the definition of ψ.

3.2 The nth in line’s private experimentation

We now turn to the nth in line’s private learning, or experimentation, when she is un-
certain about the server state and holds the belief μ0

n > 0 that the server is good.13 In
this optimization, we maintain the assumption that all agents ahead of her never renege
on the queue. As a consequence, the nth in line cannot learn anything from the actions

11Observe that ψk = E(δτ̃k ), where the random variable τ̃k is the arrival time of the kth service event, for
k ∈N.

12For notational convenience, we do not make the dependence on these parameters explicit.
13In Section 5.2 we describe how this belief is obtained at an equilibrium.
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of those ahead of her: there are no informational externalities. Hence, after m periods
without service, she reduces her belief that the server is good to μmn , where

μmn = μ0
n(1 − α)m

1 −μ0
n +μ0

n(1 − α)m � so that
μmn

1 −μmn
= (1 − α)m μ0

n

1 −μ0
n

� (5)

The first successful service event resolves the uncertainty and she learns that the server
is good (her belief jumps to unity), even though she herself may not immediately be
served. This generalizes the usual bandit problem to one where arrival of good news
does not immediately generate a reward. Here the reward (of service) for the agent ar-
rives at some random time after the arrival of the good news.

We want to determine the length of time that an uninformed nth in line will opti-
mally wait to learn the server state, given that those ahead of her never renege on the
queue. Our first step is to evaluate Wn, the nth in line’s expected payoff if the server is
revealed to be good (that is, at least one agent is served) at the current service stage. For
n= 1, this payoff isw and for n > 1,Wn is proportional to the value (Vn−1) of being n− 1th
in line at a good server:

Wn = (1 − α)(Vn−1 + αVn−2 + · · · + αn−2V1
)+ αn−1w= δ−1Vn−1 =ψn−1w� (6)

We can now describe the payoffUn(m�μ0
n) of an agent who joins the queue as the nth

in line, has prior μ0
n > 0, and adopts the following strategy. Wait m periods for a service

event and if one occurs during these m periods, never leave the queue, but if no service
is observed, then renege after them periods of server inactivity. The details ofUn(m�μ0

n)

can be explained as follows. First, the agent expects to observe no service overm periods
with probability 1 − μ0

n + μ0
n(1 − α)m. Second, she attaches probability μ0

n to the server
being good and, in that case, probability α(1 − α)s−1 to service first occurring in the sth
period, for each s = 1� � � � �m. She then receives the payoffWn discounted by δs :

Un
(
m�μ0

n

) := (
1 −μ0

n +μ0
n(1 − α)m)δm +Wnμ0

n

m∑
s=1

δsα(1 − α)s−1 (7)

= (
1 −μ0

n

)
δm +μ0

nVn −μ0
nδ
m(1 − α)m(Vn − 1)� (8)

The three terms on the right of (8) represent the agent’s payoff from taking her outside
option when the state is bad, her payoff from being served with certainty when the state
is good, and a correction to this second term that allows for the possibility that she may
be unlucky in the good state and not observe service in them periods she waits.

In the absence of social learning, the agent who is nth in line solves the problem
maxm∈N0 Un(m�μ

0
n). Her optimal behavior can be described in terms of a cutoff pos-

terior μ
n

such that it is optimal for the nth in line to experiment as long as μmn > μn
and to renege otherwise. Alternatively, it can be described in terms of N (n�μ0

n) :=
arg maxm∈N0 Un(m�μ

0
n) as the number of service failures she observes before reneging.

The lemma below describes both. Its proof is given in Appendix A.1.
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Lemma 2. For all n ∈ N and μ0
n ∈ (0�1), there exists a solution, m∗, to the problem

maxm∈N0 Un(m�μ
0
n). The solutionm∗ is unique for almost every μ0

n ∈ (0�1) and satisfies

m∗ = N
(
n�μ0

n

) :=
⌈(

ln(1 − α))−1 ln
(

1 −μ0
n

μ0
n

ψ(1 − δ)
α
(
ψnδw− 1

))⌉
+
� (9)

where 
x�+ denotes the smallest nonnegative integer greater than or equal to x. At this
solution, the agent chooses to renege when her posterior hits the cutoff

μ
n

= 1 − δ
δα
(
ψn−1w− 1

) � (10)

For nongeneric beliefs μ0
n ∈ (0�1) such that Un(m∗�μ0

n)=Un(m
∗ + 1�μ0

n), it is optimal to
experiment form∗ periods, or form∗ + 1 periods, or to randomize between the two.

4. Equilibrium of the queuing game

The next sections are organized as follows. First we describe the strategy σ∗ (Defini-
tion 1) that will be played by every agent at an equilibrium of this game. Our equilib-
rium concept is the symmetric steady-state Bayesian equilibrium defined in Section 4.2.
In equilibrium, the strategy σ∗ induces two stationary distributions of queue lengths:
one for each state of the server, good and bad. These are described in Section 5.1. When
an agent arrives at the queue and observes its current length, she uses these distribu-
tions to form her posterior belief about the server state, as described in Section 5.2. If
there exist queue lengths that perfectly reveal that the server is good, we say that the
equilibrium strategy exhibits perfect revelation. If every queue length is only imperfectly
revealing of the server state, we say that the equilibrium strategy exhibits imperfect rev-
elation. Section 6.1 deals with equilibria with perfect revelation and Section 6.2 deals
with those with imperfect revelation. Our results are summarized in Proposition 1 in
Section 4.3.

4.1 Strategy

At each period, an agent’s strategy maps her information into a binary choice, i.e.,
whether to be in the queue or to take the outside option.14 We consider the strategy
σ∗(q�N�M) defined below, where the probability q ∈ (0�1] and the nonnegative integers
N andM are parameters of σ∗.

Definition 1. The strategy σ∗(q�N�M).

• Upon arriving at the queue, an agent joins the queue if and only if she is at most
Mth in line.

14A formal definition of a strategy is given in Appendix B.1 and a formal definition of the strategy
σ∗(q�N�M) is given in Appendix B.1.1, both in the Supplemental Material, available in the supplementary
file on the journal website, http://econtheory.org/supp/1796/supplement.pdf.

http://econtheory.org/supp/1796/supplement.pdf
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• Once in the queue, if she observes service, she never reneges.

• Conditional on not observing service, two scenarios arise:
– If she joined the queue at the first position, then she does not renege for the first
N − 1 periods. With probability q ∈ (0�1], she reneges at the exit stage of the
Nth period; with probability 1 − q she reneges at the exit stage of the (N + 1)th
period.

– If there were agents ahead of her in the queue when she joined, then she reneges
on the queue if and only if the first in line does, and in the same period as the
first in line.

Under a strategy profile where every agent plays according to σ∗, no agent other
than the first in line autonomously reneges on the queue. An agent joining the queue
at the first position in line reneges after observing N (for q = 1) service failures. We say
that the first in line experiments or is uninformed if she has never observed service and
is therefore still uncertain about the server state. Since exactly one new agent arrives
every period, the queue at a bad server can never be longer than N (or N + 1 for q < 1).
The cases N ≤M and N >M are qualitatively different for q = 1 (for q < 1, the relevant
cases areN <M andN ≥M).15

ForN ≤M , agents continue to join the queue as long as the first in line experiments.
At a bad server, the queue therefore grows to lengthN before the first in line reneges and
the next period’s arrival joins the queue at the first position. An agent joining a queue
no longer than N does not know whether the agent currently first in line initially joined
the queue at a later position and moved up to first position when service occurred or
whether she joined the queue at the first position and has been waiting for service ever
since. In other words, an agent joining a queue no longer thanN does not know whether
the first in line has already observed service or is still experimenting.

This uncertainty is resolved once the queue reaches length N . If the first in line re-
neges after N periods without service, all those behind her infer that she had not yet
observed service and that she was an uninformed first in line. If the first in line does not
renege after N periods, all those behind her infer that she has previously observed ser-
vice and that she is informed that the server is good. Those behind her are now certain
that the server is in the good state, and will remain in the queue until served.

Similarly, an agent arriving at a queue in nth position, for N < n ≤M + 1, can infer
that the server is in the good state. In other words, the length of the queue itself is suf-
ficient to reveal the first in line’s information to agents arriving at positions n > N . We
therefore say that the strategy σ∗ exhibits perfect revelation whenN ≤M .

For M <N the queue never exceeds length M , even as the first in line continues to
experiment. If the first in line does not renege after N unsuccessful service events, the
agents queuing behind her learn that the server is in the good state. But even in that
event the queue never grows longer than M . So while the position, n= 1� � � � �M + 1, at
which an agent arrives at the queue remains informative about the server state, there
exists no n that conclusively reveals the server state. We say that the strategy σ∗ exhibits
imperfect revelation whenM <N .

15Our discussions in the remainder of this paper refer to the case q= 1 unless otherwise specified.
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4.2 Equilibrium

Consider the strategy σ∗ defined in Definition 1 and consider the symmetric strategy
profile where every agent plays according to the strategy σ∗.16 Under this profile the
queue length is bounded byM . Then, for every possible server state, the strategy profile
σ∗ induces a finite Markov chain on the queue lengths. Consequently, σ∗ determines a
unique pair of state-dependent invariant distributions over queue lengths. The strategy
σ∗, combined with the two server states, therefore defines a unique on-path17 belief sys-
tem, μ(σ∗), where agents’ beliefs regarding the underlying state of the server are defined
at every information set reached with positive probability under σ∗, and are derived us-
ing Bayes’ rule from the invariant distributions induced by σ∗.

We define a symmetric steady-state Bayesian equilibrium (henceforth equilibrium)
to be a strategy σ∗ played by every agent and an on-path belief system μ(σ∗) such that
the following statements hold:

E.1. Every belief in μ(σ∗) is derived using Bayes’ rule from the unique pair of invariant
distributions induced by σ∗.

E.2. At every information set arising with positive probability on the path of play un-
der σ∗, any action that is played with positive probability under σ∗ maximizes
the agent’s payoff, given her beliefs in μ(σ∗) and given that every other agent
adheres to σ∗.

Observe that E.2. does not require that deviations must be within the class of
strategies of Definition 1. We wish to show that there exists (q∗�N∗�M∗) such that
σ∗(q∗�N∗�M∗) constitutes an equilibrium.18 For every (q�N�M), the state-dependent
stationary measures of queue lengths induced by σ∗(q�N�M) are described in Sec-
tion 5.1. Let μ̄tn denote the belief about the server state formed in accordance with E.1. by
an agent having arrived at the queue at the nth position and having observed t periods
without service.19 The on-path inference under σ∗(q�N�M) is described in Section 5.2.

16In a slight abuse of notation, we henceforth use σ∗ to refer both to the individual strategy σ∗ and to the
symmetric strategy profile where every agent plays according to σ∗.

17Beliefs are determined at every information set reached with positive probability under the strategy
profile σ∗ and are not determined at information sets that are not reached under the strategy profile σ∗.

18 In our analysis, we can ignore beliefs off the equilibrium path for the following reason: a player’s off-
path behavior does not affect her payoff and does not affect the invariant distributions of queue lengths.
Moreover, if σ∗(q∗�N∗�M∗) is a symmetric steady-state Bayesian equilibrium, then we can find off-path
beliefs to support σ∗(q∗�N∗�M∗) as a perfect Bayesian equilibrium profile. In our game a perfect Bayesian
equilibrium is a strategy profile and a system of beliefs about the server state. The strategy profile must
be sequentially rational at every information set given the agents’ beliefs about the server state. The be-
liefs about the server state are defined by Bayes’ rule at every on-path information set and may be chosen
arbitrarily at any off-path information set. We can specify off-path beliefs as follows. If the first in line re-
neges at any queue length other than N∗ (for q∗ = 1), the belief of an agent behind her in the queue drops
to μ̃ (unless that agent had previously observed service), where μ̃ is chosen to be sufficiently low that it is
sequentially rational for the queue to clear. (For instance, μ̃ := μN

∗
1 .) If an agent observes someone other

than the first in line renege on the queue, even though the first in line does not, then her belief remains
unaffected by this deviation.

19In our notation we suppress the dependence of the equilibrium posterior on σ∗ but use upper bars to
denote these values. We write μ̄0

1(q�N�M) when we wish to emphasize the dependence on (q�N�M).
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We now describe the conditions that E.2. imposes on q∗,N∗, andM∗. We distinguish
the cases with perfect revelation and imperfect revelation. For the sake of exposition, let
us focus on pure strategies, where q∗ = 1.

4.2.1 Equilibrium with perfect revelation By definition, the strategy σ∗(1�N∗�M∗) ex-
hibits perfect revelation if there exist queue lengths that perfectly reveal that the server
is good. For q∗ = 1, this requiresN∗ ≤M∗. For each n= 1� � � � �M∗ + 1, consider the con-
dition E.2. applied to the agent arriving at the queue at the nth position in line, when all
other agents adhere to the strategy σ∗(1�N∗�M∗).

For n ≥N∗ + 1, the agent learns that the server is good upon arriving at the queue.
Given this belief, it must be optimal for her to join the queue and never renege if n≤M∗
and to balk if n =M∗ + 1. Thus, the agent faces the problem described in Section 3.1,
and by Lemma 1 she joins the queue (and never reneges) if and only if n≤ M. Thus, E.2.
requires thatM∗ equals M, defined in (4).

For n= 1, the agent forms the belief μ̄0
1 upon arriving at the queue. Given this belief,

it must be optimal for her to experiment for N∗ periods. The agent faces the problem
described in Section 3.2, and by Lemma 2, N∗ is optimal for her if and only if it equals
N (1� μ̄0

1) defined in (9).
For n = 2� � � � �N∗, the agent forms the belief μ̄0

n upon arriving at the queue. Given
this belief, it must be optimal for her to join the queue and herd on the first in line’s
actions. Reneging on the queue when the first in line reneges is clearly optimal: once
the first in line reneges, every agent behind her adopts her posterior belief and faces at
least as much congestion as her. Conversely, if the first in line does not renege after N∗
periods, those behind her learn that the server is good, and by Lemma 1 it is optimal for
them to stay in the queue until served.

What remains is the condition that no agent in the queue wants to autonomously
renege before the queue reaches length N∗, the point at which an uninformed first in
line reneges, thereby revealing that she is uninformed. The following tension arises.
Information arrives “faster” for those later in line than for the first in line: the agent who
joins the queue at the nth position needs to wait only N∗ − n+ 1 periods to obtain the
first in line’s information acquired over N∗ periods of experimentation. However, those
later in line also face more congestion, and the nth in line’s expected payoff if the server
were known to be good might be too low to make it worth her waiting for the first in line’s
information.

Let U∗
n(μ̄

0
n) denote the payoff under the strategy σ∗(1�N∗�M∗) for an agent joining

the queue at the nth position, as a function of her belief μ̄0
n upon joining the queue. The

equilibrium condition (A.iv) in the next lemma says that for an agent joining the queue
at position n = 2� � � � �N∗, the equilibrium payoff U∗

n(μ̄
0
n) must exceed the payoff from

reneging autonomously after m ≤ N∗ − n service failures, which is given by Un(m� μ̄0
n),

defined in (7).
The above results are summarized in the following lemma.



660 Cripps and Thomas Theoretical Economics 14 (2019)

Lemma A. The pure20 strategy σ∗(1�N∗�M∗) with perfect revelation satisfies the equilib-
rium condition E.2. if

(A�i) N∗ ≤M∗�

(A�ii) M∗ = M�

(A�iii) N∗ = N
(
1� μ̄0

1
(
1�N∗�M∗))�

(A�iv) U∗
n

(
μ̄0
n

(
1�N∗�M∗))≥Un

(
m�μ̄0

n

(
1�N∗�M∗)) for all n= 2� � � � �N∗ and

for allm= 0�1� � � � �N∗ − n+ 1�

The remainder of this section is dedicated to deriving the expression for U∗
n(μ̄

0
n) in

(12). Let η̄n denote the probability that an agent who joins the queue at the nth position
attaches to the event that the first in line has not previously observed service, condi-
tional on the server being good.21 This is therefore the probability that the nth in line
attaches to the event that she will renege together with the first in line once the queue
reaches length N∗, in which case her payoff is 1. If the first in line has previously ob-
served service (probability 1 − η̄n) so that she does not renege once the queue reaches
length N∗, the nth in line learns that the server is good and her payoff is Vn, defined in
(2). Consequently,

An = η̄n + (1 − η̄n)Vn ≥ 1 (11)

is the nth in line’s expectation upon joining the queue, conditional on the server being
good, of the payoff she will obtain once the queue reaches lengthN∗.

We can now decompose U∗
n(μ̄

0
n) as follows. The nth arrival expects the server to be

bad with probability 1−μ̄0
n, in which case she reneges with the first in line afterN∗−n+1

service failures. She attaches probability μ̄0
n to the server being good, and in that case,

probabilityα(1−α)s−1 to service first occurring in the sth period, for each s = 1� � � � �N∗−
n+ 1, yielding the payoff Wn discounted by δs. Finally, she attaches probability μ0

n(1 −
α)N

∗−n+1 to the server being good, but producing N∗ − n + 1 service failures. In this
event, the queue reaches length N∗, and the first in line’s behavior reveals whether she
is informed or uninformed. The nth in line’s resultant payoff is therefore An, defined
above. In summary,

U∗
n

(
μ̄0
n

)= (
1 − μ̄0

n

)
δN

∗−n+1 +Wnμ̄0
n

N∗−n+1∑
s=1

δsα(1 − α)s−1 + μ̄0
n(1 − α)N∗−n+1δN

∗−n+1An�

The above simplifies to

U∗
n

(
μ̄0
n

)= (
1 − μ̄0

n

)
δN

∗−n+1 + μ̄0
nVn − μ̄0

n(1 − α)N∗−n+1δN
∗−n+1(Vn −An)� (12)

20If q∗ ∈ (0�1), condition (A.i) becomes N∗ <M∗ and (A.iii) becomes N∗ = N (1� μ̄0
1(q

∗�N∗�M∗)). More-
over, condition (A.iv) must hold for all n= 2� � � � �N∗ + 1 and for all m= 0�1� � � � �N∗ − n+ 2. This accounts
for the fact that the nth in line obtains information from the first in line’s behavior after N∗ − n+ 1 service
failures, and after N∗ − n+ 2 service failures. Consequently, when q∗ ∈ (0�1), Un(N∗ − n+ 1� μ̄0

n) overes-
timates the nth in line’s payoff from reneging after N∗ − n + 1 service failures, for n = 2� � � � �N∗ + 1, and
condition (A.iv) evaluated atm=N∗ − n+ 1 is sufficient, but not necessary for equilibrium.

21In equilibrium, this belief is formed in accordance with E.1., as described in (14) in Section 5.2.
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4.2.2 Equilibrium with imperfect revelation By definition, the strategy σ∗(1�N∗�M∗)
exhibits imperfect revelation if every queue length is only imperfectly informative about
the server state. For q∗ = 1, this requiresN∗ >M∗.22 For each n= 1� � � � �M∗ +1, consider
the condition E.2. applied to the agent arriving at the queue at the nth position in line,
when all other agents adhere to the strategy σ∗(1�N∗�M∗).

For n =M∗�M∗ + 1, the agent cannot learn, merely by observing the queue length,
that the server is in the good state. Consequently, condition (A.ii) does not determine the
equilibrium parameter M∗, as it did under perfect revelation. Instead, the conditions
jointly pinning down M∗ are given subsequently in (B.ii). They can be understood as
follows.

First, an agent arriving at the queue at theM∗th position and forming the belief μ̄0
M∗

must prefer joining the queue (thus adhering to the equilibrium strategy) to balking.
Equivalently, her payoff from adhering to the equilibrium strategy, which is U∗

M∗(μ̄0
M∗)

as defined in (12), must exceed 1, which is her payoff from balking.
Second, an agent arriving at theM∗ + 1th position must find it optimal to balk (thus

adhering to the equilibrium strategy). Equivalently, her payoff from balking must be no
less than the payoff to her most profitable deviation from σ∗(1�N∗�M∗). Some care is
needed when describing her most profitable deviation, and the belief μ̄0

M∗+1 she forms
upon arrival. Indeed, observe that the agent arriving at the queue at the M∗ + 1th posi-
tion does not know whether she is the first, second, third,. . . , N∗ −M∗th agent to arrive
at that position behind the current first in line. If she joins the queue, observing the first
in line’s behavior will be instructive regarding this point.

In particular, suppose that the agent arriving at the M∗ + 1th position joins the
queue and observesN∗ −M∗ service failures. If the first in line does not renege after the
N∗ −M∗th failure, the agent at theM∗ + 1th position learns that she must have been the
first arrival at the M∗ + 1th position behind the current first in line. She also learns that
the first in line has not reneged despite having observed a total of N∗ service failures.
This means that the first in line must have previously observed service. The agent at
theM∗ + 1th position therefore learns that the server is good. Consequently, it becomes
optimal for her to remain in the queue until served.

Likewise, if at any point the agent observes service, it becomes optimal for her to
remain in the queue until served. Finally, if at any point she observes the first in line
renege, it is optimal for the agent at the M∗ + 1th position to renege in the same period
as the first in line.

Therefore, the most profitable deviation for the agent arriving at the M∗ + 1th posi-
tion must be one of the following strategies, parameterized bym.

• For 1 ≤ m ≤ N∗ −M∗, wait m periods. If a service event occurs during these m
periods, remain in the queue until served. If the first in line reneges on the queue
before any service event occurs, then renege in the same period as the first in line.

22When q∗ = 1, the strategy with N∗ = M∗ > 1 exhibits perfect revelation, since arriving at the M∗ +
1th position conclusively reveals that the server is good. When q∗ ∈ (0�1), the strategy with N∗ =M∗ > 1
exhibits imperfect revelation, since arriving at theM∗ + 1th position does not conclusively reveal the server
state. The strategy withN∗ =M∗ = 1 exhibits imperfect revelation for every q∗ ∈ (0�1].
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In all other cases (i.e., there arem failures and the first in line has not reneged), au-
tonomously renege after m periods. Intuitively, the agent arriving at the M∗ + 1th
position joins the queue but autonomously reneges, forgoing the chance to learn
from an informed first in line that the server is good. We let UM∗+1(m� μ̄

0
M∗+1)

denote the payoff to this strategy and give an expression for it in (A.56). The
second condition in (B.ii) requires that this deviation be unprofitable for every
m= 1� � � � �N∗ −M∗.

• Wait m =M∗ −N∗ periods. If a service event occurs during these m periods, re-
main in the queue until served. If the first in line reneges on the queue before any
service event occurs, then renege in the same period as the first in line. In all other
cases (i.e., there are m failures and the first in line has not reneged), remain in the
queue until served. Intuitively, the agent arriving at the M∗ + 1th position joins
the queue and remains in line long enough that she is certain to obtain the first
in line’s information, either because the first in line reneges (this can happen after
theM∗ + 1th in line has queued for 1� � � � �M∗ −N∗ periods) or because the first in
line does not renege after theM∗ + 1th in line has queued forM∗ −N∗ periods, re-
vealing that she is informed and that the server is good. Thus, theM∗ + 1th in line
stays in the queue long enough to herd on the first in line. We let UhM∗+1(μ̄

0
M∗+1)

denote the payoff to this strategy, and give an expression for it in (A.59). The third
condition in (B.ii) requires this deviation to be unprofitable.

Finally, for n <M∗, the agent’s problem is the same as with perfect revelation. Con-
ditions (B.iii) and (B.iv) below mirror conditions (A.iii) and (A.iv), respectively.

The above results are summarized in the following lemma.

Lemma B. The pure23 strategy σ∗(1�N∗�M∗)with imperfect revelation satisfies the equi-
librium condition E.2. if

(B�i) N∗ >M∗�

(B�ii)

⎧⎪⎪⎨
⎪⎪⎩
U∗
M∗
(
μ̄0
M∗
(
1�N∗�M∗))≥ 1�

max
m≤N∗−M∗ UM∗+1

(
m�μ̄0

M∗+1
(
1�N∗�M∗))≤ 1�

UhM∗+1
(
μ̄0
M∗+1

(
1�N∗�M∗))≤ 1�

(B�iii) N∗ = N
(
1� μ̄0

1
(
1�N∗�M∗))�

(B�iv) U∗
n

(
μ̄0
n

(
1�N∗�M∗))≥Un

(
m�μ̄0

n

(
1�N∗�M∗)) for all n= 2� � � � �M∗ and

for allm= 0�1� � � � �N∗ − n+ 1.

23If q∗ ∈ (0�1), the following adjustments are necessary so as to account for the event that the first in
line experiments for N∗ + 1 periods. First, there are now N∗ −M∗ + 1 possible instances of the arrival at
the M∗ + 1th position. Second, the agent arriving at the nth position, n = 2� � � � �M∗, must now be willing
to wait N∗ − n+ 2 periods to obtain the first in line’s information. Third, an agent arriving at the M∗ + 1th
position must prefer balking to waiting N∗ −M∗ and to waiting N∗ −M∗ + 1 periods so as to herd on the
first in line. In addition, strategies withN∗ =M∗ exhibit imperfect revelation, and are therefore admissible.
Hence, (B.i) becomesN∗ ≥M∗. Finally, (B.iii) becomesN∗ = N (1� μ̄0

1(q
∗�N∗�M∗)).
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4.3 Equilibrium existence

The main results of this paper are summarized in the next proposition. First we estab-
lish that an equilibrium with perfect revelation exists if agents are sufficiently patient.
Second, if agents are too patient, an equilibrium with imperfect revelation cannot exist.
Finally, equilibria with imperfect revelation exist for intermediate values of the discount
factor.24

Proposition 1. (i) Given any (α�μ), there exists δ(α�μ) < 1 such that an equilibrium
with perfect revelation exists for any δ ∈ (δ(α�μ)�1).

(ii) Given any (α�μ), there exists δ̄(α�μ) < 1 such that an equilibrium with imperfect
revelation cannot exist for any δ ∈ (δ̄(α�μ)�1).

(iii) Given any (α�μ), there exists a pair of adjacent intervals D∗
1(α�μ) and D∗

2(α�μ)

such that an equilibrium with imperfect revelation withN∗ =M∗ = 1 exists if and
only if δ ∈D∗

1(α�μ) ∪D∗
2(α�μ). If δ ∈D∗

1(α�μ), then q∗ = 1. If δ ∈D∗
2(α�μ), then

q∗ ∈ (0�1).

The first part of this result is proved and discussed in Section 6.1; the remaining parts
are proved and discussed in Section 6.2.

Figure 1 illustrates the equilibrium25 valuesM∗ andN∗ as a function of the discount
factor δ for three different values of α. Notice that there can be multiple equilibria (mul-
tiple values ofN∗ orM∗) for some (α�δ�μ). For each α, equilibria with imperfect revela-
tion exist only when the discount factor is small, whereas equilibria with perfect revela-
tion exist only when the discount factor is large. Our figures illustrate that the transition
is not sharp and that there are parameter values at which both types of equilibria ex-
ist.26 When the discount factor goes to 1, M∗ goes to infinity. The behavior of N∗ as δ
approaches 1 is discussed in Lemma 10 and depends on α. When α< 1/2,N∗ converges
to 1; when α= 1/2, N∗ converges to a strictly positive constant; when α > 1/2, N∗ goes
to infinity,27 although at a slower rate thanM∗.

In Section 7, we ask whether additional equilibria exist at which agents other than
the first in line can trigger a herd. We show that for α≥ 1/2 and δ sufficiently large, any
given strategy with more than one herding leader cannot be an equilibrium.

24If the discount factor is so low that V1 < 1, then, at the unique equilibrium, all agents arriving at the
queue immediately balk and take the outside option.

25Figure 1 is based on a Mathematica simulation that focusses on pure strategy equilibria, except when
α< 1/2 and δ is so large that only mixed strategy equilibria with perfect revelation exist. These haveN∗ = 1
and q∗ < 1: conditional on no service, the first in line is indifferent between reneging at the first or the
second exit stage following her arrival. (See Lemma 10.)

26For instance, when (α�μ�δ)= (0�7�0�9�0�6), there is an equilibrium with imperfect revelation that has
N∗ = 4 andM∗ = 3, and an equilibrium with perfect revelation that hasN∗ = 3 andM∗ = 5.

27This effect is not visible in our figures due to the coarseness of the grid used on the interval of possible
values of δ.
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Figure 1. Equilibrium values M∗ (open discs) and N∗ (dots) as a function of δ for α = 0�7,
α= 0�5, and α= 0�3 (from top to bottom), and for μ= 0�9. (The vertical lines emphasize values
of δ at which there are multiple equilibria.)
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5. On-path beliefs

5.1 Stationary distributions of queue lengths

In equilibrium, the strategy σ∗(q�N�M) determines the evolution of the queue length.
There are two discrete-time Markov processes to consider: one that arises if the server
is good and the other if it is bad. In this section we describe the stationary measure of
each process. These will shape the inference of new arrivals as described in Section 5.2.
We consider the stochastic process followed by the queue length at the beginning of the
arrival stage of each date τ ∈ N

0. We say that the queue has length n at date τ if the
agent arriving in the system at date τ arrives in the queue at the nth position—even if
that agent then balks.

Let (xn(q�N�M))
M+1
n=1 ∈ �(M + 1) denote the stationary probabilities of arriving at

the queue at the nth position under the strategy σ∗(q�N�M), conditional on the server
being in the bad state.28 At a bad server, the queue follows an almost deterministic pro-
cess. IfN ≤M , the queue grows by one agent each period and then shrinks to length 1 in
the period after reaching length N (if q = 1). Hence in the bad state, there is an ergodic
probability xn = x1 of arriving nth in line (for n ≤N) and zero probability of arriving at
the queue at any other position. If M <N , the queue grows to size M and then stays at
that size for a further N −M periods before shrinking to unity. Thus there is a(nother)
constant ergodic probability equal to x1 of arriving at a queue nth in line for n≤M and
an ergodic probability (N −M)x1 of arriving at theM + 1st position (and balking).

At a good server, the queue length follows a more complex Markov chain, and the
state of the process must be the position in the queue at which the latest agent ar-
rives and whether or not the first in line knows that the server is in the good state.
Allowing for q < 1, there are at most M + N + 2 states for this process: arrival at po-
sitions 1�2�3� � � � �M + 1 and the first in line knows the server is in the good state; ar-
rival at positions 1�2� � � � �N + 1 and the first in line is uncertain. The process govern-
ing the queue length under the strategy σ∗(q�N�M) at a good server has finite states
and is irreducible. Therefore it must admit a unique stationary measure. We define
(yn(q�N�M))

M+1
n=1 ∈ �(M + 1) to be the stationary probabilities of arriving at the nth po-

sition in line under the strategy σ∗(q�N�M), conditional on the server being in the good
state.

The exact expressions for (xn(q�N�M))
M+1
n=1 and (yn(q�N�M))

M+1
n=1 are given in

Proposition A.1 in Appendix A.2. The stationary measure at a good server admits three
qualitatively different forms depending on φ. These are described in the next subsec-
tion. Some readers may prefer to proceed directly to Section 5.2, which describes an
agent’s belief updating when arriving at the queue.

5.1.1 Effect of φ on the good-state stationary measure This section illustrates29 how
the stationary measure at a good server varies with the inverse average service rate,
φ, defined in (1). We use the shorthand30 φ∗

N > 1 to denote the unique solution to
[φ/(1 +φ)]N+1 = (φ− 1)/(φ+ q).

28Where �(M) := {x ∈ R
M+ :∑i xi = 1}.

29All numerical illustrations of the stationary measure in this section are for the value q= 1/2. The values
ofN andM are chosen for clarity of illustration and are not necessarily equilibrium values.

30Omitting the dependence on q.
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Figure 2. The stationary measure of the queue length conditional on the server being in the
good state withφ< 1 under perfect revelation (left panel) and imperfect revelation (right panel).

Figure 3. The stationary measure of the queue length conditional on the server being in the
good state with φ > φ∗

N under perfect revelation (left panel) and imperfect revelation (right
panel).

Decreasing when φ < 1 In this case, service is faster than arrivals, so shorter queues
are more likely than longer ones, as is apparent in Figure 2. The effect of fast service
is further exacerbated by the “renewal” effect of the uninformed first in line reneging
after N unsuccessful service events, causing the entire queue to clear. The stationary
distribution therefore exhibits exponential decline under imperfect revelation and for
the values n = 1� � � � �N under perfect revelation. The jump down between n = N and
n=N + 1 occurs because such a transition is possible only if the first in line knows that
the server is good, and similarly for the jump between N + 1 and N + 2 when q < 1. For
n=N + 2� � � � �M , the distribution declines exponentially.

Increasing when φ > φ∗
N In this case service is so slow as to outweigh the renewal

effect. The stationary measure is therefore increasing over its entire support, as illus-
trated in Figure 3. Notice that as M increases without bounds, y1 tends to zero. (See
Lemma A.1.) Consequently, if long queues are most likely at a good server, then arriving
at the first position in line makes an agent almost certain that the server is bad.

On the interval [1�φ∗
N ] When φ= 1, service is exactly as fast as arrivals. If agents never

reneged, but waited in line until served, then every queue length up to M would be
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equally likely. ForN <M , this is in fact the case when n≥N+2, and the stationary mea-
sure is uniform over these values. When 1 ≤ n ≤ N or when M ≤ N , the renewal effect
is a force for emptying the queue, and the stationary measure is linearly decreasing over
these values. For φ=φ∗

N , service is exactly slow enough to just offset the renewal effect.
The stationary measures in these knife-edge cases, as well as on [1�φ∗

N ], are discussed
in the Supplemental Material. Observe that the interval [1�φ∗

N ] vanishes (φ∗
N → 1) as

N → ∞.

5.2 Equilibrium posteriors and inference on queue lengths

In this section, we describe the agents’ posterior beliefs and inference in equilibrium.
We then state a result that describes the relationship between private and social learn-
ing: Lemma 3 shows that, at any point in time, an agent later in the queue is more opti-
mistic than those ahead of her, conditional on no agent having yet observed service.

Let μ̄tn denote the belief about the server state formed, in accordance with E.1., by
an agent having arrived at the queue at the nth position and having observed t periods
without service. The upper-bar notation emphasizes the dependence on the strategy
σ∗(q�N�M).31

Consider μ̄0
n, the belief formed by an agent upon arriving at the nth position. In equi-

librium, the agent believes that the system is in the steady state induced by σ∗(q�N�M).
Therefore, μ̄0

n is based on the state-dependent stationary measures of queue lengths,
(yn)

M+1
n=1 and (xn)

M+1
n=1 , described in Section 5.1. For every n≤M + 1, Bayes’ rule gives

μ̄0
n := μyn

μyn + (1 −μ)xn � (13)

For N < n ≤ M + 1, we have xn = 0 so that μ̄0
n = 1. For n ≤ min{N�M}, it was argued

above that xn is independent of n. Therefore, μ̄0
n depends on n only through yn. As μ̄0

n

is increasing in yn, the results on the form of the stationary measure in the previous
section imply that μ̄0

n is decreasing, constant, and increasing in n for φ < φ∗
N , φ = φ∗

N ,
and φ>φ∗

N , respectively.
Now consider μ̄tn, the posterior of the agent at the nth position, n≤N , who has ob-

served t unsuccessful service events. It is derived from μ̄0
n according to (5).

Recall that we defined η̄n to be the probability that an agent arriving at the queue at
the nth position, for n ≤M , attaches to the first in line being uninformed, conditional
on the server being good. In equilibrium, we have

η̄n = (1 − α)n−1y1

yn
� (14)

The numerator gives the stationary probability of arriving at the nth position behind a
first in line who has never observed service, conditional on the server being in the good
state. This is the event that an agent joined the queue at the first position in line and
subsequently observed n− 1 periods without service.

31In this section, to lighten notation, we omit the dependence of the beliefs (μ̄tn and η̄n) and of the sta-
tionary measures (yn and xn) on (q�N�M).
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The next lemma compares agents’ posterior beliefs along any given queue under
the strategy σ∗(q�N�M). This comparison is not trivial. Those ahead of the nth in line
may (for n ≤ min{N�M} and φ < φ∗

N ) have been more optimistic than her when they
joined the system because they arrived at a shorter queue. However, they have been
waiting in the queue for longer and unless they have observed service, waiting will have
depressed their belief about the server state. We show that, regardless of how much time
she has spent in the queue, an agent is always more optimistic than those ahead of her,
conditional on no agent having yet observed service.

The intuition for this result follows from the nesting of agents’ information parti-
tions. The n + 1th in line has observed strictly less than the nth in line, so her beliefs
about the server state are an expectation of the nth in line’s beliefs. This expectation
places positive weight on the nth in line knowing that the server is good; that is, μ̄t−1

n+1
is an average of 1 and μ̄tn < 1. Such an average must be above μ̄tn. In fact, if one took
a snapshot of the posteriors held by the agents in a queue at any calendar date τ, the
sequence of posteriors would be the realization of a martingale. The lemma is proved in
Appendix A.3.

Lemma 3. If μ̄tn < 1, then μ̄t−1
n+1 > μ̄

t
n.

6. Equilibrium existence

6.1 Equilibria with perfect revelation

In this section, we provide a lower bound on δ above which the strategy σ∗(q∗�N∗�M∗)
satisfies the equilibrium conditions given in Lemma A and, thus, constitutes an equilib-
rium with perfect revelation; that is, we provide a sequence of lemmas to prove Propo-
sition 1(i).

The next lemma, proved in Appendix A.4, establishes the existence, for every M ≥
1, of a number N∗ of periods for which the first in line experiments that satisfies the
equilibrium condition (A.iii). Observe that this solution may have N∗ <M or N∗ ≥M .
Lemma 5 gives sufficient conditions under whichN∗ <M.

Lemma 4. For every M ≥ 1 and (α�δ�μ) ∈ (0�1)3, there exists a pair (q∗�N∗) with q∗ ∈
(0�1] andN∗ ≥ 0 such thatN∗ = N (1� μ̄0

1(q
∗�N∗�M)).

This result hinges on the following observation, formalized in Lemma A.1. Fix M
and consider μ̄N1 (1�N�M), which is a first in line’s belief after N service failures, de-
rived according to Bayes’ rule from the stationary measures of queue lengths induced by
the strategy σ∗(1�N�M). Increasing the duration N of experimentation by other first in
lines (thereby changing the state-dependent stationary measures) ultimately depresses
μ̄N1 (1�N�M). This is the case even though the effect of a higherN on μ̄0

1(1�N�M)—a first
in line’s belief upon joining the queue—might be positive. Thus, enough bad news from
private learning ultimately dominates any good news from social learning. We show
that, as a result, there exists a pair (q∗�N∗) such that μ̄N

∗
1 (q∗�N∗�M) just hits the first in

line’s threshold μ
1

defined in (10).
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For any given (α�δ�μ) and M , the pair (q∗�N∗) is not necessarily unique.32 The
possibility of multiple equilibria arises because longer experimentation by other firsts
in line can increase μ̄0

1—the belief on the good state formed upon arriving at the first
position in line—in turn making longer experimentation optimal. Lemma A.1(b) shows
that this process cannot continue indefinitely, implying that the set of possible equi-
librium values of (q∗�N∗) is bounded. But there is no clear monotonicity that ensures
uniqueness.

The next lemma, proved in Appendix A.5, provides a sufficient condition under
which the equilibrium conditions (A.i) and (A.iv) are satisfied.

Lemma 5. LetM∗ = M andN∗ = N (1� μ̄0
1(q

∗�N∗�M∗)). If

VN∗ >
α2

α2 −ψ(1 − δ) > 0� (15)

then (a) equilibrium condition (A.iv) holds and (b) equilibrium condition (A.i) holds.

The equilibrium condition (A.iv) requires that no agent in the queue wants to au-
tonomously renege before the queue reaches length N∗, the point at which an unin-
formed first in line reneges, thereby revealing that she is uninformed. Equivalently, the
nth agent in line must agree to wait for N∗ − n+ 1 periods before she is rewarded with
learning the first in line’s information. The sufficient condition (15) ensures that the nth
agent in line does not want to autonomously renege before the queue reaches lengthN∗,
even if the informational benefit from obtaining the first in line’s information is ignored.33

Equivalently, it says that the nth agent in line is willing to experiment for N∗ − n+ 1 pe-
riods, based solely on her own observation of the server (in)activity and on her belief
μ̄0
n(q

∗�N∗�M∗) formed upon joining the queue. It follows that (15) is sufficient for the
agents at positions 2� � � � �N∗ to want to herd on the first in line and, therefore, for equi-
librium condition (A.iv) to hold. Finally, we show that when (15) holds, we haveN∗ <M∗
so that condition (A.i) is satisfied.

Lemma 6 ensures that for any w > 1, α, and μ, there exists a critical value of δ such
that (15) holds for all discount factors above the critical value. This is the case, in par-
ticular, when δ approaches unity so that congestion costs vanish, even though a higher
discount factor can mean that an uninformed first in line experiments for longer. The
set of parameters satisfying Lemma 6 is illustrated in Figure 4. The lemma is proved in
Appendix A.6.

Lemma 6. Let M∗ = M and N∗ = N (1� μ̄0
1(q

∗�N∗�M∗)). For every (α�μ) ∈ (0�1)2, (15) is
satisfied when

δ > 1 + 1
e ln(1 − α)

1

(1 − α)2
αwμ

1 −μ� (16)

32Figure 1 features several examples of multiple equilibria.
33Focussing on sufficient conditions that ignore the informational benefit derived from observing the

first in line allows us to make an argument that does not depend on the calculated values of the stationary
distribution in the good state, but instead relies on bounds on that stationary distribution.
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δ > 1 − α2� (17)

δ > δ0(α�μ)� (18)

where δ0(α�μ) is the unique value of δ ∈ (0�1) satisfying

lnw= (1 − δ)

⎛
⎜⎜⎝4φ+

ln(1 − δ)− ln
wαμ

1 −μ + ln
[
−e

2
ln(1 − α)

]
1
2

ln(1 − α)
φ+ 1

α3(1 − α)

⎞
⎟⎟⎠− lnδ�

Figure 4. The shaded region represents the set of parameter values (α�δ) ∈ (0�1)2 that satisfy
Lemma 6. The dotted line represents condition (16), the dashed line represents condition (17),
and the solid line represents condition (18). We use μ = 0�1, μ = 0�5, and μ = 0�9, from left to
right, and w= 4.

In summary, Lemmas 4, 5, and 6 together prove that there exists a critical value of the
discount factor δ such that an equilibrium with perfect revelation exists for all discount
factors above the critical value. This establishes Proposition 1(i).

6.2 Equilibria with imperfect revelation

In this section, we complete the proof of Proposition 1(ii) and 1(iii). First, in Lemma 7,
we establish the existence of an equilibrium with N∗ =M∗ = 1, when V1 ≥ 1.34 Then, in
Lemma 8, we show that an equilibrium with imperfect revelation cannot exist for high
values of δ.

At an equilibrium with N∗ =M∗ = 1 and q∗ = 1, all agents arrive at the first position
in line. This event is, therefore, not informative about the server state, and μ̄0

1(1�1�1)=
μ, so that an agent arriving at the first position decides whether to join the queue based
solely on her prior. Given (α�μ), it is optimal for her to join the queue if and only if
she is sufficiently patient. At the same time, she must be sufficiently impatient to find

34Recall that when the value V1 of being first in line at a server known to be good is less than 1 (the value
of the outside option), it is optimal for any agent arriving at the queue to immediately balk and take the
outside option, and the unique equilibrium hasM∗ =N∗ = 0.
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Figure 5. For each value of α, the light shaded region represents the interval D∗
1(α�μ), and the

dark shaded region the intervalD∗
2(α�μ). We useμ= 0�05,μ= 0�5 andμ= 0�95, from left to right.

(Illustrated for w= 4.)

it optimal to renege on the queue after one service failure. Both these conditions hold
when δ ∈D∗

1(α�μ), where

D∗
1(α�μ) :=

(
1

1 + a�
1

1 + b
]
� with a= α(w− 1)μ�b= a 1 − α

1 − αμ� (19)

At an equilibrium with N∗ =M∗ = 1 and q∗ ∈ (0�1), the first in line must be indiffer-
ent between reneging after N∗ = 1 service failure and experimenting one more period.
This is the case if and only if δ= δ1(α�μ�q

∗), where

δ1(α�μ�q) := 1

1 + a (1 − α)(2 − q)
1 − αμ+ (1 − α)(1 − q)

∈D∗
2(α�μ)� (20)

For each δ ∈ D∗
2(α�μ), defined in (21) below, there exists a q∗ ∈ (0�1) that solves this

equation and, therefore, supports an equilibrium withN∗ =M∗ = 1. At such an equilib-
rium, it is possible for an agent to arrive at the second position in line, and the equilib-
rium requires that this agent balks. Because of the simple form taken by the stationary
distributions of queue lengths, the posterior belief μ̄2

0(q
∗�1�1) she forms upon arrival

is equal to the posterior belief μ̄1
1(q

∗�1�1) held by the first in line after observing one
service failure. The threshold μ

n
defined in (10) increases with n, so if the first in line

is indifferent between reneging after one or two service failures, then balking is strictly
optimal for the agent arriving at the second position in line.

Finally, we define

D∗
2(α�μ) :=

(
1

1 + b�
1

1 + c
)
� with c = a 1 − α

1 − 1
2
(1 +μ)α

� (21)

The adjacent intervals D∗
1(α�μ) and D∗

2(α�μ) are illustrated for different values of the
prior μ in Figure 5. The proof of Lemma 7 is given in Appendix A.8.
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Lemma 7. Fix (α�μ) ∈ (0�1)2. An equilibrium with M∗ =N∗ = 1 and q∗ = 1 exists if and
only if δ ∈D∗

1(α�μ). An equilibrium with M∗ =N∗ = 1 and q∗ ∈ (0�1) exists if and only if
δ ∈D∗

2(α�μ); in this case, q∗ is the unique solution to δ= δ1(α�μ�q
∗).

Lemma 8 shows that for σ∗(q∗�N∗�M∗) to constitute an equilibrium with imperfect
revelation, the discount factor δ must be bounded away from 1. This is intuitive: at
an equilibrium with imperfect revelation, agents must be impatient enough to refuse
to join long queues. The second and third equilibrium conditions in (B.ii) stipulate that
the agent arriving at theM∗ + 1th position must balk and, in particular, that she does not
wish to join the queue and experiment for m = 1 period. However, when the discount
factor is close to 1, waiting is virtually costless. A contradiction. Lemma 8 is proved in
Appendix A.9.

Lemma 8. Given any (α�μ) ∈ (0�1)2, there exists δ̄(α�μ) < 1 such that an equilibrium
with imperfect revelation cannot exist for any δ ∈ (δ̄(α�μ)�1).

7. Other equilibria?

In this section, we briefly discuss whether other symmetric steady-state Bayesian equi-
libria might exist for this game; we refer the reader to the Supplemental Material for
the details. We consider strategies under which the queue length is bounded. Hence,
the stationary distributions (with appropriately enlarged state spaces) are well defined
and an agent’s inference upon arrival at the queue proceeds as in the previous sections.
Moreover, since agents’ information sets are nested, it remains true that whenever an
agent sees her predecessor renege, she also finds it optimal to renege. We therefore con-
sider potential equilibria in the class of “herding” strategies, where later arrivals in the
queue herd on the decisions of those ahead of them. These generalize σ∗ in a natural
way.

Herding strategies focus on particular agents at particular positions in the queue
whose actions are informative. We call these agents herding leaders. The strategy of a
herding leader is to pick a number of periods to experiment, and to renege if no service is
observed before that time has elapsed or if someone ahead of her reneges. The strategy
of a herding follower is to focus on the closest herding leader ahead of her in the queue,
and to renege if and only if she does. Once in the queue, a herding leader’s decision
to renege depends on her private learning and the publicly observable actions of other
leaders. A herding follower’s decision to renege depends only on the publicly observable
herding leaders’ actions.

In Appendix B.4 in the Supplemental Material, we show that any given strategy with
more than one herding leader cannot sustain an equilibrium when α≥ 1/2 and δ is suf-
ficiently large. This result rests on the following observation. If a herding leader is not
the first in line, then the agent just ahead of her in the queue must not want to renege
when she does. However, there is a chance that the agent just ahead of her has been
waiting longer than one period without observing service (because a previous interme-
diate herding leader just reneged). At these histories, the intermediate herding leader
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is much more optimistic about the server state than the agent just ahead of her. When
α ≥ 1/2 and δ is sufficiently large, this effect is so strong that the intermediate herding
leader does not wish to renege if the agent just ahead of her prefers to remain in line, a
contradiction.

8. The effects of social learning in queues

The interplay of private and social learning depends on whether the good server is fast
(high α) or slow. We show that although a larger α encourages individual learning, it is
bad for social learning.

As illustrated in Figures 2 and 3, a new arrival is more likely to find an empty queue
at a good server when the service rate is high. Thus, there exists a threshold service
rate above which arriving at the first position in line is good news (μ̄0

1(q
∗�N∗�M∗) > μ)

in equilibrium and the first in line experiments for longer than she would as a single
decision-maker with prior μ. Below that threshold, the converse is true. Although the
value of this threshold varies withN∗ andM∗, we construct bounds on the threshold that
are independent of these parameters. The proof of Lemma 9 is given in Appendix A.10.

Lemma 9. If α > 2/3, then every equilibrium with N∗ > 1 has the property that μ <
μ̄0

1(q
∗�N∗�M∗), so being first in line is good news about the state. If α < 2/(3 + √

5), then
every equilibrium with M∗ > N∗ > 1 has the property that μ > μ̄0

1(q
∗�N∗�M∗) and so

being first in line is bad news about the state.

When δ approaches 1, the effect of α on the first in line’s equilibrium willingness to
experiment is more dramatic. There are two effects that interact. The decreasing costs
of delay incline the first in line to experiment longer. This in turn affects the stationary
distributions in both states and the posterior μ̄0

1(q
∗�N∗�M∗) of the first in line. This

posterior might decrease, curtailing her equilibrium willingness to experiment. For α >
1/2, the first effect dominates and, as δ approaches 1, the first in line’s willingness to
experiment grows without bounds. For α < 1/2, the second effect dominates, so that
arriving at the first position makes an agent almost certain that the server is bad and we
have N∗ = 1.35 For α = 1/2, the effects balance out and N∗ tends to a finite constant,
c(μ), that increases with the prior μ. Lemma 10 is proved in Appendix A.11.

Lemma 10. For every (α�μ) ∈ (0�1)2, as δ→ 1,N∗ converges to

(a) +∞ when α> 1/2

(b) 1 when α< 1/2

(c) c(μ), such that 1< c(μ) <∞, when α= 1/2.

It is worth noting that when α < 1/2, there cannot be a pure strategy equilibrium
as δ → 1. Because N∗ = 1, if q∗ = 1, then all agents arrive at an empty server regard-
less of the state (y1 = x1 = 1), and this event is uninformative about the server state so

35In that case, equilibrium requires q∗ < 1.
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that μ̄0
1(q

∗�N∗�M∗) = μ. Clearly then, we could not have N∗ = 1 for every μ ∈ (0�1).
This contradiction is resolved if q∗ ∈ (0�1). In this case, at a good server, there is a pos-
itive probability that the agent joins the queue at the second position and becomes an
informed first in line if her predecessor is served. From there on, the queue can grow
infinitely long. Since the server is slow, it then takes a very long time on average for that
queue to clear. Hence, arriving at an empty queue is exceedingly unlikely, and in that
event an agent infers that the server is almost certainly bad and choosesN∗ = 1.

In our equilibrium, once one agent has observed service, no agent will renege on the
queue until the queue has emptied. This implies that an entire queue being served or
reneging en masse is bad for social learning, as subsequent arrivals have to re-learn what
past generations already knew. The expected time between two empty queues is called
the busy period. In our model, it is a measure of how an equilibrium allows information
to propagate through time, which we term social memory.

By standard results for positive recurrent Markov processes, the mean return time to
the state in which an agent arrives at the queue in first position is given by 1/y1 at a good
server.36 Thus, when y1 is small in equilibrium and queues tend to fill up, the busy period
can be very long, which is good for preserving what was already learnt. Conversely, when
y1 is large in equilibrium and queues tend to clear, the busy period is short and the social
memory is frequently reset. For instance, the equilibria described in Lemma 10(b) have
the property that y1 → 0 (as δ→ 1) so that social memory is very good; in contrast the
amount of equilibrium experimentation is small andN∗ = 1.

9. Conclusions and further work

Some of our motivating examples suggest an alternative modelling choice for the queue
discipline. For instance, the first-come–first-served discipline could be replaced by an
egalitarian random order processing discipline where existing service capacity is allo-
cated equiprobably to all agents currently in the queue.37 In such a model, when an
agent reneges, the congestion faced by the remaining agents is lessened, offsetting their
increased pessimism about the server state. Consequently, if the first agent in line re-
neges on the queue, then even though all agents behind her adopt her belief, it is no
longer the case that all of them wish to renege with her. This significantly compli-
cates the stochastic process governing the state-dependent steady-state distributions of
queue lengths. In particular, the system of dynamic equations produced does not admit
a closed-form solution.

Nevertheless, issues similar to those in our model arise, and we hope that the results
derived here will be useful in analyzing these related problems. One important feature
of the queuing structure is that the individuals’ information is nested: any individual
has collected strictly less information than those ahead of her in the queue. The fun-
damental insight our analysis offers to the more general question of experimentation
with informational and payoff externalities is that strategy profiles in which agents con-

36It isN∗ + 1 − q∗ = 1/x1 at a bad server. (See, for example, Brémaud (1999, p. 104).)
37That is, if at the beginning of period τ there are nτ agents in line and service capacity gτ < nτ is pro-

duced, then each agent is served with probability gτ/nτ .
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centrate the social learning on certain focal agents might also result in such nesting of
information, and these profiles are good candidate equilibria in more general settings.

The main takeaway for the design and management of queuing systems is that when
there is uncertainty about the service rate, the interplay of private and social learning
means that queue lengths are more variable at observable FCFS queues than if the queue
were not observable. The extra variability comes from the mass exits that happen cycli-
cally at a bad server, but can also happen at a good server.

Such dramatic events are rarely observed in real life. Our model ignores certain fric-
tions that might mitigate the frequency and size of these mass exits. First we assume
that there is no service at all at a bad server. If instead we had assumed that in the bad
state, the server did serve, but at a slower rate than a good server, then observing one
agent renege could still trigger a herd, but need not lead to the entire queue clearing.
The same would be true if we had assumed that agents have different discount factors
or different opportunity costs of queueing. And sometimes we are just loath to trust the
judgement of others and will try to operate an ATM or a parking meter even after being
told that it is broken.

Appendix A

A.1 Proof of Lemma 2

Taking a difference and substituting for ψ gives

Un
(
m+ 1�μ0

n

)−Un
(
m�μ0

n

)= μ0
nα

ψ
δm(1 − α)m

{
ψnδw− 1 −

(
1 −μ0

n

)
ψ(1 − δ)

μ0
nα(1 − α)m

}
� (A.1)

The term in braces is strictly decreasing in m and tends to negative infinity as m→ ∞.
The function Un(·�μ0

n) is, therefore, strictly quasiconcave in m and has a maximal value
onm ∈N

0. Thus, there is a solution to the problem maxm∈N0 Un(m�μ
0
n). The maximizing

m is described by the smallestm for whichUn(m+1�μ0
n)−Un(m�μ0

n) is nonpositive. The
solution is generically unique by the strict monotonicity of the braces in (A.1). Setting
the braces in (A.1) to equal zero allows us to determinem∗ in (9).

Using the second expression in (5) and setting the braces in (A.1) equal to zero gives
us the expression in (10) for μ

n
, the nth in line’s cutoff posterior.

If μ0
n is such that Un(m∗ + 1�μ0

n) = Un(m
∗�μ0

n) or, equivalently, μm
∗

n = μ
n

, then it is
optimal to experiment form∗ periods orm∗ + 1, or to randomize between the two.

A.2 Stationary measures of queue lengths

In addition to (xn(q�N�M))
M+1
n=1 and (yn(q�N�M))

M+1
n=1 , we define (zn(q�N�M))

N+1
n=1 ∈

�(N + 1) to be the stationary probability under the strategy σ∗(q�N�M) of arriving at
the nth position behind a first in line who has never observed service, conditional on
the server being in the good state.38

 Proposition A.1 gives exact expressions for yn, zn,
and xn. In the statement of the proposition there are two excluded values of α: the first

38The remaining part of the stationary distribution can be found by taking the difference, yn − zn. Ob-
serve that an agent cannot have arrived at the first position and know that the server is good. Therefore the
corresponding state has zero measure, and y1 = z1.
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α∗
N < 1/2 is defined as the solution to α(φ+ q)(1 − α)N+1 = 1 − 2α; the second is α= 1

2 .
In both of these cases the stationary measure in the good state exists, but has a different
functional form from the one given in Proposition A.1: The stationary measure when α=
α∗
N , can be obtained by taking the limit as kN → ∞ of the expressions in Proposition A.1;

the stationary measure when α= 1
2 is described in the Supplemental Material.

Proposition A.1. Assume that α /∈ {1/2�α∗
N }. If all agents follow the strategy σ∗(q�

N�M), then, conditional on the server being in the good state, the unique stationary mea-
sure satisfies zn = (1 − α)n−1y1 for n= 1�2� � � � �N + 1.

IfN <M , then

yn = B ·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φn−1 − kN� n= 1�2� � � � �N�

φn−1 − kN q+ (1 − q)αφ2

αφ2 + q(1 − α)� n=N + 1�

φn−1 − kN 1 + qφ
φ2(φ+ q)φ

n−N� n=N + 2� � � � �M + 1�

(A.2)

where

B−1 = 1 −φN
1 −φ −NkN + φN −φM+1

1 −φ
(

1 − kN

φN+1
1 + qφ
φ+ q

)
+ (1 − q)kN 1 −φ2

φ(φ+ q) � (A.3)

IfM ≤N , then

yn = B ·
⎧⎨
⎩
φn−1 − kN� n= 1�2� � � � �M�

φM − kN
φ
� n=M + 1�

(A.4)

where

B−1 = 1 −φM+1

1 −φ − kN
(
M +φ−1)� (A.5)

In both cases, kN := α(φ+ q)(1 − α)N+1/[α(φ+ q)(1 − α)N+1 + 2α− 1].
Conditional on the server being in the bad state, the unique stationary measure satis-

fies, forN <M ,

xn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
N + 1 − q� n= 1�2� � � � �N�

1 − q
N + 1 − q� n=N + 1�

0� n=N + 2� � � � �M + 1�

(A.6)

and forM ≤N ,

xn =

⎧⎪⎪⎨
⎪⎪⎩

1
N + 1 − q� n= 1�2� � � � �M�

N −M + 1 − q
N + 1 − q � n=M + 1�

(A.7)
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Proof. Situation I. Good server under perfect revelation. We begin by considering
the recursions that the stationary distribution of the queue lengths must satisfy when
N <M and q ∈ (0�1].

Consider first the state in which the queue length is n = 1. It is possible to enter
this state if there were previously r agents in line and a service capacity of at least r was
produced (probability αr). It is also possible to enter state n= 1 if there wereN orN + 1
agents in line in the previous period and the first in line had never observed service, was
not served, and reneged, causing the entire queue to renege. Thus we can write

y1 = zN(1 − α)(1 − α(1 − q))+
M∑
r=1

αryr + αMyM+1�

where zN is the stationary probability of a queue length N with an uninformed first in
line. The last term arises because there areM agents in line both in state yM and in state
yM+1.

For n > 1, n �=N + 1 and n <M the queue can enter state n if no service occurred last
period (probability 1 − α) and there were n− 1 agents in the line, or if r − (n− 1) agents
are served (probability (1 − α)αr−n+1) and the queue was previously in state r. Thus

yn = (1 − α)
M∑

r=n−1

αr−n+1yr + (1 − α)αM−n+1yM+1�

The system transits to the state where the queue length isN+1 if the queue is length
N , there is no service, and either (a) the first in line knows that the server is in the good
state or (b) the first in line is uninformed but her randomizing determines that she wait
one more period (probability 1−q). A second route to entering stateN+1 is if the queue
was previously in state r > N and exactly r −N agents were served. Hence

yN+1 = (1 − α)(yN − zN)+ (1 − α)(1 − q)zN + (1 − α)
M∑

r=N+1

αr−Nyr + (1 − α)αM−NyM+1�

A little rearranging gives

yN+1 + q(1 − α)zN = (1 − α)
M∑
r=N

αr−Nyr + (1 − α)αM−NyM+1�

A similar calculation for queues of lengthN + 2 gives

yN+2 = (1 − α)(yN+1 − zN(1 − α)(1 − q))+ (1 − α)
M∑

r=N+2

αr−N−1yr + (1 − α)αM−N+1yM+1

or

yN+2 + (1 − q)(1 − α)2zN = (1 − α)
M∑

r=N+1

αr−N−1yr + (1 − α)αM−N+1yM+1�
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The probability that the queue is of length M equals yM + yM+1, which is the prob-
ability that the latest agent arrives at the Mth position and joins the queue or at the
M + 1th position and balks. An agent arrives at the Mth position if the queue was of
length M − 1 at the end of the last period and no service occurred or it was of length M
and exactly one service event occurred:

yM = (1 − α)yM−1 + (1 − α)α[yM + yM+1]�

An agent arrives at the M + 1th position if the queue was of length M at the end of the
last period and no service occurred:

yM+1 = (1 − α)[yM + yM+1]�

Rearranging this gives yM+1 = yM(1 − α)/α and a substitution gives

yM = (1 − α)yM−1 + αyM+1�

This completes our description of the recursion satisfied by the state probabilities
{yn}Mn=1. It is summarized as

yn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M∑
r=1

αryr + αMyM+1 + zN(1 − α)(1 − α(1 − q))� n= 1�

(1 − α)
M∑

r=n−1

αr−n+1yr + (1 − α)αM−n+1yM+1� 1< n≤N�

(1 − α)
M∑
r=N

αr−Nyr + (1 − α)αM−NyM+1 − q(1 − α)zN� n=N + 1�

(1 − α)
[

M∑
r=N+1

αr−N−1yr + αM−N−1yM+1 − (1 − q)(1 − α)zN
]
� n=N + 2�

(1 − α)
M∑

r=n−1

αr−n+1yr + (1 − α)αM−n+1yM+1� N + 2< n<M�

(1 − α)yM−1 + αyM+1� n=M�

(1 − α)α−1yM� n=M + 1�

(A.8)

Any nonnegative solution to this system satisfying
∑M+1
n=1 yn = 1 is a stationary distribu-

tion.
Before solving this system we determine the value of zN , which is the stationary

probability of a queue of lengthN with an uninformed first in line. Because at any date τ
the arrival stage follows both the service and exit stages, if an agent arrives in the queue
at the first position at date τ, it must be the case that the agent is uninformed: she arrives
after the last service stage, and after the exit stage at which a queue of lengthN orN + 1
would have reneged. Therefore y1 = z1. The probability that an agent who arrived at the
first position in the queue is still not served after N − 1 further arrivals is (1 − α)N−1.
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Therefore, the stationary probability of a queue lengthN with an uninformed first agent
is (1 − α)N−1y1. Following the same argument for queue lengths n ≤ N , we conclude
that

zn = (1 − α)n−1y1� n= 1�2� � � � �N� (A.9)

It is now clear that the system (A.8) is homogenous of degree 1.
Let us use the fact that

(1 − α)
M∑

r=n−1

αr−n+1yr = (1 − α)yn−1 + α(1 − α)
M∑
r=n

αr−nyr

to simplify (A.8):

yn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(1 − α)−1y2 + zN(1 − α)(1 − α(1 − q))� n= 1�

(1 − α)yn−1 + αyn+1� 1< n<N�

(1 − α)yN−1 + αyN+1 + α(1 − α)qzN� n=N�
(1 − α)yN + αyN+2 − (1 − α)qzN + α(1 − α)2(1 − q)zN� n=N + 1�

(1 − α)yN+1 + αyN+3 − (1 − α)2(1 − q)zN� n=N + 2�

(1 − α)yn−1 + αyn+1� N + 2< n<M + 1�

(1 − α)α−1yM� n=M + 1�

(A.10)

We now solve this difference equation. For n = 1�2� � � � �N , we have a difference
equation of the form 0 = (1 − α)yn−1 − yn + αyn+1, with the initial and terminal con-
ditions given, respectively, by the expressions for y1 and yN in (A.10). The charac-
teristic polynomial for this difference equation is (x − 1)(x − (1 − α)/α). For α �=
1/2, it admits two distinct roots and the difference equation admits the general solu-
tion

yn =K +Hφn� φ := 1 − α
α

�

whereK andH are arbitrary constants.
Imposing the initial condition on this equation allows us to solve for K and

gives

yn = (1 − α)2(1 − α+ qα)zN
1 − 2α

+Hφn� n= 1�2� � � � �N�

Substituting this into the equations above for yN , yN+1, and yN+2 then gives

yN+1 =HφN+1 + (1 − α)2
1 − 2α

zN
[
(1 − α)(1 − q)+ (q/φ)]�

yN+2 =HφN+2 + (1 − α)2
1 − 2α

zN
[
α+ q(1 − α)]�

yN+3 =HφN+3 + φ(1 − α)2
1 − 2α

zN
[
α+ q(1 − α)]�
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Now let us turn to states N + 2 < n ≤ M + 1. Taking the terminal condition
given by the expression for yM and yM+1 in (A.10) and substituting into the yM−1

equation gives yM−1 = ( α
1−α)

2yM+1. Hence, yn = (α/(1 − α))M+1−nyM+1. Alterna-
tively,

yn =φn−N−2yN+2� n=N + 2� � � � �M + 1�

Combining the two parts of the solution, we get

yn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − α)2(1 − α+ αq)zN
1 − 2α

+Hφn� n= 1�2� � � � �N�

(1 − α)2zN
1 − 2α

(
(1 − α)(1 − q)+ (q/φ))+HφN+1� n=N + 1�

(1 − α)2(α+ q(1 − α))zN
1 − 2α

φn−N−2 +Hφn� n=N + 2� � � � �M + 1�

We now substitute the value of zN into the y1 equation. A rewriting of (A.9)
gives

zN = (1 − α)N−1
(
(1 − α)2zN

1 − 2α
(1 − α+ αq)+Hφ

)
�

Hence,

(1 − α)2zN
1 − 2α

(1 − α+ αq)= H(1 − α)N+1φ(1 − α+ αq)(
1 − 2α− (1 − α+ αq)(1 − α)N+1) = −HφkN�

where kN := (1 − α + αq)(1 − α)N+1/[(1 − α + αq)(1 − α)N+1 + 2α − 1] (kN is defined
by our assumption in the statement of the lemma). Substituting into the above then
gives

yn =H

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φn − kNφ� n= 1�2� � � � �N�

φn − kN
(
φ+ q(1 −φ)

α(φ+ q)
)
� n=N + 1�

φn − k′
Nφ

n−N−1� n=N + 2� � � � �M + 1�

(A.11)

where k′
N := kN(1 + qφ)/(φ+ q). This gives the final form of the distribution given in

the lemma.
To verify that this is a legitimate stationary measure we must check that there ex-

ists a scalar H such that the yn, defined by (A.11), are all nonnegative. The terms
yN+2� � � � � yM+1 are all proportionate, so it is sufficient to check that y1� � � � � yN+2 are non-
negative. To address this question we consider three separate cases.

Let α∗
N satisfy (1 − α + αq)(1 − α)N+1 + 2α − 1 = 0. (Then α∗

N < 1/2 and α∗
N → 1/2

as N → ∞.) Furthermore, kN < 0 if α < α∗
N and kN > 0 if α > α∗

N . When α > α∗
N ,

kN is strictly decreasing, with kN = 1 when α = 1/2. Furthermore, noticing that
for n > 1, (1 − α)n + 2α − 1 − αn has three roots on [0�1] (they are 0, 1/2, and 1)
and is strictly convex on (0�1/2) and strictly concave on (1/2�1), we obtain that
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φN+1 − kN has the same sign as 1 − kN . We therefore distinguish the following three
cases.

Case A.1.1: 1/2<α< 1. Since 0 < kN < 1, to ensure y1 ≥ 0, we require H ≥ 0. When
H > 0, the terms y1� � � � � yN+2 decrease (since φ < 1), so it is sufficient to check that
yN+2 ≥ 0. This is the case since φN+1 ≥ kN .

Case A.1.2: α∗
N < α< 1/2. Since kN > 1, from y1 ≥ 0 we must have H ≤ 0. The terms

y1� � � � � yN , therefore, decrease (since φ > 1). It is sufficient to check that yN� yN+1�

yN+2 ≥ 0. The first two variables follow from kN > φ
N+1. To verify that yN+2 ≥ 0, full

substitution for k is necessary to get an inequality that is linear in q. The two cases
q= 0 and q= 1 follow from the above inequalities.

Case A.1.3: α< α∗
N . Since kN < 1, from y1 ≥ 0 we must have H ≥ 0. Since kN < 0, all yn

are then positive.

The constant H must be chosen so that the yn defined in (A.11) sum to unity. Thus
we choose

H−1 =
M+1∑
n=1

φn − (N + 1)φkN − kN 1 + qφ
φ+ q

M−N∑
n=1

φn − kN q(1 −φ)
α(φ+ q)

or

H−1 = φ
(
1 −φM+1)

1 −φ − kNφN − kN 1 + qφ
φ+ q

1 −φM−N+1

1 −φ + (1 − q)kN
(
1 −φ2)
φ+ q �

It will be convenient to cancel φ when we rewrite the above as (A.3) in the lemma.
After some algebra it can be verified that for α ∈ (0�1), H has the same sign as 1 −
kN and we therefore have a legitimate stationary measure with yn > 0 for all n =
1� � � � �M + 1. The uniqueness of this stationary distribution follows from the fact
that the strategy described induces an irreducible Markov process on the states n =
1� � � � �M .

Situation II. Good server under imperfect revelation. Now the queue never grows
longer than lengthM , even if the first in line is still experimenting, because no additional
agent is willing to join a queue longer thanM . The probability of arriving at theM + 1th
position (and then balking) depends on whether the first in line is informed. If the first
in line is uninformed and there are M agents in line, then N −M further unsuccessful
service events occur before the first in line exits orN −M + 1 if she exits after observing
N + 1 unsuccessful service event, which her strategy prescribes with probability (1 − q).
If the first in line is informed, there can be infinitely many unsuccessful service events.
Therefore,

yM+1 = zM
N−M∑
i=1

(1 − α)i + zM(1 − q)(1 − α)N−M+1 + (yM − zM)
∞∑
i=1

(1 − α)i�

Simplifying yields

yM+1 = 1 − α
α

(
yM − zM(1 − α)N−M(1 − α+ qα))� (A.12)
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The probability of arriving at the first position equals the probability of a queue of length
1� � � � �M clearing plus the probability of an uninformed first in line reneging after having
observedN orN + 1 unsuccessful service events:

y1 = z1 =
M∑
r=1

αryr + αMyM+1 + z1(1 − α)N(1 − α+ qα)� (A.13)

ForM <N , the probability of arriving at the nth position satisfies the same recursion as
forN ≤M ,

yn = (1 − α)
M∑

r=n−1

αr−n+1yr + (1 − α)αM−n+1yM+1� n= 2� � � � �M� (A.14)

and the probability of arriving at the nth position and the first in line being uninformed
is

zn = (1 − α)n−1z1� n= 2� � � � �M� (A.15)

The recursion (A.14) gives the same difference equation as before,

yn = αyn+1 + (1 − α)yn−1� n= 2� � � � �M�

which, for α �= 1/2, admits the same general solution yn =K+Hφn as previously. Rewrit-
ing the initial condition (A.13) by substituting (A.14) for y2, we obtain

y1 = α

1 − αy2 + z1(1 − α)N(1 − α+ qα)�

Imposing this on yn =K +Hφn, we obtain

yn = (1 − α)N+1(1 − α+ qα)
1 − 2α

z1 +Hφn� n= 1� � � � �M�

We use z1 = y1 to solve forH in the expression above to obtain

yn = z1
φn−1 − kN

1 − kN � n= 1� � � � �M�

where kN is as defined previously.
Using this expression for n =M together with the terminal condition (A.12) (where

we use (A.15) to simplify zM ) then gives

yM+1 = z1
φM − kNφ−1

1 − kN
and

yM + yM+1 = z1

1 − α
φM − kN

1 − kN �
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Finally, imposing the condition that
∑M+1
n=1 yn = 1, we get

1 = z1

1 − kN

(
M−1∑
n=1

(
φn−1 − kN

)+ φM − kN
1 − α

)
� (A.16)

which simplifies to

1 = z1

1 − kN
(

1 −φM+1

1 −φ − kN
(
M +φ−1))� (A.17)

This determines the last part of the solution.
We now verify that all the yn are nonnegative. For 2 ≤ n ≤ N + 1, we have that

1 < φn−1 < φN+1 when α < 1/2 and 1 > φn−1 > φN+1 when α > 1/2. So for all admis-
sible values of α ∈ (0�1),φn−1 −kN lies between 1 −kN andφN+1 −kN . We have seen in
the treatment ofM ≤N that these two expressions have the same sign for all admissible
values of α. It follows that (φn−1 − kN)/(1 − kN) is positive for all admissible α ∈ (0�1),
so it is sufficient to verify that z1 ≥ 0.

From (A.17) we have that z1 > 0 for α < α∗
N , because kN < 0. In (A.16) the term

in brackets is a sum of positive terms for α > 1/2 and a sum of negative terms for
α∗
N < α < 1/2. It therefore has the same sign as 1 − kN when α > α∗

N and so z1 ≥
0 also for α > α∗

N . Hence we have derived a legitimate stationary measure when
M ≤N .

Scenario III: Bad server. We conclude by deriving the stationary distribution con-
ditional on the server being in the bad state. For M ≤ N , the transition equations
are x1 = · · · = xN and xN+1 = (1 − q)xN . For N < M , they are x1 = · · · = xM and
xM+1 = (N −M + 1 − q)xM . In each case the result follows from the requirement that
the probabilities sum to 1.

A.3 Proof of Lemma 3

If μ̄tn < 1 at some time τ, then from (13) and (5) we have that

μ̄tn = μyn(1 − α)t
μyn(1 − α)t + (1 −μ)xn � μ̄t−1

n+1 = μyn+1(1 − α)t−1

μyn+1(1 − α)t−1 + (1 −μ)xn+1
�

From this it follows that μ̄tn < μ̄
t−1
n+1 if and only if (1 − α)yn/xn < yn+1/xn+1. Observe that

xn ≥ xn+1 by (A.6) and (A.7). Therefore, a sufficient condition for μ̄tn < μ̄
t−1
n+1 is (1−α)yn <

yn+1.
Among the many ways to arrive at the n+ 1th position in line in the good state, one

is that the previous agent joined the queue at the nth position and there was no service;
another is that the previous agent joined the queue at the n+ 1th position and exactly
one agent was served. We therefore have the bound

yn+1 ≥ (1 − α)yn + α(1 − α)yn+1�
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Rearranging gives

yn+1 ≥ yn 1 − α
1 − α(1 − α)� (A.18)

implying that yn+1 > (1−α)yn (since α ∈ (0�1) and yn > 0). Thus, the sufficient condition
is satisfied.

A.4 Proof of Lemma 4

A.4.1 Intermediate results We begin the proof of Lemma 4 with two intermediate re-
sults (when q = 1). Fix M . Lemma A.1(a) shows that as σ∗(q�N�M) prescribes that the
first in line experiments for longer (as N increases), the probability of arriving at the
queue at the first position when the server is good declines. This is because when N
increases there is total probability being spread over more queue lengths so that the
probability of any one queue length falls.

Lemma A.1(b) shows that a higher N eventually results in a reduction in the first in
line’s posterior afterN unsuccessful service opportunities, μ̄N1 (1�N�M). This is the case
even though the effect of a higher N on μ̄0

1(1�N�M) might be positive. As N increases,
there are many things to take into account: the probability of being first in line at a bad
server shrinks to zero, but the probability of being first in line does not necessarily vanish
if the server is in the good state. Thus as N increases, arriving first in line may become
very good news indeed. After waitingN periods without success, however, the posterior
of the first in line is revised so far down that her initial optimism is entirely depleted. The
effect of private learning eventually dominates the effect of social learning.

Lemma A.1. Fix (α�δ�μ) ∈ (0�1)3 andM ≥ 1.

(a) The probability y1(1�N�M) decreases asN increases for all α ∈ (0�1).

(b) The posterior belief μ̄N1 (1�N�M) decreases inN for allN > 1/α and tends to zero as
N tends to infinity.

Proof. (a) Fix M ≥ 1 and q = 1, and suppose first that M >N ≥ 1. Making the depen-
dence of y1 on (q�N�M) explicit, a substitution from (A.2) and (A.3) gives

1
y1(1�N�M)

=N +
1 −φN
1 −φ −N +

(
1 − kN

φN+1

)
φN −φM+1

1 −φ
1 − kN

=N +

N−1∑
i=0

(
φi − 1

)+
(

1 − kN

φN+1

)
φN −φM+1

1 −φ
1 − kN

=N + φN −φM+1

1 −φ
(

1 − 1 −φN+1

(1 −φ)(1 +φ)N
)

−
N−1∑
i=0

1 −φi
1 −φ

(
1 −φ+φ

(
φ

1 +φ
)N)

� (A.19)
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(To get the final line we substitute kN |q=1 =φN+1/(φN+1 + (1 −φ)(1 +φ)N).) Simplify-
ing further, we get

1
y1(1�N�M)

=
N−1∑
i=0

φi + φN −φM+1

1 −φ
(

1 − 1 −φN+1

(1 −φ)(1 +φ)N
)

−φ
(

φ

1 +φ
)N N−1∑

i=0

1 −φi
1 −φ

=
M∑
i=0

φi − φN −φM+1

1 −φ
1 −φN+1

(1 −φ)(1 +φ)N −φ
(

φ

1 +φ
)N N−1∑

i=0

1 −φi
1 −φ

= 1 −φM+1

1 −φ −
(

φ

1 +φ
)N{

φ

N−1∑
i=0

1 −φi
1 −φ + 1 −φM−N+1

1 −φ
1 −φN+1

1 −φ

}
� (A.20)

We now focus on the term in braces. This equals

1
1 −φ

[
φN −

N∑
i=1

φi + (
1 −φM−N+1) N∑

i=0

φi

]
= 1 + 1

1 −φ

[
(N + 1)φ−φM−N+1

N∑
i=0

φi

]

= 1 +φ
N∑
i=0

1 −φM−N+i

1 −φ �

Hence,

1
y1(1�N�M)

=
M∑
i=0

φi −
(

φ

1 +φ
)N{

1 +φ
N∑
i=0

1 −φM−N+i

1 −φ

}
� (A.21)

We now study how this changes asN increases, so let us write

1
y1(1�N�M)

=KM −
(

φ

1 +φ
)N
HN�

Then, forM >N > 1,

1
y1(1�N�M)

− 1
y1(1�N − 1�M)

=
(

φ

1 +φ
)N(

HN−1 −HN + 1
φ
HN−1

)

=
(

φ

1 +φ
)N(

−φ1 −φM−N

1 −φ + 1
φ
HN−1

)

=
(

φ

1 +φ
)N(1 +φ

φ
+
N−1∑
i=1

1 −φM−(N−1)+i

1 −φ

)
> 0�

This establishes our claim forM >N ≥ 1.
Now fixM ≥ 1 and q= 1, and suppose thatM ≤N . We have from (A.4) and (A.5) that

1
y1(1�N�M)

=
1 −φM+1

1 −φ − kN
(
M +φ−1)

1 − kN
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=M + 1 +

M∑
i=0

(
φi − 1

)+ kN
(
1 −φ−1)

1 − kN

=M + 1 +
M∑
i=0

(
φi − 1

)φN+1 + (1 −φ)(1 +φ)N
(1 −φ)(1 +φ)N −

(
φ

1 +φ
)N

=M + 1 +
M∑
i=0

(
φi − 1

)−
(

φ

1 +φ
)N[

1 +φ
M∑
i=0

φi − 1
φ− 1

]

=
M∑
i=0

φi −
(

φ

1 +φ
)N[

1 +φ
M∑
i=0

1 −φi
1 −φ

]
(A.22)

(to get the final line, we substitute kN |q=1 = φN+1/(φN+1 + (1 − φ)(1 + φ)N)) and it is
immediate that y1(1�N�M) decreases asN increases.

(b) FixM ≥ 1 and q= 1. From (5) and (13),

μ̄N1 (1�N�M)

1 − μ̄N1 (1�N�M)
= μ

1 −μy1(1�N�M)N(1 − α)N�

To show that μ̄N1 (1�N�M) decreases inN it is sufficient to show thatN(1−α)N decreases
in N , since y1(1�N�M) decreases in N from part (a). But N(1 − α)N is quasiconcave in
N , and decreases in N for all N > 1/α. Finally, N(1 − α)Ny1(1�N�M) converges to zero
asN increases because y1(1�N�M)≤ 1.

A.4.2 Proof of Lemma 4 Fix (α�δ�μ) ∈ (0�1)3 and M ≥ 1. We show that there ex-
ists N∗ ≥ 0 and q∗ ∈ (0�1] such that for an agent arriving at the first position in line,
σ∗(q∗�N∗�M) is a best response to all other agents adhering to σ∗(q∗�N∗�M).

Suppose that all other agents use the strategy σ∗(q�N�M), where M and N are two
nonnegative integers and q ∈ (0�1]. This determines the state-dependent stationary
measures of queue lengths and, in particular, y1(q�N�M). These are used by every agent
to update her prior upon arriving at the queue. Consider the belief μ̄N1 (q�N�M) of an
agent who joined the queue at the first position and observedN failures.

To accommodate mixed strategies, we let Ñ :=N + 1 − q (this can be thought of as
the expected duration of a first in line’s experimentation) and q̃(Ñ) := �Ñ� + 1 − Ñ . We
wish to study the properties of μ̄N1 (q�N�M) as a function of Ñ . We therefore define39

G(Ñ) := μ̄�Ñ�
1

(
q̃(Ñ)� �Ñ��M)� (A.23)

By (5) and (13), it satisfies

G(Ñ)
1 − G(Ñ)

= μ

1 −μy1
(
q̃(Ñ)� �Ñ��M)Ñ(1 − α)�Ñ�� (A.24)

39SinceM is fixed, we omit the dependence on M so as to lighten notation.
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Consider first the term y1(q̃(Ñ)� �Ñ��M). When q ∈ (0�1] and 1 ≤N <M , the analog
of (A.20) is

1
y1(q�N�M)

=
M∑
i=0

φi −
(

φ

1 +φ
)N{

q− 1 + q+φ
1 +φφ

N−1∑
i=0

1 −φi
1 −φ

+ 1 −φM−N+1

1 −φ
1 −φN+2 + qφ(1 −φN)

1 −φ2

}
� (A.25)

and whenN ≥M , the analog of (A.22) is

1
y1(q�N�M)

=
M∑
i=0

φi −
(

φ

1 +φ
)N{q+φ

1 +φ

[
1 +φ

M∑
i=0

1 −φi
1 −φ

]}
� (A.26)

In both (A.25) and (A.26), the term in braces is strictly increasing in q. Consequently,
y1(q�N�M) is strictly increasing in q for any given N and M . For 1 ≤N <M , taking the
limit of the term in braces in (A.25) as q→ 0 gives

φ

1 +φ

[
φ

N−1∑
i=0

1 −φi
1 −φ + 1 −φM−N+1

1 −φ
1 −φN+2

1 −φ
1
φ

− 1 +φ
φ

]

= φ

1 +φ

[
φ

N−1∑
i=0

1 −φi
1 −φ + 1

1 −φ
1
φ

− φN+1

1 −φ + 1 −φM−N

1 −φ
1 −φN+2

1 −φ − 1 +φ
φ

]

= φ

1 +φ

[
φ

N−1∑
i=0

1 −φi
1 −φ +φ1 −φN

1 −φ + 1 −φM−N

1 −φ
1 −φN+2

1 −φ

]
�

so that we have

lim
q→0

1
y1(q�N�M)

= 1 −φM+1

1 −φ −
(

φ

1 +φ
)N+1

{
φ

N∑
i=0

1 −φi
1 −φ + 1 −φM−N

1 −φ
1 −φN+2

1 −φ

}

= 1
y1(1�N + 1�M)

� (A.27)

where the last equality follows from (A.20). For N ≥M , taking the limit of the brackets
in (A.26) as q→ 0, it is immediate that

lim
q→0

1
y1(q�N�M)

=
M∑
i=0

φi −
(

φ

1 +φ
)N+1

[
1 +φ

M∑
i=0

1 −φi
1 −φ

]

= 1
y1(1�N + 1�M)

� (A.28)

where the last equality follows from (A.22). Finally, evaluating (A.21) and (A.22) at N =
M , we find that they are equal. Hence, for any given M , y1(q̃(Ñ)� �Ñ��M) is continuous
and decreasing in Ñ for every Ñ ≥ 1.
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In contrast,

lim
q→0

Ñ(1 − α)�Ñ� = (Ñ + 1)(1 − α)�Ñ�

> (Ñ + 1)(1 − α)�Ñ+1��

Thus, the term Ñ(1 − α)�Ñ� in (A.24) is increasing at non-integer values of Ñ and has
downward jumps at integer values of Ñ .

From (A.24) we therefore have that G(Ñ) is continuous in Ñ at non-integer values
of Ñ for every Ñ ≥ 1 and has downward discontinuities at every integer value of Ñ for
Ñ > 1. By Lemma A.1(b), G(�Ñ�) > G(�Ñ + 1�) for every Ñ > 1/α, and G(�Ñ�) tends to
zero as Ñ → ∞. Moreover, for Ñ = 0 and Ñ = 1, all agents arrive at the first position in
line so that this event is entirely uninformative about the server state and in both cases
we have that G(Ñ)= μ, where μ is the agent’s prior about the server state.

Consequently, for every x ∈ (0�1), there exists a value Ñ∗(x) ≥ 0 defined to be the
smallest value Ñ ≥ 0 such that G(Ñ)≤ x.

We now consider Ñ∗(μ
1
), where μ

1
is the first in line’s threshold belief defined in

(10). Forμ>μ
1
, Ñ∗(μ

1
)may or may not be an integer. We consider each case separately.

(If μ≤ μ
1
, immediately balking is a best response.)

Case 1. If Ñ∗(μ
1
) is a non-integer value, then G(Ñ∗(μ

1
)) = μ

1
, and setting N∗ =

�Ñ∗(μ
1
)� and q∗ = q̃(Ñ∗(μ

1
)) in (A.23) gives

μ̄N
∗

1
(
q∗�N∗�M

)= μ
1
�

Moreover, by (5) and (13), it follows that for every t = 0� � � � �N∗ − 1,

μ̄t1
(
q∗�N∗�M

)
>μ

1
�

Consequently, by Lemma 2, when the other agents adhere to σ∗(q∗�
N∗�M), an agent arriving at the first position finds it optimal to join the
queue, to continue at the firstN∗ − 1 failures, and to be indifferent between
reneging afterN∗ orN∗ + 1 failures. Hence, σ∗(q∗�N∗�M) is a best response
for the first in line.

Case 2. If Ñ∗(μ
1
) is an integer value, then

G
(
Ñ∗(μ

1
)
)≤ μ

1
< lim
Ñ↑Ñ∗(μ1)

G(Ñ)�

SettingN∗ = �Ñ∗(μ
1
)� and q∗ = 1 in (A.23), the first inequality above gives

μ̄N
∗

1
(
1�N∗�M

)≤ μ
1
� (A.29)

while the second inequality implies that

μ̄t1
(
1�N∗�M

)
>μ

1
� t = 0� � � � �N∗ − 1� (A.30)
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Indeed, limÑ↑N∗ G(Ñ)≤ μ̄t1(1�N∗�M) for every t = 0� � � � �N∗ − 1, since

lim
Ñ↑N∗

G(Ñ)
1 − G(Ñ)

= μ

1 −μ lim
q→0

y1
(
q�N∗ − 1�M

)
N∗(1 − α)N∗−1

= μ

1 −μy1
(
1�N∗�M

)
N∗(1 − α)N∗−1�

where the second equality follows from (A.27) and (A.28), while by (5) and
(13), for every t = 0� � � � �N∗ − 1,

μ̄t1
(
1�N∗�M

)
1 − μ̄t1

(
1�N∗�M

) = μ

1 −μy1
(
1�N∗�M

)
N∗(1 − α)t�

By Lemma 2, it follows from (A.29) and (A.30) that when the other agents ad-
here to σ∗(q∗�N∗�M), an agent arriving at the first position finds it optimal
to join the queue, to continue at the first N∗ − 1 failures, and to renege after
theNth failure. Hence, σ∗(q∗�N∗�M) is a best response for the first in line.

This establishes the existence, for every M ≥ 1 and (α�δ�μ) of q∗ ∈ (0�1] and N∗ ≥ 0
satisfying (A.iii). Observe that this solution may haveN∗ <M orN∗ ≥M . Lemma 5 gives
sufficient conditions under whichN∗ <M∗.

A.5 Proof of Lemma 5

(a) Let M∗ = M (condition (A.ii)) and N∗ = N (1� μ̄0
1(q

∗�N∗�M∗)) (condition (A.iii)). As-
sume that N∗ <M∗ (condition (A.i)). (We discharge this assumption in (b).) Consider
the pure strategy σ∗(q∗�N∗�M∗) with q∗ = 1.40 Since, in this section, all beliefs are
derived according to Bayes’ rule from the state-dependent stationary distributions of
queue lengths induced by σ∗(q∗�N∗�M∗), we use the shorthand μ̄tn for μ̄tn(q

∗�N∗�M∗)
to lighten notation.

Under σ∗(1�N∗�M∗), so as to observe the first in line’s behavior when the queue
length reaches N∗, the nth in line must wait for N∗ − n+ 1 periods. Using (8) evaluated
atm=N∗ −n+1 in (12), we have that the equilibrium payoffU∗

n(μ̄
0
n) for an agent having

joined the queue at the nth position in line and forming the belief μ̄0
n can be rewritten as

U∗
n

(
μ̄0
n

)=Un
(
N∗ − n+ 1� μ̄0

n

)+ μ̄0
n(1 − α)N∗−n+1δN

∗−n+1(An − 1)�

where, by (11), An ≥ 1. The second term on the right-hand side reflects the informa-
tional benefit accruing to the nth agent in line after she has observedN∗ − n+ 1 failures,
at which point she obtains the first in line’s information.

A sufficient condition for the equilibrium condition (A.iv) is that for all n= 2� � � � �N∗
and for allm= 0�1� � � � �N∗ − n+ 1,

Un
(
N∗ − n+ 1� μ̄0

n

)≥Un
(
m�μ̄0

n

)
�

40Our proof can easily be extended to mixed strategies with q∗ < 1. Then a sufficient condition for (A.iv)
is that for all n = 2� � � � �N∗ + 1 and for all m = 0�1� � � � �N∗ − n + 2, Un(N∗ − n + 2� μ̄0

n) ≥ Un(m� μ̄
0
n) or,

equivalently, that N (n� μ̄0
n)≥N∗ − n+ 2 for every n= 2� � � � �N∗ + 1.
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By Lemma 2, the above is equivalent to

N
(
n� μ̄0

n

)≥N∗ − n+ 1� ∀n= 2� � � � �N∗� (A.31)

This sufficient condition ensures that the nth agent in line does not want to au-
tonomously renege on the queue before the first in line has completed her N∗ periods
of experimentation, even if the informational benefit that accrues to her as she obtains
the first in line’s information is ignored. Equivalently, it says that based solely on her be-
lief μ̄0

n formed upon joining the queue together with her own observation of the server
(in)activity, the nth agent in line is willing to experiment forN∗ − n+ 1 periods.

We now provide a sufficient condition for (A.31). We proceed by induction for 1 ≤
n < N∗ − 1. We first establish a condition that ensures that if N (n� μ̄0

n) ≥N∗ − n+ 1, so
that the nth in line does not want to autonomously renege on the queue before the first
in line has completed herN∗ periods of experimentation, then N (n+ 1� μ̄0

n+1)≥N∗ − n
and the n+ 1th in line also does not want to autonomously renege on the queue before
the first in line has completed herN∗ periods of experimentation.

Suppose that N (n� μ̄0
n)≥N∗ − n+ 1. By Lemma 2, this is equivalent to41

μ̄N
∗−n

n ≥ μ
n
� (A.32)

whereμ
n

is the nth in line’s cutoff belief defined in (10). Rewriting the above as likelihood
ratios, using (5), (13), and (A.6) for the left-hand side, we obtain

μ

1 −μynN
∗(1 − α)N∗−n ≥ ψ(1 − δ)

α
(
ψnδw− 1

) � (A.33)

By the same token, the condition N (n+ 1� μ̄0
n+1)≥N∗ − n is equivalent to

μ̄N
∗−(n+1)

n+1 ≥ μ
n+1

(A.34)

or, expressed as likelihood ratios,

μ

1 −μyn+1N
∗(1 − α)N∗−(n+1) ≥ ψ(1 − δ)

α
(
ψn+1δw− 1

) �
Using the lower bound on yn+1 derived in (A.18) in the above inequality, we obtain a

sufficient condition for (A.34):

μ

1 −μynN
∗(1 − α)N∗−n >

ψ(1 − δ)(1 − α(1 − α))
α
(
ψn+1δw− 1

) �

41 At the (N∗ − n+ 1)th failure, the nth in line observes the first in line’s behavior and updates her poste-

rior to μ̄N
∗

1 if the first in line reneges or to 1 if the first in line does not renege. If μ̄N
∗−n+1

n < μ
n

then, based on
her private learning alone, the nth in line would like to renege at the exit stage following the (N∗ − n+ 1)th
failure. However, because many rounds of exit are allowed at any exit stage, it is costless for the nth in line
first to observe the first in line’s behavior at the first round of the exit stage, as she is still able to renege at a
later round of the same exit stage in case the first in line reneges, but benefits by staying in line in case the
first in line does not renege.
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Now compare this sufficient condition with (A.33). If we can show that

ψ(1 − δ)
α
(
ψnδw− 1

) > ψ(1 − δ)(1 − α(1 − α))
α
(
ψn+1δw− 1

) � (A.35)

then we have shown that (A.34) holds whenever (A.32) holds. Usingψ= α/(1 − δ(1 − α))
and rearranging, (A.35) is equivalent to

ψnδw
α2 − (1 − δ)ψ

α2 > 1�

Depending on the sign of α2/(α2 − (1 − δ)ψ), we therefore have

(A.35) ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ψnδw >

α2

α2 − (1 − δ)ψ if
α2

α2 − (1 − δ)ψ > 0�

ψnδw <
α2

α2 − (1 − δ)ψ if
α2

α2 − (1 − δ)ψ < 0�

Since ψnδw > 0 for all (α�δ) ∈ (0�1)2 and 1 ≤ n <N∗, (A.35) holds if and only if

ψnδw >
α2

α2 −ψ(1 − δ) > 0� (A.36)

The above gives a sufficient condition under which, if N (n� μ̄0
n) = N∗ − n + 1, i.e., the

nth in line does not find it optimal to renege before the first in line has completed her
experimentation, then N (n+1� μ̄0

n+1)≥N∗ −n and the n+1th in line also does not want
to renege before the first in line has completed her experimentation. This establishes the
nth induction step.

We initiate the induction at n= 1 by observing that if N (1� μ̄0
1)=N∗, then the first in

line’s posterior beliefs after having observedN∗ andN∗ + 1 failures satisfy

μ̄N
∗−1

1 >μ
1
≥ μ̄N∗

1 �

thereby satisfying (A.32), and initiating our induction.
Finally, observe thatψδw >ψ2δw > · · ·>ψN∗−1δw. Thus, if (A.36) holds for n=N∗ −

1, it holds for every step 1 ≤ n <N∗ − 1 of the induction.
In summary, we have shown that if M∗ = M and N (1� μ̄0

1(q
∗�N∗�M∗)) = N∗ (i.e.,

equilibrium conditions (A.ii) and (A.iii) hold), then a sufficient condition for (A.31) (and
therefore for equilibrium condition (A.iv)) is that42

ψN
∗
δw︸ ︷︷ ︸

VN∗

>
α2

α2 −ψ(1 − δ)︸ ︷︷ ︸
f2(α�δ)

> 0� (A.37)

The above condition is given as (15) in Lemma 5.

42Allowing for q∗ < 1.
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To finish, we highlight some properties of the function f2(α�δ) defined above. For
every (α�δ) ∈ (0�1)× (0�1], f2(α�δ) is a strictly decreasing function of δ, with

∂

∂δ
f2(α�δ)= −

(
αψ

α2 −ψ(1 − δ)
)2
< 0�

Let

δ2(α) := 1 − α
1 − α(1 − α) (A.38)

be the value of δ setting α2 −ψ(1 − δ) = 0. Then for every α ∈ (0�1), f2(α�δ) > 0 if and
only if δ ∈ (δ2(α)�1], with limδ↓δ2(α) f2(α�δ)= +∞ and f2(α�1)= 1.

(b) From (4), we have that

ψM
∗
δw≥ 1>ψM

∗+1δw�

Rewriting the second inequality, using ψ> 0, gives

1
ψ
>ψM

∗
δw� (A.39)

Using some algebra and ψ= α/(1 − δ(1 − α)), it is easy to show that for every α ∈ (0�1)
and δ ∈ (δ2(α)�1),

α2

α2 −ψ(1 − δ) >
1
ψ
�

Using the above together with (A.39), we obtain that for every α ∈ (0�1), if (A.37), then

ψN
∗
δw >ψM

∗
δw

or, equivalently,N∗ <M∗.

A.6 Proof of Lemma 6

Let M∗ = M and N∗ = N (1� μ̄1
0(q

∗�N∗�M∗)). We provide sufficient conditions on the
primitives to ensure that (15) holds.

Consider the function C : R+ → R
+ defined by C(x) := x(1 − α)x. It is quasiconcave

in x and maximized at x = −1/ ln(1 − α) > 0. Evaluating the function at its maximum
using (1 − α)−1/ ln(1−α) = e−1, we have that for every x≥ 0,

C(x)≤ −1
e ln(1 − α)� (A.40)

Now consider the function C̄ : R+ →R
+ defined by

C̄(x) := −2
e ln(1 − α)(1 − α)x/2� (A.41)
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It is strictly decreasing in x. Moreover, it is evident from (A.40) and (A.41) that for every
x≥ 0,

C(x)≤ C̄(x)� (A.42)

We now use the functions defined above to provide an equilibrium-independent
upper bound on N∗. By Lemma 2, for q∗ ≤ 1, the equilibrium condition N∗ =
N (1� μ̄0

1(q
∗�N∗�M∗)) is equivalent to

μ̄N
∗

1
(
q∗�N∗�M∗)≤ μ

1
< μ̄N

∗−1
1

(
q∗�N∗�M∗)�

where μ̄t1(q
∗�N∗�M∗) is the first in line’s equilibrium posterior belief after t failures and

μ
1

is the first in line’s threshold belief defined in (10). Rewriting the second inequality
above as likelihood ratios, using (5), (13), and (A.6) for the right-hand side, we obtain

ψ(1 − δ)
α(ψδw− 1)

<
μ

1 −μy1
(
q∗�N∗�M∗)(N∗ + 1 − q∗)(1 − α)N∗−1�

Rearranging gives

1 − δ < y1
(
q∗�N∗�M∗)(N∗ + 1 − q∗)(1 − α)N∗+1 μ

1 −μ
α(ψδw− 1)

ψ(1 − α)2 �

Since y1(q
∗�N∗�M∗) ∈ [0�1], q∗ ≤ 1 and it follows that

1 − δ < (N∗ + 1
)
(1 − α)N∗+1 μ

1 −μ
α(ψδw− 1)

ψ(1 − α)2 � (A.43)

Finally, observe that since δ < 1 and α< 1,

μ

1 −μ
α(ψδw− 1)

ψ(1 − α)2 <
1

(1 − α)2
αwμ

1 −μ�

This, together with (A.43), implies

(1 − δ)(1 − α)2 1 −μ
αwμ

<C
(
N∗ + 1

)
� (A.44)

By (16), the left-hand side above is strictly less than the upper bound onC given in (A.40).
Consequently, the inequality above boundsN∗ +1, as illustrated in Figure 6, whereN∗ +
1 belongs to the highlighted interval. Choose N̄ so that

C̄(N̄)= (1 − δ)(1 − α)2 1 −μ
αwμ

(A.45)

or, equivalently,

N̄ = 4 +
ln(1 − δ)− ln

wαμ

1 −μ + ln
[
−e

2
ln(1 − α)

]
1
2

ln(1 − α)
� (A.46)
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Figure 6. The functions C(x) and C̄(x) for α= 0�4.

Equations (A.44) and (A.45), together with (A.42) evaluated at x= N̄ imply that C(N̄)≤
C(N∗ +1). Since, by (16), N̄ lies on the decreasing portion ofC, we have that N̄ >N∗ +1.

Hence, N̄ > N∗.

We now show that the conditions of Lemma 6 are sufficient for (15). As shown at the

end of the proof of Lemma 5(a), the second inequality in (15) is equivalent to δ > δ2(α),

where δ2(α) is defined in (A.38). Observe that 1 − α2 > δ2(α). Therefore, the condition

δ > 1 − α2 (condition (17)) is sufficient for the second inequality in (15) to hold.

Now let us take logarithms of the first inequality in (15):

ln(δw)+N∗ lnψ+ ln
(

1 − ψ(1 − δ)
α2

)
> 0� (A.47)

Observe that since ψ ∈ (0�1), we have

0 ≥N∗ lnψ≥ −N∗ 1 −ψ
ψ

= −N∗(1 − δ)φ�

where the second inequality is an application of lnx ≥ (x − 1)/x, and where the final

expression is obtained from (1) and the definition of ψ in (2). An application of lnx ≥
(x − 1)/x also gives a lower bound on the final term in (A.47). Substitution of these

bounds gives the following sufficient condition for the first inequality in (15):

ln(δw)−N∗(1 − δ)φ− 1 − δ
δ
(
1 − α(1 − α))− (1 − α) > 0�

Substitute the upper bound N̄ defined in (A.46) forN∗ and use (17) to get a lower bound

on the denominator of the fraction above. This gives the new sufficient condition

lnw> (1 − δ)
(
N̄φ+ 1

α3(1 − α)
)

− lnδ
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or, substituting from (A.46) and simplifying,

lnw> (1 − δ)
(

4φ+
ln(1 − δ)− ln

wαμ

1 −μ + ln
[
−e

2
ln(1 − α)

]
1
2

ln(1 − α)
φ+ 1

α3(1 − α)
)

− lnδ� (A.48)

It is evident that the right-hand side is continuous and strictly decreasing in δ. It is
positive for every δ ∈ (0�1) and tends to zero when δ→ 1. The left-hand side is a strictly
positive constant, since w > 1. Therefore, by the intermediate value theorem, (A.48)
imposes a lower bound on δ. In the lemma, this lower bound is labelled δ0.

A.7 Payoffs for the arrival at theM + 1th position under imperfect revelation

A.7.1 Beliefs Consider the profileσ∗(q�N�M)with imperfect revelation, i.e., withM <

N , q ∈ (0�1], orM =N ≥ 1, q ∈ (0�1). An agent who arrives at the queue believing that it
is in the steady state induced by σ∗(q�N�M) bases her posterior beliefs about the server
state and about whether the first in line is informed on the state-dependent invariant
measures of queue lengths given in Appendix A.2.

When N >M + 1, q ∈ (0�1], or N =M + 1, q ∈ (0�1), the agent arriving at the queue
at the M + 1th position does not know whether she is the first, second, third, etc. agent
to arrive at that position behind the current first in line. If the current first in line joined
the queue at the first position and subsequently observed M failures, the agent is the
first arrival at the M + 1th position behind the current first in line. If the current first in
line joined the queue at the first position and subsequently observedM + 1 failures, the
agent is the second arrival at theM + 1th position behind the current first in line, and so
on.

Generalizing, if the first in line observed n failures, n = M�� � � �N , the agent is the
n −M + 1th arrival at the M + 1th position. (If the first in line observes N + 1 failures
(probability 1 − q), then she reneges at the N + 1th failure, so that there cannot be an
N −M + 2th arrival at the M + 1th position.) Equivalently, if the first in line observed
M − 1 + k failures, the agent is the kth arrival at the M + 1th position, k = 1� � � � �N −
M + 1. (Being the N − M + 1th arrival is possible only if q < 1 and the first in line’s
randomization makes her experiment for N + 1 periods, i.e., she does not renege at the
Nth service failure.)

Define ξ̄good
k to be the probability that an agent who arrives at the queue at the

M + 1th position attaches to being the kth arrival at the M + 1th position behind the
current first in line and to that first in line being uninformed. The superscript indicates
that this probability is conditioned on the server being good. We have

ξ̄
good
k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1 − α)M+k−1y1

yM+1
for k= 1� � � � �N −M�

(1 − q)(1 − α)M+k−1y1

yM+1
for k=N −M + 1�

(A.49)
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where (1 − α)M+k−1y1 is the stationary probability that the current first in line joined
the queue at the first position and subsequently observed M + k− 1 service failures,
conditional on the server being good.

By the same token, conditional on the server being bad, we have

ξ̄bad
k =

⎧⎪⎪⎨
⎪⎪⎩

x1

xM+1
= 1
N −M + 1 − q for k= 1� � � � �N −M�

(1 − q) x1

xM+1
= 1 − q
N −M + 1 − q for k=N −M + 1�

(A.50)

where x1 is the stationary probability that the current first in line joined the queue at
the first position (and subsequently observed M + k− 1 service failures; this event has
probability 1 at a bad server), conditional on the server being bad.

When N = M + 1 and q = 1 or when M = N > 1 and q ∈ (0�1), the agent arriving
at the M + 1th position knows that she is the first and only agent arriving at this po-
sition behind the current first in line. As in (A.49) and (A.50), she assigns probability

ξ̄
good
1 = (1 − q)(1 − α)My1/yM+1 to the first in line being uninformed at a good server

and probability ξ̄bad
1 = (1 − q)x1/xM+1 = 1 to the first in line being uninformed at a bad

server.
Thus, (A.49) and (A.50) describe the beliefs of the arrival at the M + 1th position re-

garding the first in line, both whenN <M , q ∈ (0�1], and whenM =N > 1, q ∈ (0�1).
Sections A.7.2 and A.7.3 describe the payoff to an agent arriving at the M + 1th po-

sition who deviates from the profile σ∗(q�N�M) by joining the queue for m periods. To
simplify the exposition, we assume that q = 1. In Section A.7.4 we derive the payoff for
m= 1, allowing for q < 1, as this will be used in later sections.

A.7.2 Payoff from experimenting for 1 ≤ m ≤ N −M periods (for q = 1) We now de-
scribe the payoff, UM+1(m� μ̄

0
M+1), of an agent who arrives at the queue as the M + 1th

in line, forms the posterior belief μ̄0
M+1 that the server is good as described in (13), and

adopts the following strategy. Wait m periods. If a service event occurs during these m
periods, remain in the queue until served. If before any service event occurs the first
in line reneges on the queue, then renege in the same period as the first in line. In all
other cases (i.e., there arem failures and the first in line has not reneged), autonomously
renege afterm periods. The details of UM+1(m� μ̄

0
M+1) can be explained as follows.

Suppose the server is bad. Then the first in line will renege after having observed
a total of N failures. If an agent is the kth arrival at the M + 1th position, she joins the
queue when the first in line has already observed M − 1 + k failures. Thus, the first in
line will stay in line for anotherN− (M−1+k) failures. The kth arrival’s payoff depends
on whetherm is greater or less than this number.

If m ≥ N −M + 1 − k (or, equivalently, k ≥ N −M + 1 −m), the agent who is the
kth arrival at the M + 1th position reneges together with the first in line after having
observed N −M + 1 − k failures and her payoff is δN−M+1−k. If m<N −M + 1 − k (or,
equivalently, k < N −M + 1 −m), she reneges autonomously after having observed m
failures and her payoff is δm.
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Therefore, the expected payoff at a bad server of an agent joining at the M + 1th
position is

N−M−m∑
k=1

ξ̄bad
k δm +

N−M∑
k=N−M+1−m

ξ̄bad
k δN−M+1−k� (A.51)

Using the change of variable i=M + k gives

N−m∑
i=M+1

ξ̄bad
i−Mδ

m +
N∑

i=N+1−m
ξ̄bad
i−Mδ

N+1−i� (A.52)

Now suppose that the server is good. If the first in line is uninformed, then she will
renege after having observed a total of N failures. If an agent is the kth arrival at the
M + 1th position, she joins the queue when the first in line has already observed M −
1 + k failures. Thus, the uninformed first in line will stay in line for another N − (M −
1 + k) failures. The kth arrival’s payoff depends on whetherm is greater or less than this
number.

If m ≥ N −M + 1 − k (or, equivalently, k ≥ N −M + 1 −m), the agent who is the
kth arrival at the M + 1th position reneges together with the first in line after having
observedN −M + 1 − k failures unless service occurs first. Thus, her payoff is

N−M+1−k∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)N−M+1−kδN−M+1−k� (A.53)

Ifm<N −M+ 1 −k (or, equivalently, k<N −M+ 1 −m), the kth arrival at theM + 1th
position reneges autonomously after having observed m failures unless service occurs
first. Her payoff is

m∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)mδm� (A.54)

If the first in line is informed, she never reneges on the queue, and the agent who is
the kth arrival at the M + 1th position reneges autonomously after having observed m
failures, so her payoff is (A.54). Therefore, the expected payoff at a good server of an
agent joining at theM + 1th position is

N−M−m∑
k=1

ξ̄
good
k

(
m∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)mδm
)

+
N−M∑

k=N−M+1−m
ξ̄

good
k

(
N−M+1−k∑

s=1

α(1 − α)s−1δsWM+1 + (1 − α)N−M+1−kδN−M+1−k
)

+
(

1 −
N−M∑
k=1

ξ̄
good
k

)(
m∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)mδm
)
�
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where 1 − ∑N−M
k=1 ξ̄

good
k is the probability that the arrival at the M + 1th position at-

tributes to the first in line being informed at a good server. Factorizing the term in the
large parentheses in the first line and adding up with the third line gives

N−M∑
k=N−M+1−m

ξ̄
good
k

(
N−M+1−k∑

s=1

α(1 − α)s−1δsWM+1 + (1 − α)N−M+1−kδN−M+1−k
)

+
(

1 −
N−M∑

k=N−M+1−m
ξ̄

good
k

)(
m∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)mδm
)
�

Using the change of variable i=M + k gives

N∑
i=N+1−m

ξ̄
good
i−M

(
N+1−i∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)N+1−iδN+1−i
)

+
(

1 −
N∑

i=N+1−m
ξ̄

good
i−M

)(
m∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)mδm
)
� (A.55)

From (A.52) and (A.55) we have that

UM+1
(
m�μ̄0

M+1
)

= (
1 − μ̄0

M+1
){ N−m∑
i=M+1

ξ̄bad
i−Mδ

m +
N∑

i=N+1−m
ξ̄bad
i−Mδ

N+1−i
}

+ μ̄0
M+1

{
N∑

i=N+1−m
ξ̄

good
i−M

(
N+1−i∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)N+1−iδN+1−i
)

+
(

1 −
N∑

i=N+1−m
ξ̄

good
i−M

)(
m∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)mδm
)}
�

Finally, using (A.49) and (A.50) gives

UM+1
(
m�μ̄0

M+1
)

= 1 − μ̄0
M+1

N −M

{
N−m∑
i=M+1

δm +
N∑

i=N+1−m
δN+1−i

}

+ μ̄0
M+1

{
N∑

i=N+1−m

(1 − α)i−1y1

yM+1

(
N+1−i∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)N+1−iδN+1−i
)

+
(

1 −
N∑

i=N+1−m

(1 − α)i−1y1

yM+1

)(
m∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)mδm
)}
� (A.56)
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A.7.3 Payoff from joining the queue for m = N −M periods and herding on the first in
line (for q = 1) We describe the payoff, UhM+1(μ̄

0
M+1), of an agent who arrives at the

queue as the M + 1th in line, forms the posterior belief μ̄0
M+1 that the server is good

as described in (13), and adopts the following strategy. Wait m = N −M periods. If a
service event occurs during thesem periods, remain in the queue until served. If before
any service event occurs the first in line reneges on the queue, then renege in the same
period as the first in line. In all other cases (i.e., there are m failures and the first in line
has not reneged), remain in the queue until served.

Now, if the first in line does not renege after themth failure, the agent at theM + 1th
position learns that she was the first arrival at the M + 1th position behind the current
first in line. She also learns that the first in line has not reneged despite having observed
a total of N service failures. This means that the first in line must have previously ob-
served service (i.e., she is informed). The agent at the M + 1th position therefore learns
that the server is good and remains in line until served. The details of UhM+1(μ̄

0
M+1) can

be explained as follows.
Suppose the server is bad. Then the possible contingencies faced by the kth arrival

at the M + 1th position are as in Section A.7.2. Therefore, using m = N −M in (A.51),
we obtain that the expected payoff at a bad server of an agent joining at the M + 1th
position is

N−M∑
k=1

ξ̄bad
k δN−M+1−k =

N∑
i=M+1

ξ̄bad
i−Mδ

N+1−i� (A.57)

where the second expression is obtained using the change of variable i=M + k.
Now suppose that the server is good. If the first in line is uninformed, then she will

renege after observingN failures. Sincem=N−M , for every k≥ 1, the kth arrival at the
M + 1th position reneges together with the first in line, so her payoff is (A.53) evaluated
at m = N −M . If the first in line is informed, she never reneges on the queue. After
observing the first in line not reneging despite N − M failures, the kth arrival at the
M + 1th position learns that the server is good and remains in line until served. Hence,
her payoff is

N−M∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)N−MδN−MVM+1 = VM+1�

where the equality follows from (2) and (6). Therefore, the expected payoff at a good
server of an agent joining at theM + 1th position is

N−M∑
k=1

ξ̄
good
k

(
N−M+1−k∑

s=1

α(1 − α)s−1δsWM+1 + (1 − α)N−M+1−kδN−M+1−k
)

+
(

1 −
N−M∑
k=1

ξ̄
good
k

)
VM+1�
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Using the change of variable i=M + k gives

N∑
i=M+1

ξ̄
good
i−M

(
N+1−i∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)N+1−iδN+1−i
)

+
(

1 −
N∑

i=M+1

ξ̄
good
i−M

)
VM+1� (A.58)

Combining (A.57) and (A.58), we have that

UhM+1
(
μ̄0
M+1

) = (
1 − μ̄0

M+1
) N∑
i=M+1

ξ̄bad
i−Mδ

N+1−i

+ μ̄0
M+1

{
N∑

i=M+1

ξ̄
good
i−M

(
N+1−i∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)N+1−iδN+1−i
)

+
(

1 −
N∑

i=M+1

ξ̄
good
i−M

)
VM+1

}
�

Finally, using (A.49) and (A.50) gives

UhM+1
(
μ̄0
M+1

)
= 1 − μ̄0

M+1

N −M
N∑

i=M+1

δN+1−i

+ μ̄0
M+1

{
N∑

i=M+1

(1 − α)i−1y1

yM+1

(
N+1−i∑
s=1

α(1 − α)s−1δsWM+1 + (1 − α)N+1−iδN+1−i
)

+
(

1 −
N∑

i=M+1

(1 − α)i−1y1

yM+1

)
VM+1

}
� (A.59)

A.7.4 Payoff from experimenting for m = 1 period (for q < 1) Consider the deviation
where the agent arriving at the M∗ + 1th position joins the queue for m= 1 period and
reneges if the one service event she witnesses produces a failure, regardless of the first
in line’s behavior.

Suppose the server is bad. Then the M + 1th in line reneges after observing one
failure, regardless of whether the first in line reneges in the same period as her. Conse-
quently, the belief of the M + 1th in line regarding the first in line is irrelevant and her
payoff is δ.

Now suppose that the server is good. The M + 1th in line reneges after observing
one failure, regardless of whether the first in line reneges in the same period as her, un-
less service occurs first, in which case she remains in line until served. Consequently,
the belief of the M + 1th in line regarding the first in line is irrelevant and her payoff is
δ[αWM+1 + 1 − α].
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Therefore,

UM+1
(
1� μ̄0

M+1
) = (

1 − μ̄0
M+1

)
δ+ μ̄0

M+1δ[αWM+1 + 1 − α] (A.60)

= UM+1
(
1� μ̄0

M+1
)
� (A.61)

where the second equality follows from the definition of UM+1(1� μ̄0
M+1) in (8).

A.8 Proof of Lemma 7

WhenN∗ =M∗ = 1, (A.4) and (A.6) give

y1 = 1
1 + (

1 − q∗)(1 − α)� y2 = 1 − y1; x1 = 1
2 − q∗ � x2 = 1 − x1�

Using (5) and (13) gives

μ̄0
1

1 − μ̄0
1

= μ

1 −μ
y1

x1
= μ

1 −μ
2 − q

1 + (1 − q)(1 − α)�

μ̄0
2

1 − μ̄0
2

= μ

1 −μ
1 − y1

1 − x1
= μ

1 −μ
2 − q

1 + (1 − q)(1 − α)(1 − α)�

μ̄1
1

1 − μ̄1
1

= μ̄0
1

1 − μ̄0
1

(1 − α)�

so that

μ̄0
1 > μ̄

1
1 = μ̄0

2 > 0 (A.62)

for all (α�μ�q) ∈ (0�1)3.
Consider first the equilibrium condition (B.ii). ForM∗ =N∗ = 1, this yields two con-

ditions. (Since the first in line is necessarily uninformed, there is no third condition.)
First, U∗

1 (μ̄
0
1) ≥ 1, where U∗

1 (μ̄
0
1), defined in (12), is the first in line’s payoff from adher-

ing to the strategy σ∗. But this is just the payoff from experimenting for one period.
Indeed, since A1 = 1 (by (11)) we have that U∗

1 (μ̄
0
1) = U1(1� μ̄0

1), where U1(1� μ̄0
1) is de-

fined in (8). Second, U2(1� μ̄0
2) ≤ 1, where U2(1� μ̄0

2) is the second in line’s payoff from
deviating from the equilibrium strategy and experimenting for one period. By (A.61),
U2(1� μ̄0

2)=U2(1� μ̄0
2). From Lemma 2 we have thatU1(1� μ̄0

1)≥ 1 andU2(1� μ̄0
2)≤ 1 if and

only if μ̄0
1 ≥ μ

1
and μ̄0

2 ≤ μ
2
.

Consider now the equilibrium condition (B.iii). From Lemma 2 we have that q∗ ∈
(0�1) and N∗ = 1 if and only if μ̄0

1 ≥ μ
1

= μ̄1
1. Similarly, q∗ = 1 and N∗ = 1 if and only if

μ̄0
1 = μ≥ μ

1
> μ̄1

1 = μ(1 − α)/(1 − αμ).
Finally, note that condition (B.iv) does not apply as no agent joins the queue at posi-

tions 2�3� � � � in equilibrium, sinceM∗ + 1 = 2.
In summary, the following conditions are necessary and sufficient for an equilibrium

withM∗ =N∗ = 1 and q∗ ∈ (0�1]:
μ̄0

1 ≥ μ
1
≥ μ̄1

1� μ
2
≥ μ̄0

2� (A.63)
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For the existence of an equilibrium with M∗ =N∗ = 1 and q∗ ∈ (0�1), the condition
μ̄1

1 = μ
1

is necessary and sufficient. (By (10), μ
2
> μ

1
. Thus, (A.62) ensures that the

other inequalities in (A.63) hold.) For each (α�μ�q) ∈ (0�1)3, the equation μ̄1
1 = μ

1
has

the unique solution δ1(α�μ�q), which is defined in (20) and takes values in the interval
D∗

2(α�μ)⊂ (0�1), defined in (21).
For the existence of an equilibrium withM∗ =N∗ = 1 and q∗ = 1, the condition μ̄0

1 ≥
μ

1
> μ̄1

1 is necessary and sufficient. At each (α�μ), this last pair of inequalities holds if
and only if δ ∈D∗

1(α�μ), defined in (19).

A.9 Proof of Lemma 8

By Lemma 7, the strategy σ∗(q∗�1�1) cannot constitute an equilibrium if δ ≥ 1/(1 + c),
where c > 0 is defined in (21). This establishes the result forM∗ =N∗ = 1.

Now consider the strategy σ∗(q∗�N∗�M∗), where either M∗ < N∗ and q∗ ∈ (0�1] or
M∗ =N∗ > 1 and q∗ ∈ (0�1). Suppose, by way of contradiction, that for every δ̄ ∈ (0�1),
there exists δ ∈ (δ̄�1) at which σ∗(q∗�N∗�M∗) constitutes an equilibrium with imperfect
revelation. The agent arriving at theM∗ +1th position cannot learn, merely by observing
the queue length, that the server is in the good state. The equilibrium valueM∗ therefore
satisfies the conditions given in (B.ii).

We show that this condition is violated as δ becomes arbitrarily close to 1 by show-
ing that there exists a profitable deviation. The argument is that as δ approaches unity,
joining the queue for one period becomes virtually costless and might ultimately result
in service. Balking can therefore never be optimal.

Consider the deviation where the agent arriving at the M∗ + 1th position joins the
queue for m = 1 period and reneges if the one service event she witnesses produces a
failure, regardless of the first in line’s behavior. The payoff from this deviation for the
agent arriving at theM∗ + 1th position is UM∗+1(1� μ̄0

M∗+1(q
∗�N∗�M∗)), which is defined

in (A.60).
We now show that when δ is arbitrarily close to 1, the agent arriving at the M∗ + 1th

position gets a lower payoff from balking than from joining the queue for one period
and reneging if the one service event she witnesses produces a failure. From (6), we
have that limδ→1WM∗+1 = w. Therefore, evaluating the expected payoff in (A.60) as δ
becomes arbitrarily close to 1 gives

lim
δ→1

UM∗+1
(
1� μ̄0

M∗+1
)= 1 − μ̄0

M∗+1 + μ̄0
M∗+1[αw+ 1 − α]�

Using w> 1 in the above expression, it is immediate that, for every μ̄0
M∗+1 ∈ (0�1),

lim
δ→1

UM∗+1
(
1� μ̄0

M∗+1
)
> 1�

violating the second condition in (B.ii). From (A.60), it is evident that UM∗+1(1� μ̄0
M∗+1)

is continuous in δ. Hence, for every (α�μ) there exists a threshold d(α�μ) < 1 such that
deviating from σ∗(q∗�N∗�M∗) is profitable at every δ > d(α�μ), a contradiction.
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A.10 Proof of Lemma 9

Assume that M >N > 1 and q= 1.43 Let us derive a condition for μ̄0
1 < μ. From (13) we

have that μ̄0
1 <μ if and only ifNy1 < 1. Dividing both sides of (A.19) byN gives

1
Ny1

= 1 +

φN −φM+1

1 −φ
(

1 − 1 −φN+1

(1 −φ)(1 +φ)N
)

−
N−1∑
i=0

1 −φi
1 −φ

(
1 −φ+φ

(
φ

1 +φ
)N)

N
�

A necessary and sufficient condition for Ny1 < 1 is that the fraction on the right-hand
side be strictly positive. Recall that φ> 0. Since M >N , the first fraction at the numer-
ator is positive. Since (1 +φ)N >∑N

i=0φ
i = (1 −φN+1)/(1 −φ), the first term in paren-

theses at the numerator is also positive. Hence, the first summand in the numerator is
positive. Therefore, a necessary and sufficient condition forNy1 < 1 is that⎛

⎜⎜⎜⎜⎜⎝

N−1∑
i=0

1 −φi
1 −φ

φN −φM+1

1 −φ

⎞
⎟⎟⎟⎟⎟⎠

1 −φ+ φN+1

(1 +φ)N

1 − 1 −φN+1

(1 −φ)(1 +φ)N
< 1� (A.64)

The left-hand side of (A.64) is negative if 1−φ+φ(φ/(1+φ))N < 0, since
∑N−1
i=0 (1 −φi)/

(1 −φ) > 0 and we have already argued that the remaining two terms are positive. But
1 − φ + φ(φ/(1 + φ))N is decreasing in N and it is negative for N = 2 if and only if
1 +φ−φ2 < 0. This holds if and only ifφ> (1 + √

5)/2 or, by (1), α< 2/(3 + √
5). Hence,

α< 2/(3 + √
5) is a sufficient condition forNy1 < 1 and μ̄0

1 <μ whenM >N > 1.
We now derive a condition for μ̄0

1 >μ (orNy1 > 1) whenM >N > 1 and q= 1.
Assume that φ < 1 so that a(N) := (1 − φ)(1 + φ)N + φN+1 is positive. The un-

bracketed ratio in (A.64) equals (1 −φ)a(N)/(a(N)− 1). From a(N + 1)− a(N)= (φ−
1)φ((1 +φ)N −φN) > 0 we have that a(N) is a strictly increasing function of N , so that
a(N) > a(1) = 1. Therefore, a(N)/(a(N)− 1) > 1 and (1 − φ)a(N)/(a(N)− 1) > 1 − φ.
Substitution of this lower bound then gives a sufficient condition for the left-hand side
of (A.64) to exceed unity:

(1 −φ)
N−1∑
i=0

(
1 −φi)>φN −φM+1 or (1 −φ)N > 1 −φM�

The right-hand side is less than 1 for every M > 1. For φ < 1/2, the left-hand side is
greater than 1 for everyN > 1. Thus,φ< 1/2 or α> 2/3 is sufficient for this condition. In
summary, when α > 2/3 and M >N > 1, the left-hand side of (A.64) exceeds unity, and
μ̄0

1 >μ.

43The proof of Lemma 9 also holds for the case 0 < q < 1. This is because the inequality (A.64) can be
written as a linear function of q. Therefore, ensuring it holds for q= 1 and q= 0 (the latter is equivalent to
setting q= 1 and increasingN by 1), which is what our proof does, is enough to ensure it holds for all q. The
same argument holds for the caseM ≤N .
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Finally, we derive a condition for μ̄0
1 >μ (orNy1 > 1) whenM ≤N and q= 1.

WhenM <N and q= 1, substitutions from (A.4) and (A.5) give

1
(M + 1)y1

=
1 −φM+1

1 −φ − kN
(
M +φ−1)

(M + 1)(1 − kN)

= 1 +

M∑
i=0

(
φi − 1

)+ kN
(
1 −φ−1)

(M + 1)(1 − kN) �

If φ < 1 (and hence 0 < kN < 1) the numerator of the final fraction is negative, which
implies that y1 > 1/(M + 1). Since M + 1 ≤ N , this implies that y1 > 1/N and that the
sufficient condition for μ̄0

1 > μ holds if φ< 1. As α > 2/3 is sufficient for φ< 1, it is also
sufficient for μ̄0

1 >μ ifM <N .
WhenM =N and q= 1, substitutions from (A.4) and (A.5) give

1
Ny1

=
1 −φN+1

1 −φ − kN
(
N +φ−1)

N(1 − kN) �

For φ< 1, the conditionNy1 > 1 can be written as

kN
φ
>

1 −φN+1

1 −φ −N�

A sufficient condition for this is 0> (1 −φN+1)/(1 −φ)−N for allN > 1. The right-hand
side equals 1 +∑N

i=0(φ
i − 1) and is strictly decreasing in N . Therefore, the condition is

tightest for N = 2 and a sufficient condition is 1> φ+φ2. This holds if φ > (
√

5 − 1)/2
or, by (1), if α> 2/(1 + √

5), which is ensured by the condition α> 2/3.
In summary, when α> 2/3 andM ≤N , μ̄0

1 >μ.

A.11 Proof of Lemma 10

Let M∗ = M and assume that q∗ = 1. We are interested in the behavior as δ → 1 of
equation (A.iii), which determines the equilibrium valueN∗. Looking at the continuous
version of this (i.e., treating both N∗ and M∗ as elements of R+), we have, by Lemma 2,
that μ̄N

∗
1 (1�N∗�M∗)= μ

1
. Rewriting this equality as likelihood ratios, and using (5) and

(13) gives

μ

1 −μy1
(
1�N∗�M∗)N∗(1 − α)N∗ = ψ(1 − δ)

α(ψδw− 1)
� (A.65)

By Lemma 8, when δ→ 1, we necessarily haveM∗ >N∗. We therefore use the expression
for y1(1�N∗�M∗) calculated in (A.21). Substituting this andφ= 1−α

α on the left, the above



Theoretical Economics 14 (2019) Strategic experimentation in queues 705

equation becomes

N∗
(

φ

1 +φ
)N∗

1 −φM∗+1

1 −φ −
(

φ

1 +φ
)N∗[

1 +φ
N∗∑
i=0

1 −φM∗−i

1 −φ

] = ψ(1 − δ)
α(ψδw− 1)

1 −μ
μ

�

Finally, a lengthy rearranging gives

θ1
(
N∗)(φ− 1)= ψ(1 − δ)

α(ψδw− 1)
1 −μ
μ

[
φM

∗+1κ
(
N∗)− θ(N∗)]� (A.66)

where κ(N) := 1 − 1
(1+φ)N

1−φN+1

1−φ , θ1(N) :=N( φ
1+φ)

N , and θ(N) := 1 − ( φ
1+φ)

N −φθ1(N).

These functions satisfy, for allN ≥ 0, the inequalities

κ(N) ∈ [0�1]� θ1(N)≤
[

ln
(

1 +φ
φ

)]−1
� 1 ≥ θ(N)≥ −φ

[
ln
(

1 +φ
φ

)]−1
�

(The last two bounds apply the inequality NβN ≤ −1/ lnβ, which holds for any β < 1
andN > 0.)

We study the values of N∗ that solve (A.66) when M∗ is defined by ψM
∗
δw = 1 (i.e.,

the continuous version of condition (A.ii)), as δ → 1. By Lemma 4, a solution to this
equation exists. We will use the fact thatM∗ → ∞ as δ→ 1. This follows as

M∗ = lnδw
− lnψ

≈ lnw
1 −ψ = lnw

(1 − δ)φψ ≈ lnw
(1 − δ)φ� (A.67)

These approximations become arbitrarily good as δ→ 1.
(a) Let 1/2 < α < 1 or, equivalently, let 0 < φ < 1. By (A.67), M∗ → ∞ as δ→ 1. If

φ < 1, δ→ 1, and M∗ → ∞, the right-hand side of (A.66) converges uniformly to zero
for all values of N∗ ≥ 1. This implies that at any solution to (A.66), the left-hand side of
(A.66) also converges to zero, soN∗ → ∞.

(b) Let 0< α < 1/2 or, equivalently, φ> 1. We begin by showing that the right-hand
side of (A.66) tends to infinity as δ→ 1 for all N∗ > 1. First observe that κ(N∗) > 0 when
N∗ > 1. Now if we substitute from (A.67) forM∗, the right-hand side of (A.66) becomes

K
ψ

ψδw− 1
[
(1 − δ)φ lnw

(1−δ)φ+1
κ
(
N∗)− (1 − δ)θ(N∗)]�

where K is independent of δ and N . Since φ> 1 and w > 1, this tends to infinity for all
N∗ > 1 as δ→ 1. This is because the term that multiplies the square brackets tends to
1/(w − 1) and the first term in the square brackets tends to infinity. However, observe
that the left-hand side of (A.66) is bounded above, since θ1(N

∗) has an upper bound, so
the equality cannot hold atN∗ > 1 when δ→ 1.

However, whenN∗ = 1, κ(N∗)= 0, so the right-hand side of (A.66) converges to zero
as δ→ 1 when N∗ = 1. This, combined with the continuity of (A.66) in N∗, implies that
N∗ that solves (A.66) converges to unity as δ→ 1.
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(c) For α = 1/2 (or φ = 1), the stationary distribution of queue lengths is given in
Lemma B.1 in the Supplemental Material. Using q= 1 and factorizingM , we have

1
y1(1�N�M)

=M(1 − (N + 1)2−N)+ 1 − 2−N
(

1 − N(N + 1)
2

)
�

Using this in (A.65), evaluated at α= 1/2, gives

N∗2−N∗ = 2ψ(1 − δ)
ψδw− 1

1 −μ
μ

[
M∗(1 − (

N∗ + 1
)
2−N∗)+ 1 − 2−N∗

(
1 − N∗(N∗ + 1

)
2

)]
�

Making the substitution (A.67) for M∗ and letting δ → 1 (observing that (2ψ lnw)/
[φ(ψδw− 1)] → (2 lnw)/(w− 1) and that all relevant terms are bounded) gives the re-
lation for the limiting values ofN∗:

N∗

2N
∗ −N∗ − 1

= 2 lnw
w− 1

1 −μ
μ

�

A finite solution, c(μ), to this exists, as the left-hand side above is continuous and strictly
decreasing for N∗ > 1, is unbounded for N∗ = 1, and converges to zero as N∗ → ∞. The
solution is also, therefore, strictly larger than unity.
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