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A foundation for probabilistic beliefs with or without atoms

Andrew Mackenzie
Department of Economics, Maastricht University

We propose two novel axioms for qualitative probability spaces: (i) unlikely atoms,
which requires that there is an event containing no atoms that is at least as likely
as its complement; and (ii) third-order atom-swarming , which requires that for
each atom, there is a countable pairwise-disjoint collection of less-likely events
that can be partitioned into three groups, each with union at least as likely as the
given atom. We prove that under monotone continuity, each of these axioms is suf-
ficient to guarantee a unique countably-additive probability measure representa-
tion, generalizing work by Villegas to allow atoms. Unlike previous contributions
that allow atoms, we impose no cancellation or solvability axiom.
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1. Introduction

1.1 Overview

Much behavior, including much of the economic behavior that we observe and strive to
model, is the selection of an action with uncertain consequences. Our standard model
is founded on the postulate that when these choices are made by someone who is ratio-
nal, they can be decomposed into (i) beliefs about the relative likelihood of events, and
(ii) tastes among outcomes (Ramsey 1931). This article revisits a classic question: when
are such beliefs consistent with standard probability theory?

More precisely, suppose we are given a qualitative probability space (A�⊇��): a
triple consisting of (i) a σ-algebra of events (A�⊇), and (ii) a binary relation comparing
events �, which together satisfy minimal probabilistic requirements (Bernstein 1917,
de Finetti 1937, Koopman 1940, Savage 1954). Under what conditions can the compar-
isons be represented by a σ-measure1 μ : A → [0�1]?

A necessary condition is monotone continuity (Villegas 1964, Arrow 1971): if B1 ⊇
B2 ⊇ · · · ; and if for each i ∈N, Bi �A; then

⋂
Bi �A. On the appeal of this axiom, Arrow

writes, “The assumption of Monotone Continuity seems, I believe correctly, to be the
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harmless simplification almost inevitable in the formalization of any real-life problem.”
While this continuity axiom is not sufficient on its own (Kraft, Pratt, and Seidenberg
1959), we obtain sufficient conditions when it is paired with the requirement that there
are no atoms: non-null events for which each subevent is either equally-likely or null
(Villegas 1964).

Though the practice of using σ-measures to represent beliefs with atoms is preva-
lent throughout economic analysis, atoms in fact create significant technical challenges
for guaranteeing that such representations are available. The large literature dedicated
to this problem can be classified according to which of the following requirements is
imposed:

• there are no atoms;

• the qualitative probability space satisfies a “cancellation” axiom;

• the qualitative probability space satisfies a “solvability” axiom; or

• there are additional primitives beyond A, ⊇, and �.

The contribution of this article is to proceed without imposing any of these require-
ments.

We propose two new axioms, each of which is weaker than the requirement that
there are no atoms. First, we propose unlikely atoms, which requires that there is an
event containing no atoms that is at least as likely as its complement. Second, we pro-
pose third-order atom-swarming (3-AS), which requires that for each atom, there is a
countable pairwise-disjoint collection of less-likely events that can be partitioned into

Figure 1. Third-order atom-swarming. In the illustration, gray circles and their unions are
events, which are compared by area. The center circle is an atom, and the smaller circles to-
gether form a countable pairwise-disjoint collection of less-likely events. Each dashed circle
shows a subcollection of these less-likely events whose union is at least as likely as the center
atom; in this way, the center atom is “sufficiently swarmed” by these less-likely events. The ax-
iom requires that each atom is sufficiently swarmed in this manner.
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three groups, each with union at least as likely as the given atom (Figure 1). Our main re-
sults are that under monotone continuity, each of these conditions is necessary and suf-
ficient to guarantee a σ-measure representation in an associated class, and that more-
over, this representation is the unique σ-measure representation (Theorem 1 and The-
orem 2).

1.2 Related literature

Calls for axiomatic foundations of probability can be traced past Hilbert’s Sixth Problem
(Hilbert 1902) directly to Boole (Boole 1851, 1854); for a detailed history, see Sheynin
(2005). While contributors have held many philosophies about how probabilities should
be interpreted, the mathematical approaches have not been so diverse, essentially com-
prising (i) the cardinal approach, definitively associated with Kolmogoroff (1933); and
(ii) the ordinal approach, pioneered by Bernstein (1917); see Sheynin (2005) for a trans-
lation.

In this article, we are concerned with the problem of identifying axioms that guaran-
tee the ordinal approach is compatible with the cardinal approach, which Machina and
Schmeidler (1992) refer to as the first of two lines of inquiry culminating in the modern
theory of subjective probability. We categorize the previous literature dedicated to this
problem according to which of four assertions is imposed, emphasizing that our con-
tribution is to proceed without any of these assertions. Many of the following contribu-
tions assume that events are subsets of a state space, so for brevity we use S to denote
such a state space throughout this literature review.

1.2.1 No atoms The seminal contributions on qualitative probability spaces (Bernstein
1917, de Finetti 1937, Koopman 1940) imposed that S can be partitioned into an arbi-
trarily large number of equally likely events; this implies that there is a unique measure
that “almost represents” beliefs, though it may assign the same probability to two dis-
tinguished events (see Kreps 1988). To guarantee representation by an atomless mea-
sure, Savage (1954) imposes the stronger fineness-and-tightness axiom, together with
the additional restriction that A = 2S . While this additional restriction seriously limits
the scope for σ-measure representation,2 it is in fact unnecessary for the result.3

Since Savage, a number of contributions raised arguments suggesting that the be-
liefs of a rational agent should be represented by a σ-measure; for example, σ-additivity
of the representation is required to avoid money pumps (Adams 1962, Seidenfeld and
Schervish 1983) and to ensure that choice always respects strict first-order stochas-
tic dominance (Wakker 1993b). Based on these observations and others, Stinchcombe

2In particular, if |S| = |R|, then the existence of an atomless σ-measure defined on 2S is inconsistent with
the Continuum Hypothesis (Banach and Kuratowski 1929, Ulam 1930). That said, there are “nice” atomless
measures that are not σ-additive; for example, when S = [0�1], there are measures on 2S that (i) agree with
the Lebesgue measure on those sets where it is defined, and (ii) assign the same number to any pair of
congruent sets (Banach 1932).

3Savage’s axioms imply that there is a measure representation with range [0�1], which remains true if A
is allowed to be any σ-algebra (Wakker 1981, 1993a). If A is only required to be an algebra and a weaker
version of fineness-and-tightness is imposed, then a measure representation is still guaranteed (Wakker
1981), but its range need only be a dense subset of [0�1] (Marinacci 1993).
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(1997) concludes that a measure that is not σ-additive indicates a misspecified state
space: “One summary [ . . . ] is that countably-infinite constructions require countably
additive probabilities.” Villegas (1964) identified the appropriate axiom: monotone con-
tinuity is both necessary and sufficient for a measure representation to be σ-additive
(Theorem V1).4 Moreover, monotone continuity and the requirement that there are no
atoms are together sufficient to guarantee σ-measure representation (Theorem V2).

While Kopylov (2010) does not explicitly study qualitative probability spaces, it is
clear from his analysis that σ-measure representation is guaranteed by strong monotone
continuity whenever A is countably separated (Mackey 1957); that there are no atoms is
then implied. The use of atomless measures to represent preferences also has axiomatic
foundations for preferences over slices in classic fair division (Barbanel and Taylor 1995)
and for preferences over parcels of land in urban economics (Berliant 1985, 1986).

1.2.2 Cancellation When S is finite, there are qualitative probability spaces without
measure representations (Kraft, Pratt, and Seidenberg 1959), and the complex finite
cancellation condition is necessary and sufficient for measure representation (Kraft,
Pratt, and Seidenberg 1959; Scott 1964; Fishburn 1970; Krantz, Luce, Suppes, and Tver-
sky 1971); in fact, even without the standard axioms defining qualitative probability
spaces, it is alone necessary and sufficient to guarantee an additive representation (Fish-
burn 1970). Stronger and more complex conditions have been identified that guar-
antee measure representation while allowing atoms when S is infinite (Domotor 1969,
Chateauneuf and Jaffray 1984, Chateauneuf 1985), and in fact Chateauneuf (1985) pro-
vides necessary and sufficient conditions using an axiom that implies finite cancellation;
see Fishburn (1986) for a survey.

1.2.3 Solvability To our knowledge, there are two articles that study qualitative proba-
bility spaces with atoms that do not impose cancellation (Abdellaoui and Wakker 2005,
Chew and Sagi 2006). Both involve versions of solvability: for each pair of disjoint events,
there is a subevent of one that is as likely as the other.5  Abdellaoui and Wakker (2005)
allow for mosaics instead of σ-algebras and allow for measures that are not convex-
ranged, while Chew and Sagi (2006) work with an ordering of events induced from pref-
erences over acts through “exchangeability” and proceed without monotonicity. In both
cases, there may be atoms, provided any pairwise-disjoint collection of atoms is finite
with equally likely members.

1.2.4 Additional primitives Many contributions use the entire Savage (1954) model: a
state space S, an outcome space X , and preferences over acts f : S → X . Implicitly A =
2S , and under standard assumptions one can uncover an embedded qualitative prob-
ability space. While Savage only used this embedded qualitative probability space to
guarantee a measure representation of beliefs, many others have used the entire model

4In fact, this is the appropriate axiom even in the multiple priors model (Gilboa and Schmeidler 1989),
guaranteeing that the set of priors is a relatively weak compact set of σ-measures (Chateauneuf, Mac-
cheroni, Marinacci, and Tallon 2005).

5This is not quite the language used in either article. Abdellaoui and Wakker (2005) use “solvability” to
refer to a stronger axiom, while Chew and Sagi (2006) use “completeness” to refer to the given axiom and
use “solvability” to refer to a related property for measures.
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to allow for atoms. Typically this involves imposing, at a minimum, that X has cardinal-
ity of at least the continuum and that X has a rich topological structure. For example, X
might be a simplex of objective “roulette lotteries” that can be mixed (as in Anscombe
and Aumann 1963 and the vast literature that followed), or an interval of dollar amounts
(see Wakker 1989, Gul 1992, and references therein), or Euclidean commodity space (as
in the literature on intertemporal preferences; for example, Koopmans 1960).

In contrast to the first group, we allow for atoms. In contrast to the second group, we
seek simpler sufficient conditions. In contrast to the third group, we allow for distinct
atoms that need not be equally likely. In contrast to the fourth group, our analysis is
focused on beliefs.

2. Model

It is standard in decision theory to introduce events as members of a set-σ-algebra (also
known as a concrete σ-algebra): there is a state space; each event is a subset of the state
space; the state space and the empty set are both events; and the collection of events is
closed under complementation, countable unions, and countable intersections. There
is, however, a larger class of σ-algebras, and it turns out that the most direct path to
applying our results as widely as possible to the standard class involves using this larger
class.6 There are several equivalent definitions; we choose the order-theoretic one:

Definition 1. A partially ordered set (A�⊇) is a lattice if and only if for each pair A�B ∈
A, there is a supremum A ∪ B and an infimum A ∩ B. A lattice (A�⊇) is a σ-algebra7 if
and only if

• it is distributive: for each triple A�B�C ∈ A, A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) and
A∪ (B ∩C) = (A∪B)∩ (A∪C);8

• it is complemented: there are S�∅ ∈ A such that for each A ∈ A, S ⊇ A ⊇ ∅; and
moreover, for each A ∈ A, there is a unique ¬A ∈ A such that A ∪ ¬A = S and
A∩ ¬A= ∅;9 and

• each countably-infinite collection {Ai}i∈N ⊆ A has both supremum
⋃

Ai and infi-
mum

⋂
Ai.

In this case, for each pair A�B ∈ A, we write A \ B to denote A ∩ ¬B; henceforth, we
often write S \A instead of ¬A. We refer to each A ∈ A as an event. We frequently abuse

6Others are more general still, allowing A to be any algebra (Wakker 1981, Marinacci 1993) or even any
mosaic (Kopylov 2007, Abdellaoui and Wakker 2005). This last generalization is motivated by the distinc-
tion between risk and ambiguity (Knight 1921), as the collection of “subjectively risky events” (Epstein and
Zhang 2001) need only be a mosaic.

7This is slight abuse of terminology. As an algebra is a set together with some operations, it would be
more accurate to refer to (A� (

⋃
i)i∈N∪{|N|}� (

⋂
i)i∈N∪{|N|}�¬) as the σ-algebra, where for each i ∈ N∪ {|N|},

⋃
i

and
⋂

i are the associated i-ary operations, and where ¬ is the unary operation. This abuse is for brevity.
8In fact, for lattices, each of these distribution conditions implies the other.
9In fact, for distributive lattices, the uniqueness of each complement is implied.
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notation: when we say (A�⊇) is a σ-algebra, we implicitly take all notation defined here
as given.

We use set-theoretic notation to emphasize that this larger class of σ-algebras is
more familiar than exotic. Many standard arguments involving inclusions, comple-
ments, countable unions, and countable intersections for set-σ-algebras generalize; see
the Algebra Lemma (Lemma 1) in Appendix A. That said, we must take care to avoid ar-
guments involving other set-theoretic concepts for events; for example, we cannot make
reference to an event’s cardinality. (We can, however, make reference to the cardinality
of a collection of events, as we do in the final bulleted entry of the above definition.)

In the context of a given σ-algebra (A�⊇), we refer to a binary relation � on A as
a likelihood relation, interpreting A � B to mean that A is at least as likely as B. Both
A � B and A ∼ B have the obvious definitions. In this article, we restrict attention to
ordered σ-algebras that satisfy standard probabilistic axioms (Bernstein 1917, de Finetti
1937, Koopman 1940, Savage 1954):

Definition 2. Let (A�⊇) be a σ-algebra and let � be a binary relation on A. We say
that (A�⊇��) satisfies

• order10 if and only if � is complete and transitive;

• separability11 if and only if for each triple A�B�C ∈ A such that A∩C = B∩C = ∅,

A� B if and only if A∪C � B ∪C;

• monotonicity12 if and only if for each pair A�B ∈ A, A⊆ B implies B�A; and

• nondegeneracy if and only if there are A�B ∈ A such that A� B.

We say that (A�⊇��) is a qualitative probability space if and only if it satisfies order,
separability, monotonicity, and nondegeneracy.

We seek conditions under which our ordinal notion of qualitative probability space
is compatible with the standard cardinal notion of probability (Kolmogoroff 1933):

Definition 3. Let (A�⊇) be a σ-algebra. A collection A′ ⊆ A is pairwise-disjoint if and
only if for each pair A�B ∈ A′, A ∩ B = ∅. A function μ : A → [0�1] is a (probability)

10We remark that violations of completeness can be observed and distinguished from indifference (Eliaz
and Ok 2006), and in fact have been in a recent experiment (Cettolin and Riedl 2018); see Nehring (2009)
and Alon and Lehrer (2014) for recent contributions studying likelihood relations without this assumption.

11We remark that the systematic violation of this axiom has been observed in an experiment where cer-
tain events feature probability appraisals while others do not (Ellsberg 1961); the favoring of the appraised
events is a phenomenon typically ascribed to ambiguity aversion (though not always; see Ergin and Gul
2009).

12A referee observed that due to separability, we need only impose the weaker monotonicity axiom that
for each A ∈ A, A�∅. We use this stronger statement simply for convenience in the proofs.
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measure (on (A�⊇)) if and only if (i) μ(S) = 1; and (ii) for each finite, pairwise-disjoint
{Ai}i∈I ⊆ A,

μ
(⋃

Ai

)
=

∑
μ(Ai)�

A measure μ is moreover a σ-measure (on (A�⊇)) if and only if (iii) for each countably-
infinite, pairwise-disjoint {Ai}i∈I ⊆ A,

μ
(⋃

Ai

)
=

∑
μ(Ai)�

Abusing notation, let M(A) ⊆ [0�1]A denote the class of measures and let Mσ(A) ⊆
M(A) denote the class of σ-measures.

We say that the ordinal and cardinal notions are compatible when the likelihood
comparisons and the probability comparisons perfectly match:

Definition 4. If (A�⊇��) is a qualitative probability space and μ ∈ M(A), then we say
μ is a representation of (A�⊇��) if and only if for each pair A�B ∈ A,

A� B if and only if μ(A) ≥ μ(B)�

In this case we say μ represents �.

3. Results

3.1 Axioms

As discussed in Section 1.2, a number of contributions have raised arguments suggest-
ing that the beliefs of a rational agent should be represented by a σ-measure, and the
appropriate axiom has been identified:

Definition 5. A qualitative probability space (A�⊇��) satisfies monotone continuity
if and only if for each A ∈ A and each (Bi) ∈ AN such that (i) B1 ⊇ B2 ⊇ · · · ; and (ii) for
each i ∈N, Bi �A; we have

⋂
Bi �A.

Theorem V1 (Villegas 1964). If (A�⊇��) is a qualitative probability space with represen-
tation μ ∈M(A), then (A�⊇��) satisfies monotone continuity if and only if μ ∈Mσ(A).

That said, this axiom alone is not sufficient for our purposes: there is a qualitative
probability space satisfying monotone continuity, that moreover has only a finite num-
ber of events, with no measure representation (Kraft, Pratt, and Seidenberg 1959). This
is in fact due to non-null events that contain no “smaller” non-null events, a concept
that we formalize both ordinally and cardinally:

Definition 6. Let (A�⊇) be a σ-algebra. For each binary relation � on A, we say that
an event α ∈ A is a (likelihood) atom in (A�⊇��) if and only if

• α �∅; and
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• for each B ∈ A such that B ⊆ α, we have B ∼ α or B ∼∅.

Similarly, for each μ ∈ M(A), we say that an event α ∈ A is a measure-atom in (A�⊇�μ)

if and only if

• μ(α) > 0; and

• for each B ∈ A such that B ⊆ α, we have μ(B) = μ(α) or μ(B)= 0.

Abusing notation, we let A• denote the collection of atoms in (A�⊇��) and we let A•|μ
denote the collection of measure-atoms in (A�⊇�μ). Clearly, if (A�⊇��) is a qualitative
probability space represented by μ, then A• = A•|μ.

To introduce one result from the literature and two new results, we first introduce
three conditions that, together with monotone continuity, are each sufficient for σ-
measure representation. The first is standard, while the second and third are novel:

Definition 7. Let n ∈N. A qualitative probability space (A�⊇��) satisfies

• no atoms if and only if A• =∅;

• unlikely atoms if and only if there is A ∈ A such that (i) A� S \A; and (ii) for each
α ∈ A•, α�A; and

• nth-order atom-swarming (n-AS) if and only if for each α ∈ A•, there are I ⊆ N,
pairwise-disjoint {Bi}i∈I ⊆ A, and I1� I2� � � � � In partitioning I such that (i) for each
i ∈ I, α � Bi; and (ii) for each j ∈ {1�2� � � � � n},

⋃
Ij
Bi � α.

We associate each of these conditions with a corresponding class of σ-measures.

Definition 8. Let (A�⊇) be a σ-algebra, let μ ∈ Mσ(A), and let n ∈ N. We say that μ
belongs to

• Mσ
NA(A) ⊆ Mσ(A) if and only if for each A ∈ A and each λ ∈ [0�1], there is B ⊆ A

such that μ(B) = λμ(A);

• Mσ
UA(A) ⊆ Mσ(A) if and only if there is A ∈ A such that (i) μ(A) ≥ 1

2 ; and (ii) for
each α ∈ A•|μ, α�A; and

• Mσ
n-AS(A) ⊆ Mσ(A) if and only if for each α ∈ A•|μ, there are I ⊆ N and pairwise-

disjoint {Bi}i∈I ⊆ A such that (i) for each i ∈ I, μ(α) > μ(Bi); and (ii) μ(
⋃

Bi) ≥
nμ(α).

3.2 Characterizations

It is already known that monotone continuity and no atoms together guarantee a repre-
sentation from the corresponding class of σ-measures:

Theorem V2 (Villegas 1964). A qualitative probability space (A�⊇��) satisfies mono-
tone continuity and no atoms if and only if it has representation μ ∈Mσ

NA(A). In this case,
(A�⊇��) has no other σ-measure representation.
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A1 � B1 μ(A1) ≥ μ(B1)

⇔ ⇔

A2 � B2 μ(A2) ≥ μ(B2)

⇔ ⇔

... ...

⇔ ⇔

A� � B� ⇔ μ(A�) ≥ μ(B�)

Figure 2. Proof of Theorem 1. More specifically, this is the structure of the central argument in
Step 4 of the proof of Proposition 1: we begin with a pair of events (A1�B1), then follow an algo-
rithm to iteratively modify pairs until we can terminate with a pair (A��B�) where it is obvious
that the likelihood comparison agrees with the probability comparison; moreover, we do so in a
manner that allows us to deduce this for the original pair.

Our first main result generalizes Theorem V2:

Theorem 1. A qualitative probability space (A�⊇��) satisfies monotone continuity and
unlikely atoms if and only if it has representation μ ∈Mσ

UA(A). In this case, (A�⊇��) has
no other σ-measure representation.

The first three appendices are dedicated to the proof. In Appendix A, we prove or
provide proof references for basic results about σ-algebras and qualitative probability
spaces, including some observations involving continuity that to the best of our knowl-
edge are novel. In Appendix B, we apply a classic σ-algebra homomorphism theorem to
formalize the notion that it is without loss of generality to focus our analysis on idealized
spaces, where there is a unique null event.

In Appendix C, we first focus on idealized spaces. To begin, we use Theorem V2 to
assign probabilities to subevents of the largest event that contains no atoms, then asso-
ciate each atom with an equally-likely event that has been assigned a probability, and
finally complete our construction of the σ-measure in the obvious manner. To verify
that this is in fact a representation, we introduce an algorithm to begin with an arbitrary
pair of events, then iteratively modify the pair until it is obvious that the likelihood com-
parison and the probability comparison agree, in a manner that allows us to conclude
this about the original pair; see Figure 2. Finally, we make some concluding arguments,
including that the result extends from all idealized spaces to all spaces.

Our second main result also generalizes Theorem V2:

Theorem 2. Let n ∈ N such that n ≥ 3. A qualitative probability space (A�⊇��) satisfies
monotone continuity and n-AS if and only if it has representation μ ∈ Mσ

n-AS(A). In this
case, (A�⊇��) has no other σ-measure representation.13

The final four appendices are dedicated to the proof, which also relies on the first
two appendices. As this result covers qualitative probability spaces for which every

13The current statement of this theorem is the result of two considerable generalizations of its original
statement, both of which were suggested by the same referee, to whom I am extremely grateful.
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non-null event contains an atom, we cannot again rely on Theorem V2 to construct our
σ-measure. Instead, we pursue an approach based on the following observation: if two
disjoint events are equally likely, then in any σ-measure representation, the measure
of both must be half the measure of their union. Informally, if in some sense we were
able to iteratively take such halves and then take disjoint unions, then in constructing
our σ-measure representation we would necessarily assign numbers of the form p/2q,
where q ∈ {0�1� � � �} and p ∈ {0�1� � � � �2q}, to certain likelihood equivalence classes. In
Appendix D, we propose the notion of supercabinet to capture a structured family of
equivalence classes with these labels, then prove that any qualitative probability space
with a supercabinet has a unique σ-measure representation.

The next two appendices are dedicated to developing the tools to construct a su-
percabinet. In Appendix E, we propose the notion of greedy transform for selecting a
subevent from a parent event, given a target event, which under some conditions guar-
antees that the selection is just as likely as the target. The basic idea is closely related
to the observation of Kakeya (Kakeya 1914a,b) that if (vi) ∈ RN+ is non-increasing with
finite sum, then the collection of its subsequence sums {∑I vi|I ⊆ N} is convex if and
only if for each i ∈ N, vi ≤ ∑

j>i vj ; see also Nitecki (2015). Indeed, for each v ∈ [0�∑vi],
a subsequence with sum v can be constructed by including v1 unless the partial sum
will exceed v, then including v2 unless the partial sum will exceed v, and so on. Loosely,
this works because at each stage there is never too much and always enough, and this
ordinal argument extends to our setting.

Under 2-AS, our greedy transforms allow us to take an arbitrary pair of events and
associate it with an equivalent disjoint pair, provided that the complement of the first is
at least as likely as the second. In Appendix F, we show that a notion of halves for events
is well-defined, then show that under 2-AS, we can construct two disjoint halves for any
event.

Finally, in Appendix G, we apply the tools developed in the previous two appendices
to construct a supercabinet; see Figure 3. To construct the supercabinet, we require
only 2-AS, but to verify that it is a supercabinet, we require 3-AS. The need for 3-AS in
our proof is most clear in Step 6 and Step 7 of the Supercabinet Construction Lemma
(Lemma 18). Loosely, at this stage of the proof, we need to show that if we have a dis-
joint pair of events from the equivalence classes labeled p/2q and p′/2q whose union be-
longs to the equivalence class labeled (p+p′)/2q, then we have a disjoint pair of events
from the equivalence classes labeled p/2q and (p′ + 1)/2q whose union belongs to the
equivalence class labeled (p + p′ + 1)/2q, and the argument requires us to construct a
pairwise-disjoint collection of events from the equivalence classes labeled p/2q, p′/2q,
and 1/2q, for which we require 3-AS. We remark that this succession-based approach to
addition is related to Peano (1889).

3.3 Discussion

Because Theorem V2, Theorem 1, and Theorem 2 each state that any relevant qualitative
probability space has a unique associated σ-measure, we can conveniently explore the
logical relationships between these three theorems using σ-measures:
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Figure 3. Proof of Theorem 2. More specifically, this is the structure of Step 1 and Step 2 of the

Supercabinet Construction Lemma (Lemma 18). We construct events A
p
q , where q ∈ {0�1� � � �}

and p ∈ {0�1� � � � �2q}, such that we intend to associate each A
p
q with the measure p/2q. For the

dotted lines, we use our halving technique from Appendix F. For the dashed lines, we use our

disjoint-pair technique from Appendix E. The rest of the proof is dedicated to establishing that

the associated likelihood equivalence classes are in fact a supercabinet; this is where we require

3-AS.

Example 1 (Hybrid measures). For each x ∈ [0�1], define Sx ≡ [0�x]∪N; define (Ax�⊇x)

to be the collection of Borel sets contained in Sx with ordinary set inclusion, which is

indeed a σ-algebra; and define Mσ∗ (Ax) to be the collection of σ-measures that assign

each subevent of [0�x] its Borel measure. We consider four cases.

Case 1. If x = 1 and μ ∈Mσ∗ (Ax), then

• μ ∈Mσ
NA(Ax),

• μ ∈Mσ
UA(Ax), and

• μ ∈Mσ
3-AS(Ax).

Moreover, Mσ∗ (Ax) has a unique σ-measure.

Case 2. If x ∈ [ 3
4 �1) and μ ∈Mσ∗ (Ax), then

• μ /∈Mσ
NA(Ax),

• μ ∈Mσ
UA(Ax), and

• μ ∈Mσ
3-AS(Ax).
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We remark that some σ-measures in Mσ∗ (Ax) have a finite collection of measure-atoms,
while others have a countably-infinite collection of measure-atoms.

Case 3. If x ∈ [ 1
2 �

3
4) and μ ∈Mσ∗ (Ax), then

• μ /∈Mσ
NA(Ax),

• μ ∈Mσ
UA(Ax), and

• μ may or may not belong to Mσ
3-AS(Ax).

If there is s ∈N such that μ({s}) > 1
4 ; or if there are s� s′ ∈ N such that μ({s}) = μ({s′}) > 1

5 ;
then μ /∈ Mσ

3-AS(Ax); otherwise, μ ∈Mσ
3-AS(Ax).

Case 4. If x ∈ [0� 1
2) and μ ∈Mσ∗ (Ax), then

• μ /∈Mσ
NA(Ax),

• μ /∈Mσ
UA(Ax), and

• μ may or may not belong to Mσ
3-AS(Ax).

For example, if there is s ∈ N such that μ({s}) > 1
4 , then μ /∈ Mσ

3-AS(Ax). If x > 0 and if
for each s ∈ N, μ({s}) ∈ [0�x/3], then μ ∈ Mσ

3-AS(Ax). If x = 0, if n ∈ N, and if there is
δ ∈ [n/(n+ 1)�1) such that for each t ∈ {0�1�2� � � �},

μ
({t}) = (1 − δ)δt�

then μ ∈ Mσ
n-AS(Ax). In particular, if δ ∈ [ 3

4 �1), then μ ∈Mσ
3-AS(Ax). ♦

Case 1 is the only case where Theorem V2 applies, and Case 2 illustrates that both
Theorem 1 and Theorem 2 are proper generalizations of Theorem V2. Case 3 establishes
that Theorem 1 is not implied by Theorem 2, while Case 4 establishes that Theorem 2 is
not implied by Theorem 1.

Our example for Case 4 when x = 0 is related to Kochov (2013), who considers a
model that covers this setting with an intertemporal interpretation. Kochov proposes
patience, the requirement that {2�3� � � �} is preferred to {1}, and establishes that if pref-
erences satisfy patience and have a geometric representation, then preferences have no
other geometric representation; a corollary is that a geometric representation is unique
under 1-AS.

4. Conclusion

We conclude with an open problem:

Conjecture. A qualitative probability space (A�⊇��) satisfies monotone continuity
and 1-AS if and only if it has representation μ ∈ Mσ

1-AS(A). In this case, (A�⊇��) has
no other σ-measure representation.
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It is straightforward to show that (i) unlikely atoms implies 1-AS, and (ii) 3-AS implies
1-AS; thus if the above conjecture were proven, then both Theorem 1 and Theorem 2
would follow as corollaries.

Appendix A

In this appendix, we state and prove (or provide a proof reference for) two basic lemmas
about σ-algebras (the Algebra Lemma and the Measure Lemma) and five basic lemmas
about qualitative probabilities (the Complement Lemma, the Domination Lemma, the
Continuity Lemma, the Limit-Order Lemma, and the Carving Lemma). These are Lem-
mas 1–7, respectively.

To establish our first two lemmas, we take a direct approach using elementary argu-
ments. As observed by a referee, an alternative approach is to derive these lemmas as
consequences of the powerful Loomis–Sikorski Theorem (Loomis 1947, Sikorski 1960).
This alternative approach is more elegant, but involves some digression; we therefore
choose to provide details for the direct approach and simply mention this elegant ap-
proach for the interested reader.14

To begin, there are many algebraic manipulations of the symbols ⊇, ∪, ∩, and \
throughout these proofs that would give the reader well-acquainted with set theory no
cause for hesitation if only these symbols had their usual set-theoretic meanings. As
each of these symbols has a more general order-theoretic meaning, however, some re-
assurance is necessary; the Algebra Lemma (Lemma 1) provides this reassurance. Some
of these manipulations involve a particular notion of limit, defined below; we remark
that the associated notion of convergence, known as sequential order convergence (Kan-
torovich 1935, Birkhoff 1935, 1940), coincides with standard pointwise convergence for
set-σ-algebras:

Definition 9. For each event sequence (Ai) ∈ AN, we define

(i) the limit superior of (Ai), lim supAi ≡ ⋂
i∈N(

⋃
j≥i Aj); and

(ii) the limit inferior of (Ai), lim infAi ≡ ⋃
i∈N(

⋂
j≥i Aj).

We say that (Ai) is convergent if and only if lim supAi = lim infAi, in which case we de-
fine the limit of (Ai) to be limAi ≡ lim supAi = lim infAi.

Lemma 1 (Algebra Lemma). If (A�⊇) is a σ-algebra, then for each four A�B�C�D ∈ A,
each pair I� J ⊆ N, each pair {Ai}i∈I� {Aij}(i�j)∈I×J ∈ 2A, each j ∈N, each list I1� I2� � � � � Ij ⊆
N, each list of collections {Bi}I1� {Bi}I2� � � � � {Bi}Ij ∈ 2A, and each convergent pair (Ci)�

(Di) ∈ AN,

14Using terminology we introduce in Appendix B, the Loomis–Sikorski Theorem states that for each σ-
algebra (A∗�⊇∗), there are a set-σ-algebra (S�A�⊇), a σ-ideal I ⊆ A, and a bijective σ-homomorphism
h : A∗ → AI . In this way, each σ-algebra is isomorphic to a quotient of a set-σ-algebra, and the desired
properties for a σ-algebra can be derived from the familiar fact that these properties hold for its associated
set-σ-algebra.
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(i) S \∅ = S and S \ S =∅;

(ii) A∩∅ = ∅ and A∪ S = S;

(iii) A∩ S = A and A∪∅ = A;

(iv) A∩ (S \A)= ∅ and A∪ (S \A) = S;

(v) S \ (S \A)=A;

(vi) A∩A= A and A∪A=A;

(vii) S \ (A∩B)= (S \A)∪ (S \B) and S \ (A∪B)= (S \A)∩ (S \B);

(viii) A∩B = B ∩A and A∪B = B ∪A;

(ix) A∩ (B ∩C) = (A∩B)∩C and A∪ (B ∪C) = (A∪B)∪C;

(x) A∩ (B ∪C) = (A∩B)∪ (A∩C) and A∪ (B ∩C) = (A∪B)∩ (A∪C);

(xi) A⊆ C and B ⊆ D implies A∩B ⊆ C ∩D and A∪B ⊆ C ∪D;

(xii) A⊆ B implies (S \A)⊇ (S \B);

(xiii) S \ (⋃I Ai) = ⋂
I(S \Ai) and S \ (⋂I Ai) = ⋃

I(S \Ai);

(xiv) B ∩ (
⋃

I Ai) = ⋃
I(B ∩Ai) and B ∪ (

⋂
Ai) = ⋂

I(B ∪Ai);

(xv)
⋃

j(
⋃

Ij
Bi)= ⋃⋃

Ij
Bi and

⋂
j(

⋂
Ij
Bi) = ⋂⋃

Ij
Bi;

(xvi)
⋃

I(
⋃

J Aij) = ⋃
(i�j)∈I×J Aij and

⋂
I(

⋂
J Aij)= ⋂

(i�j)∈I×J Aij ;

(xvii) lim(S \Ci) exists and lim(S \Ci) = S \ limCi; and

(xviii) lim(Ci ∪ Di) and lim(Ci ∩ Di) exist, lim(Ci ∪ Di) = limCi ∪ limDi, and lim(Ci ∩
Di) = limCi ∩ limDi.

Proof. For (i)–(xv), see Halmos (1963) (Sections 2, 6, and 7); we give a stronger state-
ment of associativity in (xv) for which the proof given by Halmos goes through with triv-
ial modification. We introduce our additional associativity condition in (xvi) for con-
venience; we omit its straightforward proof, which shares the structure of the proof by
Halmos of (xv). For (xvii), there is a standard proof that S \ lim infAi = lim sup(S \Ai) and
S \ lim supAi = lim inf(S \ Ai) using the generalized De Morgan laws in (xiii), and (xvii)
is an immediate corollary. We were unsuccessful in finding a proof of (xviii) anywhere,
and therefore supply one.15

Let (Ai)� (Bi) ∈ AN. It is straightforward to show that lim sup(Ai ∪ Bi) ⊇ lim inf(Ai ∪
Bi), lim inf(Ai ∩ Bi) ⊆ lim sup(Ai ∩ Bi), lim infAi ∪ lim infBi ⊆ lim inf(Ai ∪ Bi), and
lim supAi ∩ lim supBi ⊇ lim sup(Ai ∩Bi); we omit the simple order-theoretic arguments.
Thus it suffices to show that lim sup(Ai∪Bi) = lim supAi∪ lim supBi and lim inf(Ai∩Bi) =

15Though (xviii) is a standard result for set-σ-algebras, the standard proof does not generalize.



Theoretical Economics 14 (2019) Foundation for probabilistic beliefs 723

lim infAi ∩ lim infBi; indeed, it is then immediate that the desired consequences follow

if (Ai) and (Bi) are convergent.

We first show lim sup(Ai ∪ Bi) = lim supAi ∪ lim supBi. For each i ∈ N, define A+
i ≡⋃

j≥i Aj , B
+
i ≡ ⋃

j≥i Bj , Ji ≡ {j ∈N|j ≤ i}, and Ki ≡ {k ∈N|k≤ i}. Then A+
1 ⊇A+

2 ⊇ · · · and

B+
1 ⊇ B+

2 ⊇ · · · , so for each i ∈N, A+
i = ⋂

j∈Ji A
+
j and B+

i = ⋂
k∈Ki

B+
k . Thus

lim sup(Ai ∪Bi) =
⋂
i∈N

(⋃
j≥i

(Aj ∪Bj)

)

=
⋂
i∈N

((⋃
j≥i

Aj

)
∪

(⋃
j≥i

Bj

))

=
⋂
i∈N

(
A+

i ∪B+
i

)

=
⋂
i∈N

((⋂
j∈Ji

A+
j

)
∪

( ⋂
k∈Ki

B+
k

))

=
⋂
i∈N

(⋂
j∈Ji

(
A+

j ∪
( ⋂
k∈Ki

B+
k

)))

=
⋂
i∈N

(⋂
j∈Ji

( ⋂
k∈Ki

(
A+

j ∪B+
k

)))

=
⋂
i∈N

( ⋂
(j�k)∈Ji×Ki

(
A+

j ∪B+
k

))

=
⋂

(j�k)∈⋃
(Ji×Ki)

(
A+

j ∪B+
k

)

=
⋂

(j�k)∈N×N

(
A+

j ∪B+
k

)

=
⋂
j∈N

(⋂
k∈N

(
A+

j ∪B+
k

))

=
⋂
j∈N

(
A+

j ∪
(⋂
k∈N

B+
k

))

=
(⋂
j∈N

A+
j

)
∪

(⋂
k∈N

B+
k

)

= lim supAi ∪ lim supBi�

We remark that the second equality holds due to (xvi), which can be shown in tedious

detail with additional notation; we omit the straightforward argument.
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To prove that lim inf(Ai ∩ Bi) = lim infAi ∩ lim infBi, we need only appeal to duality:
in the above paragraph, simply replace each instance of the symbol ∪ with ∩, replace
each instance of ∪ with ∩, and replace each instance of lim sup with lim inf.

As the above proof demonstrates, we frequently make arguments that rely on the
Algebra Lemma (Lemma 1) without explicit mention. That said, there will occasionally
be an explicit mention when we use infinite operations, as the following proof demon-
strates.

The Measure Lemma (Lemma 2) states that each σ-measure respects limits, or
equivalently, that each σ-measure is a continuous function in the sequential order con-
vergence topology. This is a known result for set-σ-algebras (for example, this is a corol-
lary of observations about lim sup and lim inf in Halmos 1950, Section 9), but we were
unable to find a proof for the general result; we therefore supply one:

Lemma 2 (Measure Lemma). If (A�⊇) is a σ-algebra and μ ∈ Mσ(A), then for each con-
vergent (Ai) ∈ AN, we have that limμ(Ai) exists with limμ(Ai) = μ(limAi).

Proof. We first prove the statement for “vanishing” sequences and then in general.

Step 1: For each (Vi) ∈ AN such that V1 ⊇ V2 ⊇ · · · and limVi = ∅, we have that limμ(Vi)

exists and limμ(Vi) = 0. Let (Vi) ∈ AN satisfy the hypotheses. For each i ∈ N, define
Ai ≡ S \ Vi; by the Algebra Lemma (Lemma 1), limAi exists and limAi = S \ limVi = S.
For each i ∈ N, define Bi ≡ Ai \ (⋃j<i Aj); as A1 ⊆ A2 ⊆ · · · , altogether we have

⋃
Bi =⋃

Ai = limAi = S. As {Bi} is pairwise-disjoint, thus
∑

μ(Bi) = μ(S) = 1. For each i ∈ N,
μ(Ai) = ∑

j≤i μ(Bi), so limμ(Ai) exists and limμ(Ai) = ∑
μ(Bi) = 1; thus limμ(Vi) =

lim(1 −μ(Ai)) exists and limμ(Vi)= 1 − limμ(Ai) = 0.

Step 2: Conclude. Let (Ai) ∈ AN be convergent and define A∞ ≡ limAi. For each i ∈ N,
define A+

i ≡ ⋃
j≥i Aj , define A−

i ≡ ⋂
j≥i Aj , and define Vi ≡ A+

i \A−
i .

We claim that (Vi) is “vanishing.” Indeed, for each i ∈ N, A+
i ⊇ A+

i+1 and A−
i ⊆ A−

i+1,
so S \A−

i ⊇ S \A−
i+1, so Vi = A+

i ∩ (S \A−
i ) ⊇ A+

i+1 ∩ (S \A−
i+1) = Vi+1. Moreover, A∞ =⋂

A+
i = ⋃

A−
i , so by the Algebra Lemma (Lemma 1),

limVi = lim
(
A+

i ∩ (
S \A−

i

))
= limA+

i ∩ lim
(
S \A−

i

)
=A∞ ∩ (

S \ limA−
i

)
=A∞ ∩ (S \A∞)

=∅�

as desired.
We claim that lim(A+

i ), lim(A−
i ) exist and lim(A+

i ) = lim(A−
i ). Indeed, by Step 1,

limμ(Vi) exists and limμ(Vi) = 0. For each i ∈ N, we have μ(A+
i )�μ(A

−
i ) ∈ [0�1], and

moreover μ(A+
1 ) ≥ μ(A+

2 ) ≥ · · · and μ(A−
1 ) ≤ μ(A−

2 ) ≤ · · · ; thus (μ(A+
i )) and (μ(A−

i ))
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are both bounded and monotonic, so there are limμ(A+
i ) and limμ(A−

i ). For each
i ∈ N, A+

i ⊇ A−
i , so μ(A+

i ) = μ(A−
i ) + μ(A+

i \ A−
i ) = μ(A−

i ) + μ(Vi); thus lim(A+
i ) =

lim(μ(A−
i )+μ(Vi)) = limμ(A−

i )+ limμ(Vi)= limμ(A−
i ), as desired.

To conclude, for each i ∈N, A+
i ⊇Ai ⊇ A−

i and A+
i ⊇A∞ ⊇A−

i , so μ(A+
i )≥ μ(Ai)≥

μ(A−
i ) and μ(A+

i ) ≥ μ(A∞) ≥ μ(A−
i ). By the standard Squeeze Theorem, limμ(Ai)

exists, limμ(Ai) = limμ(A+
i ), and μ(A∞) = limμ(A+

i ); thus limμ(Ai) = μ(A∞) =
μ(limAi), as desired.

With that, we turn from σ-algebras to qualitative probability spaces. The next two
lemmas are particularly general in that they apply to each of these spaces. In fact, there
is only one other such result in this article (the Half-Equivalence Lemma (Lemma 15) in
Appendix F); all other results involve continuity.

The Complement Lemma (Lemma 3) states that likelihood reverses under comple-
ments. This is a slight extension of Exercise 3 of Savage (1972, p. 32), and thus the proof
is omitted.

Lemma 3 (Complement Lemma, Savage 1954). If (A�⊇��) is a qualitative probability
space, then for each A ∈ A and each pair B�B′ ⊆A, B� B′ if and only if A \B′ �A \B.

The Domination Lemma (Lemma 4) states that for any two pairs such that the first
is disjoint and dominates the second in likelihood, the union of the first is at least as
likely as the union of the second. Moreover, strict domination implies the union of the
first is more likely than the union of the second. (As the application of this lemma re-
quires verifying that one pair of events is disjoint, while the application of separability
requires verifying that two pairs of events are disjoint, it is often more convenient to use
the lemma than to use the axiom.) The lemma is a slight extension of Exercise 5a of
Savage (1972, p. 32), and thus the proof is omitted.

Lemma 4 (Domination Lemma, Savage 1954). If (A�⊇��) is a qualitative probability
space, then for each four A�A′�B�B′ ∈ A, if

(i) A∩A′ =∅,

(ii) A� B, and

(iii) A′ � B′,

then A∪A′ � B ∪B′. If moreover A� B, then A∪A′ � B ∪B′.

The final three lemmas in this appendix involve monotone continuity, and the fol-
lowing closely-related requirement that upper and lower contour sets are closed in the
sequential order convergence topology:

Definition 10. A qualitative probability space (A�⊇��) satisfies continuity if and only
if for each A ∈ A and each convergent (Bi) ∈ AN,

(i) if for each i ∈N, Bi �A, then limBi �A; and
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(ii) if for each i ∈N, A� Bi, then A� limBi.

Though continuity seems stronger than monotone continuity, the Continuity Lemma
(Lemma 5) states that in fact the two are equivalent for qualitative probabilities, a point
which to our knowledge has not been made previously. Based on this equivalence, we
are justified in writing (monotone) continuity in stating our results while using continu-
ity in our proofs:

Lemma 5 (Continuity Lemma). If (A�⊇��) is a qualitative probability space, then it sat-
isfies monotone continuity if and only if it satisfies continuity.

Proof. Because for each sequence (Bi) ∈ AN such that B1 ⊇ B2 ⊇ · · · , we have
⋂

Bi =
limBi, thus clearly continuity implies monotone continuity. Suppose � is a qualitative
probability satisfying monotone continuity.

To see that upper contour sets are closed, let A ∈ A and let (Bi) ∈ AN be conver-
gent such that for each i ∈ N, Bi � A. Define B∞ ≡ limBi; and for each i ∈ N, define
B+
i ≡ ⋃

j≥i Bj . By construction, B+
1 ⊇ B+

2 ⊇ · · · ; and by monotonicity, for each i ∈ N,
B+
i � Bi �A; thus by monotone continuity,

⋂
B+
i �A. By definition, B∞ = ⋂

B+
i ; thus

B∞ = ⋂
B+
i �A, as desired.

To see that lower contour sets are closed, let A ∈ A and let (Bi) ∈ AN be convergent
such that for each i ∈ N, A� Bi. Define B∞ = limBi. By the Algebra Lemma (Lemma 1),
(S \B∞) = lim(S \Bi). By the Complement Lemma (Lemma 3), for each i ∈ N, (S \Bi)�
(S \A). As upper contour sets are closed, thus (S \B∞) = lim(S \Bi)� (S \A), so by the
Complement Lemma (Lemma 3), A� B∞, as desired.

The Limit-Order Lemma (Lemma 6) states that for each pair of convergent se-
quences, if each member of the first sequence is at least the corresponding member of
the second, then the limit of the first sequence is at least the limit of the second. Variants
of this result appear in Villegas (1964) and Arrow (1971). This particular result does not
require A to be a σ-algebra; any Hausdorff space will do, as can be seen from the proof:

Lemma 6 (Limit-Order Lemma). If (A�⊇��) satisfies order and continuity, then for each
pair of convergent sequences (Ai)� (Bi) ∈ AN such that for each j ∈ N, Aj � Bj , we have
lim(Ai)� lim(Bi).

Proof. Let (Ai)� (Bi) ∈ AN satisfy the hypothesis. Since � is complete, by a standard
argument16 there is M ⊆ N such that that (B′

i) ≡ (Bi)|M is a �-monotonic sequence.
Define (A′

i)≡ (Ai)|M . Necessarily lim(Ai) = lim(A′
i) and lim(Bi)= lim(B′

i).

Case 1: (B′
i) is non-decreasing. Then for each pair j�k ∈ N with k≥ j,

A′
k � B′

k

� B′
j�

16A common proof of the Bolzano–Weierstrass theorem includes a lemma stating that each real sequence
has a monotonic subsequence; the standard proof of that lemma suffices here.
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so by continuity, lim(A′
i) � B′

j . Thus by continuity, lim(A′
i) � lim(B′

i), so lim(Ai) �
lim(Bi).

Case 2: (B′
i) is non-increasing. Then for each pair j�k ∈N with k≥ j,

A′
j � B′

j

� B′
k�

so by continuity, A′
j � lim(B′

i). Thus by continuity, lim(A′
i) � lim(B′

i), so lim(Ai) �
lim(Bi).

Finally, the Carving Lemma (Lemma 7) states that if the union of (i) an event A◦ that
contains no atoms, and (ii) an event B that is disjoint from A◦, is at least as likely as
some reference event C, which in turn is at least as likely as B alone, then it is possible
to “carve” a subevent C◦ of A◦ such that the union C◦ ∪ B is precisely as likely as C.
When B = ∅ and C contains no atoms, this is an immediate corollary of Theorem V2;
the lemma states that this is true in general:

Lemma 7 (Carving Lemma). If (A�⊇��) is a qualitative probability space that satisfies
(monotone) continuity, then for each triple A◦�B�C ∈ A such that

(i) A◦ ∩B = ∅;

(ii) for each A′ ⊆ A◦, A′ /∈ A•; and

(iii) A◦ ∪B� C � B;

there is C◦ ∈ A such that C◦ ⊆A◦ and C◦ ∪B ∼ C.

Proof. Let (A�⊇��), A◦, B, C satisfy the hypotheses. If A◦ ∼ ∅, then by the Domina-
tion Lemma (Lemma 4), B � A◦ ∪ B � C � B, so B ∼ C, so if we define C◦ ≡ ∅ we are
done; thus let us assume that A◦ �∅.

Step 1: Define A∗ ⊆ A, μ∗ ∈ Mσ
NA(A∗), and V +� V − ⊆ [0�1]. Define A∗ ≡ {A ∈ A|A ⊆

A◦}; it is straightforward to show that this is a σ-algebra. Define ⊇∗, �∗ on A∗ as follows:
for each pair A�A′ ∈ A∗, (i) A ⊇∗ A′ if and only if A ⊇ A′, and (ii) A �∗ A′ if and only
if A �A′. Since A◦ � ∅, it is straightforward to verify that (A∗�⊇∗��∗) is a qualitative
probability space satisfying monotone continuity and no atoms; thus by Theorem V2,
there is a unique μ∗ ∈ Mσ

NA(A∗) such that for each pair A�A′ ∈ A∗, μ∗(A) ≥ μ∗(A′) if
and only if A�∗ A′ if and only if A�A′. To be more concise, we say that μ∗ represents
comparisons on A∗. Define V +� V − ⊆ [0�1] by

V + ≡ {
v ∈ [0�1]|A ∈A∗ and μ∗(A) = v implies A∪B� C

}
� and

V − ≡ {
v ∈ [0�1]|A ∈A∗ and μ∗(A) = v implies C �A∪B

}
�
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Observe that for each pair A�A′ ∈ A∗ such that μ∗(A) = μ∗(A′), we have A∼ A′, A∩B =
∅, and A′ ∩B =∅, so by separability, we have A∪B ∼A′ ∪B. For the next step, we refer

to this as the observation.

Step 2: infV + = supV −. We prove three claims, then conclude.

Claim 1: V + �= ∅ and V − �= ∅. Indeed, since A◦ ∪ B � C � B = ∅ ∪ B, thus by the

observation, 1 ∈ V + and 0 ∈ V −.

Claim 2: For each pair v′� v ∈ [0�1] such that v′ > v, (i) v ∈ V + implies v′ ∈ V + \ V −,

and (ii) v′ ∈ V − implies v ∈ V − \ V +. Indeed, let v′, v satisfy the hypotheses. Since

μ∗ ∈ Mσ
NA(A∗), thus there are A′�A ∈ A∗ such that μ∗(A′) = v′ and μ∗(A) = v. Since

μ∗ represents comparisons on A∗, thus A′ � A. Since A′ ∩ B = ∅, thus by the Domina-

tion Lemma (Lemma 4), A′ ∪ B � A ∪ B. For (i), if v ∈ V +, then A′ ∪ B � A ∪ B � C, so

by the observation, v′ ∈ V + \ V −. For (ii), if v′ ∈ V −, then C �A′ ∪ B � A ∪ B, so by the

observation, v ∈ V − \ V +.

Claim 3: V + ∪ V − = [0�1]. Indeed, since μ∗ ∈ Mσ
NA(A∗), thus for each v ∈ [0�1], there is

A ∈ A∗ such that μ∗(A) = v. By order, A ∪B � C or C �A ∪B; thus by the observation,

v ∈ V + or v ∈ V −. Altogether, then, [0�1] ⊆ V + ∪ V − ⊆ [0�1], so V + ∪ V − = [0�1].

To conclude, by Claim 1 and Claim 2, there are inf(V +) and sup(V −) such that

inf(V +)≥ sup(V −); thus by Claim 3, we have inf(V +)= sup(V −).

Step 3: Conclude. Define v◦ ≡ infV + = supV −. Since μ∗ ∈ Mσ
NA(A∗), thus there is C◦ ∈

A∗ such that μ∗(C◦) = v◦. We proceed with two claims that together complete the proof.

Claim 1: C◦ ∪ B � C. If v◦ = 1, then C◦ ∼ A◦ and C◦ ∩ B = ∅, so by the Domina-

tion Lemma (Lemma 4) C◦ ∪ B � A◦ ∪ B � C and we are done; thus let us assume

v◦ < 1. Then there is decreasing (vi) ∈ [0�1]N such that v1 = 1 and limvi = v◦. Since

μ∗ ∈ Mσ
NA(A∗), thus there is (Ai) ∈ (A∗)N such that (i) A◦ = A1 ⊇ A2 ⊇ · · · ; and (ii) for

each i ∈ N, μ∗(Ai)= vi. Since A1 ⊇A2 ⊇ · · · , thus there is limAi.

We first prove that C◦ ∪ B ∼ (limAi) ∪ B. Indeed, since μ∗ ∈ Mσ(A∗), thus by the

Measure Lemma (Lemma 2),

μ∗(C◦) = v◦

= limvi

= limμ∗(Ai)

= μ∗(limAi)�

so as μ∗ represents comparisons on A∗, thus C◦ ∼ limAi. By construction, C◦ ∩ B = ∅.

Moreover, for each i ∈ N, Ai ∩ B = ∅, so by the Algebra Lemma (Lemma 1), there is
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lim(Ai ∩B) and

(limAi)∩B = (limAi)∩ (limB)

= lim(Ai ∩B)

=∅�

Thus by separability, C◦ ∪B ∼ (limAi)∪B, as desired.
Next, we prove that (limAi) ∪ B � C. Indeed, for each i ∈ N, vi > v◦ = supV −, so

vi ∈ V +, so as μ∗(Ai) = vi we have Ai ∪B � C. By the Algebra Lemma (Lemma 1), there
is lim(Ai ∪B) and

(limAi)∪B = (limAi)∪ (limB)

= lim(Ai ∪B)�

so by continuity, (limAi)∪B = lim(Ai ∪B)� C, as desired.
Altogether, then, we have C◦ ∪B ∼ (limAi)∪B� C.

Claim 2: C◦ ∪B� C. If v◦ = 0, then C◦ ∼∅ and ∅∩B = ∅, so by the Domination Lemma
(Lemma 4) C◦ ∪B�∅∪B� C and we are done; thus let us assume v◦ > 0. Then there is
increasing (vi) ∈ [0�1]N such that v1 = 0 and limvi = v◦. Sinceμ∗ ∈Mσ

NA(A∗), thus there is
(A′

i) ∈ (A∗)N such that (i) A◦ =A′
1 ⊇A′

2 ⊇ · · · ; and (ii) for each i ∈N, μ∗(A′
i)= 1 − vi. For

each i ∈N, define Ai ≡A◦ \A′
i; then (i) A1 ⊆A2 ⊆ · · · ; and (ii) for each i ∈N, μ∗(Ai) = vi.

Since A1 ⊆A2 ⊆ · · · , thus there is limAi.
The remaining arguments for this claim are dual to the corresponding arguments for

the previous claim in the following sense: take the first claim’s arguments, then replace
each instance of � with �, each instance of > with <, each instance of sup with inf,
each instance of V − with V +, and each instance of V + with V −; the resulting arguments
complete the proof of this claim and thus the proof of this lemma.

Appendix B

In this appendix, we prove the Null-Quotient Lemma (Lemma 8), which formalizes the
idea that it is without loss of generality to focus on the following class of qualitative prob-
ability spaces:

Definition 11. A qualitative probability space (A�⊇��) is an idealized (qualitative
probability) space if and only if (i) it satisfies monotone continuity, and (ii) {A ∈ A|A ∼
∅} = {∅}. In this case, by a correction to Lemma 4 of Villegas (1964)17 and then by
Lemma 1 of Villegas (1964), there is I• ⊆N such that (i) A• = {αs}s∈I• is pairwise-disjoint;

17Lemma 4 of Villegas (1964) incorrectly states that for each qualitative probability space that satisfies
monotone continuity, the collection of atoms is at most countably-infinite; as a counterexample, take the
qualitative probability space (2[0�1]�⊇��), where ⊇ is ordinary set inclusion and {0} ∼ [0�1]. That said, the
statement is true under the additional condition that the collection of atoms is pairwise-disjoint, which is
the case whenever ∅ is the unique null event, and the original proof of Villegas suffices.
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(ii) for each pair s� s′ ∈ I•, s < s′ implies αs � αs′ ; and (iii) for each s ∈ I•, there is s∗ ∈ I•

such that (a) s ∼ s∗, and (b) for each s′ ∈ I• such that s′ > s∗, αs � αs′ .
We define S� ≡ ⋃

αs, A� ≡ {A ∈ A|A⊆ S�}, S◦ ≡ S \ S�, and A◦ ≡ {A ∈ A|A⊆ S◦}. It
is straightforward to verify that both A� and A◦ are σ-algebras. We frequently abuse lan-
guage: when we say that (A�⊇��) is an idealized space, we implicitly take a particular
choice of index set I•, together with the associated notation defined here, as given.

In an idealized space, ∅ is the unique null event. As we will see, any qualitative prob-
ability space that satisfies monotone continuity can be idealized by taking a particular
kind of quotient with respect to the σ-ideal of its null events; hence the name.

We begin by introducing the notion of a structure-preserving map from one σ-
algebra to another. We choose our definition statement to emphasize that we are using
precisely the same notion as Halmos (1963), which is an outstanding reference for all
concepts in this appendix:

Definition 12. Let (A�⊇) and (A′�⊇′) be σ-algebras, with ∪, ∩, and ¬ denoting,
respectively, supremum, infimum, and complement for (A�⊇), and with ∪′, ∩′, and
¬′ denoting the respective operations for (A′�⊇′). A function h : A → A′ is a σ-
homomorphism (with respect to ⊇ and ⊇′) if and only if (i) for each pair A�B ∈ A,
h(A ∪ B) = h(A) ∪′ h(B) and h(A ∩ B) = h(A) ∩′ h(B); (ii) for each A ∈ A, h(¬A) =
¬′h(A); and (iii) for each {Ai}i∈N ⊆ A, h(

⋃
Ai) = ⋃′ h(Ai).

In other words, a σ-homomorphism preserves complements as well as suprema and
infima of countable collections. Note that it need not preserve all suprema and infima,
and in general will not.18

In order to use null events to take quotients of qualitative probability spaces, we first
need to be able to use them to take quotients of σ-algebras. There is a standard way to
do so, because the collection of null events has the following structure:

Definition 13. Let (A�⊇) be a σ-algebra. A collection I ⊆ A is a σ-ideal of A if and
only if (i) ∅ ∈ I ; (ii) for each A ∈ I and each B ⊆ A, B ∈ I ; and (iii) for each countably-
infinite collection {Ai}i∈N ⊆ I , we have

⋃
Ai ∈ I .

In this case, for each pair A�B ∈ A, we define A =I B if and only if (A \ B) ∪ (B \
A) ∈ I . For each A ∈ A, we write [A] ≡ {B ∈ A|A=I B}.

18This is a delicate point that bears further comment. A lattice that satisfies all the properties of a
σ-algebra except for the requirement that each countably-infinite collection has both a supremum and an
infimum is called a (Boolean) algebra; an algebra whose members are subsets of a state space and whose
partial order is set inclusion is called a (Boolean) set-algebra; and a function from one algebra to another
that satisfies only the first two conditions of a σ-homomorphism is called a (Boolean) homomorphism.
Stone’s Representation Theorem (Birkhoff 1935, Stone 1936) states that from each algebra (and in particular
for our purposes, from each σ-algebra), there is a bijective homomorphism to a particular associated set-
algebra. That said, there need not be any such σ-homomorphism: there is no guarantee that this promised
homomorphism will preserve suprema and infima of countably-infinite collections, and in fact there are
σ-algebras from which there are no bijective σ-homomorphisms to any set-σ-algebras. In this sense, the
class of σ-algebras is indeed larger than the standard class of set-σ-algebras, even though the classes of
algebras and set-algebras coincide; the additional generality is made explicit by the Loomis–Sikorski Theo-
rem (Loomis 1947, Sikorski 1960).
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It is straightforward to verify that for each σ-ideal I , the relation =I is an equivalence
relation. We can therefore use a σ-ideal to take a quotient as follows:

Definition 14. If I is a σ-ideal of A, then the I-quotient of A, (AI�⊇I), is defined by
(i) AI ≡ {[A]|A ∈ A}; and (ii) for each pair [A]� [B] ∈ AI , [A] ⊇I [B] if and only if there
are A′ ∈ [A] and B′ ∈ [B] such that A′ ⊇ B′.

It is a standard result that such a quotient is always a σ-algebra, and moreover that
the (“natural” or “canonical”) projection onto it from A is a σ-homomorphism:

Theorem H (Halmos 1963, Section 13). If (A�⊇) is a σ-algebra and I ⊆ A is a σ-ideal of
A, then (AI�⊇I) is a σ-algebra. Moreover, the projection h : A → AI , defined such that
for each A ∈ A, h(A) = [A], is a σ-homomorphism.

For our purposes, we take the collection of null events as our σ-ideal; two events are
then related to one another if and only if their symmetric difference is null, or equiv-
alently for qualitative probability spaces, if and only if their union is as likely as their
intersection. It is straightforward to verify that for any qualitative probability space that
satisfies monotone continuity, this is indeed a σ-ideal; thus we can define likelihood
comparisons for the associated quotient in the natural way:

Definition 15. If (A�⊇��) is a qualitative probability space that satisfies monotone
continuity and if I = {A ∈ A|A∼∅}, then the null-quotient of (A�⊇��) is (AI�⊇I��I),
where for each pair [A]� [B] ∈ AI , [A] �I [B] if and only if there are A′ ∈ [A] and B′ ∈ [B]
such that A′ � B′.

The Null-Quotient Lemma (Lemma 8) states that the null-quotient of a parent space
is an idealized space that inherits all properties we consider in this article, and that
moreover σ-measure representations flow from child to parent as well as from parent
to child. We can therefore exploit the considerable convenience afforded by focusing on
idealized spaces throughout many of our upcoming proofs.

We remark that in order to pursue this approach, it has been necessary to consider σ-
algebras that need not be set-σ-algebras precisely because Theorem H guarantees only
that a quotient by a σ-ideal is a σ-algebra, not that it is a set-σ-algebra. Indeed, there is
no such theorem: if A is the collection of Borel sets contained in the interval [0�1] and I
is the σ-ideal consisting of all sets in A with Borel measure zero, then the quotient is a
σ-algebra from which there is no bijective σ-homomorphism to any set-σ-algebra (see
Halmos 1963, Section 23 for other examples).

Lemma 8 (Null-Quotient Lemma). If (A�⊇��) is a qualitative probability space that sat-
isfies monotone continuity and (A∗�⊇∗��∗) is its null quotient, then

• the following basic observations hold:

(i) [∅] is the minimum of (A∗�⊇∗��∗) and [S] is its maximum;
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(ii) for each pair A�A′ ∈ A such that A′ ∈ [A], we have A∼ A′;

(iii) for each pair A�B ∈ A, A� B if and only if [A] �∗ [B]; and

(iv) for each A ∈ A, A ∈ A• if and only if [A] ∈ (A∗)•;

• (A∗�⊇∗��∗) is an idealized space;

• if (A�⊇��) satisfies unlikely atoms, then (A∗�⊇∗��∗) satisfies unlikely atoms;

• for each n ∈N, if (A�⊇��) satisfies n-AS, then (A∗�⊇∗��∗) satisfies n-AS;

• if μ∗ ∈ Mσ(A∗) represents (A∗�⊇∗��∗), then there is μ : A → [0�1] such that for
each A ∈ A, μ(A) = μ∗([A]), and moreover, μ ∈Mσ(A) represents (A�⊇��);

• if μ ∈ Mσ(A) represents (A�⊇��), then there is μ∗ : A∗ → [0�1] such that for each
A ∈ A, μ∗([A]) = μ(A), and moreover, μ∗ ∈Mσ(A∗) represents (A∗�⊇∗��∗).

Proof. Let (A�⊇��) be a qualitative probability space that satisfies monotone continu-
ity and let (A∗�⊇∗��∗) be its null-quotient. It is straightforward to verify that the collec-
tion of null events in A is a σ-ideal; thus by Theorem H, (A∗�⊇∗) is a σ-algebra and the
projection from A to A∗ is a σ-homomorphism. Let ∪∗, ∩∗, and ¬∗ denote, respectively,
supremum, infimum, and complement for (A∗�⊇∗). Let ∅∗ denote its minimum, and
for each pair [A]� [B] ∈ A∗, let [A] \∗ [B] denote [A] ∩∗ (¬∗[B]).

For brevity, we refer to properties (such as order and unlikely atoms) without ex-
plicitly specifying which qualitative probability space the property belongs to, as this
will always be clear from the context. The rest of the proof consists of six steps, each
establishing the corresponding part of the lemma’s statement.

Step 1: Basic observations, to be used freely throughout the remaining steps. To see (i),
let A ∈ A. As ∅ ⊆ A ⊆ S, thus [∅] ⊆∗ [A] ⊆∗ [S]. Necessarily, then, [∅] is the minimum
of A∗ and [S] is the maximum of A∗. Though [∅] = ∅∗, we will use both [∅] and ∅∗ to
emphasize particular arguments.

To see (ii), let A�A′ ∈ A such that A′ ∈ [A]. Then (A \ A′) ∪ (A′ \ A) ∼ ∅, which by
monotonicity and the Domination Lemma (Lemma 4) implies A∼ A∩A′ ∼A′.

To see (iii), let A�B ∈ A. If A� B, then by construction [A] �∗ [B]. If [A]�∗ [B], then
there are A′ ∈ [A] and B′ ∈ [B] such that A′ � B′; thus A∼A′ � B′ ∼ B.

To see (iv), first let A ∈ A such that A ∈ A•. Then A�∅, so [A] �∗ [∅] =∅∗. For each
[B] ∈ A∗ such that [B] ⊆∗ [A], there are A′ ∈ [A] and B′ ∈ [B] such that B′ ⊆ A′. Since
(B′ \A) ⊆ (A′ \A)⊆ (A \A′)∪ (A′ \A) ∼∅, since (B′ ∩A) ⊆A, and since A ∈ A•, thus
by monotonicity and the Domination Lemma (Lemma 4), B′ ∼A or B′ ∼ ∅, so [B] ∼∗ [A]
or [B] ∼∗ [∅] =∅∗. Thus [A] ∈ (A∗)•.

To complete the proof of (iv), let A ∈ A such that [A] ∈ (A∗)•. Then [A] �∗ ∅∗ = [∅],
so A � ∅. For each B ∈ A such that B ⊆ A, we have [B] ⊆∗ [A], so as [A] ∈ (A∗)•, thus
[B] ∼∗ [A] or [B] ∼∗ ∅∗ = [∅], so B ∼A or B ∼ ∅. Thus A ∈ A•.

Step 2: (A∗�⊇∗��∗) is an idealized space. To see that ∅∗ is the unique null event, let
[A] ∈ A∗ such that [A] ∼∗ ∅∗. Since ∅∗ = [∅], thus A ∼ ∅, so (A \∅)∪ (∅ \A) =A ∼ ∅,
so A ∈ [∅] = ∅∗, so [A] = ∅∗.
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To see that (A∗�⊇∗��∗) satisfies order, first let [A]� [B] ∈ A∗. Then by order, either
A� B or B �A, so either [A] �∗ [B] or [B] �∗ [A], as desired. Second, let [A]� [B]� [C] ∈
A∗ such that [A] �∗ [B] and [B] �∗ [C]. Then A � B and B � C, so by order, A � C, so
[A] �∗ [C].

To see that it satisfies separability, let [A]� [B]� [C] ∈ A∗ such that [A] ∩∗ [C] = [B] ∩∗
[C] = ∅∗. Then by Theorem H, [A∩C] = [A]∩∗ [C] =∅∗ = [∅] and [B∩C] = [B]∩∗ [C] =
∅∗ = [∅], so A∩C ∼∅ and B∩C ∼ ∅. Define A′ ≡A\C, B′ ≡ B\C, and C ′ ≡ C \(A∪B).
It follows from monotonicity and the Domination Lemma (Lemma 4) that A ∼ A′, B ∼
B′, C ∼ C ′, A∪C ∼A′ ∪C ′, and B∪C ∼ B′ ∪C ′. Since A′ ∩C ′ = ∅ and B′ ∩C ′ = ∅, thus by
separability, A′ � B′ if and only if A′ ∪C ′ � B′ ∪C ′; altogether, then, A� B if and only if
A∪C � B∪C. First, if [A] �∗ [B], then A� B, so A∪C � B∪C, so [A∪C] �∗ [B∪C], so
by Theorem H, we have [A] ∪∗ [C] �∗ [B] ∪∗ [C]. Second, if [A] ∪∗ [C] �∗ [B] ∪∗ [C], then
by Theorem H, we have [A∪C] �∗ [B ∪C], so A∪C � B ∪C, so A� B, so [A] �∗ [B].

To see that it satisfies monotonicity, let [A]� [B] ∈ A∗ such that [A] ⊆∗ [B]. Then there
are A′ ∈ [A] and B′ ∈ [B] such that A′ ⊆ B′, so by monotonicity, we have B′ � A′, so
[B]�∗ [A].

To see that it satisfies nondegeneracy, by nondegeneracy there are A�B ∈ A such that
A� B, so [A] � [B].

To see that it satisfies monotone continuity, let [A] ∈ A∗ and let ([Bi]) ∈ (A∗)N such
that (i) [B1] ⊇∗ [B2] ⊇∗ · · · ; and (ii) for each i ∈ N, [Bi] �∗ [A]. Then for each i ∈ N, there
are Bi

i , B
i
i+1 such that Bi

i ∈ [Bi], Bi
i+1 ∈ [Bi+1], and Bi

i ⊇ Bi
i+1. For each i ∈ N, define Ni ≡

(Bi+1
i+1 \Bi

i+1)∪ (Bi
i+1 \Bi+1

i+1); as [Bi
i+1] = [Bi+1

i+1], thus Ni ∼ ∅. Define N ≡ ⋃
Ni; by mono-

tonicity, the Domination Lemma (Lemma 4), and the Limit-Order Lemma (Lemma 6),
N ∼ ∅. For each i ∈ N, define B′

i ≡ Bi
i \N ; by monotonicity and the Domination Lemma

(Lemma 4), (B′
i \Bi

i)∪ (Bi
i \B′

i) ∼∅, so [B′
i] = [Bi

i] = [Bi] and thus B′
i ∼ Bi �A. Moreover,

for each i ∈N,

B′
i = Bi

i \N
⊇ Bi

i+1 \N
= (

Bi+1
i+1 ∩Bi

i+1
) \N

= Bi+1
i+1 \N

= B′
i+1�

Thus B′
1 ⊇ B′

2 ⊇ · · · , so by monotone continuity, we have
⋂

B′
i � A, so [⋂B′

i] �∗ [A].
Altogether, by Theorem H, we have

⋂∗[Bi] = ⋂∗[B′
i] = [⋂B′

i]�∗ [A].

Step 3: (A∗�⊇∗��∗) inherits unlikely atoms from (A�⊇��). Assume (A�⊇��) satisfies
unlikely atoms. Then there is A ∈ A such that (i) A � S \ A; and (ii) for each α ∈ A•,
α � A. By Theorem H, [A] �∗ [S \ A] = [¬A] = ¬∗[A]. Moreover, for each [B] ∈ (A∗)
such that [B] ⊆ [A], there is B′ ∈ A such that B′ ⊆ A, so B′ /∈ A•, so [B] = [B′] /∈ (A∗)•.

Step 4: For each n ∈ N, (A∗�⊇∗��∗) inherits n-AS from (A�⊇��). Let n ∈ N, assume
(A�⊇��) satisfies n-AS, and let [A] ∈ (A∗)•. Then A ∈ A•, so by n-AS, there are I ⊆ N,



734 Andrew Mackenzie Theoretical Economics 14 (2019)

pairwise-disjoint {Bi}i∈N ⊆ A, and I1� I2� � � � � In partitioning I such that (i) for each i ∈ I,
A� Bi; and (ii) for each j ∈ {1�2� � � � � n},

⋃
Ij
Bi �A.

By Theorem H, for each pair i� j ∈ I, [Bi] ∩∗ [Bj] = [Bi ∩ Bj] = [∅] = ∅∗, so {[Bi]}i∈I is
pairwise-disjoint. Moreover, for each i ∈ I, [A] �∗ [Bi]. Finally, by Theorem H, we have⋃∗

Ij
[Bi] = [⋃Ij

Bi]�∗ [A]. Altogether, then, I, {[Bi]}i∈I , and I1� I2� � � � � In are as desired.

Step 5: Given σ-measure representation μ∗, we can produce σ-measure representation
μ as promised. Assume (A∗�⊇∗�∗) has representation μ∗ ∈Mσ(A∗), and define μ : A →
[0�1] such that for each A ∈ A, μ(A) = μ∗([A]). We first prove that μ ∈ Mσ(A), then
prove that μ represents (A�⊇��).

To see that μ ∈ Mσ(A), first note that by construction [S] is the maximum of A∗, so
μ∗([S]) = 1, so μ(S) = 1. Second, let I ⊆ N and let {Ai}i∈I ⊆ A be pairwise-disjoint. By
Theorem H, for each pair i� j ∈ I such that i �= j, [Ai]∩∗ [Aj] = [Ai ∩Aj] = [∅] =∅∗. Then
{[Ai]}i∈I is pairwise-disjoint, so by Theorem H,

μ
(⋃

Ai

)
= μ∗([⋃

Ai

])

= μ∗
(⋃∗[Ai]

)

=
∑

μ∗([Ai]
)

=
∑

μ(Ai)�

as desired.
To see that μ represents (A�⊇��), let A�B ∈ A. First, A � B implies [A] �∗ [B],

which implies μ∗([A]) ≥ μ∗([B]), which implies μ(A) ≥ μ(B). Second, μ(A) ≥ μ(B)

implies μ∗([A])≥ μ∗([B]), which implies [A] �∗ [B], which implies A� B.

Step 6: Given σ-measure representation μ, we can produce σ-measure representa-
tion μ∗ as promised. Assume (A�⊇��) has representation μ ∈ Mσ(A), and define
μ∗ : A → [0�1] such that for each A ∈ A, μ∗([A]) = μ(A); as μ is a representation of
(A�⊇��), this is well-defined. We first prove that μ∗ ∈ Mσ(A∗), then prove that μ∗ rep-
resents (A∗�⊇∗��∗).

To see that μ∗ ∈ Mσ(A∗), first note that μ∗([S]) = μ(S) = 1. Second, let I ⊆ N and let
{[Ai]}i∈I ⊆ A∗ be pairwise-disjoint. By Theorem H, for each pair i� j ∈ I such that i �= j,
we have [Ai ∩Aj] = [Ai] ∩∗ [Aj] =∅∗ = [∅], so Ai ∩Aj ∼ ∅. Define N ∈ A by

N ≡
⋃

i�j∈I|i �=j

(Ai ∩Aj)�

By monotonicity, the Domination Lemma (Lemma 4), and the Limit-Order Lemma
(Lemma 6), N ∼ ∅. For each i ∈ N, define Bi ≡ Ai \ N ; by monotonicity and the Domi-
nation Lemma (Lemma 4), (Bi \ Ai) ∪ (Ai \ Bi) ∼ ∅, so [Bi] = [Ai] and thus Bi ∼ Ai. By



Theoretical Economics 14 (2019) Foundation for probabilistic beliefs 735

construction, {Bi}i∈I is pairwise-disjoint, so by Theorem H,

μ∗
(⋃∗[Ai]

)
= μ∗

(⋃∗[Bi]
)

= μ∗([⋃
Bi

])
= μ

(⋃
Bi

)
=

∑
μ(Bi)

=
∑

μ∗([Bi]
)

=
∑

μ∗([Ai]
)
�

as desired.
To see that μ∗ represents (A∗�⊇∗��∗), let [A]� [B] ∈ A∗. First, [A] �∗ [B] implies

A� B, which implies μ(A) ≥ μ(B), which implies μ∗([A])≥ μ∗([B]). Second, μ∗([A])≥
μ∗([B]) implies μ(A) ≥ μ(B), which implies A� B, which implies [A] �∗ [B].

Appendix C

In this appendix we prove our first main result, which implies that monotone continuity
and unlikely atoms are together sufficient to guarantee σ-measure representation. We
first exploit the convenience of idealized spaces to prove the following:

Proposition 1. If (A�⊇��) is an idealized space that satisfies unlikely atoms, then it
has representation μ ∈ Mσ

UA(A). In this case, (A�⊇��) has no other σ-measure represen-
tation.

Proof. By unlikely atoms and monotonicity, S◦ � S \ S◦ = S�, and by nondegeneracy
and monotonicity, S = S� ∪ S◦ � ∅; thus by monotonicity and the Domination Lemma
(Lemma 4), S◦ �∅.

Step 1: Define μ◦ ∈ Mσ(A◦), μ� : A� → [0�1], and μ : A → [0�1]. Define A◦ ≡ {A ∈
A|A ⊆ S◦}; it is straightforward to show that this is a σ-algebra. Define ⊇◦, �◦ on A◦
as follows: for each pair A�B ∈ A◦, (i) A ⊇◦ B if and only if A ⊇ B, and (ii) A�◦ B if and
only if A� B. Since S◦ �∅, it is straightforward to verify that (A◦�⊇◦��◦) is a qualitative
probability space that satisfies monotone continuity and no atoms; thus by Theorem V2,
there is a unique μ◦ ∈ Mσ

NA(A◦) such that for each pair A�B ∈ A◦, μ◦(A) ≥ μ◦(B) if and
only if A�◦ B if and only if A� B. To be more concise, we say that μ◦ represents com-
parisons on A◦.

If A• = ∅, then define μ = μ◦ and we are done; thus let us assume A• �= ∅. To define
μ� : A� → [0�1], let A ∈ A�. By monotonicity, S◦ � S� �A; thus by the Carving Lemma
(Lemma 7), there is A◦ ∈ A◦ such that A ∼ A◦. Define μ�(A) ≡ μ◦(A◦); as μ◦ repre-
sents comparisons on A◦, this is well-defined. For each pair A�B ∈ A�, by the previous
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argument there are A◦�B◦ ∈ A◦ such that A ∼ A◦ and B ∼ B◦, so as μ◦ represents com-
parisons on A◦, thus A � B if and only if A◦ � B◦ if and only if μ◦(A◦) ≥ μ◦(B◦) if and
only if μ�(A) ≥ μ�(B). Thus μ� represents comparisons on A�.

For each A ∈ A, define

μ(A) ≡ μ�(
A∩ S�) +μ◦(A∩ S◦)
μ�(

S�) +μ◦(S◦) ;

as μ�(S�) ≥ 0 and μ◦(S◦)= 1, this is well-defined.

Step 2: For each disjoint pair A��B� ∈ A�, there are disjoint A◦�B◦ ∈ A◦ such that A� ∼
A◦ and B� ∼ B◦. Let A��B� ∈ A� be disjoint. By monotonicity, S◦ � S� �A�; thus by
the Carving Lemma (Lemma 7), there is A◦ ∈ A◦ such that A� ∼ A◦. By separability,
A� ∪B� ∼A◦ ∪B�.

Define C◦ ≡ S◦ \A◦. By monotonicity and the above observation,

A◦ ∪C◦ = S◦

� S�

�A� ∪B�

∼A◦ ∪B��

so by separability, C◦ � B�. Thus by the Carving Lemma (Lemma 7), there is B◦ ∈ A◦
such that B◦ ⊆ C◦ and B� ∼ B◦. By construction, A◦ and B◦ are disjoint, as desired.

Step 3: μ ∈ M(A). By construction, μ(S) = 1, and for each A ∈ A, μ(A) ∈ [0�1]. Let
A�B ∈ A be disjoint, and define A� ≡A∩S�, A◦ ≡A∩S◦, B� ≡ B∩S�, and B◦ ≡ B∩S◦.
By definition,

μ(A∪B) = μ�(
A� ∪B�) +μ◦(A◦ ∪B◦)
μ�(

S�) +μ◦(S◦) �

μ(A) = μ�(
A�) +μ◦(A◦)

μ�(
S�) +μ◦(S◦) � and

μ(B)= μ�(
B�) +μ◦(B◦)

μ�(
S�) +μ◦(S◦) �

Since A� and B� are disjoint, thus by Step 2, there are disjoint A′�B′ ∈ A◦ such that
A� ∼ A′ and B� ∼ B′. By two applications of the Domination Lemma (Lemma 4), A� ∪
B� ∼ A′ ∪B′. As μ◦ ∈Mσ(A◦), thus

μ�(
A� ∪B�) = μ◦(A′ ∪B′)

= μ◦(A′) +μ◦(B′)
= μ�(

A�) +μ�(
B�)

�

Moreover, since μ◦ ∈ Mσ(A◦), thus μ◦(A◦ ∪ B◦) = μ◦(A◦) + μ◦(B◦). Altogether, then,
μ(A∪B) = μ(A)+μ(B).
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Since A�B ∈ A were an arbitrary disjoint pair, thus by induction, μ ∈M(A).

Step 4: Conclude. We first claim that μ represents comparisons on A. Indeed, let
A�B ∈ A. We proceed by constructing a list of event pairs (A�B) = (A1�B1)� (A2�B2)�

� � � � (A��B�) such that

(i) for each i ∈ {1�2� � � � ��− 1}, Ai � Bi if and only if Ai+1 � Bi+1;

(ii) for each i ∈ {1�2� � � � ��− 1}, μ(Ai) ≥ μ(Bi) if and only if μ(Ai+1)≥ μ(Bi+1); and

(iii) A� � B� if and only if μ(A�)≥ μ(B�).

This immediately establishes that A� B if and only if μ(A) ≥ μ(B); see Figure 2 in Sec-
tion 3.2.

Let i ∈ N and let (Ai�Bi) ∈ A × A. Given another pair (A∗�B∗) ∈ A × A, let us say
that we can continue with A∗ and B∗ as shorthand for the conjunction of (i) Ai � Bi if
and only if A∗ � B∗, and (ii) μ(Ai) ≥ μ(Bi) if and only if μ(A∗) ≥ μ(B∗). We describe a
procedure that either constructs (Ai+1�Bi+1) with which we can continue, or else ter-
minates by declaring � ≡ i and establishing A� � B� if and only if μ(A�) ≥ μ(B�). We
then observe that the iterative application of this procedure to an initial pair (A1�B1)

must eventually lead to termination.
First, define the four events

A◦
i ≡ Ai ∩ S◦�

A�
i ≡ Ai ∩ S��

B◦
i ≡ Bi ∩ S◦� and

B�
i ≡ Bi ∩ S��

Moreover, define n◦
i � n

�
i ∈ {0�1�2} by

n◦
i ≡ ∣∣{C ∈ {

A◦
i �B

◦
i

}|C �=∅
}∣∣� and

n�
i ≡ ∣∣{C ∈ {

A�
i �B

�
i

}|C �=∅
}∣∣�

Given Ai, Bi, the procedure is to follow the earliest instruction that applies:

I1. If n◦
i = 0 or n�

i = 0, then terminate.

Since μ� represents comparisons on A� and μ◦ represents comparisons on A◦,
thus by construction, Ai � Bi if and only if μ(Ai)≥ μ(Bi).

I2. If Ai =∅ or Bi = ∅, then terminate.

First, consider the case where Ai = ∅. If ∅ = Ai � Bi, then by monotonicity,
∅ ∼ B�

i and ∅ ∼ B◦
i . Since ∅ ∈ A�, where comparisons are represented by μ�,

thus 0 = μ�(∅) = μ�(B�
i ). Since ∅ ∈ A◦, where comparisons are represented

by μ◦, thus 0 = μ◦(∅) = μ◦(B◦
i ). By construction, μ(Ai) = 0 = μ(Bi), as desired.

Conversely, if 0 = μ(Ai) ≥ μ(Bi), then by construction μ�(∅) = 0 = μ�(B�
i ) and

μ◦(∅) = 0 = μ◦(B◦
i ). Since ∅ ∈ A�, where comparisons are represented by μ�,
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thus ∅ ∼ B�
i . Since ∅ ∈ A◦, where comparisons are represented by μ◦, thus

∅ ∼ B◦
i . By two applications of the Domination Lemma (Lemma 4), Ai = ∅ ∼

B�
i ∪B◦

i = Bi, as desired.

Second, consider the case where Bi = ∅. By monotonicity, Ai � Bi, and by con-
struction, μ(Ai) ≥ 0 = μ(Bi). Thus we are done.

I3. If n◦
i = 1 and n�

i = 1, and neither Ai nor Bi is ∅, then terminate.

First, consider the case where A ∈ A� and B ∈ A◦. By monotonicity, S◦ � S� �A,
so by the Carving Lemma (Lemma 7), there is A◦ ⊆ S◦ such that A◦ ∼ A. If
A � B, then by construction and by the representation of comparisons on A◦ by
μ◦, μ�(A) = μ◦(A◦) ≥ μ◦(B), so by construction, μ(A) ≥ μ(B), as desired. Con-
versely, if μ(A) ≥ μ(B), then by construction, μ◦(A◦) = μ�(A) ≥ μ◦(B), so by the
representation of comparisons on A◦ by μ◦, A∼A◦ � B, as desired.

Second, consider the case where A ∈ A◦ and B ∈ A�. By monotonicity, S◦ � S� �
B, so by the Carving Lemma (Lemma 7), there is B◦ ⊆ S◦ such that B◦ ∼ B. If
A � B, then by construction and by the representation of comparisons on A◦ by
μ◦, μ◦(A) ≥ μ◦(B◦) = μ�(B), so by construction, μ(A) ≥ μ(B), as desired. Con-
versely, if μ(A) ≥ μ(B), then by construction, μ◦(A) ≥ μ�(B) = μ◦(B◦), so by the
representation of comparisons on A◦ by μ◦, A� B◦ ∼ B, as desired.

I4. If n◦
i = 2, then there are two cases.

If A◦
i � B◦

i , then by the Carving Lemma (Lemma 7), there is C◦ ⊆ A◦
i such that C◦ ∼

B◦
i . Define B′

i ≡ B� ∪C◦. By separability, by the representation of comparisons on
A◦ by μ◦, and by construction, we can continue with Ai and B′

i. Define Ai+1 ≡
Ai \ C◦ and Bi+1 ≡ B′

i \ C◦. By separability and additivity of μ, we can continue
with Ai+1 and Bi+1.

If B◦
i �A◦

i , then perform the operation analogous to that in the previous case.

In both cases, n◦
i+1 ∈ {0�1} and n�

i+1 = n�
i .

I5. If n◦
i = 1 and n�

i = 2, then there are two cases.

If A◦
i = ∅, then by monotonicity, S◦ � S� � A�

i = Ai, so by the Carving Lemma
(Lemma 7) there is A◦ ∈ A◦ such that A◦ ∼Ai. Define Ai+1 ≡A◦ and define Bi+1 ≡
Bi. By construction, we can continue with Ai+1 and Bi+1.

If B◦
i =∅, then perform the operation analogous to that in the previous case.

In both cases, n◦
i = 2 and n�

i+1 = 1.

Define A1 ≡ A and B1 ≡ B, then repeatedly apply the above procedure. As the as-
sociated sequence (n�

i � n
◦
i ) decreases lexicographically, thus after a finite number of it-

erations, the procedure terminates. (In fact, there will be at most four pairs of events in
total.) By the argument illustrated in Figure 2, A� B if and only if μ(A) ≥ μ(B).

As A�B ∈ A were arbitrary, thusμ represents comparisons on A. Moreover, by Step 3,
μ ∈ M(A), so by Theorem V1, μ ∈ Mσ(A). It is straightforward to verify that any such
σ-measure must be compatible with the construction in Step 1, and thus that μ is the
unique such σ-measure.
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To conclude, since S◦ � S \ S◦, thus μ(S◦) ≥ 1
2 . Since μ is a representation, it is

straightforward to show that A•|μ = A•; thus S◦ contains no members of A• = A•|μ. Alto-
gether, then, μ ∈Mσ

UA(A), as desired.

To establish our first main result, we use the tools from the previous appendix to
prove that focusing on idealized spaces in Proposition 1 was without loss of generality:

Theorem 1 (Repeated). A qualitative probability space (A�⊇��) satisfies monotone
continuity and unlikely atoms if and only if it has representation μ ∈ Mσ

UA(A). In this
case, (A�⊇��) has no other σ-measure representation.

Proof. It is straightforward to verify that if (A�⊇��) is a qualitative probability space
with representation μ ∈ Mσ

UA(A), then it satisfies monotone continuity and unlikely
atoms; we therefore omit this proof.

Let (A�⊇��) be a qualitative probability space and let (A∗�⊇∗��∗) be its null-
quotient. Let ∪∗, ∩∗, and ¬∗ denote, respectively, supremum, infimum, and comple-
ment for (A∗�⊇∗). Let ∅∗ denote its minimum, and for each pair [A]� [B] ∈ A∗, let
[A] \∗ [B] denote [A] ∩∗ (¬∗[B]).

Assume (A�⊇��) satisfies monotone continuity and unlikely atoms. By the Null-
Quotient Lemma (Lemma 8), (A∗�⊇∗��∗) is an idealized space that satisfies unlikely
atoms, so by Proposition 1, it has representation μ∗ ∈ Mσ

UA(A∗); it is straightforward
to show that (A∗)• = (A∗)•|μ∗

. Define μ : A → [0�1] such that for each A ∈ A, μ(A) =
μ∗([A]). By the Null-Quotient Lemma (Lemma 8), μ ∈Mσ(A) and μ represents (A�⊇��
); it is straightforward to show that A• = A•|μ.

We claim that μ ∈ Mσ
UA(A). Indeed, by unlikely atoms, there is A ∈ A such that

(i) A � S \ A; and (ii) for each α ∈ A•, α � A; thus (i) μ(A) ≥ 1
2 ; and (ii) for each

α ∈ A•|μ = A•, α�A; so μ ∈Mσ
UA(A), as claimed.

For uniqueness, let μ′ ∈ Mσ be a representation of (A�⊇��), and define μ∗′ : A∗ →
[0�1] such that for each A ∈ A, μ∗′([A]) = μ′(A); as μ′ is a representation of (A�⊇
��), thus by the Null-Quotient Lemma (Lemma 8), this is well-defined. By the Null-
Quotient Lemma (Lemma 8), μ∗′ ∈ Mσ(A∗) and μ∗′ represents (A∗�⊇∗��∗). By Propo-
sition 1, μ∗ is the unique such σ-measure, so μ∗′ = μ∗ and thus μ′ = μ.

Appendix D

In this appendix, we state and prove the Supercabinet Blueprint Lemma (Lemma 9).
More broadly, the next four appendices are dedicated to the proof of our second main
result.

While for Theorem 1, we were able to focus on idealized spaces and construct our
representation using the one promised by Theorem V2 for A◦, we cannot pursue this
approach for Theorem 2 as it covers qualitative probability spaces for which A◦ = ∅. As
discussed in Section 3.2, we instead pursue an approach based on the following obser-
vation: if two disjoint events are equally likely, then in any σ-measure representation,
the measure of both must be half the measure of their union. Informally, if in some
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sense we were able to iteratively take such halves and then take disjoint unions, then in
constructing our σ-measure representation we would necessarily assign the following
numbers to certain likelihood equivalence classes:

Definition 16. The set of dyadic rationals in [0�1], 2 ⊆ [0�1], is defined by

2 ≡ {1} ∪
{∑
i∈F

(
1
2

)i∣∣∣F ⊆N� |F | < |N|
}
�

It may be helpful to think of a dyadic rational as any number that appears on a se-
quence of progressively finer rulers, where the first measures units, the second measures
half units, the third measures quarter units, and so on. It is straightforward to show that
2 is a dense subset of [0�1].

In the next two appendices, we indeed develop techniques for iteratively taking
halves and then taking disjoint unions in some sense, and we indeed then assign each
number in 2 to an associated likelihood equivalence class. This alone is not enough to
construct a σ-measure representation, however; thus in this appendix, we provide the
map of where we are going by formalizing the additional structure such a labeled family
of equivalence classes should have:

Definition 17. For each qualitative probability space (A�⊇��), a collection of likeli-
hood equivalence classes {Zv}v∈2 ⊆ [A/∼] is a supercabinet of (A�⊇��) if and only if

[SC1] S ∈ Z1;

[SC2] for each pair v� v′ ∈ 2 such that v+v′ ≤ 1, there are disjoint Zv ∈ Zv and Zv′ ∈ Zv′

such that Zv ∪Zv′ ∈ Zv+v′ ;

[SC3] for each non-increasing (v+
i ) ∈ 2N and non-decreasing (v−

i ) ∈ 2N such that
limv+

i = limv−
i ,19 there are convergent (A+

i )� (A
−
i ) ∈ AN such that

(i) for each i ∈N, A+
i ∈ Zv+

i
and A−

i ∈ Zv−
i

; and

(ii) limA+
i ∼ limA−

i ; and

[SC4] for each monotonic pair (vi)� (wi) ∈ 2N such that for each i ∈N, vi+wi ≤ 1, there
are convergent (Ai)� (Bi) ∈ AN such that for each i ∈ N, Ai and Bi are disjoint
with Ai ∈ Zvi and Bi ∈ Zwi .

It may be helpful to think of a supercabinet as a collection of drawers, where each
drawer contains a collection of equally likely events, and where each drawer is labeled
by the dyadic rational that we intend to assign to each of its events. To provide intu-
ition, we choose to highlight [SC2]: for any pair of labels v, v′ whose sum is also a la-

19Since both sequences are bounded and monotonic, they are indeed convergent.
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bel, one should be able to take a first event from the drawer labeled v and a second

event from the drawer labeled v′; and moreover, to do so such that these events are dis-

joint; and moreover, the union of these events should be correctly filed in the drawer

labeled v + v′. We remark that supercabinets are closely related to a notion from the

classic problem of representing a preference relation with a continuous utility func-

tion.20

The Supercabinet Blueprint Lemma (Lemma 9) states that if we can construct a su-

percabinet, then we are done. Though we only apply this result to idealized spaces, there

is essentially no benefit to focusing on idealized spaces for the proof; we therefore prove

it without this restriction.

Lemma 9 (Supercabinet Blueprint Lemma). If (A�⊇��) is a qualitative probability space

that satisfies (monotone) continuity and has a supercabinet, then it has a unique repre-

sentation μ ∈Mσ(A).

Proof. Let {Zv}v∈2 ⊆ [A/∼] be a supercabinet.

Step 1: For each k ∈ {0�1� � � �}, there is Z ∈ Z( 1
2 )

k such that Z � ∅. We proceed by in-

duction on k. By [SC1], S ∈ Z1, and by nondegeneracy and monotonicity, S � ∅. For

the inductive hypothesis, assume k ∈ {0�1� � � �} is such that there is Z ∈ Z( 1
2 )

k such that

Z � ∅. By [SC2], there are disjoint Z′�Z′′ ∈ Z( 1
2 )

k+1 such that Z′ ∪ Z′′ ∼ Z. Necessar-

ily Z′ � ∅, else by the Domination Lemma (Lemma 4) ∅ � Z′ ∪ Z′′ ∼ Z, contradicting

Z �∅. By induction we are done.

Step 2: For each v ∈ 2 such that v > 0, there is Z ∈ Zv such that Z �∅. Let v ∈ 2 such that

v > 0. Since 2 is dense in [0�1], there is k ∈ 2 such that v > ( 1
2)

k. Since v − ( 1
2)

k ∈ 2, by

[SC2] there are disjoint Z ∈ Z( 1
2 )

k and Z′ ∈ Zv−( 1
2 )

k such that Z ∪Z′ ∈ Zv. By Step 1, Z �
∅, and by monotonicity, Z′ �∅, so by the Domination Lemma (Lemma 4), Z ∪Z′ �∅.

Step 3: For each pair v∗� v ∈ 2 such that v∗ > v, each A ∈ Zv∗ , and each B ∈ Zv, A � B.

Let v∗� v ∈ 2 such that v∗ > v, let A ∈ Zv∗ , and let B ∈ Zv. Since v∗ − v ∈ 2, by [SC2] there

are disjoint Z ∈ Zv and Z′ ∈ Zv∗−v such that Z ∪Z′ ∈ Zv∗ . Since v∗ − v > 0, thus by Step 2

20Let (X��) be a completely pre-ordered set, and let us say that a collection of equivalence classes
{Zi}i∈N ⊆ [X/∼] is a cabinet of (X��) if and only if for each pair x� y ∈ X such that x � y , there is z ∈ ⋃

Zi

such that x � z � y . It is a classic result that if (X �) has a cabinet, then for each topology such that all
upper contour sets and lower contour sets are closed, there is a continuous representation (Cantor 1895,
Debreu 1954, 1964). For our purposes, by the Measure Lemma (Lemma 2), every σ-measure representation
is a continuous representation; we therefore seek a continuous representation that moreover respects the
algebraic structure of the events. Indeed, though this is not obvious from the definitions, the supercabinet
of a qualitative probability space that satisfies monotone continuity is a cabinet with additional structure.
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there is Zv∗−v ∈ Zv∗−v such that Z′ ∼ Zv∗−v � ∅. By the Domination Lemma (Lemma 4),
A∼ Z ∪Z′ �Z ∼ B.

Step 4: We have ∅ ∈ Z0. By [SC2], there are disjoint A�B ∈ Z0 such that A ∪ B ∈ Z0.
If A � ∅, then by the Domination Lemma (Lemma 4) A ∪ B � B, contradicting that
A∪B ∼ B. Thus by monotonicity, A∼∅, so ∅ ∈ Z0.

Step 5: Define μ : A → [0�1]. For each v ∈ 2 and each A ∈ Zv, define μ(A) ≡ v. Let
A ∈ A \ (⋃Zv), and define

2+ ≡ {v ∈ 2|B ∈ Zv implies B�A}� and

2− ≡ {v ∈ 2|B ∈ Zv implies A� B}�

We prove that inf(2+) = sup(2−) using three observations.21 By monotonicity, S �A �
∅, so by [SC1] and Step 4, we have (i) 2+ �= ∅ and 2− �= ∅. By [SC2], for each v ∈ 2, there
is B ∈ Zv; thus by Step 3, we have (ii) for each pair v∗� v ∈ 2 such that v∗ > v, (a) v ∈ 2+ im-
plies v∗ ∈ 2+ \2−, and (b) v∗ ∈ 2− implies v ∈ 2− \2+; moreover, we have (iii) 2+ ∪ 2− = 2.
By (i) and (ii), there are inf(2+) and sup(2−) such that inf(2+) ≥ sup(2−); thus by (iii) and
the density of 2 in [0�1], we have inf(2+)= sup(2−). Define

μ(A) ≡ inf
(
2+)

= sup
(
2−)

�

Step 6: For each pair A�B ∈ A, μ(A) > μ(B) implies A � B. Let A�B ∈ A such that
μ(A) > μ(B). Since 2 is dense in [0�1], there is v′ ∈ 2 such that μ(A) > v′ > μ(B). Let
Zv′ ∈ Zv′ .

If A ∈ ⋃
Zv, then by construction, A ∈ Zμ(A), so by Step 3, A �Zv′ . If A /∈ ⋃

Zv, then
inf{v ∈ 2|C ∈ Zv implies C �A} = μ(A) > v′; thus A�Zv′ .

If B ∈ ⋃
Zv, then by construction, B ∈ Zμ(B), so by Step 3, Zv′ � B. If B /∈ ⋃

Zv, then
v′ >μ(B) = sup{v ∈ 2|C ∈Zv implies B� C}; thus Zv′ � B.

Altogether, then, A �Zv′ � B.

Step 7: For each pair A�B ∈ A, μ(A) = μ(B) implies A ∼ B. Let A�B ∈ A such that
μ(A) = μ(B). We proceed with three cases whose proofs are similar.

Case 1: μ(A) = 0. Since 2 is dense in [0�1], there is decreasing (v+
i ) ∈ 2N such that

limv+
i = 0. For each i ∈ N, define v−

i ≡ 0. Since limv+
i = limv−

i , thus by [SC3] there are
convergent (A+

i )� (A
−
i ) ∈ AN such that

(i) for each i ∈ N, A+
i ∈ Zv+

i
and A−

i ∈ Zv−
i

; and

(ii) limA+
i ∼ limA−

i .

21These three observations correspond closely to the three claims in Step 2 of the proof of the Carv-
ing Lemma (Lemma 7), but the arguments are simpler here.
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By Step 4, for each i ∈ N, ∅ ∼ A−
i ; thus by continuity, ∅ ∼ limA−

i . By construction, for

each i ∈ N, μ(A+
i ) > 0 = μ(A), so by Step 6, A+

i � A; thus by continuity, limA+
i � A.

Altogether, ∅ ∼ limA−
i ∼ limA+

i �A, so by monotonicity, A∼ ∅. By the same argument,

B ∼∅, so A∼ B.

Case 2: μ(A) = 1. Since 2 is dense in [0�1], there is increasing (v−
i ) ∈ 2N such that

limv−
i = 1. For each i ∈ N, define v+

i ≡ 1. Since limv+
i = limv−

i , thus by [SC3] there are

convergent (A+
i )� (A

−
i ) ∈ AN such that

(i) for each i ∈N, A+
i ∈ Zv+

i
and A−

i ∈ Zv−
i

; and

(ii) limA+
i ∼ limA−

i .

By construction, for each i ∈ N, μ(A) = 1 > μ(A−
i ), so by Step 6, A � A−

i ; thus by con-

tinuity, A � limA−
i . By [SC1], for each i ∈ N, A+

i ∼ S; thus by continuity, limA+
i ∼ S.

Altogether, A� limA−
i ∼ limA+

i ∼ S, so by monotonicity, A ∼ S. By the same argument,

B ∼ S, so A∼ B.

Case 3: μ(A) ∈ (0�1). Since 2 is dense in [0�1], there are decreasing (v+
i ) ∈ 2N such that

limv+
i = μ(A) and increasing (v−

i ) ∈ 2N such that limv−
i = μ(A). Since limv+

i = limv−
i ,

thus by [SC3] there are convergent (A+
i )� (A

−
i ) ∈ AN such that

(i) for each i ∈N, A+
i ∈ Zv+

i
and A−

i ∈ Zv−
i

; and

(ii) limA+
i ∼ limA−

i .

By construction, for each i ∈ N, μ(A+
i ) > μ(A) > μ(A−

i ), so by Step 6, A+
i � A � A−

i ;

thus by continuity, limA+
i � A � limA−

i ∼ limA+
i , so A ∼ limA+

i . By the same argu-

ment, B ∼ limA+
i , so A∼ B.

Step 8: μ represents �. Let A�B ∈ A. Then both statements (i) μ(A) ≥ μ(B) implies

A� B, and (ii) A� B implies μ(A) ≥ μ(B), follow immediately from Step 6 and Step 7.

Step 9: For each disjoint pair A�B ∈ A, μ(A) + μ(B) ≤ 1. Let A�B ∈ A be disjoint, and

assume, by way of contradiction, μ(A) + μ(B) > 1. Then μ(A) > 0 and μ(B) > 0. Since

2 is dense in [0�1], thus there are v� v′ ∈ 2 such that μ(A) > v, μ(B) > v′, and v + v′ > 1.

By [SC2], there are disjoint Zv ∈ Zv and Z1−v ∈ Z1−v such that Zv ∪ Z1−v ∈ Z1. Since

μ(A) > v = μ(Zv) and μ(B) > v′ > 1 − v = μ(Z1−v), thus by Step 8, A � Zv and B �
Z1−v. But then by the Domination Lemma (Lemma 4) and [SC1], A∪B �Zv ∪Z1−v ∼ S,

contradicting monotonicity.

Step 10: For each disjoint pair A�B ∈ ⋃
Zv, μ(A∪B) = μ(A)+μ(B). Let A�B ∈ ⋃

Zv be

disjoint. Then μ(A)�μ(B) ∈ 2, and by Step 9, μ(A)+μ(B)≤ 1, so μ(A)+μ(B) ∈ 2; thus

by [SC2] there are disjoint A′ ∈ Zμ(A) and B′ ∈ Zμ(B) such that A′ ∪B′ ∈ Zμ(A)+μ(B). Since
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A ∼ A′ and B ∼ B′, thus by two applications of the Domination Lemma (Lemma 4),
A∪B ∼A′ ∪B′, so A∪B ∈ Zμ(A)+μ(B), so by construction μ(A∪B)= μ(A)+μ(B).

Step 11: For each disjoint pair A�B ∈ A, μ(A ∪ B) = μ(A) + μ(B). Let A�B ∈ A be
disjoint. By Step 9, μ(A) + μ(B) ∈ [0�1]. We proceed with two claims whose proofs are
similar, though not quite dual.

Claim 1: μ(A) + μ(B) ≥ μ(A ∪ B). If μ(A) + μ(B) = 1 we are done, so assume 1 >

μ(A) + μ(B). Then since 2 is dense in [0�1], there are non-increasing (vi)� (wi) ∈ 2N

such that

(i) for each i ∈ N, vi ≥ μ(A), wi ≥ μ(B), and 1 ≥ vi +wi; and

(ii) limvi = μ(A) and limwi = μ(B).

By [SC4], there are convergent (Ai)� (Bi) ∈ AN such that

(i) for each i ∈ N, Ai ∈ Zvi and Bi ∈ Zwi ; and

(ii) for each i ∈ N, Ai ∩Bi =∅.

Define A∞ ≡ limAi and B∞ ≡ limBi. By construction, for each i ∈ N, μ(Ai) = vi and
μ(Bi) =wi.

Let i ∈ N. By Step 8, Ai �Ai+1 �Ai+2 � · · · , so by continuity Ai � limj≥i Aj = A∞.
By the same argument, Bi � B∞. By the Domination Lemma (Lemma 4), Ai ∪Bi �A∞ ∪
B∞. By Step 10 and Step 8, vi +wi = μ(Ai)+μ(Bi)= μ(Ai ∪Bi) ≥ μ(A∞ ∪B∞).

Since for each i ∈ N, vi + wi ≥ μ(A∞ ∪ B∞), thus μ(A) + μ(B) = limvi + limwi =
lim(vi +wi) ≥ μ(A∞ ∪B∞).

By Step 8, for each i ∈N, Ai �A and Bi � B; thus by continuity A∞ �A and B∞ � B.
By the Algebra Lemma (Lemma 1), A∞ ∩ B∞ = lim(Ai ∩ Bi) = ∅, so by the Domina-
tion Lemma (Lemma 4), A∞ ∪B∞ �A∪B. By Step 8, μ(A∞ ∪B∞) ≥ μ(A∪B).

Altogether, then, μ(A)+μ(B) ≥ μ(A∞ ∪B∞)≥ μ(A∪B), as desired.

Claim 2: μ(A) + μ(B) ≤ μ(A ∪ B). If μ(A) + μ(B) = 0 we are done, so assume 0 <

μ(A) + μ(B). Then since 2 is dense in [0�1], there are non-decreasing (vi)� (wi) ∈ 2N

such that

(i) for each i ∈ N, vi ≤ μ(A) and wi ≤ μ(B); and

(ii) limvi = μ(A) and limwi = μ(B).

Then vi + wi ≤ μ(A) + μ(B) ≤ 1, so by [SC4], there are convergent (Ai)� (Bi) ∈ AN such
that

(i) for each i ∈ N, Ai ∈ Zvi and Bi ∈ Zwi ; and

(ii) for each i ∈ N, Ai ∩Bi =∅.

Define A∞ ≡ limAi and B∞ ≡ limBi. By construction, for each i ∈ N, μ(Ai) = vi and
μ(Bi) =wi.
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Let i ∈ N. By Step 8, Ai �Ai+1 �Ai+2 � · · · , so by continuity Ai � limj≥i Aj = A∞.
By the same argument, Bi � B∞. By the Algebra Lemma (Lemma 1), A∞ ∩B∞ = lim(Ai∩
Bi) = ∅, so by the Domination Lemma (Lemma 4), Ai ∪ Bi �A∞ ∪ B∞. By Step 10 and
Step 8, vi +wi = μ(Ai)+μ(Bi)= μ(Ai ∪Bi) ≤ μ(A∞ ∪B∞).

Since for each i ∈ N, vi + wi ≤ μ(A∞ ∪ B∞), thus μ(A) + μ(B) = limvi + limwi =
lim(vi +wi)≤ μ(A∞ ∪B∞).

By Step 8, for each i ∈N, Ai �A and Bi � B; thus by continuity A∞ �A and B∞ � B.
By the Domination Lemma (Lemma 4), A∞ ∪ B∞ � A ∪ B. By Step 8, μ(A∞ ∪ B∞) ≤
μ(A∪B).

Altogether, then, μ(A)+μ(B)≤ μ(A∞ ∪B∞) ≤ μ(A∪B), as desired.

Step 12: We have μ ∈ Mσ(A). Since μ(S) = 1, by Step 11 and induction, μ ∈ M(A). By
Step 8, μ represents �, so by Theorem V1, μ ∈Mσ(A).

Step 13: If μ′ ∈Mσ(A) represents �, then μ′ = μ. If μ′ ∈Mσ(A) represents �, then using
[SC1] and [SC2], it is straightforward to verify that μ′ must be defined as in Step 5.

We remark that the converse is not true: the qualitative probability space with two
events satisfies monotone continuity and has a unique σ-measure representation, yet
has no supercabinet.

Appendix E

In this appendix, we introduce and establish properties of greedy transforms, our pri-
mary technique for constructing supercabinets. In particular, we prove the Erosion
Lemma, the Greedy Basics Lemma, the 1-Division Lemma, the Greedy Removal Lemma,
and the List-Transform Lemma. These are Lemmas 10–14, respectively. Throughout this
appendix, we focus on idealized spaces.

To begin, recall that by the Carving Lemma (Lemma 7), if we take an event that con-
tains no atoms as a parent, and provide an event that is no more likely than the parent as
input, then we can receive as output a subevent of the parent that is just as likely as the
input. Greedy transforms provide a method for doing this with certain parents that may
contain atoms, and moreover for doing so systematically across parents in a desirable
manner.

In Section 3.2, when we discussed Kakeya’s observation, we demonstrated how un-
der some conditions, one could use a greedy algorithm to take a sequence and construct
from it a subsequence whose sum is precisely a given target. This technique suggests
well enough how a greedy transform selects atoms from its parent, but for our purposes
we must also be systematic about what it does when it has exhausted the parent’s atoms
yet still falls short. In order to systematically select events that contain no atoms for
these situations, we introduce the following notion of a nested family of subevents of S◦
that passes through all the likelihood equivalence classes in A◦:

Definition 18. Let (A�⊇��) be an idealized space. Then a family E = {Ev}v∈[0�1] ∈
(A◦)[0�1] is an erosion of (A�⊇��) if and only if
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(i) E0 =∅;

(ii) for each pair v∗� v ∈ [0�1] such that v∗ > v, S◦ ⊇ Ev∗ ⊇Ev;

(iii) for each A ∈ A such that S◦ �A, there is v ∈ [0�1] such that Ev ∼ A; and

(iv) for each monotonic (vi) ∈ [0�1]N, limEvi =Elimvi .

In this case, the collection of erodable events (given E) is AE ≡ {A ∈ A|(S◦ \A) ∈ E}.

As an example, suppose we first take the σ-algebra of the Borel subsets of the unit
circle with events compared according to the Borel measure, then work with the null-
quotient. If for each v ∈ [0�1], Ev is the projection of the circle centered at (0�0) with
radius v, then {Ev}v∈[0�1] is an erosion. An event is erodable if there is r ∈ [0�1] such that
it is the projection of {(x� y) ∈R2+|x2 +y2 ∈ [r�1]}—note that modifying the zero-measure
boundary of the Borel set we project does not alter the projection—and thus the typical
erodable event is the projection of something that looks like a centered donut. It can be
helpful to imagine that the unit circle is eroded as it is eaten away from the center out;
at any moment, we can freeze this process and observe an erodable event; we can then
resume the process, and our erodable event will be further eroded.

In order to systematically use an erosion across all greedy transforms, there must
actually be one; fortunately, the Erosion Lemma (Lemma 10) assures us that this is the
case:22

Lemma 10 (Erosion Lemma). If (A�⊇��) is an idealized space, then it has an erosion
E = {Ev}v∈[0�1]. If, moreover, S◦ �∅, then there is μ◦ ∈Mσ

NA(A◦) such that

(i) for each pair A�B ∈ A◦, A� B if and only if μ◦(A) ≥ μ◦(B), and

(ii) for each v ∈ [0�1], μ◦(Ev) = v.

Proof. Let (A�⊇��) satisfy the hypotheses. If S◦ ∼ ∅, then for each v ∈ [0�1], define
Ev ≡ ∅; it is straightforward to verify that {Ev}v∈[0�1] is an erosion of (A�⊇��). Thus let
us assume that S◦ �∅.

Define ⊇◦, �◦ on A◦ as follows: for each pair A�B ∈ A◦, (i) A ⊇◦ B if and only if
A ⊇ B, and (ii) A �◦ B if and only if A � B. Since S◦ � ∅, it is straightforward to verify
that (A◦�⊇◦��◦) is a qualitative probability space satisfying monotone continuity and
no atoms; thus by Theorem V2, there is μ◦ ∈ Mσ

NA(A◦) such that for each pair A�B ∈ A◦,
μ◦(A) ≥ μ◦(B) if and only if A�◦ B if and only if A� B.

To begin, we construct {Ev}v∈2 ∈ (A◦)2 such that for each pair v∗� v ∈ 2 such that
v∗ > v, we have (i) μ◦(Ev∗) = v∗, (ii) μ◦(Ev) = v, and (iii) Ev∗ ⊇ Ev. We proceed by in-
duction. For the base step, define E1 ≡ S◦ and E0 ≡ ∅; clearly μ◦(E1) = 1, μ◦(E0) = 0,

22This is closely related to a well-known fact mentioned to me by a referee: for each set-σ-algebra with a
nonatomic probability measure μ and for each event A with positive measure, there is a collection of events
{Av}v∈[0�μ(A)] such that (i) Aμ(A) = A and A0 = ∅; (ii) for each pair v∗� v ∈ [0�1] such that v∗ > v, Av∗ ⊇ Av ;
and (iii) for each v ∈ [0�μ(A)], μ(Av) = v. Our lemma provides a version of this result for σ-algebras, which
need not be set-σ-algebras, that are equipped with likelihood relations.
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and E1 ⊇ E0. For the inductive step, assume that q ∈ {0} ∪ N is such that for each
pair p∗�p ∈ {0�1� � � � �2q} such that p∗ > p, we have defined Ep∗

2q
�E p

2q
∈ A◦ such that

(i) μ◦(Ep∗
2q
) = p∗

2q , (ii) μ◦(E p
2q
) = p

2q , and (iii) Ep∗
2q

⊇ E p
2q

. For each even p ≤ 2q+1, E p

2q+1
=

E(
p
2 )

2q

is already defined, so let p ≤ 2q+1 be odd. Then E p+1
2q+1

, E p−1
2q+1

are already defined

such that (i) μ◦(E p+1
2q+1

) = p+1
2q+1 , (ii) μ◦(E p−1

2q+1
) = p−1

2q+1 , and (iii) E p+1
2q+1

⊇ E p−1
2q+1

. As μ◦ is ad-

ditive, thus μ◦(E p+1
2q+1

\ E p−1
2q+1

) = p+1
2q+1 − p−1

2q+1 = 2
2q+1 . Since μ◦ ∈ Mσ

NA(A◦), thus there is

Ap ⊆E p+1
2q+1

\E p−1
2q+1

such that μ◦(Ap)= 1
2q+1 . Define E p

2q+1
≡ E p−1

2q+1
∪Ap. By construction,

E p+1
2q+1

⊇ E p

2q+1
⊇ E p−1

2q+1
, and as E p−1

2q+1
∩ Ap = ∅, thus μ◦(E p

2q+1
) = μ◦(E p−1

2q+1
) + μ◦(Ap) =

p−1
2q+1 + 1

2q+1 = p

2q+1 . As odd p ≤ 2q was arbitrary, altogether we have that for each pair

p∗�p ∈ {0�1� � � � �2q+1} such that p∗ > p, we have defined E p∗
2q+1

�E p

2q+1
∈ A◦ such that

(i) μ◦(E p∗
2q+1

) = p∗
2q+1 , (ii) μ◦(E p

2q+1
) = p

2q+1 , and (iii) E p∗
2q+1

⊇E p

2q+1
. By induction, this com-

pletes the construction of {Ev}v∈2, as desired.
To complete the construction of E , let v ∈ [0�1] \ 2, and define

Ev ≡
⋃

{v′∈2|v′<v}
Ev′ �

Since v > 0 and 2 is countably-infinite, this is well-defined.
Next, we claim that for each v ∈ [0�1], μ◦(Ev) = v. By construction this is true for each

v ∈ 2, so let v ∈ [0�1] \ 2. Then v > 0, so there is increasing (vi) ∈ 2N such that limvi = v.
For each v′ ∈ 2 such that v′ < v, there is i ∈N such that v′ < vi and thus Ev′ ⊆Evi ⊆ ⋃

Evi ;
thus by construction, Ev = ⋃

Evi . Since Ev1 ⊆ Ev2 ⊆ · · · , thus
⋃

Evi = limEvi . Since μ◦ ∈
Mσ(A◦), thus by the Measure Lemma (Lemma 2), μ◦(Ev) = μ◦(limEvi) = limμ◦(Evi) =
limvi = v, as desired.

Finally, we verify that E is an erosion. For (i), by construction, E0 =∅.
For (ii), let v∗� v ∈ [0�1] such that v∗ > v. If v ∈ 2, then by construction, S◦ ⊇ Ev∗ ⊇ Ev.

If v /∈ 2, then whether v∗ ∈ 2 or v∗ /∈ 2, we have by construction that for each v′ ∈ 2 such
that v > v′, Ev∗ ⊇Ev′ ; thus S◦ ⊇ Ev∗ ⊇ ⋃

{v′∈2|v′<v} Ev′ =Ev.
For (iii), let A ∈ A such that S◦ �A. By monotonicity, S◦ �A � ∅, so by the Carv-

ing Lemma (Lemma 7), there is A◦ ∈ A such that A◦ ⊆ S◦ and A◦ ∼ A. Then A◦ ∈ A◦
and μ◦(Eμ◦(A◦)) = μ◦(A◦), so Eμ◦(A◦) ∼A◦ ∼A, as desired.

For (iv), let (vi) ∈ [0�1]N be monotonic with limit v. If (vi) is non-increasing, then
for each i ∈ N, Evi ⊇ Ev, so since Ev1 ⊇ Ev2 ⊇ · · · , thus limEvi = ⋂

Evi ⊇ Ev. Moreover,
since μ◦ ∈ Mσ(A◦), thus by the Measure Lemma (Lemma 2), μ◦(limEvi) = limμ◦(Evi) =
limvi = v = μ◦(Ev), so limEvi ∼ Ev. By monotonicity and separability, (limEvi) \Ev ∼ ∅,
so as our space is idealized, thus (limEvi) \ Ev = ∅, so limEvi = Ev = Elimvi , as de-
sired. It is straightforward to adapt this argument to the case where (vi) ∈ [0�1]N is non-
decreasing, and we omit the argument.

Due to the Erosion Lemma (Lemma 10), we frequently abuse language: when we say
that (A�⊇��) is an idealized space, we implicitly take a particular choice of erosion E ,
together with the associated notation in the definition of erosion, as given.
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We can now formally introduce the greedy transforms:

Definition 19. Let (A�⊇��) be an idealized space and let A ∈ AE . The greedy trans-
form of A (given E), which abusing notation we write as GA :A → A, is such that for each
B ∈ A, GA(B) ⊆ A is defined as follows:

• Define GA
0 (B) ≡∅.

• For each s ∈N, define

GA
s (B) ≡

{
GA
s−1(B)∪ αs� s ∈ I•�αs ⊆ A�and B� GA

s−1(B)∪ αs;
GA
s−1(B)� else.

• Define GA� (B) ≡ ⋃
s∈N GA

s (B).

• By construction and continuity, B� GA� (B) = GA� (B)∪ (E0 ∩A). Define

vA(B) ≡ sup
{
v ∈ [0�1]|B� GA� (B)∪ (Ev ∩A)

}
�

• Define GA(B) ≡ GA� (B)∪ (EvA(B) ∩A).

We remark that for each list of events (B1�B2� � � � �Bn), we have that S is erodable, and

S \ GS(B1) is erodable, and (S \ GS(B1)) \ (GS\GS(B1)(B2)) is erodable, and so on. In terms
of our earlier example where the erosion is a family of projections of concentric circles,
the idea is loosely that if a circle is removed, and then a donut is removed, the result is
that a larger circle has been removed. Moreover, if a circle is removed, and then a series
of donuts are iteratively removed, the result is again that a circle has been removed.

The Greedy Basics Lemma (Lemma 11) provides some basic properties of all greedy
transforms, including notably that each greedy transform is idempotent:

Lemma 11 (Greedy Basics Lemma). If (A�⊇��) is an idealized space, then for each A ∈
AE and each pair B�B′ ∈ A, we have

(i) (A \ GA(B)) ∈ AE ,

(ii) B� GA(B),

(iii) GA(GA(B)) = GA(B), and

(iv) GA(B) ∼ GA(B′) implies GA(B) = GA(B′).

Proof. Let (A�⊇��) satisfy the hypotheses, let A ∈ AE , and let B�B′ ∈ A. Finally, let
{GA

s }s∈{0}∪N, GA� , and vA(B) be as in the definition of greedy transform of A given E .

Step 1: (A \GA(B)) ∈ AE . Since A ∈ AE , thus (S◦ \A) ∈ E . Moreover, S◦ \ (A \GA(B)) =
(S◦ \ A) ∪ (S◦ ∩ GA(B)). If (S◦ ∩ GA(B)) = ∅, then S◦ \ (A \ GA(B)) = (S◦ \ A) ∈ E , so
(A \ GA(B)) ∈ AE and we are done; thus let us assume that (GA(B)∩ S◦) �= ∅.

By construction, (S◦∩GA(B)) = (EvA(B)∩A). Since (S◦ \A) ∈ E , thus there is v ∈ [0�1]
such that (S◦ \ A) = Ev. Since EvA(B) and Ev are nested, and since (EvA(B) ∩ A) � ∅ =
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(Ev ∩A), thus EvA(B) ⊇ Ev. Then (EvA(B) \A) ⊇ (Ev \A) = (S◦ \A) \A = (S◦ \A), so as
S◦ ⊇EvA(B) and thus (S◦ \A) ⊇ (EvA(B) \A), altogether we have (EvA(B) \A) = (S◦ \A).
Thus

S◦ \ (
A \ GA(B)

) = (
S◦ \A) ∪ (

S◦ ∩ GA(B)
)

= (EvA(B) \A)∪ (EvA(B) ∩A)

=EvA(B)�

so (A \ GA(B)) ∈ AE , as desired.

Step 2: B� GA(B). By construction, B� GA� (B). If S◦ ∼∅, then as our space is idealized,
S◦ = ∅, so B � GA� (B) = GA(B). If vA(B) = 0, then B � GA� (B) = GA(B). Thus let us
assume S◦ �∅ and vA(B) > 0.

Let (vi) ∈ [0�1]N be an increasing sequence that converges to vA(B); then limEvi =
Elimvi = EvA(B). By construction and monotonicity, for each i ∈N, B� GA� (B)∪ (Evi ∩A);
thus by continuity and the Algebra Lemma (Lemma 1),

B� lim
(
GA� (B)∪ (Evi ∩A)

)
= (

limGA� (B)
) ∪ (

lim(Evi ∩A)
)

= GA� (B)∪ (
(limEvi)∩ (limA)

)
= GA� (B)∪ (EvA(B) ∩A)

= GA(B)�

as desired.

Step 3: Conclude. We first prove GA� (GA(B)) = GA� (B) using induction. For the base
step, by construction, GA

0 (GA(B)) = GA
0 (B) = ∅. For the inductive hypothesis, let s ∈

N be such that GA
s (GA(B)) = GA

s (B). If s + 1 /∈ I• or αs+1 � A, then GA
s+1(G

A(B)) =
GA
s (GA(B)) = GA

s (B) = GA
s+1(B) and we are done, so assume s + 1 ∈ I• and αs+1 ⊆ A.

If αs+1 ⊆ GA
s+1(B), then by monotonicity and the inductive hypothesis,

GA(B)� GA
s (B)∪ αs+1

= GA
s

(
GA(B)

) ∪ αs+1�

so by construction, αs+1 ⊆ GA
s+1(G

A(B)).
If αs+1 � GA

s+1(B), then by the inductive hypothesis, construction, and Step 2,

GA
s

(
GA(B)

) ∪ αs+1 = GA
s (B)∪ αs+1

� B

� GA(B)�

so by construction, αs+1 � GA
s+1(G

A(B)).
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Altogether, GA
s+1(G

A(B)) = GA
s+1(B). Since s ∈ N was arbitrary, thus by induction,

(GA
s (GA(B)))s∈{0}∪N = (GA

s (B))s∈{0}∪N, so by construction, GA� (GA(B)) = GA� (B). Since

(i) GA(B) = GA� (B)∪ (EvA(B) ∩A)= GA� (GA(B))∪ (EvA(B) ∩A); and

(ii) by Step 2, for each v ∈ [0�1] such that v > vA(B), GA� (GA(B))∪ (Ev ∩A) = GA� (B)∪
(Ev ∩A)� B� GA(B);

thus vA(GA(B)) = vA(B), so GA(GA(B)) = GA(B), as desired.
To conclude, if GA(B) ∼ GA(B′), then GA(B) = GA(GA(B)) = GA(GA(B′)) = GA(B′),

as desired.

While the basic properties given above hold for all erodable events and their trans-
forms, we are most interested in the greedy transforms of erodable events that satisfy at
least one of the following requirements:

Definition 20. Let (A�⊇��) be a qualitative probability space and let n ∈ N. An event
A ∈ A is n-divisible if and only if for each α ∈ A• such that α ⊆ A, there are I ⊆ N,
pairwise-disjoint {Bi}i∈I ⊆ A, and I1� I2� � � � � In partitioning I such that

(i) for each i ∈ I, α � Bi;

(ii) for each j ∈ {1�2� � � � � n},
⋃

Ij
Bi � α; and

(iii) for each i ∈ I, Bi ⊆A.

The terminology is justified by the upcoming lemmas, but already we can make two
observations. First, a qualitative probability space satisfies n-AS if and only if its largest
event is n-divisible. Second, 1-divisibility may be viewed as an ordinal analogue to the
condition of Kakeya, which we discussed in Section 3.2.

Along the lines of this second observation, the 1-Division Lemma (Lemma 12) may
be viewed as an ordinal analogue of Kakeya’s observation: if an erodable event is 1-
divisible, then applying its greedy transform to an input event that is no more likely
yields an output that is as likely as the input:

Lemma 12 (1-Division Lemma). If (A�⊇��) is an idealized space, then for each A ∈ AE

that is 1-divisible and each B ∈ A such that A� B, we have B ∼ GA(B).

Proof. Let (A�⊇��) satisfy the hypotheses, let A ∈ AE , and let B ∈ A such that B �
A. Finally, let {GA

s }s∈{0}∪N, GA� and vA(B) be as in the definition of greedy transform of
A given E . By the Greedy Basics Lemma (Lemma 11), B � GA(B); it remains to show
GA(B)� B. Define A� ≡A∩ S� and A◦ ≡ A∩ S◦.

Step 1: GA� (B)∪A◦ � B. Since GA� (B) ⊆A⊆ S�, thus there are I•
A ⊆ I• and I•

G ⊆ I•
A such

that A� = ⋃
I•
A
αs and GA� (B) = ⋃

I•
G
αs . We consider three cases:

Case 1: |I•
A \ I•

G| = 0. Then GA� (B) =A�, so GA� (B)∪A◦ = A� ∪A◦ =A� B, as desired.

Case 2: |I•
A \ I•

G| ∈ N. Define s∗ ≡ max(I•
A \ I•

G) and define L ≡ A \ (
⋃

s≤s∗ αs). By con-
struction, GA

s∗−1(B) ∪ αs∗ � B. Since A is 1-divisible, thus by monotonicity L� αs∗ , so by
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separability,

GA� (B)∪A◦ = GA
s∗−1(B)∪L

� GA
s∗−1(B)∪ αs∗

� B�

as desired.

Case 3: |I•
A \ I•

G| = |N|. By construction, for each s ∈ I•
A \ I•

G, GA
s−1(B) ∪ αs � B. Thus by

continuity,

GA� (B) = lim
s∈I•

A\I•
G

GA
s−1(B)∪ αs

� B�

so by monotonicity, GA� (B)∪A◦ � B, as desired.

Step 2: Conclude. If A◦ ∼∅, then as our space is idealized A◦ = ∅, so GA(B) = GA� (B)∪
A◦ � B and we are done; thus let us assume A◦ � ∅. Then by the Erosion Lemma
(Lemma 10), there is μ◦ ∈ Mσ

NA(A◦) that represents comparisons on A◦ such that for
each v ∈ [0�1], μ◦(Ev) = v. Since μ◦(S◦ \ A) = μ◦(S◦ \ A◦) = μ◦(S◦) − μ◦(A◦) = 1 −
μ◦(A◦), and since A ∈ AE , thus (S◦ \A)= E1−μ◦(A◦).

Since GA� (B)∪A◦ � B� GA� (B), thus by the Carving Lemma (Lemma 7), there is B◦ ⊆
A◦ such that GA� (B)∪B◦ ∼ B. Since μ◦((S◦ \A◦)∪B◦) = μ◦(S◦ \A◦)+μ◦(B◦) = μ◦(S◦)−
μ◦(A◦)+μ◦(B◦) = 1 −μ◦(A◦)+μ◦(B◦), thus μ◦(B◦)+ (1 −μ◦(A◦)) ∈ [0�1]; define v∗ ≡
μ◦(B◦)+ (1 −μ◦(A◦)).

Since v∗ ≥ 1 −μ◦(A◦), thus Ev∗ ⊇ E1−μ◦(A◦), so

μ◦(Ev∗ ∩A) = μ◦(Ev∗ \ (
S◦ \A))

= μ◦(Ev∗ \E1−μ◦(A◦))

= μ◦(Ev∗)−μ◦(E1−μ◦(A◦))

= v∗ − (
1 −μ◦(A◦))

= μ◦(B◦)�
so (Ev∗ ∩ A) ∼ B◦. By separability, GA� (B) ∪ (Ev∗ ∩ A) ∼ GA� (B) ∪ B◦ ∼ B, so by mono-
tonicity, GA(B) = GA� (B)∪ (EvA(B) ∩A)� GA� (B)∪ (Ev∗ ∩A)∼ B.

The Greedy Removal Lemma (Lemma 13) states that if A is (n + 1)-divisible, then
removing an image of its greedy transform yields a subevent that is n-divisible. This is
an ordinal analogue of an observation of Vilmos Komornik, which I received through
private communication about a related problem of fair division.
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Lemma 13 (Greedy Removal Lemma). If (A�⊇��) is an idealized space, then for each
n ∈N, each A ∈ AE that is (n+ 1)-divisible, and each B ∈A,

A \ GA(B) is n-divisible�

Proof. Let (A�⊇��), n, A, and B satisfy the hypotheses. Define G ≡ GA(B). If B �A,
then it is straightforward to show that A \ G = S◦ \ E1 ∼ ∅, so as our space is idealized
A \G =∅ and we are done; thus let us assume A� B. Since A is 1-divisible, thus by the
1-Division Lemma (Lemma 12), B ∼G.

We wish to show A \ G is n-divisible. If A \ G contains no atoms then we are done;
thus let s∗ ∈ I• such that αs∗ ⊆ A \G. Since s∗ ∈ I•, thus there is s∗∗ ∈ I• such that (i) s∗ ∼
s∗∗; and (ii) for each s′ ∈ I• such that s′ > s∗∗, αs∗ � αs′ . Define A← ≡ (

⋃
s′≤s∗∗ αs′) ∩ A,

define A→ ≡ A \ A←, and define A←∗ ≡ A← \ G. The notation is intended to suggest
that the atoms contained in A are arranged from left to right, with higher-index atoms
to the right, and that moreover, the largest infinitely divisible event contained in A is
even further to the right than all of these atoms.

Define A1 ≡ A, define (B1;B2�B3� � � � �Bn+1) ≡ (G ∪ A←∗;αs∗�αs∗� � � � �αs∗), and for
each i ∈ {1�2� � � � � n+ 1}, define

• Gi ≡ GAi(Bi), and

• Ai+1 ≡Ai \Gi.

By the Greedy Basics Lemma (Lemma 11), each of the above transforms is associated
with an erodable event, so each of these events is well-defined.

Step 1: G1 = G ∪ A←∗. Throughout this step, for each C ∈ A and each s ∈ N ∪ {∞}, we
write [C]s to denote C ∩ (

⋃
s′≤s αs′). We freely use the fact that as our space is idealized,

each atom contains only the empty set and itself; thus for each C ∈ A and each s ∈ I•,
αs � C implies αs ⊆ (S \C).

We first prove that [G1]∞ = [G ∪ A←∗]∞ by induction. For the base step, [G1]0 =
∅ = [G ∪ A←∗]0. For the inductive step, assume s ∈ N is such that [G1]s = [G ∪ A←∗]s.
If s + 1 /∈ I• or αs+1 �A, then [G1]s+1 = [G1]s = [G ∪ A←∗]s = [G ∪ A←∗]s+1 and we are
done, so assume s + 1 ∈ I• and αs+1 ⊆ A.

If αs+1 ⊆ [G∪A←∗]s+1, then by monotonicity,

G∪A←∗ �
[
G∪A←∗]

s+1

= [
G∪A←∗]

s
∪ αs+1

= [G1]s ∪ αs+1

= [
GA

(
G∪A←∗)]

s
∪ αs+1�

so by construction, αs+1 ⊆ [GA(G∪A←∗)]s+1 and thus [G1]s+1 = [G∪A←∗]s+1.
If αs+1 � [G ∪ A←∗]s+1 = [G ∪ A←]s+1 = [G]s+1 ∪ [A←]s+1, then αs+1 � A←; thus

αs+1 ⊆ S \ A← and αs+1 ⊆ A, so αs+1 ⊆ A→, so s + 1 > s∗∗. Then [G ∪ A←∗]s = [G]s ∪
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[A←∗]s = [G]s ∪ A←∗. Moreover, αs+1 � [G]s+1, so by construction and the Greedy Ba-
sics Lemma (Lemma 11),

[G]s ∪ αs+1 = [
GA(B)

]
s
∪ αs+1

� B

� GA(B)

=G�

so since (i) [G]s ∩A←∗ ⊆ G∩A←∗ = ∅, and (ii) αs+1 ⊆ S \A← ⊆ S \A←∗ and thus αs+1 ∩
A←∗ = ∅, altogether by monotonicity and separability, [G]s ∪ αs+1 ∪ A←∗ � G ∪ A←∗.
Thus

[
GA

(
G∪A←∗)]

s
∪ αs+1 = [G1]s ∪ αs+1

= [
G∪A←∗]

s
∪ αs+1

= [G]s ∪ αs+1 ∪A←∗

�G∪A←∗�

so by construction, αs+1 � [GA(G∪A←∗)]s+1 and thus [G1]s+1 = [G∪A←∗]s+1.
As s ∈N was arbitrary, thus by induction, [G1]∞ = [G∪A←∗]∞, as desired. If S◦ ∼ ∅,

then as our space is idealized S◦ = ∅ and we are done; thus let us assume S◦ � ∅. Since
B ∼ G, thus by separability, for each v ∈ [0�1], [GA(B)]∞ ∪ (Ev ∩ A) � B if and only if
[G]∞ ∪ (Ev ∩A)�G if and only if

[
GA

(
G∪A←∗)]

∞ ∪ (Ev ∩A) = [G1]∞ ∪ (Ev ∩A)

= [
G∪A←∗]

∞ ∪ (Ev ∩A)

= [G]∞ ∪ [
A←∗]

∞ ∪ (Ev ∩A)

= [G]∞ ∪ (Ev ∩A)∪A←∗

�G∪A←∗�

Thus by construction, G1 = GA(G∪A←∗) =G∪A←∗, as desired.

Step 2: For each i ∈ {1�2� � � � � n + 1}, Ai is 1-divisible. Let i ∈ {1�2� � � � � n + 1}. If i = 1 we
are done; thus let us assume i > 1 and define J ≡ {1�2� � � � � i− 1}. Then Ai = A \ (⋃J Gj),
so we wish to show A \ (⋃J Gj) is 1-divisible. If A \ (⋃J Gj) contains no atoms then we
are done; thus let s+ ∈ I• such that αs+ ⊆ A \ (⋃J Gj).

Since s+ ∈ I•, thus there is s++ ∈ I• such that (i) s+ ∼ s++; and (ii) for each s′ ∈ I•

such that s′ > s++, αs+ � αs′ ; define A++→ ≡ A \ (
⋃

s′≤s++ αs′). Since A is (n + 1)-
divisible and n + 1 ≥ i, thus there are pairwise-disjoint D1�D2� � � � �Di ⊆ A++→ such
that for each j ∈ {1�2� � � � � i}, Dj � αs+ . It is straightforward to show, using construc-
tion, the Greedy Basics Lemma (Lemma 11), and separability, that for each j ∈ J, αs+ �
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Gj ∩ A++→, which implies Dj � Gj ∩ A++→. By repeated application of the Domina-
tion Lemma (Lemma 4),

D1 �G1 ∩A++→�

D1 ∪D2 �
(
G1 ∩A++→) ∪ (

G2 ∩A++→)
�

���

i−1⋃
j=1

Dj �
i−1⋃
j=1

(
Gj ∩A++→)

�

It cannot be that αs+ � A++→ \ (⋃J Gj), else Di � A++→ \ (⋃J Gj), so by the Domina-
tion Lemma (Lemma 4) and the Algebra Lemma (Lemma 1),

i⋃
j=1

Dj �
[
i−1⋃
j=1

(
Gj ∩A++→)] ∪

[
A++→ ∖ (⋃

J

Gj

)]

=
[
A++→ ∩

(⋃
J

Gj

)]
∪

[
A++→ ∖ (⋃

J

Gj

)]

=A++→�

contradicting monotonicity. Thus (A \ (⋃J Gj)) \ (⋃s′≤s++ αs′) = A++→ \ (⋃J Gj)� αs,
and it is straightforward to use Theorem V2 and the Carving Lemma (Lemma 7) to write
(A \ (

⋃
J Gj)) \ (

⋃
s′≤s++ αs′) as a countable union of subevents of A \ (

⋃
J Gj) that are

each less likely than αs+ , and to do so with the index set contained in N. Since s+ ∈ I•

with αs+ ⊆ A \ (⋃J Gj) was arbitrary, we are done.

Step 3: Conclude. It is straightforward to show, using construction, the Greedy Ba-
sics Lemma (Lemma 11), and separability, that αs∗ �G∩A→. Since A is (n+1)-divisible,
there are pairwise-disjoint D1�D2� � � � �Dn+1 ⊆ A→ such that for each i ∈ {1�2� � � � � n+ 1},
Di � αs∗ . In particular, we have that D1 � G ∩ A→. Assume, by way of contradiction,
there is i ∈ {2�3� � � � � n + 1} such that αs∗ � Ai. Let i∗ be the least such i. Then Di∗ �
αs∗ � Ai∗ , and by the Greedy Basics Lemma (Lemma 11), for each i ∈ {2�3� � � � � i∗ − 1},
Di � αs∗ �Gi. But then by repeated application of the Domination Lemma (Lemma 4)
as in Step 2, and by Step 1,

i∗⋃
i=1

Di �
[
G∩A→] ∪

[
i∗−1⋃
i=2

Gi

]
∪ [Ai∗ ]

= [(
G∩A→) ∪ (

A←∗ ∩A→)] ∪
[
i∗−1⋃
i=2

Gi

]
∪

[
(A \G1)

∖ i∗−1⋃
i=2

Gi

]

= [(
G∪A←∗) ∩A→] ∪ [A \G1]

= [
G1 ∩A→] ∪ [

A \ (
G∪A←∗)]
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= [
G1 ∩A→] ∪ [

A→ \ (
G∪A←)]

= [
G1 ∩A→] ∪ [(

A→ \G) ∩ (
A→ \A←)]

= [
G1 ∩A→] ∪ [(

A→ \G) ∩A→]
=A→�

contradicting monotonicity.
Thus for each i ∈ {2�3� � � � � n + 1}, Ai � αs∗ , and moreover by Step 2, Ai is 1-

divisible, so by the 1-Division Lemma (Lemma 12), Gi ∼ αs∗ . Altogether, by Step 1,
G2�G3� � � � �Gn+1 are n pairwise-disjoint subevents of A2 = A \ G1 = A \ (G ∪ A←∗) =
(A\G)\(⋃s′≤s∗∗ αs′), each at least as likely as αs∗ . It is straightforward to use Theorem V2
and the Carving Lemma (Lemma 7) to write each as a countable union of subevents of
A \ G that are each less likely than αs∗ , and to do so such that the index sets partition
their union contained in N. Since s∗ ∈ I• such that αs∗ ⊆ A \ G was arbitrary, we are
done.

It follows from the 1-Division Lemma (Lemma 12) and the Greedy Removal Lemma
(Lemma 13) that given an n-divisible event A and a list of target events (B1�B2� � � � �Bn),
we can iteratively apply n greedy transforms to create a pairwise-disjoint output list
(G1�G2� � � � �Gn), with each output as likely as the corresponding input, so long as the
outputs do not collectively “exhaust” A. Indeed, this technique of iteratively applying
greedy transforms was used in the above proof.

Because our focus is 3-AS, we usually perform this technique for a short list of tar-
get events, and therefore it is not particularly convenient to state the above observation
formally. However, there is a different observation about this technique for which we
do require a formal statement, and it is for this reason that we introduce the technique
formally:

Definition 21. For each n ∈N,

• an n-list is an ordered list (B1�B2� � � � �Bn) ∈ An;

• an n-list sequence is a sequence (Bi
1�B

i
2� � � � �B

i
n)i∈N ∈ (An)N; and

• a monotonic n-list sequence is an n-list sequence (Bi
1�B

i
2� � � � �B

i
n)i∈N ∈ (An)N such

that for each j ∈ {1�2� � � � � n}, either

(i) B1
j � B2

j � · · · , or

(ii) B1
j � B2

j � · · ·

Our technique of iteratively applying greedy transforms takes as input an n-list and
outputs an n-list:

Definition 22. Let (A�⊇��) be an idealized space, let A ∈ AE , and let n ∈ N. The
greedy n-transform of A (given E), which abusing notation we write Gn�A : An → An, is
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defined as follows. For each (B1�B2� � � � �Bn) ∈ An, Gn�A(B1�B2� � � � �Bn) ∈ An is defined
such that for each j ∈ {1�2� � � � � n},

Gn�A
j (B1�B2� � � � �Bn) ≡ GA\[⋃j′<j GA

j (B1�B2�����Bn)](Bj)�

By the Greedy Basics Lemma (Lemma 11), each of the above transforms is associated
with an erodable event, so each of these events is well-defined.

The List-Transform Lemma (Lemma 14) states that for each erodable event and each
monotonic sequence of input n-lists, the associated sequence of output n-lists con-
verges pointwise:

Lemma 14 (List-Transform Lemma). If (A�⊇��) is an idealized space, then for each
A ∈ AE , each n ∈ N, each monotonic n-list sequence (Bi

1�B
i
2� � � � �B

i
n)i∈N, and each j ∈

{1�2� � � � � n}, (Gn�A
j (Bi

1�B
i
2� � � � �B

i
n))i∈N ∈ AN is convergent.

Proof. Let (A�⊇��), A, n, and (B1
i �B

2
i � � � � �B

n
i )i∈N satisfy the hypotheses. For each

i ∈ N and each j ∈ {1�2� � � � � n}, define Gi
j ∈ A by

Gi
j ≡ Gn�A

j

(
Bi

1�B
i
2� � � � �B

i
n

)
�

We wish to prove (Gi
1)� (G

i
2)� � � � � (G

i
n) are convergent. We proceed by induction, cov-

ering the base step with our inductive hypothesis: assume j∗ ∈ {1�2� � � � � n} is such that
for each j ∈ {1�2� � � � � n} such that j < j∗, (Gi

j) is convergent. We claim (Gi
j∗) is conver-

gent.
For each i ∈N, define Gi�

j∗ ≡Gi
j∗ ∩ S� and define Gi◦

j∗ ≡ Gi
j∗ ∩ S◦.

Step 1: The sequence (Gi�
j∗ ) is convergent. Throughout this step, for each C ∈A and each

s ∈ N, we write [C]s to denote C ∩ (
⋃

s′≤s αs′). We freely use the fact that as our space is
idealized, each atom contains only the empty set and itself; thus for each j ∈ {1�2� � � � � n},
(Gi�

j ) is convergent if and only if for each s ∈ I•, there is i∗∗ ∈ N such that for each pair

i� i′ ≥ i∗∗, Gi
j ∩ αs =Gi′

j ∩ αs.

Within the current inductive argument, we make a second inductive argument,
again covering the base step with our inductive hypothesis: assume s ∈ N is such
that for each s′ ∈ N such that s′ < s, there is i∗ ∈ N such that for each pair i� i′ ≥ i∗,
Gi

j∗ ∩ αs′ = Gi′
j∗ ∩ αs′ . If s /∈ I• or αs � A, then we are done; thus let us assume s ∈ I•

and αs ⊆A.
By the inductive hypothesis on j∗, for each j ∈ {1�2� � � � � n} such that j < j∗, there is

i∗ ∈ N such that for each pair i� i′ ≥ i∗, Gi
j ∩ αs = Gi′

j ∩ αs. Altogether, there is i∗ ∈ N such
that for each pair i� i′ ≥ i∗,

(i) s′ < s implies Gi
j∗ ∩ αs′ =Gi′

j∗ ∩ αs′ , and

(ii) j < j∗ implies Gi
j ∩ αs =Gi′

j ∩ αs.

Let this final i∗ remain fixed.



Theoretical Economics 14 (2019) Foundation for probabilistic beliefs 757

Assume, by way of contradiction, that for each i∗∗ ∈ N, there are i1 ≥ i∗∗ and i2 ≥ i∗∗

such that αs ⊆ G
i1
j∗ and αs �G

i2
j∗+1. Then there are i1� i2� i3 ∈ N with i3 > i2 > i1 > i∗ such

that αs ⊆ G
i1
j∗ , αs �∈ G

i2
j∗ , and αs ⊆G

i3
j∗ .

By definition of i∗, [Gi1
j∗ ]s−1 = [Gi2

j∗ ]s−1 = [Gi3
j∗ ]s−1. By construction,

B
i1
j∗ �

[
G

i1
j∗

]
s−1 ∪ αs

= [
G

i2
j∗

]
s−1 ∪ αs

� B
i2
j∗�

so since (Bi
1�B

i
2� � � � �B

i
n) is a monotonic n-list sequence, thus (Bi

j∗) is non-increasing in

likelihood. But by construction,

B
i3
j∗ �

[
G

i3
j∗

]
s−1 ∪ αs

= [
G

i2
j∗

]
s−1 ∪ αs

� B
i2
j∗�

contradicting that (Bi
j∗) is non-increasing in likelihood.

Thus there is i∗∗ ∈N such that for each pair i� i′ ≥ i∗∗, Gi
j∗ ∩αs = Gi′

j∗ ∩αs. By induction

on s, (Gi�
j∗ ) is convergent, as desired.

Step 2: The sequence (Gi◦
j∗) is convergent. For each i ∈ N, define C+

i ≡ ⋃
j≤j∗(G

i
j ∩ S◦)

and define C−
i ≡ ⋃

j<j∗(G
i
j ∩ S◦). By construction, for each i ∈ N, {(Gi

1 ∩ S◦)� (Gi
2 ∩

S◦)� � � � � (Gi
j∗ ∩ S◦)} is pairwise-disjoint; thus C+

i \C−
i = (Gi

j∗ ∩ S◦).

By construction, for each i ∈N, C+
i ∈ E and C−

i ∈ E . Since E is nested, (C+
i ) and (C−

i )

each have subsequences that are monotone with respect to set inclusion, and therefore

are convergent. By the Algebra Lemma (Lemma 1), there is lim(S \ C−
i ), and moreover

there is limC+
i ∩ lim(S \C−

i ), and moreover

limC+
i ∩ lim

(
S \C−

i

) = lim
(
C+
i ∩ (

S \C−
i

))
= lim

(
Gi

j∗ ∩ S◦)
= limGi◦

j∗�

as desired.

Step 3: Conclude. By Step 1 and Step 2, (Gi�
j∗ ) and (Gi◦

j∗) are convergent, so by the

Algebra Lemma (Lemma 1), there is lim(Gi�
j∗ ∪ Gi◦

j∗) = lim(Gi
j∗). By induction on j∗,

(Gi
1)� (G

i
2)� � � � � (G

i
n) are convergent.
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Figure 4. Euler diagram for A, B, A′, and B′. For example, UL ≡A∩B and D≡ A′ \ (B ∪B′).

Appendix F

In this appendix, we prove our primary lemmas about qualitative halves: the Half-
Equivalence Lemma (Lemma 15), the First Halving Lemma (Lemma 16), and the Sec-
ond Halving Lemma (Lemma 17).

As discussed in Appendix D, our broad approach for proving Theorem 2 is based
on the observation that if two disjoint events are equally likely, then in any σ-measure
representation, the measure of both must be half the measure of their union. In this
case, we might say that the disjoint events are each “halves” of any event that is as likely
as their union. This appendix is dedicated to pursuing this concept.

To begin, the Half-Equivalence Lemma (Lemma 15) states that this notion of a half
is well-defined in the sense that if an event has many halves, then all of them are equally
likely. This is a particularly general result in that it applies to all qualitative probability
spaces, and it is our last such result in this article:

Lemma 15 (Half-Equivalence Lemma). If (A�⊇��) is a qualitative probability space,
then for each disjoint pair A�A′ ∈ A and each disjoint pair B�B′ ∈ A, if

(i) A∼ A′,

(ii) B ∼ B′, and

(iii) A∪A′ ∼ B ∪B′,

then A∼ B.

Proof. Assume, by way of contradiction, A � B; without loss of generality, assume
A� B. For convenience, label the components of the Euler diagram for A, A′, B, and
B′ according to Figure 4.
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We claim DL∪D �UR∪R. Otherwise, by separability,

B ∼ B′

= DR∪ (UR∪R)

�DR∪ (DL∪D)

= A′

∼ A�

contradicting A� B.
We claim L∪R�U ∪D. Otherwise, by separability,

A∪A′ = (UL∪UR∪DL∪DR)∪ (U ∪D)

� (UL∪UR∪DL∪DR)∪ (L∪R)

= B ∪B′�

contradicting A∪A′ ∼ B ∪B′. Similarly, U ∪D�L∪R, so L∪R ∼U ∪D.
But then by separability,

(L∪R)∪ (UL∪UR) ∼ (U ∪D)∪ (UL∪UR)

= A∪D

� B ∪D

= (UL∪L)∪ (DL∪D)

� (UL∪L)∪ (UR∪R)�

contradicting L∪R∪UL∪UR∼ L∪R∪UL∪UR.

As halves are well-defined, we next move to the problem of producing them. To be-
gin, the First Halving Lemma (Lemma 16) states any 1-divisible event can be partitioned
into two halves; we prove this using an approach similar to the greedy transforms of
the previous appendix, except that instead of iteratively growing an event so long as it is
never more likely than a target event, we iteratively grow an event so long as it is never
more likely than its complement:

Lemma 16 (First Halving Lemma). If (A�⊇��) is an idealized space, then for each A ∈ A
such that A is 1-divisible and A � ∅, there is H ⊆ A such that H ∼ (A \ H) and A �
H �∅.

Proof. Let (A�⊇��) and A satisfy the hypotheses. Define A� ≡ A ∩ S�; define A◦ ≡
A∩ S◦; define H0 ≡∅; and for each s ∈N, define

Hs ≡
{
(Hs−1 ∪ αs)� s ∈ I•�αs ⊆A�and A \ (Hi−1 ∪ αs)� (Hi−1 ∪ αs);
Hs−1� else.

Finally, define H� ≡ ∪Hi.
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By construction, for each s ∈ N, (A\Hs)�Hs ; thus by the Algebra Lemma (Lemma 1)
and the Limit-Order Lemma (Lemma 6),

A \H� = limA∩ (S \ limHs)

= limA∩ lim(S \Hs)

= lim(A \Hs)

� limHs

=H��

As H� ⊆ A� ⊆ S�, thus there are I•
A ⊆ I• and I•

H ⊆ I•
A such that H� = ⋃

I•
H
αs and A� =⋃

I•
A
αs. We claim that there is H ⊆ A such that H ∼ (A \ H), which we establish in two

cases:

Case 1: |I•
A \I•

H | < |N|. First, we claim (H� ∪A◦)�A\(H� ∪A◦). Indeed, if |I•
A \I•

H | = 0,
then H� =A�, so

(
H� ∪A◦) = A

�∅

= A \A
= A \ (

H� ∪A◦)�
If |I•

A \ I•
H | ∈ N, then define s∗ ≡ max(I•

A \ I•
H), and define A→ ≡ A \ (⋃s≤s∗ αs). Since A

is 1-divisible, thus by monotonicity A→ � αs∗ , so by separability, construction, and the
Complement Lemma (Lemma 3),

H� ∪A◦ = Hs∗−1 ∪A→

�Hs∗−1 ∪ αs∗

�A \ (Hs∗−1 ∪ αs∗)

�A \ (
Hs∗−1 ∪A→)

= A \ (
H� ∪A◦)�

Thus we have (H� ∪A◦)�A\(H� ∪A◦), as claimed. Moreover, by our earlier argument,
A \H� �H�. If A◦ ∼ ∅, then as our space is idealized A◦ = ∅ and we are done; thus let
us assume A◦ �∅.23

Define A∗ ≡ {A ∈ A|A ⊆ A◦}; it is straightforward to show that this is a σ-algebra.
Define ⊇∗, �∗ on A∗ as follows: for each pair A�A′ ∈ A∗, (i) A⊇∗ A′ if and only if A⊇ A′,
and (ii) A �∗ A′ if and only if A �A′. Since A◦ � ∅, it is straightforward to verify that
(A∗�⊇∗��∗) is an idealized space, so by the Erosion Lemma (Lemma 10), it has erosion

23In fact, it can be proven that we must have A◦ �∅ in this case.
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E∗ = {E∗
v }v∈[0�1]. Define

V ≡ {
v ∈ [0�1]|A \ (

H� ∪E∗
v

)
�H� ∪E∗

v

}
� and

v∗ ≡ supV �

For each v ∈ [0�1], v > v∗ implies v /∈ V by definition, and v < v∗ implies v ∈ V by mono-
tonicity.

First, we claim A \ (H� ∪ E∗
v∗)�H� ∪ E∗

v∗ . If v∗ = 0, then E∗
v∗ = ∅ and we are done;

thus let us assume v∗ > 0. Let (vi) be an increasing sequence converging to v∗; then
for each i ∈ N, A \ (H� ∪ E∗

vi
) � H� ∪ E∗

vi
. By the Algebra Lemma (Lemma 1) and the

Limit-Order Lemma (Lemma 6),

A \ (
H� ∪E∗

v∗
) =A∩ (

S \ (
limH� ∪ limE∗

vi

))
=A∩ (

S \ lim
(
H� ∪E∗

vi

))
= limA∩ lim

(
S \ (

H� ∪E∗
vi

))
= lim

(
A \ (

H� ∪E∗
vi

))
� lim

(
H� ∪E∗

vi

)
= limH� ∪ limE∗

vi

=H� ∪E∗
v∗�

as desired.
Second, we claim A \ (H� ∪ E∗

v∗) � H� ∪ E∗
v∗ . If v∗ = 1, then it is straightforward

to show that A◦ \ Ev∗ ∼ ∅, so as our space is idealized, thus Ev∗ = A◦ and we are done;
thus let us assume v∗ < 1. To complete the argument, simply take the corresponding
argument in the previous paragraph, then replace each instance of “increasing” with
“decreasing” and each instance of � with �.

Altogether, then, A \ (H� ∪E∗
v∗) ∼H� ∪E∗

v∗ , as desired.

Case 2: |I•
A \ I•

H | = |N|. By construction, for each s ∈ I•
A \ I•

H , we have Hs−1 ∪ αs � A \
(Hs−1 ∪αs). It is then straightforward to show, using the Limit-Order Lemma (Lemma 6)
and the Algebra Lemma (Lemma 1), that

H� = lim
s∈I•

A\I•
H

(Hs−1 ∪ αs)

� lim
s∈I•

A\I•
H

A \ (Hs−1 ∪ αs)

=A \H��

so as A \H� �H�, thus H� ∼A \H�, as desired.

Thus in both cases, there is H ⊆ A such that H ∼ A \ H. To conclude, since A � ∅,
necessarily A � H, else H �A and A \ H ∼ H �A � ∅, so by the Domination Lemma
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(Lemma 4), A = H ∪ (A \ H) � A, contradicting A ∼ A. Moreover, H � ∅, else ∅ �H

and ∅�H ∼A\H, so by the Domination Lemma (Lemma 4), ∅�H∪ (A\H)= A�∅,
contradicting ∅ ∼∅. Altogether, then, A�H �∅, as desired.

Finally, the Second Halving Lemma (Lemma 17) states that under 2-AS, each event
can be associated with two disjoint events analogous to its halves. After proving this
result, we will have at last assembled the tools we need to construct our supercabinet,
and unsurprisingly this final result proves crucial:

Lemma 17 (Second Halving Lemma). If (A�⊇��) is an idealized space that satisfies 2-AS,
then for each A ∈A such that A�∅, there are disjoint H(A)�H ′(A) ∈ A such that

(i) A ∼H(A)∪H ′(A), and

(ii) A �H(A) ∼ H ′(A) �∅.

Proof. Let (A�⊇��) and A satisfy the hypotheses. By monotonicity, S � S \ A, so as
S is 1-divisible, thus by the 1-Division Lemma (Lemma 12), GS(S \ A) ∼ S \ A. Since
A�∅, thus by the Complement Lemma (Lemma 3), S \GS(S \A)∼ S \ (S \A)= A�∅.
Since S is 2-divisible, thus by the Greedy Removal Lemma (Lemma 13), S \ GS(S \ A)

is 1-divisible. Altogether, by the First Halving Lemma (Lemma 16), there are disjoint
H(A)�H ′(A) ⊆ S \ GS(S \A) such that

(i) A ∼ S \ GS(S \A) =H(A)∪H ′(A), and

(ii) A ∼ S \ GS(S \A) �H(A) ∼H ′(A) �∅,

as desired.

Appendix G

In this appendix we prove our second main result, which implies that monotone conti-
nuity and 3-AS are together sufficient to guarantee σ-measure representation.

We first prove the Supercabinet Construction Lemma (Lemma 18), which states that
for idealized spaces, 3-AS guarantees the existence of a supercabinet. All of the tools de-
veloped in the previous two appendices were developed for the purpose of establishing
this one result:

Lemma 18 (Supercabinet Construction Lemma). If (A�⊇��) is an idealized space that
satisfies 3-AS, then it has a supercabinet.

Proof. Let (A�⊇��) satisfy the hypotheses. By 3-AS, S is 3-divisible. We proceed
through a series of 11 steps; the only notation carried from one step to the following
steps is the notation in the step’s statement. It is straightforward to verify that each
greedy transform we use throughout the proof is indeed associated with an erodable
event, and we omit these observations.
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In the first two steps, for each q ∈ {0�1� � � �}, we construct events {Ap
q }q∈{0�1�����2q} ⊆ A;

the notation anticipates that when at last we complete our supercabinet {Zv}v∈2, the

event Ap
q will be the output of the greedy transform GS when the input is any event from

Z p
2q

. Though we establish that using these events to construct such a collection {Zv}v∈2

is well-defined as early as Step 4, it is convenient to use the numerator–denominator

notation to establish several properties that are useful for verifying that this {Zv}v∈2 is

in fact a supercabinet; we therefore postpone introducing {Zv}v∈2 until Step 9. The final

two steps are dedicated to verifying that it is in fact a supercabinet.

Step 1: Define {A1
q}q∈{0�1����}� {H(A1

q)}q∈{0�1����}� {H ′(A1
q)}q∈{0�1����} ⊆ A such that for each

q ∈ {0�1� � � �},

(i) H(A1
q)∩H ′(A1

q) =∅,

(ii) A1
q ∼H(A1

q)∪H ′(A1
q), and

(iii) A1
q �A1

q+1 ∼H(A1
q) ∼H ′(A1

q) �∅.

We proceed recursively. Define A1
0 ≡ GS(S). By the 1-Division Lemma (Lemma 12),

A1
0 ∼ S, so by monotonicity and nondegeneracy, A1

0 �∅.

Suppose we have A1
q ∈ A such that A1

q � ∅. By 2-AS, we can apply the Second Halv-

ing Lemma (Lemma 17); thus there are disjoint H(A1
q) and H ′(A1

q) such that

(i) A1
q ∼ H(A1

q)∪H ′(A1
q), and

(ii) A1
q �H(A1

q) ∼H ′(A1
q) �∅.

Define A1
q+1 ≡ GS(H(A1

q)); by the Half-Equivalence Lemma (Lemma 15) this is well-

defined. By monotonicity, S �H(A1
q), so by the 1-Division Lemma (Lemma 12), A1

q+1 ∼
H(A1

q).

Step 2: For each q ∈ {0�1� � � �}, define {Ap
q }q∈{0�1�����2q} ⊆ A such that

(i) for each p ∈ {0�1� � � � �2q − 1}, Ap+1
q ∼A

p
q ∪ GS\Ap

q (A1
q); and

(ii) for each p ∈ {0�1� � � � �2q}, GS(A
p
q )= A

p
q .

Let q ∈ {0�1� � � �}. Define A0
q ≡∅, and for each p ∈ {0�1� � � � �2q − 1}, define

A
p+1
q ≡ GS

(
A

p
q ∪ GS\Ap

q
(
A1

q

))
�

By monotonicity, S �A
p
q ∪GS\Ap

q (A1
q), so by the 1-Division Lemma (Lemma 12), Ap+1

q ∼
A

p
q ∪ GS\Ap

q (A1
q). (Note that by the Greedy Basics Lemma (Lemma 11), this definition

gives the same {A1
q}q∈{0�1����} defined before.)
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Using the definition of erosion, GS(A0
q) = GS(∅) = ∅ = A0

q. For each p ∈ {0�1� � � � �

2q−1}, by the Greedy Basics Lemma (Lemma 11), GS(A
p+1
q ) = GS[GS(A

p
q ∪GS\Ap

q (A1
q))] =

GS(A
p
q ∪ GS\Ap

q (A1
q)) = A

p+1
q .

Step 3: For each q ∈ {0�1� � � �} and each p ∈ {0�1� � � � �2q}, S \ A
p
q is 2-divisible. Let q ∈

{0�1� � � �} and p ∈ {0�1� � � � �2q}. Since S is 3-divisible, thus by Step 2 and the Greedy Re-
moval Lemma (Lemma 13), S \Ap

q = S \ GS(A
p
q ) is 2-divisible.

Step 4: For each q ∈ {0�1� � � �},

(i) p ∈ {0�1� � � � �2q − 1} implies GS\Ap
q (A1

q)∼ A1
q, and

(ii) p ∈ {0�1� � � � �2q} implies Ap
q = A

2p
q+1.

We proceed by induction on q. For the base step, let q = 0. By the Greedy Ba-

sics Lemma (Lemma 11), GS\A0
q(A1

q) = GS\∅(A1
q) = GS(A1

q) = GS(GS(S)) = GS(S) = A1
q.

For the inductive hypothesis, assume q ∈ {0�1� � � �} is such that for each p ∈ {0�1� � � � �2q−
1}, GS\Ap

q (A1
q)∼ A1

q.
Within the current inductive argument, we make a second inductive argument

on p. For the base step, A0
q = ∅ = A0

q+1. For the inductive hypothesis, assume p ∈
{0�1� � � � �2q − 1} is such that Ap

q =A
2p
q+1. For convenience, define G1�G2�G

′
2 ∈ A by

• G1 ≡ GS\A2p
q+1(A1

q+1),

• G2 ≡ GS\A2p+1
q+1 (A1

q+1), and

• G′
2 ≡ GS\[A2p

q+1∪G1](A1
q+1).

We make three claims, which we prove in sequence before concluding:

Claim 1: G1 ∼ A1
q+1,

Claim 2: G2 ∼ A1
q+1, and

Claim 3: Ap+1
q =A

2(p+1)
q+1 .

Proof of Claim 1: By the hypothesis on p, Ap
q = A

2p
q+1, so by monotonicity, the hypoth-

esis on q, and Step 1,

S \A2p
q+1 = S \Ap

q

� GS\Ap
q
(
A1

q

)
∼A1

q

�A1
q+1�
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Since by Step 3, S \A2p
q+1 is 2-divisible, thus by the 1-Division Lemma (Lemma 12), G1 =

GS\A2p
q+1(A1

q+1)∼ A1
q+1.

Proof of Claim 2: Since by construction and Claim 1, H(A1
q) ∼A1

q+1 ∼G1, necessarily

S \ [A2p
q+1 ∪G1] �H ′(A1

q), else by Step 1, the Domination Lemma (Lemma 4), construc-
tion, the hypothesis on p, monotonicity, and the hypothesis on q,

A1
q ∼ H

(
A1

q

) ∪H ′(A1
q

)
�G1 ∪ S \ [

A
2p
q+1 ∪G1

]
= S \A2p

q+1

= S \Ap
q

� GS\Ap
q
(
A1

q

)
∼ A1

q�

contradicting A1
q ∼A1

q.

By Step 2, A
2p+1
q+1 ∼ A

2p
q+1 ∪ G1. By the Complement Lemma (Lemma 3) and the

above argument, S \ A
2p+1
q+1 ∼ S \ [A2p

q+1 ∪ G1] � H ′(A1
q) ∼ A1

q+1. By Step 3, S \ A
2p+1
q+1

is 2-divisible, so by the 1-Division Lemma (Lemma 12), G2 = GS\A2p+1
q+1 (A1

q+1) ∼A1
q+1.

Proof of Claim 3: As argued in the proof of Claim 2, S \ [A2p
q+1 ∪G1]�H ′(A1

q) ∼A1
q+1.

By Step 3, S \ A
2p
q+1 is 2-divisible, so by the Greedy Removal Lemma (Lemma 13), (S \

A
2p
q+1) \G1 = S \ [A2p

q+1 ∪G1] is 1-divisible. Thus by the 1-Division Lemma (Lemma 12),

G′
2 ∼ A1

q+1.

By Claim 1 and the above argument, H(A1
q) ∼ G1 and H ′(A1

q) ∼ G′
2, so by Step 1

and two applications of the Domination Lemma (Lemma 4), A1
q ∼ H(A1

q) ∪ H ′(A1
q) ∼

G1 ∪ G′
2. By the hypothesis on p and the hypothesis on q, GS\A2p

q+1(A1
q) = GS\Ap

q (A1
q) ∼

A1
q ∼G1 ∪G′

2. By Step 2, the hypothesis on p, and separability,

A
p+1
q ∼ A

p
q ∪ GS\Ap

q
(
A1

q

)
= A

2p
q+1 ∪ GS\A2p

q+1
(
A1

q

)
∼ A

2p
q+1 ∪ (

G1 ∪G′
2
)

= [
A

2p
q+1 ∪G1

] ∪G′
2�

By Step 2, [A2p
q+1 ∪G1] ∼ A

2p+1
q+1 . By the first paragraph of this claim’s proof and Claim 2,

G′
2 ∼ A1

q+1 ∼ G2. Thus by two applications of the Domination Lemma (Lemma 4),
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[A2p
q+1 ∪ G1] ∪ G′

2 ∼ A
2p+1
q+1 ∪ G2. By Step 2, A2p+1

q+1 ∪ G2 ∼ A
2p+2
q+1 . Altogether, Ap+1

q ∼
A

2p+2
q+1 , so GS(A

p+1
q ) = GS(A

2p+2
q+1 ), so by Step 2, Ap+1

q =A
2p+2
q+1 .

To conclude: by induction on p, if q ∈ {0�1� � � �} is such that for each p ∈ {0�1� � � � �2q−
1}, GS\Ap

q (A1
q)∼ A1

q, then

(i) for each p ∈ {0�1� � � � �2q+1 − 1}, GS\Ap
q+1(A1

q+1) ∼A1
q+1; and

(ii) for each p ∈ {0�1� � � � �2q}, Ap
q =A

2p
q+1.

By induction on q, we are done.

Step 5: For each q ∈ {0�1� � � �} and each p ∈ {0�1� � � � �2q}, A
p
q ∼ S \ A

2q−p
q . Let q ∈

{0�1� � � �}. For each p ∈ {0�1� � � � �2q}, define B
p
q ≡ S \ A

2q−p
q . We proceed by induction

on p.
For the base step: by Step 4, Step 1, the 1-Division Lemma (Lemma 12), the Comple-

ment Lemma (Lemma 3), and Step 2, B0
q = S \A2q

q = S \A1
0 = S \ GS(S) ∼ S \ S =∅ =A0

q,

so A0
q ∼ B0

q. For the inductive hypothesis, assume p ∈ {0�1� � � � �2q − 1} is such that

A
p
q ∼ B

p
q .

Define A�B�C ′�B′�A′ ∈ A by

A≡A
p
q �

B ≡ GS\A(
A1

q

)
�

C ′ ≡A
2q−(p+1)
q �

B′ ≡ GS\C ′(
A1

q

)
� and

A′ ≡ S \ (
C ′ ∪B′)�

By Step 2, C ′ ∪ B′ ∼ A
2q−p
q . By the Complement Lemma (Lemma 3), A′ = S \ (C ′ ∪

B′) ∼ S \ A
2q−p
q = B

p
q . By the hypothesis on p, A′ ∼ A

p
q = A. By Step 4, B ∼ A1

q ∼ B′.
Thus by two applications of the Domination Lemma (Lemma 4), A∪B ∼ A′ ∪B′.

By Step 2, A ∪ B ∼ A
p+1
q , and by definition, A′ ∪ B′ = S \ A2q−(p+1)

q = B
p+1
q , so alto-

gether Ap+1
q ∼ B

p+1
q . By induction on p, we are done.

Step 6: Define the binary operation �. For each q ∈ {0�1� � � �} and each pair p�p′ ∈
{0�1� � � � �2q} such that p+p′ ≤ 2q, define A

p
q �A

p′
q ∈ A by

A
p
q �A

p′
q ≡ GS

(
A

p
q ∪ GS\Ap

q
(
A

p′
q

))
�

Step 7: For each q ∈ {0�1� � � �} and each pair p�p′ ∈ {0�1� � � � �2q} such that p+p′ ≤ 2q,

A
p
q �A

p′
q = A

p+p′
q �
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Let q ∈ {0�1� � � �} and let p ∈ {0�1� � � � �2q}. We proceed by induction on p′. For the

base step, let p′ = 0. Then by Step 2, Ap
q �A

p′
q = GS(A

p
q )= A

p
q .

For the inductive hypothesis, assume p′ ∈ {0�1� � � � � [2q − p] − 1} is such that Ap
q �

A
p′
q =A

p+p′
q . Define A�B�C ∈ A by

A≡ A
p
q �

B ≡ GS\A(
A

p′
q

)
� and

C ≡ GS\(A∪B)(A1
q

)
�

By hypothesis, Ap+p′
q =A

p
q �A

p′
q = GS(A∪B). Since S is 1-divisible and, by monotonic-

ity, S �A∪B, thus by the 1-Division Lemma (Lemma 12), GS(A∪B) ∼A∪B. Altogether,

A
p+p′
q ∼A∪B.

By monotonicity and Step 4, S \ A
p+p′
q � GS\Ap+p′

q (A1
q) ∼ A1

q, so by the Comple-

ment Lemma (Lemma 3), S \ (A ∪ B) ∼ S \ A
p+p′
q �A1

q. By Step 3, S \ A is 2-divisible,
so by the Greedy Removal Lemma (Lemma 13), (S \ A) \ B = S \ (A ∪ B) is 1-divisible.

Thus by the 1-Division Lemma (Lemma 12), A1
q ∼ C. By Step 4, GS\Ap+p′

q (A1
q) ∼ A1

q, so

GS\Ap+p′
q (A1

q) ∼ C.

Since A
p+p′
q ∼ A ∪ B and GS\Ap+p′

q (A1
q) ∼ C, thus by Step 2 and two applications of

the Domination Lemma (Lemma 4),

A
p+p′+1
q ∼ A

p+p′
q ∪ GS\Ap+p′

q
(
A1

q

)
∼ (A∪B)∪C�

By Step 5, S \ A
p
q ∼ A

2q−p
q . Since 2q − p ≥ p′ + 1, thus by Step 2 and monotonic-

ity, A
2q−p
q � A

p′+1
q , so S \ A

p
q � A

p′+1
q . By Step 3, S \ A

p
q is 2-divisible, so by the 1-

Division Lemma (Lemma 12), GS\Ap
q (A

p′+1
q ) ∼ A

p′+1
q .

Since S \Ap
q �A

p′+1
q , by Step 2 and monotonicity, S \Ap

q �A
p′
q . By Step 3, S \Ap

q is 2-

divisible, so by the 1-Division Lemma (Lemma 12), Ap′
q ∼ B. By Step 4, GS\Ap′

q (A1
q)∼ A1

q,

and as argued above, A1
q ∼ C, so GS\Ap′

q (A1
q) ∼ C. Thus by Step 2 and two applications

of the Domination Lemma (Lemma 4), Ap′+1
q ∼A

p′
q ∪ GS\Ap′

q (A1
q) ∼ B ∪C.

Altogether, GS\Ap
q (A

p′+1
q ) ∼ B ∪ C. Since S is 1-divisible and, by monotonicity, S �

A
p
q ∪ GS\Ap

q (A
p′+1
q ), thus by the 1-Division Lemma (Lemma 12) and separability,

A
p
q �A

p′+1
q = GS

(
A

p
q ∪ GS\Ap

q
(
A

p′+1
q

))
∼A

p
q ∪ GS\Ap

q
(
A

p′+1
q

)
∼A

p
q ∪ (B ∪C)

=A∪ (B ∪C)
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= (A∪B)∪C

∼ A
p+p′+1
q �

By the Greedy Basics Lemma (Lemma 11) and Step 2, Ap
q �A

p′+1
q =A

p+p′+1
q .

By induction on p′, for each p′ ∈ {0�1� � � � �2q − p}, Ap
q � A

p′
q = A

p+p′
q . Since q ∈

{0�1� � � �} and p ∈ {0�1� � � � �2q} were arbitrary, we are done.

Step 8: limA1
q ∼ ∅. For each q ∈ N, define Bq ≡ G2�S

1 (A1
q�A

1
q) and define Cq ≡

G2�S
2 (A1

q�A
1
q). By Step 1, (A1

q�A
1
q)q∈N is a monotonic 2-list sequence, so by the List-

Transform Lemma (Lemma 14), (Bq)q∈N and (Cq)q∈N are convergent. By Step 2 and

Step 4, for each q ∈ N, Bq =A1
q and Cq ∼A1

q.

By Step 1, for each q ∈ {0�1� � � �}, H(A1
q) ∼ Bq+1 and H ′(A1

q) ∼ Cq+1, so by two appli-

cations of the Domination Lemma (Lemma 4), A1
q ∼H(A1

q)∪H ′(A1
q) ∼ Bq+1 ∪Cq+1. By

the Algebra Lemma (Lemma 1) and the Limit-Order Lemma (Lemma 6),

limBq ∪ limCq = limBq+1 ∪ limCq+1

= lim(Bq+1 ∪Cq+1)

∼ limA1
q

= limBq�

By the Algebra Lemma (Lemma 1),

limBq ∩ limCq = lim(Bq ∩Cq)

=∅�

Thus limCq ∼ ∅, else by monotonicity and separability, limBq ∪ limCq � limBq, contra-

dicting limBq ∪ limCq ∼ limBq. Thus by the Limit-Order Lemma (Lemma 6), limA1
q ∼

limCq ∼ ∅, as desired.

Step 9: Define {Av}v∈2 ⊆ A and {Zv}v∈2 ⊆ [A/∼] such that for each pair v� v′ ∈ 2 such that

v′ > v, Av′ � Av. Let v ∈ 2. Then there are p�q ∈ {0�1� � � �} such that p ≤ 2q and v = p
2q .

Define

Av ≡ A
p
q � and

Zv ≡ {A ∈ A|A∼ Av}�

By Step 4, this is well-defined.

Let v� v′ ∈ 2 such that v′ > v. Then there are p�p′� q ∈ {0�1� � � �} such that v = p
2q , v′ =

p′
2q , and p′ >p. By Step 4 and Step 1, GS\Ap

q (A1
q) ∼ A1

q � ∅, so by Step 2 and separability,
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A
p+1
q ∼ Ap ∪ GS\Ap

q (A1
q) � Ap. Repeating this argument, Ap′

q � A
p
q ; thus Av′ = A

p′
q �

A
p
q =Av, as desired.

Step 10: For each convergent pair (vi)� (v′
i) ∈ 2N such that limvi = limv′

i, if (Avi)� (Av′
i
) ∈

AN are convergent, then limAvi ∼ limAv′
i
. Define v∞ ≡ limvi = limv′

i, A∞ ≡ limAvi , and

A′∞ ≡ limAv′
i
. Assume, by way of contradiction, A∞ � A′∞; without loss of generality,

assume A∞ � A′∞. Define G ≡ GS(A′∞). Since S is 1-divisible and, by monotonicity,

S �A′∞, thus by the 1-Division Lemma (Lemma 12), A∞ �A′∞ ∼ G.

Necessarily S\G�∅, else by the Complement Lemma (Lemma 3) and monotonicity,

G� S �A∞, contradicting A∞ �G. Then there is q∗∗ ∈N such that S \G�A1
q∗∗ , else by

Step 8 and continuity, ∅ ∼ limA1
q � S \G, contradicting S \G�∅.

Since S is 3-divisible, thus by the Greedy Removal Lemma (Lemma 13), S \ G is 2-

divisible, so by Step 1 and the 1-Division Lemma (Lemma 12), for each q ∈ N such that

q ≥ q∗∗, GS\G(A1
q) ∼ A1

q. Then by Step 1, (GS\G(A1
q))q≥q∗∗ ∈ AN is a monotonic 1-list

sequence, so by the List-Transform Lemma (Lemma 14), it is convergent.

By the Algebra Lemma (Lemma 1),

G∩ limGS\G(
A1

q

) = limG∩ limGS\G(
A1

q

)
= lim

(
G∩ GS\G(

A1
q

))
= ∅�

By the Limit-Order Lemma (Lemma 6) and Step 8, limGS\G(A1
q)∼ limA1

q ∼∅, so by sep-

arability, G∪ limGS\G(A1
q)∼ G. By the Algebra Lemma (Lemma 1),

G∪ limGS\G(
A1

q

) = limG∪ limGS\G(
A1

q

)
= lim

(
G∪ GS\G(

A1
q

))
�

so lim(G ∪ GS\G(A1
q)) ∼ G. Thus there is q∗ ∈ N such that (i) q∗ ≥ q∗∗ and thus

GS\G(A1
q∗) ∼ A1

q∗ , and (ii) A∞ � G ∪ GS\G(A1
q∗), else by continuity G�A∞, contradict-

ing A∞ �G.

Before proceeding, we make two observations:

• For each v ∈ 2, v > v∞ implies Av � A∞ and Av � A′∞. Indeed, let v ∈ 2 such that

v > v∞. Then there is v′ ∈ 2 such that v > v′ > v∞. Since limvi = v∞, there is i∗ ∈ N

such that for each i ≥ i∗, v′ > vi. By Step 9, for each i ≥ i∗, Av � Av′ � Avi , so by

continuity, Av �Av′ �A∞. By the same argument, v > v∞ implies Av �A′∞.

• For each v ∈ 2, v∞ > v implies A∞ � Av and A′∞ � Av. The proof of this observa-

tion is analogous to that of the above observation.
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We proceed by reaching a contradiction in the following three cases:

Case 1: v∞ = 0. Then 1
2q∗ > v∞, so by our first observation and monotonicity, A1

q∗ �
A∞ �G∪ GS\G(A1

q∗)� GS\G(A1
q∗)∼ A1

q∗ , contradicting A1
q∗ ∼A1

q∗ .

Case 2: v∞ = 1. Then v∞ > 2q
∗−1

2q∗ , so by our second observation, G ∼ A′∞ � A2q
∗−1

q∗ .

By the Greedy Basics Lemma (Lemma 11), GS\G(A1
q∗) ∼ A1

q∗ � GS\A2q
∗−1

q∗ (A1
q∗), so A∞ �

G∪ GS\G(A1
q∗) �A2q

∗−1
q∗ ∪ GS\A2q

∗−1
q∗ (A1

q∗).

Since S is 1-divisible and, by monotonicity, S �A2q
∗−1

q∗ ∪GS\A2q
∗−1

q∗ (A1
q∗), thus by the 1-

Division Lemma (Lemma 12), A2q
∗−1

q∗ ∪GS\A2q
∗−1

q∗ (A1
q∗)∼ A2q

∗−1
q∗ �A1

q∗ . But then by Step 7,

Step 4, Step 1, the 1-Division Lemma (Lemma 12), and monotonicity, A∞ � A2q
∗−1

q∗ �
A1

q∗ = A2q
∗

q∗ =A1
0 = GS(S) ∼ S �A∞, contradicting A∞ ∼ A∞.

Case 3: v∞ ∈ (0�1). Define ε∗ ≡ 1
2q∗ . Since 2 is dense in [0�1], there is v∗ ∈ 2 such that

1 ≥ v∗ + ε∗ > v∞ > v∗. By our two observations, Av∗+ε∗ �A∞ �G ∼A′∞ �Av∗ .
Since 1 − v∗ ≥ ε∗, thus by Step 5 and Step 9, S \ Av∗ ∼ A1−v∗ � Aε∗ = A1

q∗ . Then

by Step 3 and the 1-Division Lemma (Lemma 12), GS\G(A1
q∗) ∼ A1

q∗ ∼ GS\Av∗ (A1
q∗).

Since G � Av∗ , thus by the Domination Lemma (Lemma 4), A∞ � G ∪ GS\G(A1
q∗) �

Av∗ ∪ GS\Av∗ (A1
q∗).

Since S is 1-divisible and, by monotonicity, S � Av∗ ∪ GS\Av∗ (A1
q∗), thus by the 1-

Division Lemma (Lemma 12), Av∗ ∪ GS\Av∗ (A1
q∗) ∼ Av∗ �Aε∗ . But then by Step 7, A∞ �

Av∗ �Aε∗ =Av∗+ε∗ , contradicting Av∗+ε∗ �A∞.

Step 11: Conclude. We verify that {Zv}v∈2 satisfies [SC1], [SC2], [SC3], and [SC4].

[SC1]: By Step 1 and the 1-Division Lemma (Lemma 12), A1 =A1
0 = GS(S) ∼ S, so S ∈Z1.

[SC2]: Let v� v′ ∈ 2 such that v + v′ ≤ 1. Then there are p�p′� q ∈ {0�1� � � �} such that
v = p

2q , v′ = p′
2q , and p+p′ ≤ 2q.

By Step 9, Ap
q ∈ Zv, Ap′

q ∈ Zv′ , and A
p+p′
q ∈ Zv+v′ . Since p′ ≤ 2q − p, thus by Step 5,

Step 2, and monotonicity, S \Ap
q ∼ A

2q−p
q �A

p′
q . By Step 3, S \Ap

q is 2-divisible, so by the
1-Division Lemma (Lemma 12),

GS\Ap
q
(
A

p′
q

) ∼ A
p′
q �

Thus we have disjoint Ap
q ∈ Zv and GS\Ap

q (A
p′
q ) ∈ Zv′ .

Since S is 1-divisible and, by monotonicity, S � A
p
q ∪ GS\Ap

q (A
p′
q ), thus by the 1-

Division Lemma (Lemma 12), GS(A
p
q ∪ GS\Ap

q (A
p′
q )) ∼ A

p
q ∪ GS\Ap

q (A
p′
q ). Thus by Step 7,

A
p+p′
q =A

p
q �A

p′
q
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= GS
(
A

p
q ∪ GS\Ap

q
(
A

p′
q

))
∼A

p
q ∪ GS\Ap

q
(
A

p′
q

)
�

so A
p
q ∪ GS\Ap

q (A
p′
q ) ∈ Zv+v′ , as desired.

[SC3]: Let (v+
i ) ∈ 2N be non-increasing and let (v−

i ) ∈ 2N be non-decreasing such that
limv+

i = limv−
i . For each i ∈ N, define A+

i ≡Av+
i

and A−
i ≡ Av−

i
. By Step 9, for each i ∈N,

A+
i ∈ Zv+

i
and A−

i ∈ Zv−
i

. Moreover, by Step 9, (A+
i ) and (A−

i ) are both monotonic 1-

list sequences, so by the List-Transform Lemma (Lemma 14), (A+
i ) and (A−

i ) are both
convergent; thus by Step 10, limA+

i ∼ limA−
i .

[SC4]: Let (vi)� (wi) ∈ 2N be monotonic such that for each i ∈ N, vi + wi ≤ 1. For each
i ∈N, define Ai ≡Avi and Bi ≡ GS\Ai(Awi).

By Step 5, for each i ∈N, S \Ai ∼ A1−vi , so since 1 − vi ≥ wi, thus by Step 9, S \Avi �
Awi . Thus by Step 3 and the 1-Division Lemma (Lemma 12), for each i ∈ N, Bi ∼ Awi .
Altogether, for each i ∈ N, Ai and Bi are disjoint with Ai ∈ Zvi and Bi ∈ Zwi .

By Step 9, (Ai�Bi) is a monotonic 2-list sequence; thus by the List-Transform Lemma
(Lemma 14), (G2�S

1 (Ai�Bi)) and (G2�S
2 (Ai�Bi)) are convergent. By construction and the

Greedy Basics Lemma (Lemma 11), these are, respectively, (Ai) and (Bi).

Before proceeding, we make one remark about the above proof: constructing {Ap
q },

and therefore using {A0
0} ∪ {Ap

q |p is odd} to construct the very collection {Zv}v∈2 that we
ultimately prove is a supercabinet, requires only 2-AS. Though the above proof requires
3-AS to verify that this is a supercabinet, we have no example of a qualitative probability
space that satisfies 2-AS but not 3-AS for which {Zv}v∈2 is not a supercabinet; in other
words, we do not know if 3-AS is necessary for the result. If {Zv}v∈2 were verified to be a
supercabinet using only 2-AS, then it would be straightforward to modify the following
two results to prove a new theorem (for 2-AS) that is more general than Theorem 2 (for
3-AS) but less general than the conjecture discussed in Section 4 (for 1-AS).

We are almost done. From here, we proceed as we did with our first main result, first
exploiting the convenience of idealized spaces to prove Proposition 2. This is almost an
immediate consequence of our results thus far:

Proposition 2. Let n ∈ N such that n ≥ 3. If (A�⊇��) is an idealized space that satisfies
n-AS, then it has representation μ ∈ Mσ

n-AS(A). In this case, (A�⊇��) has no other σ-
measure representation.

Proof. Let n ∈ N such that n ≥ 3 and let (A�⊇��) be an idealized space that satisfies
n-AS. Then it satisfies 3-AS, so by the Supercabinet Construction Lemma (Lemma 18), it
has a supercabinet, so by the Supercabinet Blueprint Lemma (Lemma 9), it has a unique
representation μ ∈Mσ(A). It remains to show that μ ∈Mσ

n-AS(A).
It is straightforward to show A• = A•|μ. Let α ∈ A•|μ = A•. By n-AS, there are I ⊆ N,

pairwise-disjoint {Bi}i∈I ⊆ A, and I1� I2� � � � � In partitioning I such that
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(i) for each i ∈ I, α� Bi; and

(ii) for each j ∈ {1�2� � � � � n},
⋃

Ij
Bj � α.

Since μ is a representation, thus for each j ∈ {1�2� � � � � n}, μ(
⋃

Ij
Bj) ≥ μ(α), and more-

over,

(i) for each i ∈ I, μ(α) > μ(Bi); and

(ii) μ(
⋃

Bi) = μ(
⋃

I1
Bi)+μ(

⋃
I2
Bi)+ · · · +μ(

⋃
In
Bi) ≥ nμ(α).

Since α ∈ A•|μ was arbitrary, we are done.

To conclude, we prove Theorem 2 using the Null-Quotient Lemma (Lemma 8) and
Proposition 2. The second half of the proof is written with arguments that parallel those
in the proof of Theorem 1 in order to emphasize the generality of their common null-
quotient technique:

Theorem 2 (Repeated). Let n ∈ N such that n ≥ 3. A qualitative probability space
(A�⊇��) satisfies monotone continuity and n-AS if and only if it has representation
μ ∈Mσ

n-AS(A). In this case, (A�⊇��) has no other σ-measure representation.

Proof. Let n ∈ N such that n ≥ 3. Let (A�⊇��) be a qualitative probability space and
let (A∗�⊇∗��∗) be its null-quotient. Let ∪∗, ∩∗, and ¬∗ denote, respectively, supremum,
infimum, and complement for (A∗�⊇∗). Let ∅∗ denote its minimum, and for each pair
[A]� [B] ∈ A∗, let [A] \∗ [B] denote [A] ∩∗ (¬∗[B]).

(⇐) Assume (A�⊇��) has representation μ ∈ Mσ
n-AS(A). By Theorem V1, we have

that (A�⊇��) satisfies monotone continuity, so by the Null-Quotient Lemma (Lemma 8),
(A∗�⊇∗��∗) is an idealized space.

Define μ∗ : A∗ → [0�1] such that for each A ∈ A, μ∗([A]) = μ(A); as μ is a represen-
tation of (A�⊇��), thus by the Null-Quotient Lemma (Lemma 8), this is well-defined.
By the Null-Quotient Lemma (Lemma 8), μ∗ ∈ Mσ(A∗) and μ∗ represents (A∗�⊇∗��∗).
It is straightforward to show that A• = A•|μ and (A∗)• = (A∗)•|μ∗

.
We claim that μ∗ ∈ Mσ

n-AS(A
∗). Indeed, let [α] ∈ (A∗)•|μ∗ = (A∗)•. By the Null-

Quotient Lemma (Lemma 8), α ∈ A• = A•|μ. Since μ ∈ Mσ
n-AS(A), thus by Theorem H,

there are I ⊆N and pairwise-disjoint {Bi}i∈I ⊆ A such that

(i) for each i ∈ I, μ∗([α]) = μ(α) > μ(Bi)= μ∗([Bi]); and

(ii) μ∗(
⋃∗[Bi])= μ∗([⋃Bi]) = μ(

⋃
Bi) ≥ nμ(α)= nμ∗([α]).

By Theorem H, for each pair i� j ∈ I, [Bi] ∩∗ [Bj] = [Bi ∩ Bj] = [∅] = ∅∗, so {[Bi]}i∈I is
pairwise-disjoint. Since [α] ∈ (A∗)•|μ∗

was arbitrary, thus μ∗ ∈Mσ
n-AS(A

∗), as desired.
To conclude, let α ∈ A•. By the Null-Quotient Lemma (Lemma 8), [α] ∈ (A∗)• =

(A∗)•|μ∗
. Define

[
A∗] ≡ [S] ∖∗

(⋃∗{[
α′] ∈ (

A∗)•|μ∗ |μ∗([α′]) ≥ μ∗([α])})�
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Since (A∗�⊇∗��∗) is an idealized space, this is well-defined. Since μ∗ ∈ Mσ
n-AS(A

∗), thus

μ∗([A∗]) ≥ nμ∗([α]). Since (A∗�⊇∗��∗) is an idealized space, it is straightforward to de-

velop cardinal analogues of the greedy transforms, the 1-Division Lemma (Lemma 12),

and the Greedy Removal Lemma (Lemma 13); we omit the formal statements and their

proofs, which are simpler than the included proofs for their ordinal analogues. Since

μ∗ ∈ Mσ
n-AS(A

∗), if we begin with [A∗] as parent and iteratively apply these cardinal

greedy transforms to target μ∗([α]), we construct pairwise-disjoint {[G1]� [G2]� � � � � [Gn]}
such that for each j ∈ {1�2� � � � � n}, [Gj] ⊆ [A∗] and μ∗([Gj]) = μ∗([α]). It is straightfor-

ward to use Theorem V2 to write each Gj as a countable union
⋃∗

Ij
[Bi] of subevents

of [A∗] that each have smaller measure than [α], and to do so such that I1� I2� � � � � In

partition their union I ⊆N. By Theorem H,

(i) for each i ∈ I, μ(α) = μ∗([α]) > μ∗([Bi])= μ(Bi); and

(ii) for each j ∈ {1�2� � � � � n}, μ(
⋃

Ij
Bi) = μ∗([⋃Ij

Bi]) = μ∗(
⋃∗

Ij
[Bi]) = μ∗([Gj]) =

μ∗([α])= μ(α).

By Theorem H, for each pair i� j ∈ I, [Bi ∩Bj] = [Bi] ∩∗ [Bj] =∅∗ = [∅], so μ(Bi ∩Bj) = 0.

Define N ∈A by

N ≡
⋃

i�j∈I|i �=j

(Bi ∩Bj)�

As I is countable, thus μ(N) = 0. For each i ∈ N, define B′
i ≡ Bi \N ; then μ(B′

i) = μ(Bi).

By construction, {B′
i}i∈I is pairwise-disjoint. Since μ is a representation, thus

(i) for each i ∈ I, α � Bi ∼ B′
i; and

(ii) for each j ∈ {1�2� � � � � n},
⋃

Ij
B′
i ∼

⋃
Ij
Bi ∼ α.

As α ∈ A• was arbitrary, thus (A�⊇��) satisfies n-AS, as desired.

(⇒) Assume (A�⊇��) satisfies monotone continuity and n-AS. By the Null-Quotient

Lemma (Lemma 8), (A∗�⊇∗� �∗) is an idealized space satisfying n-AS, so by Proposi-

tion 2, it has representation μ∗ ∈ Mσ
n-AS(A

∗); it is straightforward to show that (A∗)• =
(A∗)•|μ∗

. Define μ : A → [0�1] such that for each A ∈ A, μ(A) = μ∗([A]). By the Null-

Quotient Lemma (Lemma 8), μ ∈Mσ(A) and μ represents (A�⊇��); it is straightforward

to show that A• = A•|μ.

We claim that μ ∈ Mσ
n-AS(A). Indeed, the earlier argument from the proof of Propo-

sition 2 suffices.

For uniqueness, let μ′ ∈ Mσ be a representation of (A�⊇��), and define μ∗′ :
A∗ → [0�1] such that for each A ∈ A, μ∗′([A]) = μ′(A); as μ′ is a representation of

(A�⊇��), thus by the Null-Quotient Lemma (Lemma 8), this is well-defined. By the

Null-Quotient Lemma (Lemma 8), μ∗′ ∈ Mσ(A∗) and μ∗′ represents (A∗�⊇∗��∗). By

Proposition 2, μ∗ is the unique such σ-measure, so μ∗′ = μ∗ and thus μ′ = μ.
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