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An N-person war of attrition with the possibility of a
noncompromising type

Shinsuke Kambe
Faculty of Economics, Gakushuin University

This paper studies an N-person war of attrition that needs one exit for its ending.
An N-person war of attrition is qualitatively different from its two-person version.
Only in the former, may the set of players who are actively engaged in a war of at-
trition change over time. We introduce the possibility of a noncompromising type
and characterize the unique equilibrium by identifying which players are actively
involved in a war of attrition at each moment. We examine who is likely to exit
and when the war of attrition ends quickly. As the leading example, we study how
a group selects a volunteer in a dynamic setting.
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1. Introduction

This paper studies an N-person war of attrition that needs one exit for its ending. We
introduce the possibility of a noncompromising type and show that the equilibrium is
unique. When there are more than two players, a war of attrition becomes qualitatively
different from the one with only two players. We say that a player is actively engaged in a
war of attrition when he exits with a positive rate. When there are only two players and a
war of attrition occurs, both players are actively engaged from beginning to end. When
there are more than two players, at least two players need to be actively engaged in a war
of attrition, but some may simply wait. Due to this possibility of inactive participation,
in a war of attrition with more than two players, we need to identify those who are ac-
tively engaged at each moment. This issue in an N-person war of attrition has not been
adequately studied even though inactive participation is often observed in real wars of
attrition and it substantially affects outcomes. Our eventual goal is to examine who is
likely to exit and when a war of attrition ends quickly.

As the leading example, we study how a group chooses a volunteer in a dynamic
setting. There are many instances of this nature, such as former classmates soliciting
the coordinator of their reunion party, an industry group choosing a company to lobby
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the government, and so on. Our analysis is applicable as long as (i) only one exit is
needed and (ii) the benefits that players receive at the ending are independent of who
exits (though the player who exits has to bear costs to obtain the benefit).

Consider a group that needs one of its members (hereafter players) to take an ini-
tiative role for a project. It convenes a meeting and solicits a single volunteer. In this
example, exiting a war of attrition is achieved by volunteering. Any player can perform
the initiative role equally well. Although the project is valuable to all players, taking the
initiative role is costly. Each player prefers that someone else takes the initiative role,
which may cause a war of attrition in the selection of a volunteer. We assume that there
is a chance that each player is unable to take the initiative role for a private reason, such
as illness of a close relative. This type of player is called the noncompromising type.
Thus, there is a chance that the other players may not volunteer. In such a situation, a
player who is capable of taking the initiative role wants to do so by himself. Even when a
player is the noncompromising type, he cannot prove it to the other players. Hence, the
players have to guess whether the lack of a volunteer occurs because of strategic waiting
or because of inability.

At any moment in equilibrium, even when a player is capable of the initiative role,
he does not volunteer with probability 1 (except for possibly just one player in the be-
ginning). If he were supposed to do so, the deviation would bring about a favorable
consequence because not volunteering would prove that he is the noncompromising
type and would cause the other players to choose a volunteer among themselves. Thus,
the players who are able to take the initiative role randomize the timing to volunteer
over some interval, which is a war of attrition. Because some players need to volun-
teer with positive rates during a war of attrition, and there is a chance that each player
is the noncompromising type and never volunteers, a war of attrition cannot continue
forever. Over some finite time period, all those who can take the initiative role volunteer.
Because of this property, the equilibrium is unique and can be constructed backward in
time.

When there are two players, both players are actively engaged in a war of attrition.
They volunteer with positive rates until the end. When there are more than two players,
only a subset of players need to volunteer with positive rates at each moment. Some
players may be passive participants at the beginning of a meeting and, after some time,
become actively engaged in a war of attrition. Even when some players exhaust the
possibility of volunteering, that is, never volunteering after some time, other players
may continue a war of attrition. Note that these types of inactive participation cannot
occur in the two-person model of a war of attrition.

Because of the possibility of inactive participation, we first need to identify the set
of players who are actively engaged in a war of attrition at each moment. Then, using
the result, we characterize the identity of the volunteer. We show that the player who is
less patient, whose cost of taking the initiative role is lower, and whose net gain from the
project is higher tends to volunteer more quickly. We also study the speed of selection
and show that the combined rate of volunteering weakly declines over time. When a
new player joins the group and even when his characteristics are such that he is likely
to be a passive participant at the beginning of a meeting, the chance that a volunteer
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comes forward at the beginning will increase. This property can then be used to obtain
the lower bound for the probability that the selection is concluded quickly.

The war of attrition was first studied by Maynard Smith (1974) in the field of biology.
It arises when there is more than one alternative, and there is a conflict among play-
ers as to which alternative should be chosen and when the players can only concede
the right to choose to the others but cannot force their choice on the other players. It
captures the essence of many realistic negotiations and is widely applied in economic
analyses. (See Bliss and Nalebuff (1984) for an early example.) One of the theoretical dif-
ficulties in using the original model of a war of attrition is the multiplicity of equilibria.1

Based on the idea developed by Kreps et al. (1982), some researchers have introduced
the possibility of irrational types, showing that the equilibrium becomes unique in the
modified models. See Abreu and Gul (2000), Kambe (1999), and Kornhauser et al. (1989)
among others. These analyses have shown that the uniqueness of the equilibrium can
be obtained once we introduce sufficient structures into the original model. The current
paper follows this line of research. It introduces the possibility that a player is unable to
volunteer so as to identify a unique equilibrium. The major difference from the previ-
ous literature is the possibility of more than two players.2 Only in an N-person war of
attrition can we investigate how the set of active players changes over time and how the
number of players affects the probability of a quick exit.

The remainder of the paper is organized as follows. Section 2 defines the model. In
Section 3, we characterize the unique equilibrium and then apply the findings to the
example of either two or three players. In Section 4, we further study the property of
the equilibrium under a natural assumption. Section 5 concludes. All the proofs are
relegated to the Appendix. (The proofs for Lemma 1 and Proposition 2 are omitted as
they are obvious from the preceding analyses.)

2. Model

There are N players, where N ≥ 2. The set of players is given by I ≡ {1� � � � �N}, and a
typical player is indexed by a lowercase letter, such as i, j, k, or �. There is one project,
and the players need to choose one player for the initiative role. They convene a meeting
and solicit a volunteer.

1The equilibrium outcome may be unique when the situation is not stationary. For this, see Hendricks
et al. (1988) for a general treatment.

2Bulow and Klemperer (1999) also study a war of attrition with multiple players. Unlike our model, they
analyze a model in which more than one exit may be needed before a war of attrition ends. By using the
knowledge developed in auction theory, they study who endures a war of attrition. Because they do not
introduce the possibility of the noncompromising type and instead introduce a distribution over the val-
uations, their model predicts that all the remaining players have positive probabilities of concession in a
war of attrition, and the timing to exit is determined by the player’s valuation. Our model shows that the
possibility of the noncompromising type also plays a big role in determining the outcome in a war of at-
trition. Moreover, our model can explain the possibility of inactive participation and changes in the set of
active players in a war of attrition. Our model focuses on the selection of one volunteer. It is interesting to
see what happens in our model when the number of required exits is more than 1 as is supposed by their
model.
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Player i’s value of the project is publicly known and is given by Vi. Each player is
equally effective at the initiative role; this valuation is the same no matter who volun-
teers. In contrast, the cost of taking the initiative role for the project is variable and
privately known. Either when his private circumstance prevents him from taking the
initiative role or when player i needs to spend substantial time to acquire the necessary
expertise and is not immediately ready for the current project, the cost is infinitely large.
This type of player is called the noncompromising type. It occurs with probability zi.
When player i is able to take the initiative role, the cost is given by ci. It occurs with
probability 1 − zi. This value itself is publicly known, although whether the cost is finite
or not is private information. We assume that 0 < ci < Vi for any i ∈ I. The latter type
of player is called a low-cost type. Player i discounts the future payoff by the discount
rate ri (> 0), which is publicly known. When some other player volunteers at time t, the
payoff of player i is e−ritVi irrespective of his type. When player i volunteers at time t, his
payoff is e−rit (Vi − c̃i), where c̃i is positive infinity for the noncompromising type and is
ci for the low-cost type. When there is no volunteer in a finite time, the payoff of every
player is zero. This implies that the optimal strategy for the noncompromising type is
not to volunteer. In the following analysis, when we consider the strategy of a player, we
focus on that of the low-cost type.

The game proceeds in continuous time with an infinite time horizon. At each mo-
ment, any player can come forward as a volunteer.3 Once a player volunteers, the meet-
ing ends. The one who volunteers takes the initiative role for the project. When two
or more players simultaneously volunteer, one player among them is randomly chosen
with equal probability to take the initiative role.

Each player chooses a mixed strategy for the timing of volunteering. Let ai(t) be the
(instantaneous) rate of volunteering by player i at time t. We assume that limε↓0 ai(t − ε)

is well defined and limε↓0 ai(t + ε) = ai(t). For a technical reason, we assume that ai(t)
is discontinuous at countable points at most. A player may volunteer with a probability
mass at some occasion. (We show that this may occur at time 0, but not at any other
time.) In the following analysis, we treat volunteering with a probability mass at a par-
ticular time separately from volunteering with (instantaneous) rates during an interval.
Note that a positive probability mass of volunteering means that the chance of volun-
teering is concentrated at some instance: no matter how short the interval, the prob-
ability of volunteering is bounded from below by a positive value. We use the perfect
Bayesian equilibrium as our equilibrium concept.

In the following analysis, it is convenient to categorize the players at each moment
based on their behavior strategies. We say that player i is actively engaged in a war of
attrition, or simply is active, at time t when he is volunteering at a positive rate during
the period (t� t + ε) for any ε > 0:

∫ t+ε
t ai(τ)dτ > 0 for any ε > 0. Let At be the set of

active players at time t. We define a war of attrition to be the situation in which at least

3We are considering the situation in which the chance of volunteering is frequent and no player can
commit himself not to volunteer. Even when the players take turns to decide whether to volunteer or not in
a prespecified ordering, the current model is a good approximation as long as every player is given frequent
chances to volunteer during any interval. This becomes obvious when we derive the rate of volunteering in
the following analysis.
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one player is active. We say that a player is a passive participant, or simply is passive, at
time t when he has no probability of volunteering during the period (t� t + ε) for some
ε > 0, but has a positive probability of volunteering during some later period. Let Bt be
the set of passive players. Alternatively, we can say that Bt = {⋃τ>t Aτ}/At . (The solidus
(/) indicates the subtraction of the elements in its right term from its left term.) When a
player becomes no longer active at time t and does not have any chance of volunteering
after time t, we say that the player exhausts the possibility of volunteering at time t. Let
Ct be the set of players who have exhausted the possibility of volunteering by time t

and let Dt be the set of players who exhaust the possibility of volunteering exactly at
time t. Formally, we define Ct and Dt as Ct ≡ I/{⋃τ≥t Aτ} and Dt ≡ limε↓0(Ct/Ct−ε). We
call the combination of passive participants at time t and those who have exhausted the
possibility of volunteering by time t inactive players at time t. The set of inactive players
at time t is given by Bt ∪Ct . We define the set of players who are active both at time t and
just before it as Et : Et ≡ {limε↓0 At−ε} ∩At . In the following analysis, t− (or t+) indicates
that we take the limit of τ converging to t from below (or from above, respectively). For
example, we write Dt ≡ Ct/Ct− and Et ≡ At− ∩At .

3. The unique equilibrium

This section derives the unique equilibrium for an N-person war of attrition with the
possibility of a noncompromising type. The first subsection studies the general prop-
erties of an N-person war of attrition without assuming that there is the possibility of
the noncompromising type. It shows that the combined rate of volunteering has to sat-
isfy certain conditions in any N-person war of attrition. The second part of this section
studies the equilibrium given the possibility of the noncompromising type. It investi-
gates which players are actively engaged in a war of attrition at each moment, charac-
terizing the unique equilibrium path. Theoretically, this is our main contribution. The
third subsection applies the results of the first two subsections to the example of either
two or three players.

3.1 General properties of an N-person war of attrition

In this subsection, we suppose that a war of attrition occurs and investigate the proper-
ties along the equilibrium path. This subsection does not use the assumption that the
noncompromising type exists with positive probabilities: zi ≥ 0 for any i ∈ I in this sub-
section. The results obtained in this subsection generally hold in the N-person war of
attrition that needs one exit for its ending, and the benefits that players receive at the
ending are independent of who exits.

The low-cost type waits in a war of attrition because he hopes that some other player
volunteers during waiting. Hence, the number of active players cannot be 1. Moreover,
there is no interval in which there is no possibility of volunteering but after which there
is a positive probability of volunteering. (If there were such an interval, the low-cost type
who planned to volunteer with a positive probability after the interval would be better
off by volunteering before the interval, which would upset the supposition.)
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There cannot be a positive probability mass of volunteering except in the beginning.
To understand why, let us suppose to the contrary. Suppose that a player volunteers
with a positive probability at time t (> 0). Then the other players would want to wait
near time t. This would create a period during which the number of active players is
less than 2. Because there cannot be such a period during a war of attrition, this is a
contradiction. Hence, there should not be a positive probability mass of volunteering
after time 0. At time 0, a player may volunteer with a positive probability mass, which
we call initial volunteering. It is carried out by at most one player. (Otherwise, a player
who was supposed to volunteer initially would wait for a moment to see whether the
others would do so.)

These properties are well known for wars of attrition in continuous time. For the
purpose of completeness, I summarize them in the next lemma.

Lemma 1. At most one player volunteers initially with a positive probability mass. After
time 0, the following properties hold.

(i) The number of active players cannot be 1.

(ii) Volunteering never occurs with a positive probability mass.

(iii) There is no interval in which there is no possibility of volunteering but after which
there is a positive probability of volunteering.

Let Pi(t) denote the ex ante probability that player i does not volunteer by time
t (given that no other player does so before this time). Because Pi(t) is weakly de-
creasing, it is differentiable almost everywhere. Its derivative at time t is denoted by
ai(t). It gives player i’s (instantaneous) rate of volunteering at time t. Lemma 1 shows
that no player volunteers with a positive probability mass after time 0. This implies
that Pi(t) is continuous after time 0. Hence, by integrating the rate of volunteering,
we can compute the ex ante probability that player i does not volunteer by time τ as
Pi(τ) = Pi(t)exp{− ∫ τ

s=t ai(s)ds} when 0 < t < τ. In particular, when the rate of volun-
teering is constant and given by α during the interval [t� τ), Pi(τ) = Pi(t)e

−α(τ−t) holds.
Because the noncompromising type never volunteers, we obtain Pi(t) ≥ zi.

During a war of attrition, the players’ rates of volunteering need to take specific val-
ues so that active players are indifferent between volunteering and waiting. Let bi be the
sum of the rates of volunteering by the other players given which player i feels indifferent
between volunteering and waiting. Let us compute bi by comparing the two strategies
of player i: immediate volunteering and a short wait before volunteering. (Please note
that, as explained in the previous section, we focus on the strategy of the low-cost type.
For simplicity, we often omit the reference to the low-cost type hereafter. That is, when
we say player i, we actually mean the low-cost type of player i.) When player i volun-
teers immediately, he obtains the current payoff of Vi − ci. Alternatively, when he waits
for the small interval of � and volunteers, there is a chance that one of the other players
volunteers during this period. Because this occurs at rate bi, the probability that none
of the other players volunteers during the waiting period is given by e−bi�. Taking into
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account the discounting, we can compute his current discounted payoff from the latter
strategy to be

∫ �
τ=0 bie

−biτe−riτVi dτ + e−bi�e−ri�(Vi − ci). Then the following equation
characterizes bi:

Vi − ci =
∫ �

τ=0
bie

−biτe−riτVi dτ + e−bi�e−ri�(Vi − ci)�

Rearranging the terms in the above equation, we obtain (1 − e−bi�e−ri�)(Vi − ci) =∫ �
τ=0 bie

−biτe−riτVi dτ. By dividing both sides by �, setting � to 0, and using L’Hospital’s
theorem, we can show that (ri + bi)(Vi − ci) = biVi. Solving this equation with respect to
bi, we obtain

bi = ri(Vi − ci)

ci
�

As bi is the rate at which player i feels indifferent between waiting and immediately vol-
unteering, we refer to bi as the threshold rate of (the low-cost type of) player i. Note that
bi is defined only by the intrinsic parameters of player i and is independent of time. This
contrasts with player i’s rate of volunteering ai(t), which may change over time. As we
show shortly, the equilibrium behavior of player i is characterized by the combination
of his threshold rate bi and his probability to be the noncompromising type zi. Without
loss of generality, we assume that bi is weakly decreasing in i throughout this paper.

Assumption B. We assume that bi ≥ bj for any i < j.

This assumption states that a player with a lower index has a weakly higher thresh-
old rate and thus is indifferent between volunteering and waiting given a weakly higher
combined rate of volunteering by the other players. This tends to force him to volunteer
earlier during a war of attrition, which we show later to be true.

The rest of this subsection derives the necessary conditions for the combined rate of
volunteering

∑
j∈I aj(t) and its relationship with the threshold rates of players in various

statuses.
First, let us study the combined rates of volunteering itself.
By the definition of bi, for any i ∈ At , it holds that

∑
j 	=i aj(t) = bi. By summing this

equation over the set of active players and noting that aj(t) = 0 for any j /∈At , we obtain∑
i∈At

bi = ∑
i∈At

∑
j 	=i aj(t) = (|At | − 1)

∑
j∈I aj(t). Hence, we obtain

∑
j∈I

aj(t) =
∑

At
bi

|At | − 1
� (1)

This shows that the combined rate of volunteering is determined by the threshold rates
of active players. Because ai(t) = ∑

I aj(t)−∑
j 	=i aj(t) and

∑
j 	=i aj(t) = bi for any i ∈ At ,

the above equation implies that

ai(t) =
∑

At
bj

|At | − 1
− bi for ∀i ∈At� (2)
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Player i’s rate of volunteering is also determined by the threshold rates of active play-
ers.

Equation (1) implies that the combined rate of volunteering changes only when the
set of active players changes. It occurs either when all the active players remain active
and some passive player becomes active or when some active player stops volunteering.
(By Lemma 1, we do not have to consider the case in which no player is active before time
t and some player becomes active at time t.) We want to claim that the combined rate of
volunteering strictly decreases in either case. Consider the first case. Let player i be the
one who is passive before time t and becomes active at time t: i ∈ At/At−. Because he
is willing to wait until time t, by the definition of bi, the combined rate of volunteering
just before time t has to be no lower than his threshold rate bi:

∑
j∈I aj(t−) ≥ bi for any

i ∈ At/At−. (Otherwise, he would have preferred not to wait until time t to become

active.) Because
∑

j∈I aj(t−) =
∑

At− bj
|At−|−1 by (1), we obtain

∑
At− bj

|At−|−1 ≥ bi for any i ∈ At/At−.
This inequality generically holds strictly. In the proof, we show that when some players
change their statuses from being passive to being active at time t, at least one player
has to satisfy the above inequality strictly. By (1), the rate of volunteering at time t is

given by
∑

j∈I aj(t) = (
∑

At− bj)+(
∑

At/At− bj)

|At−|+|At/At−|−1 . Because
∑

At− bj
|At−|−1 ≥ bi for any i ∈ At/At− and

it holds strictly for some i ∈ At/At−, it is straightforward to show that the right-hand

side is smaller than
∑

At− bj
|At−|−1 . Using (1), we obtain

∑
j∈I aj(t−) >

∑
j∈I aj(t). Let us now

consider the second case and let player i be the player who stops volunteering at time
t. If there is no active player at time t, the statement obviously holds. Thus, we consider
the case in which there are some active players at time t. Because player i is active before

time t,(2) shows that bi <
∑

At− bj
|At−|−1 . Moreover, the fact that player i stops volunteering at

time t requires that he is not willing to wait at time t. Thus, his threshold rate has to
be no higher than the combined rate of volunteering:

∑
j∈I aj(t) ≤ bi. Using (1), we can

show that
∑

j∈I aj(t) <
∑

j∈I aj(t−). Combining the analyses of this paragraph, we can
conclude that the combined rate of volunteering never increases over time, and when
the set of active players changes, it strictly decreases.

Next, we study the relationship between the combined rate of volunteering and the
threshold rates of players in various statuses.

When player i is active, his rate of volunteering has to be positive: ai(t) > 0. Equa-

tions (1) and (2) imply that
∑

j∈I aj(t) =
∑

At
bj

|At |−1 > bi for any i ∈ At . This shows that the
combined rate of volunteering has to be higher than his threshold rate.

If player i is passive (i ∈ Bt ), he needs an incentive to wait. Because the combined
rate of volunteering is weakly decreasing, waiting for a short period should be preferable
to immediately volunteering. Hence, the sum of the rates of volunteering by the other
players has to be no lower than bi:

∑
j 	=i aj(t) ≥ bi. Because ai(t) = 0 for any i ∈ Bt , the

combined rate of volunteering has to be no lower than his threshold rate:
∑

j∈I aj(t) =∑
j 	=i aj(t) ≥ bi for any i ∈ Bt .

If player i exhausts the possibility of volunteering at time t, he does not want to delay
his volunteering at time t. Thus, the sum of the rates of volunteering by the other players
at time t has to be no higher than bi:

∑
j 	=i aj(t) ≤ bi. (Otherwise, player i wants to ex-

ploit the higher combined rate of volunteering by delaying the volunteering near time t,
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thus postponing the exhaustion.) Because ai(t) = 0 for any i ∈ Dt , the combined rate of
volunteering has to be no greater than his threshold rate:

∑
j∈I aj(t) = ∑

j 	=i aj(t) ≤ bi for
any i ∈Dt .

The next lemma summarizes these findings.

Lemma 2. The combined rate of volunteering
∑

j∈I aj(t), as well as player i’s rate of vol-

unteering, is determined by the threshold rates of active players:
∑

j∈I aj(t) =
∑

At
bi

|At |−1 and

ai(t) =
∑

At
bj

|At |−1 −bi for any i ∈At . The combined rate of volunteering weakly decreases over
time and strictly decreases whenever the set of active players changes: for any s and t such
that s < t,

∑
As

ai(s) ≥ ∑
At

ai(t) and
∑

As
ai(s) >

∑
At

ai(t) if As 	=At .
Moreover, at time t, the combined rate of volunteering has to satisfy the following con-

ditions.

(i) For any active player, it has to be higher than his threshold rate:
∑

j∈I aj(t) >
bi for ∀i ∈At .

(ii) For any passive player, it has to be no lower than his threshold rate:
∑

j∈I aj(t) ≥
bi for ∀i ∈ Bt .

(iii) For any player who exhausts the possibility of volunteering exactly at time t (> 0),
it has to be no higher than his threshold rate:

∑
j∈I aj(t) ≤ bi for ∀i ∈Dt .

This lemma plays a crucial role in determining the set of active players in the next
subsection.

Before closing this subsection, we perform comparative statics with respect to the
rates of volunteering, which can be directly derived from the above lemma.

When player i is active at time t, (2) shows that ai(t) = ∑
At

ai(t) − bi. When both
players i and j are active at time t and player i has the higher threshold rate (bi > bj), then
player i has the lower rate of volunteering (ai(t) < aj(t)). Thus, among active players, the
player with a lower index tends to volunteer with a lower rate.

When player i is active at two different points in time, Lemma 2 in addition to (2)
implies that his rate of volunteering never increases, and when the set of active players
changes, it strictly decreases.

Corollary. Let ai(t) be the rate of volunteering by player i at time t.

(i) Suppose that both players i and j are active at time t and i < j. Then ai(t) ≤ aj(t)

holds. The strict inequality holds if and only if bi > bj .

(ii) Suppose that player i is active both at time s and at time t (> s). Then ai(s) ≥ ai(t)

holds. Moreover, if As 	= At , ai(s) > ai(t) holds.

3.2 The possibility of the noncompromising type and the unique equilibrium path

Throughout this subsection, we assume that the probability of the noncompromising
type is positive for every player: zi > 0 for any i ∈ I. Abreu and Gul (2000) studied the
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possibility of the noncompromising type in a two-person war of attrition and showed
that the equilibrium is unique. This subsection is its extension to the N-person case,
though the nature of the equilibrium changes substantially as shown shortly.

When there is a possibility that each player is the noncompromising type, the game
cannot end by the initial volunteering with probability 1. If the game does not end at
time 0, Lemma 1 shows that no player volunteers with a positive probability mass af-
terward. Thus, the players randomize their timing of volunteering over time, which is
a war of attrition. For a war of attrition to continue, active players need to volunteer
at a positive combined rate so that the required condition in Lemma 2 is satisfied for
each of these active players. This rate is higher than a certain positive number. Because
there is the possibility of the noncompromising type, by some time T , any low-cost type
volunteers for sure. At that time, any remaining player exhausts the possibility of volun-
teering. These properties, which hold for a two-person war of attrition, are carried over
to an N-person war of attrition.

Lemma 3. A war of attrition occurs with a positive probability. There exists time T by
which time any low-cost type volunteers for sure and, consequently, any player exhausts
the possibility of volunteering.

The combination of Lemma 1 and this lemma implies that, when there are only two
players, both are active from time 0 and they exhaust the possibility of volunteering at
the same time. In contrast, when there are more than two players, identifying the set
of active players is essential in deriving the equilibrium path. By using the properties
derived in the previous subsection, this subsection constructs it through backward in-
duction.

As the first step toward constructing the equilibrium path, we consider the moment
when an active player reduces the rate of volunteering to zero. Suppose that player i does
so. Then the total rate of volunteering by the other players just after that time cannot be
higher than bi:

∑
j 	=i aj(t) ≤ bi. (Otherwise, player i would not volunteer with a positive

rate just before time t.) Using (1), we can rewrite the above inequality as
∑

At
bj

|At |−1 ≤ bi.
To understand what happens at that point, let us consider the generic case in which
the strict inequality above holds. (The equality case can be treated in a similar way.)
Because the combined rate of volunteering is weakly decreasing, the strict inequality
implies that the low-cost type of player i would want to volunteer immediately at time t if
he still remains in a war of attrition. Because volunteering does not occur with a positive
probability mass after time 0, the low-cost type of player i should have volunteered for
sure by time t. This means that player i exhausts the possibility of volunteering at that
time. Note that this property implies that once a player becomes active, he remains
active until he exhausts the possibility of volunteering. It also implies that when there is
the possibility of the noncompromising type, exhausting the possibility of volunteering
(i.e., never being active) is equivalent to having no chance to be the low-cost type. We
use these terms interchangeably from here on.

Because
∑

j 	=i aj(t) < bi and ai(t) = 0,
∑

I aj(t) < bi ≤ bk holds for any k < i. Hence,
we obtain

∑
j 	=k aj(t) < bk. The low-cost type of player k would want to volunteer im-

mediately at time t if he had not done so by that time. This implies that player k should
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exhaust the possibility of volunteering at least by time t. That is, when a player ex-
hausts the possibility of volunteering, any player whose threshold rate is no lower ex-
hausts the possibility of volunteering at least by that time. Because of this, we can par-
tition players in a neat way based on their statuses at each moment. Specifically, if k
is the highest index among those who exhaust the possibility of volunteering at time t

and k′ is the lowest among those, we obtain Ct− = {1� � � � �k′ − 1}, Dt = {k′� � � � �k}, and
At ∪Bt = {k+ 1� � � � �N}.

When player i exhausts the possibility of volunteering at time t, Lemma 2 shows that
the combined rate of volunteering is not higher than bi. Just before time t, player i is
active and thus Lemma 2 shows that the combined rate of volunteering has to be higher

than bi. Hence, either there is no active player left at time t or it holds that
∑

At
bj

|At |−1 ≤
bi <

∑
At− bj

|At−|−1 . We claim that for the latter condition to be satisfied, some player who has
waited by then needs to start volunteering with a positive rate at time t. Because any
player whose index is smaller than i has exhausted the possibility of volunteering by
time t, the one who joins the set of active players at time t has an index higher than i. To
understand the claim intuitively, let us suppose that only player i exhausts the possibility
of volunteering at time t and no player becomes active at time t: At = At−/{i}. Because

bi <

∑
At− bj

|At−|−1 , a simple computation gives us bi <

∑
At−/{bi} bj|At−|−2 =

∑
At

bj
|At |−1 . This contradicts

the above inequality, which proves that an additional player should become active at
time t. By similar argument, even when more than one player exhausts the possibility of
volunteering at time t, we can show that the required condition in Lemma 2 cannot be
satisfied if no player becomes active at time t. Therefore, some player needs to become
active at time t.

The next lemma summarizes these properties about how a set of active players
changes along the equilibrium path.

Lemma 4. Suppose that, at time t, player i reduces the rate of volunteering to 0 and that
there are some players who still have the possibility of the noncompromising type: Pi(t) >

zi for some i ∈ I. Then the following properties hold.

(i) The low-cost type of player i volunteers for sure by time t, and thus he exhausts the
possibility of volunteering at time t. For any k < i, player k exhausts the possibility
of volunteering at least by time t: i ∈Dt and k ∈ Ct for any k< i.

(ii) At least one passive player whose index is higher than i becomes active at time t:
k ∈At and k /∈Et for some k> i.

Lemma 4 implies that the set of active players changes either when all the players ex-
haust the possibility of volunteering or when some player becomes active. The key step
in the construction of the unique equilibrium path is to find out whether some player
exhausts the possibility of volunteering on these occasions and if so, who does. Let us
say the set of active players changes at time t and let Dt be the set of the players who
exhaust the possibility of volunteering at time t. We are interested in the characteriza-
tion of Dt , given the set of continuously active players, Et . Note that Et may be empty as
when the last remaining players exhaust the possibility of volunteering.
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Suppose that the set of active players changes at time t. Let Ct denote the largest
index among the players who have exhausted the possibility of volunteering by time t:

Ct = maxj∈Ct j. If
∑Ct

j=k bj+
∑

Et
bj

Ct−k+|Et | −bk ≤ 0 for any k ∈ {1� � � � �Ct}, we say that m(Ct�Et) does

not exist. Otherwise, we define the index m(Ct�Et) to be the smallest one that satisfies

the following inequality with respect to k:
∑Ct

j=k bj+
∑

Et
bj

Ct−k+|Et | − bk > 0. It can be shown that

the above inequality holds for any k ∈ {m(Ct�Et)� � � � �Ct} while
∑Ct

j=k bj+
∑

Et
bj

Ct−k+|Et | −bk ≤ 0 for

any k<m(Ct�Et). (See Lemma A.1 in the Appendix for the proof.) We want to claim that
all the players whose index is between m(Ct�Et) and Ct exhaust the possibility of volun-
teering at time t: Dt = {m(Ct�Et)� � � � �Ct}. When m(Ct�Et) does not exist, no player
does: Dt = ∅. Lemma 4 shows that Dt = {k� � � � �Ct} for some k ≤ Ct unless Dt = ∅. By
definition, the set of active players just before time t is the combination of those who
exhaust the possibility of volunteering exactly at time t and those who are active both at

time t and just before it: At− =Dt ∪Et . Lemma 2 shows that
∑

At− bj
|At−|−1 > bi for any i ∈At−.

Hence, we know that k cannot be smaller than m(Ct�Et) because it would violate this
inequality. What we are claiming here is that the reverse is true in some sense: the set Dt

contains all the players as long as this inequality is satisfied. To understand this, suppose
to the contrary and assume that k were bigger than m(Ct�Et). By supposition, it would

hold that
∑

At− bj
|At−|−1 > bk−1. Lemma 4 implies that player k− 1 should have exhausted the

possibility of volunteering before time t, say at time s, and no player would exhaust the
possibility of volunteering between time s and time t. Thus, the set of active players at
time s was a subset of At−. Because the threshold rates of the players in At− are no

higher than that of player k − 1, the above inequality implies that
∑

As
bj

|As|−1 > bk−1. (We
prove this claim in Lemma A.1.) This contradicts Lemma 2 as player k− 1 was supposed
to exhaust the possibility of volunteering at time s. Using this logic, the next lemma
characterizes the set of the players who exhaust the possibility of volunteering at time t.

Lemma 5. Take time t and suppose that, at that time, either at least one player becomes
active or the last remaining low-cost types exhaust the possibility of volunteering.

If m(Ct�Et) (≤ Ct ) exists, then the players with the indexes in {m(Ct�Et)� � � � �Ct} have
to exhaust the possibility of volunteering at time t: Dt = {m(Ct�Et)� � � � �Ct}. Otherwise,
there is no player who exhausts the possibility of volunteering at time t: Dt = ∅.

Suppose that the set of active players changes at time t. Then this lemma can identify
the set of active players just before time t given the set of continuously active players at
time t. This enables us to construct the equilibrium path backward in time. Choose T

provisionally as a large number. This is the time at which the last players exhaust the
possibility of volunteering.

At t = T , we have CT = I and ET = ∅. Let m(CT �ET ) be the smallest solution to the

inequalities
∑N

j=k bj
N−k − bk > 0 and

∑N
j=k−1 bj

N−k+1 − bk−1 ≤ 0. The index N − 1 satisfies the first
inequality. Hence, m(CT �ET ) exists and m(CT �ET ) ≤ N − 1 holds. Lemma 5 shows that
just before time T , the set of active players needs to be given by {m(CT �ET )� � � � �N}.
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We now consider the behaviors of the players before time T . Lemma 1 shows that
no player volunteers with a positive probability mass after time 0 and Lemma 4 shows
that an active player remains active until he exhausts the possibility of volunteering. It
implies that a player becomes active at a certain time, and then he keeps randomiz-
ing between waiting and volunteering until he exhausts the possibility of volunteering.
Note that unless a player does the initial volunteering, his ex ante probability of not vol-
unteering by the time when he becomes active is obviously 1. (A player who does the
initial volunteering volunteers with a positive probability at time 0 and, hence, his ex
ante probability of not volunteering by the time slightly after time 0 is reduced by that
probability from 1.) In the following analysis, we see how this occurs for each player by
construction. Given the set of active players, we can compute the rate of volunteering
for each active player by (2). Using this rate backward, we can also compute the ex ante
probability that such a player does not volunteer by each point in time. At some earlier
time t (< T ), this probability reaches 1 for some player. This means that he becomes ac-
tive exactly at this instance. We then apply the procedure in Lemma 5. If m(Ct�Et) does
not exist, Lemma 5 shows that there should be no player who exhausts the possibility of
volunteering at that time. Then we proceed backward in time until we reach the point at
which another player becomes active. Alternatively, if m(Ct�Et) exists, Lemma 5 shows
that At− = {m(Ct�Et)� � � � �Ct} ∪Et . Using the modified set of active players, we go back
further in time. Lemma 4 shows that the set of active players changes before time T only
when a player becomes active. This implies that when we want to see how the set of ac-
tive players changes, we only need to look at the time when some player becomes active.
Note that a war of attrition can be maintained whenever there is more than one player.
Thus, if there is more than one player who either is supposed to exhaust the possibility
of volunteering by time t or is continuously active, we always find two active players just
before time t. If |Ct | + |Et | ≥ 2, the number of active players just before time t is greater
than 1: |At−| ≥ 2.

The process stops at time s when there are not enough players left to maintain a
war of attrition prior to time s: |Cs| + |Es| < 2. If there is one remaining player, let i be
the index of that player. (There can be at most one player whose ex ante probability of
not volunteering by this time does not reach 1. If there were more than one, we could
continue the above process with these players.) Let j be that of the player who becomes
active at time s. (We choose one arbitrarily if there is more than one player who becomes
active at time s.) If there is no remaining player, and thus several players simultaneously
become active at time s, we choose players i and j arbitrarily among them. Then we
redefine T by subtracting s from the original one that we chose provisionally. By this
change, we make player j become active at time 0. This adjustment is necessary because
at most one player does the initial volunteering and also there have to be at least two
active players during a war of attrition as shown in Lemma 1. If the ex ante probability
that player i does not volunteer by just after time 0 is less than 1, i.e., Pi(0+) < 1, its
difference from 1 has to be absorbed by the initial volunteering. In other words, if there
is initial volunteering, it is done by player i and its probability is given by 1 − Pi(0+).

The above argument shows that there is only one way to construct the equilibrium
path, which proves its uniqueness. The construction is based on the local optimality at
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each point in time. It can be shown that the constructed strategies are globally optimal.
The next proposition summarizes the above arguments and shows that the constructed
path forms an equilibrium.

Proposition 1. The equilibrium path is unique and can be constructed as above. In
particular, it takes the following form.

(a) At time 0, at most one player volunteers with a positive probability (initial volun-
teering).

(b) During a war of attrition (0 < t < T ), there are at least two active players and the
following statements hold.

(i) The rate of volunteering by player i is given by ai(t) =
∑

At
bj

|At |−1 −bi for any i ∈At .

(ii) Both active players and passive players have higher indexes (i.e., lower thresh-
old rates) than those who have exhausted the possibility of volunteering, and
the lower end of those who exhaust the possibility of volunteering exactly at
time t is given by the above m(Ct�Et): At ∪Bt = {k+ 1� � � � �N}, Ct = {1� � � � �k},
and Dt = {k′� � � � �k} for some k and k′ such that 1 ≤ k′ ≤ k ≤ N − 2 and
k′ =m(Ct�Et).

(iii) If some player exhausts the possibility of volunteering at time t, some passive
player becomes active: if Dt 	=∅, Et ⊂ At and Et 	= At .

(c) After time T , there is no chance of volunteering.

As this is one of the main findings of the paper, we offer an intuitive explanation. For
the proposition to hold, there are three main factors. The first factor is the possibility
of the noncompromising type, because of which the players exhaust the possibility of
volunteering within a finite time, as shown in Lemma 3. To derive the proposition, we
constructed the equilibrium path backward from the time that the last players do so.
The uniqueness of the equilibrium is critically dependent on this property. The second
factor is the timing of exhaustion. During a war of attrition, Lemma 2 shows that the
threshold rate of a player needs to satisfy a certain condition depending on his status.
Using the findings in Lemma 2, Lemma 4 shows that the players with higher threshold
rates exhaust the possibility of volunteering no later than those with lower ones. This
gives us the ordering structure as to when each player ceases to be active. The third
factor is the characterization of the set of active players at each moment. Note that any
low-cost type wants to be active at some point because the other players may be the
noncompromising type. To answer when he should be active, Lemma 5 proves that the
set of active players just before the set of active players changes is uniquely related to the
set of continuously active players just after it. Following the equilibrium path backward
in time enables us to uniquely identify the set of active players at each moment. The
combination of these three factors gives us the above proposition.
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Figure 1. Two players.

3.3 An example: Two or three players

We apply the findings of the previous two subsections to the example of either two or
three players and demonstrate how the players behave in equilibrium.4

For this subsection, we suppose that bi is strictly decreasing in i and that zi is positive
and weakly increasing in i: b1 > b2 > b3 and 0 < z1 ≤ z2 ≤ z3. (We discuss the meaning of
the latter assumption in the next section.)

3.3.1 Two players When there are only two players, they exhaust the possibility of vol-
unteering at the same time. Let that time be T . Before time T , both players are active.
Based on the analysis in Section 3.1, we know that player 1 volunteers at the constant
rate a1(t) = b2 and player 2 does so at the constant rate a2(t) = b1. That is, we obtain
ai(t) ≡ b3−i for any t ∈ (0�T ).

Observe that the ex ante probability that player i has not volunteered by time T is
zi. Hence, Pi(t) = zie

b3−i(T−t) holds. Because z1 ≤ z2 and b1 > b2 by the supposition of
this subsection, P2(t) = z2e

b1(T−t) > z1e
b2(T−t) = P1(t) for any t such that 0 < t < T . It

implies that the ex ante probability that player 2 remains in a war of attrition is higher
than the one for player 1 before both players exhaust the possibility of volunteering.
Figure 1 depicts how the ex ante probability that each player does not volunteer by time
t changes over time. The inequality implies that player 1 does the initial volunteering.
It also implies that player 2 exhausts the possibility of volunteering at time T without
doing the initial volunteering: z2e

b1T = 1. Hence, we have T = 1
b1

log 1
z2

.
The probability of the initial volunteering by player 1 is given by the difference be-

tween 1 and the ex ante probability that he does not volunteer by just after time 0:
1 − P1(0+). Using the above formula for T , we can compute it as

1 − P1(0+) = 1 − z1e
b2T

= 1 − e
b2(− − log z1

b2
+ − logz2

b1
)
�

4The case of two players is already analyzed in Abreu and Gul (2000) for the study of bargaining.
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Figure 2. Three similar players.

3.3.2 Three players There are roughly two patterns of equilibrium paths, depending on
whether player 1 is active when both players 2 and 3 exhaust the possibility of volunteer-
ing.

First, we study the case in which the following condition holds:
∑

j∈I bj
2

− bi > 0 for ∀i ∈ I�

Note that this condition is satisfied, for example, when the players have similar thresh-
old rates. Let T̂ be the time at which the last players exhaust the possibility of volun-
teering. When the above inequality holds, Proposition 1 implies that all three players
exhaust the possibility of volunteering at time T̂ . Let a′

i be the rate of volunteering at

that time. Equation (2) has shown that a′
i = b1+b2+b3

2 − bi. As long as all of the three play-
ers are active, the exante probability that player i has not volunteered by time t is given

by zie
a′
i(T̂−t). By the assumption about bi and zi, this probability is strictly increasing in

i for any t < T . Thus, player 3 is not active at time 0 and becomes active at some point,
say at time t̂ (> 0). At time t̂, the ex ante probability that the player has not volunteered
by that time is higher for player 2 than for player 1. Then, applying the above analysis
for the example of two players, we can conclude that player 1 has to volunteer initially.
(See Figure 2 for the ex ante probability that each player does not volunteer by time t in
this example.)

During the interval (0� t̂), the rate of volunteering by player 1 is a1(t) = b2 and that
by player 2 is a2(t) = b1. During the interval (t̂� T̂ ), the rate of volunteering by player i is
given by a′

i = b1+b2+b3
2 −bi. For players 1 and 2, we can show that the rates of volunteering

decrease at time t̂, as predicted by the corollary to Lemma 2. The combined rate of
volunteering during the interval (0� t̂) is given by b1 + b2 and the one during the interval
(t̂� T̂ ) is given by b1+b2+b3

2 . As predicted also by the corollary to Lemma 2, the latter is
lower than the former even though the number of active players increases.

After some computation, we can derive the probability of the initial volunteering:

1 − exp
{
b2

(
−− logz1

b2
+

(
a′

1b1 − b2a
′
2

b2b1

)− logz3

a′
3

+ − logz2

b1

)}
�
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Let us compare this probability with the one in the game in which there are only the first
two players. Because it can be shown that a′

1b1 −b2a
′
2 < 0, the above expression is higher

than the one for the first two players. The probability of the initial volunteering increases
by the addition of the third player with the lowest threshold rate. (This property also
holds in general, as shown in Proposition 3.)

Next we study the case in which the players are fairly asymmetric and, thus,

∑
j∈I bj
2

− b1 < 0�

This condition is satisfied when the threshold rates of the players are quite different and
b1 is far higher than b2 and b3. In this case, the combined rate of volunteering that player
1 needs in a war of attrition is so high that player 1 cannot be in a war of attrition with
the other two players. Proposition 1 shows that player 1 has to exhaust the possibility
of volunteering before the other players do. (To understand why this is so, let us derive
the upper bound for b1 when all three players are simultaneously engaged in a war of
attrition. When player i is engaged in a war of attrition, he is indifferent between vol-
unteering and waiting. Thus, bi = aj(t) + ak(t), where j and k are the indexes of the
other two players, respectively. Because b2 = a1(t)+a3(t) and b3 = a1(t)+a2(t), it holds
that b2 + b3 > a2(t)+ a3(t) = b1. This implies that when all three players are simultane-
ously engaged in a war of attrition, it is necessary that b1 is lower than b2 + b3. This is
what the above inequality precludes.) Let T̃ be the time that the last players exhaust the
possibility of volunteering in this situation. Proposition 1 prescribes that only player 2
and player 3 are active just before time T̃ . By the same argument made above, the ex
ante probability that the player has not volunteered by a given time is higher for player 3
than for player 2. Thus, player 3 cannot be active at time 0 and becomes active at some
time, say t̃. At time t̃, player 1 exhausts the possibility of volunteering ahead of the other
players. (Figure 3 depicts the ex ante probability that each player does not volunteer by
time t for the case of asymmetric players.) What happens before time t̃ is analogous to
what happens in the example of two players. At time 0, player 1 volunteers with a posi-
tive probability (initial volunteering). During the interval (0� t̃), player 1 and player 2 are
actively engaged in a war of attrition.

During the interval (0� t̃), the rate of volunteering by player 1 is b2 and that of player
2 is b1. At time t̃, player 1 exhausts the possibility of volunteering, and then player 3
becomes active. During the interval (t̃� T̃ ), the rate of volunteering by player 2 is b3 and
that of player 3 is b2. As is consistent with the prediction in the corollary to Lemma 2,
the rate of volunteering by player 2 decreases from b1 to b3 at time t̃, and the combined
rate of volunteering decreases from b1 + b2 to b2 + b3.

The probability of the initial volunteering can be shown to be

1 − exp
{
b2

(
−− logz1

b2
+ − logz2

b1
− b3

b1

− logz3

b2

)}
�

This is also higher than the one for the first two players.
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Figure 3. Three asymmetric players.

An interesting case for the group with fairly asymmetric players occurs when b1 >

b2 = b3 and b1 > b2 + b3. In this special case, it is easy to see that t̃ = 0 and that the low-
cost type of player 1 volunteers initially with the probability of 1, attaining the highest
probability of the initial volunteering.5

4. Initial volunteering

This section studies who volunteers initially and with what probability. Initial volun-
teering is an important event for two reasons. First, it improves efficiency, as the delay
associated with a war of attrition is avoided. Second, it attains the highest feasible payoff
for any player other than the one who does so.

For the analyses in this section, we suppose that the probability of the noncompro-
mising type is weakly increasing in the index.6 We also assume that the probability of
the noncompromising type is positive for every player throughout this section.

Assumption Z. We assume that 0 < zi ≤ zj for any i� j ∈ I such that i < j.

When the probability of the noncompromising type is higher, given other things are
equal, the player tends to exhaust the possibility of volunteering more quickly. As shown

5We can extend this property and show that when there is a single player with the higher threshold rate
(player 1) and sufficiently many identical players with the lower threshold rate, the low-cost type of player
1 volunteers initially with probability 1. In such a situation, a war of attrition among the players with the
lower threshold rate produces a slow combined rate of volunteering. Hence, the low-cost type of player 1
volunteers before it begins.

6This is not an innocuous assumption. For example, when z2 is substantially lower than any other zj ,
player 2 tends to do the initial volunteering instead of player 1. This is contrary to the conclusion of Propo-
sition 2, which we obtain shortly under this assumption. We make this assumption because we think it to
be natural in a real setting. Consider the situation in which the players can make some ex ante investment
that affects the probability of being the noncompromising type. Suppose that the players are similar in
terms of both the discount rate and the cost to take the initial role, but are different in terms of the value
from the project. Then a player with a higher value from the project has a stronger ex ante incentive to
avoid the lack of a volunteer. This implies that a player with a lower index wants to reduce the chance of
being the noncompromising type more. In such a situation, this assumption seems natural.
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in Lemma 4, the player with a lower index (i.e., a weakly higher threshold rate) exhausts
the possibility of volunteering no later than the one with a higher index. The corollary
to Lemma 2 shows that the rate of volunteering by the player with a lower index is not
higher than the one with a higher index. Combining these properties, under Assump-
tion Z, we can conclude that a player with a lower index becomes active and exhausts
the possibility of volunteering no later than a player with a higher index. The necessary
and sufficient condition that two players become active at the same time is that they
have both the same threshold rate and the same probability to be the noncompromising
type.

Lemma 6. Suppose that Assumption Z is satisfied. Take i� j ∈ I such that i < j. If player
i is active during the interval (t� t ′) and player j is active during the interval (τ� τ′), then
t ≤ τ and t ′ ≤ τ′. When and only when both bi = bj and zi = zj hold, t is equal to τ.

The direct application of this lemma to the start of a war of attrition gives us the
following property about the initial volunteering.

Proposition 2. Suppose that Assumption Z is satisfied. The initial volunteering, if any,
is made by player 1. It occurs if and only if either b1 > b2 or z1 < z2 holds.

This proposition says that if the initial volunteering occurs, it is made by player 1.
Moreover, it shows that for the initial volunteering to occur, player 1 has to be different
from player 2 either in terms of the threshold rate or in terms of the probability to be
the noncompromising type. When player 1 and player 2 are identical in both terms, the
probability of the initial volunteering is 0.

We now study the probability of the initial volunteering.
As the first inquiry into the probability of the initial volunteering, we analyze the

effect of the number of players on it. In particular, we consider the situation in which
some player with a lower threshold rate can be brought to the meeting. Though such a
player never volunteers initially, we show that his inclusion increases the chance of the
initial volunteering by inducing player 1 to do so more often.

Suppose that there are M players originally and that a player whose threshold rate
is lower than any of M original players joins the group. Furthermore, suppose that they
are sufficiently similar in threshold rates; even with the added player, all the players ex-
haust the possibility of volunteering at the same time in equilibrium. To understand the
effect of the additional player, let us look at the players’ action near the end of a war
of attrition. When there are M players, the rate of volunteering by player i is given by∑M

i=1 bj
M−1 −bi. When an additional player is brought in, it decreases to

∑M+1
i=1 bj
M −bi because

the denominator increases and bM+1 is smallest. This decrease is uniform across play-
ers. Because the rates of volunteering by the players with higher threshold rates are gen-
erally lower than those by the player with lower ones, in terms of proportion, those with
higher threshold rates are affected more by this decrease. As a consequence, player 1
never decreases the chance of his initial volunteering and when b1 > b2, he increases it.
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Proposition 3. Consider M + 1 players, {1� � � � �M�M + 1}, where M ≥ 2. Suppose that

Assumption Z is satisfied and that
∑M+1

j=1 bj
M − b1 > 0. Then, when b1 > b2, the probability

of the initial volunteering in the game with the first M players is smaller than that in the
game with all the M + 1 players. When b1 = b2, the former and the latter are the same.

When the condition in Proposition 3 is not satisfied, the addition of a player with
a low threshold rate does not always lead to an increase in the probability of the initial
volunteering. For example, suppose that there are originally three players for whom
both b1 +b2 +b3 < 2b1 and b2 + 2b3 < 2b2 hold. In the original game, player 2 is engaged
in a war of attrition against player 1 first and then against player 3. When a player whose
threshold rate is identical to that of the third player is brought in, player 2 is engaged
in a war of attrition only against player 1. The addition of a fourth player causes the
probability of the initial volunteering to decrease. When the players do not exhaust the
possibility of volunteering at the same time in the modified game, the addition of the
player may decrease the probability of the initial volunteering.

We next derive the lower bound for the probability of the initial volunteering. Using
Proposition 3 repeatedly, we can show that the modified game in which only the first two
players play gives the lower bound for the probability of the initial volunteering. As the
first case, consider the game in which all the players exhaust the possibility of volunteer-
ing at the same time in the equilibrium. Because removing the player with the highest
index maintains the property that all the players exhaust the possibility of volunteering
at the same time, the repeated application of Proposition 3 tells us that the probability of
the initial volunteering becomes lower when only the first two players play. As the other
case, consider the game in which the first player exhausts the possibility of volunteering
before some other players do so. For such a game, we modify the game by truncating
it at that point in time. Then we can apply Proposition 3. (Specifically, consider the
modification in which we take only the players who are active just before the time of
truncation, and set their probabilities of being the noncompromising type to be equal
to the ex ante probabilities of not volunteering by that time. Then the equilibrium of
the modified game is identical to the original game up to the time of truncation.) In the
modified game, the second player may have a higher chance to be the noncompromis-
ing type than in the original game, which tends to increase the probability of the initial
volunteering. Therefore, in both cases, the probability of the initial volunteering in the
modified game with the first two players gives a lower bound for the probability of the
initial volunteering.

Proposition 4. Suppose that Assumption Z is satisfied. The probability of the initial
volunteering is no smaller than

1 − e
b2(− − logz1

b2
+ − logz2

b1
)
�

When z1 is small and b1 > b2, the above proposition implies that volunteering is
likely to occur in the beginning and the meeting is concluded quickly. This is true
even when z2 is also small as long as Assumption Z is satisfied. Under Assumption Z,
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(− logz2)/(− logz1) ≤ 1 holds. When z1 goes to zero, it is easy to see that (−− logz1
b2

+
− logz2

b1
) goes to minus infinity. Then the above proposition implies that the probabil-

ity of the initial volunteering goes to 1. Roughly speaking, when the probability that
the player with the highest threshold rate is the noncompromising type is small and his
threshold rate is strictly higher than those of the other players, it is quite likely that he
volunteers at the beginning of the meeting.

Consider one of the following four situations: (i) The probability that player 2 is the
noncompromising type becomes 1 (z2 ↑ 1). (ii) Player 2 becomes infinitely more patient
relative to player 1 (r2/r1 ↓ 0). (iii) Player 1’s cost of volunteering becomes infinitesi-
mally small compared with that of player 2 (c1/c2 ↓ 0). (iv) Player 2’s net benefit from the
project becomes infinitesimally small compared to that of player 1 ((V2 − c2)/(V1 − c1) ↓
0). Note that the exponent part of the exponential function in Proposition 4 can be ex-
pressed as b2(−− logz1

b2
+ − logz2

b1
) = logz1 − b2

b1
logz2 = logz1 − r2(V2−c2)c1

r1(V1−c1)c2
logz2. Hence, in

each of the four cases, when any other variables are fixed, the bound in Proposition 4
converges to 1 − z1. Because it is equal to the highest feasible probability for the ini-
tial volunteering by player 1, it implies that the probability of the initial volunteering
itself converges to 1 − z1. That is, at the limit, the low-cost type of player 1 is certain to
volunteer at time 0.

Corollary. Suppose that Assumption Z is satisfied.

(i) Suppose that b1 > b2. When only the probabilities that the players are the noncom-
promising type change and when z1 ↓ 0, the probability of the initial volunteering
goes to 1.

(ii) When one of the above four situations occurs without the other variables changing,
the probability of the initial volunteering goes to 1 − z1.

Observe that the above statement may not hold when some other variables that are
supposed to be fixed also change. For example, in the case of the second statement,
even when c1 ↓ 0, the bound does not converge to 1 − z1 if r1 = αc1 for some α (> 0).

5. Concluding remarks

We have shown that the players’ behaviors in an N-person war of attrition are qualita-
tively different from those in a two-person version. This is because a war of attrition
needs more than one, but not all of the players. Hence, in an N-person war of attrition,
the set of active players can change over time. This generally leads to a rich variety of
equilibria. In the first subsection below, we show that it is actually the case when there
is no possibility of the noncompromising type. However, with the possibility of the non-
compromising type, this study has shown that we obtain the unique equilibrium path,
which enables us to predict who volunteers with what probability at each moment.

A war of attrition is one way to choose a volunteer. From that viewpoint, the initial
volunteering is important because the selection occurs without discounting costs. We
have shown that it tends to be carried out with a positive probability by the player who
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is less patient, whose cost of taking the initiative role is lower, and whose net gain from
the project is higher. So as to evaluate how efficient this way of selection is, the second
subsection compares it with a more formal procedure to choose one player.

5.1 No possibility of the noncompromising type

We have derived a unique equilibrium by assuming that any player is the noncompro-
mising type with a positive probability. For the purpose of comparison, for this subsec-
tion only, suppose that any player is always the low-cost type: zi = 0 for any i ∈ I. With-
out the possibility of the noncompromising type, once a war of attrition starts, there is a
positive probability of volunteering for any interval. By extending the arguments made
for Lemma 2 to this case, it is easy to see that the following conditions in addition to the
conditions in Lemma 1 and Lemma 2 provide the necessary and sufficient condition for
the equilibria that involve a war of attrition.

(i) A war of attrition continues forever unless a player volunteers for sure at time 0.

(ii) The combined rate of volunteering is no smaller than the threshold rate of any

inactive player: for any t,
∑

At
bj

|At |−1 ≥ bi for i ∈ I/At .

(iii) If a player is active at some point, either he remains active from then on or he
becomes inactive later when the combined rate of volunteering coincides with
his threshold rate: if i ∈ As for some s, it holds either that i ∈ Aτ at any time τ

(> s) or that there exists time τ( > s) such that i ∈ At for any t where s < t < τ,

i ∈ I/Aτ , and
∑

Aτ
bj

|Aτ|−1 = bi.

(iv) If player i does the initial volunteering with a probability between 0 and 1, ei-
ther he is active at time 0 or his threshold rate is equal to the combined rate of

volunteering at time 0: i ∈A0 ∪ {i /∈A0 :
∑

A0
bj

|A0|−1 = bi}.

This observation implies that without the possibility of the noncompromising type,
the set of equilibria is large and who volunteers initially with what probability is indeter-
minate. (There are also equilibria where any one of the players volunteers in the begin-
ning with probability 1 and there is no war of attrition.) Moreover, once a war of attri-
tion starts, any active player generically remains active forever. (The condition for him
to stop volunteering is given by the equality and, thus, is not satisfied generically.) One
consequence of this property is that only a subset of players may participate in a war
of attrition and some player never becomes active. Thus, the equilibrium behaviors are
also quite different from those in the model with the possibility of the noncompromising
type.

To illustrate these differences, let us consider a situation in which the threshold rates
are similar among players. Then it is easy to see that the following scenario forms an
equilibrium: any given combination of players is active at the beginning, any one of
them volunteers initially with any given positive probability, and any player can join the
set of active players at any time.
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5.2 Comparison with the predetermined assignment

We have studied the meeting in which any player can volunteer at any time. This partic-
ular format is meant to capture both the democratic nature and the flexible procedure
of a casual meeting. Alternatively, we can consider a more formal meeting in which the
selection for the initiative role is done according to a formal rule. This subsection briefly
compares these two different procedures. Given the possibility that each player is the
noncompromising type and, thus, is unable to take the initiative role, the purpose of
the comparison is to find out how efficiently each procedure selects a low-cost type as a
volunteer.

First, as a typical example of a more formal procedure, we consider the procedure
in which the players take turns to decide whether to volunteer within finite rounds in a
prespecified order.7 Suppose that the probabilities of the noncompromising types are
not so large: (1 − maxj zj)Vi > Vi − ci for any i ∈ I. Under this supposition, in any finite
ordering of the players’ chances to volunteer, all players but the last one are certain to
decline to volunteer. Let player j be the last player to decide. He volunteers when and
only when he is the low-cost type. Hence, his expected payoff is given by (1−zj)(Vj −cj).
The expected payoff of player i ( 	= j) is given by (1 − zj)Vi. (We ignore the discounting
for the analysis of this procedure.) The sum of the expected payoffs is given by (1 −
zj)[(∑i Vi)− cj].

Next consider the procedure that is studied in this paper. Let player k be the one who
volunteers initially with a positive probability and letPk be its probability. When playerk
volunteers initially, player i ( 	= k) obtains the payoff of Vi. Otherwise, the expected payoff
of the low-cost type of player i just after time 0 is Vi − ci when he is active at time 0, and
that is between Vi −ci and Vi when he is not active at time 0. The noncompromising type
of player i obtains a lower payoff due to the inability to volunteer. Hence, when player i
is active at time 0, his expected payoff is no smaller than PkVi + (1 − zi)(1 − Pk)(Vi − ci)

and is no higher than PkVi + (1 − Pk)(Vi − ci). When player i is not active at time 0, his
expected payoff is no smaller than PkVi+(1−zi)(1−Pk)(Vi−ci) and is no higher than Vi.
By the same argument, the expected payoff of player k is no smaller than Pk(Vk − ck)+
(1 − Pk − zk)(Vk − ck) and is no higher than Pk(Vk − ck) + (1 − Pk)(Vk − ck). Summing
these discussions, we can say that the total expected payoff is between Pk[(∑i Vi)−ck]+
(1 − Pk)

∑
i 	=k(1 − zi)(Vi − ci) and Pk[(∑i Vi)− ck] + (1 − Pk)[

∑
A0

(Vi − ci)+ ∑
I/A0

Vi].
For the sake of comparison, suppose that the selected player in the former procedure

is player 1 and that the player who volunteers initially with a positive probability in the
latter procedure is also player 1. Moreover, suppose that player 2 is active at time 0 in the
latter procedure. (By Lemma 1, there have to be at least two active players during a war of

7This procedure is more general than the one in which one particular player is singled out as the sole can-
didate for the initiative role. As argued in the main text, it turns out that these two procedures are equivalent
in that only one player effectively decides whether to volunteer. Note that in each of these procedures, the
rejection by the last player or the designated player, respectively, is supposed to result in the failure of the
project. However, in reality, it often prompts the resumption of the search process. If the selection process
continued after rejections, the situation would become similar to what we study in this paper. That is, we
can interpret our model as the one in which the players cannot commit themselves not to terminate the
meeting unless they are certain that there is no low-cost type.
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attrition.) Note that the sum of the expected payoffs from the former procedure is given
by (1 − z1)[(∑i Vi)− c1]. When the low-cost type of player 1 does the initial volunteering
almost certainly (i.e., P1 ≈ 1 − z1), the lower bound of the total expected payoff under
the latter procedure is approximated by (1 − z1)[(∑i Vi) − c1] + z1

∑
i 	=1(1 − zi)(Vi − ci).

The first term is equal to the total expected payoff under the former procedure. Thus,
when the low-cost type of player 1 volunteers initially with a probability close to 1, the
latter procedure with the possibility of a war of attrition can achieve higher efficiency.
One such example is presented at the end of Section 3, where there is strong asymmetry
among players and the low-cost type of player 1 volunteers initially with probability 1.
Conversely, when the low-cost type of player 1 almost never does the initial volunteering
(i.e., P1 ≈ 0), the higher bound of the total expected payoff under the latter procedure
is approximated by

∑2
i=1(Vi − ci) + ∑N

i=3 Vi = (
∑

i Vi) − c1 − c2. (To obtain the higher
bound, we suppose that only players 1 and 2 are active at time 0.) When z1 is small
and c2 is significant, this tends to be lower than the expected total payoff under the for-
mer procedure. In such a situation, it is likely that the former procedure achieves the
higher efficiency. When the set of active players in the beginning includes more players,
the payoff from the latter procedure is even more unfavorable. That is the case when
the players are symmetric. Given the symmetry, it is easy to see that there is no initial
volunteering and every player is active from the beginning. This implies that the total
expected payoff under the latter procedure is at most

∑
i(Vi − ci). In this example, the

costs of all the players are subtracted in the computation of the total expected payoff in-
stead of just that of player 1 as in the former procedure. When there are many symmetric
players, the former procedure tends to attain the higher total expected payoff.

We conjecture that some stochastic mechanisms achieve higher efficiency. It would
be interesting to examine which procedures are used in real meetings and to study their
adoption in each circumstance.

Appendix: The proofs

The appendix first proves a technical lemma and then provides all the proofs for the
lemmas and the propositions in the main text.

Lemma 2 claims that, depending on the status of player i, the difference
∑

At
bj

|At |−1 − bi
has to take a particular sign. The next lemma tells us whether this difference changes
the signs when the set of active players is expanded (or reduced). The first part says
that when the difference has the nonnegative sign and when the players with higher
indexes are removed from the set, it still has the nonnegative sign. This is because the
players with higher indexes have lower bjs. The second part is its converse. When the
difference has the nonpositive sign and when the players with lower bjs are added, it has
the nonpositive sign. (The lemma also states the condition under which the inequality
holds strictly.)

Lemma A.1. Let I ′� I ′′ ⊂ I and I ′ ∩ I ′′ = ∅. Take i ∈ I such that bi ≥ bj for any j ∈ I ′′.
If

∑
I′∪I′′ bj

|I ′∪I ′′|−1 − bi ≥ 0, it holds that
∑

I′ bj
|I ′|−1 − bi ≥ 0. Moreover, either if the inequality in the

condition is strict or if bi > bj for some j ∈ I ′′, the inequality in the statement holds strictly.
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Conversely, if
∑

I′ bj
|I ′|−1 − bi ≤ 0, it holds that

∑
I′∪I′′ bj

|I ′∪I ′′|−1 − bi ≤ 0. Moreover, either if the
inequality in the condition is strict or if bi > bj for some j ∈ I ′′, the inequality in the state-
ment holds strictly.

Proof. Because bj ≤ bi for any j ∈ I ′′, we have

0 ≤
∑

I′∪I ′′ bj
|I ′ ∪ I ′′| − 1

− bi =
∑

I′ bj + ∑
I′′ bj − (|I ′| + |I ′′| − 1)bi
|I ′| + |I ′′| − 1

=
∑

I′ bj − (|I ′| − 1)bi + ∑
I′′(bj − bi)

|I ′| + |I ′′| − 1

≤
∑

I′ bj − (|I ′| − 1)bi
|I ′| + |I ′′| − 1

= |I ′| − 1
|I ′| + |I ′′| − 1

( ∑
I′ bj

|I ′| − 1
− bi

)
�

This proves the weak part of the first statement. When the inequality in the condition
is strict, the first inequality above becomes strict. If bi > bj for some j ∈ I ′′, the second
inequality above becomes strict. In either case, the inequality in the statement holds
strictly.

Using the above formula in the reverse way (except the first inequality), we obtain
the second statement.

A.1 Proof of Lemma 2

We prove this lemma part by part.
(a) The condition for active players. For active players, the analysis in the main text

shows that equations (1) and (2) have to hold. In particular, for player i to be active at

time t, equation (2) implies that ai(t) =
∑

At
bj

|At |−1 − bi > 0. It also means that if the sets of
active players are same, the rates of volunteering for any active players are same.

(b) The condition for the players who exhaust the possibility of volunteering at time t.
If player i exhausts the possibility of volunteering at time t (> 0), we claim that the com-
bined rate of volunteering at time t should not be larger than the threshold rate of player
i:

∑
j∈I aj(t) ≤ bi.

Suppose not. We would have
∑

j∈I aj(t) > bi. When we evaluate the expected payoff
of player i at time t from waiting for a short period and then volunteering, we would
have, by the definition of bi, the inequality

∫ �

τ=0
Be−Bτe−riτVi dτ + e−B�e−ri�(Vi − ci) > Vi − ci�

where � > 0 and B = ∑
j∈I aj(t). Because volunteering always gives Vi − ci to player i

at that point, this inequality implies that volunteering near time t would be dominated
by waiting a bit more after time t. Then he would never volunteer during the interval
(t − ε� t) for some ε > 0. This contradicts the supposition that he exhausts the possibility
of volunteering at time t. Therefore, it has to hold that

∑
j∈I aj(t) ≤ bi.
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(c) The combined rate of volunteering. Take any time t( > 0) such that there exist t ′
(< t) and t ′′ (> t) for which the properties Aτ = At− for any τ ∈ [t ′� t) and Aτ = At for
any τ ∈ [t� t ′′) hold, and, moreover, At− 	=At . That is, we consider two adjacent intervals
between which the set of active players changes. (By the assumption made in Section 2,
the players’ strategies are well behaved and, thus, we can always find such intervals.) We
prove that the combined rate of volunteering strictly decreases at time t:

∑
At− aj(t−) >∑

At
aj(t). We prove it in two steps.

First, consider the case in which any player who is active just before time t remains
active, and some passive player becomes active at time t: At− ⊂At and At− 	=At . Then
we claim that the combined rate of volunteering strictly decreases. Consider player i

who is not active just before time t and becomes active at time t: i /∈At− and i ∈ At . The
expected payoff of player i at time t − � from waiting until time t and then volunteering
is given by

∫ �

τ=0
B′e−B′τe−riτVi dτ + e−B′�e−ri�(Vi − ci)�

where � ∈ (0� t − t ′) and B′ = ∑
At− aj(t−). Because player i prefers waiting to immedi-

ately volunteering before time t, it should be no smaller than Vi − ci. By the definition
of bi, it means that the combined rate of volunteering should be no smaller than the
threshold rate of player i: bi ≤ ∑

At− aj(t−). By (1), this inequality can be written as

bi ≤
∑

At− bj
|At−|−1 . Using (1), we compare

∑
At− aj(t−) with

∑
At

aj(t):

∑
At−

aj(t−)−
∑
At

aj(t)

=
∑

At− bj

|At−| − 1
−

∑
At

bj

|At | − 1

=
∑

At− bj

|At−| − 1
−

∑
At− bj + ∑

At/At− bj

|At−| + |At/At−| − 1

= (|At−| + |At/At−| − 1)
∑

At− bj − (|At−| − 1)
∑

At− bj − (|At−| − 1)
∑

At/At− bj

(|At−| − 1)(|At−| + |At/At−| − 1)

= 1
|At−| + |At/At−| − 1

∑
i∈At/At−

(∑
j∈At− bj

|At−| − 1
− bi

)
�

If bi =
∑

At− bj
|At−|−1 for any i ∈ At/At−, the above expression is equal to zero. It means that∑

At− bi
|At−|−1 =

∑
At

bi
|At |−1 . Equation (2) then implies that ai(t) =

∑
At

bi
|At |−1 − bi = 0. This could not

happen because player i is supposed to be active at time t. Hence, bi <
∑

At− bi
|At−|−1 for some

i ∈ At/At−. Thus, the above expression has to be positive, which proves the claim.
Second, we consider the case in which some player who is active just before time t is

not active at time t. Then, at least a player, say player i, is included in At− but not in At .
Supposing that

∑
At− aj(t−) ≤ ∑

At
aj(t), we derive a contradiction. Because i ∈ At−, it
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holds that bi = (
∑

At− aj(t−))− ai(t−). Combining this with the supposition, we have

bi <
∑

j∈At−
aj(t−) ≤

∑
j∈At

aj(t)�

When we evaluate the expected payoff of player i at time t from waiting for a short period
and then volunteering, we have, by the definition of bi, the inequality

∫ �

τ=0
Be−Bτe−riτVi dτ + e−B�e−ri�(Vi − ci) > Vi − ci�

where � ∈ (0� t ′′) and B = ∑
At

aj(t). This implies that volunteering near time t is dom-
inated by waiting for some time after time t. This contradicts the fact that player i is
active until time t. Therefore, the combined rate of volunteering has to decrease strictly
at time t:

∑
At− aj(t−) >

∑
At

aj(t).
Because the above two cases cover all the possibilities of the change in the sets of

active players, they prove that the combined rate of volunteering strictly decreases when
the set of active players changes between adjacent intervals.

Because the combined rate of volunteering is determined by the set of active players
and it never increases, the set of active players changes only finite times. Hence, by using
the above argument repeatedly, we can prove that the combined rate of volunteering
weakly decreases and strictly does so when the set of active players changes.

(d) The condition for passive players. Suppose that player i is passive at time t. By
supposing

∑
j 	=i aj(t)− bi < 0, we derive a contradiction. The above analysis has shown

that the combined rate of volunteering is weakly decreasing. Thus, the sum of the rates
of volunteering by other players will never be higher than bi. (This is the case even when
player i would become active in the future.) That is, it holds that

∑
j 	=i aj(τ)− bi < 0 for

any τ ≥ t. By the definition of bi, it implies that he would strictly prefer volunteering to
waiting at any time after time t. Because player i is supposed to be passive at time t, this
is a contradiction. Therefore, it has to hold that

∑
j 	=i aj(t)−bi ≥ 0. Because ai(t) = 0, we

have
∑

j∈I aj(t) = ∑
j 	=i aj(t) ≥ bi.

A.2 Proof of Lemma 3

Because the noncompromising type cannot volunteer, at most one player volunteers
initially with a positive probability mass, and the low-cost type prefers volunteering to
waiting perpetually, any equilibrium involves a positive probability of volunteering after
time 0. As shown in Lemma 1, no player volunteers with a probability mass after time 0.
Hence, there has to be the possibility of a war of attrition in any equilibrium.

To prove that all the players exhaust the possibility of volunteering within a finite
time, let us suppose the opposite. For a war of attrition to continue, there have to be
at least two active players. Hence, there is more than one player who never exhausts
the possibility of volunteering. Let F be the set of such players. There exists time S

after which only those in this set can be active. After time S, for player i ∈ F to have an
incentive to wait, it has to hold that

∑
F/{i} aj(t) ≥ bi. Summing this inequality over the
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set F , we obtain (|F | − 1)
∑

F aj(t) ≥ ∑
F bi. Thus, after time S, it holds that

∑
F aj(t) ≥∑

F bi
|F |−1 . Let β denote the right-hand side. Observe that β> 0.

Let P(t) denote the ex ante probability that none of the players in the set F

volunteers by time t. Because it decreases by the rate of
∑

F aj(t), it holds that
P(t) = P(S)exp(− ∫ t

τ=S

∑
F aj(τ)dτ). We obtain P(t) ≤ P(S)exp(− ∫ t

τ=S βdτ) because∑
F aj(t) ≥ β. As t → ∞, the right-hand side converges to 0 and, thus, the left-hand side

also converges to 0. However, this contradicts the fact that P(t) ≥ 	Fzj , which holds
because the noncompromising types never volunteer. Therefore, the players cannot be
active forever.

Note that a low-cost type stays in a war of attrition because of the possibility that
the other players volunteer with positive rates. Hence, when the players exhaust the
possibility of volunteering, there should be no possibility of the low-cost type.

A.3 Proof of Lemma 4

(i) Note that a war of attrition continues at time t because there are some players who
still have the possibility of the noncompromising type. The fact that player i is active
until time t means that he does not strictly prefer waiting to volunteering at time t. By
the same argument used in the proof of Lemma 2, we know that

∑
j 	=i aj(t) ≤ bi. (If

this inequality is violated, player i does not want to volunteer near time t because his
expected payoff from waiting at time t is higher than Vi − ci by the definition of bi.)

From (1), it holds that
∑

j∈I aj(t) =
∑

j∈At
bj

|At |−1 . Because ai(t) = 0, the above inequality is

equivalent to
∑

At
bj

|At |−1 ≤ bi.
First, suppose that

∑
j 	=i aj(t) < bi. Then, because the combined rate of volunteer-

ing is weakly decreasing, the low-cost type of player i has no incentive to wait during
the interval (t� t + ε) for some ε > 0 and strictly prefers volunteering at time t. Be-
cause volunteering with a probability mass cannot happen, he should have volunteered
for sure by time t. Consider player k such that k < i. For any k < i, it holds that∑

j 	=k aj(t) ≤ ∑
j∈I aj(t) < bi ≤ bk because bk ≥ bi. For the same reason, the low-cost

type of payer k should have volunteered for sure at least by time t.
Next, suppose that

∑
j 	=i aj(t) = bi. For any k < i such that bk > bi, the above argu-

ment can be used to show that the low-cost type of player k needs to volunteer for sure
at least by time t. Now, we look at the player whose index k satisfies

∑
j 	=k aj(t) = bk.

(Note that player i is such a player.) Let T be the time by which all the players exhaust
the possibility of volunteering. If there is no change in the set of active players between
time t and time T , the low-cost type of player k needs to volunteer for sure at least by
time t because he is not active during that period. Suppose that there is a change in the
set of active players between time t and time T . Let S be the first time when that hap-
pens. Lemma 2 shows that the combined rate of volunteering strictly decreases at time
S. Hence, we have

∑
AS

aj(S) <
∑

At
aj(t) = ∑

j 	=k aj(t) = bk. This implies that player k
strictly prefers volunteering to waiting at time S because the combined rate of volun-
teering is weakly decreasing over time. Because there cannot be volunteering by a prob-
ability mass during a war of attrition (Lemma 1), the low-cost type of player k needs to
volunteer for sure at least by time t.
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In either case, the low-cost type of player k volunteers for sure by time t and, thus,
exhausts the possibility of volunteering by that time. In particular, player i exhausts
the possibility of volunteering at time t as the probability that he is the low-cost type
becomes 0 at that time.

(ii) We suppose that no passive player becomes active at time t and derive a contra-
diction.

By supposition, the set of the players who are active just before time t comprises the
active players at time t in addition to those who exhaust the possibility of volunteering
at time t. Hence, its set is given by At ∪ Dt . Because any player in this set is active just
before time t, Lemma 2 implies that

∑
At∪Dt

bj

|At ∪Dt | − 1
− bi > 0 for any i ∈At ∪Dt�

Let k be the smallest number among Dt . Then, for any j ∈ Dt , it holds that bj ≤ bk. By
Lemma A.1, from the above inequality, we obtain

∑
At

bj

|At | − 1
− bk > 0�

Because k ∈ Dt and
∑

At
bj

|At |−1 = ∑
j∈I aj(t) by Lemma 2, this contradicts the condition in

Lemma 2 for the player who exhausts the possibility of volunteering at time t.

A.4 Proof of Lemma 5

Using Lemma 4, we know that if some player exhausts the possibility of volunteering at
time t, the set of these players is given by Dt = {k� � � � �Ct} for some k (≤ Ct ). Then we
have At− = {k� � � � �Ct} ∪Et .

First, suppose that m(Ct�Et) does not exist, and yet some player exhausts the pos-

sibility of volunteering at time t. By supposition, it holds that
∑Ct

j=k bj+
∑

Et
bj

Ct−k+|Et | − bk ≤ 0.

It, however, contradicts the condition in Lemma 2 for an active player because k ∈ At−,
and At− = {k� � � � �Ct} ∪ Et . Hence, if m(Ct�Et) does not exist, no player exhausts the
possibility of volunteering at time t.

Second, suppose that m(Ct�Et) exists and also k < m(Ct�Et). By supposition, it

holds that
∑Ct

j=k bj+
∑

Et
bj

Ct−k+|Et | − bk ≤ 0. By the same reason as above, it contradicts the con-

dition in Lemma 2 for an active player. Hence, if m(Ct�Et) exists, it has to hold that
k≥m(Ct�Et).

Third, suppose that m(Ct�Et) exists, and also k > m(Ct�Et). By construction, it

holds that
∑Ct

j=k−1 bj+
∑

Et
bj

Ct−k+|Et |+1
− bk−1 > 0. At some time s before time t, player k − 1 ex-

hausts the possibility of volunteering. From Lemma 4, we know that As comprises
the players whose indexes are included in the set {k� � � � �Ct} ∪ Et . Because bk−1 ≥ bj

for any j ∈ {k� � � � �Ct} ∪ Et , by Lemma A.1, it holds that
∑

As
bj

|As |−1 − bk−1 > 0. Because
player k − 1 is supposed to exhaust the possibility of volunteering at time s and, thus,
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∑
As

bj
|As|−1 = ∑

j∈I aj(s) by Lemma 2, this contradicts the condition in Lemma 2 for the player
who exhausts the possibility of volunteering. Hence, if m(Ct�Et) exists, it has to hold that
k≤m(Ct�Et).

Combining the above arguments, we can conclude that the statement in the lemma
has to hold.

A.5 Proof of Proposition 1

By the way that the construction is conducted, we know that if there is an equilibrium,
it has to take the unique form specified before and in Proposition 1. In the following
analysis, we show that the constructed strategies form an equilibrium.

We examine three different statuses in turn: being active, being passive, and hav-
ing exhausted the possibility of volunteering. We want to show that, for player i, the
corresponding continuation payoff is no smaller than Vi − ci in the passive status, it is
equal to that in the active status, and it is no larger than that when he has exhausted
the possibility of volunteering. Observe that the statuses change only in this ordering
though some player may not experience the passive status. When the above condition
is satisfied, player i has no incentive to deviate from the constructed strategy.

Because the continuation payoff is determined by the combined rate of volunteering

by the other players, using (1), we can restate the above condition as follows:
∑

At
bj

|At |−1 − bi
is nonnegative when player i is passive at time t, it is positive when player i is active at
time t, and it is nonpositive when player i has exhausted the possibility of volunteering
by time t. We show that this condition is satisfied along the constructed path.

(i) Being active. We look at two possible situations in which the set of active players
changes and prove that the required condition holds just before those times.

First, suppose that some player exhausts the possibility of volunteering at time t.

By the property of m(Ct�Et), the equation
∑

At− bj
|At−|−1 > maxAt− bj holds. Because bi ≤

maxAt− bj for any i ∈ At−, we have
∑

At− bj
|At−|−1 > bi for any i ∈At−.

Next suppose that some player becomes active without any player exhausting the
possibility of volunteering at time s. Suppose that no player exhausts the possibility of
volunteering between time s and time t−. Then it holds that As− ⊂ At−. As discussed

above, we have
∑

At− bj
|At−|−1 > maxAt− bj , and maxAt− bj ≥ bi for any i ∈ At−. Then Lemma A.1

implies that
∑

As− bj
|As−|−1 > maxAt− bj . Because maxAt− bj ≥ bi for any i ∈ At−, it holds that∑

As− bj
|As−|−1 > bi for any i ∈As−.

Because the rates of volunteering change only when the set of active players changes
on these occasions and because the construction is made backward in time with AT =
∅, the above analyses prove that

∑
Aτ

bj
|Aτ|−1 > bi for any i ∈ Aτ on the constructed equilib-

rium path.
(ii) Being passive. Suppose that player i becomes active at time u (> 0). We prove that

player i satisfies the property required for being passive on the constructed path at any
time t such that t < u. We examine two situations, depending on whether some active
player exhausts the possibility of volunteering by time u.
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First, suppose that an active player at time t exhausts the possibility of volunteering
by time u (time u included). Let player k be such a player. Because player k exhausts the
possibility of volunteering by time u, by construction, it holds that k< i. Because player

k is active at time t, the above argument for the active status has shown that
∑

At
bj

|At |−1 > bk

on the constructed path. Because bk ≥ bi, we have
∑

At
bj

|At |−1 > bi on the constructed path.
Next consider the case in which any active player at time t does not exhaust the

possibility of volunteering by time u (time u included). Then it holds that At ⊂ Au. The

above argument for the active status has proven that
∑

Au
bj

|Au|−1 > maxAu bj as the player
with the index maxAu bj is active at time u. Because At ⊂ Au and maxAu bj ≥ bk for any

k ∈ Au, Lemma A.1 implies that
∑

At
bj

|At |−1 > maxAu bj . Because i ∈ Au by supposition, we

have maxAu bj ≥ bi. Therefore, it holds that
∑

At
bj

|At |−1 > bi.

By combining the above arguments, we can conclude that
∑

At
bj

|At |−1 > bi on the con-
structed path whenever player i is passive at time t.

(iii) Having exhausted the possibility of volunteering. Suppose that player i exhausts
the possibility of volunteering at time t and that there are still active players at that time.
Define k=Ct . This means that player k has the highest index among those who exhaust
the possibility of volunteering at time t. Let u be the next time at which some player
exhausts the possibility of volunteering. Let player � be such a player. (We choose one
player randomly when there are multiple such players.) By construction, it holds that
i ≤ k< �.

Take s such that t < s ≤ u. Observe that player k exhausts the possibility of volun-
teering at time t when the path is constructed backward. Hence, when the set of ac-
tive players changes at time s, the construction does not include player k in the set of
the players who exhaust the possibility of volunteering at that point. Hence, it holds

that
(
∑

As− bj)+bk
|As−| ≤ bk. After simple computation, this inequality can be transformed

to
∑

As− bj
|As−|−1 ≤ bk. It implies that

∑
Aτ

bj
|Aτ|−1 ≤ bk for any τ ∈ [t�u). Because bk ≤ bi, we have∑

Aτ
bj

|Aτ|−1 ≤ bi for any τ ∈ [t�u).

When Au 	= ∅, we can apply the above argument and can show that
∑

Aτ
bj

|Aτ|−1 ≤ b�,
where τ is between time u (included) and the time just before the next exhaustion occurs

(not included). Because � > i, during this period also, we have
∑

Aτ
bj

|Aτ|−1 ≤ bi.
By repeating this process toward time T at which all the remaining players exhaust

the possibility of volunteering, we can show that the desired property holds along the
constructed path.

A.6 Proof of Lemma 6

Take player i and player j such that i < j. By Assumption B, we have bi ≥ bj , and, by
Assumption Z, we have zi ≤ zj . From Lemma 4, we already know that t ′ ≤ τ′. Let Pi(t)

be the ex ante probability that player i does not volunteer by time t and let S be the time
when player j becomes active. So as to prove the rest of the statement, we compute
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Pi(S). Note that S is defined by Pj(S) = 1. We need to show that Pi(S) = 1 when both
bi = bj and zi = zj hold, and that Pi(S) < 1 when either bi > bj or zi < zj holds.

(i) Either bi > bj or zi < zj holds. We want to show that Pi(S) < 1. Let Ti denote
the time that player i exhausts the possibility of volunteering, and let Tj denote that for
player j. Lemma 4 shows that Ti ≤ Tj . We examine two cases in turn depending on
whether this inequality holds strictly.

First, consider the case in which Ti = Tj .
When zi < zj , we have Pi(Ti) < Pj(Tj) as Pk(Tk) = zk for any k ∈ I by definition. Be-

cause bi ≥ bj , (2) implies that ai(t) ≤ aj(t) whenever both players are active. Computing
backward in time, we can conclude that Pi(t) < Pj(t) holds for any t ∈ (S�Ti). (Observe
that Pk(t) is an exponential function whose rate of decline is given by ak(t).) It implies
that Pi(S) < 1.

When zi = zj , we have Pi(Ti) = Pj(Tj). Moreover, by supposition, it holds that bi >
bj . Then, (2) implies that ai(t) < aj(t) whenever both players are active. Computing
backward in time, we can conclude that Pi(t) < Pj(t) holds for any t ∈ (S�Ti). It implies
that Pi(S) < 1.

Second, consider the case in which Ti < Tj .
When player j is not active at time Ti, Lemma 4 implies that Ti < S. Then it holds

that Pi(S) = zi < 1.
When player j is active at time Ti, we have Pj(Ti) > zj ≥ zi. Then, when we compute

both Pi(t) and Pj(t) backward from time Ti, we can apply the above argument for the
case in which zi < zj . Hence, we have Pi(S) < 1 for this case as well.

Therefore, when either bi > bj or zi < zj holds, it holds that Pi(S) < 1.
(ii) Both bi = bj and zi = zj hold. We want to show that Pi(S) = 1.
Because bi = bj , Lemma 4 implies that both player i and player j exhaust the pos-

sibility of volunteering at the same time. Let time T ′ be such time. From (2), we know
that ai(t) = aj(t) as long as both players are active. Because Pi(T

′) = zi = zj = Pj(T
′), we

can compute both Pi(t) and Pj(t) backward in time, and can conclude that Pi(t) = Pj(t)

holds for any t ≤ T ′. Therefore, we have Pi(S)= 1 as S is defined by Pj(S) = 1.

A.7 Proof of Proposition 3

We suppose that there are M players ({1� � � � �M}) in the original situation and com-
pare that situation with the modified situation where player M + 1 is added. Because∑M+1

j=1 bj
M − b1 > 0 by supposition and b1 ≥ bM+1 by Lemma A.1, it holds that

∑M
j=1 bj
M−1 − b1 >

0. Lemma 5 shows that both in the original situation and in the modified situation, all
the players exhaust the possibility of volunteering at the same time. Let T be the time
by which all the players exhaust the possibility of volunteering in the original situation
and let T ′ be that in the modified situation.

Let ai(t) be the rate of volunteering by player i at time t in the original situation and
let a′

i(t) be that in the modified situation. Let Si be the time that player i becomes active
for the first time in the original situation and let S′

i be that in the modified situation.
Under Assumption Z, Lemma 6 has shown that both Si ≤ Sj and S′

i ≤ S′
j for any i ≤ j,

and, moreover, that the equality holds when and only when both bi = bj and zi = zj
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hold. This implies that when S′
i < S′

M+1, the set of active players at time Si in the original
situation is identical to that at time S′

i in the modified situation. (The following analysis
holds even when S′

i = S′
i+1 for some i (≤M).)

For i ∈ {i� � � � �M − 1}, let Pi(Si+1) be the ex ante probability that player i has not vol-
unteered by time Si+1 in the original situation and let P ′

i(S
′
i+1) be the ex ante probability

that player i has not volunteered by time S′
i+1 in the modified situation. We compute

these probabilities backward in time:

Pi(Si+1) = zi exp
{
ai(SM)(T − SM)+ ai(SM−1)(SM − SM−1)+ · · ·

+ ai(Si+2)(Si+3 − Si+2)+ ai(Si+1)(Si+2 − Si+1)
}

and

P ′
i

(
S′
i+1

) = zi exp
{
a′
i

(
S′
M+1

)(
T ′ − S′

M+1
)

+ a′
i

(
S′
M

)(
S′
M+1 − S′

M

) + a′
i

(
S′
M−1

)(
S′
M − S′

M−1
) + · · ·

+ a′
i

(
S′
i+2

)(
S′
i+3 − S′

i+2
) + a′

i

(
S′
i+1

)(
S′
i+2 − S′

i+1
)}
�

Lemma 2 shows that the rate of volunteering depends only on the set of active players.
Moreover, for any k < M , Lemma 6 shows that Sk = Sk+1 if and only if bk = bk+1, and
zk = zk+1. Hence, it holds that ai(Sk)= a′

i(S
′
k) for any k such that S′

k < S′
M+1 because the

set of active players is identical at the corresponding times. In addition, when S′
k = S′

M+1,
it holds that S′

k+1 − S′
k = 0. Hence, for these ks, changing a′

i(S
′
k) to ai(Sk) does not affect

the above equality. Therefore, the above equality holds when we change a′
i(S

′
k) to ai(Sk)

for any k≤M . The difference of the arguments of the exponential function in the above
expressions (the inside parts of the curly brackets) is denoted by 
i. Substituting ai(Sk)

for a′
i(S

′
k) for any k≤M , we obtain


i = ai(SM)(T − SM)+ ai(SM−1)(SM − SM−1)+ · · ·
+ ai(Si+2)(Si+3 − Si+2)+ ai(Si+1)(Si+2 − Si+1)

− (
a′
i

(
S′
M+1

)(
T ′ − S′

M+1
) + ai(SM)

(
S′
M+1 − S′

M

) + ai(SM−1)
(
S′
M − S′

M−1
) + · · ·

+ ai(Si+2)
(
S′
i+3 − S′

i+2
) + ai(Si+1)

(
S′
i+2 − S′

i+1
))

= ai(SM)(T − SM)− ai(SM)
(
S′
M+1 − S′

M

) − a′
i

(
S′
M+1

)(
T ′ − S′

M+1
)

+ ai(SM−1)�M−1 + · · · + ai(Si+2)�i+2 + ai(Si+1)�i+1�

where �k = Sk+1 − Sk − (S′
k+1 − S′

k) and i ∈ {1� � � � �M − 1}. Define δa by δa = ai(SM) −
a′
i(S

′
M+1). It holds that

δa = ai(SM)− a′
i

(
S′
M+1

) =
∑M

j=1 bj

M − 1
− bi −

(∑M+1
j=1 bj

M
− bi

)

=
∑M

j=1 bj

M − 1
−

∑M+1
j=1 bj

M
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=
∑M

j=1 bj − (M − 1)bM+1

(M − 1)M
> 0�

The last inequality holds because bj ≥ bM+1 for any j ∈ I. We define SM+1 to satisfy
T − SM+1 = T ′ − S′

M+1 as a convention. (Because it is an artificial term, it may take a
negative value.) Using this convention and substituting the above formula for δa, we
can rewrite 
i as


i = ai(SM)(T − SM+1 + SM+1 − SM)

− ai(SM)
(
S′
M+1 − S′

M

) − a′
i

(
S′
M+1

)(
T ′ − S′

M+1
)

+ ai(SM−1)�M−1 + · · · + ai(Si+2)�i+2 + ai(Si+1)�i+1

= (
ai(SM)− a′

i

(
S′
M+1

))
(T − SM+1)+ ai(SM)�M

+ ai(SM−1)�M−1 + · · · + ai(Si+2)�i+2 + ai(Si+1)�i+1

= δa(T − SM+1)+ ai(SM)�M

+ ai(SM−1)�M−1 + · · · + ai(Si+2)�i+2 + ai(Si+1)�i+1�

There have to be at least two active players in a war of attrition and, thus, S2 = 0.
The probability of the initial volunteering is given by the difference between 1 and the
ex ante probability that player 1 does not volunteer by time S2 (= S′

2 = 0). Hence, the
difference between the ex ante probability that player 1 does not volunteer by time S2

in the original situation and the ex vante probability that player 1 does not volunteer by
time S′

2 in the modified situation has the same absolute value as the difference in the
probabilities of the initial volunteering, and the former has the opposite sign from the
latter. By construction, the difference in the ex ante probabilities that player 1 does not
volunteer by the time that the second player becomes active has the same sign as 
1.
Hence, when 
1 is positive, the probability of the initial volunteering increases by the
addition of player M + 1.

So as to evaluate 
is, we look at the time that player i+ 1 becomes active for the first
time, where 1 ≤ i ≤ M − 1. At that point in time, the ex ante probability that the player
has not volunteered is equal to 1: 1 = Pi+1(Si+1) = P ′

i+1(S
′
i+1). Using the same kind of

computation as above, we can rewrite this equation as

1 = zi+1 exp
{
ai+1(SM)(T − SM)+ ai+1(SM−1)(SM − SM−1)+ · · ·

+ ai+1(Si+2)(Si+3 − Si+2)+ ai+1(Si+1)(Si+2 − Si+1)
}

= zi+1 exp
{
a′
i+1

(
S′
M+1

)(
T ′ − S′

M+1
) + a′

i+1
(
S′
M

)(
S′
M+1 − S′

M

)
+ a′

i+1
(
S′
M−1

)(
S′
M − S′

M−1
) + · · ·

+ a′
i+1

(
S′
i+2

)(
S′
i+3 − S′

i+2
) + a′

i+1
(
S′
i+1

)(
S′
i+2 − S′

i+1
)}
�

Substituting ai(Sk) for a′
i(S

′
k) for any k≤ M , from the second equality, we have

ai+1(SM)(T − SM)+ ai+1(SM−1)(SM − SM−1)+ · · ·
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+ ai+1(Si+2)(Si+3 − Si+2)+ ai+1(Si+1)(Si+2 − Si+1)

= a′
i+1

(
S′
M+1

)(
T ′ − S′

M+1
) + ai+1(SM)

(
S′
M+1 − S′

M

)
+ ai+1(SM−1)

(
S′
M − S′

M−1
) + · · ·

+ ai+1(Si+2)
(
S′
i+3 − S′

i+2
) + ai+1(Si+1)

(
S′
i+2 − S′

i+1
)
�

Rearranging the terms and substituting the derived formulas for both δa and �i, we ob-
tain the equation

δa(T − SM+1)+ ai+1(SM)�M

+ ai+1(SM−1)�M−1 + · · · + ai+1(Si+2)�i+2 + ai+1(Si+1)�i+1 = 0 (A-1)

for i ∈ {1� � � � �M−1}. The analysis in Section 3.1 has shown that ai(Sj)−ai+1(Sj)= bi+1 −
bi for any j ≥ i+1. Subtracting the left-hand side of (A-1) from 
i and using this property,
we evaluate 
i: for i ∈ {1� � � � �M − 1},


i =
(
ai(SM)− ai+1(SM)

)
�M + (

ai(SM−1)− ai+1(SM−1)
)
�M−1

+ · · · + (
ai(Si+2)− ai+1(Si+2)

)
�i+2 + (

ai(Si+1)− ai+1(Si+1)
)
�i+1

= (bi+1 − bi)(�M +�M−1 + · · · +�i+2 +�i+1)� (A-2)

We identify the sign of 
1 by mathematical induction. The induction hypothesis is
as follows. For i ∈ {1� � � � �M − 1}, (a) 
i ≥ 0, where the inequality holds strictly when and
only when bi > bi+1, and (b) �M + · · · +�i+1 < 0.

We proceed backward from M − 1 to 1.
(i) i =M − 1. Applying (A-1) to this case, we obtain

δa(T − SM+1)+ aM(SM)�M = 0�

Because δa > 0, we have �M < 0, which proves the second part of the induction hypoth-
esis. Applying (A-2) to this case, we obtain


M−1 = (bM − bM−1)�M�

Because �M < 0, we obtain the first part of the induction hypothesis.
(ii) i < M − 1. Suppose that the induction hypothesis holds for i + 1. Then 
i+1 is

nonnegative. Thus, we have Pi+1(Si+2) ≥ P ′
i+1(S

′
i+2). Because Pi+1(Si+1) = P ′

i+1(S
′
i+1) =

1 and ai+1(Si+1) = a′
i+1(S

′
i+1), Si+1 − Si+2 ≤ S′

i+1 − S′
i+2 holds. It implies that �i+1 ≤ 0.

Because �M +�M−1 + · · · +�i+2 < 0 by the induction hypothesis, we have �M +�M−1 +
· · · + �i+1 < 0, proving the second part of the induction hypothesis. Then applying this
inequality to (A-2), we obtain the first part of the induction hypothesis.

This proves that 
1 ≥ 0, where the inequality holds strictly when and only when b1 >

b2. This implies the statement in the proposition.
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A.8 Proof of Proposition 4

When both b1 = b2 and z1 = z2 hold, the probability given in the statement of the propo-
sition becomes 0. Then the proposition is trivially true. (In fact, Proposition 2 shows
that there is no initial volunteering in this case.) In the following analysis, we assume
that either b1 > b2 or z1 < z2 holds, and that player 1 volunteers initially with a positive
probability.

Proposition 2 implies that player 1 is the one who volunteers initially and that player
2 is active at time 0. Let T be the time by which all the players exhaust the possibility
of volunteering, let S be the time when player 1 exhausts the possibility of volunteering,
and let K be the largest index among the players who are active just before time S: K =
maxAS−. (When player 1 exhausts the possibility of volunteering at the same time as all
the others do, we set S = T and K = I.) Because player 1 and player K are both active
just before time S, and because K is the largest index among those active at that time,
Lemma 6 implies that the set of active players just before time S is given by {1� � � � �K}.
Consider the modified game where there are only the first K players and their chances of
being the noncompromising type are given by (z1�P2(S)� � � � �PK(S)), where Pj(S) is the
ex ante probability that player j has not volunteered by time S. Then, by construction,
the equilibrium path until time S is the unique equilibrium of this modified game.

When 1 ≤ j < k, the corollary to Lemma 2 shows that aj(t) ≤ ak(t) for any t. Note

that zi = Pi(S)exp{− ∫ T
t=S ai(t)dt}. Because zj ≤ zk by Assumption Z, we have Pj(S) =

zj exp{∫ T
t=S aj(t)dt} ≤ zk exp{∫ T

t=S ak(t)dt} = Pk(S). This shows that Assumption Z is sat-
isfied for the modified game. For any j ∈ {1� � � � �K}, player j is active just before time S.
It implies that the modified game satisfies another condition supposed in Proposition 3.
Proposition 3 shows that the removal of the player whose bj is lowest never increases

the chance of the initial volunteering. Moreover, because
∑K

j=1 bj
K−1 > b1 and b1 ≥ bj for

any j ∈ I, Lemma A.1 implies that
∑k

j=1 bj
k−1 > b1 for any k ≤ K. Proposition 3 is applica-

ble even after the removal of such a player. Hence, we can remove the player with the
highest index repeatedly and then, applying Proposition 3, can conclude that the prob-
ability of the initial volunteering is not smaller than that in the game where there are
only player 1 and player 2, and their probabilities to be the noncompromising types are
given by (z1�P2(S)). The probability of the initial volunteering is increasing in z2 for the
two-player case as shown in Section 3.3.1 and P2(S) ≥ z2. Hence, the probability of the
initial volunteering in the game in which there are only the first two players serves as the
lower bound.

A.9 Proof of the observation in Section 5.1

We first prove the necessity of the conditions one by one.
(i) Lemma 1 shows that there is no gap in a war of attrition in terms of the possibility

of volunteering once it starts. Hence, if a war of attrition occurs, it either ends in a finite
time or continues forever. When there is no noncompromising type, the certain ending
would have to be carried out by one player volunteering for sure. However, it contradicts
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Lemma 1 as it would entail volunteering with a probability mass. Hence, once a war of
attrition starts, it continues forever.

(ii) By the same argument made in Lemma 2 for passive players, we can prove the
statement.

(iii) Suppose that player i becomes inactive at time τ: i ∈ At for any t such that
s ≤ t < τ and i ∈ I/Aτ . Player i’s expected payoff from waiting for a short period at time
τ has to be equal to Vi − ci. If it were higher than the latter, then he would not volunteer
just before τ. If it were lower, he would want to volunteer for sure at time τ. Both are con-
tradictions. For the equality to hold, his threshold rate has to be equal to the combined
rate of volunteering at time τ. This proves the third part.

(iv) Let us suppose the opposite. That is, suppose that
∑

A0
bj

|A0|−1 	= bi and i /∈ A0. When∑
A0

bj

|A0|−1 > bi, player i would obtain the payoff higher than Vi − ci in a war of attrition just

after time 0. Then he would never volunteer initially. When
∑

A0
bj

|A0|−1 < bi, player i would
obtain the payoff lower than Vi − ci in a war of attrition just after time 0. Because the
combined rate of volunteering is weakly decreasing, it implies that he would prefer vol-
unteering initially with probability 1. In either case, we have a contradiction. Therefore,
the fourth statement has to hold.

We next show that the conditions are sufficient.
First, observe that when either of the equality conditions in the third or in the fourth

part holds, the path that satisfies the required conditions entails a war of attrition by
the same set of active players from that time. When there is a change in the set of ac-
tive players, Lemma 2 requires that the combined rate of volunteering strictly decreases.
However, Lemma 2 and the additionally required conditions in this observation show
that the threshold rates of both active and inactive players are no higher than the com-
bined rate. Hence, when there is a player whose threshold rate is equal to the combined
rate of volunteering at some point, there cannot be the change in the set of active players
after that time.

Second, let us look at the players’ strategies for the initial volunteering. Let player i
be the player who does the initial volunteering with a probability between 0 and 1. If he
is active at time 0, his expected payoff is equal to Vi − ci. Hence, he has no incentive to
deviate. If he is not active at time 0, his threshold rate needs to be equal to the combined

rate of volunteering at time 0:
∑

A0
bj

|A0|−1 = bi. The above analysis shows that the combined
rate of volunteering stays the same throughout a war of attrition. By the definition of
the threshold rate, it implies that his expected payoff at time 0 is equal to Vi − ci, which
shows that he has no incentive to deviate. We claim that any player who is not supposed
to do the initial volunteering has no incentive to deviate. Let player j be such a player.
He has no incentive to do the initial volunteering when player i ( 	= j) does the initial vol-
unteering with a positive probability. Consider the case in which no player is supposed
to do the initial volunteering. When player j is active at time 0, his expected payoff at
that time is Vj − cj . When he is inactive at time 0, by the second condition of this obser-

vation, it holds that
∑

A0
bj

|A0|−1 ≥ bj . It implies that the expected payoff from waiting at time
0 is at least as large as Vj − cj . Because the initial volunteering gives him the payoff of
Vj − cj , he has no strict incentive to do the initial volunteering.
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Finally, consider the players’ strategies during a war of attrition. The above analysis
has shown that when player i is active just before time τ and becomes inactive at time τ,
his continuation payoff is equal to Vi −ci. Lemma 2 requires that the rate of volunteering
is set so that when player i is active, his continuation payoff is equal to Vi−ci. Thus, once
a player becomes active, his continuation payoff is equal to his net benefit. It implies
that he is indifferent between volunteering and waiting. Thus, once a player becomes
active, he has no incentive to deviate from then on. As to the inactive players, the second

condition of this observation requires that
∑

At
bj

|At |−1 ≥ bj . It implies that he weakly prefers
waiting to volunteering at time t. Hence, he has no way to improve his payoff. Therefore,
once a war of attrition starts, no player has an incentive to deviate.

These analyses show that the conditions in the observation constitute the sufficient
conditions.
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