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The loser’s curse in the search for advice

Pak Hung Au
Department of Economics, The Hong Kong University of Science and Technology

An agent searches sequentially for advice from multiple experts concerning the
payoff of taking an operation. After incurring a positive search cost, the agent can
consult an expert whose interest is partially aligned with him. There are infinitely
many experts, each has access to an identically and conditionally independent
signal structure about the payoff, and each makes a recommendation after ob-
serving the signal realization. We find that the experts face a loser’s curse, which
could hamper the quality of information transmission. This effect is illustrated by
studying the limit of equilibria with vanishing search cost. The main findings are
as follows. First, there are signal structures with which both the agent’s payoff and
social welfare are strictly lower than the alternative scenario in which the agent
commits to consulting a single expert only. Second, under some signal structures,
no information can be transmitted in equilibrium, even though informative rec-
ommendation is possible if the agent could commit to a single expert. Finally, we
identify the necessary and sufficient condition that ensures perfect information
aggregation in the limit.

Keywords. Search, expert advice, information transmission, information aggre-
gation.

JEL classification. D83.

1. Introduction

A patient with some medical symptoms is unsure whether surgery is an appropriate
treatment. For advice, he consults a doctor, who diagnoses the case and makes a rec-
ommendation. Suppose the interests of the doctor and the patient are aligned, so the
patient’s only concern is that the doctor’s diagnosis is not accurate (rather than worry-
ing that the doctor may have incentives to lie). Without sufficient confidence, he may
consult another doctor for a second opinion. If the recommendations of the two doctors
match, then he is more certain about the appropriate course of treatment. Nonetheless,
he may continue the process of consulting other doctors for more accurate information.
If he is eventually confident enough that the surgery is necessary, then he undergoes the
surgery with one of the doctors who recommended the surgery to him. It is natural to ex-
pect that by consulting more doctors, the patient could gather better information about
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the appropriate treatment. A similar scenario arises in the process of a customer look-
ing for a repair service, an entrepreneur looking for financial investment of a venture
capitalist, and a claimant looking for legal advice and the services of a lawyer.

In this paper, we analyze a model in which an agent (male) sequentially consults
experts (female) for advice on whether to undergo an operation. His payoff for having
the operation is uncertain, taking a positive value if the operation is suitable for him (an
event denoted by the state ω= 1) and a negative value if the operation is unsuitable for
him (an event denoted by the state ω = 0). There are infinitely many potential experts
for the agent to consult, and each expert has access to an identical and conditionally in-
dependent signal structure for learning about the agent’s stateω. For each consultation,
the agent has to incur a positive search cost. A consulted expert makes a recommen-
dation after privately learning her own signal realization, but not those of previously
consulted experts. If she recommends the operation, the agent can decide whether to
undergo the operation with her or seek more advice from other experts. If she recom-
mends against the operation, the agent cannot have the operation with her (but he may
still consult other experts). Eventually, the agent may undergo the operation with an ex-
pert who recommends him to do so or may stop seeking advice without undergoing the
operation.

The payoffs of the agent and the experts depend on the state and whether the op-
eration is performed. We assume the interests of the experts and the agent are partially
aligned. More specifically, if the agent undergoes the operation with an expert, then the
expert would get a payoff with the same sign as the agent’s. Alternatively, she gets a zero
payoff if the agent does not undergo the operation with her. For simplicity, the payoff
structure is exogenously fixed, so we have abstracted away from considerations such
as the pricing of the operation and bargaining over the division of liability of a failed
operation (i.e., the operation is carried out with the agent’s state being ω= 0).

Our objective is to investigate the equilibrium outcome and welfare consequence of
allowing the agent to search sequentially for experts’ advice. In particular, we would like
to compare the agent’s payoff and the social welfare under two scenarios: (i) a bench-
mark setting in which there is only one expert available for consultation and (ii) a setting
in which there are infinitely many experts available for consultation at an infinitesimal
search cost. At first sight, it seems that the agent would prefer scenario (ii), as he would
be able to learn the state with almost no cost. Our analysis shows that whether this con-
jecture holds crucially depends on the experts’ signal structure. The main findings are
as follows. First, there are signal structures with which both the agent’s payoff and the
social welfare are strictly lower in scenario (ii) than in scenario (i). Somewhat strikingly,
under some signal structures, no information can be transmitted in equilibrium in sce-
nario (ii), even though information transmission is possible in scenario (i). Finally, we
identify the necessary and sufficient condition on the signal structures that allow the
agent to learn the true state perfectly in scenario (ii).

The key driving force behind our results is a loser’s curse effect: in an equilibrium in
which the experts’ advice is informative, each expert understands that the agent decides
to undergo the operation if and only if he has received sufficiently favorable information
from other experts, and that her recommendation affects her own payoff if and only if
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she is pivotal. In other words, in deciding her recommendation, an expert conditions
her payoff calculations on being pivotal, which is a piece of news that is supportive of
the operation. As a result, the loser’s curse consideration leads her to recommend the
operation more often than she would, were she to base her recommendation only on
her privately observed signal. This in turn hurts the agent because it worsens the quality
of information transmitted in each expert consultation.

The emergence of the loser’s curse in our setting hinges crucially on the sequential
optimality of the agent’s search behaviors. If the agent were able to commit to a prede-
termined rule of sampling experts’ advice and making the operation decision, then from
an individual expert’s perspective, being pivotal no longer means the operation is likely
suitable—it just means the decision is a close call—so her recommendation would not
change systematically by conditioning on the pivotal event.

A lower search cost could potentially exacerbate the loser’s curse. Intuitively, with a
lower search cost, the experts anticipate that the agent can afford to consult more ex-
perts and will decide to undergo the operation only after he becomes more confident.
Each expert is, therefore, willing to further lower her own standard for recommending
the operation, making such a recommendation even less informative. This effect can
be illustrated most transparently by studying the limiting equilibrium with vanishing
search cost. We show that at a negligible search cost, the loser’s curse becomes extremely
severe: every expert almost always discards her private signal and recommends the op-
eration.

Using the observation above, we show that if the expert’s signal structure does not
contain a signal that fully revealsω= 0 and if the experts’ loss in a failed operation (rela-
tive to the gain in a successful operation) is less than that of the agent, it is possible that
the agent’s payoff is strictly lower than those in the single-expert benchmark. The intu-
ition is as follows. Suppose the experts adopt a partially informative recommendation
rule. In the absence of a signal that fully revealsω= 0, the agent can never be very confi-
dent thatω= 1. Otherwise, being pivotal would be extremely good news and the experts
would always recommend the operation, thus making her recommendation completely
uninformative. The agent’s posterior belief when he decides to undergo the operation
is, therefore, bounded away from 1, and this observation provides an upper bound on
the agent’s limit equilibrium payoff. Furthermore, we find that this upper bound de-
creases with the experts’ liability. Intuitively, if the experts suffer little from a failed op-
eration, they would inherently adopt a low standard for recommending the operation.
This worsens the informativeness of their recommendations, making the agent’s search
for advice less effective.

Somewhat surprisingly, we find that if the experts’ liability in a failed operation is
sufficiently small, the only equilibrium outcome involves experts adopting a completely
uninformative recommendation rule. We identify the conditions on information and
payoff structure, and provide a specific example, that allow partial information trans-
mission in the single-expert benchmark, but no information transmission is possible
with infinitely many experts available at a sufficiently low search cost. That is, the loser’s
curse could lead the market for advice to completely break down.
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We also investigate the effect of the loser’s curse on the effectiveness of aggregating
information dispersedly held by experts. As each expert observes a conditionally inde-
pendent signal about the state ω, if the agent can consult a large enough number of
experts whose recommendations are sufficiently informative about their signals, he is
able to learn the true state ω and, hence, take the ex post correct decision concerning
the operation almost surely: information is perfectly aggregated. As explained above, a
necessary condition for perfect information aggregation in the limit is the existence of a
signal that fully revealsω= 0. It turns out the condition is also sufficient, and the reason
is as follows. As noted above, the loser’s curse makes each expert almost always recom-
mend the operation in the limit. A recommendation against the operation thus implies
that the expert must have seen a signal that fully (or almost fully) reveals that ω= 0. As
the search cost is negligibly small, the agent can afford to sample a large number of rec-
ommendations and is bounded to receive quite a number of recommendations against
the operation if indeedω= 0. Therefore, the agent can learn the true state almost surely.

Our analysis suggests that the loser’s curse can potentially be a significant source of
inefficiency in settings involving search for advice. By mitigating the loser’s curse, the
agent’s welfare as well as social welfare may be improved using policies that mandate a
higher consultation fee or enforce contracts that prohibit the agent from seeking second
opinions.

1.1 Related literature

This paper is related to the following four lines of literature.

Search with adverse selection Our model features an agent sequentially consulting
multiple experts, who hold private information concerning a common state of nature.
Therefore, it is related to a body of work that studies the interaction of search and infor-
mation asymmetry, such as Lauermann and Wolinsky (2016), Inderst (2005), and Guer-
rieri et al. (2010). In Lauermann and Wolinsky (2016), a buyer has private information
about the cost of the transaction (incurred by the seller) and he sequentially samples
sellers who observe conditionally independent signals about his cost. The buyer has
incentives to search for a seller who observes a favorable signal and, hence, is willing
to accept a low price. Lauermann and Wolinsky (2016) identify a strong winner’s curse,
which they call the sampling curse, in their setting. The sampling curse implies that
perfect information aggregation (in the limit as search cost vanishes) requires strong
conditions on the signal structure. Our setting is similar to theirs, as the agent’s (buyer’s)
type distribution, from the expert’s (seller’s) perspective, is endogenously determined by
his search behavior. However, the reasons for search are quite different: the agent in our
model consults experts to learn about a payoff-relevant state, whereas the buyer in their
setting searches for a favorable deal. Moreover, being sampled is bad news for a seller in
their setting, as a high-cost buyer tends to search longer. Experts in our setting may find
it either good news or bad news, depending on the expected duration of search in each
state.
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Large election Feddersen and Pesendorfer (1997) analyze two-candidate elections in
which voters receive conditionally independent signals about a state variable that af-
fects the utility of all voters. They show that as the size of the electorate goes to infin-
ity, information is perfectly aggregated, in the sense that the election outcome would
not change were all private signals to become public. Similarly, we consider an agent
deciding between two options (whether to have an operation or not) and soliciting rec-
ommendations (analogous to votes) from partially informed experts (analogous to vot-
ers), and we are also interested in the scenario in which the agent’s search cost vanishes
(analogous to having infinitely many voters). Our model can, therefore, be viewed as a
sequential search version of aggregating information held dispersedly in some popula-
tion. An expert in our search setting faces strategic consideration similar to a voter in an
election, as they both evaluate their payoffs conditional on being pivotal. However, we
find that information is perfectly aggregated if and only if the experts’ signal space con-
tains a perfectly revealing signal, whereas the existence of such a signal is not needed
for large elections. The difference arises because the agent’s stopping rule in our search
setting is endogenous, whereas the decision rule (the size of electorate and the fraction
of votes a candidate needs to win) is exogenously fixed in an election.1 More discussion
on the relation between our results and Feddersen and Pesendorfer (1997) can be found
in Section 6.2. Other notable studies on information aggregation in elections include
Dekel and Piccione (2000) and Feddersen and Pesendorfer (1996).2

Common-value auction Our model has some flavor of a common-value auction, as the
state of the agent is common to all experts and he eventually picks one expert (if any) to
carry out the operation. However, our model does not involve bidding, and each expert
makes only a binary recommendation.

The literature in common-value auctions has studied whether the price paid by the
winning bidder converges, in the limit as the number of bidders goes to infinity, to the
value of the object being auctioned. We consider a related but different question on in-
formation aggregation: whether the advice of all consulted experts would collectively
reflect the underlying state.3  Milgrom (1979) identifies a necessary and sufficient con-
dition for perfect information aggregation for single-object auctions. If the object has
only two possible values, Milgrom’s condition is the existence of a signal that (almost)

1Another difference is that in the large elections considered in Feddersen and Pesendorfer (1997), the
election outcome is almost always very close. In contrast, the endogeneity of the agent’s stopping rule in
our search setting implies that only when he has received sufficient information would he stop searching,
at which point the advice collected would clearly favor the chosen option.

2Dekel and Piccione (2000) show that every symmetric equilibrium of a simultaneous voting game re-
mains to be an equilibrium if voters cast their votes sequentially. Feddersen and Pesendorfer (1996) identify
the swing voter’s curse: less informed, indifferent voters strictly prefer to abstain from voting. They show
that while a substantial fraction of the electorate might abstain, information is still perfectly aggregated in
the limit.

3If an observer of an (first-price or second-price) auction has access to not only the winning price, but
also all bids submitted, then she can recover the object’s value as the number of bidders goes to infinity. This
is because the signal of each bidder can be backed out from the submitted bid, as the unique symmetric
equilibrium bidding function is strictly monotone (see Krishna 2002).
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perfectly reveals that the object has a high value. His result is driven primarily by the in-
tense competition among a large number of bidders. Although our condition for perfect
information aggregation is similar, our result is driven by the experts’ loser’s curse and
the agent’s endogenous stopping rule, rather than competition among experts. More-
over, when Milgrom’s condition fails, the information aggregation properties in the two
settings are drastically different. A more detailed discussion on the relation between our
results and Milgrom (1979) can be found in Section 6.1.

Other notable studies on information aggregation in large auctions are as follows.
Pesendorfer and Swinkels (1997) consider a common-value auction with a large supply,
and show that the winner’s curse and the loser’s curse balance each other out, leading
to perfect information aggregation. Kremer (2002) shows that the competitiveness of
a large auction forces the limiting price to approach the object’s expected value condi-
tional on the pivotal bidder’s information.

Our finding that the agent may suffer from a decrease in his search cost because of an
exacerbation of the experts’ loser’s curse is related to the finding in the auction literature
that the auctioneer’s expected revenue may decrease in the number of bidders because
of the bidders’ winner’s curse. The latter possibility is illustrated in Bulow and Klemperer
(2002) and Hong and Shum (2002).4 The reason for our finding is that the exacerbation
of the loser’s curse induces the experts to make less informative recommendations, thus
lowering the agent’s expected payoff. In contrast, the auctioneer may suffer from having
more bidders because the exacerbation of the winner’s curse makes bidders shade their
bids more, without any impact on the information content of their bids.5 Moreover, the
implications of the loser’s curse on the experts’ payoffs, as well as the social welfare, are
different from the counterparts in auction settings. We discuss this in more detail in
Section 5.3.

Credence goods provision In the credence goods market, the expert becomes more in-
formed about the type and/or quality of the service the customer needs after perform-
ing a diagnosis. The expert then recommends and provides, subject to the customer’s
approval, the recommended service (see Dulleck and Kerschbamer 2006 for a survey).
The literature on credence goods provision studies whether competition among experts
can overcome market inefficiency due to the information asymmetry. Wolinsky (1993)
shows that competition can mitigate experts’ incentives to prescribe overtreatment (i.e.,
providing unnecessarily expensive treatment) if there are firms that specialize in provid-
ing low-cost repair. Alger and Salanié (2006) show that price competition in the low-cost
repair induces overtreatment. In contrast, our model does not feature any price compe-
tition, and overtreatment is not a problem. Pesendorfer and Wolinsky (2003) analyze a
setting in which experts need to exert diagnostic effort to identify the treatment needed
and they show that price competition leads to inefficient effort exertion. Wolinsky (2005)

4Bulow and Klemperer (2002) illustrate this possibility in two settings: (i) symmetric bidders with de-
creasing hazard rate and (ii) asymmetric bidders with increasing hazard rate. In contrast, we consider sym-
metric experts without any assumption on the hazard rate. Hong and Shum (2002) find an inverse relation
between the auctioneer’s revenue and the number of bidders in procurement auctions.

5In either a first- or second-price common-value auction, the unique symmetric equilibrium bidding
function is strictly monotone (see Krishna 2002).
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analyzes a setting in which experts exert effort to devise an appropriate plan for the cus-
tomer and shows that inefficiency arises because the customer does not internalize the
experts’ effort cost. Our model, alternatively, does not have any moral hazard.

The outline of the paper is as follows. The model is set up in Section 2. In Section 3,
we consider the benchmark case in which there is only one available expert. In analyzing
the main model in Section 4, we establish equilibrium existence and explain the effect of
the loser’s curse. We show that the loser’s curse can lead to inefficiency by studying the
limit equilibrium with a negligible search cost in Section 5. In Section 6, we identify con-
ditions under which dispersed information is perfectly aggregated in the limit. Section 7
discusses a few alternative settings. Lengthy proofs are relegated to the Appendix.

2. Model

An agent (male) can either undergo an operation (denoted by a= 1) or not (denoted by
a= 0). His payoff from undergoing the operation depends on a binary state of the world
ω ∈ {0�1}. If the state is ω = 1 (ω = 0), then the operation is suitable (unsuitable) for
him. His prior belief about the state is denoted by π ≡ Pr(ω= 1) ∈ (0�1). The operation
must be carried out by an expert (female). There are infinitely many ex ante identical
experts. In each of the infinitely many periods, the agent can visit one expert. Upon
a visit, each expert conducts a test that generates an informative signal about ω. After
privately observing the signal, she makes a recommendation to the agent. The experts
have a common payoff function, as well as common information acquisition technology,
which will be discussed below. The agent has free access to one expert and he always
consults this first expert. For each additional consultation of other experts, the agent has
to incur a search cost of c ∈ (0�1). Each of the infinitely many experts is drawn (without
recall) with equal probability in every period.

Each expert can run a costless test to obtain a signal s about the state ω. The signal
of each expert is distributed identically and independently (conditional on the state ω).
More specifically, the signal space is a closed interval, denoted by [s� s̄] ⊂ [0�∞], and the
signal s is generated according to conditional density function f (s|ω), with the corre-
sponding conditional distribution function F(s|ω). We further assume that f (s|ω) has
full support on [s� s̄] for each ω. We say a signal structure is permissible if it satisfies the
assumptions above. In the subsequent analysis, we label the signals as their likelihood
ratios, i.e., s ≡ f (s|1)/f (s|0). With this labelling, a high signal is more indicative of ω= 1,
and the signal structure is informative if and only if s ∈ [0�1) and s̄ ∈ (1�∞].

The signal realization of the test is unverifiable and observed privately by the con-
sulted expert. Moreover, we assume that the signal realization is so complicated that it
is infeasible to communicate its full content to the agent. Instead, each expert makes
a binary recommendation to have the operation or not. Denote the set of recommen-
dations by {Y�N}, where Y stands for a nonbinding recommendation for the operation
and N stands for a recommendation against the operation. If the expert recommends
N , it means that she refuses to perform the operation for the agent, who must then
part with the expert and that period is over. Alternatively, if the expert recommends
Y , it means that she is willing to perform the operation for the agent, who can choose
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whether to have the operation with her. In other words, a recommendationN is a rejec-
tion by the expert, whereas a recommendation Y means the expert provides an option
for the agent to undergo the operation with her. If the expert makes recommendation
Y and the agent agrees to have the operation with her, then they collect their respec-
tive payoffs described below and the game is over. If the agent chooses not to have the
operation with the expert, he parts with her and that period is over. He can then either
consult another expert in the next period or stop the search for advice altogether.

The respective payoffs received by the agent and the expert for different scenarios
are

Action

State
a= 1 a= 0

ω= 1 1�1 0�0
ω= 0 −L�−l 0�0

�

The agent receives a positive payoff normalized to 1 if he undergoes the operation and
the state isω= 1. He suffers a loss L if he undergoes the operation but the state isω= 0.
His payoff from not having the operation is state-independent and normalized to 0. The
expert who performs the operation for the agent has a partially aligned payoff function:
a positive payoff normalized to 1 if the operation is indeed suitable for the agent and a
negative payoff equals −l if the operation is not suitable. Her payoff is normalized to 0 if
she does not perform the operation for the agent.6 It is clear that if the stateω is publicly
known, the agent and all experts would agree on the operation decision. Throughout
our analysis, we assume L > l > 0, so that the agent suffers more than the expert in the
case of a failed operation. We believe that this is the relevant parameter configurations
in most applications, including the case of a patient looking for advice on surgery and a
claimant looking for legal advice.

The agent’s search process is assumed to be without recall. Therefore, once the agent
parts with an expert (either because the expert recommends N or the agent refuses to
undergo the operation with her), the latter’s role in the game is over. Moreover, the agent
cannot communicate his history of recommendations received from previously con-
sulted experts. Finally, we assume that the experts do not know the number of previous
experts the agent has consulted. This assumption is natural if the agent becomes aware
of his problem at a random time, which is not observable by the experts. Discussion on
these assumptions can be found in Section 7.

A pure strategy of an expert is the set of signals under which she recommends
the operation. A history of the agent after consulting n experts is a sequence of n
recommendations. Denote the set of all possible recommendation histories by H ≡
{∅} ∪ (⋃n∈N{Y�N}n). At the beginning of a period, the agent decides whether to visit
an expert who he has not consulted before. At the end of a period, if he has consulted
an expert and the expert recommends Y , he decides whether to undergo the operation

6This payoff specification is a normalization because the preference represented in the form of expected
utility is preserved under a positive affine transformation of the von Neumann–Morgenstern utility func-
tion.
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with her. Therefore, a generic behavioral strategy of the agent, denoted by b= (b0� b1),

consists of two components, both of which are mappings fromH to [0�1]. First, b0(h) is

the probability that the agent chooses not to consult any expert for that period, provided

that the current history is h. Second, b1(h) is the probability that the agent decides to

undergo the operation at the end of a period after being recommended by the current

expert to do so.7

The solution concept is weak perfect Bayesian equilibrium. We say an equilibrium

is informative if the operation outcome varies stochastically with the state ω. In an in-

formative equilibrium, it is necessary that the agent’s strategy satisfies b1(h�Y) > 0 for

some history h ∈H on the equilibrium path. Alternatively, an equilibrium is said to be

uninformative if the operation outcome is independent of the state: either the opera-

tion is always carried out or it is never carried out. While informative and uninformative

equilibria may coexist for some parameters, our subsequent analysis puts more empha-

sis on informative equilibria (whenever they exist) because they have more interesting

welfare and information properties.

3. Benchmark model: Single expert

For comparison of results later, we consider a benchmark model in which the agent can

consult only one expert. The specific objective is to compute the maximum payoff of

the agent and the expert among all permissible signal structures.

After learning a signal s, the expert updates her belief on ω according to Bayes’

rule: Pr(ω= 1|s)= (1 + (1 − π)/(πs))−1. If the agent follows her recommendation with

a positive probability, she finds it optimal to recommend the operation if and only if

Pr(ω= 1|s)− lPr(ω= 0|s)≥ 0 or, equivalently,

s ≥ 1 −π
π

l≡ s̃� (1)

Consequently, in an informative equilibrium, the expert adopts the cutoff strategy of

recommending Y if and only if s ≥ s̃, and it is necessary that s̃ ∈ (s� s̄).
Upon receiving a positive recommendation, the agent’s payoff from taking the oper-

ation is Pr(ω= 1|s ≥ s̃)−LPr(ω= 0|s ≥ s̃). He follows the recommendation if this payoff

is nonnegative or, equivalently,

π

1 −π
1 − F(s̃|1)
1 − F(s̃|0) ≥L� (2)

An informative equilibrium requires that the expert makes her recommendation

based on the observed signal and that the agent follows her recommendation. Thus,

7In our notation, for i= 0�1, bi(h)= 1 stands for stopping the search and bi(h)= 0 stands for continuing
the search.
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an informative equilibrium exists if and only if both π ∈ (l/(l+ s̄)� l/(l+ s)) and inequal-
ity (2) holds.8 If either one of these conditions fails, then the equilibrium is necessarily
uninformative.9

Denote by U1(F) and T1(F) the highest equilibrium (ex ante) payoffs of the agent
and the expert, respectively, given a signal structure F . While an informative equilib-
rium and an uninformative equilibrium in which the agent never takes the operation
may coexist, the former strictly Pareto dominates the latter. This follows immediately
from the observation that either the expert or the agent can veto the operation, so their
respective expected payoffs must be nonnegative whenever the operation is carried out.
Consequently, U1(F) and T1(F) are determined by the informative equilibrium when-
ever it exists.

3.1 Bounds on payoffs

In this subsection, we derive tight upper bounds on U1(F) and T1(F) among all per-
missible signal structures, fixing the lower bound of the signal space s ∈ [0�1). The main
purpose of this derivation is to compare the welfare between the single-expert bench-
mark and that of allowing the agent to sequentially seek advice from multiple experts (to
be considered in Sections 4–6).

Given a fixed lower bound of the signal space s, the most informative signal struc-
ture is one that has a binary support, say {s� s̄}, where s̄ fully reveals ω = 1. This signal
structure, denoted by Fs , generates signals with conditional probabilities Pr(s|ω= 0)= 1
and Pr(s|ω= 1)= s = 1 − Pr(s̄|ω= 1).10 It is easy to see that if s is sufficiently low, in par-
ticular π < l/(l+ s), then the expert is willing to recommend N after observing signal s.
In this case, an informative equilibrium exists, and the ex ante expected payoffs of the
agent and the expert are both π(1 − s). While Fs does not have a conditional density and
is thus not permissible, it provides a tight upper bound for equilibrium payoffs of the
single-expert benchmark.

Proposition 1. Fix the lower bound of the expert’s signal space at s ∈ [0�1) and denote
by �s the set of permissible signal structures with a lower bound of the signal space s. If
π < l/(l+ s), then

sup
F∈�s

U1(F)= sup
F∈�s

T1(F)= π(1 − s)�

Proposition 1 is quite intuitive.11 As the interests of the agent and the expert are par-
tially aligned, it is not surprising that the agent would prefer an expert endowed with a

8The condition π ∈ (l/(l+ s̄)� l/(l+ s)) is equivalent to s̃ ∈ (s� s̄).
9In particular, there is an uninformative equilibrium in which the expert always recommends Y and the

agent always takes the operation regardless of signals if and only if π ≥ max{l/(l+ s)�L/(1 +L)}. It is clear
that there is no informative equilibrium in this case.

10That is, Fs(s|0)= 1 and Fs(s|1)= 0 for s < s. Also, Fs(s|1)= s for s ∈ [s� s̄) and Fs(s̄|1)= 1.
11The proof can be found in the working paper version of this article.
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more informative signal structure. In the proof of Proposition 1, we first consider the

case in which discrete signal structures are permitted and we show that the optimal sig-

nal structure is Fs . The proof is completed by noting that Fs can be approximated arbi-

trarily well using signal structures with conditional density functions that have a support

[s�∞].

4. Equilibrium existence and characterization

In this section, we analyze the main model, in which the agents can sequentially consult

multiple experts. We focus on the informative equilibrium, identify parameter configu-

rations that ensure its existence, and provide some characterization.

Consider first the experts’ problem. A key observation is that an expert’s recommen-

dation matters to her payoff if and only if she is pivotal. Specifically, a recommendation

N gives her a sure payoff of zero. A recommendation Y gives her a nonzero payoff if and

only if the agent follows her recommendation and takes the operation with her. There-

fore, when deciding her recommendation, the expert should compare her payoffs con-

ditional on the pivotal event that the agent would follow her recommendation Y and

take the operation with her. Denote the pivotal event by piv(b) ≡ {h ∈ H : b1(h�Y) >

0 and h is on the equilibrium path}. By definition, piv(b) has a positive probability in an

informative equilibrium.

We explain below that the experts necessarily adopt an identical cutoff strategy in

an informative equilibrium. By assumption, each expert’s signal s is, conditional on

ω, independent of other events in the game. This implies that her belief that ω = 1,

conditional on the signal s, being pivotal, and the strategy profile of other players, is

strictly increasing in s. Consequently, each expert would find it optimal to adopt a

cutoff strategy of recommending Y if and only if the observed signal s exceeds a cer-

tain cutoff. Moreover, as the experts cannot observe the consultation history of the

agent, they all face an identical problem, so they necessarily adopt a common cutoff

strategy in equilibrium. Therefore, without loss of generality, we simply use the com-

mon cutoff s∗ to stand for an expert’s strategy. In an informative equilibrium, the ex-

perts adopt cutoff s∗ ∈ (s� s̄) so that their recommendations vary with their observed

signals.

Using the observations above, in an informative equilibrium, cutoff strategy s∗ is an

individual expert’s best response to the strategy profile (s∗� b) of other experts and the

agent if and only if

Pr
(
ω= 1|s∗�piv(b); s∗� b)= l

1 + l � (3)

The conditional probability Pr(ω= 1|s�piv(b); s∗� b) can be expressed more explicitly in

terms of the strategy profile (s∗� b). Specifically, denote by qω(h; s∗� b) the ex ante prob-

ability that the agent arrives at history h ∈ H prior to a consultation, given a strategy
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profile (s∗� b) and a state ω. Then

Pr
(
ω= 1|s�piv(b); s∗� b) =

(
1 + 1

s

1 −π
π

Pr
(
piv(b)|ω= 0; s∗� b)

Pr
(
piv(b)|ω= 1; s∗� b)

)−1

=

⎛
⎜⎜⎝1 + 1

s

1 −π
π

∑
h∈H

q0
(
h; s∗� b)b1(h�Y)

∑
h∈H

q1
(
h; s∗� b)b1(h�Y)

⎞
⎟⎟⎠

−1

� (4)

The first equality is a straightforward application of Bayes’ rule, using the fact that each
expert’s signal s is independently drawn conditional on ω. The second equality com-
putes the likelihood ratio Pr(piv(b)|ω = 0; s∗� b)/Pr(piv(b)|ω = 1; s∗� b) of the pivotal
event piv(b). This likelihood ratio is determined by the ratio of the ex ante expected
number of pivotal experts in each state.12 In state ω,

∑
h∈H qω(h; s∗� b)b1(h�Y) is the

expected number of pivotal experts in the agent’s equilibrium search.
Next, we consider the agent’s search strategy. The agent’s posterior belief associated

with history h ∈H depends only on the experts’ strategy s∗, and can be computed with
a simple application of Bayes’ rule. We write p(h; s∗) to stand for the induced poste-
rior belief that ω= 1. The following lemma states that the agent’s best response to any
common strategy of the experts has a Markov structure, with the state variable being the
agent’s current belief.13

Lemma 1. For any strategy s∗ of the experts, the agent’s optimal search strategy, charac-
terized by a unique pair of beliefsp0(s

∗)�p1(s
∗) ∈ [0�1], is as follows. Let h be a beginning-

of-period history.

(i) At the beginning of a period (other than the first period), the agent quits search-
ing (i.e., b0(h) = 1) if p(h; s∗) < p0(s

∗) and consults an expert (i.e., b0(h) = 0) if
p(h; s∗) > p0(s

∗). At p(h; s∗) = p0(s
∗), he is indifferent and may randomize (i.e.,

b0(h) ∈ [0�1]).

(ii) Suppose the current expert recommends Y . The agent takes the operation (i.e.,
b1(h�Y) = 1) if p(h�Y ; s∗) > p1(s

∗) and does not take it (i.e., b1(h�Y) = 0) if
p(h�Y ; s∗) < p1(s

∗). At p(h�Y ; s∗)= p1(s
∗), he is indifferent and may randomize

(i.e., b1(h�Y) ∈ [0�1]).

Appendix A.1 contains the details of characterizing the cutoffs p0(s
∗) and p1(s

∗) us-
ing the agent’s Bellman equation. Ifπ ∈ (p0(s

∗)�p1(s
∗)), the agent would typically solicit

a quantity of advice, stopping the search whenever his posterior belief falls below p0(s
∗)

or rises above p1(s
∗). Note that it is possible for his belief prior to meeting an expert to

exceed p1(s
∗); this can happen if π > p1(s

∗) and he has not received any recommenda-
tion Y so far.

12Lemma 6 in Appendix A.2 ensures that, in an informative equilibrium, the likelihood ratio of piv(b)
and, thus, the conditional probability Pr(ω= 1|s�piv(b); s∗� b), are well defined.

13For a proof of Lemma 1, see Ross (1983).
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In sum, a strategy profile (s∗� b) constitutes an informative equilibrium if and only
if

(a) (experts’ best response) (3) holds

(b) (agent’s best response) b is as described in Lemma 1

(c) (informative outcome) s∗ ∈ (s� s̄) and piv(b) is a positive-probability event.

In addition to the informative equilibria discussed above, an uninformative equilib-
rium may also exist. In such an equilibrium, the outcome is not informative of the state
ω in that (i) s∗ ∈ {s� s̄} and/or (ii) b1(h�Y)= 0 for all on-the-equilibrium-path history h.

The following proposition establishes the existence of an equilibrium.

Proposition 2. An equilibrium exists. Moreover, if π ∈ (L/(1 + L)� l/(l + s)), an infor-
mative equilibrium exists.

The proof of Proposition 2 can be found in Appendix A.2. An informative equilibrium
may still exist even if π /∈ (L/(1 + L)� l/(l + s)), but its existence is not guaranteed by
Proposition 2. Although we cannot establish equilibrium uniqueness for the general
case,14 we show in the next section that the equilibrium is essentially unique in the limit
when the search cost is vanishingly small.

In the rest of this section, we explain the implication of the pivotal nature of the
experts’ problem by considering (3) and (4). If the agent is expected to consult many
experts, being pivotal is good news to the expert because the agent must have collected
sufficiently favorable information from other experts to warrant implementing the op-
eration with a single extra recommendation Y . In other words, the agent’s belief prior
to consulting her must be sufficiently close to (or above) p1(s

∗). Specifically, denote
by p̃1(s

∗) the minimum belief for the consulted expert to be pivotal. That is, with a
beginning-of-period belief p̃1(s

∗), the agent’s posterior would jump up to p1(s
∗) after

receiving a recommendation Y from the current expert. Thus, p1(s
∗) and p̃1(s

∗) are
related by

p1
(
s∗
)=

(
1 + 1 − p̃1

(
s∗
)

p̃1
(
s∗
) 1 − F(s∗|0)

1 − F(s∗|1)
)−1

� (5)

We can derive an upper bound on the likelihood ratio of the pivotal event piv(b)
using p̃1(s

∗). First, as the event piv(b) is made up of the agent’s on-path histories such
that b1(h�Y) > 0, its likelihood ratio is bounded from above by that associated with the
most “unfavorable” history within the event:

Pr
(
piv(b)|ω= 0; s∗� b)

Pr
(
piv(b)|ω= 1; s∗� b) ≤ sup

h∈piv(b)

q0
(
h; s∗� b)

q1
(
h; s∗� b) � (6)

Now suppose the agent has a history h and the current consultation is pivotal. By the
definition of p̃1(s

∗), his beginning-of-period belief [1 + (1 − π)q0(h; s∗� b)/(πq1(h; s∗�
14Thus, if π ∈ (L/(1 +L)� l/(l+ s)), there may be multiple informative equilibria. If π /∈ (L/(1 +L)� l/(l+

s)), informative and uninformative equilibria may coexist.
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b))]−1 must be no lower than p̃1(s
∗). This implies that q0(h; s∗� b)/q1(h; s∗� b) ≤ π(1 −

p̃1(s
∗))/((1 − π)p̃1(s

∗)). Together with inequality (6), the likelihood ratio of piv(b) is
thus bounded from above by π(1 − p̃1(s

∗))/((1 −π)p̃1(s
∗)).

Using this upper bound, the equilibrium condition on the experts’ strategy (3) im-
plies (

1 + 1
s∗

1 − p̃1
(
s∗
)

p̃1
(
s∗
) )−1

≤ l

1 + l � (7)

Therefore, when deciding her recommendation, it is as if the expert replaces the prior
belief π with some belief higher than p̃1(s

∗). If p̃1(s
∗) > π, then being pivotal is neces-

sarily good news. A failure to take this into account would make an individual expert
suffer the loser’s curse: by adopting an excessively high cutoff, she may end up recom-
mending N , even though the expected payoff from carrying out the operation (which
would happen were she to recommend Y ) is positive. In the next section, we show that
p̃1(s

∗) > π arises in equilibrium if the search cost is sufficiently small and π is not too
high.

5. Welfare loss with vanishing search cost

In this section, we illustrate the welfare loss resulting from the experts’ loser’s curse.
To this end, we consider a scenario in which the agent’s search cost c is vanishingly
small. Specifically, take an arbitrary sequence of (positive) search cost {cn}, such that
limn→∞ cn = 0, and a corresponding sequence of equilibria. In the absence of the loser’s
curse (for instance, if all experts naively believe that they are the only expert being con-
sulted), so that the experts adopt the cutoff defined in (1), it is straightforward that the
agent is able to learn the true state ω with probability arbitrarily close to 1 as cn → 0.15

In this case, there is essentially full efficiency, as the payoff to the agent and expert are
both arbitrarily close to the highest possible level, which is equal to π. Therefore, in this
hypothetical setting without the loser’s curse, the agent and the social planner would
strictly prefer having a negligible search cost rather than a search cost so high that the
agent can afford to consult only one expert.

One of our main findings is that the conclusions above can be very different once
the loser’s curse is taken into account. By computing upper bounds for the equilibrium
payoffs of the agent and the experts with vanishing search cost, and comparing them
with those of the single-expert benchmark (in Proposition 1), we find that there are cir-
cumstances under which the agent and the experts would all strictly benefit if the agent
could commit to consulting only a single expert. In deriving this result, we show that un-
der some signal structures, the loser’s curse prevents the agent from perfectly learning
the state even if the search cost is negligible. In some extreme cases, this effect could be
so severe that informative equilibria do not exist, even though information transmission
is possible in the single-expert benchmark.

Denote byU(c) the highest equilibrium payoff of the agent in the game with a search
cost of c. To be specific, U(c) is given by the agent’s ex ante expected payoff from the

15This is a consequence of the law of large numbers.
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operation decision less the total search cost incurred. Also, denote by T(c) the high-
est equilibrium joint payoff of the experts in the corresponding game.16 The main re-
sult of this section, formally stated in the proposition below, identifies upper bounds
on U(c) and T(c) in the limit equilibrium with vanishing search cost. To facilitate the
comparison with the single-expert benchmark, we focus on the case π < l/(l+ s) (as in
Proposition 1).

Proposition 3. Suppose π < l/(l+ s).
(i) If s ∈ (0� l/L], then lim supn→∞U(cn)≤ π(1 − sL/l) and lim supn→∞ T(cn) < π(1 −

s).

(ii) If s > l/L, then for all sufficiently small values of cn, there is no informative equi-
librium and U(cn)= T(cn)= 0.

The proof of Proposition 3 can be found in Appendix A.4. Except for the lower bound
s of the signal space, Proposition 3 makes no assumption on the experts’ signal struc-
ture. The most interesting implication of part (i) of the proposition arises when the ex-
perts’ signal structure F is close to Fs. Recall that in the single-expert benchmark in
Section 3, Proposition 1 states that the expected payoffs of the agent and the expert are
both approximately π(1 − s). Alternatively, Proposition 3 states that with access to in-
finitely many experts at an infinitesimal search cost, the agent’s payoff is no more than
max{π(1 − sL/l)�0}, which is strictly below π(1 − s). Moreover, the limit of the experts’
joint payoff is strictly below π(1 − s). Therefore, Proposition 3 implies that if the experts’
signal structure is sufficiently close to Fs , the single-expert benchmark Pareto dominates
the case of allowing the agent to access infinitely many experts at a negligible search
cost. Part (ii) of Proposition 3 states that no information is transmitted if s > l/L and
the search cost is sufficiently small. The condition π < l/(l + s) implies that the only
uninformative equilibria are those in which the agent does not take the operation and
all players get a zero payoff.

In Section 5.1, we identify the key properties of the informative equilibria in the
limit, which allow us to derive the upper bounds on the equilibrium payoffs in part (i)
of Proposition 3.17 In Section 5.2, we explain why informative equilibria do not exist in
the limit when s > l

L . In Section 5.3, we discuss some further welfare implications of our
findings.

5.1 Limiting properties of informative equilibria

In an informative equilibrium with negligible search cost, the quality of information
transmission can be severely impeded by the loser’s curse. The intuition is as follows.

16In the proof of Proposition 2, we establish the upper semicontinuity of the experts’ best response corre-
spondence (to other experts’ common strategy), so the set of equilibrium experts’ cutoffs is closed. Together
with the fact that the agents’ optimal cutoff beliefs (p0�p1) are continuous in the experts’ cutoff, U(c) and
T(c) are well defined.

17The reason why it suffices to focus on informative equilibria is that the condition π < l/(l+ s) ensures
that in any uninformative equilibrium, the agent does not take the operation, so all players receive a zero
payoff.
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If an agent with negligible search cost shows up for a consultation, it is very likely that
he has already consulted a large number of other experts. Moreover, in the event that the
consultation is pivotal, he is just looking for a final proof that the operation is appropri-
ate, as previous evidence collected from other experts supports the need for the opera-
tion. This in turn implies that the pivotal expert would be inclined to easily recommend
the operation. As a result, the experts’ recommendation rule is highly uninformative,
making it hard for the agent to collect useful information from the consultations.

Lemma 2 below states that as the search cost vanishes, the experts’ recommenda-
tion becomes almost completely uninformative. The lack of information content in the
experts’ advice in turn limits the agent’s ability to learn the state effectively and he stops
his search before he is certain of the state.

Lemma 2. Denote by s∗(cn) the experts’ cutoff in an informative equilibrium of the game
with search cost cn.18 Supposeπ < l/(l+s). For every sequence of informative equilibria,

(i) limn→∞ s∗(cn)= s
(ii) limn→∞p1(s

∗(cn))= l/(l+ s)
(iii) lim infn→∞p0(s

∗(cn)) > 0 if s > 0.

The proof of Lemma 2 can be found in Appendix A.3. The intuition for part (i) is
as follows. Suppose limn→∞ s∗(cn) > s. Then there is a positive measure of unfavorable
signals over which the experts recommend N even as the search cost vanishes. As the
search cost is very low and the experts’ advice is strictly informative, the agent would
sample advice until he is almost sure thatω= 1 before taking the operation. This in turn
implies that regardless of the signal s, as long as the agent takes the operation following
her recommendation Y , the expert’s belief that the agent has ω = 1 is very close to 1.
This contradicts that limn→∞ s∗(cn) > s.

Parts (ii) and (iii) of Lemma 2 concern the agent’s equilibrium search strategy in
the limit. The intuition for part (ii) is as follows. Suppose for simplicity that π <
p1(s

∗(cn)) for all n. Denote by qn the pivotal expert’s belief prior to observing her pri-
vate signal if the search cost is cn. By part (i), at a small search cost, she is willing
to recommend the operation even if the private signal is very close to s, i.e., the pos-
terior (1 + (1 − qn)/(qns))

−1 must be (smaller but) very close to l/(1 + l). This im-
plies that qn must be very close to l/(l + s). Moreover, as the expert’s recommen-
dation Y is almost completely uninformative, the pivotal consultation increases the
agent’s belief only marginally; p̃1(s

∗(cn)) and p1(s
∗(cn)) are very close (recall (5)). As

qn ∈ [p̃1(s
∗(cn))�p1(s

∗(cn))], p1(s
∗(cn))must converge to l/(l+ s).

Part (iii) of the lemma states that there is some sufficiently low belief that when the
search cost gets small enough, the agent would have no incentives to search for advice.
The reason is that the quality of information that can be obtained by consulting experts
is so low that it does not justify the overall search cost involved. The key condition for

18If the game has more than one informative equilibrium, the function s∗(cn) selects an arbitrary equi-
librium cutoff.
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this finding is s > 0. Specifically, as experts adopt a cutoff very close to s, a recommenda-
tion Y is almost completely uninformative, whereas a recommendation N implies that
the expert has observed a signal close to s. The higher is the value of s, the less is a rec-
ommendationN indicative ofω= 0, so there is less information the agent can infer from
the experts’ advice.19

An implication of Lemma 2 is that if s > 0, the agent is unable to learn the state per-
fectly even if the search cost is negligibly small. Specifically, parts (ii) and (iii) imply that
limn→∞p1(s

∗(cn)) < 1 and lim infn→∞p0(s
∗(cn)) > 0, so he makes the wrong operation

decision with a positive probability. The issue of information aggregation with sequen-
tial search is revisited in Section 6, where we show that the state can be perfectly learned
if s = 0 and the search cost is negligible.

We can use Lemma 2 to derive the upper bounds for the limit equilibrium pay-
offs reported in part (i) of Proposition 3. For simplicity, suppose p0(s

∗(cn)) < π <

p1(s
∗(cn)) for all cn. Recall that when the agent’s belief falls below p0(s

∗(cn)), it is op-
timal to quit the search without the operation. Conversely, when his belief reaches
p1(s

∗(cn)), it is optimal for him to take the operation, which gives him an expected
payoff −L + (1 + L)p1(s

∗(cn)). As his updated belief in the search process is a mar-
tingale, the probability that his search ends with belief p1(s

∗(cn)) is approximately
(π − p0(s

∗(cn)))/(p1(s
∗(cn)) − p0(s

∗(cn))). Therefore, his ex ante payoff U(cn) is ap-
proximately the product of the two terms above. As the search cost vanishes, the
approximation becomes exact. Using Lemma 2, the limiting value of U(cn) is (1 −
sL/l)(π − p

0
)/(1 − p

0
(l + s)/l), where p

0
≡ lim infn→∞p0(s

∗(cn)). As p
0
> 0, by part

(iii) of Lemma 2,U(cn) is strictly smaller than π(1 − sL/l) in the limit. The upper bound
on the experts’ joint payoff can be calculated analogously. Conditional on performing
the operation, an expert’s expected payoff is approximately −l + (1 + l)Pr(ω = 1|q =
p1(s

∗(cn))� s ≥ s∗(cn)). Following a similar computation as above, the ex ante joint pay-
off of the experts has a limiting value that is strictly smaller than π(1 − s).

5.2 Nonexistence of informative equilibria when s > l/L

The case of s > l/L has an extreme equilibrium outcome when the search cost is small:
no information is transmitted and the agent never takes the operation. We explain be-
low the intuition for why an informative equilibrium does not exist in this case. Recall
that the agent is willing to take the operation only if his posterior belief is no less than
L/(1 +L), so p1(s

∗)≥ L/(1 +L). Consequently, in the pivotal consultation, the agent’s
belief prior to getting the recommendation is close to or larger than L/(1 + L). If L
is large relative to l, the fact that the consultation is pivotal would make the expert so
confident that she is willing to recommend the operation even if she observes the low-
est signal s. This, however, contradicts the requirement that information is transmitted
through recommendation in an informative equilibrium.

More specifically, part (i) of Lemma 2 implies that in an informative equilibrium
with a negligible search cost, a recommendation Y in the pivotal consultation increases

19In Proposition 4, we show that if s = 0, then limn→∞p0(s
∗(cn))= 0.
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the agent’s belief only marginally. The pivotal expert’s belief prior to observing her sig-
nal is thus close to p1(s

∗), which is no less than L/(1 + L). Consequently, her belief
Pr(ω= 1|s�piv(b)) conditional on being pivotal and observing the worst possible signal
s is no less than (1 + s−1[1 −L/(1 +L)]/[L/(1 +L)])−1, so her expected payoff from rec-
ommending the operation exceeds L(s − l/L)/(Ls + 1) > 0. Therefore, she is willing to
completely ignore her signal and always recommend the operation.

It is useful to note that the condition s > l/L does not preclude information trans-
mission in the single-expert benchmark, as illustrated by the following example.

Example 1. Let the expert’s signal space be [s�∞] and let her signal structure be
f (s|0)= π(1 − π + πs)/(1 − π + πs)3 and f (s|1)= sf (s|0). Suppose further that s > l/L,
π ∈ (0� l/(l+ s)), and 1

2(1 + l/(1 + l)) > L/(1 +L) hold.20 The specified signal structure
induces a distribution of the expert’s posterior belief (after observing the signal) that is
uniform between (1 + s−1(1 −π)/π)−1 and 1.

Given the expert’s cutoff rule in (1), the agent’s belief conditional on the expert’s rec-
ommendationY is 1

2(1+ l/(1+ l)). The assumption 1
2(1+ l/(1+ l)) > L/(1+L) therefore

ensures that inequality (2) holds and an informative equilibrium exists in the single-
expert benchmark. It is immediate that the ex ante expected payoffs of both the agent
and the expert are positive in the informative equilibrium. ♦

The key difference between the single-expert benchmark and the case of multiple
experts lies in the private information the agent holds prior to a consultation. In the
single-expert benchmark, the agent has no private information, so the expert relies only
on her signal in making a recommendation. In contrast, with access to multiple experts,
the agent is expected to have private information about recommendations he previously
received. If these recommendations are informative about the state, a consulted expert
can blindly recommend the operation, knowing that the agent would agree only if his
private information is very favorable, especially when he is sufficiently conservative (i.e.,
L is sufficiently large). This consideration, however, destroys any information content
in an expert’s recommendation.

5.3 Welfare implications

Proposition 3 implies that a market for advice may be inherently inefficient. Suppose
we augment our model with a preceding stage in which experts compete by choos-
ing their publicly posted consultation fees. The consultation fee would enter into our
model as a markup on the agent’s search cost. Moreover, as the fee is independent of
the recommendation and operation outcome, it would not affect the experts’ incentives
in choosing their cutoffs. Then by a standard argument for Bertrand competition, the
consultation fees of all experts would be driven to zero, as the signals are assumed to be
costless to the experts. If the agent’s intrinsic search cost is very small, Proposition 3 im-
plies that the equilibrium outcome could be inefficient. In the extreme case, the market
completely breaks down if s ∈ (l/L�1).

20For example, if l = 1, L = 2, and π = 0�5, then any s ∈ (0�5�1) would ensure all conditions above are
satisfied.
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Suppose a social planner, whose objective is maximizing social welfare, can decide a
consultation fee that all experts must charge. Proposition 3 shows that the efficient level
of consultation fee can be strictly positive.21 Similarly, suppose a trade organization
(say, that of lawyers and physicians) can decide the consultation fee of its members. Our
analysis implies that if the trade organization sets a higher consultation fee, it is possible
that not only would its members benefit, but also the agent seeking their advice and
service. Computing the optimal or socially efficient consultation fee is a challenging
problem that is left for future research; our analysis highlights that such computation
must take into account the effect of the loser’s curse in information transmission.

We conclude this section by discussing the relationship between Proposition 3 and
the finding of Bulow and Klemperer (2002) that the auctioneer’s expected revenue may
decrease with the number of bidders in a common-value auction. The driving forces
are, respectively, the experts’ loser’s curse and the bidders’ winner’s curse. A notable
difference in welfare implications is that whereas the winner’s (loser’s) curse unambigu-
ously hurts the auctioneer (agent), their respective effects on the bidders and experts
are in the opposite direction. Specifically, by taking the winner’s curse into account, a
bidder would lower her bid, thus imposing a positive externality on other bidders. The
bidders’ joint payoff increases due to the winner’s curse. Alternatively, an expert taking
the loser’s curse into account imposes a negative externality on other experts. The rea-
son is that when facing the loser’s curse, each expert lowers her recommendation cutoff,
making her advice less informative (in expectation). This makes it difficult for the agent
to gather precise information about his case, which in turn harms the experts, as the
chance of reaching an ex post incorrect operation decision increases. Consequently, the
loser’s curse may cause the experts’ joint payoff, as well as the social welfare, to go down.

6. Information aggregation

This section investigates the effectiveness of sequential search in collecting informa-
tion dispersedly held by experts. Given any common cutoff s∗ ∈ (s� s̄) adopted by ex-
perts, if the agent has free access to all recommendations, he can learn the true state,
as these recommendations are conditionally independent and identically distributed.
Strategic behavior by experts makes the agent’s problem less trivial, because, as shown
in Lemma 2, the experts’ advice becomes completely uninformative as the search cost
vanishes.

If information is almost perfectly aggregated, the agent takes the ex post correct op-
eration decision with probability close to 1. That is, p0(s

∗) and p1(s
∗) are close to 0 and

1, respectively. Lemma 2 implies that if s > 0, the limiting values of p0(s
∗) and p1(s

∗)
are strictly bounded away from 0 and 1. These results imply that s = 0, i.e., the existence
of a signal that perfectly reveals the state is ω = 0, is a necessary condition for perfect
information aggregation in the limit. The proposition below shows that this condition is
also sufficient.22

21Wolinsky (2005) describes a related finding in a moral hazard setting.
22As part (ii) of Lemma 2 implies that the limiting value of p1(s

∗) is 1 when s = 0, it suffices to show that
the limiting value of p0(s

∗) is 0.
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Proposition 4. If π >L/(1 +L), then perfect information aggregation arises as a limit
equilibrium outcome if and only if s = 0.

The proof of Proposition 4 can be found in Appendix A.5. The condition π >

L/(1 + L) ensures the existence of an informative equilibrium (recall Proposition 2).
In the proof, we compute the limiting payoff of the following simple and necessarily
suboptimal search strategy: sample a fixed number of experts and have the operation
if and only if all of them recommend Y . It is shown that if s = 0, by choosing the fixed
number of experts appropriately, the agent can attain an ex ante payoff arbitrarily close
to the highest possible level, which equals π. This means that in the limit, the agent
necessarily learns the true state with a negligible total search cost. Intuitively, as each
expert adopts a cutoff arbitrarily close to s = 0, it is highly likely that the agent will re-
ceive a recommendation N if and only if the state ω is 0. Consequently, the strategy
under consideration is highly effective in learning the state.

6.1 Relation to Milgrom (1979)

The condition in Proposition 4 for perfect information aggregation requires the exis-
tence of a signal that perfectly revealsω= 0. This echoes the condition for perfect infor-
mation aggregation identified by Milgrom (1979) in the context of a sealed-bid first-price
auction for an object of common value. To illustrate Milgrom’s finding, suppose the
common value V of the object is either 1 or 0. Moreover, each bidder receives an iden-
tically and conditionally independently distributed private signal concerning V , and for
simplicity, the signal space is closed. Milgrom finds that the winning bid perfectly re-
flects the true value of V in the limit (as the number of bidders goes to infinity) if and
only if there is a signal that perfectly reveals V = 1.

Though the condition for perfect information aggregation identified in Proposition 4
is similar to that in Milgrom (1979), the driving force is quite different. In a common-
value auction, competition among bidders plays a key role in shaping the information
content of the winning bid. Specifically, suppose Milgrom’s condition holds. Then in the
event that V = 1, many bidders in a large auction would observe signals highly indicative
of a high object value. Expecting intense competition from others who observe similar
signals, each of them will bid very close to 1. This explains the sufficiency of Milgrom’s
condition. Its necessity is straightforward: no bidder submits a bid exceeding the ob-
ject’s conditional expected value given his own signal, so the winning bid would always
be strictly below 1 when Milgrom’s condition fails.23 It is clear that Milgrom’s result is
unrelated to the winner’s curse in bid formation.

Alternatively, Proposition 4 is driven by the loser’s curse and the agent’s optimal
search behavior. If s > 0, the agent cannot have p1 = 1 in equilibrium. Otherwise, the
experts always recommend the operation, as being pivotal implies ω = 1 with almost
certainty. This explains the necessity in Proposition 4. In contrast, if s = 0, then even if
the agent sets p1 close to 1, an expert who observes a signal extremely close to 0 would
still be willing to recommend N . Moreover, when ω = 0, many experts would observe

23Section 2 of Milgrom (1979) discusses the intuition of his finding.
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such low signals. Thus, by sampling a large number of experts, the agent must get some
N recommendations and learn thatω= 0. This explains the sufficiency in Proposition 4.
It is clear that Proposition 4 is unrelated to competition among experts. In fact, when
making their recommendations, the experts do not take into account the probability of
serving the agent.

It is also interesting to contrast the equilibrium outcome of our setting to that of
common-value auctions when s > 0 (and, correspondingly, when Milgrom’s condition
fails). Kremer (2002) shows that if Milgrom’s condition fails, the limit winning bid is
E[V ] and, hence, is uncorrelated with the true value of V .24 Alternatively, in our search
setting, even if s > 0, the agent’s eventual operation decision could still partially reflect
the dispersed information held by the experts. In particular, with π ∈ (L/(1 +L)� l/(l+
s)), Proposition 2 guarantees that an informative equilibrium exists.25

6.2 Relation to Feddersen and Pesendorfer (1997)

In this subsection, we explain that the welfare loss and the failure of information aggre-
gation when s > 0 can be interpreted as a commitment problem of the agent. Suppose
the agent commits to the following decision rule. Fixing the threshold ratio at q ∈ (0�1)
and the number of experts consulted at n, the agent undergoes the operation (with a
randomly chosen expert who recommends him to do so) whenever more than qn ex-
perts recommend Y . Thus, he is effectively adopting a voting mechanism. Feddersen
and Pesendorfer (1997) study a similar setup of two-candidate election and show that
information dispersedly held by voters is perfectly aggregated as the number of voters
go to infinity. A similar result holds in our setting if the agent could commit to a voting
mechanism.

Claim 1. Suppose the agent commits to the voting mechanism above (with any threshold
ratio). An informative equilibrium exists if the number of experts consulted is sufficiently
large. Moreover, as the number of experts approaches infinity, the probability that the
agent arrives at the ex post correct operation decision converges to 1.

The proof of Claim 1 can be found in Appendix A.6. Note that Claim 1 does not make
any assumption on the signal space. Therefore, comparing Claim 1 with Proposition 4,
we find that committing to a voting mechanism facilitates information aggregation. The
intuition is as follows. In the voting mechanism, although experts are strategic and de-
cide their recommendations conditional on being pivotal, the loser’s curse is absent be-
cause being pivotal is no longer good news. In fact, in the limit with infinitely many
experts, being pivotal is completely neutral. Consequently, the experts are willing to
adopt a strictly informative recommendation rule in the limit.

24This result is again due to the intense competition among bidders, which drives the winning bid toward
the object’s expected value conditional on the winning bidder’s information. If the most favorable signal
does not preclude the possibility that V = 0, then the event that someone, among a large number of bidders,
observing this most favorable signal is almost completely uninformative.

25As limn→∞p1(s
∗(cn)) = l/(l + s) and limn→∞p0(s

∗(cn)) < L/(1 + L), the agent’s eventual operation
decision is positively correlated with the state in the limit.
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The discussion above illustrates that the extent to which information is aggregated
(and, thus, the agent and social welfare) could be improved if the agent engages in non-
sequential search by committing in advance to a fixed sample of experts and a specific
decision rule. It also highlights that the source of inefficiency in our model is the agent’s
sequentially optimal search behavior, which generates the experts’ loser’s curse.

7. Discussion

Uninformative equilibria

Recall that in an uninformative equilibrium, the operation decision is independent of
the state ω and the agent does not search beyond the first (free) expert. More specifi-
cally, an uninformative equilibrium in which the operation is carried out with certainty
exists if and only if π ≥ max{L/(1 + L)� l/(l + s)}: this condition ensures a nonnegative
payoff to the first consulted expert for performing the operation for all signals and to
the agent for accepting the recommendation. Alternatively, an uninformative equilib-
rium in which the operation is never carried out can arise because of a “coordination
failure.” For example, the experts recommend Y if and only if s is very close to s and
the agent always rejects their recommendations.26 However, the latter class of uninfor-
mative equilibria brings a zero payoff to all players and is thus Pareto dominated by an
informative equilibrium whenever the latter exists.

Conservative experts

Throughout our analysis, we have focused on the case l < L, i.e., experts suffering less
from a failed operation than the agent. While we believe that this is the relevant case
in most applications, it is natural to ask what would happen if l ≥ L. First, there is
always an equilibrium, but an informative equilibrium is guaranteed to exist if and
only if π ∈ (max{l/(l + s̄)�L/(1 + L)}� l/(l + s)). Second, part (i) of Proposition 3 still
holds.27 While we can still guarantee the existence of a sequence of informative equi-
libria with limn→∞ s∗(cn) = s provided that π ∈ (max{l/(l + s̄)�L/(1 + L)}� l/(l + s)), we
cannot rule out the possibility that there could be a sequence of informative equilibria
with limn→∞ s∗(cn)= s̄. However, even if the latter sequence exists, it can be shown that
lim supn→∞p1(s

∗(cn)) ≤ l/(1 + l) < l/(l + s). Following the argument in Section 5, the
agent’s limit payoff (in such a sequence) is bounded from above by π(1 −L/l), which is
less than π(1 − s−1L/l), the bound in Proposition 3. A similar conclusion holds for the
experts’ joint payoff. Finally, Proposition 4 holds with π >max{l/(l+ s̄)�L/(1+L)}, as its
proof requires only the existence of a sequence of informative equilibria with s∗(cn)→ s.
The formal derivations for the results discussed above can be found in Appendix A.7.

Observability of agent’s history

The key ingredient of the loser’s curse is that each expert believes there is a positive
probability that she is pivotal in the agent’s final decision. In our model, this is achieved

26This strategy profile constitutes an equilibrium if π is smaller than L/(L+ s).
27Part (ii) of Proposition 3 becomes irrelevant as s < 1 ≤ l/L.
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by assuming that the experts do not know and cannot learn the history of the agent. In
applications such as a patient seeking doctors’ advice and a client looking for lawyers’
advice, it is quite natural that the experts do not have much knowledge about the advice
that the agent received in his previous consultations. Any modification of our model
that removes the positive probability of being pivotal would also eliminate the loser’s
curse effect. For instance, if the experts can observe the agent’s history of received rec-
ommendations fully or partially (e.g., his time on the market), then experts consulted in
the early stage of the search process are certain that they are not pivotal, so adopting any
recommendation rule is optimal (including one that is most informative to the agent).

A concern about nonpivotal experts is that they do not have strict incentives to per-
form informative diagnoses. For instance, in a more realistic setting, experts need to
exert unobservable and costly effort in running tests and diagnosis so as to obtain the
signal. In this case, an expert is willing to exert effort only if he believes that there is a suf-
ficiently high probability that he is pivotal. Therefore, even if the agent’s history is par-
tially observable, the loser’s curse consideration must still be present in an informative
equilibrium.28 Moreover, if the nonperformance of nonpivotal experts is a significant
concern, the agent has incentives to hide his history.

Search with recall

In the main model, we assume the agent undergoes the operation, if he ever chooses
to, with the last expert he visits. This assumption can be easily justified if there is a cost
of returning to a previously visited expert, as all experts are identical. An alternative as-
sumption is to allow costless recall. For instance, when the agent decides to have the
operation, he would randomly choose, with equal probability, any expert who recom-
mended him to do so. Suppose, for simplicity, the experts could not revise their recom-
mendation upon recall. All of our results remains valid in this alternative setting with
recall. The intuition is that the loser’s curse is still present and it affects the experts’ in-
centives in the same way as our main model without recall. More specifically, note first
that the availability of the recall option would not affect the agent’s optimal stopping
decisions (which depend only on the experts’ cutoff). Moreover, with recall, the agent
would come back to an expert only if he receives recommendations from other experts
that are so supportive that, together with her own positive recommendation, they are
just sufficient to persuade the agent to undergo the operation. This is exactly the sce-
nario captured by the pivotal event piv(b) in the analysis of our no-recall model. There-
fore, (3) and (4) continue to characterize the experts’ best responses in an informative
equilibrium. Appendix A.8 contains a more formal derivation for this observation.29

28See Pesendorfer and Wolinsky (2003) for a related model that highlights the inefficiency resulting from
the experts’ moral hazard problem in diagnosis.

29Another possibility is to assume that the experts can revise their recommendation upon being recalled.
In this case, there is an equilibrium in which the experts always stick with their initial recommendations
and, hence, no recall takes place. The analysis of equilibria with recall and recommendation revision is
complicated, as the agent’s search strategy would no longer be Markov and an expert’s strategy would de-
pend on the number of previous consultations the agent had with her. We leave this analysis for future
research.
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A consequence of allowing recall is that every consulted expert is pivotal with a pos-
itive probability. Therefore, with recall, even if the agent’s history is observable to the
experts, the loser’s curse is still present. In such a setting, an expert’s cutoff would, in
general, depend on the agent’s history. This is because the pivotal event that the agent
comes back to her for an operation, denoted by piv(b�h), is dependent on the agent’s
current history h. The expert would still be inclined toward recommending the oper-
ation, provided that the likelihood ratio of piv(b�h) is less than 1, a condition that is
likely to hold if the agent chooses the operation only if he has received very supportive
evidence from the experts.30

Communication of agent’s history

In the main model, we assume the agent cannot communicate his history to the ex-
perts. One justification for this assumption is that if the message about this history is
cheap talk, there is always an equilibrium in which such communication is babbling.
Moreover, we argue below that the endogenous conflict of interest induced by the loser’s
curse makes information transmission via cheap talk very difficult, if not impossible. As
shown in Section 5, if the search cost is small, the loser’s curse leads each expert to condi-
tion her payoff calculation on the goods news of being pivotal, and it makes the experts’
recommendation extremely uninformative. To combat the loser’s curse, the agent would
like to induce a pessimistic belief by the expert. More specifically, if the equilibrium is
such that nonpivotal experts are willing to adopt a more informative recommendation
strategy than that of pivotal experts, then the agent would claim that the current consul-
tation is nonpivotal in his decision. If the equilibrium is such that only pivotal experts
are willing to adopt an informative recommendation strategy,31 then the agent would
always send a message that induces a belief closest to p̃1(·).

Transfers

Our main model has abstracted away from pricing and liability. In Section 5.3, we ex-
plored one extension: the introduction of a consultation fee. Below we discuss other
possible ways to introduce transfers and their impacts on equilibrium outcomes.

Suppose only an outcome-independent operation fee can be charged. In a sequen-
tial search setting in which the agent can observe the operation fee only after visiting an
expert, each of the experts would charge a monopoly fee that fully extracts the agent’s
surplus. Consequently, there is no search in equilibrium, as in the Diamond paradox.
Alternatively, one can consider a directed search setting in which experts’ operation
fees are publicly posted before the agent begins his search. Then Bertrand competition

30As there is a lot more freedom in specifying experts’ off-path belief in this setting, equilibria with flavor
distinct from those we analyzed would emerge. Nonetheless, it is conjectured that the informative equi-
librium (or its perturbation) we characterize would continue to exist for a sufficiently small search cost, as
Pr(ω= 1|s�piv(b�h)� s∗� b) is almost history independent in the limit.

31This would be the case if experts need to exert costly diagnostic effort for the signal. Alternatively, as
pointed out above, if the agent can recall previously consulted experts, then every expert is pivotal with a
positive probability.
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would force the fees to zero, provided that the agent’s search cost is sufficiently small.
Loosely speaking, if the search cost is low enough, part (i) of Lemma 2 shows that the
experts’ cutoff is too low for effective information collection. Charging a positive oper-
ation fee would only push this cutoff even lower, thus unambiguously making visiting
such an expert less desirable than those charging a zero operation fee.

A natural question to consider, once we allow for transfers between the agent and the
expert, is whether the expert can signal her observed signal s through offering different
contracts. For signaling through transfers to work, it is necessary that the contract can
be made contingent on the operation outcome. Consider a fee-and-compensation con-
tract (φ�ψ) under which the expert collects a fee φ for carrying out the operation and
pays a compensation ψ if the operation fails. The expert can potentially signal a high
s by offering a contract with high values of φ and ψ. However, in a sequential search
setting in which the agent observes the offered contract only after visiting an expert,
the expert’s optimal contract does not involve signaling at all. Specifically, by offering a
contract (φ�ψ) = (1�1 + L) regardless of the observed signal, the consulted expert ef-
fectively “buys” the problem from the agent. Consequently, the agent is left with zero
surplus and does not search beyond the first (free) expert.

The analysis becomes more challenging in a directed search setting in which the
experts publicly post and commit to a menu of fee-and-compensation contracts before
the agent begins his search. In this case, experts are competing not only in prices but
also in the implied information service (i.e., recommendation rule). An equilibrium may
involve each expert posting a menu of contracts and signaling his observed s through the
chosen contract. We leave the analysis for future research.

Communication of experts’ signals

In the main model, we impose a restrictive binary message space for the experts. One
may consider a more flexible message space, for example, a cheap-talk message could be
sent along with the recommendation. Whereas the equilibrium we consider and char-
acterize still exists, there are also equilibria in which more information is transmitted.
A simple example is for experts who do not recommend the operation to fully reveal
their signals through their messages: truthful revelation of signal is incentive compati-
ble as their payoffs are constant at zero. However, as Lemma 2 shows, the experts almost
always recommend the operation as the search cost vanishes. This use of the cheap-talk
message therefore has little impact on our limit results.

A possible way for the agent to solicit more informative advice from an expert is to
commit not to undergo the operation with her. If such a commitment is possible, then
the expert is willing to truthfully report her signal. Such commitment, however, may
be difficult in some real-world scenarios, such as a patient consulting a doctor and a
client consulting a lawyer. A related avenue for improving information aggregation and,
hence, market efficiency is for some experts to commit to providing advising service
only.32 As these experts never carry out the operation, truthful reporting is incentive
compatible, though they may suffer from the moral hazard problem of providing diag-
nostic effort discussed above. This extension is a potential avenue for future research.

32A related idea is studied in Wolinsky (1993) in the context of credence goods provision.
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Heterogeneity of experts

In the main model, all experts are assumed to be ex ante identical, so it is reasonable for
the agent to sample experts in a random order. Suppose, instead, there are k prominent
experts whose signal structure F ′(s|ω) is more informative than others and that these
prominent experts are consulted first (but the search among the k prominent experts
remains random). Suppose also that k is large and/or F ′ is informative so that each
prominent expert is pivotal with positive probability. It is clear that the prominent and
nonprominent experts would adopt different cutoffs. Moreover, the agent’s cutoff pair
(p0�t �p1�t) would now depend on the number of unconsulted prominent experts t ≤ k
(with (p0�0�p1�0) meaning that all prominent experts have been consulted). Suppose
that in equilibrium, the prominent experts’ advice is indeed more informative (so that it
is reasonable to seek their advice first). Then p0�t is increasing in t and p1�t is decreas-
ing in t. It is thus possible that the prominent experts would suffer from a more severe
loser’s curse than nonprominent experts, as p1�t > p1�0 for all t > 1. If the search cost is
sufficiently small, they are thus likely to adopt a cutoff lower than that of nonprominent
experts, partially cancelling out the improvement in the quality of information the agent
gathers.33 Finally, the limit result for vanishing search cost would remain unchanged, as
the agent almost surely searches beyond the prominent experts.

Alternative expert preference

In the model, we assume that an expert gets a nonzero payoff if and only if the agent
undergoes the operation with her. Alternatively, each expert may, due to altruism or
reputational concern, care about the agent’s eventual payoff, provided that she has rec-
ommended the operation to him. Suppose each expert’s payoff is

ω= 1 ω= 0
Recommend Y and the agent takes the operation eventually

1 −l
(may not be with her)
RecommendN , or the agent does not take the operation in the end 0 0

�

With such payoffs, the experts face essentially the same incentive structure as in the case
of search with recall discussed above. Therefore, all of our results remain valid except for
those concerning the social welfare, as we have changed the experts’ payoff.

Appendix

A.1 Characterizing p0(·) and p1(·)
This appendix provides the details of characterizing p0(·) and p1(·) using the agent’s
Bellman equation. Fix the cutoff strategy of all experts at ŝ ∈ [s� s̄]. Suppose the agent
approaches an expert with a prior belief p (that ω = 1). If the expert recommends Y ,

33Note that the agent may still find it worthwhile to seek the advice of the prominent experts first because
their signal structure is more informative.
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then his posterior belief becomes (1 + (1 − p)(1 − F(ŝ|0))/[p(1 − F(ŝ|1))])−1. If the ex-
pert recommends N , then his posterior belief becomes (1 + (1 − p)(1 − F(ŝ|0))/[p(1 −
F(ŝ|1))])−1. Denote by V : [0�1] → R the agent’s beginning-of-period continuation
value, as a function of his current belief p, assuming that he decides to search this pe-
riod. Using the observations above, V (p) can be recursively defined by

V (p; ŝ) = −c+ [p(1 − F(ŝ|1))+ (1 −p)(1 − F(ŝ|0))]
× max

{
0� V

((
1 + 1 −p

p

1 − F(ŝ|0)
1 − F(ŝ|1)

)−1
; ŝ
)
�

−L+
(

1 + 1 −p
p

1 − F(ŝ|0)
1 − F(ŝ|1)

)−1
(1 +L)

}

+ [pF(ŝ|1)+ (1 −p)F(ŝ|0)]max
{

0� V
((

1 + 1 −p
p

F(ŝ|0)
F(ŝ|1)

)−1
; ŝ
)}
� (8)

To understand (8), note that after paying a search cost c, the agent may receive a recom-
mendation Y , at which point, he can either (i) leave the current expert without under-
going the operation, which gives him a payoff max{0� V ((1 + (1 − p)(1 − F(ŝ|0))/[p(1 −
F(ŝ|1))])−1; ŝ)}, or (ii) agree to have the operation with the current expert, which gives
him a payoff −L + (1 + L)(1 + (1 − p)(1 − F(ŝ|0))/[p(1 − F(ŝ|1))])−1. If he receives a
recommendation N , then he must leave the current expert without undergoing the op-
eration.

The following lemma establishes the existence of the value function V and identifies
some of its properties.

Lemma 3. There exists a unique function V : [0�1] → R that satisfies (8). Moreover, V is
nondecreasing and weakly convex.

For the proof, see Lemma 3.1 and Theorem 3.2 of Ross (1983).
Given the value function V (p; ŝ), the agent’s optimal search strategy can be com-

puted by solving for cutoffs p0(ŝ) and p1(ŝ). Specifically, if V (1; ŝ) > 0, then p0(ŝ) is the
unique solution to V (p; ŝ)= 0. If V (1; ŝ)≤ 0, then p0(ŝ)= 1. Also,

p1(ŝ)= min
{
p ∈

[
L

1 +L�1
]

: V (p; ŝ)≤ −L+p(1 +L)
}
� (9)

The value p0(ŝ) is well defined. To see this, note that V (·; ŝ) is nondecreasing and
convex (thus continuous). As V (0)= −c, the equation V (p; ŝ)= 0 has a unique solution
if V (1; ŝ) > 0. Moreover, as {p ∈ [L/(1 +L)�1] : V (p; ŝ)≤ −L+ p(1 +L)} is a nonempty
compact interval, p1(ŝ) is well defined.

The following observations onp0(ŝ) andp1(ŝ) are useful for the subsequent analysis.

Lemma 4. We have p0(ŝ) < L/(1 + L) if and only if p1(ŝ) > L/(1 + L). In this case,
V (p1(ŝ); ŝ)= −L+p1(ŝ)(1 +L).
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Proof. If V (1; ŝ)≤ 0, then it is immediate from the definitions above that p0(ŝ)= 1 and
p1(ŝ) = L/(1 + L). Suppose instead, V (1; ŝ) > 0. As V (p0(ŝ); ŝ) = 0 and V (0; ŝ) = −c,
the convexity of V (·; ŝ) implies that it is strictly increasing at p0(ŝ). Therefore, p0(ŝ) <

L/(1 + L) if and only if V (L/(1 + L); ŝ) > 0. By (9), V (L/(1 + L); ŝ) > 0 if and only if
p1(ŝ) > L/(1+L). In this case, V (p1(ŝ); ŝ)= −L+p1(ŝ)(1+L) holds, as V (p; ŝ) is weakly
convex in p and −L+p(1 +L) is linear in p.

The case p0(ŝ) > p1(ŝ) can potentially arise if the search cost is sufficiently high
and/or the experts’ recommendations are sufficiently uninformative. Suppose, in ad-
dition, π <p0(ŝ). Then the agent will not search beyond the first expert. Alternatively, if
π is a lot larger than p0(ŝ), then the agent may search beyond the first expert and stop
either when his posterior falls below p0(ŝ) or when some expert recommends Y before
his posterior falls below p0(ŝ).

A.2 Proof of Proposition 2

The following lemma considers the existence of uninformative equilibria.

Lemma 5. (i) There exists an uninformative equilibrium in which s∗ = s and the agent
follows the first expert’s recommendation Y if and only if π ≥ max{L/(1 +L)� l/(l+
s)}.

(ii) There exists an uninformative equilibrium in which the operation is never carried
out if π ≤L/(1 +L).

Proof. (i) An uninformative equilibrium in which s∗ = s and the agent always accepts
the first recommendation Y requires π ≥ max{L/(1 + L)� l/(l + s)}. The condition en-
sures a nonnegative payoff to the first expert for performing the operation for all signals
and to the agent for accepting the recommendation.

(ii) Suppose π ≤ L/(1 + L) and consider the following strategy profile: the experts
always recommend Y and the agent always rejects the recommendation. As the agent
never takes the operation, the experts’ payoff is constant at zero regardless of strate-
gies. Alternatively, the experts’ recommendation is uninformative, so it is optimal for
the agent not to take the operation, as doing so would yield a nonpositive expected pay-
off.

The rest of the proof focuses on the case π ∈ (L/(1 +L)� l/(l+ s)), and we show the
existence of an informative equilibrium for this range of π.

Denote by 	 the set of all behavioral strategies of the agent. Define J : R+ × [s� s̄)×
	→R+ by

J(s� ŝ� b)≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝1 + 1

s

1 −π
π

∑
h∈H

b1(h�Y)q0(h; ŝ� b)
∑
h∈H

b1(h�Y)q1(h; ŝ� b)

⎞
⎟⎟⎠

−1

if ŝ ∈ [s� s̄)

(
1 + 1

s

1 −π
π

)−1
if ŝ = s̄�

(10)
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By (4), for ŝ > s, J(s� ŝ� b) is an individual expert’s belief that ω= 1 conditional on signal
s and being pivotal, assuming that all other experts adopt cutoff ŝ and the agent uses
strategy b. Denote by 
(ŝ) the set of the agent’s best response to all experts adopting
cutoff ŝ. We first show that as long as b ∈ 
(ŝ), the probability J(s� ŝ� b) in (10) is well
defined.

Lemma 6. The probability J(s� ŝ� b) is well defined for each b ∈
(ŝ) and ŝ ∈ [s� s̄).

Proof. Fix ŝ ∈ (s� s̄] and b ∈ 
(ŝ). It suffices to show that the likelihood ratio of
piv(b) is well defined. Below we show that (i) at least one of

∑
h∈H b1(h�Y)q0(h; ŝ� b)

or
∑
h∈H b1(h�Y)q1(h; ŝ� b) is positive, and (ii)

∑
h∈H b1(h�Y)qω(h; ŝ� b) < ∞ for each

ω ∈ {0�1}.
(i) Suppose both

∑
h∈H b1(h�Y)q0(h; ŝ� b) and

∑
h∈H b1(h�Y)q1(h; ŝ� b) are 0. Then

the agent never takes the operation, despite the experts recommending it with a positive
probability (as ŝ < s̄). This implies that the agent does not search beyond the first expert.
However, his rejection of the first expert’s recommendation Y is then suboptimal as π >
L/(1 +L).

(ii) Observe that
∑
h∈H qω(h; ŝ� b) is the expected number of experts that the agent

consults, provided that the state is ω, the experts adopt cutoff ŝ, and the agent plays
strategy b. As b ∈
(ŝ), it is necessary that the expected total search cost is less than 1, so
c[π∑h∈H q1(h; ŝ� b)+ (1 −π)∑h∈H q0(h; ŝ� b)] ≤ 1. This implies that

∑
h∈H qω(h; ŝ� b)≤

(cmin{π�1 − π})−1 for both ω ∈ {0�1}. Therefore,
∑
h∈H b1(h�Y)qω(h; ŝ� b) ≤ (cmin{π�

1 −π})−1, as b1(h�Y)≤ 1 for all h ∈H.

Define x : [s� s̄)×	→R+ as the unique solution to the equation J(·� ŝ� b)= l/(1 + l).
If x(ŝ� b) ∈ [s� s̄], then an individual expert finds it optimal to adopt cutoff x(ŝ� b), given
all other experts’ adopting cutoff ŝ and the agent playing strategy b. If x(ŝ� b) > s̄, then
an individual expert’s best response is to always recommend N , i.e., adopting cutoff s̄.
Likewise, if x(ŝ� b) < s, then an individual expert’s best response is to always recommend
Y , i.e., adopting cutoff s. Using these observations, we define an individual expert’s best-
response correspondence Z : [s� s̄]⇒ [s� s̄] by

Z(ŝ)≡
⎧⎨
⎩
{
max

{
s�min

{
s̄� x(ŝ� b)

}} : b ∈
(ŝ)} if ŝ ∈ [s� s̄)
1 −π
π

l if ŝ = s̄�

The correspondence Z is the set of best responses of an individual expert, given that
all other experts adopt cutoff ŝ and the agent plays a best response to ŝ. Note that the
definitionZ(s̄)≡ l(1 −π)/π ensures thatZ has a closed graph at s̄. To see this, note that
if ŝ is sufficiently close to s̄, then the agent would find it suboptimal to search beyond
the first expert, so b0(h) = 1 for all h �= ∅. As π > L/(1 + L), we have b1(Y) = 1 for all
b ∈
(ŝ). Therefore, J(s� ŝ� b)= (1 + s−1(1 −π)/π)−1, giving x(ŝ� b)= l(1 −π)/π.

By the definition of the informative equilibrium in Section 4, we are done if we can
show that Z has a fixed point s∗ ∈ (s� s̄). Note that any fixed point of Z (if any) would not
occur at the boundary points. First, as π > L/(1 + L) > l/(l + s̄), then Z(s̄) = l(1 − π)/
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π < s̄. Moreover, any b ∈ 
(s) must satisfy b1(Y) = 1 (i.e., taking the operation at the
first expert). Consequently, J(s� s� b)= (1 + s−1(1 −π)/π)−1 and Z(s)= l(1 −π)/π > s.

Below we invoke the Kakutani’s fixed point theorem to show thatZ has a fixed point.
To this end, it suffices to show that Z is (i) a nonempty-valued self-map, (ii) convex-
valued, and (iii) upper semicontinuous.

Z is a nonempty-valued self-map Lemma 1 established the existence of the agent’s best
response. Moreover, it follows from Lemma 6 that x(ŝ� b) is well defined for all b ∈
(ŝ).
The fact that Z is a self-map is clear from its definition.

Z is convex-valued It is immediate that Z(s̄) is convex-valued. Consider a ŝ < s̄. Sup-
pose z′� z′′ ∈ Z(ŝ) and z# ∈ (z′� z′′). Denote by b′ and b′′ the respective corresponding
optimal strategies. As this is a game of perfect recall, by the Kuhn theorem (Kuhn 1953),
every behavioral strategy is equivalent to some mixed strategy. Denote by α′ and α′′ the
mixed-strategy equivalents of b′ and b′′, respectively. With a slight abuse of notation,
J(s� ŝ�α) is defined analogously to (10) for each mixed strategy α of the agent as

J(s� ŝ�α)≡
∫ ⎛
⎜⎜⎝1 + 1

s

1 −π
π

∑
h∈H

β1(h�Y)q0(h; ŝ�β)
∑
h∈H

β1(h�Y)q1(h; ŝ�β)

⎞
⎟⎟⎠

−1

dα(β)�

where β are the agent’s pure strategies on the support of α. Define T : [0�1] → R by
T(γ)≡ γJ(z#� ŝ�α′)+ (1 −γ)J(z#� ŝ�α′′)− l/(1 + l). It is clear that T(1) > 0 and T(0) < 0.
As T is continuous and increasing, by the intermediate value theorem, there exists a
unique γ∗ ∈ (0�1) such that T(γ∗) = 0. As every pure strategy on the support of α′ and
α′′ is a best response to ŝ, it is clear that γ∗α′ + (1 − γ∗)α′′ is also a best response to ŝ.
Using Kuhn’s theorem again, z# ∈Z(ŝ).
Z is upper semicontinuous We begin by showing that the agent’s best response 
(ŝ) is
upper semicontinuous.

Lemma 7. The best response
(ŝ) is upper semicontinuous.

Proof. Recall that the agent’s best response to experts’ strategy ŝ is characterized by a
pair of cutoffs p0(ŝ) and p1(ŝ) (defined in Appendix A.1). We first show that these two
functions are continuous.

First consider their continuity at s̄. Fix a p ∈ (0�1). For ŝ sufficiently close to s̄, p(1 −
F(ŝ|1))+ (1 −p)(1 −F(ŝ|0)) < c/2. The definition of V (·; ŝ) in (8) then implies V (p; ŝ)≤
−c + c/2 + (1 − c/2)max{0� V (p; ŝ)}. It is immediate that V (p; ŝ) < 0. Consequently,
p0(ŝ)= 1 and p1(ŝ)=L/(1 +L) for all ŝ sufficiently close to s̄.

Next we show the continuity of p0(·) and p1(·) in the interval [s� s̄). Fix ŝ ∈ [s� s̄) and
ε ∈ (0� s̄− ŝ). Take an arbitrary sequence {ŝn} such that limn→∞ ŝn = ŝ and that ŝn < ŝ+ ε
for all n ∈ N. This gives two sequences of cutoffs {p0(ŝn)}n∈N and {p1(ŝn)}n∈N. Suppose
they are both convergent (otherwise take some convergent subsequences). It suffices to
show that limn→∞p0(ŝn)= p0(ŝ) and limn→∞p1(ŝn)= p1(ŝ).
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We show below that the family of functions {V (·; ŝn)}n∈N is Lipschitz continuous. As
V (·; ŝn) is weakly convex (by Lemma 3), V (·; ŝn) is differentiable for almost all p ∈ [0�1]
and its derivative is nondecreasing in p. Suppose V (1; ŝn) > 0. For a sufficiently large p,
(8) can be written as

V (p; ŝn) = −c+ {−L(1 −p)[1 − F(ŝn|0)
]+p[1 − F(ŝn|1)

]}
+ [pF(ŝn|1)+ (1 −p)F(ŝn|0)

]
V

((
1 + 1 −p

p

F(ŝn|0)
F(ŝn|1)

)−1
; ŝn
)
�

To obtain an upper bound on the derivative ∂V (p; ŝn)/∂p, suppose V (p; ŝn) is differen-
tiable at p= 1. Differentiating both sides of the equation above with respect to p gives

∂V (p; ŝn)
∂p

= L
[
1 − F(ŝn|0)

]+ [1 − F(ŝn|1)
]

− [F(ŝn|0)− F(ŝn|1)
]
V

((
1 + 1 −p

p

F(ŝn|0)
F(ŝn|1)

)−1
; ŝn
)

+ F(ŝn|1)F(ŝn|0)
pF(ŝn|1)+ (1 −p)F(ŝn|0)

∂

∂p
V

((
1 + 1 −p

p

F(ŝn|0)
F(ŝn|1)

)−1
; ŝn
)
�

Evaluating the equation above at p = 1 gives ∂V (p; ŝn)/∂p|p=1 = 1 + L + ((F(ŝn|0) −
F(ŝn|1))/(1−F(ŝn|0)))c. As (F(ŝn|0)−F(ŝn|1))/(1−F(ŝn|0)) is increasing in ŝn, ∂V (p; ŝn)/
∂p|p=1 is bounded from above by 1 + L+ ((F(ŝ + ε|0)− F(ŝ + ε|1))/(1 − F(ŝ + ε|0)))c.
Alternatively, if V (1; ŝn) ≤ 0, it is immediate that ∂V (p; ŝn)/∂p|p=1 = 1 + L. Thus, the
families of functions {V (p; ŝn)}n∈N is Lipschitz continuous.

As {V (p; ŝn)}n∈N are equicontinuous and uniformly bounded (by [−c�1]), by the
Arzela–Ascoli theorem, there exists a subsequence {ŝnk} such that V (p; ŝnk) converge
uniformly. It is clear that the limiting functions is V (p; ŝ), as by Lemma 3, there exists
a unique function that satisfies (8). For all sufficiently large k, if V (p; ŝnk) ≤ 0, so that
p0(ŝnk)= 1 andp1(ŝnk)=L/(1+L), then it is immediate that limk→∞p0(ŝnk)= p0(ŝ)= 1
and limk→∞p1(ŝnk) = p1(ŝ) = L/(1 + L). Thus suppose there is a further subsequence
{mk} of {nk} such that V (1; ŝmk) > 0. Then p0(ŝmk) is given by V (p0(ŝmk); ŝmk)= 0. Pass-
ing the equation to limit gives V (limk→∞p0(ŝmk); ŝ) = 0. By Lemma 1, the only subse-
quential limit of {p0(ŝn)} is thus p0(ŝ), so limn→∞p0(ŝn)= p0(ŝ).

We establish limn→∞p1(ŝn) = p1(ŝ) below. For all sufficiently large k, if p1(ŝnk) =
L/(1 + L), then it is immediate that limk→∞p1(ŝnk) = p1(ŝ) = L/(1 + L). Next sup-
pose there is a further subsequence {m′

k} of {nk} such that p1(ŝm′
k
) > L/(1 + L). By

Lemma 4, V (p1(ŝm′
k
); ŝm′

k
)= −L+(1+L)p1(ŝm′

k
). Passing the equation to the limit gives

V (limk→∞p1(ŝm′
k
); ŝ)= −L+ (1+L) limk→∞p1(ŝm′

k
). By Lemma 1, the only subsequen-

tial limit of {p1(ŝn)} is thus p1(ŝ), so limn→∞p1(ŝn) = p1(ŝ). This finishes the proof for
the continuity of p0(·) and p1(·).

We are ready to establish the upper semicontinuity of 
(·). Take a sequence of ex-
perts’ cutoffs {ŝn} and the agent’s best responses {bn} such that ŝn → ŝ, bn ∈
(ŝn), and
bn → b# for some b# ∈ 	. We show that b# is a best response to ŝ. Suppose not. Then
there exists an h ∈H such that any one of the following statements holds: (i) p(h; ŝ) ∈
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(p0(ŝ)�p1(ŝ)) but either b#
0 (h) > 0 or b#

1 (h) > 0; (ii) p(h; ŝ) < p0(ŝ) but b#
0 (h) < 1;

(iii) p(h; ŝ) > p1(ŝ) but b#
1 (h) < 1. Suppose case (i) arises. For either i = 0�1, b#

i (h) > 0
implies that for all n sufficiently large, we have bni (h) > 0 and p(h; ŝn) /∈ (p0(ŝn)�p1(ŝn)).
As p0(·) and p1(·) are continuous, taking limit gives p(h; ŝ) /∈ (p0(ŝ)�p1(ŝ)), a contradic-
tion. Suppose case (ii) arises. As p(h; ŝn)→ p(h; ŝ) and p0(ŝn)→ p0(ŝ), we have that for
all n sufficiently large, p(h; ŝn) < p0(ŝn), so bn0(h)= 1. Thus, b#

0 (h)= 1, a contradiction.
Case (iii) is symmetric to case (ii).

Take a pair of sequences {ŝm}, {zm} such that ŝm → ŝ, zm ∈ Z(ŝm), and zm → z. To
prove the upper semicontinuity of Z, we need to show that z ∈ Z(ŝ). As we have ex-
plained in the definition of correspondence Z, it is continuous at ŝ = s̄. Below we con-
sider the case ŝ < s̄.

Suppose first that z ∈ (s� s̄). Then it is without loss to assume zm ∈ (s� s̄) for all m ∈ N

(otherwise, take a subsequence). Consequently, for all m ∈ N, J(zm� ŝm�bm) = l/(1 + l)

for some bm ∈
(ŝm). As the set of histories H is countable, following a standard diago-
nalization argument, one can construct a subsequence {bmk} that converges pointwise
to some b# :H → [0�1]2. By Lemma 7 above, b# ∈
(ŝ).

Next observe that for h �=∅, the probability qω(h; ŝmk� bmk) can be decomposed as

qω
(
h; ŝmk� bmk

) = Pr(r1|ŝmk�ω)
(
1 − bmk1 (r1)

)(
1 − bmk0 (r1)

)
× Pr(r2|ŝmk�ω)

(
1 − bmk1 (r1� r2)

)(
1 − bmk0 (r1� r2)

)
× · · · × Pr(r|h||ŝmk�ω)

(
1 − bmk1 (h)

)(
1 − bmk0 (h)

)
�

where h = (r1� r2� � � � � r|h|) and |h| stands for the length of the history h. Note that as
Pr(r|ŝmk�ω) is either F(ŝmk |ω) or 1 − F(ŝmk |ω) and F(·|ω) is continuous, Pr(r|ŝmk�ω)
converges to Pr(r|ŝ�ω). Together with the fact that bmk0 (·) and bmk1 (·) converge pointwise
to b#

0 (·) and b#
1 (·), respectively, qω(h; ŝmk� bmk) converges to qω(h; ŝ� b#) for each h ∈H.

We are done if we can show that along some subsequence {lk} of {mk},

lim
k→∞

∑
h∈H

b
lk
1 (h�Y)qω

(
h; ŝlk � blk

)=
∑
h∈H

b#
1 (h�Y)qω

(
h; ŝ� b#)� (11)

as this implies that limm→∞ J(zm� ŝm�bm)= J(z� ŝ� b#)= l/(1 + l).
Denote by Qω(n; ŝ� b)≡∑h∈H:|h|=n b1(h�Y)qω(h; ŝ� b) the probability that the agent

takes the operation in period n, assuming that the state is ω and the strategy pro-
file (ŝ� b) is played. Using this definition, we can write

∑
h∈H b1(h�Y)qω(h; ŝ� b) =∑∞

n=0Qω(n; ŝ� b), and (11) is equivalent to
∑∞
n=0Qω(n; ŝlk � blk)→∑∞

n=0Qω(n; ŝ� b). To
invoke Lebesgue’s dominated convergence theorem, we need to show that there exists
N ′�K ∈ N such that for all n > N ′ and k > K, we have Qω(n; ŝlk � blk) ≤ �(n) for some
function �(n) such that

∑∞
n=0�(n) <∞.

Concerning how sequences {p0(ŝmk)} and {p1(ŝmk)} approach their respective limits,
either one of the following two subsequences of {ŝmk} must exist: (i) a subsequence {ŝlk}
such thatp0(ŝlk)≥ p1(ŝlk) for all k ∈N; (ii) a subsequence {ŝlk} such thatp0(ŝlk) < p1(ŝlk)

for all k ∈N.
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Consider the first possibility. For all k ∈N, period n > 1 is reached only if π >p1(ŝlk),
but the agent has always received recommendation N in all periods up to n− 1. Thus,
Qω(n; ŝlk � blk) ≤ F(ŝlk |ω)n−1. Let ε ∈ (0�1 − F(ŝ|0)). As ŝ < s̄, there exists a K′ such that
for all k > K′, F(ŝlk |ω) < F(ŝ|ω)+ ε, so Qω(n; ŝlk � blk) ≤ (F(ŝ|ω)+ ε)n−1. It is clear that∑∞
n=0(F(ŝ|ω)+ ε)n−1 = (1 − F(ŝ|ω)− ε)−1 <∞.

Consider the second possibility. For each k ∈ N, period n > 1 is reached only if one
of the following events occur: (a) the agent’s posterior belief at the end of period n −
1 is in the interval [p0(ŝlk)�p1(ŝlk)]; (b) π > p1(ŝlk) but the agent has always received
recommendationN in all periods up to period n− 1. Thus,Qω(n; ŝlk � blk) is bounded by

Qω
(
n; ŝlk � blk

) ≤ F(ŝlk |ω)n−1 +
∑

h∈H:|h|=n−1

Pr
(
p(h� ŝlk) ∈ [p0(ŝlk)�p1(ŝlk)

]|ω)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
F(ŝlk |1)n−1 +

∑
h∈H:|h|=n−1

Pr
(
p(h� ŝlk)≤ p1(ŝlk)|ω= 1

)
ifω= 1

F(ŝlk |0)n−1 +
∑

h∈H:|h|=n−1

Pr
(
p(h� ŝlk)≥ p0(ŝlk)|ω= 0

)
ifω= 0�

As ŝ < s̄, there exists an integer K′ such that F(ŝlk |ω) < F(ŝ|ω)+ ε for all k >K′ and
ω. An upper bound on

∑
h∈H:|h|=n−1 Pr(p(h� ŝlk) ≤ p1(ŝlk)|ω = 1) can be obtained by

noting that for each ŝlk , the expert’s recommendation r ∈ {Y�N} is a Bernoulli random
variable, with Pr(r = Y)= 1−F(ŝlk |ω). The agent’s posterior after receiving n−1 recom-
mendations is weakly less than p1(ŝlk) if and only if the number y of recommendation
Y is smaller than34

(n− 1) ln
(
F(ŝlk |0)
F(ŝlk |1)

)
− ln

(
1

p1(ŝlk)
− 1

)
− ln

π

1 −π
ln
(

1 − F(ŝlk |1)
F(ŝlk |1)

)
− ln

(
1 − F(ŝlk |0)
F(ŝlk |0)

) �

We can apply Hoeffding’s inequality to bound the probability of the event above. Hoeffd-
ing’s inequality states that if {ri}i=1�2�����n−1 is a sequence of n−1 independently and iden-
tically distributed Bernoulli random variables with Pr(ri = 1)= 1−Pr(ri = 0)= p ∈ (0�1),
then for all ε > 0, the probability that the sum

∑n
i=1 ri is less than p(n− 1)−ε is no more

than exp(−2ε2(n− 1)). By applying Hoeffding’s inequality,

Pr

⎛
⎜⎜⎜⎝y ≤

ln
(
F(ŝlk |0)
F(ŝlk |1)

)
− 1
n− 1

(
ln
(

1
p1(ŝlk)

− 1
)

+ ln
π

1 −π
)

ln
(

1 − F(ŝlk |1)
F(ŝlk |1)

)
− ln

(
1 − F(ŝlk |0)
F(ŝlk |0)

) (n− 1)

∣∣∣∣∣∣∣∣∣
ω= 1

⎞
⎟⎟⎟⎠

34The agent’s posterior after receiving y positive recommendations and n− 1 − y negative recommenda-
tions is (

1 + 1 −π
π

(
1 − F(ŝlk |0)

)y(
F(ŝlk |0)

)n−1−y
(
1 − F(ŝlk |1)

)y(
F(ŝlk |1)

)n−1−y

)−1
�

This posterior is less than p1(ŝlk ) if and only if y is smaller than the number stated.
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≤ exp

⎛
⎜⎜⎜⎝−2

⎡
⎢⎢⎢⎣(1 − F(ŝlk |1)

)

−
ln
(
F(ŝlk |0)
F(ŝlk |1)

)
− 1
n− 1

(
ln
(

1
p1(ŝlk)

− 1
)

+ ln
π

1 −π
)

ln
(

1 − F(ŝlk |1)
F(ŝlk |1)

)
− ln

(
1 − F(ŝlk |0)
F(ŝlk |0)

)
⎤
⎥⎥⎥⎦

2

(n− 1)

⎞
⎟⎟⎟⎟⎠ �

As n�k→ ∞, the bracketed term approaches35

1 − F(ŝ|1)−
(
lnF(ŝ|0)− lnF(ŝ|1))

ln
(

1 − F(ŝ|1)
F(ŝ|1)

)
− ln

(
1 − F(ŝ|0)
F(ŝ|0)

) ≡Lŝ > 0�

Therefore, there exists a pair of sufficiently large integersN1�K1 >K
′ such thatQ1(n; ŝlk �

blk)≤ (F(ŝ|1)+ ε)n−1 + exp(−L2
ŝ
(n− 1)) for all n >N1 and k >K1. Define a dominating

function �1 :N → [0�1] by

�1(n)≡
{

1 if n <N1(
F(ŝ|1)+ ε)n−1 + exp

(−L2
ŝ (n− 1)

)
if n≥N1�

It is clear that
∑∞
n=1�1(n) = N1 + (1 − (F(ŝ|1) + ε))−1 + exp(−L2

ŝ
(N1 − 1))/(1 −

exp(−L2
ŝ
)) <∞. Therefore, by Lebesgue’s dominated convergence theorem,

∑∞
n=0Q1(n;

ŝlk � b
lk)→∑∞

n=0Q1(n; ŝ� b#) as k→ ∞.
The upper bound on

∑
h∈H:|h|=n−1 Pr(p(h� ŝlk)≥ p0(ŝlk)|ω= 0) can be derived simi-

larly. The agent’s posterior after receiving n− 1 recommendations is weakly larger than
p0(ŝlk) if and only if the number y of recommendation Y is larger than

(n− 1) ln
(
F(ŝlk |0)
F(ŝlk |1)

)
− ln

(
1

p0(ŝlk)
− 1

)
− ln

π

1 −π
ln
(

1 − F(ŝlk |1)
F(ŝlk |1)

)
− ln

(
1 − F(ŝlk |0)
F(ŝlk |0)

) �

Using Hoeffding’s inequality again yields

Pr

⎛
⎜⎜⎜⎝y ≥

ln
(
F(ŝlk |0)
F(ŝlk |1)

)
− 1
n− 1

(
ln
(

1
p0(ŝlk)

− 1
)

+ ln
π

1 −π
)

ln
(

1 − F(ŝlk |1)
F(ŝlk |1)

)
− ln

(
1 − F(ŝlk |0)
F(ŝlk |0)

) (n− 1)

∣∣∣∣∣∣∣∣∣
ω= 0

⎞
⎟⎟⎟⎠

35To see Lŝ > 0, note that the ratio (lnF(ŝ|0)− lnF(ŝ|1))/(ln(F(ŝ|1)−1 − 1)− ln(F(ŝ|0)−1 − 1)) decreases
in F(ŝ|0) and converges to 1 − F(ŝ|1) as F(ŝ|0)→ F(ŝ|1).
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≤ exp

⎛
⎜⎜⎜⎝−2

⎡
⎢⎢⎢⎣

ln
(
F(ŝlk |0)
F(ŝlk |1)

)
− 1
n− 1

(
ln
(

1
p0(ŝlk)

− 1
)

+ ln
π

1 −π
)

ln
(

1 − F(ŝlk |1)
F(ŝlk |1)

)
− ln

(
1 − F(ŝlk |0)
F(ŝlk |0)

)

− (
1 − F(ŝlk |0)

)
⎤
⎥⎥⎥⎦

2

(n− 1)

⎞
⎟⎟⎟⎟⎠ �

As n�k→ ∞, the bracketed term approaches36

lnF(ŝ|0)− lnF(ŝ|1)
ln
(

1 − F(ŝ|1)
F(ŝ|1)

)
− ln

(
1 − F(ŝ|0)
F(ŝ|0)

) − (1 − F(ŝ|0))≡L′
ŝ > 0�

Therefore, there exists a sufficiently large integer N0�K0 >K
′ such that Q0(n; ŝlk � blk) ≤

(F(ŝ|0)+ ε)n−1 + exp(−L′2
ŝ
(n− 1)) for all n >N0 and k >K0. Define a dominating func-

tion �0 :N→ [0�1] by

�0(n)≡
{

1 if n <N0(
F(ŝ|0)+ ε)n−1 + exp

(−L′2
ŝ (n− 1)

)
if n≥N0�

It is clear that
∑∞
n=1�0(n)=N0 +(1−F(ŝ|0)−ε)−1 +exp(−L′2

ŝ
(N0 −1))/(1−exp(−L′2

ŝ
)) <

∞. Therefore, by Lebesgue’s dominated convergence theorem,
∑∞
n=0Q0(n; ŝlk � blk) →∑∞

n=0Q0(n; ŝ� b#) as k→ ∞.
Finally, we consider the cases of z ∈ {s̄� s}. If z = s̄, then J(zm� ŝm�b

m) ≤ l/(1 + l)

for some bm ∈ 
(ŝm). By the upper semicontinuity of 
, there exists a subsequence
{bmk} such that limk→∞ bmk ∈
(ŝ). By the analysis above, J(s̄� ŝ� b)≤ l/(1 + l) for some
b ∈ 
(ŝ). Therefore, s̄ ∈ Z(ŝ). Alternatively, if z = s, then J(zm� ŝm�bm) ≥ l/(1 + l) for
some bm ∈
(ŝm). A symmetric argument as above shows J(s̄� ŝ� b) ≥ l/(1 + l) for some
b ∈
(ŝ), so s ∈Z(ŝ).

A.3 Proof of Lemma 2

To ease notation, denote s∗n ≡ s∗(cn).
(i) We first show that it is impossible to have {s∗n} converging to s̄. Suppose there

exists a sequence of informative equilibria such that limn→∞ s∗n = s̄. As the agent takes
the operation only if his belief is no less than L/(1 + L), it is necessary that p1(s

∗
n) ≥

L/(1 +L). Together with (5), we can derive a lower bound on p̃1(s
∗
n) as

p̃1
(
s∗n
)=

(
1 +

(
1

p1
(
s∗n
) − 1

)
1 − F(s∗n|1)
1 − F(s∗n|0)

)−1
≥
(

1 + 1
L

1 − F(s∗n|1)
1 − F(s∗n|0)

)−1
�

36To seeL′
ŝ
> 0, note that the ratio (lnF(ŝ|0)− lnF(ŝ|1))/(ln(F(ŝ|1)−1 −1)− ln(F(ŝ|0)−1 −1)) is decreasing

in F(ŝ|1) and converges to 1 − F(ŝ|1) as F(ŝ|1)→ F(ŝ|0).
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Using the upper bound on p̃1(s
∗
n) from inequality (7), we have

L

l
≤ 1
s∗n

1 − F(s∗n|1)
1 − F(s∗n|0) �

If s∗n → s̄, the right-hand side of the inequality above converges to 1, implying that L≤ l,
a contradiction to the assumption l < L.

Suppose {s∗n} does not converge to s. As shown in the proof of Lemma 7, {V (·; s∗n)} is
a family of Lipschitz continuous functions. Thus, there exists a ε ∈ (0� s̄− s) and a subse-
quence {s∗nk} of {s∗n} such that s∗nk → s+ε and V (·; s∗nk) converges uniformly to V (·; s+ε).
Passing (8) with ŝ = s∗nk to the limit gives

V (p; s+ ε)
= [p(1 − F(s+ ε|1))+ (1 −p)(1 − F(s+ ε|0))]

× max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0� V
((

1 + 1 −p
p

1 − F(s+ ε|0)
1 − F(s+ ε|1)

)−1
; s+ ε

)
�

−L+
(

1 + 1 −p
p

1 − F(s+ ε|0)
1 − F(s+ ε|1)

)−1
(1 +L)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ [pF(s+ ε|1)+ (1 −p)F(s+ ε|0)]
× max

{
0� V

((
1 + 1 −p

p

F(s+ ε|0)
F(s+ ε|1)

)−1
; s+ ε

)}
� (12)

It is straightforward to verify that V (p; s+ ε)= p is a solution. Moreover, it is unique by
Proposition 3. Therefore, p1(s

∗
nk
)→ 1.

Alternatively, in equilibrium, inequality (7) holds. It can be rearranged into s∗nk ≤
l(1 − p̃1(s

∗
nk
))/p̃1(s

∗
nk
), where p̃1(s

∗
nk
) is defined in (5). Using the definition, the right-

hand side of the inequality is equal to l(p1(s
∗
nk
)−1 −1)(1−F(s∗nk |1))/(1−F(s∗nk |0)), which

converges to 0 as p1(s
∗
nk
)→ 1. This is a contradiction to s∗nk → s+ ε.

(ii) Suppose {p1(s
∗
n)} converges (otherwise, take a convergent subsequence). By part

(i) above, s∗n → s. Thus, the difference between p1(s
∗
n) and p̃1(s

∗
n) vanishes in the limit:

p1
(
s∗n
)− p̃1

(
s∗n
)= p1

(
s∗n
)(

1 −p1
(
s∗n
))[
F
(
s∗n|0

)− F(s∗n|1)]
1 − F(s∗n|1)− (F(s∗n|0)− F(s∗n|1))p1

(
s∗n
) → 0�

Rearranging inequality (7) gives p̃1(s
∗
n)≤ l/(l+ s∗n). Therefore, limn→∞p1(s

∗
n)≤ l/(l+ s).

Alternatively, conditional on being pivotal, the agent’s belief prior to learning the current
expert’s recommendation is bounded from above by max{π�p1(s

∗
n)}. Condition (3) then

implies that (1+(s∗n)−1(1−max{π�p1(s
∗
n)})/max{π�p1(s

∗
n)})−1 ≥ l/(1+ l) or, equivalently,

max
{
π�p1

(
s∗n
)}≥ l

l+ s∗n
� (13)

Taking the limit on both sides of the inequality then gives max{π� limn→∞p1(s
∗
n)} ≥

l/(l + s). As π < l/(l + s) by assumption, it is necessary that limn→∞p1(s
∗
n) ≥ l/(l + s).

Therefore, limn→∞p1(s
∗
n)= l/(l+ s).
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(iii) Fix a s > 0. We show that if the sequence {p0(s
∗
n)} converges, its limit strictly

exceeds 0. Suppose instead that limn→∞p0(s
∗
n)= 0. Fix a q ∈ (0�L/(1 +L)). There exists

an integer N ′ such that for all n > N ′, p0(s
∗
n) < q < L/(1 + L) < p1(s

∗
n).

37 As q > p0(s
∗
n),

the agent’s continuation value function evaluated at q, V (q; s∗n), is strictly positive for all

n >N ′.
An upper bound for V (q; s∗n) can be derived as follows. In the best conceivable sce-

nario, the agent with ω= 0 learns the state immediately and gets a payoff of 0, whereas

the agent with ω = 1 gets a consecutive sequence of Y recommendations, leading to a

posterior p1(s
∗
n) and taking the operation. Therefore,

V
(
q; s∗n

)≤ q[(1 − F(s∗n|1))Mn − cnMn
]
� (14)

whereMn denotes the number of consecutive Y recommendations needed to convince

the agent to take the operation. It necessarily satisfies (1 + (q−1 − 1)((1 − F(s∗n|0))/(1 −
F(s∗n|1)))Mn−1)−1 ≤ p1(s

∗
n)≤ (1 + (q−1 − 1)((1 − F(s∗n|0))/(1 − F(s∗n|1)))Mn)−1 or, equiva-

lently,

Mn ∈

⎡
⎢⎢⎢⎢⎣

ln
(

q

1 − q
(

1
p1
(
s∗n
) − 1

))

ln
(

1 − F(s∗n|0)
1 − F(s∗n|1)

) �

ln
(

q

1 − q
(

1
p1
(
s∗n
) − 1

))

ln
(

1 − F(s∗n|0)
1 − F(s∗n|1)

) + 1

⎤
⎥⎥⎥⎥⎦ � (15)

Below we derive a contradiction by showing that the upper bound in inequality (14)

cannot be positive for all q ∈ (0�1).
To this end, note first that, as p1(s

∗
n) > L/(1 + L), the lower bound in (15) implies

that

Mn ≥
ln
(

1 − q
q

1
L

)

ln
(

1 − F(s∗n|1)
1 − F(s∗n|0)

) � (16)

Next, by Lemma 4, V (p1(s
∗
n); s∗n)= −L+ (1 +L)p1(s

∗
n). Using (8),

−L+p1
(
s∗n
)
(1 +L) = −cn + [p1

(
s∗n
)(

1 − F(s∗n|1))+ (1 −p1
(
s∗n
))(

1 − F(s∗n|0))]
×
(

−L+
(

1 + 1 −p1
(
s∗n
)

p1
(
s∗n
) 1 − F(s∗n|0)

1 − F(s∗n|1)
)−1

(1 +L)
)

+ [p1
(
s∗n
)
F
(
s∗n|1

)+ (1 −p1
(
s∗n
))
F
(
s∗n|0

)]
× max

{
0� V

((
1 + 1 −p1

(
s∗n
)

p1
(
s∗n
) F

(
s∗n|0

)
F
(
s∗n|1

))−1
; s∗n
)}
� (17)

37Such anN ′ exists because, by Lemma 4, p0(s
∗
n) < L/(1 +L) implies that p1(s

∗
n) > L/(1 +L).
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In equation (17), we have used the fact that the definition of p1(s
∗
n) implies V (p; s∗n) ≤

−L+p(1 +L) for all p>p1(s
∗
n). Using equation (17),

cn ≥ LF(s∗n|0)−p1
(
s∗n
)[
LF
(
s∗n|0

)+ F(s∗n|1)]

≥
LF
(
s∗n|0

)1 − F(s∗n|0)
1 − F(s∗n|1)

s∗n
l

− F(s∗n|1)

1 + 1 − F(s∗n|0)
1 − F(s∗n|1)

s∗n
l

� (18)

where the first inequality uses the fact that the max operator returns a nonnegative value
and the second inequality makes use of the fact that

p1
(
s∗n
)≤

(
1 + 1 − F(s∗n|0)

1 − F(s∗n|1)
s∗n
l

)−1
� (19)

Inequality (19) is obtained by substituting (5) into inequality (7). It is straightforward
to check that the lower bound of cn in inequality (18) is positive for s∗n sufficiently close
to s.

Combining (16) and (18), we get

cnMn ≥
ln
(

1 − q
q

1
L

)

1 + 1 − F(s∗n|0)
1 − F(s∗n|1)

s∗n
l

×
(

−F
(
s∗n|1

)
F
(
s∗n|0

) + 1 − F(s∗n|0)
1 − F(s∗n|1) s∗n

L

l

)
× F

(
s∗n|0

)
ln
(

1 − F(s∗n|1)
1 − F(s∗n|0)

) �

We now take lim supn→∞ on both sides of the inequality above. Using L’Hospital rule and
the fact that s∗n → s by part (i), we get

lim
n→∞ sup cnMn ≥

ln
(

1 − q
q

1
L

)

1 + s

l

× lim
n→∞

(
−F

(
s∗n|1

)
F
(
s∗n|0

) + 1 − F(s∗n|0)
1 − F(s∗n|1) s∗n

L

l

)

× lim
n→∞

F
(
s∗n|0

)
ln
(

1 − F(s∗n|1)
1 − F(s∗n|0)

)

=
ln
(

1 − q
q

1
L

)

1 + s

l

× s
(
L

l
− 1

)

× lim
n→∞

f
(
s∗n|0

)
f
(
s∗n|0

)(
1 − F(s∗n|1))− f (s∗n|1)(1 − F(s∗n|0))(

1 − F(s∗n|0))(1 − F(s∗n|1))
= ln

(
1 − q
q

1
L

)
L− l
l+ s

s

1 − s �
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Finally, taking lim supn→∞ on both sides of inequality (14), and using the fact that (1 −
F(s∗n|1))Mn ≤ 1 and V (q; s∗n) > 0, we get

0 ≤ q
(

1 − L− l
l+ s

s

1 − s ln
(

1 − q
q

1
L

))
�

However, this is a contradiction, as q can be an arbitrarily small positive number.

A.4 Proof of Proposition 3

Following Appendix A.3, denote s∗n ≡ s∗(cn).
(i) As explained in Section 5.1, it is without loss to focus on informative equilibria. It

is also without loss to assume p0(s
∗
n) < p1(s

∗
n) and π < p1(s

∗
n). The reason is as follows.

First, the assumption π < l/(l + s) implies that π < p1(s
∗
n) for all sufficiently large n.

Next, suppose there is a subsequence {s∗nk} of {s∗n} such that p0(s
∗
nk
) ≥ p1(s

∗
nk
). Then by

Lemma 4, p1(s
∗
nk
)= L/(1 +L). Moreover, by part (i) of Lemma 2, limk→∞ s∗nk = s, so the

first (free) expert almost always recommends Y for k sufficiently large. Consequently,
U(cnk) converges to max{0�−L + π(1 + L)}, and T(cnk) converges to −l + π(1 + l) if
π ≥ L/(1 + L) and to 0 otherwise. It can be readily checked that these subsequential
limits are strictly below (1 − sL/l)π and π(1 − s), respectively.

By the argument above, we focus on a sequence of informative equilibria such that
max{p0(s

∗
n)�π}<p1(s

∗
n) for all n. First consider the agent’s equilibrium payoff. His payoff

U(cn) at search cost cn is equal to V (π; s∗n)+ cn. By Lemma 4, V (p∗
1(sn); s∗n)= −L+ (1 +

L)p1(s
∗
n). Moreover, as each V (·; s∗n) is weakly convex and V (p0(s

∗
n); s∗n) = 0, an upper

bound on V (π; s∗n) is given by

Vn
(
π; s∗n

)≤ max
{

0�
[−L+ (1 +L)p1

(
s∗n
)] π −p0

(
s∗n
)

p1
(
s∗n
)−p0

(
s∗n
)}�

Definep
0
≡ lim infn→∞p0(s

∗
n). By Lemma 2, limn→∞p1(s

∗
n)= l/(l+ s) and p

0
> 0. Taking

lim sup on both sides of the inequality above gives

lim sup
n→∞

Vn
(
π; s∗n

)≤ max

⎧⎪⎪⎨
⎪⎪⎩0�

π −p
0

1 −
(
l+ s
l

)
p

0

(
1 − L

l
s

)⎫⎪⎪⎬
⎪⎪⎭ �

The right-hand side of the last inequality is no larger than (1 − sL/l)π. Therefore,
lim supn→∞U(cn)= lim supn→∞ Vn(π; s∗n)≤ (1 − sL/l)π.

Next we consider the experts’ joint payoff. Denote by En the expected payoff of the
expert who carries out the operation in an equilibrium of the game in which the search
cost is cn and the experts’ cutoff is s∗n. Recall by assumption that π <p1(s

∗
n); payoff En is

thus bounded from above as

En ≤ −l+ (1 + l)Pr
(
ω= 1|q= p1

(
s∗n
)
� s ≥ s∗n

)
= −l+ (1 + l)

(
1 + 1 −p1

(
s∗n
)

p1
(
s∗n
) 1 − F(s∗n|0)

1 − F(s∗n|1)
)−1

�
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where q= p1(s
∗
n) denotes the event that the agent holds a belief p1(s

∗
n) prior to the piv-

otal consultation.
Define ρ(s∗n)≡ (1+ (1−π)(1−F(s∗n|0))/[π(1−F(s∗n|1))])−1, so that ρ(s∗n) denotes the

agent’s posterior belief after the getting a recommendation Y from the first (free) expert,
assuming that the experts adopt cutoff s∗n. The agent searches beyond the first expert
after a recommendation Y if and only if ρ(s∗n) > p0(s

∗
n). In deriving the upper bound

on the experts’ equilibrium payoff, it is without loss to assume that ρ(s∗n) > p0(s
∗
n), for

otherwise T(cn)= 0.
Further define p̃0(s

∗
n)≡ (1 + (1 − p0(s

∗
n))F(s

∗
n|0)/[p0(s

∗
n)F(s

∗
n|1)])−1, so that p̃0(s

∗
n) is

a lower bound on the agent’s posterior belief conditional on quitting the search without
taking the operation, assuming that experts adopt cutoff s∗n. As the agent’s updated belief
in the search process is a martingale, starting with a prior belief π, the probability that
the agent’s posterior reaches p1(s

∗
n) is no more than (ρ(s∗n)− p̃0(s

∗
n))/(p1(s

∗
n)− p̃0(s

∗
n)).

The experts’ joint payoff T(cn) is, therefore, bounded from above by

T(cn)≤ ρ
(
s∗n
)− p̃0

(
s∗n
)

p1
(
s∗n
)− p̃0

(
s∗n
)(−l+ (1 + l)

(
1 + 1 −p1

(
s∗n
)

p1
(
s∗n
) 1 − F(s∗n|0)

1 − F(s∗n|1)
)−1)

�

Note that lim infn→∞ p̃0(s
∗
n) = (1 + (s)−1(p−1

0
− 1))−1 > 0 and limn→∞ ρ(s∗n) = π. Taking

lim sup on both sides of the inequality above gives

lim sup
n→∞

T(cn)≤
π − lim inf

n→∞ p̃0
(
s∗n
)

1 − l+ s
l

lim inf
n→∞ p̃0

(
s∗n
)(1 − s)�

As l/(l+ s) > π ≥ p
0
> lim infn→∞ p̃0(s

∗
n) > 0, the right-hand side of the inequality above

is strictly less than π(1 − s).
(ii) Suppose an informative equilibrium exists for each cn. Then from the proof of

part (ii) of Lemma 2, limn→∞p1(s
∗
n) ≤ l/(l + s). As s > l/L implies l/(l + s) < L/(1 +L),

we have −L+ p1(s
∗
n)(1 + L) < 0 for sufficiently large n. This contradicts that the agent

is willing to undergo the operation at p1(s
∗
n). Therefore, there are only uninforma-

tive equilibria when cn is sufficiently small. As π < l/(l + s) < L/(1 + L), the only
uninformative-equilibrium outcome involves the agent not taking the operation, so
U(cn)= T(cn)= 0.

A.5 Proof of Proposition 4

Following the appendices above, denote s∗n ≡ s∗(cn). Note first that the proofs of part (i)
and part (iii) of Lemma 2 do not rely on the conditionπ < l/(l+s). Thus, whenever s > 0,
p0(s

∗
n) does not converge to 0 in any sequence of informative equilibria, so information

is not perfectly aggregated in the limit.
The rest of the proof shows the sufficiency of the condition s = 0 for perfect infor-

mation aggregation. Suppose s = 0 and π >L/(1 +L). By Proposition 2, an informative
equilibrium exists. Moreover, by Lemma 2, every sequence of informative equilibria has
limn→∞ s∗n = 0 and limn→∞p1(s

∗
n)= 1.
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Consider, for each n ∈ N, the following (necessarily suboptimal) search strategy of
the agent: sample a fixed number Mn of experts and take the operation in the end
if and only if all of them recommend Y . Here, Mn is chosen such that the posterior
reaches p1(s

∗
n) if allMn experts recommends Y . The agent’s equilibrium payoff V (π; s∗n)

is bounded from below by the expected payoff of this strategy, i.e.,

V
(
π; s∗n

)≥ π(1 − F(s∗n|1))Mn + (1 −π)(1 − F(s∗n|0))Mn(−L)− cnMn�

As V (·; s∗n) is weakly convex, V (π; s∗n)≤ π. To prove the required result, it suffices to show
that the lower bound of V (π; s∗n) above converges to π, as π = limn→∞ V (π; s∗n) implies
limn→∞p0(s

∗
n)= 0. The subsections below show, respectively, that limn→∞ cnMn = 0 and

limn→∞π(1 − F(s∗n|1))Mn + (1 −π)(1 − F(s∗n|0))Mn(−L)= π.

Computation for limn→∞ cnMn = 0 Note first that Mn must lie between the bounds
identified in inequality (15) with q= π. Together with the upper bound on p1(s

∗
n) iden-

tified in inequality (19), we have the following upper bound onMn:

Mn ≤
ln
(

π

1 −π
s∗n
l

1 − F(s∗n|0)
1 − F(s∗n|1)

)

ln
(

1 − F(s∗n|0)
1 − F(s∗n|1)

) + 1� (20)

As limn→∞p1(s
∗
n)= 1> L/(1 + L), Lemma 4 implies that V (p1(s

∗
n); s∗n)= −L+ (1 +

L)p1(s
∗
n) > 0 and p0(s

∗
n) < L/(1 +L) for n sufficiently large. Therefore, (17) holds. Rear-

ranging (17) gives

cn = −p1
(
s∗n
)
F
(
s∗n|1

)
(1 +L)+ [p1

(
s∗n
)
F
(
s∗n|1

)+ (1 −p1
(
s∗n
))
F
(
s∗n|0

)]
×
[

max
{

0� V
((

1 + 1 −p1
(
s∗n
)

p1
(
s∗n
) F

(
s∗n|0

)
F
(
s∗n|1

))−1
; s∗n
)}

+L
]
� (21)

Moreover, p1(s
∗
n) > π for n sufficiently large, as limn→∞p1(s

∗
n)= 1. Therefore, inequality

(13) implies

p1
(
s∗n
)≥ l

l+ s∗n
� (22)

Together with the fact that the max operator gives a value less than 1, (21) implies that

cn ≤ (1 +L) s∗n
s∗n + l F

(
s∗n|0

)
� (23)

Using both inequalities (20) and (23), we get

cnMn ≤

⎡
⎢⎢⎢⎢⎣

1 +L
l+ s∗n

F
(
s∗n|0

)
ln
(

1 − F(s∗n|0)
1 − F(s∗n|1)

)
⎤
⎥⎥⎥⎥⎦
[
s∗n ln

(
π

(1 −π)l
1 − F(s∗n|0)
1 − F(s∗n|1) s∗n

)]
+(1+L) s∗n

l+ s∗n
F
(
s∗n|0

)
�
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Now we take the limit on both sides of the inequality above. Consider the first bracketed
term on the right-hand side,

lim
n→∞

⎡
⎢⎢⎢⎢⎣

1 +L
l+ s∗n

F
(
s∗n|0

)
ln
(

1 − F(s∗n|0)
1 − F(s∗n|1)

)
⎤
⎥⎥⎥⎥⎦= 1 +L

l
× lim
s∗→0

(
1 − F(s∗|0))(1 − F(s∗|1))

s∗
(
1 − F(s∗|0))− (1 − F(s∗|1)) = −1 +L

l
�

where we have used L’Hospital rule. Consider the second bracketed term,

lim
n→∞ s

∗
n ln
(

π

(1 −π)l
1 − F(s∗n|0)
1 − F(s∗n|1) s∗n

)
= lim
s∗→0

[
s∗ ln

π

(1 −π)l + s∗ ln
1 − F(s∗|0)
1 − F(s∗|1) + s∗ ln s∗

]
= 0�

where we have used the fact that lims∗→0 s
∗ ln s∗ = 0. The last term (1 +L)F(s∗n|0)s∗n/(l+

s∗n) has a limit of 0. Therefore, limn→∞ cnMn = 0.

Computation for limn→∞π(1 −F(s∗n|1))Mn + (1 −π)(1 −F(s∗n|0))Mn(−L)= π Note first
that for n sufficiently large,

π ≥ π(1 − F(s∗n|1))Mn + (1 −π)(1 − F(s∗n|0))Mn(−L)

≥ (1 −π)
(

p1
(
s∗n
)

1 −p1
(
s∗n
) −L

)(
1 − F(s∗n|0))Mn

≥ (1 −π)
(
l

s∗n
−L

)(
1 − F(s∗n|0))Mn

≥ (1 −π)
(
l

s∗n
−L

)(
1 − F(s∗n|0))

ln( π
1−π

s∗n
l

1−F(s∗n |0)
1−F(s∗n |1) )

ln(
1−F(s∗n |0)
1−F(s∗n |1) )

+1

≡ �n�

In the computation above, the second inequality uses the lower bound in (15) with q =
π, the third inequality uses (22), and the last inequality uses (20).

Below we show the required result by establishing that limn→∞ �n = π. Upon rear-
ranging, we express �n as

�n = (1 −π)(1 − F(s∗n|0))
(
l

s∗n
−L

)[(
π

1 −π
s∗n
l

1 − F(s∗n|0)
1 − F(s∗n|1)

)(1− ln(1−F(s∗n |1))
ln(1−F(s∗n |0)) )

−1]
�

As lims∗n→0 ln(1−F(s∗n|1))/ ln(1−F(s∗n|0))= 0 by L’Hospital’s rule, the term in the brackets
has a limit of 0. It remains to evaluate the limit:

lim
n→∞

1
s∗n

(
π

1 −π
s∗n
l

1 − F(s∗n|0)
1 − F(s∗n|1)

)(1− ln(1−F(s∗n |1))
ln(1−F(s∗n |0)) )

−1

= lim
n→∞

(
π

1 −π
1
l

1 − F(s∗n|0)
1 − F(s∗n|1)

)(1− ln(1−F(s∗n |1))
ln(1−F(s∗n |0)) )

−1

× exp

⎛
⎜⎜⎜⎜⎝

ln
(
s∗n
)

ln
(
1 − F(s∗n|0))

ln
(
1 − F(s∗n|1)) − 1

⎞
⎟⎟⎟⎟⎠ �
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For the last expression, the limit of the first term is π
1−π

1
l . The limit of the exponent can

be evaluated by L’Hospital’s rule:

lim
s∗→0

ln s∗

ln
(
1 − F(s∗|0))

ln
(
1 − F(s∗|1)) − 1

= lim
s∗→0

⎛
⎜⎜⎜⎜⎝

ln
(
1 − F(s∗|1))

−(1 − F(s∗|1)) ln
(
1 − F(s∗|1))+ s∗(1 − F(s∗|0)) ln

(
1 − F(s∗|0))

×
[(

1 − F(s∗|0))(1 − F(s∗|1))
f
(
s∗|0)

ln
(
1 − F(s∗|1))

s∗
]
⎞
⎟⎟⎟⎟⎠ �

As f (0|0) > 0 and lims∗→0(s
∗)−1 ln(1 − F(s∗|1)) = −f (0|1) = 0, the limit of the brack-

eted term above is 0. The limit of the unbracketed term above can be computed by
L’Hospital’s rule again:38

lim
s∗→0

ln
(
1 − F(s∗|1))

−(1 − F(s∗|1)) ln
(
1 − F(s∗|1))+ s∗(1 − F(s∗|0)) ln

(
1 − F(s∗|0))

= lim
s∗→0

1

ln
(
1 − F(s∗|1))− ln

(
1 − F(s∗|0))+ 1 − F(s∗|0)

f
(
s∗|0)

ln
(
1 − F(s∗|0))

s∗

−1
1 − F(s∗|1)

= 1�

Therefore, limn→∞ �n = (1 −π)l× (l−1π/(1 −π))= π.

A.6 Proof of Claim 1

Denote by piv the pivotal event for an individual expert: that the number of Y recom-
mendations among other experts is between qn− 1 and qn, and that the agent is going
to undergo the operation with her if she recommends Y . In an informative equilibrium,
piv is necessarily a positive-probability event. Thus, an individual expert is willing to
recommend Y if and only if her signal s leads to Pr(ω = 1|s�piv) ≥ l/(1 + l). It is clear
that Pr(ω = 1|s�piv) is increasing in s, leading the expert to adopt a cutoff strategy of
recommending Y if and only if s (weakly) exceeds a cutoff. Moreover, as all experts face
the same problem, they necessarily adopt a symmetric cutoff strategy in an informa-
tive equilibrium. In sum, in an informative equilibrium of the voting mechanism with n
experts, the symmetric cutoff, denoted by s∗n ∈ (s� s̄), is characterized by

Pr
(
ω= 1|s∗n�piv

)= l

1 + l � (24)

38The last equality makes use of the observation that lims∗→0(s
∗)−1 ln(1 − F(s∗|0))= −f (0|0) < 0.
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We first show that if n is sufficiently large, a solution s∗n ∈ (s� s̄) to (24) exists. The
conditional probability Pr(ω= 1|s∗�piv) is given by

Pr
(
ω= 1|s∗�piv

)=
(

1 + 1
s∗

1 −π
π

1 − F(s∗|1)
1 − F(s∗|0)

((
1 − F(s∗|0)
1 − F(s∗|1)

)q(F(s∗|0)
F
(
s∗|1)

)1−q)n)−1
�

It is immediate that Pr(ω = 1|s∗�piv) is continuous in s∗. Moreover, fixing an s∗ suffi-
ciently close to s̄, Pr(ω= 1|s∗�piv) > l/(1 + l) for n sufficiently large. Alternatively, fixing
an s∗ sufficiently close to s, Pr(ω= 1|s∗�piv) < l/(1 + l) for n sufficiently large. The exis-
tence of a solution to (24) then follows from the intermediate value theorem.

Next, we show that limn→∞ s∗n exists. Let {s∗nk} be a convergent subsequence of
{s∗n}. It is necessary that the sequence {(((1 − F(s∗nk |0))/(1 − F(s∗nk |1)))q(F(s∗nk |0)/F(s∗nk |
1))1−q)nk} converges, so limk→∞((1 −F(s∗nk |0))/(1 −F(s∗nk |1)))q(F(s∗nk |0)/F(s∗nk |1))1−q =
1. Consequently, the limit s∗ ≡ limk→∞ s∗nk is characterized by

(
1 − F(s∗|0)
1 − F(s∗|1)

)q(F(s∗|0)
F
(
s∗|1)

)1−q
= 1� (25)

The left-hand side of (25) is decreasing in s∗, larger than 1 for s∗ sufficiently close to s,
and smaller than 1 for s∗ sufficiently close to s̄. As a result, there exists a unique solution
to (25) and, thus, a unique subsequential limit for {sn}. Therefore, limn→∞ s∗n exists and
is given by the solution to (25).

Finally, we show that 1 − F(s∗|0) < q < 1 − F(s∗|1), which in turn implies, by the
law of large numbers, that the probability that the agent makes the correct operation
decision converges to 1 as the number of consulted experts goes to infinity. Denote
by F−1

ω the inverse of F(s|ω). For each ω, the function (1 − F(s|ω))q(F(s|ω))1−q is in-
verted U-shaped in s with a maximum of qq(1 − q)1−q, which occurs at F−1

ω (1 − q).
As F−1

1 (1 − q) > F−1
0 (1 − q), the solution to (25) necessarily occurs in the interval

(F−1
0 (1 − q)�F−1

1 (1 − q)).

A.7 Discussion of conservative experts

In this appendix, suppose l ≥L. Following the appendices above, let s∗n ≡ s∗(cn).
First, in the proof of Proposition 2, Lemma 5 still holds. The proof for the existence of

informative equilibrium is still valid, provided that π ∈ (max{l/(l+ s̄)�L/(1 +L)}� l/(l+
s)). The extra condition π > l/(l+ s̄) ensures that the fixed point of the correspondence
Z does not occur at the boundary point s̄.

Next, we explain that if π ∈ (max{l/(l+ s̄)�L/(1 +L)}� l/(l+ s)), it is possible to pick
a sequence of informative-equilibrium cutoffs such that s∗n → s. Let ε ∈ (0� (s̄− s)/2). We
modify the definition of Z in the proof of Proposition 2 as follows. Let Z′ : [s� s + ε] ⇒
[s� s+ ε] be a correspondence defined by

Z′(ŝ)≡ {max
{
s�min

{
s+ ε�x(ŝ� b)}} : b ∈
(ŝ)}�

Replacing s̄ with s+ ε in the proof of Proposition 2 shows that Z′ admits a fixed point. It
suffices to show that the fixed point does not occur at s + ε when c is sufficiently small.
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To see this, first substituting ŝ = s + ε and c = cn into the agent’s value function (8) and
then taking the limit, we get (12), to which V (p) = p is the unique solution. Thus, as
cn → 0, the agent’s best response has p1(s + ε) arbitrarily close to 1. Using (5) and (7),
an individual expert’s best response satisfies x(s∗n�b) ≤ l((p1(s + ε))−1 − 1)(1 − F(s +
ε|1))/(1 − F(s+ ε|0)), which is strictly less than s+ ε for n sufficiently large. As a result,
there exists an N ′ ∈ N such that for all n >N ′, the correspondence Z′, and hence Z, has
a fixed point s∗n < s + ε. It is clear that this sequence {s∗n}n>N ′ does not converge to s̄. By
the argument in the proof of part (i) of Lemma 2, it must converge to s.

Finally, we show that if s∗n → s̄, then lim supn→∞p1(s
∗
n) ≤ l/(1 + l). By substituting

(5) into (7), we get inequality (19). The right-hand side of the inequality converges to
l/(1 + l) as s∗n → s̄, giving lim supn→∞p1(s

∗
n) ≤ l/(1 + l). As a result, we can apply the

argument in the proof of Proposition 3 to obtain upper bounds on payoffs in the limit
along such a sequence. Ifπ < l/(1+ l), then lim supn→∞U(cn)≤ π(l/(1+ l))−1(−L+(1+
L)l/(1+ l))= π(1−L/l). Ifπ ≥ l/(1+ l), lim supn→∞U(cn)≤ −L+π(1+L). For experts’
payoff, if π < l/(1 + l), then lim supn→∞ T(cn) = 0; if π ≥ l/(1 + l), lim supn→∞ T(cn) ≤
−l+π(1 + l). It is straightforward that these bounds are lower than the respective upper
bounds identified in part (i) of Proposition 3.

A.8 Discussion of search with recall

In this appendix, we explain more formally why the probability of the state conditional
on being pivotal is still given by (4) when recall of experts is allowed.

With recall, an expert is pivotal if, given her recommendation Y , the agent decides
to undergo the operation and, in particular, he picks her for the operation. Let y(h) be
the number of Y recommendations in history h. Dropping the dependence of qω on
strategies to simplify notation, the likelihood ratio of this pivotal event piv(b) can be
written as

Pr
(
piv(b)|ω= 0; s∗� b)

Pr
(
piv(b)|ω= 1; s∗� b)

=

∑
h∈H

q0(h)

[
b1(h�Y)

y(h�Y)
+
∑
h′∈H

q0
(
h′|h�Y )(1 − F(s∗|0))b1

(
h�Y�h′�Y

)
y
(
h�Y�h′�Y

) ]

∑
h∈H

q1(h)

[
b1(h�Y)

y(h�Y)
+
∑
h′∈H

q1
(
h′|h�Y )(1 − F(s∗|1))b1

(
h�Y�h′�Y

)
y
(
h�Y�h′�Y

) ]
� (26)

where qω(h′|h�Y) stands for the ex ante probability that history (h�Y�h′) realizes at
the beginning of a period, conditional on the realization of the history (h�Y) by the
end of some previous period. To understand (26), fix an expert j and a state ω. Sup-
pose an agent with history h shows up for consultation. If b1(h�Y) > 0, then the agent
stops and takes the operation with positive probability given a Y recommendation
by expert j. In this case, expert j is pivotal with probability b1(h�Y)/y(h�Y), as the
agent will choose, with equal probabilities, among the experts who recommended Y
to carry out the operation. If b1(h�Y) < 1 (and thus q0(∅|h�Y) > 0), then the agent
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may leave expert j for further consultations. With a conditional probability qω(h′|h�Y),
the agent arrives at a history (h�Y�h′) prior to consulting some other experts. In this
case, he takes the operation with probability (1 − F(s∗|ω))b1(h�Y�h

′�Y) by the end of
the period and, in particular, he returns to expert j for the operation with probability
(1 − F(s∗|ω))b1(h�Y�h

′�Y)/y(h�Y�h′�Y). The bracketed terms in (26), therefore, are
the probabilities, for the respective state ω, that expert j is pivotal conditional on the
agent’s history being h.

The numerator and denominator in (26) can be simplified as

∑
h∈H

qω(h)

[
b1(h�Y)

y(h�Y)
+
∑
h′∈H

qω
(
h′|h�Y )(1 − F(s∗|ω))b1

(
h�Y�h′�Y

)
y
(
h�Y�h′�Y

) ]

=
∑
h∈H

{
qω(h)

b1(h�Y)

y(h�Y)

+ qω(h)
[∑
h′∈H

qω
(
h�Y�h′)

qω(h)
(
1 − F(s∗|ω))

(
1 − F(s∗|ω))b1

(
h�Y�h′�Y

)
y
(
h�Y�h′�Y

) ]}

=
∑
h∈H

[
qω(h)

b1(h�Y)

y(h�Y)
+
∑
h′∈H

qω
(
h�Y�h′)b1

(
h�Y�h′�Y

)
y
(
h�Y�h′�Y

) ]

=
∑
h∈H

qω(h)b1(h�Y)�

The first equality follows from definitions and Bayes’ rule. The last equality is obtained
by noting that a history (h�Y�h′�Y) is counted exactly y(h�Y�h′�Y) times in the sum-
mations.

By the computation above, the likelihood ratio of the pivotal event with recall is the
same as that in (4). Intuitively, the term

∑
h∈H qω(h)b1(h�Y) is the expected number of

pivotal experts in state ω, which does not depend on whether the agent sticks with the
last expert or goes back to some previously consulted expert for the operation.
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