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Convex preferences: A new definition
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We suggest a concept of convexity of preferences that does not rely on any alge-
braic structure. A decision maker has in mind a set of orderings interpreted as
evaluation criteria. A preference relation is defined to be convex when it satis-
fies the following condition: If, for each criterion, there is an element that is both
inferior to b by the criterion and superior to a by the preference relation, then b

is preferred to a. This definition generalizes the standard Euclidean definition of
convex preferences. It is shown that under general conditions, any strict convex
preference relation is represented by a maxmin of utility representations of the
criteria. Some economic examples are provided.

Keywords. Convex preferences, abstract convexity, maxmin utility.

JEL classification. C60, D01.

1. Introduction

The canonical definition of convex preferences requires that if a is preferred to b, then
any convex combination of a and b is also preferred to b. This definition relies on the
existence of an algebraic structure attached to the space of alternatives. In this paper, we
present a new definition of convex preferences. It has an attractive verbal and intuitive
meaning, it generalizes the standard Euclidean notion of convex preferences and it also
can be applied to spaces without algebraic structure.

In our approach, the agent has in mind a set of primitive orderings � = {≥k}, where
each ≥k is a complete and transitive binary relation (which may have indifferences) over
a set of alternatives X . Each ordering represents a criterion for evaluating the alterna-
tives. The agent employs these criteria when forming his preferences. To be �-convex,
a preference is required to satisfy the following consistency requirement: Given any two
alternatives a and b, if, for each criterion, there is an element that is (i) inferior by that
criterion to b and (ii) preferred to a, then b must be preferred to a.

According to this definition, convexity can be perceived as a scheme of argumenta-
tion used by either the agent himself or someone trying to persuade him. The argument
is as follows. You should prefer b to a, since for each of your relevant evaluation criteria,
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there is an alternative inferior to b by that criterion that you prefer to a. To illustrate,
assume that job candidates are evaluated according to research, teaching, and charm.
To persuade a colleague that b should be hired rather than a, one needs to demonstrate
that there is a candidate c, who is a worse researcher than b and preferred by the col-
league to a, that there is a candidate (who may or may not be c) who is a worse teacher
than b and is preferred by the colleague to a, and that there is a less charming candidate
than b whom the colleague ranks above a.

The concept we introduce depends crucially on the set �. Obviously, the same set
X endowed with different sets of primitive orderings may have different sets of convex
preferences. We think about the orderings in � as the building blocks in the agent’s
formation of preferences (for the related concept of “definable preferences,” see Rubin-
stein (1978, 1998)). The orderings in � may describe objective features of the alternatives
(such as height, weight, or geographical position), but they may also reflect subjective
criteria that the agent employs when ranking the alternatives (such as attractiveness
and charisma). In the analysis, we take these orderings to be primitives and explore
the preferences that are convex with respect to them. This is in contrast to Richter and
Rubinstein (2015) who study general-equilibrium-like environments with the notion of
abstract convexity (Edelman and Jamison, 1985) and under some conditions induced
the primitive relations from the notion of abstract convexity.

There are several reasons why �-convexity is an attractive concept.

(a) We find the consistency requirement compelling for its own sake. The analysis will
clarify its role in shaping preference relations.

(b) For Euclidean spaces, choosing the set � to contain all algebraic linear orderings
induces the standard convex preferences notion. The new definition allows an exten-
sion of the standard definition in two directions: First, it applies to setups where no
algebraic structure is specified; second, for spaces with algebraic structure, alternative
specifications of � induce alternative convexity-like requirements.

(c) Our main analytical result states that any �-convex strict preference relation can
be represented by a utility function of the form mink(uk(x)), where each uk is a utility
representation of some ordering in �. This is a meta-representation theorem. For any
set of primitive orderings �, it delivers a representation result for the �-convex prefer-
ences, making it possible to derive both new and known maxmin-like representation
results.

2. A new definition of convex preferences

Definition 1. Let X be a set and let � be a set of primitive orderings on X . We say that
a preference relation � (complete and transitive) on X is �-convex if for every a�b ∈ X ,
the following condition holds: If for every ≥k ∈ �, there is a yk, such that b ≥k yk and
yk � a, then b� a.

We say that a preference relation � on X is �-strictly-convex if for every a�b ∈X , the
following stronger condition holds: If for every ≥k ∈�, there is a yk �= b such that b≥k yk
and yk � a, then b � a.
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We now present some traits of �-convex preferences.

(I) Every primitive ordering ≥l ∈ � is �-convex: If, for every ≥k, there is a yk such
that b ≥k yk and yk ≥l a, then, in particular, for l, there is a yl such that b ≥l yl and
yl ≥l a, and, thus, b ≥l a.

(II) A �-convex preference relation must satisfy the weak “Pareto” property: If
b ≥k a for every ≥k ∈ �, then b � a (apply the definition with yk = a for every primi-
tive ordering in �). If � on X is �-strictly-convex, then it satisfies a stronger version of
Pareto: For any two distinct elements a and b, if b≥k a for every ≥k ∈�, then b� a.

(III) If � is finite and � is �-convex, then for each alternative a, there is a direction
≥l for which a weak decline cannot be strictly improving (for all y �= a, a ≥l y ⇒ a� y):
It is impossible that for all ≥k there is yk �= a such that a ≥k yk and yk � a, since letting yl
be �-minimal from among those {yk}, then, by �-convexity, a� yl � a.

Furthermore, for any � (even infinite), if � is �-strictly-convex, then for each alter-
native a, there is a direction ≥l for which a weak decline is strictly disimproving (for all
y �= a, a ≥l y ⇒ a � y): It is impossible that for all ≥k there is yk �= a such that a ≥k yk
and yk � a, since then it would follow that a� a.

(IV) For a finite set X , when the primitive orderings are strict, a �-convex preference
relation can be built inductively as follows: Take an alternative x1 that is at the bottom of
one of the primitive relations and place it at the bottom of �. Then take an alternative x2
that is at the bottom of X − {x1} with respect to one of the primitive orderings and place
it strongly or weakly above x1. Continue this procedure until you exhaust all alternatives.
The constructed preference is �-convex, since if, for every ≥k ∈ �, there is a yk �= b such
that b ≥k yk and yk � a, then at least one such yk must be picked by the procedure before
b, and, thus, b� yk and yk � a, which implies b� a.

(V) For any finite set X , where the primitive orderings are strict, every �-convex
preference relation � must be consistent with the procedure described in (IV). For each
≥k, let bk be a ≥k-minimal alternative and let b be �-minimal from among {bk}. For
every other alternative, a ∈ X\{b}; for every ≥k, it is the case that a ≥k bk and bk � b.
Thus, �-convexity implies that a� b. Therefore, b is �-minimal. Let x1 = b and continue
with the set X − {x1} to identify the sequence x2� � � � � x|X| such that xi is ≥k-minimal for
some ≥k and �-minimal from among X − {x1� � � � � xi−1}.

(VI) If � ⊃ � and � is �-convex, then � is �-convex. To see it, suppose that � is
�-convex. If for every ≥k ∈ �, there is a yk such that b ≥k yk and yk � a, then for every
≥k ∈ �, there is a yk, such that b ≥k yk and yk � a, and by �-convexity, b� a. Hence � is
�-convex.

(VII) If � is �-convex, then the sets of � ∪ {�}-convex and �-convex preferences are
identical. One side of the statement follows from (VI). To see the converse, suppose that
�′ is � ∪ {�}-convex. Assume that for every ≥k ∈ �, there is a yk �= b, such that b ≥k yk
and yk �′ a. Let y = min(yk��). Therefore, y �′ a and by the �-convexity of �, b � y.
Then �∪ {�}-convexity of �′ implies that b�′ a. Thus, �′ is �-convex.

(VIII) For strict preferences, there is no difference between �-convexity and �-strict-
convexity.
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Three examples of �-convex orderings follow.

Example 1. Let X be a (finite or not) subset of R and let � contain exactly two orderings:
the increasing ordering ≥I and the decreasing ordering ≥D. ♦

Observation. A preference is �-strictly convex if and only if it is singled-peaked on X

(that is, there are no three alternatives x < y < z such that x�z � y).

Proof. Suppose that � is singled-peaked. Assume that there are yI �= b and yD �= b such
that b ≥I yI and b ≥D yD, and yI� yD � a. Then, by single-peakness of �, we must have
b � yI or b � yD and, thus, b � a. Thus, � is �-strictly-convex.

Alternatively, if � is �-strictly-convex, then by trait (III), there are no three alterna-
tives x < y < z such that x�z � y.

Example 2. Let X be a convex and closed subset of RN . Each nonzero vector v defines
an algebraic linear ordering by x ≥v y if v · x ≥ v · y. Denote the set of all algebraic lin-
ear orderings by �. We will show that for continuous preference relations on X , the
standard notion of convexity is equivalent to �-convexity. ♦

Observation. The following two statements about a continuous preference relation �
are equivalent:

(i) The relation � is convex by the standard definition.

(ii) The relation � is �-convex.

Proof. Assume (i). Take two different points a�b ∈ X such that for every ≥k ∈ �, there
is a yk �= b such that b ≥k yk and yk � a. We show b� a by contradiction. Suppose a � b.
Since � is continuous and convex, the set U�(a) = {z : z � a} is closed and convex. Thus,
by the separating hyperplane theorem, there is some algebraic ordering ≥l such that b
lies strictly below U�(a). Since b ≥l yl, it follows that yl /∈ U�(a) and, therefore, a � yl,
which is contradiction.

Assume (ii). Take two points a and b such that b� a. Then, for any point c between
a and b and any algebraic linear ordering ≥k, it is the case that c ≥k a or c ≥k b and both
a and b are preferred to a. Thus, by the definition of �-convexity, c � a.

The observation demonstrates that the notion of �-convexity generalizes the stan-
dard convexity notion for continuous preferences. Notice, however, that other familiar
properties of preference relations can also be expressed in the language of �-convexity.
For example, for the case that X is a convex closed subset of RN , let �+ be the set of
algebraic linear orderings with nonnegative coefficients. Then one can show that a con-
tinuous preference relation � is �+-convex if and only if � is weakly increasing and
convex in the standard sense. Thus, by properly choosing the set of primitive orderings,
�-convexity can express both convexity and monotonicity.
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Example 3. Let X = R
2+ (or X = R

2) and let � consist of the two primitive orderings ≥R

(“right”) and ≥U (“up”). The following observation implies that a preference relation that
is continuous, �-convex, and monotonic (if y1 > x1 and y2 > x2, then (y1� y2) � (x1�x2))
must have indifference curves that are vertical, horizontal, or right-angled only. ♦

Observation. Any continuous �-convex and monotonic preference relation has a util-
ity representation of the form U(x1�x2) = min(f (x1)�g(x2)), where f and g are strictly
increasing functions.

Proof. By monotonicity, the function U(x�x) = ex

1+ex represents � along the main diag-
onal onto (1/2�1). This representation can be extended by attaching to each alternative
the unique alternative on the main diagonal to which it is indifferent (its existence is
guaranteed by monotonicity and continuity).

Define f (z1) = sup(U(z1� z2) : z2 ∈ R) and g(z2) = sup(U(z1� z2) : z1 ∈ R). We first
show that U(y1� y2) ≡ min(f (y1)�g(y2)). By definition, U(y1� y2) ≤ min(f (y1)�g(y2)).
Suppose the inequality is strict for some (y1� y2). Then there exists z2 > y2, z1 > y1 such
that (y1� z2) � (y1� y2) and (z1� y2) � (y1� y2), violating trait (III).

The functions f and g are weakly increasing (because � is monotonic). If f and g are
strictly increasing everywhere, then we are done.

If not, without loss of generality (WLOG), suppose that f (y1) = f (x1), where y1 > x1.
Then, for every z2, U(y1� z2) = U(x1� z2) and, thus, (y1� z2) ∼ (x1� z2). Consequently, by
monotonicity, for any y2 > x2, (y1� y2) � (x1�x2) ∼ (y1�x2). Therefore, g is strictly in-
creasing everywhere and f (y1) = f (x1)≥ sup{g(z2) : z2 ∈R} = 1. Thus, f (y1) = f (x1) = 1.
Since � is continuous and monotonic, {z1 : f (z1) = 1} = [m�∞) for some m.

If m = −∞, then f ≡ 1 and for any x1�x2, U(x1�x2) = g(x2). Therefore, all indiffer-
ence curves are horizontal. Let h be a strictly increasing function such that h(z1) > 1
everywhere. Then min(h(x1)�g(x2)) = g(x2)= U(x1�x2) is the required representation.

If m> −∞, then define h(z1) = f (z1)+ (z1 −m)+. This function is strictly increasing
since, for z1 ≥m, the function (z1 −m)+ is strictly increasing and f (z1) is weakly increas-
ing, and for z1 < m, we have that (z1 − m)+ = 0 and h(z) = f (z) is strictly increasing.
Thus, h and g form the required representation of �.

3. A maxmin representation of convex preferences

We now turn to the main analytical result—a �-maxmin utility representation of �-
convex preferences. Our �-maxmin utility representation is of the form

U(x) = min
{
Uk(x)|Uk is a utility representation of ≥k ∈�

}
�

The importance of this presentation is twofold. First, it is an attractive procedure for
comparing two alternatives. In the hiring example, each candidate receives a score on
research, teaching, and charm, and a candidate is evaluated by his/her worst score.
Second, it relates to the previous literature that explores other maxmin representations
(see Section 5 for a detailed comparison).
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Definition 2. A preference relation � over X has a �-maxmin representation if, for
each ≥k in �, there is a utility representation Uk such that mink Uk(x) represents �.

Example 3 provided such a representation for a particular context. The existence of
such a representation means that we can identify each element in the set X with a vector
of numbers in R

� such that the following statements hold:

(i) For each primitive ordering, the values that are attached to the elements in X at
the corresponding coordinate respect the primitive ordering’s ranking.

(ii) The minimum value that is attached to an alternative across the different dimen-
sions specifies how the alternatives are ranked.

We first verify that any preference relation that has a �-maxmin representation is
�-convex.

Proposition 1. If � has a �-maxmin representation, then � is �-convex.

Proof. Suppose that for every primitive ordering ≥k, there is a yk �= b such that b≥k yk
and yk � a. Then, for every ≥l , Ul(b)≥Ul(yl) ≥ mink Uk(yl) ≥ mink Uk(a) and, therefore,
mink Uk(b) ≥ mink Uk(a), which implies b� a.

The converse requires more than �-convexity. For example, the total indifference is
always �-convex, but typically does not have a �-maxmin representation. Proposition 2
shows that �-strict convex preferences have �-maxmin representations. As preparation,
we need one additional concept. Recall the familiar Euclidean property that for any
strictly-convex preference relation and any point x, there is a tangent hyperplane that
touches x’s indifference curve only at x. This motivates the following definition: Given a
preference relation �, the set Critical(z) contains every ordering ≥k ∈� that satisfies the
condition “for every y �= z, if y � z, then y >k z.” Define Ck = {z | ≥k ∈ Critical(z)}.

In the Euclidean context, the set Critical(z) is analogous to the subdifferential of a
utility representation of �. Recall that a standard strictly-convex preference relation has
a nonempty subdifferential at every point. Analogously, if � is a �-strictly-convex pref-
erence relation, then Critical(z) �= ∅ for all z. To see why, if Critical(z) = ∅ for some
z ∈ X , then for every ≥k there would exist yk ∈ X − {z} such that z ≥k yk and yk � z ,
which violates trait (III).

Proposition 2. Let X be a finite set. Any �-strictly-convex preference relation � on X

has a �-maxmin representation.

Proof. First notice that the elements of Ck are strictly ordered identically by both ≥k

and �: given any two distinct elements x� y ∈ Ck, where x � y, we have x >k y since
y ∈ Ck. Moreover, if x >k y, then it must be that x � y since x ∈ Ck.

Let U be a utility function representing �. For every ≥k, define Uk(z) = U(z) for all
z ∈ Ck. Since � and ≥k give exactly the same ranking over Ck, the function Uk represents
≥k on Ck.
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So as to expand the definitions of Uk to the entire set X , count the elements of Ck as
c1 >k � � � >k cL and consider the following partitions of X : D0 = {x|x >k c1}, Di = {x|ci ≥k

x >k ci+1}, and DL = {x|cL ≥k x}. Notice that for all z ∈ Di\{ci}, ci � z since if ci ≥k z,
then ci � z since ci ∈ Ck. Expand Uk on Di\{ci} to represent ≥k with values taken from
the interval (max{U(z) : ci � z}�U(ci)]. Therefore, Uk represents ≥k for all k.

For all x ∈ Ck, Uk(x) = U(x), and for all x /∈ Ck, Uk(x) > U(x). Since, Critical(x) is
always nonempty, it follows that X = ⋃

Ck, and so mink Uk(x) = U(x) for all x. Recall
that U represents � and, thus, � has a �-maxmin representation.

Notice that for weak preferences, Propositions 1 and 2 do not form a complete
if-and-only-if characterization because Proposition 1 demonstrates �-convexity and
Proposition 2 requires �-strict-convexity. However, recall that for strict preferences,
the concepts of �-convexity and �-strict-convexity are equivalent (VIII). Thus, for
strict preferences, Propositions 1 and 2 together provide an exact equivalence between
�-convexity and the existence of a �-maxmin representation.

Example 4 (Monotonic Preferences Over Menus). Let Z be a finite set of alternatives
and let X be the set of all nonempty menus of Z. Given a utility function over al-
ternatives u : Z → R, the preference relation ≥max

u is defined over X by A ≥max
u B if

maxz∈A u(z) ≥ maxz∈B u(z). In words, each menu is evaluated by its u-best alternative.
Let �max consist of all such induced orderings over X . ♦

Observation. (i) A preference on X , �, is �max-strictly-convex if and only if it is strictly
monotonic in the sense that B ⊃ A implies B �A.

(ii) If � is a strictly monotonic preference over menus, then there exists a set U of func-
tions from Z to R such that

A� B if and only if min
u∈U

max
z∈A

u(z) ≥ min
u∈U

max
z∈B

u(z)�

Proof. (i) Let � be a �max-strictly-convex preference relation. For any two nested
menus B ⊃ A, it is the case that B ≥k A for every ≥k ∈ �max and, thus, B � A (by (II),
the strong Pareto property).

For the other direction, let � be a strictly monotonic preference on X , and let A

and B be two menus. Suppose that for every ≥k ∈ �max, there exists Yk �= B, such that
B ≥k Yk and Yk �A. Take ≥max

u ∈ �max, where u(z) = 0 for all z ∈ B and u(z) > 0 for all
z /∈ B. This ordering bottom-ranks B and all of its subsets and ranks all other sets above
it. Thus, B ≥max

u Yu implies that B ⊃ Yu (inclusion is strict because Yu �= B) and B � Yu

by the strict monotonicity of �. Therefore, B � Yu �A, which implies that B �A.
(ii) By part (i), � is �max-strictly-convex. Then, for every ordering ≥k in �max, pick

one utility function uk on Z that represents it. By Proposition 2, there exist a strictly
increasing function fk such that mink(fk(maxz∈A uk(z)) represents �. But then fk ◦ uk
also represents ≥k and mink maxz∈A fk ◦ uk(z) represents �.

This kind of representation can be thought of as a state-dependent maxmin utility.
The agent currently does not know his future preferences over Z, but will know them
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when he chooses from the menu. He evaluates each menu by its worst possible state.
This conclusion was proved by Gorno and Natenzon (2018), who in fact show that any
weakly monotonic menu preference � can be represented in this manner. Notice the
difference from Kreps (1979), who requires weak monotonicity and an additional sub-
modularity axiom to derive a representation of the form

∑
u π(u)maxz∈A u(z), where π

is a distribution over utility functions.

Example 5 (Betweenness Preferences Over Menus). Let Z be a finite set of alternatives
and let X be the set of nonempty menus of Z. Given a function u : Z →R, the preference
relation ≥avg

u over menus is defined by A ≥avg
u B if avgz∈Au(z) ≥ avgz∈Bu(z). Let �avg

consist of all such induced orderings over X .
A nonempty sequence of proper subsets of A (the sequence may contain repetitions)

is an equal cover of A if there is some positive number m such that each alternative in
A is contained in exactly m of the subsets. We say that a preference � satisfies the equal
covering property if for every equal cover of A, at least one of the sets in the sequence is
strictly inferior to A. Clearly, the monotonicity property of Example 4 implies the equal
covering property. ♦

Observation. For any preference � over X , the following statements hold:

(i) The preference � is �avg-strictly-convex if and only if it satisfies the equal covering
property.

(ii) If � satisfies the equal covering property, there exists a set {Uk} of functions from Z

to R and a set of increasing functions {Vk} such that

A� B if and only if min
uk∈U

Vk

(
avg
z∈A

uk(z)
)

≥ min
uk∈U

Vk

(
avg
z∈B

uk(z)
)
�

(iii) If � satisfies Gul and Pessendorfer’s (2001) set-betweenness axiom [∀A�B ⊆Z such
that B�A, and it is the case that A∪B�A and B�A∪B], then it is �avg-convex.

Proof. (i) Assume that � is �avg-strictly-convex. To show that it satisfies the equal
covering property, let (A1� � � � �An) be an equal cover of a set A and WLOG assume
that A2� � � � �An �A1. Then avgu(A) is a convex combination of {avgu(Ai)}. (Let m =
|{i : x ∈ Ai}|. Then, for any given u, m|A|avgu(A) = m

∑
a∈A u(a) = ∑n

i=1
∑

a∈Ai
u(a) =∑n

i=1 |Ai|avgu(Ai) and
∑n

i=1
|Ai|
m|A| = 1.) Thus, avgu(A) ≥ avgu(Ai) for at least one Ai, so

A≥avg
u Ai and Ai �A1. Therefore, by �avg-strict-convexity, A�A1.
For the other direction, let � be a preference satisfying the equal covering property.

Suppose that for every ≥k ∈ �avg, there exists Yk �= B, such that B ≥k Yk and Yk �A. Our
goal is to now show that B �A. Index all elements in Z as z1� � � � � z|Z| and attach to each
set A ⊆ X , a vector v(A), where v(A)i = 1/|A| if zi ∈ A and v(A)i = 0 otherwise. No-
tice that for any utility function u, avgz∈Au(z) = û · v(A), where û = (u(z1)� � � � � u(z|Z|)).
Thus, B ≥avg

u Yu means that û · v(B) ≥ û · v(Yu), and since this holds for every û, it must
be that v(B) is a convex combination of {v(Yk)}. All of the v(Yk) are rational vectors and
by a theorem of the alternative (Fishburn (1971), Theorem A), B can be equally covered
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Preferences Underlying utilities

{b} � {a�b} � {a} u(a) = 1, u(b) = 2
{a�b} � {a} ∼ {b} u(a) = 1, u(b) = 2; v(a) = 2, v(b) = 1

Table 1. Preferences satisfying the equal covering property and their min avg representation

by a sequence of the Yk (possibly with repetitions). Therefore, by the equal covering
property for at least one Yk, B � Yk and, thus, B �A.

(ii) By part (i), � is �avg-strictly-convex. Then, for every ordering ≥k in �avg, pick
one utility function uk on Z such that avguk represents it. By Proposition 2, there exist a
strictly increasing function Vk such that mink(Vk(avgz∈A uk(z)) represents �.

(iii) By induction, the first half of set betweenness implies the following stronger con-
dition: For any sequence of proper subsets of A that covers A (not necessarily an equal
cover), A is weakly preferred to at least one of the subsets.

To demonstrate the above min avg representation, here are two preferences that sat-
isfy the equal covering property and their representations with Z = {a�b} (see Table 1).

4. A maxmin representation theorem for compact metric spaces

In Proposition 2 we proved that when X is finite, any �-strictly-convex preference rela-
tion has a �-maxmin representation. Proposition 4 below is an analogous result (with
additional continuity-type restrictions) for compact metric spaces. That result requires
a significant amount of technical machinery and, therefore, we first present Proposi-
tion 3, which illustrates some of the key ideas in a simpler two-dimensional Euclidean
setting.

Proposition 3. Let X be a compact convex subset of R2 and let � be the set of all al-
gebraic linear orderings on X . If � is a continuous �-strictly-convex preference relation
(not necessarily monotonic), then it has a �-maxmin representation.

Proof. We first need to derive some properties of the set Ck—the set of critical points
of ≥k.

(i) The set Ck contains an element ak, which is a �-maximal element in the set of
≥k-minimal elements. To see it, note that the set of ≥k-minimal elements is convex
and compact, and since � is strictly convex and continuous, an element ak that is a �-
maximal element in the set of ≥k-minimal elements exists and is strictly preferred to all
other ≥k-minimal elements. Therefore, for any different z � ak, it is the case that z >k ak
and, thus, ak belongs to Ck.

(ii) There are no two distinct x� y ∈ Ck such that x∼k y (WLOG x� y and then y ∈ Ck

leads to x >k y).

(iii) The set Ck is connected.
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Figure 1. The construction of Uk, Ul .

(iv) Define Ck to be the set of all x such that x ∼k y for some y ∈ Ck. Any element
x /∈ Ck satisfies x >k ak by definition of ak and satisfies x >k y for all y ∈ Ck (since Ck is
connected and ≥k is continuous).

We now define for each k, a function Uk that represents ≥k. In the construction, we
use U : X → [0�1], a continuous utility representation of � (whose existence is guaran-
teed by the continuity of �). For every x ∈ Ck, define Uk(x) = U(y), where y is the unique
element in Ck for which x ∼k y. The function Uk represents ≥k on Ck. (Let x� y ∈ Ck and
let x̂� ŷ ∈ Ck satisfying x ∼k x̂, y ∼k ŷ. If x >k y, then x̂ >k ŷ and since x̂ ∈ Ck, it must
be that x̂ � ŷ and, therefore, Uk(x) = U(x̂) > U(ŷ) = Uk(y). If x ∼k y, then by (ii), x̂ = ŷ

and Uk(x) =U(x̂) =Uk(y).) For X −Ck, extend Uk to represent ≥k with values above 1.
Figure 1 illustrates the construction.

It remains to be shown that for every x ∈ X , mink Uk(x) = U(x). As mentioned ear-
lier, for each x ∈ X , there is some ≥k, such that x ∈ Ck, and for this ordering Uk(x) =
U(x). For any l such that x ∈ Cl\Cl, x ∼l x̂ for some x̂ ∈ Cl. Since x �= x̂ and x ∼l x̂, it
must be that U(x̂) > U(x) and, therefore, Ul(x) = U(x̂) > U(x). Finally, for any l such
that x /∈ Cl, Ul(x) > 1 ≥U(x). Thus, mink Uk(x) =U(x).

As mentioned in Example 2, when � is the set of all algebraic linear orderings, a
continuous preference relation is �-strictly-convex if and only if it is strictly convex in
the standard sense. Therefore, Proposition 3 demonstrates that any continuous strictly-
convex preference relation on a compact convex subset of R

2 has a �-maxmin rep-
resentation of the form mink Fk(x · ek), where ek is a vector in R

2 that points in the
direction of ≥k and Fk is a strictly increasing function. For Euclidean settings with the
standard convexity, Cerreia-Vioglio et al. (2011) establish a similar result that any con-
tinuous convex preference relation (not necessarily strict) has a representation using
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weakly increasing Fk. That is, they represent a larger class of preferences for R
N , but

they are not �-maxmin representations since the Fk are ≥k-weakly increasing but do
not represent ≥k.

We now prove the existence of a �-maxmin representation when X is a compact
metric space and (X��) satisfies the following betweenness condition: For every x� y ∈
X and ordering ≥l ∈ �, if y >l x, then there exists z ∈ X such that (i) y >l z >l x and
(ii) z ≥k x or z ≥k y for all other ≥k.

This condition is inspired by the Euclidean setting. In any convex subset of Eu-
clidean space with any collection of linear orderings �, an even stronger property holds:
For any x and y, and any point z on the line segment between them, z is sandwiched
between x and y according to every algebraic linear ordering. An example of a noncon-
vex set that satisfies the betweenness condition with � =�+ is a hollow square. The only
closed sets in R

2 that satisfy betweenness with �-convexity are the standard convex sets.

Proposition 4. Let X be a compact metric space and let � be a set of continuous primi-
tive orderings that satisfy betweenness. Then any continuous �-strictly-convex preference
relation � has a �-maxmin representation.

See the Appendix for the proof.

5. Comments

(i) Maxmin models. Maxmin functions have a long history, originating with Wald (1950).
It is interesting to compare our maxmin representation with the familiar but different
maxmin representation of Gilboa and Schmeidler (1989). Let S be a finite set of states
and let Z be a set of outcomes. An act is a function f : S → Z. Gilboa and Schmeidler
(1989) prove that if a preference relation over the set of acts satisfies certain axioms, then
there is a function u :Z → R and a set C of probability measures (priors) over S such that
the preference relation is represented by U(f) = minp∈C{p × [u ◦ f ]}. By this approach,
an act is transformed subjectively into a point u ◦ f ∈R

S . Each pk ∈ C can be thought of
as the algebraic linear function pk × f over RS , and the utility of an act is the minimal
value it receives according to these functions.

To obtain a related but different representation in our framework, one can take the
alternatives to be objective vectors f ∈ R

S and take the set � to be a set of orderings
represented by functions of the type pk × f . Then, by Proposition 4, an agent’s �-
strictly-convex preferences can be thought of as him having in mind a set of increas-
ing functions {Uk} that he applies to the values pk × f and then judges alternatives by
mink{U1(p1 × f )� � � � �UK(pK × f )}.

Thus, in our setting, the set of probability measures C is taken as given, in contrast
to Gilboa and Schmeidler’s (1989) framework. However, this is not the key difference,
since any utility function Uk can be taken above the minimum to render the associated
probability measure ineffective. The main difference between these two representations
is the order in which the functions U and pk×f are applied. More importantly, we study
a general notion of convex preferences according to which the primitive orderings are
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not necessarily algebraic linear functions and where the set of alternatives need not be
Euclidean.

(ii) Social Choice. Methods for constructing preference relations are the focus of so-
cial choice theory, where the social preferences are determined as a function of the indi-
viduals’ preferences (Arrow and Raynaud, 1986). The notion of �-convexity can also be
thought of as a social welfare function (SWF) requirement. We say that the social wel-
fare function F is convex if, for every profile P , the social preference F(P) is �-convex,
where � consists of all preferences that appear in the profile P . Note that the concept
of �-convexity is an intra-profile condition. Thus, our analysis can be thought of as
being within the single-profile approach in social choice, where a preference relation
is built on a specific profile of preference relations without requiring consistency in its
definition across various profiles.

Recall that for finite X and strict primitive rankings, �-convexity requires that at
the bottom of the social ranking lies an element that is at the bottom of one of the in-
dividuals’ rankings (see (V)). However, the principle by which a convex SWF picks one
of the bottom-ranked elements may vary from one profile to another. Two convex so-
cial welfare functions that additionally satisfy the standard neutrality, monotonicity, and
anonymity conditions are the following.

(a) The uniform maxmin SWF is defined by U(x) = mini ui(x), where ui(x) =
− rank(x�≥i). This SWF bottom-ranks all elements that are ranked last by at least one in-
dividual. Above them it places those that are ranked next to last by at least one individual
but were not ranked last by any agent, and so on.

(b) A recursive bottom element SWF: Let X1 = X and define inductively
Mj = {x ∈ X|there is an individual i for whom x is �i -minimal in Xj} and let Xj+1 =
Xj − Mj . Define class(x) = l if x ∈ Ml. The SWF ranks x at least as high as y if
class(x) ≥ class(y).

This SWF bottom-ranks all elements that are ranked last by at least one individual,
then above them it places all the elements that are ranked last by at least one individual
among the remaining alternatives, and so on.

Note that the Borda rule is a typical SWF that is not necessarily convex.

(c) �-Concavity. Dual to our notion of �-convexity is the following concept, which
we call �-concavity. A preference relation � on X is �-concave (�-strict concave) if for
every a�b ∈ X the following condition holds: If for every ≥k ∈ �, there is a yk �= a such
that b� yk and yk ≥k a, then b� a (b � a).

Recall that the “persuading argument” for b � a that lies behind the notion of �-
convexity is the existence for any criterion of an alternative that is ranked weakly below
b by the criterion and still is weakly superior to a. The persuading argument behind the
notion of �-concavity is the existence for each criterion of an alternative that is ranked
weakly above a by the criterion and still is weakly inferior to b. Both arguments are
sound, but apparently it is the former that fits the standard notion of convexity. In the
context of choice, the �-convexity conditions are arguments for choosing b, whereas
�-concavity provides arguments for not choosing a.
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The reader will now be expecting an attempt to connect the notion of �-strict
concavity to dual representations in the spirit of Propositions 1–4, and we shall not
disappoint. For simplicity, we only do so for Proposition 2. We say that a preference
relation � over X has a �-maxmax representation if maxk Uk(x) represents �, where Uk

is a utility representation of ≥k.

Proposition 2 (Dual). Let X be a finite set. Any �-strictly-concave preference relation �
on X has a �-maxmax representation.

Proof. For any binary relation R, define the converse binary relation RT , as bRTa if
aRb. If � is �-strictly-concave, then �T is �T -strictly-convex, where �T = {≥T

k :≥k ∈ �}.
By Proposition 2, there exists {Vk} such that Vk represents ≥T

k and V (x) = minVk(x) rep-
resents �T . Therefore, for every x ∈X , −V (x)= −minVk(x) = max−Vk(x), and −Vk and
−V represent ≥k and �, respectively. Thus, � has a �-maxmax representation.

Appendix

Proposition 4. Let X be a compact metric space and let � be a set of continuous prim-
itive orderings satisfying betweenness. Then any continuous �-strictly-convex preference
relation � has a �-maxmin representation.

Proof. Let U and Vk be continuous functions representing � and ≥k, respectively,
each with a range of [0�1]. Recall that for every ≥k ∈ �, the set Ck is defined as Ck =
{x| ≥k ∈ Critical(x)}. Notice that there cannot be x ∼k y such that x� y ∈ Ck. To see why,
WLOG suppose x � y. Then x >k y because y ∈ Ck. Let cl(Ck) denote the topological
closure of Ck and define cl(Ck) = {y : y ∼k x for some x ∈ cl(Ck)}.

We now define, for each k, a function Uk that represents ≥k, such that mink Uk(x)

represents �.
Step 1: Defining Uk on cl(Ck). For each x ∈ cl(Ck), define Uk(x) = max{U(y) : y ∼k

x}. Notice that this definition implies that for all x ∈ Ck, Uk(x) = U(x). To see this, note
that since x ∼k x, we have Uk(x) ≥ U(x), and by the definition of Ck, there is no y such
that U(y) > U(x) and y ∼k x.

Step 2. If x >k y, where x ∈ cl(Ck) and y is arbitrary, then x � y. Suppose to the
contrary that y � x. By betweenness, there exists w such that x >k w >k y and for all
other l, w ≥l x or w ≥l y.

Case (i): x�w. Then y � x�w and for every l, either w ≥l x or w ≥l y, which implies
by strict convexity that w �w, a contradiction.

Case (ii): w � x. Since x ∈ cl(Ck), take a sequence xn → x such that xn ∈ Ck. By the
continuity of � and ≥k, for n large enough, it is true that w � xn and xn >k w, violating
xn ∈ Ck.

Step 3: Uk represents ≥k on cl(Ck). Let x� y ∈ cl(Ck). By definition, if x ∼k y, then
Uk(x) = Uk(y). Now suppose that x >k y, and consider w ∈ cl(Ck) such that w ∼k x and
some z ∈ X such that z ∼k y and Uk(y) = U(z). Then w >k z. Since w ∈ cl(Ck), then by
Step 2, w � z. Thus, Uk(x) = Uk(w) ≥U(w) >U(z) = Uk(y).
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Step 4: Extension of Uk for x /∈ cl(Ck). Since cl(Ck) is a closed subset of a compact
set and Vk is continuous, the set of numbers Vk(cl(Ck)) is also closed and Vk(cl(Ck)) =
Vk(cl(Ck)) is, therefore, closed as well. Thus, the set [0�1]\Vk(cl(Ck)) is a collection Ik of
disjoint open intervals of the form (a�b), [0� b), or (a�1].

Case (i). Take x /∈ cl(Ck), which according to ≥k is neither strictly above nor strictly
below all members of cl(Ck). Then Vk(x) lies on a member of Ik of the type (a�b) =
(Vk(α)�Vk(β)), where α�β ∈ cl(Ck). Define W (Vk(x)) = max{U(y) : x ∼k y}. Let W :
(a�b] → (Uk(α)�Uk(β)] be the upper convex envelope of W on [a�b]. To see that W is
strictly increasing, since W is upper hemicontinuous by the theorem of the maximum, it
suffices to show that if β>k x >k α, then Uk(β) >W (Vk(x)). To see this, take y such that
x ∼k y and W (Vk(x)) =U(y). As β ∈ cl(Ck) and β>k x ∼ y, then by Step 2, U(β) >U(y).
Therefore, Uk(β) ≥ U(β) > U(y) = W (Vk(x)). Define Uk(x) = W (Vk(x)). The function
Uk represents ≥k for any x, y, such that b ≥ Vk(x)�Vk(y) ≥ a since Uk is a strict mono-
tonic transformation of Vk. Furthermore, Uk(x) =W (Vk(x)) ≥W (Vk(x)) ≥U(x).

Case (ii). There is no x /∈ cl(Ck), which according to ≥k is strictly below all members
of cl(Ck). This is because a �-maximal element of V −1

k (0) is necessarily in Ck.

Case (iii). Consider x /∈ cl(Ck) which according to ≥k is strictly above all members
of cl(Ck). For interval (a�1] ∈ Ik, we can simply define W (1) = 2 and then allow W

to be the upper convex envelope of W on [a�1], where W is defined as before. De-
fine Uk(x) = W (Vk(x)). Since 1 ≥ W , the function W is strictly increasing and, there-
fore, Uk represents ≥k for x, y, such that 1 ≥ Vk(x)�Vk(y) ≥ a, and Uk(x) = W (Vk(x)) ≥
W (Vk(x)) ≥U(x).

Step 5: U(x) = mink Uk(x). By construction, for all k, Uk(x) ≥ U(x). Because � is
�-strictly-convex, for every x there is an ordering ≥k such that x ∈ Ck and Uk(x) =U(x).
Consequently, for all x, U(x) = mink Uk(x).
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