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Common enrollment in school choice
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Increasingly, more school districts across the United States are using centralized
admissions for charter, magnet, and neighborhood schools in a common enroll-
ment system. We first show that across all school-participation patterns, full par-
ticipation in the common (or unified) enrollment system leads to the most pre-
ferred outcome for students. Second, we show that, in general, participation by all
schools may not be achievable because schools have incentives to stay out. This
may explain why some districts have not managed to attain full participation. We
also consider some specific settings where full participation can be achieved and
propose two schemes that can be used by policymakers to achieve full participa-
tion in general settings.

Keywords. Common enrollment, unified enrollment, student welfare, participa-
tion incentives, school choice.
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1. Introduction

Market design has been successful in proposing methods for clearinghouses to allocate
scarce resources in different contexts, such as matching students with schools, doctors
with residency positions, and patients with donated organs. Thus far, most of the focus
has been on the properties of the proposed methods. However, a typical assumption
that all agents in the market would voluntarily participate in a clearinghouse may be
violated, since an agent may deem it more advantageous to not participate and to find
better matches by staying outside of the system. In this paper, we consider the school
choice setting and analyze student welfare and participation incentives for schools in a
clearinghouse.1
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1See Abdulkadiroğlu and Sönmez (2003), who study school choice as a market-design problem.

© 2019 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://econtheory.org. https://doi.org/10.3982/TE2631

http://econtheory.org/
mailto:ekmekci@bc.edu
mailto:bumin.yenmez@bc.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://econtheory.org
https://doi.org/10.3982/TE2631


1238 Ekmekci and Yenmez Theoretical Economics 14 (2019)

Even though the voluntary-participation assumption is innocuous for district-run
schools, it is problematic for charter, magnet, and private schools, which can choose
not to participate. While some school districts have clearinghouses to assign students
to district-run schools, almost all charter schools run their admissions systems indepen-
dently.2 However, there has been recent interest in a small but growing number of dis-
tricts in having a clearinghouse that assigns students to all public schools. This system
is usually referred to as common enrollment (also called unified or universal). Currently,
there are at least eight school districts that have a common enrollment system: Camden
(NJ), Chicago (IL), Denver (CO), the District of Columbia, Indianapolis (IN), New Haven
(CT), New Orleans (LA), and Newark (NJ).3

We propose a framework to study the participation incentives of schools in a com-
mon enrollment system and the implications of full participation on student welfare.
Furthermore, we explore the ability of common enrollment systems to give the nec-
essary incentives to all schools to join the system rather than to evade it. This leads
us to study a school’s incentives to unilaterally evade the system. When there is no
school that has incentives to unilaterally evade the system, we say that the environ-
ment is integration compatible (or that full participation is achievable), and when there
is at least one school that has strict incentives to unilaterally evade the system, we say
that the environment is integration incompatible (or that full participation is not achiev-
able).

In our model, each school decides whether to join the common enrollment system
or evade it. If a school joins the system, then it participates in the clearinghouse. The
clearinghouse, regardless of which schools participate in it, uses the student-proposing
or school-proposing deferred-acceptance algorithm (DA) of Gale and Lloyd (1962) to as-
sign students to the participating schools. Alternatively, if a school evades the system,
it runs its own admissions program. We observe that a school’s incentives to evade the
system depend on the timing of the evading school’s admissions relative to that of the
clearinghouse used by the system. Therefore, we consider three natural timing scenar-
ios: The evading school runs its admissions program either before, simultaneously with,
or after the clearinghouse.

We first investigate the implications of a common enrollment system on student
welfare. We show that across all three timing scenarios, all students are weakly better
off when all schools join, compared to when one school unilaterally evades, the sys-
tem (Theorem 1). Ideally, we would like to argue that the result is true when multiple
schools evade the system and run their admissions independently, but we do not ex-
plicitly model the decentralized market when multiple schools evade. However, if the

2Charter schools are publicly funded but they have more freedom than district-run public schools. In
particular, they can run their own admissions and they can structure their curriculum. In the 2017–2018
school year, more than 7000 charter schools enrolled nearly 3.2 million students (National Alliance for Pub-
lic Charter Schools 2017).

3For Camden’s system, see https://www.camdenenrollment.org; for Chicago’s, https://go.cps.edu/; for
Denver’s, http://schoolchoice.dpsk12.org/; for Indianapolis’s, https://enrollindy.org/; for New Haven’s,
http://choice.nhps.net; for New Orleans’s, http://enrollnola.org/; for Newark’s http://www.newarkenrolls.
org/; and for Washington D.C.’s, http://www.myschooldc.org/ (all accessed on 12/6/2018).

https://www.camdenenrollment.org
https://go.cps.edu/
http://schoolchoice.dpsk12.org/
https://enrollindy.org/
http://choice.nhps.net
http://enrollnola.org/
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http://www.newarkenrolls.org/
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outcome of the decentralized admissions process among the evading schools coincides
with that of DA,4 then a more general result holds (Lemma 1): Students are better off
under the full-participation outcome compared to the outcome when some schools
evade. This further motivates the investigation of policies that may achieve full par-
ticipation.

Next, we study the incentives of schools to unilaterally evade the system when the
evading school runs its admissions program after the clearinghouse. We show that every
school weakly prefers to evade the system if all other schools have joined it (Theorem 2).
Therefore, unless each school is indifferent between joining or evading, it is impossible
to achieve full participation. The intuition for Theorem 2 is as follows. When a school
evades the system, all students are assigned to less preferred schools in the system be-
cause there is more competition for each school seat. In particular, students who would
have been matched with the evading school get strictly less preferred schools. As a result,
all of these students, and potentially more, apply to the evading school. Consequently,
by evading, a school gets a more preferred set of students. Furthermore, we show, via
an example, that the failure to achieve full participation persists for all stable matching
algorithms (Remark 2).

We further evaluate a school’s incentives to unilaterally evade the system across all
timing scenarios. We show that an evading school prefers to run its admissions program
as late as possible: It prefers running admissions after to running simultaneously with
the clearinghouse, and it prefers running simultaneously to running before the clear-
inghouse (Theorem 3). This result establishes that incentives to unilaterally evade are
minimized if the evading schools are restricted to running their admissions only before
the clearinghouse. Therefore, the set of problems in which full participation is achiev-
able when evading schools run admissions before the clearinghouse is a superset of
the set of problems in which full participation is achievable when evading schools run
admissions simultaneously with or after the clearinghouse. Consequently, restricting
evading schools to run admissions before the clearinghouse may sometimes be effec-
tive in achieving full participation. However, we also establish that even when the evad-
ing schools run their admissions before the clearinghouse, full participation may not be
achievable (Remark 3).

Since full participation is not achievable in general, we consider specific environ-
ments where full participation can be achieved. We show that when schools are verti-
cally differentiated, i.e., when students have a common ranking of schools, full participa-
tion is achievable for all timing scenarios. Furthermore, when schools are not vertically
differentiated, then full participation is not guaranteed. More explicitly, if students do
not have the same preference ranking, then there exist school choice rules for which at
least one school is strictly better off by unilaterally evading the system when the student-
proposing DA is used in the clearinghouse (Theorem 4).

4Note that if there is a single evading school, then the outcome of the admissions process of this school
is identical to the DA outcome. If the students are vertically differentiated, as in college admissions in some
countries such as Brazil, China, Tunisia, and Turkey, then there is a unique stable matching that coincides
with the outcome of serial dictatorship by the students and DA.
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In another specific environment, schools are revenue maximizers. Charter schools
get public funding per student, and in many cases their admissions criteria are imposed
by law or by the school district. In particular, they have to run lotteries to admit students
when they are overdemanded. As a result, charter schools may not have actual prefer-
ences. However, charter schools maximize their revenue by admitting as many students
as possible without going over their capacity. When schools are revenue maximizers, we
show that full participation is achievable if the admissions timing of evading schools is
restricted to the preemption case (Theorem 5). We further argue that full participation is
not guaranteed in the other two timing scenarios (Remark 5). These results give further
support for a policy that restricts the admissions timing of evading schools.

Theorems 2 and 4 highlight the difficulty of achieving full participation. But are there
policies that can help achieve full participation, which improves student welfare? One
obvious policy is to impose mandatory participation by new legislation. This may be
possible in some states where there is strong support by public officials for common
enrollment. However, new legislation may not be possible when charter schools have
strong public support, such as in Washington D.C., where around 45% of the overall
student population is served by charter schools.5 Even if such legislation is possible, it
may not be imposed on already existing charters with grandfathered rights to run their
own admissions. In addition, imposing such legislation may require officials to use a
significant amount of political capital. Therefore, even when new legislation is possible,
integrating schools via other means is a more desirable option. In the rest of the paper,
we use market-design tools that help achieve full participation and suggest two possible
remedies.

A potential remedy for achieving full participation is to impose a no-poaching pol-
icy: A student who is matched in the clearinghouse cannot attend an evading school.
Such a policy puts a restriction on the evading schools’ admissions only if the evading
schools move after the clearinghouse; therefore, we focus only on this scenario to ex-
amine the effectiveness of the no-poaching policy. A variant of this policy is used in the
National Resident Matching Program.6 However, we show that the no-poaching policy
does not always guarantee full participation by providing an example in which a school
is strictly better off by unilaterally evading the system (Remark 6). We further investigate
the effectiveness of the no-poaching policy when schools are revenue maximizers. We
show that the no-poaching policy is effective in achieving full participation if all schools
are revenue maximizers (Theorem 6). These results highlight that the effectiveness of
the no-poaching policy depends on the domain of school preferences. In practice, the
no-poaching policy can be implemented by obstructing funding to an evading school
for any student matched in the clearinghouse.

Finally, we propose a second remedy to help achieve full participation. If some
schools evade the system, the clearinghouse adds a virtual copy of each evading school
and runs its algorithm as if all schools participated. The set of students who get matched
with a virtual school is unmatched whereas any other student gets their assigned school.

5See http://www.dcpcsb.org/facts-and-figures-market-share (accessed on 12/6/2018).
6See http://www.nrmp.org/match-participation-agreements/ for more details (accessed on 12/6/2018).

http://www.dcpcsb.org/facts-and-figures-market-share
http://www.nrmp.org/match-participation-agreements/
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The idea behind the virtual-school algorithm is to internalize the external competition
created by evading schools. In the after timing scenario, if a school unilaterally evades
the system, then all the students who are matched with the virtual copy of the evading
school in the clearinghouse, and potentially others, apply to the evading school. When
the algorithm is stable, the evading school admits the set of students assigned to the
virtual school, i.e., the same set of students that it would have gotten had it joined the
system. Hence, full participation is achievable in the after case when the clearinghouse
uses a stable virtual-school algorithm. In the other two timing scenarios, it is no longer
true that a school gets the same set of students by joining and unilaterally evading the
system. In fact, unilateral evasion always leads to a weakly less preferred outcome and
sometimes to a strictly less preferred outcome. Thus, full participation is achievable
under all three timing scenarios (Theorem 7).

The implementation of the virtual-school mechanism requires two seemingly strong
assumptions. First, it requires knowledge of the choice rules of the schools that evade
the system. However, this assumption is innocuous in our setting for charter schools,
since their choice rules are determined by law or by the school district. Second, stu-
dents have to rank all schools, including the schools that evade the system. In particu-
lar, if a student ranks an evading school and is matched with the virtual copy of it in the
clearinghouse, she is unmatched. However, this student will be admitted by the evading
school after the clearinghouse.

We note that our analysis is restricted to analyzing the incentives of a school to uni-
laterally evade the system. This analysis allows us to examine when full participation
is achievable. However, due to the generality we assume in school choice rules and be-
cause we do not explicitly model the decentralized admissions process when multiple
schools evade, we are unable to present general predictions about school behavior when
full participation is not achievable.

To study school behavior more generally, we present a stylized game played among
schools in Section 9. In this game, students are vertically differentiated and choice rules
of schools are identical. Typically, students are vertically differentiated when each stu-
dent has a test score, and schools prefer a student with a higher test score to a student
with a lower test score. In the game, there is a public school that always participates
in the system and two charter schools that simultaneously decide whether to join the
system or evade it. Schools that evade run their admissions after the clearinghouse.
We explain in detail matching outcomes when all schools join, when only one charter
school evades, and when both charter schools evade. Evading schools get an advantage
over joining the system. This is because the clearinghouse operates without anticipat-
ing that some of the students who are assigned to the schools will leave for the evading
school(s), and because schools accept only students with high test scores. Therefore,
the evading schools admit students with high scores who prefer them, and some of the
students with moderate test scores who did not get matched in the clearinghouse. In the
unique pure-strategy Nash equilibrium, both charter schools evade the system, and the
students are worse off in equilibrium compared to the outcome when all schools join.

The related literature discussion is given in Section 10.
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2. Model

2.1 Preliminary definitions

A student-assignment problem P is a tuple (S�C��S�ChC) where

• S = {s1� � � � � sn} is a set of students

• C = {c1� � � � � cm} is a set of schools7

• �S= (�s1� � � � ��sn) is a list of strict student preferences

• ChC = (Chc1� � � � �Chcm) is a list of school choice rules.

For any student s, �s is a strict preference relation over C ∪ {s}, where c �s s means
that student s strictly prefers school c to being unmatched. In that case, school c is
acceptable to student s. Let �s be the “at least as good as” relation induced by �s. For
any school c, Chc is a choice rule over all sets of students where Chc(S) is the chosen
subset for any set of students S.8 Throughout the paper, we assume that choice rules of
schools are path independent.

Definition 1. School c’s choice rule is path independent if, for every set of students S

and S′,

Chc
(
S ∪ S′) = Chc

(
S ∪ Chc

(
S′))�

If a choice rule is path independent, then any set of students can be divided into
(not necessarily disjoint) subsets and the choice rule can be applied to these subsets
in any order without changing the final choice. This concept was first introduced in-
formally by Arrow (1951) and formally by Plott (1973).9 Path-independent choice rules
arise naturally, for instance, when schools have diversity considerations.10

A school c revealed prefers a set of students S to another set of students S′ if it chooses
S when all students in both S and S′ are available. More formally, there exists S̃ such
that S̃ ⊇ S ∪ S′ and Chc(S̃) = S. Furthermore, if S and S′ are different, then school c
strictly revealed prefers set S to set S′. When the choice rule is path independent, revealed
preference becomes a partial order.

Choice rule of school c is responsive if there exist a strict preference relation �c over
S ∪ {c} and a capacity qc ∈ N such that, for any set of students S, Chc(S) is constructed
as follows. Say that student s is acceptable for school c if s �c c. Let k be the minimum of
the capacity qc and the number of acceptable students in S. If k= 0, then Chc(S) =∅. If

7We do not distinguish between private, district-run public, or charter schools. But whenever we con-
sider a school that can choose to join the system, then we implicitly assume that it is not a district-run
public school.

8Taking school choice rules as primitives of the model rather than their preferences has many advan-
tages; see Chambers and Yenmez (2017). For example, choice rules are useful to study matching with exter-
nalities (Pycia and Yenmez 2014).

9Path independence is equivalent to a mild consistency condition and the substitutability condition
(Aizerman and Malishevski 1981).

10See, for example, Hafalir et al. (2013), Ehlers et al. (2014), and Echenique and Yenmez (2015).
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k ≥ 1, then Chc(S) = ⋃k
i=1{s∗i }, where s∗i is the ith highest-ranked acceptable student in

S with respect to �c . In words, the choice from a set is the union of the highest-ranked
acceptable students up to the capacity of the school. Responsive choice rules are path
independent.11

The outcome of a student-assignment problem is a matching between students and
schools. Formally, a matching μ is a function on the set of all agents such that

• for any student s, μ(s) ∈ C ∪ {s}
• for any school c, μ(c) ⊆ S

• for any student s and school c, μ(s) = c if, and only if, s ∈ μ(c).

The first two conditions require that a student is either matched with a school or left
unmatched and that a school is matched with a set of students. The last condition re-
quires that a school is matched with a student if and only if the student is in the set of
students matched with the school. This condition ensures the feasibility of the match-
ing.

The student-proposing deferred acceptance algorithm (DA) of Gale and Lloyd (1962)
is commonly used in clearinghouses to assign students to schools. We provide a descrip-
tion when a subset of schools, say C, participates.

Step 1 Each student proposes to her most preferred acceptable school in C if such a
school exists. Suppose that S1

c is the set of students who propose to school c. School
c tentatively accepts students in Chc(S

1
c ) and permanently rejects the rest. If there

are no rejections, then stop.

Step k Each student who was rejected in Step k − 1 proposes to her next preferred
acceptable school in C, if such a school exists. Suppose that Skc is the union of the
set of students who were tentatively accepted by school c in Step k − 1 and of the
set of students who just proposed to school c. School c tentatively accepts students
in Chc(S

k
c ) and permanently rejects the rest. If there are no rejections, then stop.

This algorithm ends in finite time since there can only be a finite number of propos-
als. Denote the outcome of the student-proposing DA by SPDA(S�C��S�ChC), where C

is the set of participating schools. When all schools participate, the outcome is denoted
by SPDA(P).

The clearinghouse can use an alternative algorithm, the school-proposing DA, in
which schools make the proposals instead of students. We provide a definition in Ap-
pendix A. Its outcome is denoted by CPDA(S�C��S�ChC), where C is the set of partici-
pating schools. When all schools participate, the outcome is denoted by CPDA(P).

Both SPDA and CPDA produce a stable matching when school choice rules are path
independent:

Definition 2. A matching μ is stable if

11Chambers and Yenmez (2018) provide an axiomatic characterization of responsive choice rules using
path independence.
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(i) (individual rationality for students) for every student s, μ(s) �s s

(ii) (individual rationality for schools) for every school c, Chc(μ(c)) = μ(c)

(iii) (no blocking) there exists no (c� s) such that c �s μ(s) and s ∈ Chc(μ(c)∪ {s}).

Furthermore, when choice rules of schools are path independent, the SPDA pro-
duces the student-optimal stable matching : Each student weakly prefers the outcome
of this algorithm to any other stable matching (Hatfield and Milgrom 2005, Chambers
and Yenmez 2017).

2.2 Mechanisms and integration compatibility

We consider an environment in which schools can join or evade a common enrollment
system and the matching outcome depends on the set of participating schools. In this
environment, a mechanism is a profile of functions (MC)C⊆C that maps each student-
assignment problem into a matching based on the set of participating schools. For a
problem P , when C is the set of schools that join the system, the matching outcome
is MC(P), which specifies the set of students assigned to each school, including those
that evade the system. The following property of mechanisms formalizes the notion of
achieving full participation.

Definition 3. Fix a set of schools C. A mechanism (MC)C⊆C is integration compati-
ble for a problem P = (S�C��S�ChC) if every school ci ∈ C revealed prefers its outcome
in MC(P) to its outcome in MC\{ci}(P). It is integration incompatible for a problem P

if there exists a school ci that strictly revealed prefers its outcome in MC\{ci}(P) to its
outcome in MC(P).

If a mechanism (MC)C⊆C is integration compatible for a problem P , then every
school revealed prefers its outcome when all schools join to its outcome from unilat-
eral evasion. However, when it is integration incompatible, there exists a school that
strictly revealed prefers the latter to the former. To check whether a mechanism is in-
tegration compatible or incompatible, we need to consider only the outcomes when
either all schools join the system, i.e., MC(P), or when exactly one school evades it, i.e.,
MC\{ci}(P) for every school ci. Therefore, for the rest of the paper, we do not explic-
itly provide a description of the matching produced by a mechanism when at least two
schools evade.

We interpret integration compatibility or incompatibility of a mechanism as a test
to see whether we could expect voluntary participation by all schools in the system. If
a mechanism is integration compatible, we say that full participation is achievable, and
when it is integration incompatible, we say that full participation is not achievable.

2.3 Mechanisms under different timing scenarios

In a student-assignment problem, each school decides whether to join a common en-
rollment system that uses a clearinghouse to assign students to participating schools
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or to evade it and run its own admissions program. In other words, each school has
two actions: join or evade. The clearinghouse employs either version of the deferred-
acceptance algorithm unless otherwise noted. The evading schools run their admissions
either before, simultaneously with, or after the clearinghouse. We consider all three ad-
missions timing scenarios below.

Each admissions timing scenario results in a different mechanism. The clearing-
house uses the same version of the deferred-acceptance algorithm regardless of the set
of schools that participate in it, which we denote by DA. Since our focus is on integration
compatibility, we specify the mechanism when a school unilaterally evades the system
under different timing scenarios. If there is no evading school, the matching outcome is
denoted by μint. Likewise, when there is one evading school c, the matching outcome is
denoted by μ

p
c , μs

c , and μa
c , for the preemption, simultaneous with, and after scenarios,

respectively.

Preemption In this scenario, the evading school c runs its admissions before the clear-
inghouse. All students who prefer c to their outside option apply to c, i.e., Sc ≡ {s|c �s s}
is the set of applicants to c. School c admits Chc(Sc). Students learn whether they got in
or not before participating in the clearinghouse. If any student has been admitted by c

and assigned to another school in the clearinghouse, then the student accepts her pre-
ferred school among these two. The rest of the students are assigned to their matches if
they have been admitted to a school; otherwise, they remain unmatched.

A student admitted to the evading school c participates in the clearinghouse as well.
Potentially, this student can submit either her preferences over all acceptable schools in
the clearinghouse or she can rank only those schools that are preferred to c. In other
words, the student can truncate her preference at c. We assume that students admitted
to the evading school submit truncated preferences that rank the schools that are more
preferred than c truthfully. The alternative, that students rank all acceptable schools in
the clearinghouse, makes the preemption case the same as the case in which the evading
school runs its admissions simultaneously with the clearinghouse, a scenario that we
consider next.

Now, we formally describe the matching outcome of the mechanism for the preemp-
tion case when only a single school, c, evades, i.e., we describe μ

p
c . School c admits the

set of students Chc(Sc). Then students participate in the clearinghouse, where DA is
used with the profile of truncated student preferences, denoted as �′

S . If s ∈ Chc(Sc),
then �′

s is defined as

• c′ �′
s c

′′ if and only if c′ �s c
′′

• c′ �′
s s if and only if c′ �s c.

If s /∈ Chc(Sc), then �′
s=�s .

The outcome of the clearinghouse is DA(S�C \ {c}��′
S �ChC\{c}). Each student ad-

mitted to two schools is matched with her preferred school. Therefore, the set of stu-
dents who enroll in school c is the admitted students who prefer school c to the match-
ing in the clearinghouse: μ

p
c (c) = {s ∈ Chc(Sc)|c �s DA(S�C \ {c}��′

S �ChC\{c})(s)}. For
any other school c′, the set of students matched to this school is μ

p
c (c

′) = DA(S�C \ {c}�
�′
S�ChC\{c})(c′) \μp

c (c).
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Simultaneous In this scenario, the evading school c runs its admissions simultane-
ously with the clearinghouse. In this case, all students participate in the clearinghouse
and those who find c acceptable also apply to c. If any student has been admitted by c

and assigned to another school in the clearinghouse, then the student is matched with
her preferred school. The rest of the students are assigned to their matches if they have
been admitted to a school; otherwise, they remain unmatched.

We formally describe the matching outcome of the mechanism for the simultane-
ous case when only a single school, c, evades, i.e., we describe μs

c . The outcome of the
clearinghouse is DA(S�C \ {c}��S �ChC\{c}). School c admits the set of students Chc(Sc),
where Sc = {s|c �s s}. Therefore, students who are matched with school c are those who
have been admitted by c and who prefer c to their assigned schools in the clearinghouse:
μs
c(c) = {s ∈ Chc(Sc)|c �s DA(S�C \ {c}��S �ChC\{c})(s)}. For any other school c′, the set

of students matched to this school is μs
c(c

′) = DA(S�C \ {c}��S�ChC\{c})(c′) \μs
c(c).

After In this scenario, the evading school c runs its admissions after the clearing-
house. First, all students participate in the clearinghouse. Then they learn their assigned
schools and decide whether to apply to c. We assume that only students who prefer c to
their assigned schools apply.12 School c admits students from the set of applicants. The
admitted students then are permanently matched with c since they all prefer c to their
assigned schools in the clearinghouse. The rest of the students are matched with their
assigned schools in the clearinghouse or remain unmatched.

We formally describe the matching outcome of the mechanism for the after case
when only a single school, c, evades, i.e., we describe μa

c . The outcome of the clearing-
house is DA(S�C \ {c}��S �ChC\{c}). A student applies to c if she prefers c to her assigned
school. Therefore, the set of students who apply to school c is {s|c �s DA(S�C \ {c}�
�S�ChC\{c})(s)}. Hence, the set of students that school c is matched with is μa

c (c) =
Chc({s|c �s SPDA(S�C \ {c}��S �ChC\{c})(s)}). For any other school c′, the set of students
matched to this school is μa

c (c
′)= SPDA(S�C \ {c}��S�ChC\{c})(c′) \μa

c (c).

3. The case for integration: Student welfare

In this section, we analyze student welfare based on whether all schools join the com-
mon enrollment system. In particular, we show that students are better off when all
schools participate.

Theorem 1. For every student, the matching outcome when all schools join the system,
μint, is more preferred than the matching outcome when one school c unilaterally evades
the system, regardless of when c admits its students (i.e., the matching outcomes in μ

p
c ,

μs
c , and μa

c ).

One important implication is that public policies that incentivize schools to join a
common enrollment system are desirable from the student-welfare perspective.

12This assumption is justified, for example, if there is a small application fee or if the student has to exert
costly effort to apply. It mirrors the assumption in the preemption case that students submit their truncated
preferences.
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To prove Theorem 1, we establish a more general result and study one possible sce-
nario of decentralized admissions when there are two separate clearinghouses, each
running the same algorithm (SPDA or CPDA). Each school participates in only one clear-
inghouse. Denote the set of schools participating in the first and second clearinghouses
by C1 and C2, respectively. First students rank schools in C1 and get assigned to a school
in C1 or remain unmatched. Then they participate in the second clearinghouse. They
can either submit their full ranking of schools in C2 or just submit the ranking of schools
in C2 that are preferred to their assigned school in the first clearinghouse. In other words,
students can truncate their preferences at their assigned school in the first clearing-
house.13 Finally, each student who has been assigned to a school in both clearinghouses
gets matched with her preferred school. The rest of the students are matched with the
school that they have been admitted to or remain unmatched. We call this the divided
system. The alternative student matching system is a clearinghouse with all the schools
that uses the same algorithm. We call this the integrated system.

Lemma 1. Every student weakly prefers the matching outcome in the integrated system to
the matching outcome in the divided system.

Note that Theorem 1 follows from Lemma 1. This is because, when there is only one
evading school, both versions of the deferred-acceptance algorithm are equivalent to
the school choosing from the set of available students.

4. School incentives for integration

To explore when a mechanism is integration compatible, we study the incentives of a
school to join a common enrollment system when all other schools have joined it. We
first consider the timing scenario when the evading school admits students after the
clearinghouse.

Theorem 2. Every school c revealed prefers the matching outcome when c unilaterally
evades the system and admits students after the clearinghouse, μa

c , to the matching out-
come when all schools join the system, μint.

The intuition for this result is as follows. Removing school c in the deferred accep-
tance algorithm makes all students weakly worse off because there is more competition
for school seats. Therefore, students who get matched with c in μint are strictly worse off
in the clearinghouse when c is removed because student preferences over schools are
strict. Consequently, all of these students in μint(c) apply to c when it unilaterally evades
the system. Therefore, when c unilaterally evades the system and admits students after
the clearinghouse, it considers a set of students that includes those in μint(c). Conse-
quently, c revealed prefers the set of students that it gets in μa

c to the set of students that
it gets in μint.

One implication of Theorem 2 is the following.

13The case when students submit the same preferences to multiple clearinghouses that use SPDA is also
analyzed in Doğan and Yenmez (2018). See also Manjunath and Turhan (2016).
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Corollary 1. Suppose that the evading school runs its admissions after the clearing-
house. Then a mechanism is integration compatible for a problem if and only if, for every
school c, the set of students that c gets when all schools join, μint(c), is equal to the set of
students that c gets when it unilaterally evades, μa

c (c).

In other words, integration compatibility requires each school to be indifferent be-
tween joining or evading when others have joined. This is a stringent requirement in
many problems. In the next section, we study the domain of problems when it can be
satisfied.

Remark 1. Theorem 2 does not hold when the clearinghouse uses other algorithms,
even when they produce stable matchings: We provide an example in Appendix C.1
where a school strictly prefers to join the system when it uses the school-proposing DA
if all schools join and the student-proposing DA if only one school evades.

Remark 2. Theorem 2 shows that when the clearinghouse uses a version of DA, a school
weakly prefers to evade the system. This opens up the question of whether the clearing-
house can use algorithms that produce stable outcomes such that the resulting mech-
anism is integration compatible. In Appendix C.2, we provide an example that demon-
strates that no such mechanism is integration compatible. Specifically, there exists a
school in the example such that there is a unique stable matching when all schools join
or this school unilaterally evades the system. But this school strictly prefers the outcome
when it unilaterally evades to the outcome when all schools join.

We next compare the set of students that a school gets by unilaterally evading the
system under the three timing scenarios.

Theorem 3. Every school c revealed prefers the matching outcome of the after case, μa
c ,

to the matching outcome of the simultaneous case, μs
c . It also revealed prefers the match-

ing outcome of the simultaneous case, μs
c , to the matching outcome of the preemption

case, μp
c .

This result shows that an evading school prefers to run its admissions as late as pos-
sible. It further implies that a policy that restricts admissions timing of evading schools
to the preemption case can achieve full participation more often than the other timing
scenarios. More specifically, if a mechanism is integration compatible for a problem in
the after case or simultaneous case, then it is also integration compatible for this prob-
lem in the preemption case. Likewise, if a mechanism is integration compatible for a
problem in the after case, then it is also integration compatible for the problem in the
simultaneous case.

Remark 3. When a school unilaterally evades the system and runs its admissions be-
fore or simultaneously with the clearinghouse, it can be worse off than the integration
outcome because admitted students are not guaranteed to enroll in the school. The fol-
lowing example demonstrates this possibility. In this example, the clearinghouse always
uses SPDA.
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(A) Problem P1

�c1 �c2 �s1 �s2

s1 s1 c2 c1
s2 s2 c1 c2
c1 c2 s1 s2

(B) Problem P2

�c1 �c2 �s1 �s2

s1 s2 c2 c1
s2 s1 c1 c2
c1 c2 s1 s2

Note: Problem P1 is integration compatible while problem P2 is integration incompatible in both the preemption and
simultaneous cases.

Table 1. Student-assignment problems.

Consider the following student-assignment problem P1. Suppose that there are two
schools c1, c2 and two students s1, s2. Schools have responsive choice rules with ca-
pacity 1. Agent preferences are �c1 : s1 � s2 � c1, �c2 : s1 � s2 � c2, �s1 : c2 � c1 � s1, and
�s2 : c1 � c2 � s2. This information is summarized in Table 1(A).

The integration outcome for problem P1 is determined by SPDA when all schools
participate. Student s1 is matched with c2 and s2 is matched with c1. In the preemption
case, when c1 unilaterally evades the system and admits students before the clearing-
house, both students apply to c1. School c1 accepts s1 and rejects s2. In the clearing-
house, s2 applies to c2 because c2 is acceptable and s1 applies to c2 because c2 is more
preferred than c1. School c2 accepts s1 and rejects s2. Since s1 strictly prefers c2 to c1,
she is matched with c2. School c1 is unmatched. Likewise, the matching outcome when
c1 unilaterally evades the system and admits students simultaneously with the clearing-
house is the same. Therefore, c1 strictly revealed prefers the integration outcome μint to
the matching outcomes μ

p
c1 and μs

c1
. In a similar exercise, where c2 unilaterally evades

the system, it is easy to verify that c2 is matched with s1 in all three possibilities μint, μp
c2 ,

and μs
c2

. Therefore, the mechanisms for the preemption case and simultaneous case are
integration compatible for problem P1.

However, it is also possible that a school prefers unilateral evasion outcome to the
integration outcome under these two timing scenarios. To illustrate this, we modify
problem P1 by changing the preference relation of c2 so that s2 is ranked higher than s1.
Table 1(B) summarizes the preference profile. We call this problem P2.

The integration outcome for problem P2 is the same as the integration outcome for
problem P1. In the preemption case, when c1 unilaterally evades the system and admits
students before the clearinghouse, both students apply to c1. It accepts s1 and rejects s2.
In the clearinghouse, s2 applies to c2 because c2 is acceptable and s1 applies to c2 be-
cause c2 is more preferred than c1. School c2 accepts s2 and rejects s1. In this preemp-
tion case, s1 is matched with c1 and s2 is matched with c2. The matching outcome when
c1 unilaterally evades the system and admits students simultaneously with the clearing-
house is the same. Under both timing scenarios, c1 strictly revealed prefers the evasion
outcome, which is {s1}, to the integration outcome, which is {s2}. Therefore, the mecha-
nisms for the preemption case and the simultaneous case are integration incompatible
for problem P2.
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5. Vertically differentiated schools

As we have shown in the previous section, in general settings, the mechanisms that we
study are integration incompatible for some problems. Therefore, a natural question to
ask is for which environments these mechanisms are integration compatible. Next, we
provide an answer to this question.

Theorem 4. Suppose that students have the same preferences over schools. Then the
mechanisms induced by the three timing scenarios are integration compatible. Con-
versely, if students find all schools acceptable but they do not have the same preferences
over them and the clearinghouse uses SPDA, then there exist school choice rules such that
these mechanisms are integration incompatible.

We relegate the proof to Appendix B. When all students have the same preferences
over schools, i.e., when schools are vertically differentiated, there is a unique stable
matching. This stable matching can be produced by a serial dictatorship of schools in
which schools choose the set of students that they like using the order in student pref-
erences. Therefore, there is a clear hierarchy of schools and, as a result, there is no real
competition between schools. Consequently, regardless of whether a school participates
in the clearinghouse, a school chooses from the same set of students: the set of students
who are unmatched after the higher-ranked schools admit their students. Since each
school is indifferent between joining the system when others have joined and unilater-
ally evading it, the mechanisms are integration compatible by Corollary 1.

When students find all schools acceptable but do not have the same preferences over
them, then there exist two students and two schools such that the two students rank
these schools differently. To prove the second statement in the theorem, we construct
choice rules such that when one of these two schools unilaterally evades the system, the
outcome is the school-optimal stable matching, regardless of when the evading school
runs its admissions. When they all join the system, the outcome is the student-optimal
stable matching because SPDA is used. As a result, the mechanisms are integration in-
compatible for this problem.

Remark 4. We have shown that when schools are vertically differentiated, the mecha-
nisms are integration compatible. Does a similar result hold if students are vertically dif-
ferentiated? When schools have responsive choice rules with the same preferences over
students, the mechanism induced by the after timing scenario is integration incompat-
ible for some problem. We provide such an example in Appendix C.3. This example also
demonstrates that the mechanism is integration incompatible when schools care only
about the number of students that they get. Such school preferences are realistic when
choice rules are enforced by the school district or law (see the discussion in Section 6).

The results of Theorem 4 suggest that a clearinghouse in which all schools partici-
pate is hard to establish unless schools are vertically differentiated, which is a restriction
on student preferences. Next we consider a natural restriction on school preferences and
study whether full participation is achievable under this assumption.
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6. Revenue maximizing charter schools

Even though charter schools are subject to fewer rules and regulations than district-run
public schools, most of the states in the United States have strict admission policies.14

For example, charter schools in New York have to give higher priorities in admissions
to returning students, siblings of students already enrolled in the school, and students
who reside in the school district. Furthermore, when there is excess demand, schools
may have to use lotteries to choose their students.15

Alternatively, charter schools are publicly funded and usually get funding per stu-
dent. Motivated by this, we assume that charter schools would like to admit as many
students as possible without violating their capacity. We formalize such choice rules as
follows.

Definition 4. The choice rule of school c is capacity filling if there exists a capacity qc
such that for every set of students S, |Chc(S)| = min{qc� |S|}.

If a school has a capacity-filling choice rule, it admits all applicants if the number of
applicants is less than its capacity, and it fills its capacity when the number of applicants
is weakly more than the capacity.16 For example, responsive choice rules satisfy this
property.

We study the integration compatibility of mechanisms for revenue-maximizing
schools. We first consider the preemption case.

Theorem 5. Suppose that school choice rules are capacity filling, schools only care about
the number of students, and they prefer to have more students (up to their capacity). Then
the mechanism induced by the preemption case is integration compatible.

When a school unilaterally evades the system in the preemption case, the evading
school takes the risk of admitting a student who will then be admitted to a more pre-
ferred school in the clearinghouse. When the school choice rule is capacity filling, such
a school would strictly prefer to evade the system only if this school does not fill its ca-
pacity in the integration outcome. In this case, a key observation we make is that the set
of students a school gets by evading preemptively is a subset of the students it gets un-
der the integration outcome, when in the latter case the school does not fill its capacity.
This observation delivers the result.

Remark 5. We also consider the other two timing scenarios. When the evading school
runs its admissions simultaneously with or after the clearinghouse, the mechanism in-
duced may not be integration compatible even when schools are revenue maximizing
and they have capacity-filling choice rules. To see this, modify problem P2 in Remark 3,

14Magnet schools, which are public schools with specialized curricula, can choose their students based
on exam scores, interviews, or auditions. Therefore, it is safe to assume that choice rules present the actual
preferences for public magnet schools as well as private schools.

15A school that uses its own admission criteria may be subject to probation and closure.
16Alkan (2001) introduces this property and calls it quota filling.



1252 Ekmekci and Yenmez Theoretical Economics 14 (2019)

presented in Table 1(B), so that c1’s capacity is 2. Then c1 can increase the number of
students that it gets by unilaterally evading when it runs its admissions simultaneously
with or after the clearinghouse, which uses either version of DA.

In the rest of this section, we discuss the implications of imposing the assumption
that schools are revenue maximizing on our earlier results. In Theorem 2, we show that
a school revealed prefers the set of students that it gets by unilaterally evading and run-
ning its admissions after the clearinghouse to the set of students that it gets by joining
the system. When the choice rule is capacity filling, the school receives weakly more stu-
dents by evading the clearinghouse. Therefore, the result that the school weakly prefers
to evade remains valid even when the school cares only about the number of students
or, equivalently, revenue. In practice, not all charter schools can fill their capacities.

The first statement in Theorem 4, which shows that the three mechanisms are inte-
gration compatible if students have the same preferences over schools, remains true. In
this case, each school is indifferent between joining or unilaterally evading the system,
so a school admits the same number of students in both cases.

Next we investigate the effectiveness of some familiar policies in achieving full par-
ticipation for general environments.

7. Remedy: No poaching

The National Resident Matching Program has a “binding commitment” policy:

All Match commitments are binding. The ranking of applicants

by a program director and the ranking of programs by an

applicant establishes a binding commitment to offer or to

accept an appointment if a match results.

In other words, whenever a match results between a program director and a doctor
who have ranked each other, the residency program has to make an offer to the doctor
and the doctor has to accept the offer. This policy is implemented to stop the programs
from making offers to doctors after they learn the outcome of the Match.

In our setting, we can impose a similar “no-poaching” policy by not giving public
funds to the evading school for any student that it enrolls who was matched in the clear-
inghouse. Obviously, this policy restricts the evading schools only when admissions are
done after the clearinghouse, so in what follows we focus on this timing scenario.

Intuitively, such a policy discourages schools from evading the clearinghouse be-
cause a school that evades the system can only admit unmatched students. Indeed,
when schools are revenue maximizing and they have capacity-filling choice rules, the
mechanism induced by the after case and the no-poaching policy is integration com-
patible.

Theorem 6. Suppose school choice rules are capacity filling, schools only care about the
number of students, and schools prefer to have more students (up to their capacity). Then
the mechanism induced by the after case and the no-poaching policy is integration com-
patible.
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This result is easy to see. Suppose that students find all schools acceptable. Consider
the case when school c unilaterally evades the system. Then school c can only admit the
unmatched students. Note that a student is unmatched only when all the schools in the
clearinghouse fill their seats. But if school c joins the system, then it will be able to admit
at least the same number of students, if not more.17

However, when schools are not revenue maximizers, the mechanisms that we con-
sider may not be integration compatible for some problems.

Remark 6. Suppose that the evading school runs its admissions after the clearinghouse
and that the no-poaching policy is adopted. The mechanism when the clearinghouse
uses SPDA is integration incompatible for problem P2 in Remark 3 (see Table 1(B)).
The mechanism when the clearinghouse uses CPDA is not integration compatible for
the problem introduced in Appendix C.2 (see Table 3). We verify these results in Ap-
pendix C.4.

8. Remedy: Internalizing the external competition via virtual schools

A second approach to incentivize schools to join the common enrollment system is to
use a different algorithm in the clearinghouse when some schools evade the system. We
consider the following algorithm and the mechanism induced by it.

The input to the virtual-school algorithm is the student-assignment problem and
the set of participating schools. The algorithm first uses either version of DA on the
whole problem as if all schools were participating, effectively adding a virtual copy of
each evading school. Students matched with the virtual schools are unmatched. Other
students are matched with their DA outcomes. We call this algorithm the virtual-school
DA.

Since integration compatibility of a mechanism depends only on the outcomes
when at most one school evades the system, we formally describe the mechanism in-
duced by the virtual-school DA in each timing scenario when at most one school evades.
When all schools participate, the clearinghouse uses DA as before.

Preemption

Suppose that school c unilaterally evades the system and runs its admissions before the
clearinghouse. Then c first admits from the set of students who find it acceptable, i.e.,
Chc(Sc), where Sc = {s|c �s s}. The students admitted by c submit truncated prefer-
ences as in Section 2.3, so the student preference profile used in the clearinghouse is
�′
S . Therefore, μ̌p

c (c) ≡ {s ∈ Chc(Sc)|c �s DA(S�C��′
S �ChC)(s)} is the set of students that

c is matched with. For any other school c′, μ̌p
c (c

′) ≡ DA(S�C��′
S�ChC)(c′) is the set of

students c′ is matched with.

17In a subsequent work, Afacan (2016) shows that even when students may find some schools unaccept-
able, the same result holds.
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Simultaneous

Suppose that school c unilaterally evades the system and runs its admissions simulta-
neously with the clearinghouse. Then c first admits from the set of students who find
it acceptable, i.e., Chc(Sc). The clearinghouse uses the virtual-school DA (with virtual
school c). Then μ̌s

c(c) ≡ {s ∈ Chc(Sc)|c �s DA(S�C��S�ChC)(s)} is the set of students
that c is matched with. For any other school c′, μ̌s

c(c
′) ≡ DA(S�C��S�ChC)(c′) \ μ̌s

c(c) is
the set of students that c′ is matched with.

After

Suppose that school c unilaterally evades the system and runs its admissions after the
clearinghouse. Then DA is run with virtual school c. The set of students matched
with the virtual school will remain unmatched in the clearinghouse. The set of stu-
dents who apply to school c is S̃ = {s : c �s DA(S�C��S �ChC)(s)}∪DA(S�C��S�ChC)(c).
Here DA(S�C��S�ChC)(c) is the set of students matched with the virtual school, so
they are unmatched and they want to apply to school c. Hence, S̃ is equivalent to
{s : c �s DA(S�C��S �ChC)(s)}. The set of students who get matched with school c is
then μ̌a

c (c) ≡ Chc(S̃) = Chc({s : c �s DA(S�C��S �ChC)(s)}). For any other school c′,
μ̌a
c (c

′)≡ DA(S�C��S�ChC)(c′) \ μ̌a
c (c).

The virtual-school DA requires that students rank all schools, including the evading
schools, and it also requires knowledge of the choice rules of evading schools. The first
requirement can be implemented by adding the outside schools as options when fami-
lies rank schools. The second requirement is innocuous because charter school choice
rules are determined by the school district or by law.18

Theorem 7. For every timing scenario, the mechanism induced by the virtual-school DA
and the timing scenario is integration compatible for all problems.

We provide the key observation for the mechanism induced by the after case. If a
school evades the system and runs its admissions after the clearinghouse, the set of stu-
dents who would like to be matched with that school is the same set of students that
the school gets in the integration outcome. Therefore, the mechanism is integration
compatible.

Now we explain the intuition of this result. When a school evades the system, it
avoids competition within the algorithm, which makes all students weakly worse off.
Furthermore, in the after case, after the outcome of the clearinghouse is finalized, it can
choose from the set of students who would like to go to this school. Since the remaining
schools cannot make or receive additional offers at this point, the evading school is bet-
ter off. The virtual-school mechanism takes away the advantage of the evading school by
creating competition within the clearinghouse: When some students are matched with
the virtual school, the remaining schools still are able to make or receive offers in the

18This assumption is satisfied, for example, if students take a standardized exam that determines their
ranking for different schools.
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clearinghouse. In other words, the virtual school mechanism internalizes the external
competition.

In the simultaneous case, the evading school may be strictly worse off in compari-
son to joining the system. This is because the evading school is matched with a subset
of the set of students it would have been matched with if it joined the system. In the
preemption case, the students admitted by the evading school submit their truncated
preferences to the clearinghouse. We use a comparative statics result to show that even
in the preemption case, the evading school is weakly worse off in general, and may be
strictly worse off for some problems.

Remark 7. Consider the setting in Section 6 where schools care only about the number
of students and the choice rules of schools are capacity filling. Under this assumption,
for every timing scenario, the mechanism induced by the virtual-school DA and the tim-
ing scenario is still integration compatible.

9. A simple participation game

We now present an illustrative example of a school participation game. The players are
two charter schools. There are also a (district-run) public school and a continuum of
students who are assumed to be nonstrategic and whose behavior is exogenously given.
At the beginning of the game, charter schools simultaneously choose whether to join
a common enrollment system or to run their admissions independently. The public
school is assumed to always join the system. In this example, we assume that a charter
school that evades the system moves after the clearinghouse.

A school is denoted by i ∈ {1�2�3}, where i = 1 is the public school and i ∈ {2�3} are
the charter schools. Each student has a strict preference ranking over the schools. Be-
cause there are three schools, there are six possible student preferences. Let P denote
the set of all school rankings, with a generic element denoted by p. For each preference
ranking p, there is a unit mass of students whose preference ranking is p. Each stu-
dent also has a test score, t ∈ [0�1]. We assume that test scores are uniformly distributed
over [0�1] and that this distribution is independent from student preferences. Each stu-
dent is represented by the tuple (p� t). Let F denote the induced measure of students
on P × [0�1]. For instance, the measure of students who prefer school 1 to school 2 to
school 3, and receive a score larger than 0�5 is 0�5. Figure 1 depicts student preferences
and scores. The total measure of students is 6, while each school has a capacity that can
accommodate a group of students with measure 2.

Choice rules of schools over the students depend only on the observable test score,
and every school prefers students with higher scores to those with lower scores. These
choice rules are responsive with capacity of measure 2. The underlying preference is
that (p1� t1) � (p2� t2) if t1 > t2. Therefore, if a student with score t is chosen from a set,
then all students with scores higher than t are also chosen from the same set. Formally,
the resulting choice rule for school i is as follows: For any measurable set A⊆ P × [0�1],
Chi(A) = S, where S is the largest set S′ ⊆ A with F(S′) ≤ 2, and (p1� t1)� (p2� t2) ∈ A,
t1 > t2, and (p2� t2) ∈ S′ imply (p1� t1) ∈ S′.
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Figure 1. Illustration of student preference rankings and scores, where each subcolumn is one
student preference profile. The first subcolumn denotes students whose ranking is 3 > 1 > 2;
the second denotes 1 > 3 > 2; the third denotes 1 > 2 > 3. The fourth, fifth, and sixth columns
represent 3 > 2 > 1, 2 > 3 > 1, and 2 > 1 > 3, respectively.

Recall that the players in the game are the charter schools. The students and public
school are not strategic agents. We describe the matching outcomes depending on the
behavior of the charter schools.

Both schools join

In this environment, if all three schools participate in the clearinghouse that runs SPDA,
then each student is placed in their top choice, because capacity constraints when stu-
dents are placed in their top choices are not binding.

School 3 evades

We now analyze what happens if schools 1 and 2 join the system while school 3 evades
the system and admits students after the clearinghouse. In the first stage, all students
apply to their top choices among {1�2}. Because there is excess demand of students,
each school i ∈ {1�2} accepts students with scores t ≥ 1

3 who apply. In the second stage,
the rejected students with scores t < 1

3 apply to their second choices, but since each
school has accepted students with higher scores, they get rejected again. SPDA ends
here since there are no more schools to which rejected students can apply.

Next, all students who rank school 3 as their top choice and all other students who
are unmatched in the clearinghouse, i.e., students with scores t < 1

3 , apply to school 3.
Hence, the demand for school 3 has measure

2 + 4 × 1
3

= 10
3

> 2�
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Figure 2. Illustration of the final allocation when school 2 joins but school 3 evades.

i.e., school 3 is over demanded. Therefore, school 3 accepts all students with scores
greater than t3, where

t3 : 2(1 − t3)+ 4
(

1
3

− t3

)
= 2�

i.e., t3 = 2
9 .

The final allocation is the following: Schools i ∈ {1�2} get students who rank i as their
top choices and whose score is not less than 1

3 , while school 3 gets all remaining students
with scores not less than 2

9 . Figure 2 illustrates the final allocation in this case.
School 3 revealed prefers its final allocation to its allocation in the integration out-

come because it fills its capacity, and the measure of students with scores smaller than 2
9

and whose top choice is school 3 are replaced by students with scores between 2
9 and 1

3 .19

Schools 1 and 2 are worse off because they get students with scores not less than 1
3 who

rank them as their top choice, i.e., these schools have unmatched seats compared to the
allocation that would prevail if all three schools join the system. Students are also worse
off since in the integration outcome, each student gets her top choice, whereas when
school 3 evades, some students get placed in their second or third choices and students
with scores less than 2

9 are unmatched.

Schools 2 and 3 evade

Suppose now that schools 2 and 3 evade the system. One caveat is that when there are
multiple schools who run their own admissions in a decentralized market, the details
of the procedure by which the schools and students move in the extensive form matter.

19More precisely, school 3’s choice from the union of the set of students it gets by evading and the set of
students it gets by joining would be equal to the set of students it gets by evading.
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Figure 3. Illustration of the final allocation when schools 2 and 3 both evade.

To simplify the analysis, we assume that students in the aftermarket apply to their most
preferred schools only.20

In the clearinghouse, all students apply to school 1, and the SPDA algorithm stops
after one round with school 1 accepting all students with scores not less than 2

3 .
Next, all unmatched students and all students whose top choice is not school 1 apply

to either school 2 or school 3. School i ∈ {2�3} accepts, among all students applying,
those that prefer school i to school j (j ∈ {2�3} \ {i}) and whose score is not less than ti,
where

ti : 2(1 − ti)+
(

2
3

− ti

)
= 2�

so, ti = 2
9 . Figure 3 depicts the final allocation.

In this case, each school i ∈ {2�3} revealed prefers the outcome when both i and j

(j ∈ {2�3} \ {i}) evade to the outcome when only j evades. This is because when j evades
and i joins the system, i matches with students that have scores of at least 1

3 and for
whom i is the top choice. If i also evades, then i is matched with all these students,
i.e., the students who have preferences i > 1 > j or i > j > 1 and have scores in [ 2

9 �
1
3),

and also with the students who have scores in [ 2
9 �

2
3) and have preferences 1 > i > j.21

Students are worse off compared to the integration outcome, since in the integration
outcome all students are matched with their top choices, whereas when at least one

20Such an assumption is made for simplicity, and can be dispensed with if, for instance, there is a small
application fee or if students have to exert costly effort in applying to schools. Likewise, if the admissions in
the aftermarket is run via a serial dictatorship by the students, then the final allocation is identical to that
in which students apply to their top choices. Such an allocation can be also implemented by a protocol
where students with higher test scores get admitted to their preferred schools among those schools whose
capacity has not been filled yet. See Andersson et al. (2018) for the details of such a protocol.

21School i revealed prefers this set to the set of students that it gets when only j evades because the latter
set is a subset of the former set.
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school evades, some students get unmatched and some students are matched with a
school that is not their top choice.

Equilibrium Suppose that at time t = −1, both charter schools i ∈ {2�3} simultaneously
choose one of two actions, ai ∈ A ≡ {join�evade}. The matching outcomes for each ac-
tion profile are described above. An action profile (a2� a3) is a pure-strategy Nash equi-
librium if each school i revealed prefers the matching outcome induced by (ai� aj) to the
matching outcome induced by (A \ {ai}� aj).

This game admits a unique pure-strategy Nash equilibrium in which both schools
evade. This is because a charter school gets a strictly more preferred set of students by
evading the system regardless of the decision of the other charter school.

No-poaching policy If the no-poaching policy is implemented, then when a school uni-
laterally evades the system, it can only accept students who are unmatched in the clear-
inghouse. These are the students with test scores less than 1/3. Hence, a school revealed
prefers the set of students it gets by joining to the set of students it gets by evading. So,
with the no-poaching policy, full participation is a pure-strategy Nash equilibrium. We
now argue that full participation is the unique pure-strategy Nash equilibrium. Suppose
school i ∈ {2�3} evades. Then, by evading, school j ∈ {2�3} \ {i} gets students with scores
less than 2/3 who rank school j as their top choice, whereas, by joining, school j gets
students with scores at least 1/3 that prefer school j to school 1. Therefore, school j re-
vealed prefers joining the system to evading it, regardless of school i’s action. Hence, full
participation is the unique pure-strategy Nash equilibrium.

Virtual schools If a school i ∈ {2�3} unilaterally evades the system, the clearinghouse
adds a virtual copy of school i and runs SPDA. Therefore, only the students who rank
school i as their top choice are unmatched, and all the other students are matched with
their top choice. Therefore, only the unmatched students apply to school i, and school i
is matched with only those students who rank i as their top choice. Therefore, a school
is indifferent between unilaterally evading and joining. Hence, full participation is a
pure-strategy Nash equilibrium. Furthermore, if both schools evade, then the result-
ing outcome is still the same as the integration outcome. Therefore, the virtual-school
mechanism replicates the integration outcome regardless of the participation decisions
of schools. Notice that, in this example, the virtual-school mechanism achieves full par-
ticipation rather trivially, but with the other timing scenarios, the evading school may
strictly prefer to join the system to unilaterally evading it.

10. Related literature

In this section, we discuss the related literature on manipulation and sequential mech-
anisms in matching.

The literature on manipulation via pre-arranged matches (Sönmez 1999) and capac-
ity manipulation (Sönmez 1997, Konishi and Ünver 2006) is related to our work. Manip-
ulation via pre-arranged matching is a scheme that a school can use to admit one stu-
dent before the clearinghouse is run, as in the preemption case of our model. However,
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in our preemption case, unlike the above scheme, when a school evades the system,
it cannot participate in the clearinghouse, whereas students matched with the evading
school still participate. Furthermore, we also consider the other timing scenarios when
an evading school can also admit students simultaneously with or after the clearing-
house.

In capacity manipulation, schools can underreport their capacities to get a better
set of students. In our model, a school, when evading the system, causes two things:
first, it affects the outcome of the matching at the clearinghouse by not being a part of it;
this is similar to a manipulation scheme by declaring zero capacity. There is, however, a
second effect that the evading school imposes on the outcome of the final matching: The
evading school becomes an outside option for the students who are considering whether
to accept their match in the clearinghouse or to reject their match there and match with
the evading school. This latter effect of evasion from a central system is absent in the
capacity manipulation scheme where the school that manipulates its capacity gets its
students entirely from the clearinghouse.

The second related literature is on sequential matching mechanisms. Blum and
Rothblum (2002) and Boyle and Echenique (2009) study sequential bargaining in match-
ing markets.22 They model this as a process in which agents make new offers after each
new entry, which then can be accepted or rejected, and a stable outcome is reached be-
fore the next agent enters the market. They show that there is an advantage to entering
later in the market. In this literature, there is no strategic decision by agents; the order
in which agents enter the market is exogenously fixed. Furthermore, our game is very
different as there is a clearinghouse and each school decides whether they want to join
or evade. In contrast to this literature, our main focus is to come up with institutions
that yield participation by all schools.

Manjunath and Turhan (2016) consider an alternative setting in which two clear-
inghouses run in parallel. They provide a mechanism based on repeated DA that pro-
duces a stable matching. They do not study the incentives of schools to join a particular
system; in contrast, they assume that the set of schools participating in each clearing-
house is given exogenously. In another work, Dur and Kesten (2018) study sequential
matching mechanisms and show that these mechanisms do not have desirable fairness
and efficiency properties. In a subsequent work to ours, Andersson et al. (2018) study a
school choice setting with private and public schools, and study properties of dynamic
mechanisms when private-school admissions are done before or after public-school ad-
missions. Even though their main focus is the welfare properties of these mechanisms,
they also consider the incentives of a private school to join the public-school admis-
sions system. They show that a private school weakly prefers to join the public-school
admissions system when private-school admissions are done before public-school ad-
missions. In their setting, schools have the same priority ranking over students. In our
setting, a school may prefer to evade the system even when it runs its admissions before
the clearinghouse, as we do not restrict school priorities over students (Remark 3).

22Blum and Rothblum (2002) consider the one-to-one matching problem, whereas Boyle and Echenique
(2009) analyze the many-to-one matching problem with responsive preferences.
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In a coalition formation setting, Pycia (2012) studies extensive form games and
shows that every stable coalition structure can be supported as an equilibrium under
some assumptions on games and agent preferences. Different from this work, we focus
on certain extensive form games for student admissions and analyze school incentives
to join the system.

In a recent work, Ashlagi and Roth (2014) study the incentives of hospitals to include
all incompatible patient–donor pairs in the kidney exchange market. They show that
in finite markets, hospitals do not fully disclose incompatible pairs for algorithms that
maximize the number of transplants.23 However, they also show that the inefficiency
loss in large markets is small. This work is closely related to the capacity-manipulation
literature that we discuss above, even though the kidney exchange market has different
objectives and properties than the school choice problem.

11. Conclusion

Increasingly, more school districts are adopting a common enrollment system for stu-
dent assignment. We provide a framework to study the participation incentives of
schools in such a system. We first show that the outcome when all schools participate
in the system is preferred by students to the outcome when only a subset of the schools
participate. Second, we show that, for general environments, full participation is not
achievable.

In our model, we assume that schools can only choose to join or evade the system
and that students are not strategic agents. Using our framework, the analysis can be
expanded to situations in which students are strategic agents and schools have more
actions. In addition, we do not conduct a full-equilibrium analysis that would allow
us to make predictions about the school-participation rate based on the environment.
These are important and interesting research questions left for future research.

Appendix A: The school-proposing deferred-acceptance algorithm

Given a set of schools C that participate in the clearinghouse, the school-proposing
deferred-acceptance algorithm (CPDA) works as follows.

Step 1 Each school c ∈ C proposes to the students in Chc(S). Each student who has
been proposed to tentatively accepts the most preferred school among the schools
that have proposed to her if it is an acceptable school and permanently rejects the
rest. Let S1

c be the set of students who have rejected the proposal of school c. If
there are no rejections, then stop.

Step k, k≥ 2 Each school c ∈ C proposes to the students in Chc(S \ Sk−1
c ). Each

student who has been proposed to tentatively accepts the most preferred school
among the schools that have proposed to her if it is an acceptable school and per-
manently rejects the rest. Let Skc be the set of students who has rejected the pro-
posal of school c in one of the first k steps. If there are no rejections, then stop.

23In related work, Peivandi (2017) and Peivandi and Vohra (2017) consider financial markets and show
that fragmentation is an unavoidable feature of these markets.
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The algorithm ends in finite time since there can only be a finite number of rejec-
tions. Let K be the final step. The outcome of the algorithm for school c is Chc(S \ SKc ).

Appendix B: Omitted proofs

In this appendix, we provide the omitted proofs.

Proof of Lemma 1. Let DA denote either version of the deferred-acceptance algo-
rithm. First, for any student s, DA(S�C1 ∪ C2��S�ChC1∪C2)(s) is weakly more preferred
than DA(S�C1��S�ChC1)(s) and DA(S�C2��S�ChC2)(s) by Corollary 1 of Chambers and
Yenmez (2017). Therefore, for each student s,

DA
(
S�C1 ∪ C2��S�ChC1∪C2

)
(s) �s max�s

{
DA

(
S�C1��S�ChC1

)
(s)�

DA
(
S�C2��S�ChC2

)
(s)

}
�

This shows that each student s weakly prefers the integrated system to the divided
one when students do not truncate their preferences at the second clearinghouse.

We next consider the case when students truncate their preferences at the sec-
ond clearinghouse. For each student s, let �′

s be the truncation of her preferences at
DA(S�C1��S�ChC1)(s), as we have defined in Section 2. Therefore, as in the previous
paragraph, we get that

DA
(
S�C1 ∪ C2��′

S�ChC1∪C2
)
(s) �′

s max
�′
s

{
DA

(
S�C1��′

S�ChC1
)
(s)�

DA
(
S�C2��′

S�ChC2
)
(s)

}
�

Note that truncating student preference rankings at the DA outcome and then run-
ning DA again does not change the outcome, so DA(S�C1��′

S�ChC1)(s) = DA(S�C1�

�S�ChC1)(s). Likewise DA(S�C1 ∪ C2��′
S�ChC1∪C2)(s) = DA(S�C1 ∪ C2��S�ChC1∪C2)(s)

because truncating the preferences below the DA outcome, which follows from Corol-
lary 1 of Chambers and Yenmez (2017), does not change the DA outcome. Therefore, the
displayed inequality above can be rewritten as

DA
(
S�C1 ∪ C2��S�ChC1∪C2

)
(s) �′

s max
�′
s

{
DA

(
S�C1��S�ChC1

)
(s)�

DA
(
S�C2��′

S�ChC2
)
(s)

}
�

Now we consider two cases.
Case 1: DA(S�C1 ∪ C2��S�ChC1∪C2)(s) = s. In this case, DA(S�C1��S�ChC1)(s) = s

as well, since the former is weakly more preferred than the latter, and the latter is
weakly more preferred than s with respect to �s . For the displayed inequality to be
true, we also need that DA(S�C2��′

S�ChC2)(s) = s. Therefore, the outcome in the in-
tegrated system, which is DA(S�C1 ∪ C2��S�ChC1∪C2)(s) = s, is weakly more preferred
than the outcome in the divided system with respect to �s , which is max�s {DA(S�C1�

�S�ChC1)(s)�DA(S�C2��′
S�ChC2)(s)} = s.
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Case 2: DA(S�C1 ∪ C2��S�ChC1∪C2)(s) = c for some c ∈ C. Then we get that
DA(S�C1 ∪ C2��S�ChC1∪C2)(s) is weakly more preferred than the outcome in the di-
vided system with respect to �s, which is max�s {DA(S�C1��S�ChC1)(s)�DA(S�C2�

�′
S�ChC2)(s)} = s by the displayed inequality because �′

s is a truncation of �s.

Auxiliary lemma

The following lemma is helpful in some of the proofs.

Lemma 2. Let c be a school. Suppose that μC and μC\{c} are the matchings produced by
the clearinghouse when C and C \ {c} are the set of participating schools, respectively. If

{
s : c �s μC\{c}(s)

} ⊇ μC(c)�

then c revealed prefers Chc({s : c �s μC\{c}(s)}) to μC(c).

Proof. Let S̃ ≡ {s : c �s μC\{c}(s)}, S ≡ Chc({s : c �s μC\{c}(s)}), and S′ ≡ μC(c). Then
by construction, Chc(S̃) = S, and, by assumption, S̃ ⊇ S′ ∪ S. Therefore, S is revealed
preferred to S′ by c.

Proof of Theorem 2. Let DA denote either version of the deferred-acceptance algo-
rithm.

By Corollary 1 of Chambers and Yenmez (2017), for every student s, μint(s) �s

DA(S�C \ {c}��S �ChC\{c})(s). Therefore, for any student s ∈ μint(c), we have c �s

DA(S�C \ {c}��S �ChC\{c})(s). Since DA(S�C \ {c}��S�ChC\{c})(s) cannot be c and �s

is a strict preference ranking, we get c �s DA(S�C \ {c}��S �ChC\{c})(s). Therefore,
s ∈ μint(c) implies s ∈ {s′ : c �s′ DA(S�C \ {c}��S �ChC\{c})(s′)} or, equivalently, {s′ :
c �s′ DA(S�C \ {c}��S �ChC\{c})(s)} ⊇ μint(c). Since μa

c (c) = Chc({s′|c �s′ DA(S�C \ {c}�
�S�ChC\{c})(s′)}), by Lemma 2, we conclude that c revealed prefers μa

c (c) to μint(c).

Proof of Theorem 3. Recall that μa
c (c) = Chc({s|c �s DA(S�C \ {c}��S �ChC\{c})(s)}),

μs
c(c) = {s ∈ Chc(Sc)|c �s DA(S�C \ {c}��S �ChC\{c})(s)}, and μ

p
c (c) = {s ∈ Chc(Sc)|c �s

DA(S�C \ {c}��′
S �ChC\{c})(s)}.

Now let us prove the first claim that c revealed prefers μa
c (c) to μs

c(c). Consider stu-
dent s ∈ μs

c(c). By construction, c �s DA(S�C \ {c}��S�ChC\{c})(s). Therefore, this stu-
dent applies to c in the after case. As a result, μa

c (c) is chosen from a set that includes
μs
c(c), which means that c revealed prefers μa

c (c) to μs
c(c).

Next we prove the second statement that c revealed prefers μs
c(c) to μ

p
c (c). Let s ∈

μ
p
c (c). By construction, s ∈ Chc(Sc) and c �s DA(S�C \ {c}��′

S �ChC\{c})(s), which implies
that DA(S�C \ {c}��′

S �ChC\{c})(s) = s. By Corollary 1 of Chambers and Yenmez (2017),
s weakly prefers (with respect to �′

s) the outcome of DA(S�C \ {c}��′
S�ChC\{c})(s) = s

to DA(S�C \ {c}� (�S\{s}��′
s)�ChC\{c})(s). Therefore, the latter must be the outside op-

tion s. Furthermore, if s submits �s instead of �′
s while others submit �S\{s}, s is ei-

ther unmatched or matched with a school that is less preferred than c. More precisely,
c �s DA(S�C \ {c}��S �ChC\{c})(s), which implies that s ∈ μs

c(c) because s ∈ Chc(Sc). This
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shows that μp
s (c) ⊆ μs

c(c). Therefore, Chc(μ
s
c(c) ∪ μp(c)) = Chc(μ

s
c(c)) = μs

c(c), where
the second equality follows from path independence because μs

c(c) ⊆ Chc(Sc). Hence, c
revealed prefers μs

c(c) to μ
p
c (c).

Proof of Theorem 4. We start with the first claim that when students have the same
preference ranking and either version of DA is used in the clearinghouse, the three
mechanisms are integration compatible. In light of Theorem 3, which shows that the
evading school prefers to run its admissions as late as possible, we prove the claim for
only the case when the evading school runs its admissions after the clearinghouse.

Since students have the same preference ranking over schools, there is a unique sta-
ble matching. This stable matching can be produced by a serial dictatorship of schools
in which schools choose their students one by one. The order is determined by the com-
mon student preference ranking.

Consider the school whose ranking is k where 1 ≤ k ≤ m, say ck. When all schools
join the system, let Si denote the set of students matched with school ci, 1 ≤ i ≤m. Then,
for every i, Si = Chi(S \ ⋃i−1

j=1 Sj). In other words, ci chooses from students who remain

unmatched after the first i− 1 schools. In particular, Sk = Chk(S \ ⋃k−1
j=1 Sj).

When all schools except ck join the system, the unique stable matching can be pro-
duced by letting these schools, excluding ck, choose students one by one in the same
order. Therefore, c1� � � � � ck−1 get matched with the same set of students. The remain-
ing students get matched with one of the remaining schools that are strictly worse than
ck. Therefore, the set of students who apply to ck is S \ ⋃k−1

j=1 Sj . Therefore, ck admits

Chk(S \ ⋃k−1
j=1 Sj), which is Sk by construction.

Hence, ck is matched with the same set of students in μint and μa
ck

for every k. By
Corollary 1, the mechanism for the after case is integration compatible.

To show the second claim, suppose that students find all schools acceptable but do
not have the same preferences over them. Then there exist students s1, s2 and schools
c1, c2 such that c1 �s1 c2 and c2 �s2 c1. We construct choice rules such that at least one
school strictly prefers evading the system to joining it when other schools have joined it
for all timing scenarios.

Suppose that all schools have responsive choice rules with capacity 1. Consider the
following preferences over students: �c1 : s2 �c1 s1 �c1 c1 and �c2 : s1 �c2 s2 �c2 c2. For
schools c1 and c2, there are no other acceptable students. For the rest of the schools,
there are no acceptable students. Therefore, in any stable matching, all students other
than s1 and s2 are unmatched, and all schools other than c1 and c2 are unmatched.
Hence, we focus on these two students and two schools.

When all schools join the system, SPDA is used. At the first step, si proposes to ci for
i = 1�2. Since si is acceptable to ci, there are no rejections, and the algorithm ends at this
step.

Suppose now that c1 evades the system. Regardless of the admissions timing, c1 is
matched with s2. Hence, c1 is matched with its top-ranked student. Therefore, these
mechanisms are integration incompatible.
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Proof of Theorem 5. We need to show that |μp
c (c)| ≤ |μint(c)|. Suppose, for contra-

diction, that |μp
c (c)| > |μint(c)|. Since the choice rule of school c is capacity filling,

|μp
c (c)| ≤ qc , so |μint(c)| < qc .

We first consider SPDA. Recall that μ
p
c (c) = {s ∈ Chc(Sc)|c �s SPDA(S�C \ {c}�

�′
S�ChC\{c})(s)}. Because c cannot fill its capacity in the integration outcome, it never

rejects any students in SPDA because its choice rule is capacity filling. As a result,
{s|c �s SPDA(S�C \ {c}��′

S �ChC\{c})(s)} = SPDA(S�C��S �ChC)(c) because a student
prefers c to the outcome in the clearinghouse when c does not participate, and students
submit truncated preferences if and only if the student is matched with c in the clear-
inghouse when all schools participate. Therefore, μp

c (c) is a subset of SPDA(S�C��S
�ChC)(c) = μint(c). This is a contradiction to the assumption that |μp

c (c)| > |μint(c)|.
We next consider CPDA. The set of students that the school can get in the preemp-

tion case is μ
p
c (c) = {s ∈ Chc(Sc)|c �s CPDA(S�C \ {c}��′

S �ChC\{c})(s)}. Therefore, a stu-
dent s is in μ

p
c (c) if and only if s ∈ Chc(Sc) and CPDA(S�C \ {c}��′

S �ChC\{c})(s) = s,
since each student who gets an offer from c truncates her preferences at this school.
Because school choice rules are path independent and capacity filling, if a student is
unmatched in a stable matching, then the student is unmatched in all stable match-
ings, which is an implication of the rural hospitals theorem (Hatfield and Milgrom
2005). Therefore, a student s is in μ

p
c (c) if and only if s ∈ Chc(Sc) and SPDA(S�C \ {c}�

�′
S�ChC\{c})(s) = s, i.e., μp

c (c) = {s ∈ Chc(Ss)|c �s SPDA(S�C \ {c}��′
S�ChC\{c})(s)}. Then,

as we have argued in the previous paragraph, μ
p
c (c) is a subset of SPDA(S�C��S

�ChC)(c). Therefore, |μp
c (c)| ≤ |SPDA(S�C��S�ChC)(c)|. But the rural hospitals theo-

rem states that |CPDA(S�C��S �ChC)(c)| = |SPDA(S�C��S�ChC)(c)|. We conclude that
|μp

c (c)| ≤ |CPDA(S�C��S�ChC)(c)| = |μint(c)|, which is a contradiction to the assump-
tion that in the preemption case c gets more students.

Proof of Theorem 7. Recall that the integration outcome for school c is μint(c) =
DA(S�C��S�ChC)(c).

After case. Suppose that c unilaterally evades the system and runs its admissions af-
ter the clearinghouse. Then the same DA is run with virtual school c. The set of students
matched with virtual school c are unmatched in the clearinghouse. Now let us identify
the set of students who would like to switch to c: S̃ = {s : c �s μ

int(s)} ∪ μint(c). Here
μint(c) is the set of students matched with the virtual school, so they are unmatched and
they want to apply to c. Hence, S̃ is equivalent to {s : c �s μ

int(s)}. The set of students
who get matched with c is then μ̌a

c (c) = Chc(S̃) = Chc({s : c �s μ
int(s)}). Since μint is a

stable matching, μ̌a
c (c) = Chc({s : c �s μ

int(s)}) = μint(c), so μ̌a
c (c) = μint(c). Therefore,

the mechanism induced by the after case is integration compatible.
Simultaneous case. Suppose that c unilaterally evades the system and runs its

admissions simultaneously with the clearinghouse. Then c admits Chc(Sc). The out-
come of the clearinghouse is DA with virtual school c. Then μ̌s

c(c) = {s ∈ Chc(Sc)|c �s

DA(S�C��S�ChC)(s)}. But since DA is stable, μint(c) = Chc({c �s DA(S�C��S�
ChC)(s)}), where {c �s DA(S�C��S�ChC)(s)} is a superset of μ̌s

c(c). Therefore, c revealed
prefers μint(c) to μ̌s

c(c), which implies that the mechanism induced by the simultaneous
case is integration compatible.
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Preemption case. Suppose that c unilaterally evades the system and runs its admis-
sions before the clearinghouse. Then c admits Chc(Sc). The students admitted by c sub-
mit truncated preferences to the clearinghouse. Therefore, μ̌p

c (c) = {s′ ∈ Chc(Sc)|c �s′
DA(S�C��′

S �ChC)(s′)}. Since students admitted by c truncate their preferences, this set
can also be written as μ̌p

c (c) = {s′ ∈ Chc(Sc)|DA(S�C��′
S�ChC)(s′) = s′}.

Let s ∈ μ̌
p
c (c). Then s = DA(S�C� (�S\{s}��′

s)�ChC)(s) by an immediate application of
Corollary 1 in Chambers and Yenmez (2017), because other students rank more schools.
Therefore, if s submits her full ranking �s instead of the truncated preferences �′

s , she
will be matched with c or a school that she likes less: c �s DA(S�C��S�ChC)(s) = μint(s).
This is because, by the same comparative statics, when a student ranks more schools,
each school gets a weakly revealed preferred set. Hence, no school ranked higher than
c can be matched with s. Therefore, s ∈ S̃ ≡ {s′|c �s′ μint(s′)}, which implies μ̌

p
c (c) ⊆ S̃.

Since μint(c) = Chc(S̃), c revealed prefers μint(c) to μ̌
p
c (c), which means that the mech-

anism induced by the preemption case is integration compatible.

Appendix C: Examples

C.1 Theorem 2 does not hold for every stable matching mechanism

Theorem 2 shows that when the clearinghouse implements either version of DA, then
each school c revealed prefers μa

c (c) to μint(c). In this example, we show that the same
conclusion does not hold for every stable matching algorithm used by the clearing-
house. In the following example, the clearinghouse implements the school-proposing
DA when all schools join, but it switches to the student-proposing DA when a school
evades.

Suppose that there are three schools c1, c2, c3 and three students s1, s2, s3. Schools c2
and c3 have responsive choice rules. They both have a capacity of 1. Agents’ preferences
are �c2 : s2 � s1 � s3 � c2, �c3 : s3 � s1 � s2 � c3, �s1 : c2 � c1 � c3 � s1, �s2 : c1 � c2 � c3 � s2,
and �s3 : c1 � c2 � c3 � s3. This information is summarized in Table 2.

School c1 has the choice rule Chc1({s1� s2� s3}) = Chc1({s1� s2}) = Chc1({s1� s3}) = {s1},
Chc1({s2� s3}) = {s2� s3}, and Chc1({si}) = {si} for every i = 1�2�3.

Consider the case in which all schools join the system. Then the clearinghouse uses
the school-proposing DA. At the first step of the algorithm, c1 applies to s1, c2 applies
to s2, and c3 applies to s3. All of the schools are tentatively accepted. Since there are no
rejections, the algorithm ends after this step and the tentative matching is made perma-
nent. The final matching is μint = {(c1� {s1})� (c2� {s2})� (c3� {s3})}.

�c2 �c3 �s1 �s2 �s3

s2 s3 c2 c1 c1
s1 s1 c1 c2 c2
s3 s2 c3 c3 c3
c2 c3 s1 s2 s3

Capacities qc2 = 1 qc3 = 1

Table 2. Preferences, priorities, and capacities.
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Consider the case in which c3 unilaterally evades the system. The clearinghouse uses
the student-proposing DA. Student s1 proposes to c2, and students s2 and s3 propose
to c1. All of the students are tentatively accepted. Since there are no rejections, the
algorithm ends. School c1 is matched with s2 and s3, and c2 is matched with s1. Since
all students prefer this matching outcome to c3, none of them applies to c3. The final
matching is μa

c3
= {(c1� {s2� s3})� (c2� {s1})� (c3�∅)}.

Since c3 revealed prefers {s3} to ∅, it prefers to join the system rather than evading it
and admitting students after the clearinghouse.

C.2 No stable matching mechanism guarantees integration

In Theorem 2, we have shown that, regardless of which version of DA is used, every
school c revealed prefers μa

c (c) to μint(c). To investigate whether there exists an inte-
gration compatible mechanism with a clearinghouse that uses a stable algorithm, we
consider the following example that has a unique stable matching regardless of whether
c2 joins the system or evades it. Therefore, every stable algorithm has to produce the
unique stable matching under these two scenarios.

Suppose that there are two schools c1, c2 and three students s1, s2, s3. School c1’s
capacity is 1, whereas c2’s capacity is 2. Both schools have responsive choice rules with
preferences �c1 : s1 � s2 � s3 � c1 and �c2 : s2 � s1 � s3 � c2. Students’ preferences are
�s1 : c2 � c1 � s1, �s2 : c1 � c2 � s2, and �s3 : c1 � c2 � s3. This information is summarized
in Table 3.

Consider the case in which both schools join the system. In any stable matching, c2

and s1 must be matched. Otherwise, they would form a blocking pair. Given this pair, c1

and s2 must also be matched in any stable matching. Finally, c2 and s3 must be matched
as well. Therefore, there is a unique stable matching: μint = {(c1� {s2})� (c2� {s1� s3})}.

Consider the case in which c2 evades the system. Since there is only one school in
the clearinghouse, c1 must be matched with s1 in any stable algorithm. Since all students
prefer c2 to the outcome of the algorithm, they all apply to c2. School c2 accepts students
s1 and s2. The final matching is μa

c2
= {(c1�∅)� (c2� {s1� s2})}.

School c2 strictly revealed prefers {s1� s2} to {s1� s3}. Therefore, the mechanism is in-
tegration incompatible.

�c1 �c2 �s1 �s2 �s3

s1 s2 c2 c1 c1
s2 s1 c1 c2 c2
s3 s3 s1 s2 s3
c1 c2

Capacities qc1 = 1 qc2 = 2

Table 3. Preferences, priorities, and capacities.
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�c1 �c2 �c3 �s1 �s2

s1 s1 s1 c1 c2
s2 s2 s2 c2 c1
c1 c2 c3 c3 c3

s1 s2
Capacities qc1 = 2 qc2 = 1 qc3 = 2

Table 4. Preferences, priorities, and capacities.

C.3 Common school priorities do not guarantee integration

Suppose that there are three schools c1, c2, c3 and two students s1, s2. School c1’s capacity
is 2, c2’s capacity is 1, and c3’s capacity is 2. Every ci has a responsive choice rule with
preference s1 � s2 � ci for i = 1�2�3. Students’ preferences are �s1 : c1 � c2 � c3 � s1 and
�s2 : c2 � c1 � c3 � s2. This information is summarized in Table 4.

Consider the case in which all schools join the system. Then there exists a unique
stable matching: μint = {(c1� {s1})� (c2� {s2})� (c3�∅))}. This is the outcome of the clear-
inghouse.

Consider the case in which c1 unilaterally evades the system. For the matching mar-
ket without c1, there is a unique stable matching, which is the outcome of the clearing-
house: {(c2� {s1})� (c3� {s2}))}. Since both students prefer c1 to the outcome of the clear-
inghouse, they apply to c1. School c1 accepts them both since it has a capacity of 2. The
final matching is μa

c1
= {(c1� {s1� s2})� (c2�∅)� (c3�∅)}.

School c1 strictly revealed prefers {s1� s2} to {s1}. Therefore, the mechanism is inte-
gration incompatible.24

C.4 The no-poaching policy does not guarantee integration compatibility

For SPDA, consider problem P2 in Remark 3, presented in Table 1(B). The integration
outcome is {(c1� {s2})� (c2� {s1})}.

Consider the case in which c2 unilaterally evades the system. In the clearinghouse,
both students propose to c1. School c1 accepts s1 and rejects s2. Afterward, s2 applies to
c2 and school c2 accepts s2. The final matching is {(c1� {s1})� (c2� {s2})}.

Since c2 revealed prefers s2 to s1, the mechanism is integration incompatible.
For CPDA, consider the example in Appendix C.2. The integration outcome is

{(c1� {s2})� (c2� {s1� s3})}.
Consider the case in which c2 unilaterally evades the system. School c1 proposes

to s1. Student s1 accepts c1’s offer. Then the unmatched students apply to c2. School c2

accepts both students. The final matching is {(c1� {s1})� (c2� {s2� s3})}.
Since c2 does not revealed prefer {s1� s3} to {s2� s3}, the mechanism is not integration

compatible.

24This example shows that even the acyclicity condition of Ergin (2002) does not guarantee integration
compatibility.
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