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We generalize the school choice problem by defining a notion of allowable priority
violations. In this setting, a weak axiom of stability (partial stability) allows only
certain priority violations. We introduce a class of algorithms called the student
exchange under partial fairness (SEPF). Each member of this class gives a partially
stable matching that is not Pareto dominated by another partially stable matching
(i.e., constrained efficient in the class of partially stable matchings). Moreover,
any constrained efficient matching that Pareto improves upon a partially stable
matching can be obtained via an algorithm within the SEPF class. We characterize
the unique algorithm in the SEPF class that satisfies a desirable incentive property.
The extension of the model to an environment with weak priorities enables us to
provide a characterization result that proves the counterpart of the main result in
Erdil and Ergin (2008).
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1. Introduction

School choice has become an important policy tool for school districts to provide stu-
dents with the opportunity to choose their school. In a school choice problem, students
submit their preferences over schools to a central placement authority and the authority
decides on an assignment (or a matching) based on schools’ capacities, schools’ prior-
ities over students, and submitted preferences. The main criteria are improving stu-
dents’ welfare (efficiency) and respecting schools’ priorities (fairness). Unfortunately,
efficiency and fairness are incompatible in this setting (Balinski and Sönmez 1999). This
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incompatibility has led school districts and scholars to search for a compromise be-
tween efficiency and fairness. The current work contributes to this research program.

Our approach is to improve efficiency by allowing priority violations. We general-
ize the standard school choice problem by including a set of allowable priority viola-
tions. The standard fairness notion, i.e., stability, is projected onto this framework in a
straightforward way, i.e., partial stability (Section 2.2). We propose a class of algorithms,
student exchange under partial fairness (SEPF) such that each algorithm in this class
gives a partially stable matching that is not Pareto dominated by another partially stable
matching (in other words, is constrained efficient in the class of partially stable match-
ings). One can begin with any partially stable matching and each algorithm in the SEPF
class selects a constrained efficient matching that weakly Pareto dominates the initial
matching. Moreover, each such matching can be obtained by an algorithm in the SEPF
class (Theorem 1).1

The set of allowable priority violations is taken as a premise of the model, and the
concept has several interpretations. One interpretation involves the following scenario
(Section 4): the school district can ask students’ consent for priority violations and then
select a matching that takes the students’ consent into account (Kesten 2010). The idea
is to design school choice rules2 such that students have incentives to consent for their
priorities to be violated: a consenting student is never hurt by her decision to consent.
This is an indispensable property that assures that the idea of consent is operational.
When priorities are consented to be violated, stability constraints are relaxed and each
student’s welfare can be weakly improved. A rule motivated by this interpretation is
the efficiency adjusted deferred acceptance mechanism (EADAM) (Kesten 2010). The
EADAM gives students incentives to consent and finds a constrained efficient matching.
Our characterization result implies that the EADAM is in the SEPF class (Proposition 1).
We argue that a particular rule, the top priority (TP) rule, stands out in the SEPF class:
the TP is the unique constrained efficient rule under which students are not hurt by con-
senting (Theorem 2). An immediate corollary is the outcome equivalence of the EADAM
and the TP rule: they select the same outcome for the same preference and consent
profiles. Unfortunately, no rule within the SEPF class is immune to violations through
misrepresentation of preferences (Proposition 3). This incompatibility is indeed more
general: a constrained efficient rule can never be strategy-proof (Theorem 3).

Another interpretation (Section 5) pertains to the case where certain types of pri-
orities can be violated, while other priorities must always be respected. For instance,
the Boston Public School System (BPSS) recently removed proximity from the priority
structure and started prioritizing students based on sibling status only (Dur et al. 2018).
In another example, the Recovery School District in New Orleans replaced an efficient
but nonstable matching rule with a stable rule after including the private scholarship
schools, whose priorities cannot be violated by law (Pathak 2017). Similarly, some school

1In an independent study, Combe et al. (2018) study a similar class of rules. Motivated by the teacher
reassignments in France, they propose a class of algorithms. Each algorithm in this class starts with an
initial matching and in each iteration, the set of blocking pairs shrinks so as to improve the welfare of the
teachers. Combe et al. (2018) prove non-existence of a strategy-proof rule in this class.

2A school choice rule is a systematic way to match students with schools for each school choice problem.
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districts include both exam and regular schools. Exam schools’ priorities are determined
based on centralized test scores and cannot be violated by law. Regular schools’ priori-
ties are exogenously determined and respecting them is plausible but not necessary (Ab-
dulkadiroğlu 2011, Sönmez and Ünver 2011). These examples show that school districts
may consider allowing some priorities to be violated, which would render further effi-
ciency gains possible. An intuitive approach to elicit these efficiency gains is to remove
these priority classes. Nevertheless, we show (in Section 5.1) that suppressing a priority
class may yield a perverse consequence: it may make each student worse off compared
to the outcome of the student-proposing deferred acceptance (DA) rule where all ex-
isting priority classes are kept. Alternatively, the SEPF class produces matchings that
weakly improve on the outcome of the student-proposing DA rule and implicitly “deter-
mines” which priorities (among those that are allowed to be violated) to violate so as to
obtain these efficiency gains.

Our basic model has strict priorities, but its extension to an environment with weak
priorities is straightforward (Section 7). We show that a characterization result analo-
gous to Theorem 1 holds for this domain, which completes the main result of Erdil and
Ergin (2008) by proving its converse. This result reveals an important connection be-
tween the SEPF and the stable improvement cycles algorithm proposed by Erdil and
Ergin (2008).

Related literature

The school choice problem was introduced by Abdulkadiroğlu and Sönmez (2003).
A major concern in a school choice problem is stability: for each school s, there should
not be a student who prefers s to her assigned school and another student assigned to
s with a lower priority at s, and there should not also be an unfilled seat at s if a stu-
dent prefers s to her assigned school. There are rules that always select stable match-
ings. The student-proposing DA rule is such an example (Gale and Shapley 1962). The
student-proposing DA gives the student-optimal stable matching (SOSM), which is the
best matching in terms of the students’ welfare among all the stable matchings (Gale
and Shapley 1962, Balinski and Sönmez 1999). Furthermore, the student-proposing DA
is strategy-proof : revealing preferences truthfully is a weakly dominant strategy for each
student (Dubins and Freedman 1981, Roth 1982). However, there is a serious drawback
of the SOSM: it is not Pareto efficient (Balinski and Sönmez 1999, Abdulkadiroğlu and
Sönmez 2003). Moreover, this inefficiency can be quite severe (Kesten 2010) and there is
empirical support for this insight: in New York City (NYC) high school match, possible
welfare gains over the SOSM are significant (Abdulkadiroğlu et al. 2009). The inefficiency
of the SOSM is actually due to a deeper issue: stability and efficiency are incompatible
(Gale and Shapley 1962, Roth 1982, Balinski and Sönmez 1999).

A possible remedy for the SOSM’s inefficiency is to relax stability. One alternative
in this direction is to focus on efficiency via the top trading cycles (TTC) rule, which
always gives an efficient matching (Abdulkadiroğlu and Sönmez 2003, Hakimov and
Kesten 2018, Morrill 2013, Morrill 2015). Another alternative is to weaken the stabil-
ity notion. Such a weakening is reasonable stability: a matching is reasonably stable if
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whenever a student i’s priority is violated at school s, there does not exist a stable match-
ing in which i is assigned to s.3 Another weakening is α-equitability: a matching with a
priority violation is not deemed as unfair if a student’s objection to that priority vio-
lation is counter-objected by another student (Alcade and Romero-Medina 2017). Alva
and Manjunath (2019) define another weakening of stability: a rule is stable-dominating
if it selects an allocation that Pareto-improves some stable allocation at every preference
profile. They show that the SOSM is the only stable-dominating and strategy-proof rule.
Troyan et al. (2016) and Morrill (2016) focus on the alternative ways to improve efficiency
by relaxing the fairness constraint. In particular, under the Morrill (2016) definition of
fairness, a student i’s priority at school s needs to be respected only if there exists a tex-
titlegitimate matching in which i is assigned to s. Morrill (2016) introduces an iterative
procedure to find the set of legitimate matchings. He shows that there is a unique le-
gitimate set of matchings and a unique Pareto efficient and legitimate matching which
corresponds to EADAM’s outcome when all students consent. According to Troyan et al.
(2016), a matching is essentially stable if any objection of student i to her priority viola-
tion at school s initiates a rejection chain that results in her rejection from s. They show
that the EADAM produces an essentially stable matching.

When students consent for the violation of their priorities, at the SOSM, students
assigned to certain schools cannot be made better off and the EADAM can be redefined
by taking these schools into account (Tang and Yu 2014). Moreover, the outcome of
the EADAM is supported as the strong Nash equilibrium of the preference revelation
game under the DA (Bando 2014). In the affirmative action context, a variant of the
EADAM has recently been proposed as a minimally responsive rule (that is, a rule such
that changing the affirmative action parameter in favor of the minorities never results in
a matching that makes each minority student weakly worse off) (Doğan 2016). Regard-
ing the interpretation where certain priorities can be violated, one example is the NYC
school match: motivated by the observation that the efficiency loss under the SOSM is
significant, school districts have been considering allowing such violations anywhere
but exam schools (Abdulkadiroğlu 2011). Another example of this approach can also be
seen in Afacan et al. (2017).4

The idea that possible welfare gains can be captured by improvement cycles is first
proposed by Erdil and Ergin (2008) in the context of coarse priorities of schools. This
idea inspired the rules proposed in some other works (Ehlers et al. 2014, Abdulkadiroğlu
2011) and in the current work as well.

2. The model

We first present the standard school choice problem, and then introduce the extended
model with allowable priority violations.

3This notion is first discussed in the working paper version of Kesten (2010).
4They allow certain priority violations based on the information that the parents will not appeal these vi-

olations. The authors introduce the efficiency-corrected deferred acceptance mechanism (ECDA) algorithm,
which finds a constrained efficient sticky stable matching. Besides informational issues, our paper differs
from theirs in two major aspects. First, we introduce a class of rules selecting all constrained efficient
matchings and, thus, provide a full characterization result. Second, we show that there exists a unique
rule in this class that satisfies desired incentive properties.
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2.1 School choice problem

A school choice problem consists of the following elements:

• A finite set of students I = {i1� i2� � � � � in}.

• A finite set of schools S = {s1� s2� � � � � sm}.

• A strict priority profile of schools �= (�s)s∈S , where �s is the complete priority
order of school s over I.5

• A capacity vector q= (qs)s∈S , where qs is the number of available seats at school s.

• A strict preference profile of students P = (Pi)i∈I such that Pi is student i’s strict
preferences over S ∪ {∅}, where ∅ stands for the option of being unassigned with
q∅ = |I|.

Let Ri denote the at-least-as-good-as preference relation associated with Pi, that is,
s Ri s

′ if and only if s Pi s′ or s = s′. Let R= (Ri)i∈I denote the weak preference profile of
all students.

A matching μ : I → S ∪ {∅} is a function such that for each s ∈ S, |μ−1(s)| ≤ qs.
A matching μ violates the priority of student i ∈ I at school s ∈ S if there exists another
j ∈ I such that μ(j) = s, s Pi μ(i), and i �s j. A matching μ is fair if for each i ∈ I and
s ∈ S, it does not violate the priority of student i at school s. A matching μ is individually
rational if for each i ∈ I, μ(i) Ri ∅. A matching μ is non-wasteful if there do not exist
a student i ∈ I and a school s ∈ S such that s Pi μ(i) and |μ−1(s)| < qs. A matching μ is
stable if it is fair, individually rational, and non-wasteful.

A matching μ weakly Pareto dominates matching μ′ if for each i ∈ I, μ(i) Ri μ′(i).
A matching μ Pareto dominates μ′ if μ weakly Pareto dominates μ′ and μ(j) Pj μ′(j) for
some j ∈ I. A matching μ is Pareto efficient if it is not Pareto dominated by another
matching μ′. A stable matching μ is student-optimal stable matching (SOSM) if it is not
Pareto dominated by another stable matching.

2.2 School choice problem with allowable priority violations

A school choice problem with allowable priority violations (or simply a problem) is a
school choice problem where some priority violations are allowed. These violations are
given by a correspondence C : S⇒ I × I, where (i� j) ∈ C(s) means that the priority of i
at s is allowed to be violated by a student j. We require that (i� j) ∈ C(s) only if i�s j.6 We
impose the following restriction on C throughout the paper.

Assumption 1. If (i� j) ∈ C(s), then for each j′ ∈ I such that i�s j′ �s j, (i� j′) ∈ C(s).

Assumption 1 implies that if the violation of priority of i ∈ I at s ∈ S by some students
is allowable, then there is a cutoff student j with i �s j such that i’s priority at s can only

5In Section 7, we allow priorities to be weak.
6This requirement follows directly from the definition of priorities (see Section 2.1).
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be violated by the students whose priorities are weakly higher than j (and by definition,
lower than i).7

Throughout the paper, we fix I, S, �, and q. Thus, a problem is defined by (R�C).8

A rule ψ is a systematic procedure that selects a matching for each problem. For problem
(R�C), we denote the matching selected by rule ψ with ψ(R�C) and the assignment of
student i in ψ(R�C) with ψ(R�C)(i).

There are several interpretations of the correspondence C, such as those that con-
sider C to be the set of priorities that the central authority can sacrifice or those that
come from the consenting decisions of students, such as in Kesten (2010). We discuss
these interpretations in detail in Sections 4 and 5; yet, for now, we remain agnostic and
give the most general treatment.

The addition of correspondence C relaxes the fairness constraint in the following
manner: priorities for which violations are allowable (according to C) are not taken into
account when considering fairness. By ignoring these priorities, one can define weaker
notions of fairness and stability. A matching μ is partially fair if for each i� j ∈ I and
s ∈ S, μ(j)= s, s Pi μ(i), and i�s j imply (i� j) ∈ C(s). A matching μ is partially stable if it
is partially fair, individually rational, and non-wasteful.

A matching μ is constrained efficient if it is partially stable and is not Pareto domi-
nated by any other partially stable matching. A rule ψ is constrained efficient if it selects
a constrained efficient matching for any problem.

The notion of partial stability stands as a compromise between efficiency and sta-
bility. Indeed, one can easily see how the interpolation between the two ends works by
investigating the extremes. In one extreme, when no priority violation is allowable, the
notion of partial stability collapses to that of stability and the only constrained efficient
matching is the SOSM. In particular, the SOSM Pareto dominates any other partially sta-
ble matching and the set of of partially stable matchings constitutes a lattice. In the
other extreme, when any priority violation is allowable, each matching vacuously sat-
isfies partial fairness and constrained efficiency is equivalent to Pareto efficiency. For
some problems, there is no partially stable matching that Pareto dominates or is Pareto
dominated by any other partially stable matching. Thus, we do not observe lattice struc-
ture when the set of partially stable matchings is considered.9

3. The student exchange under partial fairness

We now present a class of algorithms to characterize the set of constrained efficient
matchings that improve the students’ welfare upon a partially stable matching.

3.1 The algorithm

Given a partially stable matching μ, for each school s ∈ S, we define two sets:

7This assumption is necessary for our main results: Theorem 1 would not hold without it. In Appendix B,
we give an example where Assumption 1 does not hold and Theorem 1 fails.

8Since the preference relation is strict, we can define the problem by (P�C) as well.
9One can easily see this point by considering an example composed of one school with one seat and two

students.
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• Let Dμ(s)= {i ∈ I : s Pi μ(i)} (the set of students who prefer s to their assignments

under μ).

• Let Xμ(s)= {i ∈Dμ(s) : ∀j ∈ [Dμ(s) \ ({k ∈ I : (k� i) ∈ C(s)} ∪ {i})], i�s j} (the set of

students who are eligible for a partially fair exchange involving school s).10

LetG= (V �E) be a directed graph with the set of vertices V and the set of directed edges

E, which is a set of ordered pairs of V .

For each matching μ,G(μ)= (I�E(μ)) is the (directed) application graph associated

with μ where the set of directed edges E(μ) ⊆ I × I is ij ∈ E(μ) (that is, i points to j) if

and only if s = μ(j) and i ∈Xμ(s).
A set of edges {i1i2� i2i3� � � � � inin+1} is a path if the vertices i1� i2� � � � � in+1 are distinct,

and is a cycle if the vertices i1� i2� � � � � in are distinct and i1 = in+1. We say that a cycle φ=
{i1i2� i2i3� � � � � ini1} is solved when for each ij ∈ φ, student i is assigned to μ(j) to obtain

a new matching. Formally, we denote the solution of a cycle φ = {i1i2� i2i3� � � � � ini1} by

the operation ◦; that is, η = φ ◦ μ if and only if for each ij ∈ φ, η(i) = μ(j), and for

each i′ /∈ {i1� i2� � � � � in}, η(i′)= μ(i′). The following algorithm is built on a partially stable

matching and is defined by solving cycles iteratively:

The Student Exchange under Partial Fairness (SEPF) Algorithm11

Step 0. Let μ0 be a partially stable matching.

Step k≥ 1. Given a matching μk−1, there are two alternatives:

(k.1) If there is no cycle inG(μk−1), then the algorithm terminates and μk−1 is the

matching obtained.

(k.2) Otherwise, solve one of the cycles inG(μk−1), sayφk, and let μk =φk ◦ μk−1.

The algorithm terminates in a finite number of steps due to a finite number of stu-

dents and schools and strict preferences. Moreover, the maximum number of possible

steps is 0�5|I|(|S| − 1).12 Since the SEPF involves two selections that are not predeter-

mined, it is a class of algorithms: (i) We only require μ0 to be partially stable, and impose

no other restrictions on it, and (ii) at each step of the algorithm, we require one of the

cycles to be solved without specifying which one.

10Note that this set is always well defined. In particular, whenever Dμ(s) is nonempty, the student with
the highest priority for s among the students inDμ(s) is always inXμ(s). (See Lemma 3 in Appendix C for a
formal treatment.) Moreover, for any i� j ∈Dμ(s) with i �s j, if j ∈Xμ(s), then i is also in Xμ(s) by virtue of
Assumption 1.

11Example 2 in Appendix J demonstrates how the algorithm works.
12This is because there can be at most |I|(|S| − 1) improvements in a problem and at each step a cycle is

solved, implying that there are at least two improvements obtained in each step.
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One obtains (possibly) different outcomes by choosing different initial partially sta-
ble matchings and different cycles at each step of the algorithm.13 Two questions fol-
low immediately: which initial partially stable matching and which cycle selection pro-
cedure should be used? We provide a detailed answer to the second question in Sec-
tion 4. For the initial partially stable matching, there is a strong argument for choosing
the SOSM: many school districts use the student-proposing DA. Thus, the SOSM is the
status quo outcome and school districts might be constrained by giving each student at
least what she gets under the status quo. For this reason, we focus on algorithms within
the SEPF class starting with the SOSM and present the results by using the SOSM as the
initial partially stable matching.

3.2 A characterization result

Our first result establishes the relationship between constrained efficiency and the SEPF
class: For any problem, if one starts with the SOSM, each matching obtained by an al-
gorithm within the SEPF class is constrained efficient and weakly Pareto dominates the
SOSM. Moreover, each constrained efficient matching that weakly Pareto dominates the
SOSM is attainable through some algorithm within the SEPF that starts with the SOSM.

Let �(R�C) denote the set of all constrained efficient matchings that weakly Pareto
dominate the SOSM with respect to the problem (R�C). Let 	(R�C) denote the set of
all matchings that can be obtained via an algorithm in the SEPF class starting with the
SOSM under (R�C).

Theorem 1. For each problem (R�C), a matching is constrained efficient and weakly
Pareto dominates the SOSM if and only if it is obtained by an algorithm within the SEPF
class starting with the SOSM; that is,�(R�C)=	(R�C).

See Appendices C–I14 for the proofs.
This result states that a group of reasonable normative properties characterize the

set of the SEPF outcomes. An important remark is that these properties include a re-
striction: the characterization concerns only the set of constrained efficient matchings
that weakly Pareto dominate the SOSM. In general, there may exist constrained efficient
matchings that do not weakly Pareto dominate the SOSM, and the SEPF starting with the
SOSM does not find such matchings. Thus, a relevant question is whether this restric-
tion is at the expense of an important property. To answer it, we remove this restriction
in Section 6 and seek constrained efficient rules. In Section 6, we also impose incentive
compatibility. But it turns out that constrained efficiency and incentive compatibility
are incompatible (Theorem 3).

Theorem 1 is a general result without any reference to the nature of allowable priority
violations. While there might be different interpretations of allowable priority violations,

13The outcome of the SEPF is a set of matchings. In Example 2 in Appendix J, there are two matchings
obtained by algorithms within the SEPF class.

14In Appendix C, we provide the proof for the general case in which μ0 can be any partially stable match-
ing.
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our characterization is a starting point to obtain strong results for the model where pri-
ority violations are only possible with students’ consent. We analyze this model next.15

4. Priority violation via students’ consent

An example where the notion of partial fairness is pertinent is the model where pri-
orities are violated as a result of consenting decisions of students, as in Kesten (2010).
Before making observations about this interpretation, we emphasize the relationship
between the SEPF and the efficiency adjusted deferred acceptance mechanism (EADAM)
introduced by Kesten (2010).

4.1 The SEPF and EADAM

The motivation behind the EADAM is to explore the source of inefficiency of the SOSM
due to fairness constraints and improve it on the efficiency dimension. An important
observation made by Kesten (2010) is that the priority of student i at school s might not
help her to get a better school under the student-proposing DA at all. If this is the case,
giving i the lowest priority at s instead of her current priority would not change her as-
signment and the DA would possibly select a matching that Pareto dominates the SOSM
with the original priorities. Motivated by this observation, Kesten (2010) introduces the
EADAM in a setting that allows students to consent for the violation of their own priori-
ties. This would correspond to student i declaring the violation of her priority at school
s by some other student as allowable. That is, there is a clear connection between our
setup and that considered in Kesten (2010). Yet, the setup considered in Kesten (2010)
is more restrictive than ours: it assumes that a student can either consent for priority
violation by each student at each school or not consent for any violation by any student
at any school. To capture this difference, we define the following notion.

Definition 1. Correspondence C satisfies all-or-nothing property if, for all i ∈ I, only
one of the following statements is true:

• (i� j) ∈ C(s) for each s ∈ S and j ∈ I such that i�s j
• (i� j) /∈ C(s) for each s ∈ S and j ∈ I.

The all-or-nothing property is used only in Section 4.1 so as to establish the con-
nection between the SEPF class and the EADAM. The property is crucial for the EADAM
to be well defined under our setup. Since the all-or-nothing property merely puts a re-
striction on the correspondence C, the algorithms in the SEPF class would still be well
defined. The following result is immediate from Theorem 1 and from Theorem 1 of Tang
and Yu (2014).

15In Section 5, we discuss another interpretation of our model inspired by a recent change in a school
choice policy: we show that our approach can be adopted for the case where a school district is willing to
violate certain types of priorities.
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Proposition 1. For each problem (R�C), where C satisfies all-or-nothing property, the
matching obtained by the EADAM can also be obtained by an algorithm in the SEPF class
starting with the SOSM.

Each particular algorithm in the SEPF class (starting with the SOSM) defines a con-
strained efficient rule that Pareto dominates the SOSM (we call these rules the class of
SEPF rules), and the EADAM is a rule in this class (Proposition 1). It turns out that the
EADAM is a special member of the class of SEPF rules: it defines a unique rule that
satisfies a desirable incentive compatibility property related to the consenting interpre-
tation. Before we state this result, we provide some insights.

4.2 The concept of underdemanded schools

At each step of an algorithm in the SEPF class, only the welfare of students in the solved
cycle improves. Clearly, if a student’s current school is not demanded by other students,
then she is not part of any cycle and a welfare improvement is not possible for her. To
formalize this idea, we introduce the concept of underdemanded schools.16

A school s has no demand atμ if there does not exist a student iwho prefers s toμ(i).
A school s is underdemanded at μ if it has no demand at μ or if no student on a path to
a student in μ−1(s) is part of a cycle in the graphG(μ).

Let (R�C) be a problem and letψ be a rule in the SEPF class. Assume that the under-
lying SEPF algorithm terminates at Step K and the outcome is the matching μK−1; that
is, ψ(R�C) = μK−1. Take a step k≤K− 1. If student i is not pointed to by another student
in the graph G(μk), then school μk(i) has no demand at μk′ for any k′ ≥ k.17 Conse-
quently, a student assigned to an underdemanded school in the matching selected at
Step k is not part of any cycle at any step k′ ≥ k. Consequently,ψ(R�C)(i)= μk(i).18 Con-
sistent with this observation, we say that a student is permanently matched at μ if she is
assigned to an underdemanded school at μ, and a student is temporarily matched at μ
if she is not permanently matched.

4.3 Incentives to consent

A student’s decision to consent (or not consent) to priority violations is a strategic one.
Consequently, the main issue for a rule based on the idea of consent is whether students
have incentives to consent. The mechanism designer would like to give incentives to the
students to consent, because each additional consent relaxes the partial fairness con-
straint and provides the mechanism designer with the opportunity to choose a matching
closer to the efficiency frontier. Consequently, one should look for rules that guarantee
a student will not be made worse off if she consents.

16See also Kesten and Kurino (2013) and Tang and Yu (2014) for a discussion of the same concept. The
terminology in Tang and Yu (2014) is different: the authors refer to a school with no demand as a tier-0
underdemanded school and refer to an underdemanded school as a tier-k underdemanded school for k> 0.

17This easily follows from Remark 3 in Appendix C.
18See Lemma 8 in Appendix E for a formal statement and proof.



Theoretical Economics 14 (2019) School choice under partial fairness 1319

Definition 2. A rule ψ provides incentives to consent if for any problem, for each i ∈ I
and s ∈ S, student i who consents for s does not get a better assignment by not consent-
ing for s. That is, take any (R�C) and define C ′ as C ′(s)= C(s) \ ⋃

j∈I{(i� j)} and C ′(s′)=
C(s′) for each s′ ∈ S \ {s}. A rule ψ provides incentives to consent if ψ(R�C)(i) Ri ψ(R�C ′)(i)
for each i ∈ I and s ∈ S.19

Our goal is to search for rules that provide incentives to consent and always yield
constrained efficient outcomes that weakly Pareto dominate the SOSM. Our characteri-
zation (Theorem 1) reduces this search to the class of SEPF rules. However, a rule within
the SEPF class may not provide incentives to consent.20 Next, we introduce a rule that
provides incentives to consent, and it turns out that it is the unique such rule in the SEPF
class. We refer to this rule as the top priority rule.

4.4 The top priority rule

The top priority (TP) rule is a member of the class of SEPF rules; thus, its underlying
algorithm corresponds to a specific cycle selection procedure.21 So as to construct this
cycle selection procedure, we introduce some definitions.

For each matching μ, let GT(μ) = (I�ET (μ)) be the top priority graph associated
with μ, where the set of directed edges ET (μ) is defined as follows: ij ∈ ET (μ) if and
only if student i has the highest priority forμ(j) among the students who are temporarily
matched at μ and point to j inG(μ).

The top priority algorithm22

Step 0. Let μ0 be the SOSM.23

Step k≥ 1. Given a matching μk−1, there are two alternatives:

(k.1) If there is no cycle inG(μk−1), then the algorithm terminates and μk−1 is the
matching obtained.

(k.2) Otherwise, solve one of the cycles in GT(μk−1), say φk, and let μk = φk ◦
μk−1.

By definition, if i points to j inGT(μ), then i points to j inG(μ) as well. This implies
the following remark.

Remark 1. Any cycle that appears inGT(μ) also appears inG(μ).

19One can easily extend the definition by constructing C ′(s) by only removing a student pair (i� j) from
C(s). All our results are robust to this extension.

20In Example 2 in Appendix J, student i2 is better off by not consenting for s3 under any rule selecting
matching μ′.

21Note that the class of SEPF rules is defined such that the SOSM is the initial partially stable matching
(Section 4.1).

22Example 3 in Appendix J demonstrates how the TP algorithm works.
23The TP algorithm can be defined with any stable matching as the initial matching. All our results are

robust to this extension.
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The following lemma states that if there is a cycle in G(μ), there is a cycle in GT(μ)
as well.

Lemma 1. Let μ be a partially stable matching. There is a cycle in the graph G(μ) if and
only if there is a cycle in the graphGT(μ).

Remark 1 and Lemma 1 imply that the TP algorithm is in the SEPF class. Conse-
quently, the TP algorithm is nothing more than a cycle selection procedure within the
class of SEPF rules. The only restriction we impose on the cycle selection procedure
is that it selects a cycle in GT(μk). This raises a question: Does it matter which cycle
in GT(μk) is chosen? We demonstrate that the outcome of the TP algorithm does not
depend on the order of cycles solved. Thus, the TP algorithm defines a rule.

Proposition 2. The TP algorithm defines a rule in the class of SEPF rules.

Actually, the TP rule stands out: it is the unique SEPF rule that provides incentives to
consent.

Theorem 2. A rule is constrained efficient, provides incentives to consent, and improves
the SOSM if and only if it is the TP rule.

Recall that the EADAM satisfies the following property: for any student, consent-
ing for all schools does not hurt any student (this follows from Proposition 3 of Kesten
(2010)). This implies that when C satisfies the all-or-nothing property, the EADAM is
outcome-equivalent to the TP rule: they select the same outcome for the same prefer-
ence and consent profile. The following important implication of this result is immedi-
ate: in the Kesten (2010) setup, one cannot do better than the EADAM without sacrificing
incentives to consent.

Alternatively, one can interpret incentives to consent as a protection from objections
by the students due to priority violation. In particular, if a student objects to a priority vi-
olation under a rule that provides incentives to consent, then she cannot be assigned to
a better school when her priorities are respected under the same rule. Thus, even if the
students are not asked to consent (the case we consider in the next section), providing
incentives to consent can be considered as a desirable feature.

5. Violating certain types of priorities

We now discuss another interpretation of C. In particular, we show that our approach
can be adopted for the case where a school district allows certain types of priority vi-
olations, and we compare our approach to an alternative where certain priorities are
removed by school districts.

The school districts are using priority classes when they rank the students. For in-
stance, the Boston Public Schools System (BPSS) until recently used four priority classes:
sibling+walk zone, sibling, walk zone, and others. Each school was giving the high-
est priority to the students in the sibling+walk-zone priority class, the second highest
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priority to the students in the sibling priority class, and third highest priority to the stu-
dents in the walk-zone priority class. The ranks of the students within each priority
class were determined according to a random draw. Recently, the BPSS decided to sup-
press walk-zone priorities and now uses only two priority classes: sibling and others
(Dur et al. 2018). This demonstrates that although walk-zone priority is important for
the BPSS, there is enough justification for the removal of this priority class. The school
choice problem with allowable priority violations captures this phenomenon: the ac-
quiescence to violate walk-zone priorities can be modelled as (i� j) being in C(s) if and
only if i �s j, and either i has walk-zone priority at school s or i has sibling+walk-zone
priority and j has sibling priority at s.24 Thus, instead of removing a priority class, the
mechanism designer may consider modelling these priority violations as allowable and
using a rule within the SEPF class.

An important clarification needs to be made at this point. Our motivation for
proposing the SEPF class is to improve the SOSM in terms of efficiency. However, a
school district’s motivation in suppressing certain priority classes is not necessarily to
improve efficiency, and our proposal does not capture other concerns behind suppress-
ing a priority class. Yet, our purpose here is to point out a side effect of this policy:
suppressing priorities may have perverse efficiency implications. Below, we compare the
SEPF to the approach of suppressing some priority classes on the efficiency dimension
alone to point out the unintended consequences of the latter approach.

5.1 Suppressing a priority class versus allowing violation of priorities

One might think that when a priority class is suppressed, it reduces the number of rejec-
tion chains (the source of inefficiency of the SOSM) and leads to efficiency gains. Exam-
ple 1 indicates this is not always true.

Example 1. There are two schools, S = {a�b}, and three students, I = {i� j�k}. Each
school has one available seat. The preferences of students are b Pi a Pi ∅, a Pj b Pj ∅,
and a Pk b Pk ∅. Each school uses four priority classes: sibling+walk zone, sibling, walk
zone, and other. Student i has sibling priority at school a and walk-zone priority at
school b. Students j and k belong to the “other” priority class for both schools. Sup-
pose the random draw favors j most and i least. In this problem, the SOSM assigns i to
b and j to a. However, when the walk-zone priority is suppressed, the SOSM assigns i to
a and j to b without changing the assignment of k. ♦

Example 1 shows that suppressing walk-zone priorities might result in a stable (with
respect to relaxed priorities) matching that is Pareto inferior to the SOSM (under the
original priorities). Moreover, this approach might weaken the fairness aspect of the
outcome (with respect to the suppressed priorities) without improving it in terms of ef-
ficiency and yield an undesirable allocation (with respect to the balance between effi-
ciency improvements, fairness, and other possible concerns). This balance is already
embedded in the class of SEPF rules, since each rule in this class always yields stable

24The C(s) obtained in this manner satisfies Assumption 1.
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and constrained efficient matchings (with respect to relaxed priorities) which are Pareto
superior to the SOSM, and walk-zone priorities are violated only if they lead to ineffi-
ciencies.

6. Manipulation through preference revelation

We say that a rule is strategy-proof if, given a profile of allowable priority violations C,
truthful revelation of preferences is a weakly dominant strategy for each i ∈ I. Unfor-
tunately, there is no strategy-proof rule whose outcome Pareto dominates the SOSM
(Kesten and Kurino 2013, Abdulkadiroğlu et al. 2009).25 Since each rule within the SEPF
class Pareto-improves over the SOSM, the following is obtained as a corollary of this re-
sult.

Proposition 3. There is no rule within the class of SEPF rules that satisfies strategy-
proofness.

This result, combined with Theorem 1, demonstrates that constrained efficiency,
weakly Pareto dominating the SOSM, and strategy-proofness are incompatible. Given
this incompatibility result, since constrained efficiency is an indispensable property
in our model, the only possible way to gain strategy-proofness is to consider all the
constrained efficient matchings instead of only those that weakly Pareto dominate the
SOSM. The impossibility extends.

Theorem 3. There is no strategy-proof and constrained efficient rule.

The notion of strategy-proofness used here requires truthful revelation to be a domi-
nant strategy for every C. In the settings where C is exogenously given, one may wonder
whether there is a characterization of C for which strategy-proofness and constrained
efficiency are compatible. In Appendix H, we provide sufficient conditions that guaran-
tee the existence of strategy-proof and constrained efficient rules, and we propose such
a rule.

7. The SEPF for weak priorities

School districts usually rank students using some predetermined criteria such as prox-
imity and sibling status. Thus, many students end up being grouped under the same pri-
ority classes. Since the student-proposing DA is defined only under strict priority orders,
school districts use exogenously determined tie-breaking rules to order students within

25Both papers consider the environments where schools have indifferences among students and some
tie-breaking rule is needed. Nevertheless, our setup can easily be considered as a special case where each
indifference class consists of one student only. The Kesten and Kurino (2013) result is more general than
that of Abdulkadiroğlu et al. (2009), as it does not require the existence of a null school. Since we allow for
the null school, both theorems are applicable in our setup. In a recent paper, Alva and Manjunath (2019)
provide a stronger result such that student-proposing DA is the unique strategy-proof rule that (weakly)
Pareto improves any stable matching.
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priority classes. Unfortunately, exogenous tie-breaking causes efficiency loss (Erdil and
Ergin 2008, Abdulkadiroğlu et al. 2009, Kesten 2010). A solution for this efficiency loss
problem is the stable improvement cycles (SIC) algorithm (Erdil and Ergin 2008). The
SIC algorithm takes the SOSM for a given tie-breaking rule and then improves the as-
signment by utilizing trade cycles between students. The SIC algorithm defines a class
of rules, since at each step there may exist more than one cycle and each cycle selec-
tion procedure possibly gives a different outcome. An alternative solution is a modified
version of the EADAM (defined in Section V.D. of Kesten (2010)), which we denote as
the EADAM for weak priorities. It turns out that there is a close connection between the
SIC and the EADAM for weak priorities, which becomes apparent through their relation-
ships to the SEPF.

We extend our model by allowing each s ∈ S to have a weak priority order denoted
by �s. We denote the strict priority order of school s by �s and denote the associated
indifference relation by ∼s . For this section, we assume that the set of allowable priority
violations is not part of the problem (indeed, we construct this object). Thus, a problem
is given by a preference profile R. All the other definitions remain the same as they are
defined in Section 2.1. Given a problem R and a priority profile �, let f�(R) denote the
set of student-optimal stable matchings in the problem. If i∼s j, then, by definition, the
assignment of j to s while i prefers s to her assignment does not violate fairness. Conse-
quently, f�(R)may no longer be a singleton.26 Moreover, the common method of using
a single tie-breaker, generating a strict priority profile �′, and finding the SOSM accord-
ing to �′ may not yield a matching in f�(R). That is, letting T (�) denote the set of strict
priority profiles obtained by breaking the ties in �,27 we have f�(R)⊆ ⋃

�′∈T (�) f�′
(R),

where, as discussed in Erdil and Ergin (2008), the inclusion may be proper. This obser-
vation calls for an improvement of the SOSM with single tie-breaking, such that the end
matching is in f�(R).

Given a weak priority profile �, let a strict priority profile �′ be obtained by breaking
the ties in �. For each i ∈ I and s ∈ S, construct the set of allowable priority violations
under �′ as28

(i� j) ∈ C(s) if and only if j ∈ ({
j′ : i�′

s j
′} ∩ {

j′ : i∼s j
′}) for each j ∈ I� (1)

Given the constructed set of allowable priority violations C, we can now start with the
SOSM under �′ and then select a rule within the SEPF class according to C. We refer to
this procedure as the SEPF for weak priorities. Let 
(R��′) denote the set of all match-
ings that can be obtained via the SEPF for weak priorities with a given �′ according to
this procedure.

The SEPF for weak priorities inherits the constrained efficiency of the SEPF class.
Consequently, an adaptation of the characterization result in Theorem 1 applies: for a
given tie-breaking rule, the set of outcomes obtained by the SEPF for weak priorities is

26For a given strict priority profile �, we define f�(R) similarly. It is worth mentioning that f�(R) is a
singleton and it contains the outcome of the student-proposing DA rule under R and �.

27Formally, T (�) is the set of priority profiles such that i�s j implies i�′
s j for all i� j ∈ I and s ∈ S.

28The set of allowable priority violations constructed in this manner satisfies Assumption 1.
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characterized by the set of student-optimal stable matchings that Pareto dominate the
SOSM obtained under the given tie-breaking rule.

Proposition 4. Given R and �, let �′∈ T (�) and μ0 ∈ f�′
(R). A matching is student-

optimal stable and weakly Pareto dominatesμ0 if and only if it is obtained by the SEPF for
weak priorities. That is, μ ∈ f�(R) and Pareto dominates μ0 if and only if μ ∈
(R��′).

It is easy to see that the SEPF for weak priorities and the SIC algorithm of Erdil and
Ergin (2008) are outcome equivalent, i.e., for the same problem, the same tie-breaking
rule, and the same cycle selection procedure they select the same matching. As a result,
Proposition 4 provides a counterpart of Theorem 1 of Erdil and Ergin (2008): not only
does the SIC procedure always finds a student-optimal stable matching, but it also finds
all the student-optimal stable matchings for any given tie-breaking rule.

Another interesting side result of Proposition 4 is the connection between the SIC
and EADAM for weak priorities: the EADAM for weak priorities is a member of the SIC
algorithms class.

8. Conclusion

This study introduces the school choice problem with allowable priority violations. The
main result is a characterization of a class of algorithms, the SEPF, each of which always
yields a constrained efficient matching that weakly Pareto dominates the SOSM. A rele-
vant interpretation is the setup where school district officials ask for students’ consent
for the violation of their priorities (Kesten 2010). Clearly, students having incentives to
consent is indispensable in this setting. Our proposal, the TP rule, is the unique rule
that satisfies this property within the SEPF class. Indeed, the mechanism designer can
also attempt to provide more incentives. One such rule may be the one that favors con-
senting students in tie-breaking or gives the consenting students higher priorities when
they apply to the school system for the higher grades. The characterization of such rules
is left for future research.

Our framework also applies to settings where some priority violations are deemed
feasible. We demonstrate that the SEPF class under such violations (marked as allow-
able) has superior welfare properties compared to suppressing these priorities. Another
example for allowable priority violations is a setting with centralized placement of stu-
dents to exam and regular schools. Whereas the priorities to exam schools are legal con-
straints that cannot be violated, the regular schools are more flexible in terms of their
priorities. One can then simply adopt the framework offered in Section 2.2 and spec-
ify that priority violations in private schools are allowed for each pair of students. Each
cycle selection rule within the SEPF, including the “uniform cycle selection rule,” which
solves each cycle at each step with equal probabilities, is guaranteed to produce a con-
strained efficient matching in this case.

Appendix A: The EADAM

Before providing the definition of the EADAM, we first present a notion used in the def-
inition. If student i is tentatively accepted by school s at some step t and is rejected by s
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in a later step t ′ of the student-proposing DA, and there exists another student j who is
rejected by s in step t ′′ ∈ {t� t + 1� � � � � t ′ − 1}, then i is called an interrupter for s and (i� s)
is called an interrupting pair of step t ′.

Under EADAM, each student reports her preferences over the schools and her deci-
sion to consent or not. EADAM selects its outcome through the following algorithm:

Round 0. Run the student-proposing DA algorithm.
Round k > 0. Find the last step of the student-proposing DA run in Round k − 1

in which a consenting interrupter is rejected from the school for which she is an inter-
rupter. Identify all the interrupting pairs of that step with consenting interrupters. For
each identified interrupting pair (i� s), remove s from the preferences of iwithout chang-
ing the relative order of the other schools. Rerun the student-proposing DA algorithm
with the updated preference profile. If there are no more consenting interrupters, then
stop.

Appendix B: Necessity of Assumption 1

We demonstrate a problem (R�C) where Assumption 1 does not hold and there are two
partially stable matchings μ and μ̃ such that μ̃ Pareto dominates μ, but there are no
cycles in G(μ). Consequently, Theorem 1 fails: any algorithm in the SEPF class that
starts with μ yields μ, despite μ not being constrained efficient.

Let I = {i1� i2� i3� i4}, S = {s1� s2� s3� s4}, and qs = 1 for each s ∈ S. Take any C such
that (i1� i3) /∈ C(s2), (i1� i4) ∈ C(s2), and (i3� i4) /∈ C(s2). Let the students’ preferences and
schools’ priorities be

Pi1 Pi2 Pi3 Pi4 �s1 �s2 �s3 �s4
s2 s3 s4 s2 i1 i2 i3 i4

s1 s2 s2 s4
��� i1 i2 i3

���
��� s3

���
��� i3

���
���

���
���

���
���

��� i4
���

���

The matchings μ = {(i1� s1)� (i2� s2)� (i3� s3)� (i4� s4)} and μ̃ = {(i1� s1)� (i2� s3)� (i3� s4)�
(i4� s2)} are partially stable.29 Also, μ̃ Pareto dominates μ. But since Xμ(s1) = ∅,
Xμ(s2) = {i1}, Xμ(s3) = {i2}, and Xμ(s4) = {i3}, there are no cycles in G(μ) and the al-
gorithm terminates.

Since i3 ∈Dμ(s2), i3 �s2 i4 and (i3� i4) /∈ C(s2) (that is, i3 prevents i4 from pointing to
i2 in G(μ)), i4 /∈Xμ(s2). Similarly, i3 is prevented from pointing to i2 by i1. This would
not occur if Assumption 1 was retained. Since (i1� i3) /∈ C(s2) and i3 �s2 i4, Assumption 1
requires that (i1� i4) /∈ C(s2), and μ̃ would not be partially stable.

Appendix C: Proof of Theorem 1

The statement in the theorem is for the case where the initial matching μ0 is the SOSM.
Instead of this special case, we provide the proof of a more general result such that μ0

29The matching μ is the SOSM and partial stability of μ follows immediately. For μ̃, the only student
who envies another student is i1. She prefers s2 = μ̃(i4) to μ̃(i1), and i1 �s2 i4. Nevertheless, (i1� i4) ∈ C(s2).
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can be any partially stable matching. That is, we show that for each problem (R�C) and
for each partially stable matching μ0, a matching is constrained efficient and weakly
Pareto dominatesμ0 if and only if it is obtained by an algorithm in the SEPF class starting
with μ0.

Remark 2. In the graphG(μ), if i points to j, then i points to each student in μ−1(μ(j)).

Remark 2 follows from a simple observation: i points to j if and only if i ∈Xμ(μ(j)),
and, thus, i also points to student i′ if μ(i′)= μ(j).

For a given problem (R�C) and a partially stable initial matching μ0, consider an
algorithm in the SEPF class. Let K be the last step of the algorithm and let μk be the
matching selected by the algorithm at step k ∈ {1� � � � �K − 1}. A cycle is solved at each
step of the algorithm, which implies that the students in the cycle are better off and
no student is worse off at the new matching obtained by solving the cycle. Thus, the
matching at each step Pareto dominates the matching in the previous step. This implies
that for a student i, if a school s is better than μk(i), then it is also better than μk−1(i).

Remark 3. For each k≥ 1 and each s ∈ S,Dμk(s)⊆Dμk−1(s).

A consequence of Remark 3 is that if i points to j in the graph G(μk−1) and i is not
better off at Step k, then in the graph G(μk), i points to the students who are assigned
to school μk−1(j) at μk. In particular, if i points to j and both are not better off at a
step of the algorithm, then i points to j in the next step as well. To see this, let cy-
cle φk = {i1i2� i2i3� � � � � ini1} be solved in the graph G(μk−1) such that μk = φk ◦ μk−1.
Suppose i points to j in the graph G(μk−1) and i� j /∈ {i1� i2� � � � � in}. By definition of the
graph G(μk−1), i ∈ Xμk−1(s), where s = μk−1(j). Since μk(i) = μk−1(i), i ∈ Dμk(s). Let
i′ ∈ Dμk(s) be such that i′ �s i. By Remark 3, i′ ∈ Dμk−1(s). Thus, since i ∈ Xμk−1(s)

and i′ �s i, we have (i′� i) ∈ C(s). We conclude that for each student j̃ ∈ Dμk(s) with a
higher priority than student i at school s, (j̃� i) ∈ C(s). Consequently, i ∈Xμk(s). Since
s = μk(j)= μk−1(j), i points to j in the graphG(μk).

Remark 4. If i points to j in G(μk−1) and both students’ assignments do not change at
Step k, then i points to j inG(μk).

C.1 Proof of the “if” part

Lemma 2. Each matching obtained by an algorithm within the SEPF class is partially
stable.

Proof. (i) Partial fairness. Let μk be the matching at step k ∈ {0�1� � � � �K − 1} of an
algorithm in the SEPF class. We prove this statement by induction on k. The initial
matching, μ0, is partially fair.

As an inductive hypothesis, suppose μk−1 is partially fair. Take any student–school
pair (i� s) such that s Pi μk(i). At each step of the algorithm, each student is either better
off (she is in the solved cycle) or she is assigned to the same school as in the previous
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step. Thus, for each � ∈ I, μk(�) R� μk−1(�). Since s Pi μk(i), this implies that s Pi μk−1(i)

and i ∈ Dμk−1(s). Take any j ∈ μ−1
k (s) with (i� j) /∈ C(s). If j ∈ μ−1

k−1(s), then by partial

fairness of μk−1, j �s i. Alternatively, suppose j /∈ μ−1
k−1(s). Since j ∈ μ−1

k (s), j is in the
cycle solved at Stepk. Thus, j ∈Xμk−1(s). By assumption, (i� j) /∈ C(s); thus, i ∈Dμk−1(s)\
{i′ ∈ I : (i′� j) ∈ C(s)}. Since j ∈ Xμk−1(s), we have j �s i. Thus, μk does not violate the
priority of i at s and it is partially fair. The induction follows.

(ii) Individual rationality. Sinceμ0 is individually rational and each student is weakly
better off at each step of the SEPF algorithm, its outcome is individually rational.

(iii) Non-wastefulness. The initial matching μ0 is non-wasteful and at each step, stu-
dents are assigned to (weakly) better schools. By the definition of the SEPF algorithm,
for each school s, the number of students assigned to s at each step remains the same as
it is under μ0. Thus, if |μ−1

0 (s)| = qs, then each matching obtained by the SEPF assigns qs
students to s. Suppose |μ−1

0 (s)| < qs. Since μ0 is non-wasteful, the set Dμ0(s) is empty.
By Remark 3, at each step k,Dμk(s) is empty. Thus, each matching obtained by the SEPF
satisfies non-wastefulness.

Lemma 3. For each partially stable matching μ and s ∈ S, Xμ(s) = ∅ if and only if
Dμ(s)= ∅.

Proof. Only if. Let Xμ(s) = ∅. Suppose Dμ(s) �= ∅. By strict priorities, there exists i
who has higher priority for s than any other student in Dμ(s). By definition, i ∈Xμ(s); a
contradiction. If. The “if” part follows directly from the definition of the setXμ(s).

Lemma 4. Let μ and η be partially stable matchings such that η Pareto dominates μ. For
each s ∈ S, |η−1(s)| = |μ−1(s)|.

Proof. Take a school s ∈ S. First, we show that |η−1(s)| ≤ |μ−1(s)|. Suppose |η−1(s)|>
|μ−1(s)| and let i ∈ η−1(s) \ μ−1(s). Since η Pareto dominates μ and preferences are
strict, this implies that s Pi μ(i). But since |μ−1(s)| < qs , this violates non-wastefulness
of μ. This implies that for each s ∈ S, |η−1(s)| ≤ |μ−1(s)|.

Second, we show that |η−1(s)| ≥ |μ−1(s)|. Suppose |η−1(s)| < |μ−1(s)|. Adding to-
gether all schools and using the previous finding, we have

∑
s∈S |η−1(s)|<∑

s∈S |μ−1(s)|.
But since η Pareto dominates μ and both matchings are partially stable, if a student is
assigned to a school under μ, then she is also assigned to a school under η. This implies
that

∑
s∈S |η−1(s)| ≥ ∑

s∈S |μ−1(s)|, a contradiction.

Lemma 5. For a given problem (R�C), a matching obtained by an algorithm within the
SEPF class is constrained efficient.

We use the following concept in the proof: given G = (V �E), a path {i1i2� i2i3� � � � �
inin+1} is a chain if for each j ∈ V , ji1 /∈ E and in+1j /∈ E, and vertex i1 is called the tail of
this chain.

Proof of Lemma 5. Let μ be a matching obtained by an algorithm within the SEPF
class. By Lemma 2, μ is partially stable. We show that a partially stable matching that
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Pareto dominates μ does not exist. On the contrary, suppose a partially stable matching
μ̃ Pareto dominates μ. Note that, by definition of the SEPF class, there is no cycle in the
graphG(μ). There are two possible cases.

Case 1: There are no chains in G(μ). Then, for each s ∈ S, Xμ(s)= ∅. By Lemma 3,
this implies that Dμ(s)= ∅. Thus, at μ, each student is assigned to her best school and
μ is Pareto efficient.

Case 2: There is a chain in G(μ). Let I1 be the set of students who are not pointed
to by any other student.30 Let i1 ∈ I1 with μ(i1) = s1. Since i1 is not pointed to by any
student, Xμ(s1) = ∅. Then, by Lemma 3, Dμ(s1) = ∅. Since μ̃ Pareto dominates μ,
there does not exist i ∈ I such that μ(i) �= s1 but μ̃(i) = s1. Thus, μ̃−1(s1) ⊆ μ−1(s1). By
Lemma 4, |μ̃−1(s1)| = |μ−1(s1)|. Thus, μ−1(s1) = μ̃−1(s1). Since i1 is chosen arbitrarily,
this holds for each s ∈ S such that μ−1(s) ⊆ I1. Let S1 denote the set of these schools.
That is, for each s ∈ S1, μ−1(s)= μ̃−1(s).

There exists at least one student in I \ I1 such that she is pointed to only by students
in I1. Otherwise, there is a cycle inG(μ) or there are no chains inG(μ), a contradiction.
Let I2 be the set of such students and take some i2 ∈ I2, s2 = μ(i2). We first show that
there does not exist j ∈ I such that μ(j) �= s2 but μ̃(j) = s2. To see why, assume to the
contrary. Since μ̃ Pareto dominates μ, this implies that s2 Pj μ(j) and, thus, j ∈Dμ(s2).
Nevertheless, we must have j /∈ Xμ(s2). This is because otherwise j ∈ I1 (recall that i2
is pointed to only by students in I1). Thus, by the previous paragraph, we must have
μ(j) = μ̃(j), a contradiction. We conclude that j /∈Xμ(s2) and it implies that for some
j′ ∈ Dμ(s2), (j′� j) /∈ C(s2) and j′ �s2 j. Let i be the student with highest priority for s2
among such j′. Note that i ∈Xμ(s2),31 and since i2 is pointed to only by students in I1,
i ∈ I1. Then, since i is assigned to the same school both under μ and μ̃, the assignment
of j to s2 under matching μ̃ violates the priority of i at s2, which contradicts the partial
fairness of μ̃. Thus, there does not exist a student j such that μ(j) �= s2 but μ̃(j) = s2.
Once again, by Lemma 4, μ−1(s2) = μ̃−1(s2). Let S2 denote the set of the schools such
that for each s ∈ S2, μ−1(s)⊆ I2.

Now we can continue in the same manner. If there is a student in I \ (I1 ∪ I2) who is
pointed to by a student in G(μ), then at least one of them, say i3, is pointed to only by
students in I1 ∪ I2. By the same argument, the same students are assigned toμ(i3) under
both μ and μ̃.

Repeating the argument once more, we conclude that all students in a chain inG(μ)
have the same assignment under μ and μ̃. The students who are not in a chain inG(μ),
i.e., those who are not pointed to by a student and who are not pointing to a student, are
contained in I1, and, as argued above, they have the same assignment under μ and μ̃ as
well. Thus, the matchings μ and μ̃ coincide for all students. We conclude that μ= μ̃ and
μ̃ cannot Pareto dominate μ.

30Note that, by definition, I1 contains all the students who are at the tail of some chain inG(μ).
31Otherwise, there must be another student i′ ∈Dμ(s2), (i′� i) /∈ C(s2) and i′ �s2 i. But by Assumption 1,

(i′� i) /∈C(s2) and i�s2 j implies that (i′� j) /∈ C(s2). This would be a contradiction to i being the student with
highest priority for s2 among j′ ∈Dμ(s2) with (j′� j) /∈ C(s2) and j′ �s2 j.
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Since the matching obtained at each step of an algorithm within the SEPF class im-
proves the matching in the previous step, it improves over μ0. This completes the proof
of the “if” part of the theorem.

C.2 Proof of the “only if” part

Let μ0 be a partially stable matching. We prove that each constrained efficient matching
that Pareto dominates μ0 can be obtained by an algorithm within the SEPF class. We
first introduce an auxiliary notion called improvement cycle.

Definition 3. An improvement cycle φ over a matching μ is a cycle such that for each
ij ∈φ, μ(j) Pi μ(i).

The following lemma is the crucial first step in the construction of a cycle that ap-
pears in the graph used by the algorithms in the SEPF class.

Lemma 6. Let μ and η be partially stable matchings such that η Pareto dominates μ.
Then there exists a set of disjoint improvement cycles�= {φ1� � � � �φm} such that η=φm ◦
· · · ◦φ1 ◦μ.

Proof. LetN ⊆ I be the set of students who are strictly better off underη. Let G̃(μ�η)=
(N�E) be a directed graph where the edges E ⊆N ×N are such that each i ∈N points
to a unique student in N ∩ μ−1(η(i)) and each student in N is pointed to by a unique
student.

We claim that such a graph G̃(μ�η) can be constructed. By Lemma 4, for each s,
|μ−1(s)| = |η−1(s)|. Thus, μ−1(s) �= η−1(s) implies |μ−1(s) \ η−1(s)| = |η−1(s) \ μ−1(s)|.
Moreover, each i ∈ μ−1(s) \η−1(s) is pointed to by one of the students in η−1(s) \μ−1(s).
Thus, one can construct the graph G̃(μ�η).32

Since each student inN is pointed to by a unique student and points to a unique stu-
dent in N , each student is in a cycle and no two cycles intersect. By construction, each
of these disjoint cycles is an improvement cycle over μ, and the matching η is obtained
by solving these cycles in any order.

An improvement cycle does not necessarily appear in the graph constructed by the
SEPF algorithm. To complete our proof, we prove a result similar to Lemma 6 for the
cycles that appear in the graph constructed by the SEPF at each step.

Lemma 7. Let μ and η be partially stable matchings such that η Pareto dominates μ.
Then there exists a sequence of cycles (γ1� � � � � γn) such that

• γ1 appears inG(μ)

• for each k ∈ {2� � � � � n}, γk appears inG(γk−1 ◦ · · · ◦ γ1 ◦ μ)
• γn ◦ · · · ◦ γ1 ◦ μ= η.

32Clearly, there are multiple graphs that one can construct following this method, but any of these graphs
is sufficient to demonstrate the existence of a set of improvement cycles.
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Proof. By Lemma 6, one can construct a set of improvement cycles �= {φ1� � � � �φm}.
The result is trivial for the case where all the cycles in � appear in G(μ): it follows that
there are disjoint cycles in G(μ), and solving them in any order leads to η. To prove the
alternative case, we assume that none of the cycles in � appears in G(μ). This assump-
tion is without loss of generality because of the following observation: if a cycle φ ∈ �
appears inG(μ), then this cycle is solved first and μ′ =φ◦μ is obtained; if another cycle
φ′ ∈� also appears inG(μ), by the fact that all cycles in � are disjoint and by Remark 4,
it also appears in G(μ′). Thus, we can solve φ′ and obtain μ′′ = φ′ ◦ μ′. Following this
logic, whenever a subset of cycles in � appears in G(μ), these cycles are solved first.
Consequently, we focus on the case where none of the improvement cycles appears in
G(μ).

To show the existence of a cycle in G(μ), first we prove that for any φ ∈ � and any
ij ∈ φ, there exists some k ∈ I such that kj ∈ G(μ) and �k ∈ φ′ for some � ∈ I, φ′ ∈ �.
Take any φ ∈� and ij ∈φ.

• If i ∈Xμ(μ(j)), then this edge also appears on G(μ) by construction. Moreover, i
is a part of φ, which implies that there exists some � ∈ I with �i ∈φ.

• If i /∈ Xμ(μ(j)), there exists a student i′ such that i′ ∈ Dμ(μ(j)), (i′� i) /∈ C(μ(j)),
and i′ �μ(j) i. Let k be the student with the highest priority for school μ(j) among
such students. Note that33 k ∈Xμ(η(i)) and, thus, kj ∈G(μ). Moreover, we claim
that k is in an improvement cycle in�; that is, there existsφ′ ∈� such that �k ∈φ′
for some � ∈ I. Ifη(k)= μ(k), then sinceμ(j) Pk η(k), (k� i) /∈ C(μ(j)), and k�μ(j)
i, there is a priority violation at η(i), which is not allowed, contradicting partial
stability of η. Thus, η(k) Pk μ(k), which implies that k is in an improvement cycle
in �. Consequently, �k ∈φ′ for some � ∈ I, φ′ ∈�.

Thus, for any student j who is in an improvement cycle φ ∈ �, there exists another
student k such that kj ∈G(μ) and k is in an improvement cycle φ′ ∈ �. But since the
set of students in improvement cycles is finite and each student is pointed to by another
student in this set, there exists a cycle denoted by γ1 inG(μ).

We next show that the matching γ1 ◦ μ Pareto dominates μ and is (weakly) Pareto
dominated by η. For any kj ∈ γ1, note that (γ1 ◦ μ)(k)= μ(j).

• If kj ∈φ for some φ ∈�, then μ(j)= η(k).
• If kj /∈φ for any φ ∈�, we claim that η(k) Rk μ(j). Suppose μ(j) Pk η(k), that is,
k ∈ Dη(μ(j)). Consider the student i ∈ I such that ij ∈ φ for some φ ∈ �. Since
ij /∈G(μ), we must have (k� i) /∈ C(η(i)) and k �η(i) i. Thus, matching η violates
the priority of student k at school η(i), a contradiction.

Thus, under the matching γ1 ◦μ, each student in γ1 is better off than under the matching
μ and weakly worse off than under the matching η. Each remaining student is assigned

33Note the subtle role played by Assumption 1 here. If k /∈Xμ(η(i)), then there must be another student
� ∈ I such that � ∈ Dμ(μ(j)), (��k) /∈ C(μ(j)), and � �μ(j) k. But by Assumption 1, (��k) /∈ C(μ(j)) and
k �μ(j) i imply that (�� i) /∈ C(μ(j)). This is a contradiction to i being the student with the highest priority
for μ(j) among i′ ∈Dμ(μ(j)) with (i′� i) /∈C(μ(j)) and i′ �μ(j) i.



Theoretical Economics 14 (2019) School choice under partial fairness 1331

to the same school to which she is assigned under μ, which implies that the matching
γ1 ◦μ Pareto dominates μ and is weakly Pareto dominated by η. Moreover, by the same
argument in Lemma 2, γ1 ◦μ is partially stable. If the matching γ1 ◦μ is equivalent to η,
the proof is complete. If not, we use the same argument inductively: by Lemma 6, there
is a set of distinct improvement cycles, such that the matching η is obtained by solving
these cycles over γ1 ◦μ and one can construct a cycle that appears in the graph used by
SEPF.

Appendix D: Proof of Lemma 1

Let Itμ denote the set of temporarily matched students at μ. Only if. Since there is a
cycle in G(μ), the set of temporarily matched students, Itμ, is nonempty. By definition
of the graph GT(μ), each student in Itμ is pointed to by a unique student in Itμ. Thus,
by finiteness of Itμ, there exists a cycle in GT(μ). In particular, each cycle in GT(μ) is
formed by the students in Itμ. If. The “if” part follows from Remark 1.

Appendix E: Proof of Proposition 2

As argued in Section 4.4, Lemma 1 and Remark 1 imply that the TP algorithm is a mem-
ber of the SEPF class.

Lemma 8. Let ϕ be a rule within the SEPF class. For a given problem (R�C) and partially
stable initial matching μ0, suppose student i is assigned to an underdemanded school s at
Step k of the underlying algorithm of ϕ. Then, at each further step, she is not part of any
cycle; thus, she is assigned to s at any further step.

Proof. Let K be the last step of the algorithm underlying the rule ϕ and let μk be the
matching selected at step k ∈ {1� � � � �K − 1}. Remember that if a school s is underde-
manded at μk, either the school has no demand at μk or no student on a path to a
student in μ−1

k (s) is part of a cycle in G(μk). Let Suk ⊆ S denote the set of underde-
manded schools at μk. We first argue that Suk has a specific structure. Let S1

k be the
set of schools that has no demand at μk. By definition, S1

k ⊆ Suk . Let S2
k be the set of

schools such that, for a school s2 ∈ S2
k, the students in μ−1

k (s2) are pointed to only by stu-

dents in
⋃
s1∈S1

k
μ−1
k (s1). Let S3

k be the set of schools such that, for s3 ∈ S3
k, the students in

μ−1
k (s3) are pointed to only by students in

⋃
s∈S1

k∪S2
k
μ−1
k (s). Continuing in this manner,

we can decompose Suk into groups such that Suk = S1
k ∪ S2

k ∪ · · · ∪ Smk for some m ≥ 1. In

this decomposition, given a m̃ ∈ {2� � � � �m}, for any sm̃ ∈ Sm̃k , the students in μ−1
k (s

m̃
k ) are

pointed to only by students in
⋃
s∈S1

k∪···∪Sm̃−1
k

μ−1
k (s).

Take any s1 ∈ S1
k. Since s1 has no demand at μk, Xμk(s1) = ∅. By Lemma 3,

Dμk(s1) = ∅. Moreover, by Remark 3, Dμk(s1) = ∅ implies that, for each k′ ≥ k,
Dμk′ (s1)=∅. Since by definition,Xμ(s1)⊆Dμ(s1), for each k′ ≥ k,Xμk′ (s1)=∅. Conse-

quently, any i ∈ μ−1
k (s1) is not part of any cycle in steps k′ ≥ k.

If Suk = S1
k, the argument is complete. If not, there exists at least one school in s2 ∈ S2

k.
Otherwise, some students in (Suk \S1

k)must be part of a cycle, a contradiction. Let s2 ∈ S2
k.
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Suppose, for some student i ∈ I, i ∈ (Dμk(s2) \Xμk(s2)). Then there exists j ∈ (Dμk(s2) \
{j′ ∈ I : (j′� i) ∈ C(s2)}) such that j �s2 i and j points to the students in μ−1

k (s2). But we

know that j ∈ μ−1
k (s1) for some s1 ∈ S1

k (recall that students in μ−1
k (s2) are pointed to

only by students in
⋃
s1∈S1

k
μ−1
k (s1)) and, by the argument above, j is not a part of a cycle

in steps k′ ≥ k. Therefore, at each step k′, i /∈ Xμk(s2). Thus, at each step k′ ≥ k, the
students assigned to s2 are pointed to only by the students who are assigned to schools
with no demand and, thus, they are not part of any cycle.

Now we can continue in the same manner. For any m̃ ∈ {2� � � � �m}, if Suk \ (S1
k ∪ · · · ∪

Sm̃−1
k ) is nonempty, then there is at least one school in Sm̃k . Otherwise, some students in

Suk \ (S1
k ∪ · · · ∪ Sm̃−1

k ) must be part of a cycle, a contradiction. Let sm̃ ∈ Sm̃k . By the same
argument above, at each step k′ ≥ k, the students assigned to sm̃ are pointed to only by
the students who are assigned to underdemanded schools and, thus, they are not part of
any cycle. Repeating the same argument once more, we conclude that all students who
are assigned to a school in Suk are not part of any cycle at any step k′ ≥ k; thus, they are
not part of any cycle. The result follows.

Lemma 8 justifies the language we use for the students assigned to underdemanded
schools at some matching μ: by definition, a permanently matched student i at μ is
assigned to an underdemanded school at μ and she is not part of any cycle through an
algorithm within the SEPF class that selects μ at some step. Thus, at each constrained
efficient matching that weakly Pareto dominates μ, i is assigned to μ(i).

Lemma 9. For a given problem (R�C) and partially stable initial matching μ0, let μk−1
be the matching selected at Step k−1 of the TP algorithm. In the graphGT(μk−1), let cycle
φk = {i1i2� i2i3� � � � � ini1} be solved by the TP algorithm such thatμk =φk ◦μk−1. Then, for
each i /∈ {i1� i2� � � � � in}, if i points to j inGT(μk−1), then i points to j inGT(μk).

Proof. A student can be pointed to by at most one student inGT(μk−1). Since i points
to j in GT(μk−1), i /∈ {i1� i2� � � � � in} implies j /∈ {i1� i2� � � � � in}. Since μk−1(i) = μk(i) and
μk−1(j) = μk(j), by Remark 4 and Lemma 1, i points to j in G(μk). Suppose student
i′ �= i points to j in GT(μk). Thus, i′ ∈Dμk(μk(j)) and i′ is temporarily matched at μk.
Since μk(j)= μk−1(j), by Remark 3, i′ ∈Dμk−1(μk−1(j)). Moreover, since i is temporarily
matched at μk, i′ has a higher priority at the school μk−1(j) than i. Thus, that i (but
not i′) points to j in the graphGT(μk−1) implies that i′ is permanently matched at μk−1.
This contradicts Lemma 8, which implies that for each k′ ≥ k−1, i′ must be permanently
matched at μk′ .

Lemma 10. For a given problem (R�C) and partially stable initial matching μ0, let μk−1
be the matching selected at Step k − 1 of the TP algorithm. If a cycle φ in the graph
GT(μk−1) is not solved at Step k, then φ appears in the graphGT(μk).

Proof. Let ij ∈φ. By Remark 4, i points to j in G(μk). Since this holds for each edge in
φ, φ is a cycle inG(μk). Thus, i is temporarily matched at μk. By Lemma 9, this implies
that i points to j in GT(μk). Since this holds for each ij ∈φ, the graph GT(μk) contains
cycle φ.
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Lemma 11. Let μ0 be a partially stable matching for problem (R�C). Consider a cycle
selection order denoted by�= (φ1�φ2� � � � �φK) such thatφk appears inGT(μk−1) for all
k ∈ {1�2� � � � �K}, whereμk =φk ◦μk−1. Letμ be the outcome of the TP algorithm under�.
If there exists k̃ ∈ {1� � � � �K − 1} such that φ

k̃+1 appears in GT(μ
k̃−1), then the TP algo-

rithm selects μ for the cycle selection order �̂= (φ1� � � � �φk̃−1�φk̃+1�φk̃�φk̃+2� � � � �φK).

Proof. Let νk be the matching selected at Step k of the TP algorithm under �̂. Since
in the first k̃− 1 steps, the same cycles are solved under both �̂ and �, we have μk = νk
for all k ≤ k̃− 1. Thus, GT(μ

k̃−1) =GT(ν
k̃−1). That is, φ

k̃+1 and φ
k̃

exist in GT(νk−1).
Moreover, φ

k̃+1 and φ
k̃

are disjoint. When φ
k̃+1 is solved at Step k, by Lemma 10, φ

k̃

exists in GT(νk). We have μ
k̃+1 = ν

k̃+1 and GT(μ
k̃+1) = GT(ν

k̃+1) since the cycles are
disjoint and only the students in φ

k̃+1 and φ
k̃

improved to the same schools. Then φk
appears inGT(νk) and μk = νk for all k≥ k̃+ 1.

Lemma 12. For a given problem (R�C) and partially stable initial matching μ0, the out-
come of the TP algorithm is independent of the order of cycles solved.

Proof. We prove the result by constructing a cycle selection order, �, which generates
the same outcome as any other cycle selection order, �̂, under the TP algorithm. The
construction of � first requires a tie-breaker vector. Let π = (πi)i∈I be such a vector,
where πi is the number assigned to student i ∈ I and πj �= πk for all j �= k. Given the π,
the order� is determined as follows.

At Step k≥ 0, given matching μk:

(i) LetAk be the set of cycles inGT(μk).

(ii) Consider the cycles in
⋃
k̃≤kAk̃ that are not solved yet. (By Lemma 10, this equals

Ak.) Among those, select the cycle to solve according to the following (lexico-
graphic) cycle selection order:

(a) For all m and m′ such that m<m′ ≤ k, all cycles in Am are solved before the
cycles inAm′ \Am.

(b) For allm≤ k, the cycles inAm are solved according to the highest tie-breaker
number of the student in the cycle.

(iii) Solve the cycle according to this order and obtain the new matching μk+1.

Suppose that under �, the TP algorithm terminates at step K and yields μK−1. Take
any other cycle selection order �̂ one can have when the TP algorithm is applied to
the problem (R�C). First note that all cycles in A0 necessarily appear under any cycle
selection order. By Lemma 10, they are solved under �̂. By Lemma 11, we can rearrange
the order of cycles such that the first |A0| steps are the same as those of �, and the final
outcome of �̂ is unchanged. This produces, say, �̃, whose final outcome is the same as
�̂ and whose first |A0| steps are the same as�. Since the first |A0| steps are the same, the
cycles in

⋃
k̃≤|A0|Ak̃ all appear under �̃. By Lemma 10, these cycles are solved when the
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TP algorithm is run under �̃. One can then reapply Lemma 11 and obtain another cycle
selection order that yields the same outcome as when the TP algorithm is run under �̂,
and yields the same matchings in the first |A0| + |A|A0|| steps. One can then continue
until the cycle selection order whose final outcome is the same as �̂ and whose first K
steps are the same as �. Thus, the TP algorithm produces the same outcome under �̂
and �.

By Lemma 1 and Remark 1, the TP algorithm is in the SEPF class. By Lemma 12,
any cycle selection order gives the same matching under the TP algorithm. Thus, the TP
algorithm produces a unique matching and it defines a rule in the SEPF class.

Appendix F: Proof of Theorem 2

We provide the proof for the TP rule starting with an arbitrary stable matching μ0.

F.1 Proof of the “if” part

The TP rule yields a constrained efficient matching that improves over the initial sta-
ble matching μ0.34 Thus, we need to show only that the TP rule provides incentives to
consent. We use the following lemma in the proof.

Lemma 13. Let i be a permanently matched student atμ for (R�C). Then i is permanently
matched at μ for each problem (R�C ′), where C and C ′ coincide except for i’s consent.

Proof. If i does not point to j in the graph G(μ), then i’s consent for μ(j) does not
affect who points to j in G(μ).35 Since i is permanently matched at μ, by the definition
of an underdemanded school, either μ(i) has no demand at μ or each path to i ends
in a student assigned to a school with no demand at μ. For the former case, a school
having no demand depends only on the students’ preferences. Thus, a student cannot
change it through her consent decision. Now assume the latter case. First, realize that
the only way to change the underdemanded status of the school is through changing
the directed edges in the paths leading to i. Nevertheless, if i changes her consent for a
school that no student in a path leading to i is assigned to, she cannot affect the edges in
the paths leading to i. This means that we can restrict attention to changes in consents
to schools to which some students in the paths leading to i are assigned. Let j be a
student on a path to i. Clearly, i does not point to j (otherwise, there would be a cycle
involving i and iwould not be permanently matched at μ). Thus, each path to i remains
the same regardless of the consents of i for the schools to which the students on these

34This is a direct consequence of Theorem 1 and Proposition 2.
35The following argument clarifies this. If μ(i) Ri μ(j), then i /∈ Dμ(μ(j)). Thus, i’s consent for μ(j) is

never used in the construction of G(μ). Therefore, it does not determine who points to j. If μ(j) Pi μ(i),
then there is another student i′ pointing to j such that i′ has a higher priority than i at μ(j), and does not
consent for priority violation by i and students with lower priority than i to be assigned to μ(j). But then
the consent of i does not determine who points to j, because there is a higher priority and nonconsenting
student.
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paths are assigned. This means that i remains permanently matched at μ regardless of
her consenting behavior for the schools of students in the paths leading to i. Thus, μ(i)
remains underdemanded at μ for each problem (R�C ′), where C and C ′ coincide except
i’s consent. We conclude that i is permanently matched at μ for such a problem.

Next, we show that, under the TP rule, the placement of a student does not de-
pend on her consent decision. Let (R�C) be a problem and let μ0 be an initial par-
tially stable matching. Let K be the last step of the TP algorithm and let μk be the
matching selected at step k ∈ {1� � � � �K − 1}. A temporarily matched student can po-
tentially affect the graphG(μk−1) by her consenting decision, but notGT(μk−1). This is
because the only way in which a temporarily matched student i affects GT(μk−1) by
not consenting for s is by being the top priority student among those who are tem-
porarily matched and who point to μ−1

k−1(s) in G(μk−1). But in this case, i points to

μ−1
k−1(s) under GT(μk−1) anyway. Thus, her consenting decision is irrelevant. More-

over, the consent decision of a temporarily matched student does not affect the set of
underdemanded schools. Thus, at each step k, the consent of only the permanently
matched students at μk−1 is relevant for the graph GT(μk−1). Therefore, the only stu-
dents who can be better off by not consenting under the TP rule are the permanently
matched students. Nevertheless, by Lemma 8, each permanently matched student at
μk−1 is assigned to the same school under the matching given by the TP rule. Thus,
not consenting would not make her better off. Moreover, by Lemma 13, a permanently
matched student at μk−1 is permanently matched at μk−1 regardless of her consent-
ing decisions. Thus, she can not change her status through consenting decisions either.
That is, whenever a student’s consent matters at some step k of the TP rule, then that
student is already assigned to her school under the matching given by the TP rule at an
earlier step k′ < k, and her consenting decision cannot affect her matching under the
TP rule.

F.2 Proof of the “only if” part

Lemma 14. Let (R�C) be a problem and let μ0 be an initial stable matching. Let K be
the last step of the TP algorithm and let μk be the matching selected at step k ∈ {1� � � � �
K− 1}. Letψ be a rule that provides incentives to consent and gives a constrained efficient
matching that weakly Pareto dominates μ0. For each k ∈ {1� � � � �K − 1}, ψ(R�C) weakly
Pareto dominates μk.

Proof. We prove this result by contradiction. We construct a consent profile C∗ for
which ψ(R�C∗) is not a constrained efficient matching.

Let A0 = ∅ and let φk be the cycle solved in GT(μk−1) for each k ∈ {1� � � � �K − 1}
under the TP rule. Suppose that there is a step k̃ ∈ {1� � � � �K}, where ψ(R�C) does not
weakly Pareto dominate μ

k̃
. Let k be the first such step. That is, for each k′ <k and i ∈ I,

ψ(R�C)(i) Ri μk′(i). Let φk = {i1i2� i2i3� � � � � ini1}. Since we chose k to be the first step
at which the matching chosen is not weakly Pareto dominated, there exists a student
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in {i1� i2� � � � � in} who prefers her assignment under μk to ψ(R�C). Without loss of gen-
erality, suppose μk(i1) Pi1 ψ(R�C)(i1). Note that μk(i1) = μk−1(i2), and denote μk−1(i2)

with s1.
Let A1 :=A0 ∪ {(i1� s1)}. Construct the following consent profile C1: (i1� j) /∈ C1(s1)

for all j ∈ I and the consent profile for the remaining schools/students is the same as
C, i.e., C1(s)= C(s) for all s �= s1 and C1(s1)= C(s1) \ ⋃

j∈I(i1� j). Now, we consider two
possible cases:

Case 1. Suppose (i1� j) /∈ C(s1) for all j ∈ I. In this case, C = C1. Thus, we do
not change the original consent profile. Since s1 Pi1 ψ(R�C1)(i1) and i1 has the high-
est priority at s1 among the temporarily matched students who prefer s1 to their as-
signment at μk−1, assigning a temporarily matched student, who is not in μ−1

k−1(s1)

and prefers s1 to her matched school under μk−1, to s1 would violate the partial fair-
ness of ψ(R�C1). Consequently, the temporarily matched students at μk−1 cannot be
assigned to s1 under ψ(R�C1). Moreover, the permanently matched students at μk−1

must be assigned to their schools in μk−1 at any constrained efficient matching that
weakly Pareto dominates μk−1.36 Thus, they cannot be assigned to s1 under ψ(R�C1)

either. At each partially stable matching weakly Pareto dominating μk−1, the number
of students assigned to s1 is |μ−1

0 (s1)| = qs1 (Lemma 4). Thus, the students in μ−1
k−1(s1)

cannot be assigned to a school other than s1 under ψ(R�C1). Consequently, μ−1
k−1(s1) =

ψ−1
(R�C1)

. In particular, since μk−1(i2) = s1, she is assigned to s1 under ψ(R�C1). That is,

if (i1� j) /∈ C(s1) for all j ∈ I, then i2 is assigned a school worse than μk(i2) = μk−1(i3) in
ψ(R�C1).

Case 2. Suppose (i1� j̄) ∈ C(s1) for some j̄ ∈ I. Since ψ provides incentives to con-
sent, ψ(R�C)(i1) Ri1 ψ(R�C1)(i1). Since s1 Pi1 ψ(R�C)(i1), we have s1 Pi1 ψ(R�C1)(i1). There
are two possibilities.

Case 2.1: ψ−1
(R�C1)

(s1) = μ−1
k−1(s1). Student i2 is assigned to a school worse than

μk(i2)= μk−1(i3) in ψ(R�C1) as explained in Case 1.

Case 2.2: ψ−1
(R�C1)

(s1) �= μ−1
k−1(s1). Since both ψ(R�C1) and μk−1 are partially stable

and Pareto dominate μ0, by Lemma 4, |ψ−1
(R�C1)

(s1)| = |μ−1
k−1(s1)|. Then there exists a

j ∈ (ψ−1
(R�C1)

(s1) \μ−1
k−1(s1)). We have two subcases.

Case 2.2.a: μk−1(j) Pj s1. Then j is assigned to a school worse than μk−1(j) in
ψ(R�C1).

Case 2.2.b: s1 Pj μk−1(j). Since, by Lemma 4, |ψ−1
(R�C1)

(μk−1(j))| = |μ−1
k−1(μk−1(j))|,

there exists a j′ ∈ (ψ−1
(R�C1)

(μk−1(j)) \μ−1
k−1(μk−1(j))). If μk−1(j

′) Pj′ μk−1(j), then j′ is as-

signed to a school worse than μk−1(j
′) in ψ(R�C1). Alternatively, consider the case where

μk−1(j) Pj′ μk−1(j
′). We claim that we can find a student j̃ where j̃ is assigned to a school

worse than μk−1(j̃) under ψ(R�C1).

36Since ψ(R�C1) is constrained efficient and weakly Pareto dominates μk−1, the matching ψ(R�C1) is ob-
tained by solving a sequence of cycles that all appear in the graph used by the rules in the SEPF class (Theo-
rem 1). But, by Lemma 8, a permanently matched student at μk−1 is not a part of any cycle. Thus, she must
be assigned to her school under μk−1.
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To see why, first note that μk−1(j) Pj′ μk−1(j
′). Thus, j′ ∈Dμk−1(μk−1(j)). But recall

that (i1� j) /∈ C1(s1) and ψ(R�C1)(j) = s1. Thus, by partial fairness of ψ, j �s1 i1. Nev-
ertheless, i1 points to i2 in GT(μk−1), which implies that j is permanently matched
under μk−1. For this, either (i) j′ is permanently matched under μk−1 as well or (ii)
there exists a student j′′ temporarily matched under μk−1, such that j′′ �μk−1(j) j

′ and

(j′′� j′) /∈ C1(μk−1(j)). In case (i), take a student in (ψ−1
(R�C1)

(μk−1(j
′)) \ μ−1

k−1(μk−1(j
′))).

In case (ii), take a student in (ψ−1
(R�C1)

(μk−1(j
′′)) \ μ−1

k−1(μk−1(j
′′))). Continue until find-

ing a student j̃ such thatμk−1(j̃) Pj̃ ψ(R�C1)(j̃). Because we are always following students
assigned to underdemanded schools, the process cannot cycle and eventually ends up
with such a student.

Let us summarize everything we have done so far. We began with Step k, where
ψ does not weakly Pareto dominate μk. Next, we found a student–school pair (i1� s1),
with the property that s1 Pi1 ψ(R�C)(i1). Then we found a consent profile C1, where
(i1� i

′) /∈ C1(s1) for all i′ ∈ I, and a step k1 ≤ k with the following property: for some
� ∈ I, μk1(�) P� ψ(R�C1)(�) and for all k̄ < k1 and all ī, ψ(R�C1)(ī) Pī μk̄(ī).

Now, we repeat the whole argument. Let step k1 be as defined in the previ-
ous paragraph, and let (i2� s2) := (��μk1(�)) be the student–school pair. By construc-
tion, this pair satisfies the property that s2 Pi2 ψ(R�C1)(i2). Let A2 := A1 ∪ {(i2� s2)}.
Consider C2, where (i2� i′) /∈ C2(s2) for all i′ ∈ I and the consent profile for the re-
maining schools/students is the same as C1. Following the exact same argument,
one can find a step k2 ≤ k1 with the following property: for some � ∈ I, μk2(�) P�
ψ(R�C2)(�).

In general, at each step m, given Am−1 and km−1, take this pair and let (im� sm) :=
(��μkm−1(�)). Define Am = Am−1 ∪ {(im� sm)} and find a consent profile Cm, where
(im� i

′) /∈ Cm(sm) for all i′ ∈ I, and a step km ≤ km−1 with the following property: for
some � ∈ I, μkm(�) P� ψ(R�Cm)(�).

Realize that km is a weakly decreasing sequence and that Am is expanding at each
step. These two facts, combined with the finiteness of student and school sets, im-
ply that eventually the next pair (im+1� sm+1) will be a pair that is already in Am.
That is, the process will run into a cycle. Fix the consent profile Cm and step km

at this moment, and denote them by C∗ and k∗, respectively. Now we have a con-
sent profile C∗, a step k∗, and a cycle of students φ = {i1i2� i2i3� � � � � imi1} that ap-
pears in GT(μk∗), with the following property: for each n ∈ {1� � � � �m}, μk∗(in) Pin
ψ(R�C∗)(in). Since the solution of this cycle φ does not violate partial fairness of
ψ(R�C∗) and does not make any student worse off, ψ(R�C∗) cannot be constrained effi-
cient.

Let (R�C) be problem and let μ0 be an initial stable matching. LetK be the last step
of the TP algorithm and let μk be the matching selected at step k ∈ {1� � � � �K − 1}. Let
ψ be a rule that provides incentives to consent and gives a constrained efficient match-
ing that weakly Pareto dominates μ0. Note that TP(R�C) = μK−1. By Lemma 14, ψ(R�C)
weakly Pareto dominatesμk for each k ∈ {1� � � � �K−1}, which implies thatψ(R�C) weakly
Pareto dominates TP(R�C). Since both ψ(R�C) and TP(R�C) are constrained efficient, this
implies that ψ(R�C) = TP(R�C). This completes the proof.
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Appendix G: Proof of Theorem 3

Consider the problem I = {i1� i2� i3}, S = {s1� s2� s3}, and qs = 1 for all s ∈ S. The prefer-
ences and the priorities are s1 Pi1 s2 Pi1 s3, s1 Pi2 s2 Pi2 s3, s3 Pi3 s1 Pi3 s2, i3 �s1 i1 �s1 i2,
i1 �s2 i2 �s2 i3, and i1 �s3 i2 �s3 i3.

Assume that C(s1) = {(i1� i2)} and C(s2) = C(s3) = ∅. This problem has three par-
tially stable matchings:37 μ := {(i1� s1)� (i2� s2)� (i3� s3)}, μ′ := {(i1� s2)� (i2� s1)� (i3� s3)},
and μ′′ := {(i1� s2)� (i2� s3)� (i3� s1)}. Note that μ′′ is Pareto dominated by μ and the only
constrained efficient matchings are μ and μ′.

Let ψ be a constrained efficient and strategy-proof rule. Suppose μ′ is the outcome
of ψ. If i1 reveals P ′

i1
: s1 P ′

i1
s3 P

′
i1
s2, in the new problem, the only constrained efficient

matching is μ.38 Then ψ must select μ in the new problem. Thus, i1 can gain from
misreporting if ψ selects μ′ in the original problem.

Alternatively, suppose ψ selects μ in the original problem. If i2 reveals P ′
i2

: s1 P ′
i2

s3 P
′
i2
s2, in the new problem, the only constrained efficient matching is μ′.39 Then ψ

must select μ′ in this problem. Thus, i2 is better off by misreporting if ψ selects μ in the
original problem.40

Appendix H: Strategy-proof and constrained efficient rules

This section considers Cs that, when fixed, present no tension between strategy-
proofness and constrained efficiency. The two extremes mentioned at the end of Sec-
tion 2.2 are two clear examples of such Cs: when all priorities are allowed to be violated,
the top trading cycles (TTC) rule is strategy-proof and constrained efficient. When no
priorities are allowed to be violated, the student-proposing DA rule is constrained effi-
cient and strategy-proof. The following Proposition 5 provides other sufficient condi-
tions that guarantee the existence of such a rule.

Given a correspondence C, we say that a student i ∈ I is fully consenting if (i� j) ∈
C(s) for each s ∈ S and j ∈ I such that i�s j. A student is nonconsenting if (i� j) /∈ C(s) for
each s ∈ S and j ∈ I. A student is partially consenting if she is neither fully consenting
nor nonconsenting. Note that, by definition, C satisfies the all-or-nothing property if
and only if the number of partially consenting students is zero.

37Any matching where i1 is assigned to s3 violates the priority of i1 for s2, and any matching where i3 is
assigned to s2 violates the priority of i3 for s1.

38Any matching where i1 is assigned to s2 violates the priority of i1 for s3, and any matching where
i3 is assigned to s2 violates the priority of i3 for s1. The only partially stable matchings are μ and
{(i1� s3)� (i2� s2)� (i3� s1)}, but the former Pareto dominates the latter.

39Any matching where i1 is assigned to s3 violates the priority of i1 for s2, and any matching where i3 is
assigned to s2 violates the priority of i3 for s1. Also, under μ, i2’s priority for s3 is violated. The only partially
stable matchings are μ′ and μ′′, but the former Pareto dominates the latter.

40To prove Theorem 3, one can also modify the problem used in the proof of Proposition 1 in Ehlers and
Westkamp (2011) so as to construct a counterexample. Their proof gives an example that subsumes the
case where some schools are consented by all students and the remaining schools are not consented by any
students.
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Proposition 5. If

• the correspondence C satisfies all-or-nothing property
or

• the total number of partially consenting and nonconsenting students is less than or
equal to 2,

then the following rule is strategy-proof and constrained efficient: run the student-
proposing DA rule by considering all the capacity and the partially consenting and non-
consenting students. Then run the TTC rule for the remaining capacity and the fully con-
senting students.

Proof. Strategy-proofness. Both the student-proposing DA rule and the TTC rule are
strategy-proof. Moreover, all seats are available when the student-proposing DA rule is
applied and the students considered under the TTC rule cannot affect the assignment
selected by the DA rule via preference manipulation. Thus, no student can gain from
misreporting her preferences.

Partial stability. Since priorities of all students considered under the student-
proposing DA rule are respected and only the fully consenting students are considered
under the TTC rule, the outcome is partially fair. Moreover, non-wastefulness and indi-
vidual rationality of both rules imply the non-wastefulness and individual rationality of
the outcome. Thus, the outcome is partially stable.

Constrained efficiency. First note that when there are at most two students, by Ergin
(2002), the student-proposing DA rule selects a efficient allocation. Thus, the outcome
under the latter condition is Pareto efficient. Recall that all seats are available when the
student-proposing DA rule is applied. Thus, we cannot form a welfare improvement
cycle including students considered under both student-proposing DA and TTC. That
is, any welfare improvement under the former condition require priorities of some non-
consenting students to be violated.

Appendix I: Proof of Proposition 4

Let C be constructed according to (1). We claim that a matching μ is partially stable
with respect to �′ and C if and only if it is stable with respect to �. First, note that
the definitions of individual rationality and non-wastefulness are the same across two
concepts, so that the equivalence of partial fairness with respect to �′ andC and fairness
with respect to � implies the desired result. We claim that if μ is stable with respect to �,
then it is partially stable with respect to �′ and C. Suppose it is not. If μ is not partially
fair, then there exist i� j ∈ I and s ∈ S such that (i) μ(j)= s, (ii) s Pi μ(i), (iii) i�′

s j, and (iv)
(i� j) /∈ C(s). But by (1), (i� j) /∈ C(s) implies that either i �s j or j �s i. Since �′∈ T (�),
by (iii), we conclude that i �s j. But then we have (i) μ(j) = s, (ii) s Pi μ(i), and (iii)
i �s j. Thus, μ is not fair with respect to �, a contradiction. Now, assume μ is partially
stable with respect to �′ and C. If μ is not fair with respect to �, then there exist i� j ∈ I
and s ∈ S such that (i) μ(j)= s, (ii) s Pi μ(i), and (iii) i�s j. But (iii) implies that i�′

s j and
(i� j) /∈ C(s). Thus,μ cannot be partially fair, a contradiction. Due to this equivalence, we
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conclude that constrained efficiency with respect to �′ and C is equivalent to student-
optimal stability with respect to � and Pareto dominating μ0. Thus, Theorem 1 implies
the desired result.

Appendix J: Examples

Example 2. (Based on Example 3 in Kesten (2010), p. 1310). Let I = {i1� i2� i3� i4� i5� i6},
S = {s1� s2� s3� s4� s5}, qsx = 1 for x= 1� � � � �4 and qs5 = 2. Assume that (i� j) ∈ C(s) for each
s ∈ S and i� j ∈ I with i�s j. The students’ preferences and schools’ priorities are

Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 �s1 �s2 �s3 �s4 �s5
s2 s3 s3 s1 s1 s4 i2 i3 i1 i4

���

s1 s1 s4 s2 s5 s1 i1 i6 i6 i3
���

s3 s5 s2 s4
��� s3 i5 i4 i2 i6

���
���

���
���

���
��� s2 i6 i1 i3

���
���

���
���

���
���

��� s5 i4
���

���
���

���
���

���
���

���
���

��� i3
���

���
���

���
♦

The SOSM for this problem is μ0 = {(i1� s3)� (i2� s1)� (i3� s2)� (i4� s4)� (i5� s5)� (i6� s5)}
(marked with boxes above). The setsXμ0 are

Xμ0(s1)= {i1� i4� i5� i6} Xμ0(s2)= {i1� i4� i6} Xμ0(s3)= {i2� i3� i6}
Xμ0(s4)= {i3� i6} Xμ0(s5)= ∅�

The graphG(μ0) is given in Figure 1.41

There are four cycles in this graph: φ1 = {i3i4� i4i3}, φ2 = {i1i3� i3i1}, φ3 = {i1i2� i2i1},
and φ4 = {i1i3� i3i4� i4i2� i2i1}. First, as an illustration, we demonstrate how the al-
gorithm proceeds when one follows a specific cycle selection rule. In G(μ0), as-
sume that the cycle selection rule requires φ1 to be solved. Once φ1 is solved, μ1 =

Figure 1. GraphG(μ0).

41As defined in Section 3.1, each graph in the algorithm is on the set of students. For convenience and
tractability, we include the school that is assigned to the student in the current matching as well.
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Figure 2. GraphG(μ1).

Figure 3. GraphG(μ2).

{(i1� s3)� (i2� s1)� (i3� s4)� (i4� s2)� (i5� s5)� (i6� s5)} is obtained. The setsXμ1 are

Xμ1(s1)= {i1� i4� i5� i6} Xμ1(s2)= {i1� i6} Xμ1(s3)= {i2� i3� i6}
Xμ1(s4)= {i6} Xμ1(s5)=∅�

The graphG(μ1) is given in Figure 2.

In the graph G(μ1), there are two cycles: φ′
1 = {i1i4� i4i2� i2i1} and φ′′

1 = {i1i2� i2i1}.

Assume that the cycle selection rule requiresφ′
1 to be solved. Then μ2 = {(i1� s2)� (i2� s3)�

(i3� s4)� (i4� s1)� (i5� s5)� (i6� s5)} is obtained. The graphG(μ2) is given in Figure 3.

Since there is no cycle in the graph G(μ2), the algorithm stops. By considering all

possible cycle selection rules, we can list all matchings obtained by the SEPF algorithm

(we do not find it necessary to go through all of the cycle selection rules and we omit

them here). In fact, there are two different matchings generated by the rules in the SEPF

class and these matchings are depicted in the preference table (μ is marked with boxes

and μ′ is marked with underlines):

μ= {
(i1� s2)� (i2� s3)� (i3� s4)� (i4� s1)� (i5� s5)� (i6� s5)

}

μ′ = {
(i1� s2)� (i2� s1)� (i3� s3)� (i4� s4)� (i5� s5)� (i6� s5)

}
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Pi1 Pi2 Pi3 Pi4 Pi5 Pi6

s2 s3 s3 s1 s1 s4

s1 s1 s4 s2 s5 s1

s3 s5 s2 s4
��� s3

���
���

���
���

��� s2
���

���
���

���
��� s5

Example 3. Let us consider the problem given in Example 2. The SOSM for this prob-
lem is μ0 = {(i1� s3)� (i2� s1)� (i3� s2)� (i4� s4)� (i5� s5)� (i6� s5)}. The graph G(μ0) is given in
Figure 1. ♦

The graphGT(μ0) is obtained fromG(μ0) in the following way: (i) the students who
are permanently matched at μ0 are removed and (ii) if, in the remaining graph, more
than one student points to j, then only the one with the highest priority for μ0(j) points
to j. The crucial point here is the order in which (i) and (ii) are conducted. Suppose
that step (ii) is conducted first, such that among the students pointing to a particular
student, say i, inG(μ0), the top priority student is selected, and only this student points
to i. This gives the graph in Figure 4.

This graph has no cycles, but the application graph G(μ0) does. Thus, when step
(i) is skipped, in general, we end up with a matching that is not constrained efficient.
The TP algorithm ignores the permanently matched students when selecting the stu-
dent with the highest priority for a given school: students i5 and i6 are permanently
matched at μ0 (note that μ0(i5) = μ0(i6) = s5 has no demand at μ0) and the edges that
originate from these students are removed in step (i), resulting in the subgraph ofG(μ0)

in Figure 5.

Among the students pointing to a student i in this graph, the student with the highest
priority at school μ0(i) is selected and in the graphGT(μ0), only that student points to i
(Figure 6).

Figure 4. The highest priority students are chosen before permanently matched students are
removed from the application graph.
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Figure 5. The subgraph ofG(μ0) after permanently matched students’ demands are ignored.

Figure 6. GraphGT(μ0).

Figure 7. GraphG(μ1).

There are two cycles in this graph: φ1 = (i3i4� i4i3) and φ3 = (i1i2� i2i1). The TP algo-
rithm proceeds by solving both of these cycles simultaneously and the matching

μ1 = {
(i1� s1)� (i2� s3)� (i3� s4)� (i4� s2)� (i5� s5)� (i6� s5)

}

is obtained.42 The graphG(μ1) is given in Figure 7.

Once again, the TP algorithm proceeds by first ignoring the demands of permanently
matched students, who are i2, i3, i5, and i6 (Figure 8).

42Actually, in the TP algorithm, only one cycle is solved at each step. But, as we argue in the proof of
Proposition 2 (see Appendix E), the order of cycles solved is not consequential. Equivalently, each cycle in
the graph used by the TP algorithm can be solved simultaneously.
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Figure 8. The subgraph ofG(μ1) after permanently matched students’ demands are ignored.

Figure 9. GraphG(μ2).

Since no student is pointed to by more than one student, the graph GT(μ1) is the same
as in Figure 8. By solving the only cycle (i1i4� i4i1) in the graphGT(μ1), the matching

μ2 = {
(i1� s2)� (i2� s3)� (i3� s4)� (i4� s1)� (i5� s5)� (i6� s5)

}

is obtained. In the graph G(μ2), there is no cycle (see Figure 9). Thus, the TP algorithm
stops and the matching obtained by the TP algorithm is μ2. This matching is also the
one obtained by the (generalized) EADAM.
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