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Enforcing social norms: Trust-building and community
enforcement
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We study impersonal exchange and ask how agents can behave honestly in anony-
mous transactions without contracts. We analyze repeated anonymous random
matching games, where agents observe only their own transactions. Little is
known about cooperation in this setting beyond the prisoner’s dilemma. We show
that cooperation can be sustained quite generally, using community enforcement
and “trust-building.” The latter refers to an initial phase in which one community
builds trust by not deviating despite a short-run incentive to cheat; the other com-
munity reciprocates trust by not punishing deviations during this phase. Trust-
building is followed by cooperative play, sustained through community enforce-
ment.
Keywords. Community enforcement, contagion, anonymous random matching,
repeated games.

JEL classification. C72, C73, D82, D83.

1. Introduction

In many economic settings, impersonal exchange occurs in the absence of contractual
enforcement. Buyers and sellers trade essentially anonymously. These settings moti-
vate the central question of this paper: How do agents achieve cooperative outcomes
and act in good faith in transactions with strangers without formal contracts? We model
impersonal exchange as an infinitely repeated random matching game, in which play-
ers from two different communities are randomly and anonymously matched to each
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other to play a two-player game. Each player observes only his own transactions: He
does not receive any information about the identity of his opponent or about how play
proceeds in other transactions. With such “minimal information transmission,” we ask
what payoffs can be achieved in equilibrium. Can agents be prevented from behaving
opportunistically?

Two early papers by Kandori (1992) and Ellison (1994) showed that in this setting
cooperation can be sustained for the prisoner’s dilemma (PD) by grim trigger strategies,
also known as community enforcement or contagion. If a player faces a defection, he
punishes all future rivals by switching to defection forever (Nash reversion). This de-
fection spreads the information that someone has defected, more people get infected
and start defecting, and cooperation breaks down completely. The credible threat of
such a breakdown deters players from defecting in the first place. These arguments rely
critically on properties of the PD: Since its Nash equilibrium is in strictly dominant ac-
tions, punishing gives a current gain even if it lowers continuation payoffs. In general
games, punishing can lower both present and future payoffs, and so it is harder to pro-
vide incentives to punish. We establish that it is still possible to sustain a wide range of
payoffs in equilibrium in a large class of games if players are sufficiently patient and the
population is not too small.

We show that, for stage games with a strict Nash equilibrium, the ideas of commu-
nity enforcement coupled with “trust-building” can be used to sustain cooperation. In
equilibrium, play proceeds in two blocks: an initial phase that we call trust-building, fol-
lowed by a cooperative phase that lasts forever, as long as nobody deviates. In the initial
phase, players of one community build trust by not deviating even though they have a
short-run incentive to do so, and players in the other community reciprocate the trust by
not starting punishments during this phase even if they observe a deviation. This initial
phase is crucial to sustaining cooperation in the long run. Deviations in the cooperative
phase are punished by Nash reversion (or community enforcement).

To our knowledge, this is the first paper to sustain cooperation in a random matching
game beyond the PD without extra informational assumptions. Some papers introduce
verifiable information about past play to sustain cooperation. Kandori (1992) consid-
ers a mechanism that assigns labels to players based on past play, so players who have
deviated or have seen a deviation can be recognized. This enables transmission of infor-
mation, and cooperation can be sustained in a specific class of games.1 More recently,
Deb (forthcoming) proves a general folk theorem in the anonymous random matching
setting, but allows players to send unverifiable messages to their partners just before
playing the stage game.2

1For related approaches, see Dal Bó (2007), Hasker (2007), Okuno-Fujiwara and Postlewaite (1995), and
Takahashi (2010).

2Specifically, Deb (forthcoming) uses the cheap talk messages to partially authenticate player identities,
and then applies a block belief-free approach to achieve the target equilibrium payoff. In contrast, this
paper examines the possibility of cooperation in the absence of any kind of communication. Recently,
Sugaya (n.d., 2019) established general folk theorems under imperfect private monitoring. These results do
not apply here, since our setting violates full-support monitoring and other identifiability assumptions of
Sugaya’s work.
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An important feature of our equilibrium is that the strategies are plausible, and play-
ers have strict incentives on and off the equilibrium path. Unlike recent work on games
with imperfect private monitoring (Ely and Välimäki 2002, Piccione 2002, Ely et al. 2005,
Hörner and Olszewski 2006) and repeated random matching games (Takahashi 2010,
Deb forthcoming), we do not rely on belief-free ideas or block strategies. Also, unlike
existing literature, our strategies are robust to changes in the discount factor.

This paper relates to the literature on building trust in repeated interactions (e.g.,
Ghosh and Ray 1996 and Watson 2002), which focuses on “gradual” building of trust,
where the stakes in a relationship grow over time. Our equilibrium does not feature
gradualism. Rather, we have an initial phase in which players cooperate despite having
an incentive to deviate, and this phase is exactly what helps sustain cooperation. Our
model can be seen as capturing the intuitive idea that long-term relationships start out
by building trust.3

The main challenge to sustaining cooperation through Nash reversion is that pun-
ishing may be costly for both current and future payoffs. Our construction ensures that,
when a player is required to punish by Nash reversion, he believes that most players are
already playing Nash (which gives him a short-run incentive to play Nash). To see the
idea, suppose that players may entertain the possibility of correlated deviations. Then,
upon observing a deviation, a player may think that all players in the rival community
have simultaneously deviated and that everybody will start punishing, making Nash re-
version optimal. Yet, this way to get the desired beliefs is not consistent with sequential
equilibrium.4 Without coordinated deviations, a player who faces a deviation early in
the game will know that there are few affected players and Nash reversion may not be
optimal. This suggests that, to induce appropriate beliefs, Nash reversion cannot be
prescribed in the initial periods.5

Working with beliefs is fundamental to our approach. We develop new method-
ological tools, using Markov chains, to analyze incentives in belief-based equilibria in
repeated games with private monitoring.

The rest of the paper is organized as follows. In Section 2, we illustrate the strategies
and the intuition behind our main result using the product-choice game. Section 3 con-
tains the model and the main result. In Section 4, we define off-path beliefs and present
our methodology for computing beliefs. In Sections 5 and 6, we establish optimality of
the equilibrium strategies. Section 7 discusses robustness of our results.

3There is also recent literature on repeated games and community enforcement on networks (see, for
instance, Ali and Miller 2013, Lippert and Spagnolo 2011, and Nava and Piccione 2014). However, this
literature is substantively different because players are not anonymous on a network.

4Our solution concept is a natural generalization of sequential equilibrium (Kreps and Wilson 1982),
which requires that off-path beliefs are the limit of the conditional beliefs obtained from a sequence of
completely mixed strategy profiles converging to the strategy profile under consideration. In particular,
this implies that player’s deviations are independent. Therefore, in our setting, simultaneous deviations by
multiple players cannot be inferred from the observation of a single deviation.

5We have not been able to construct strategies such that every player, at each information set, has a best
reply that is independent of his beliefs (as in Kandori (1992) and Ellison (1994)).
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Buyer
BH BL

Seller
QH 2�2 −1�1
QL 3�−1 0�0

Figure 1. The product-choice game.

2. Cooperation beyond the PD

2.1 A negative result

We present a simple example to show that a straightforward adaptation of grim trigger
strategies (or contagion strategies as in Kandori (1992) or Ellison (1994)) cannot be used
to support cooperation in general. The main difficulty is that players may not have the
incentive to punish deviations, since punishing may be costly in both the short run and
the long run.

Suppose that the product-choice game in Figure 1 is played by a community of M
buyers and a community of M sellers in the repeated anonymous random matching
setting.6 In each period, every seller is randomly matched with a buyer and they play
the product-choice game. The seller can exert either high effort (QH ) or low effort (QL)
in the production of his output. The buyer, without observing the seller’s choice, can buy
either a high-priced product (BH ) or a low-priced one (BL). The buyer prefers the high-
priced product if the seller has exerted high effort. For the seller, exerting low effort is a
dominant action. The efficient outcome is (QH�BH), while the unique Nash equilibrium
is (QL�BL). Hereafter, we refer to (QL�BL) as the Nash action.

Proposition 1. Consider the product-choice game in the repeated random matching
setting. If M > 2, then, regardless of the discount factor δ, there is no sequential equilib-
rium in which, in every period, (QH�BH) is played on the equilibrium path and the Nash
action is played off the equilibrium path.

Proof. Suppose that there is an equilibrium in which, in every period, (QH�BH) is
played on the equilibrium path and the Nash action is played off the equilibrium path.
Suppose that a seller deviates in period 1. We argue that for the buyer who faces this
deviation, it is not optimal to switch to BL from period 2 onward. In particular, we show
that playing BH in period 2 and switching to BL from period 3 onward gives her a higher
payoff if M > 2. By the strategic independence implied by sequential equilibrium (see
Definition 1 in Section 3.1), the buyer who faced the deviation believes that, with prob-
ability 1, there was no other deviation in period 1. Hence, she believes that, in period
2, with probability M−1

M she will face a different seller who will play QH . Consider this
buyer’s incentives.

Short run. The buyer’s payoff in period 2 from playing BH is −1
M + 2(M−1)

M = 2M−3
M . Her

payoff if she switches to BL is M−1
M . Hence, if M > 2, she has no short-run incentive

to switch to the Nash action.

6See Section 3.1 for a formal presentation of the random matching setting and the corresponding defi-
nition of sequential equilibrium.
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Long run. With probability 1
M , the buyer meets the deviant seller (who is already play-

ing QL) in period 2. In this case, her action does not affect this seller’s future be-
havior, and so her continuation payoff is the same regardless of her action.

With probability M−1
M , the buyer meets a different seller. Note that a buyer always

prefers to face a seller playing QH . So, regardless of the buyer’s strategy, the larger
is the number of sellers who have already switched to QL, the lower is her contin-
uation payoff. Hence, playing BL in period 2 gives her a lower continuation payoff
than playing BH , because action BL makes a new seller switch permanently to QL.

Since there is no short-run or long-run incentive to switch to the Nash action in pe-
riod 2, the buyer will not punish. Therefore, playing (QH�BH) in every period on path
and (QL�BL) off path does not constitute a sequential equilibrium, regardless of the
discount factor.

Proposition 1 states that play of the cooperative action in every period cannot be
sustained with grim trigger. It does not rule out the possibility of doing so with other
strategies.

2.2 How to achieve cooperation: An illustration

Next we show informally how to approximate the efficient payoff in equilibrium in the
product-choice game. Section 3 formalizes this construction for general games.

2.2.1 Equilibrium strategies

Equilibrium play. Phase I: Action (QH�BH) is played for the first T I periods. Phase
II: For the next T II periods, (QL�BH) is played. Phase III: Action (QH�BH) is played
thereafter.

Off-equilibrium play. If a player faces a deviation in either Phase II or Phase III, he
switches to playing the Nash action (QL or BL) forever. If a buyer faces a devia-
tion in Phase I, she continues to play as if on path for the rest of Phase I and then
switches to playing BL from the start of Phase II. If a seller faces a deviation in
Phase I, he continues to play as if on path.

The proof of Proposition 1 shows that grim trigger cannot sustain cooperation because
a buyer who faces a deviation at the start of the game is not willing to punish. The main
insight of this paper is that “delayed grim trigger strategies” can work: A buyer who ob-
serves a deviation at the start of the game delays playing the Nash action until the start
of Phase II.

2.2.2 On-path incentives For patient players, the payoff from the strategy profile is
close to (2�2). Since any short-run profitable deviation eventually triggers Nash rever-
sion and brings continuation payoffs down to zero, sufficiently patient players do not
deviate from the equilibrium path.
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2.2.3 Incentive to punish deviations faced early in the game To prevent deviations by
sellers in Phase I, a buyer who faces QL in Phase I must be willing to switch to the Nash
action at the start of Phase II. This will trigger Nash reversion by other players and lower
continuation payoffs. We start with two observations:

(i) The optimality of Nash reversion for a buyer who faces a deviation depends on
her beliefs about how many sellers are playing the Nash action. If she believes
that most sellers are playing Nash, then doing so herself is optimal: the Nash ac-
tion would be the stage-game best reply and the effect on her continuation payoff
would be insignificant. In particular, the earlier she thinks the contagion started,
the more widespread she will think it is. This observation drives how we specify
off-path beliefs: On facing a deviation, players believe that the first deviation was
by a seller in period 1.

(ii) If a seller deviates in period 1, he will find it optimal to play Nash reversion imme-
diately. Given the strategies, this seller knows that his opponent will start spread-
ing the contagion by playing Nash from period T I + 1 on. Further, from period
T I + T II + 1 on, both buyers and sellers will be spreading the contagion and so it
will spread exponentially fast. Thus, if he deviates in period 1, his continuation
payoff after T I + T II will be low, regardless of what he does in the remainder of
Phase I. Therefore, if Phase I is long enough, no matter how patient this seller is,
he will want to make as much profit as possible for the rest of Phase I, i.e., play
QL.7

Consider now a buyer who faces a deviation in Phase I. She will believe that a seller
deviated in period 1 and that he will play QL throughout Phase I. If Phase I is long
enough she will think that, with very high probability, every buyer will face the devi-
ating seller during Phase I. Thus, since all these buyers will revert to Nash at the start
of Phase II, Nash reversion will also be optimal for her. Finally, since only one seller is
playing QL during Phase I, such a buyer would not have an incentive to start punishing
before Phase II.

2.2.4 Role of Phase II Phase I ensures that a buyer who faces a deviation early in the
game is willing to start Nash punishments in Phase II. Phase II matters only for incen-
tives after some histories that arise with low probability. Consider a buyer who faces QL

in period 1 and also in all other periods of Phase I. In this case, the buyer realizes that
she has met the same deviating seller throughout Phase I and that no other buyer has
faced a deviation. Will it be optimal for her to revert to Nash in Phase II? The key now is
that the deviating seller does not know that he has met the same buyer in every period,
and so he will keep playing the Nash action, even when Phase III starts. Thus, regardless
of what the buyer does, she expects her continuation payoff to drop at the start of Phase

7For this deviant seller’s incentives, not only must T I be large, but also T I

T II must be large enough. This is
important for two reasons. First, a seller who deviates in period 1 will find it optimal to keep deviating and
making short-run profits in Phase I, without caring about potential losses in Phase II. Second, this seller
will believe that he has infected all buyers by playing QL throughout Phase I and will be willing to play Nash
throughout Phase II, regardless of the history he observes.
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III, since contagion will spread exponentially fast from then on. Now, if Phase II is long
enough, this buyer would try to make some short-term gains during Phase II, i.e., she
would play the Nash action.

2.2.5 Nash reversion after getting infected in Phase III Finally, suppose that a player
faces a deviation for the first time in Phase III. He believes that a seller deviated in pe-
riod 1 and contagion has been spreading since then. However, the fact that he has not
faced any deviation so far may indicate that, possibly, not so many people are infected.
A crucial element of our construction is that if both T I and T I

T II are large enough, this
player believes that, with high probability, contagion is widely spread and most players
are playing the Nash action, making Nash reversion optimal for him.

3. Model, definitions, and main result

3.1 The repeated anonymous random matching setting

There are 2M players, with M > 1, divided into two communities, C1 =C2 = {1�2� � � � �M}.
In each period t ∈ N, players are randomly matched into pairs, with each player i ∈ C1

facing a player j ∈ C2. The matching is independent over time, following a uniform
distribution. After being matched, each pair plays a finite two-player game G. Play-
ers observe only the transactions they are personally engaged in, i.e., each player knows
only the history of action profiles played in each of his stage games in the past. Matching
is anonymous, i.e., a player never observes his opponent’s identity and gets no informa-
tion about how other players have been matched or about the actions chosen by any
other pair. We refer to arbitrary players and players in C1 as male and to those in C2 as
female.

The stage game. The action sets of G are denoted by A1 and A2, and A := A1 × A2

denotes the set of action profiles. Generic elements are given by a1, a2, and a, respec-
tively. The stage-game payoffs are given by u : A→ R

2.
The repeated game. Given a two-player game G, a community size M > 1, and a dis-

count factor δ ∈ (0�1), the corresponding repeated anonymous random matching game
is denoted by GM

δ .
Histories. The set of t-period personal histories is given by Ht := At . Given a player

i, a personal history ht := {a1� a2� � � � � at} contains, for each period τ ≤ t, the action pro-
file observed by player i in period τ. The set of all personal histories is H := ⋃∞

t=0 Ht ,
where H0 := {∅}. Given histories ht ∈ H\H0 and hτ ∈ H\H0, hthτ ∈ H is the concatena-
tion of histories ht and hτ . In particular, given an action profile a ∈ A, hta is the history
obtained as the concatenation of ht and a. Throughout this paper we use the word “ob-
served” to refer to actions that a player may have played or faced in his past matches.

Strategies. Given a player i ∈ Ck, with k ∈ {1�2}, a (pure) strategy for i is a map-
ping σi : H → Ak. Let �1 and �2 denote the sets of strategies of players in C1 and C2,
respectively. The set of strategy profiles is given by �M

1 ×�M
2 .

Continuation strategies. Given a player i, for each history ht ∈ H\H0 and each strat-
egy σi, player i’s continuation strategy given history ht , σi|ht , is defined, for each hτ ∈ H,
by σi|ht (hτ) = σi(h

thτ).
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Outcomes and payoffs. A personal outcome or a personal path of play for player i is
an element of A∞, denoting the actions played in the matches in which he was involved.
Given an outcome (a1� a2� � � �) ∈ A∞ and a player i ∈ Ck, i’s discounted payoff in GM

δ is
given by Ui(a

1� a2� � � �) = (1 − δ)
∑∞

t=1 δ
t−1uk(a

t).
Equilibrium. We consider a straightforward extension of sequential equilibrium

(Kreps and Wilson 1982) to games of infinite length. A system of beliefs is a function μ

that assigns, to each information set w of the game tree, a distribution of probability over
its nodes or, equivalently, over the histories that may have led to w being reached. Given
a strategy profile σ , a system of beliefs μ is consistent if there is a sequence of completely
mixed strategy profiles {σn}n∈N converging pointwise to σ and such that the associated
conditional beliefs {μn}n∈N converge pointwise to the system of beliefs μ. A strategy pro-
file is a sequential equilibrium if, after every personal history, player i is playing a best
response given beliefs that are consistent with player i’s personal history.

Definition 1. A strategy profile σ is a sequential equilibrium if there is a system of
beliefs μ such that the following hold:

(i) The strategy profile σ is sequentially rational given μ, i.e., for each player i and
each personal history h, player i is best replying at h given σ and μ.

(ii) The system of beliefs μ is consistent with σ .

3.2 The main result

Let G be the class of finite two-player games with two properties:

P1. There exists a strict Nash equilibrium, denoted by a∗ = (a∗
1� a

∗
2).

P2. There exists a pure action profile â = (â1� â2) with one-sided incentives, in which
one player has a strict incentive to deviate while the other has a strict incentive to
stick to the current action. Without loss of generality, we assume that player 1 has
an incentive to deviate while player 2 does not.

Let G be a game and let ¯a ∈ A. Let A
¯a

:= {a ∈ A : a1 = ¯a1 ⇐⇒ a2 = ¯a2}. Define F
¯a

:=
conv{u(a) : a ∈A

¯a
} ∩ {v ∈R

2 : v > u(¯a)}.
Our main result, Proposition 2 below, says that given a game G in G with a strict

Nash equilibrium a∗, it is possible to approximate any payoff in Fa∗ in equilibrium in the
corresponding infinitely repeated random matching game GM

δ , if players are sufficiently
patient and the communities are not too small. This result covers a large class of games
that includes the PD and the product-choice game, and in both of them, Fa∗ includes
payoffs arbitrarily close to efficiency. Note that that the set of achievable payoffs Fa∗

may not be full dimensional: e.g., for the product game, Fa∗ is a one-dimensional subset
of R2.

In general, we do not get a folk theorem. We conjecture that by modifying our strate-
gies, it may be possible to support payoffs outside Fa∗ and obtain a Nash threats folk
theorem for games in G (see Appendix B.3 in the Supplemental Material for a discus-
sion).
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We now discuss assumptions P1 and P2. Since we consider Nash reversion, the exis-
tence of a pure Nash equilibrium is needed. We need strictness because when a player is
asked to start Nash punishments, he may think that, with some probability, he will face
an opponent who is not punishing, and if the short-term incentive to punish were not
strict, his myopic best reply could be outside the support of the Nash action.8

Property P2 is a mild condition. Class G excludes what we call games with strictly
aligned interests. For two-player games this means that, at each action profile, a player
has a strict incentive to deviate if and only if his opponent also does. Games in G are
generic in the class of games without strictly aligned interests with a pure Nash equilib-
rium.9

Proposition 2. Let G be a game in G with a strict Nash equilibrium a∗. There exists

¯M ∈ N such that, for each payoff profile v ∈ Fa∗ , each ε > 0, and each M ≥ ¯M , there exists

¯δ ∈ (0�1) such that there is a strategy profile in the repeated random matching game GM
δ

that constitutes a sequential equilibrium for each δ ∈ [¯δ�1) and achieves a payoff within
ε of v.

Our equilibrium strategies constitute a uniform equilibrium (Sorin 1990): If a strat-
egy profile constitutes an equilibrium for a given discount factor, it does so for any
higher discount factor.10 This is in contrast to existing literature, where strategies have
to be fine-tuned based on the discount factor (e.g., Takahashi (2010) and Deb (forth-
coming)).11

While cooperation with a larger population needs a higher δ, we do require a mini-
mum community size M for our construction. A relatively large M guarantees that the
off-path beliefs induce the correct incentives to punish. Yet, the lower bound ¯M depends
only on the game G and is independent of ε. Thus, Proposition 2 is not a limiting result
in M .

Unlike work on games with imperfect private monitoring (Ely and Välimäki 2002,
Piccione 2002, Ely et al. 2005, Hörner and Olszewski 2006) and also in repeated random
matching games (Takahashi 2010, Deb forthcoming), we do not rely on complex block
strategies or belief-free strategies. Our strategies give the players strict incentives on and
off the equilibrium path.

8Unlike under perfect or imperfect public monitoring, it is not straightforward to coordinate punish-
ments using public information in our setting.

9We have not been able to apply our approach to games of strictly aligned interests. We refer the reader
to Appendix B.4 for an example that illustrates the difficulty with achieving cooperation in certain games in
this class. However, cooperation is not an issue in commonly studied games in this class, such as battle of
the sexes and chicken, since in these games, the set of Pareto efficient payoffs is spanned by the set of pure
Nash payoffs (so we can alternate the pure Nash action profiles with the desired frequencies).

10This also implies that there exists a threshold discount factor above which our strategies are “discount
robust” in the sense of Kalai and Stanford (1988). Mailath and Morris (2002) also define the related notion
of “patiently strict public equilibria.”

11Further, in Ellison (1994), the severity of punishments depends on the discount factor, which has to be
common for all players. We just need all players to be sufficiently patient.
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1 T I
Phase I

T I + T II
Phase II

· · ·∞
Phase III

︸ ︷︷ ︸
T I

︸ ︷︷ ︸
T II

Figure 2. Different phases of the strategy profiles.

3.3 Equilibrium strategies

Let G be a game in G. Recall that a∗ denotes a strict Nash equilibrium of G, and that
(â1� â2) denotes a pure action profile in which only one player has an incentive to de-
viate. When we say that a player plays or faces the Nash action, we mean the corre-
sponding component of a∗. Without loss of generality, we assume that, at action profile
(â1� â2), player 1 has an incentive to deviate while player 2 does not, and we let a′

1 de-
note player 1’s most profitable deviation. Let the target equilibrium payoff be v ∈ Fa∗ . We
maintain the convention that players 1 and 2 of the stage game belong to communities
1 and 2, respectively. Below, we present the equilibrium strategy profile that sustains v,
denoted by σ̄ .

As we show in Figure 2, we divide the game into three phases. Phase I spans over the
first T I periods, Phase II spans over the next T II periods, and Phase III covers the rest
of the game. Phases I and II are trust-building phases and Phase III is the target payoff
phase.

Equilibrium play. Phase I. During the first T I periods, action profile (â1� â2) is played.
In every period in this phase, players from community 1 have a short-run incentive
to deviate, but those from community 2 do not.

Phase II. During the next T II periods, players play (a∗
1� a2), an action profile where

players from community 1 play their Nash action and players from community 2
do not. Player 2’s action a2 can be any action other than a∗

2 in the stage game. In
every period in this phase, players from community 2 have a short-run incentive to
deviate.

Phase III. For the rest of the game, the players play a sequence of pure action
profiles in Aa∗ that approximates the target payoff v and such that a∗ is not played
in period T I + T II + 1.

Since σ̄ is pure and symmetric, on path all players observe the same personal
history, denoted by (ā1� ā2� � � �) ∈A∞.

Off-equilibrium play. Suppose that action ai ∈ Ai is played in period t and that
ai �= āti . If t ≤ T I and i = 2, then ai is non-triggering ; otherwise, ai is triggering.

Any player i, conditional on having observed a history ht , can be in one of four
moods. We define below the moods and behavior in each mood.

• Healthy. A player is healthy at ht if no triggering action has been played in ht .
A healthy player continues to play as if on path. In particular, a player from
Community 1 who observes a deviation in Phase I is healthy.

• Rogue. A player is rogue at ht if he has played a triggering action without having
faced one before. A player from community 1 who turns rogue by deviating in
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the first period of the game plays a′
1 until the end of Phase I. Then he switches

to the Nash action and continues to play it as long as he does not observe any
deviation after that. We do not describe the best response of rogue players at
other histories here. We will be more specific in the proof.

• Infected. A player is infected at ht if he is not rogue, he has faced a triggering
action, and t ≥ T I. An infected player always plays the Nash action.

• Exposed. A player is exposed at ht if she is a buyer who has faced a trigger-
ing action and t < T I. An exposed player continues to play as if on path and
transitions to the infected mood at the end of Phase I.

We use the term “unhealthy” to describe a player who is not in the healthy mood.
Figure 3 provides a schematic for the mood transitions and behavior. These defini-
tions imply that no player is in the infected mood in Phase I. Also, a buyer cannot
turn rogue in Phase I, since her actions are not triggering in the first T I periods.

Note that a profitable deviation by a player is punished (ultimately) by the whole
community, with the punishment action spreading like an epidemic. This is referred to
as contagion in the existing literature. The difference between our strategies and conta-
gion (Kandori 1992, Ellison 1994) is that here the game starts with two initial phases in
which deviations are not punished immediately. In other words, unlike the results for
the PD, where the equilibria are based on trigger strategies, we have “delayed” trigger
strategies.

···∞1 T I T II

Phase I Phase II Phase III

transitions

behavior

H

H
C1

R

plays
triggering

H
C2

E
faces

triggering

E
C2

I

H R

I

plays
triggering

triggering

faces

H R

I

plays
triggering

triggering

faces

H on-path action

E
C2

on-path action I Nash action

R best reply in GM
δ

Figure 3. The top half describes the events that induce transitions between the four moods.
Moods labeled H, E, I, and R denote healthy, exposed, infected, and rogue, respectively. A healthy
player who simultaneously plays and faces a triggering action transitions to the infected mood.
The bottom half describes behavior in each mood. Where needed, C1 and C2 specify the player’s
community.
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3.4 On-path incentives

On-path incentives are straightforward, so we omit the formal proof. First, non-
triggering deviations are never profitable, since they entail a loss in the present period
and have no impact on future payoffs. Second, triggering actions start a contagion that
eventually has all players playing the Nash action from some period onward. Therefore,
given M , T I, and T II, there is δ1 ∈ (0�1) such that, for each δ ∈ [δ1�1), on-path devia-
tions are not profitable. Moreover, since Phase III has infinite length, given T I, T II, and
ε, there is δ2 ∈ (0�1) such that, for each δ ∈ [δ2�1), the payoff associated with σ̄ is within
ε of v.

3.5 Off-path incentives: Outline of argument

Since the proof of optimality off path is long, we first present an outline of the approach.
The off-path incentives of a player depend only on his beliefs about how widespread the
contagion is. Thus, establishing sequential rationality requires an analysis of off-path
beliefs.

The first step is to define off-path beliefs and understand belief updating, which we
do in Section 4. We specify the trembles on completely mixed strategies and present two
results, Lemma 1 and Lemma 2, which characterize the ensuing beliefs. In particular,
Lemma 1 is the basis for showing that beliefs evolve as simple Markov processes that
can be studied using the appropriate transition matrices.

We then analyze off-path incentives in Sections 5 and 6. We classify off-path histories
for a player i as follows.

H1. Histories that can be explained by a single deviation by a seller in period 1

a. Histories in which player i got infected in Phase III (discussed in Section 5)

b. Histories in which player i becomes rogue in period 1 (Section 6.1.1)

c. Other histories, including those in which i gets exposed in Phase I or infected
in Phase II (Section 6.2)

H2. Histories that cannot be explained by a single deviation by a seller in period 1
(Section 6.1.2 and Appendix B.2)

Crucially, the off-path beliefs defined in Section 4.1 ensure that whenever a player
observes a deviation from the equilibrium path, he attaches probability 1 to the set of
histories H1. In particular, Lemma 1 states that exposed and infected players always as-
sign probability 1 to a seller having deviated in period t = 1. Recall that behavior has not
been specified for players who became rogue at t > 1, but since no other player ever as-
signs positive probability to this event, this underspecification does not pose problems
(the behavior of such a rogue player does not affect the incentives of others).12 Only a

12There are some “pathological” histories that can arise and where special care is needed because of
underspecification. These histories involve multiple nested off-path deviations combined with a sequence
of very low probability match realizations. They are discussed in Appendix B.2.1.
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rogue player can know that a history in H2 has been realized and he will play his best
response there. Thus, it suffices to show that players have incentives to punish after
histories in H1.

Lemma 11 in Section 5 is an important result, which presents a sufficient condition
on beliefs to have incentives to punish. Informally, it states that if an infected player be-
lieves that contagion is widely spread (Definition 2), then he is willing to play the Nash
action because he knows that his action cannot affect his continuation payoff signifi-
cantly. This result reduces our problem to showing that a player, after observing a his-
tory in H1, believes that contagion is widely spread. We do this using the tools developed
in Section 4.3. Beliefs in H1.a are the most complex, and are divided into three cases.

Infection early in Phase III (Section 5.1). Suppose that player i gets infected in pe-
riod t = T I + T II + 1. Using properties of the appropriate Markov process (Lemma 8),
we show that player i believes that, with high probability, everybody is unhealthy. Then,
by Lemma 11, we have optimality of Nash reversion. Suppose now that, after getting
infected in period t and switching to the Nash action, player i starts observing actions
different from the Nash action, meaning that he is not facing infected players. In such
a case, i has to revise his beliefs and two effects come into play: facing a healthy player
implies that contagion was not as spread after period t, but, at the same time, player
i has further spread the contagion by infecting his current opponent. For the result-
ing Markov process, we can still show that player i believes that, with high probability,
everybody is unhealthy.

Infection late in Phase III (Section 5.2). If player i gets infected in period t, late
in Phase III, then the properties of the relevant Markov process (Lemma 9) imply that
player i believes that, with high probability, everybody was unhealthy at the start of
Phase III. However, if after that player i starts observing actions different from the Nash
action, he may no longer believe that, with high probability, everybody was infected
at the start of Phase III. Section 5.2 shows that even then he believes that contagion is
widely spread.

Infection in other parts of Phase III (Section 5.3). For other periods of Phase III, we
use a monotonicity argument to establish that if player i observes a deviation, he still
believes that contagion is widely spread.

The arguments for histories in H1.b and H1.c are more straightforward and are
presented in Sections 6.1.1 and 6.2, respectively. A complete proof requires show-
ing sequential rationality also at off-path histories in H2, which is done mostly in Ap-
pendix B.2.

4. Off-path beliefs

4.1 Trembles and ensuing beliefs

First, we define trembles associated with σ̄ that define a sequence of completely mixed
strategy profiles {σn}n∈N converging (pointwise) to σ̄ and such that the associated beliefs
{μn}n∈N converge (pointwise) to a system of beliefs μ̄.
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Fix a player i and let D+ 1 be the number of actions available to player i in the stage
game G ∈ G. For each n ∈ N, let εn := ( 1

2n )
n. The strategy of player i in profile σn is

denoted by σn�i. Let ht be a personal history. Now we distinguish several cases.13

Player i is healthy or exposed at ht . Player σn�i(h
t) selects σ̄i(h

t) with probability

(1 − εntn ) and every other action with probability εntn
D .

Player i is rogue at ht . Player σn�i(h
t) selects σ̄i(h

t) with probability (1 −ε
1/t
n ) and ev-

ery other action with probability ε
1/t
n
D .

Player i is infected at ht . Player σn�i(h
t) selects σ̄i(h

t) with probability (1 − ε
1/(nt)
n )

and every other action with probability ε
1/(nt)
n
D .

Clearly, {σn}n∈N converges to σ̄ . Moreover, {μn}n∈N converges pointwise to a system
of beliefs μ̄. By definition, μ̄ is consistent with σ̄ as required by sequential equilibrium.

The above sequence is chosen to ensure certain properties of the limiting beliefs. For
instance, t in (1 − εntn ) ensures that early deviations by healthy players are regarded as

infinitely more likely than late deviations. On the contrary, t in (1−ε
1/t
n ) and (1−ε

1/(nt)
n )

ensures that late deviations by rogue and infected players are regarded as infinitely more
likely than early ones. By comparing (1−εntn ) with (1−ε

1/t
n ) and (1−ε

1/(nt)
n ) we have that

deviations by healthy players are infinitely less likely than deviations by rogue players,
which are themselves infinitely less likely than deviations by infected players. Below we
establish the properties of μ̄ needed to show that σ̄ is sequentially rational given μ̄.

Lemma 1. Let i be a player who is in the exposed or infected mood at some t-period his-
tory ht . Then, according to μ̄, player i puts probability 1 on a seller having played a trig-
gering action in period 1.

The proof is provided in Appendix A.1. The essence of Lemma 1 is that triggering
actions after period 1 are so unlikely compared to a triggering action in period 1, that re-
gardless of the likelihood of the subsequent observations, an exposed or infected player
i will always be convinced that the first triggering action occurred in period 1. For the
next result, we define an error as an action ai ∈ Ai such that (i) ai is a non-triggering
action or (ii) player i is infected and does not play the Nash action. In particular, the
actions of rogue players are never classified as errors.

Lemma 2. Let i be a player who is in the infected mood at some t-period history ht and
who did not get exposed in period 1. Suppose, further, that ht has probability 0 condi-
tional on a seller playing a triggering action in period 1 and play proceeding according to
σ̄ thereafter. Then the following statements hold:

(i) If player i faced triggering actions by sellers before period T I + 2, then he assigns
probability 1 to these actions having been played by a rogue seller who also played
a triggering action in period 1.

13See Section 7.3 for a discussion on alternative belief constructions.
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(ii) If player i faced non-triggering actions in Phase I, then he assigns probability 1 to
these actions being errors made by buyers (by definition).

(iii) If player i faced any other action that implies additional deviations from σ̄ , then
he assigns probability 1 to these deviations being errors by infected players.

Lemma 2 implies that when an infected player i is at a history that cannot be ex-
plained just by a deviation of a seller in period 1, he will believe, if possible, that there
have been as many errors by infected players as needed to explain the current history.
Those deviations directly faced by player i and that cannot be attributed to infected play-
ers are covered in statements (i) and (ii), and will be attributed to the rogue seller and to
buyers, respectively.

It is worth discussing why Lemma 2 is not true for a player i who gets exposed in
period 1. Suppose that player i is a buyer who gets exposed in period 1 and faces off-
path actions throughout Phase I. The definition of trembles ensures that deviations by
rogue players are (infinitely) more likely than deviations by healthy players. Then player
i will start Phase II believing that there is a rogue seller whom she has met in all periods
of Phase I and that she is the only infected player. Suppose further that in period T I + 1
she faces an action different from the Nash action. Then she will believe that she has met
the rogue seller again and so there is no infected seller yet. If in period T I + 2 she again
faces an action different from the Nash action, contrary to statement (iii) in Lemma 2,
she cannot attribute this deviation to an infected player since she believes there is no
such player. Then she will believe that she has met the rogue seller once again. Histories
like this one are what we call pathological histories, and the associated incentives are
discussed in Appendix B.2.1. One implication of Lemma 2 is that no infected player
other than i will ever assign positive probability to these pathological histories.

Importantly, Lemma 1 and Lemma 2 are crucial for the computation of off-path be-
liefs since they allow us to model the beliefs as Markov processes.

4.2 Computation of off-path beliefs

Recall that, given σ̄ , a player’s action depends only on his mood. Therefore, all that mat-
ters for incentives are the moods of the players in each community, and so the incentives
of an infected player depend only on his belief about how widespread the contagion is.14

When analyzing the beliefs of an infected player j, we use the term good behavior
for actions that point toward fewer people being unhealthy. Any other action is bad
behavior.

• Bad behavior (b). A action ai ∈Ai is considered bad behavior for player j in period
t if one of the following statements holds: (i) ai is a triggering action; (ii) ai is a
non-triggering action; (iii) player j is unhealthy and ai = āti = a∗

i .15

14Note that the beliefs μ̄ contain additional information such as whether the contagion started slow and
then sped up or started fast, but this information is irrelevant for the incentives.

15Actions in points (ii) and (iii) are neutral: they do not point in the direction of more or less people being
unhealthy. These actions are equally likely to come from healthy and unhealthy players.
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• Good behavior (g). A action ai ∈ Ai is considered good behavior for a player j in
period t if it is not considered bad behavior.

We slightly abuse notation and write, for instance, ht = g � � � gb to denote a history in
which player i has faced good behavior during the first t − 1 periods and bad behavior
in period t.

4.2.1 Approach to computing off-path beliefs Suppose that I am a player who gets in-
fected at some period t̄ in Phase III and that I face a healthy player in period t̄ + 1, i.e.,
ht̄+1 = g � � � gbg. I will think that a seller deviated in period 1 (Lemma 1) and that in
period T I + T II + 1, all unhealthy buyers and sellers played the Nash action (which is
triggering in this period). Therefore, period T I + T II + 2 starts with the same number of
unhealthy players in both communities. Hence, it suffices to compute my beliefs about
the number of unhealthy sellers. These beliefs are represented by xt̄+1 ∈R

M , where xt̄+1
k

is the probability of exactly k sellers being unhealthy after period t̄+1, and must be com-
puted using Bayes rule and conditioning on my personal history. Let Gt be the event
“I was healthy after period t” and let U t be the random variable corresponding to the
number of unhealthy sellers after period t. Then I have the following information after
history ht̄+1: (i) A seller deviated at period 1, so x1 = (1�0� � � � �0), (ii) for each t < t̄, event
Gt holds, (iii) since I got infected at period t̄, at least one player in the rival community
got infected in the same period, and (iv) since I faced a healthy player at t̄ + 1, then, for
each t < t̄, U t ≤M − 2.

To compute xt̄+1, we compute a series of intermediate beliefs xt for t < t̄ + 1. We
compute x2 from x1 by conditioning on G2 and U2 ≤M −2; then we compute x3 from x2

and so on. Note that to compute x2, we do not use the information that “I was healthy at
the end of each period 2 < t < t̄.” So, at each t < t̄, xt represents my beliefs when I con-
dition on the fact that the contagion started at period 1 and that no matching that leads
to more than M − 2 people being unhealthy could have been realized.16 Put differently,
at each period, I compute my beliefs by eliminating (assigning zero probability to) the
matchings I know could not have taken place. At a given period τ < t̄, the information
that “I was healthy at the end of period t, with τ < t < t̄” is not used. This information
is added period by period, i.e., only at period t do we add the information coming from
the fact that “I was healthy at the end of period t.” In Appendix B.1, we show that this
method yields the correct belief xt̄+1 at period t̄ + 1 conditional on the entire personal
history ht̄+1.

Although from period T I + T II + 1 onward the number of unhealthy sellers and the
number of unhealthy buyers coincide, this is not the case in Phases I and II. In partic-
ular, it will be important to compute the evolution of the number of exposed buyers in
Phase I.

In some abuse of notation, when it is known that a player assigns 0 probability to
more than k opponents being unhealthy, we work with xt ∈R

k. Given beliefs xt� x̂t ∈R
k,

we say that xt first-order stochastically dominates x̂t if xt assigns higher probability to
more people being unhealthy; i.e., for each l ∈ {1� � � � �k},

∑k
i=l x

t
i ≥ ∑k

i=l x̂
t
i .

16The updating after period t̄ is different, since I know that I was infected at t̄ and that no more than
M − 1 people could possibly be unhealthy in the other community at the end of period t̄.
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4.3 Modeling beliefs with contagion matrices

4.3.1 Contagion matrices and their properties Beliefs evolve according to Markov pro-
cesses and can be studied using appropriate transition matrices, which we call conta-
gion matrices. A contagion matrix Q describes how contagion spreads in a community
in a given period, with Qij denoting the probability that state “i unhealthy players” tran-
sitions to state “j unhealthy players.” If we let Mk denote the set of k× k matrices with
real entries, we say that Q ∈ Mk is a contagion matrix if it has the following properties:

(i) All the entries of Q belong to [0�1] (they represent probabilities).

(ii) Matrix Q is upper triangular (being unhealthy is irreversible).

(iii) All diagonal entries are strictly positive (with some probability, no healthy player
observes a triggering action and contagion does not spread in the current period).

(iv) For each i > 1, Qi−1�i > 0 (with some probability, exactly one healthy player gets
exposed or infected in the current period, unless everybody is already unhealthy).

Since contagion matrices are upper triangular, their eigenvalues correspond to the di-
agonal entries. Given a matrix Q, let Ql
 denote the matrix obtained by removing the
last l rows and columns from Q. Similarly, Q�k is the matrix obtained by removing the
first k rows and columns and Q�k�l
 is obtained by doing both operations simultane-
ously. Clearly, if we perform any of these operations on a contagion matrix, we get a new
contagion matrix.

Given y ∈ R
k, let ‖y‖ := ∑

i∈{1�����k} yi. We are interested in the limit behavior of yt :=
yQt

‖yQt‖ , where Q is a contagion matrix and y is a probability vector. We present below a
few results about this limit behavior for contagion matrices. The proofs are provided in
Appendix A.2. Given a contagion matrix Q ∈ Mk, we define the following properties.

Property Q1. We have {Q11} = argmaxi∈{1�����k}Qii.

Property Q2. We have Qkk ∈ argmaxi∈{1�����k}Qii.

Property Q3. For each l < k, Q�l ∈ Ml satisfies Q1 or Q2.

Lemma 3. Let Q be a contagion matrix and let x be a left eigenvector associated with the
largest eigenvalue of Q. Then x is either nonnegative or nonpositive.

Lemma 4. Let Q be a contagion matrix and let λ be its largest eigenvalue. Then the left
eigenspace associated with λ has dimension 1; that is, the geometric multiplicity of λ is 1,
irrespective of its algebraic multiplicity.

Given a contagion matrix Q with largest eigenvalue λ, we denote by yQ the unique
nonnegative left eigenvector associated with λ such that ‖yQ‖ = 1.

Lemma 5. Let Q ∈ Mk be a contagion matrix. Let l < k and consider vector yQl
 ∈ R
k−l.

If
∑k−l

i=1 y
Q
i �= 0, then, for each j ∈ {1� � � � �k− l}, y

Ql

j = y

Q
j∑k−l

i=1 yQ
.
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Lemma 6. Let Q ∈ Mk be a contagion matrix satisfying Property Q1 or Property Q2. Then,

for each nonnegative vector y ∈ R
k with y1 > 0, we have limt→∞ yQt

‖yQt‖ = yQ. In particular,

under Q2, yQ = (0� � � � �0�1).

Lemma 7. Let Q ∈ Mk be a contagion matrix satisfying Properties Q1 and Q3. Let y ∈ R
k

be a nonnegative vector. If y is close enough to (0� � � � �0�1), then, for each t ∈ N, yt first-
order stochastically dominates yQ, i.e., for each l ∈ {1� � � � �k},

∑k
i=l y

t
i ≥ ∑k

i=l y
Q
i .

4.4 Relevant contagion matrices

In this section we present the main contagion matrices that are relevant for our con-
struction.

4.4.1 Contagion matrix in Phase I Let hT I+T II+1 = g � � � gb denote a history in which I
am a player who gets infected in period T I + T II + 1. Since the number of unhealthy
players is the same in both communities, it suffices to compute my beliefs about the
number of unhealthy buyers, xT

I+T II+1, which depends on how contagion spreads af-
ter a seller turns rogue in period 1. In Phase I, this seller continues deviating, causing
buyers to get exposed. The contagion is a Markov process with state space {1� � � � �M},
representing the number of exposed buyers. This corresponds with contagion matrix
ŜM ∈ MM , where a state k transitions to k + 1 if the rogue seller meets a healthy buyer,
which has probability M−k

M . With the remaining probability, i.e., k
M , state k remains at

state k. When no confusion arises, we omit subscript M in ŜM . Let Ŝkl be the probability
that state k transitions to state l. Then

ŜM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
M

M − 1
M

0 0 � � � 0

0
2
M

M − 2
M

0 � � � 0
���

���
� � �

� � �
���

0 0 0
M − 2
M

2
M

0

0 0 0 0
M − 1
M

1
M

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

To compute my beliefs after being infected, I must also condition on the information
from my own history. Let t < T I. After observing history hT I+T II+1 = g � � � gb, I know
that, at the end of period t + 1, at most M − 1 buyers were exposed and I was healthy.
Therefore, to compute xt+1, my intermediate beliefs about the number of buyers who
were exposed at the end of period t + 1, i.e., about U t+1, I need to condition on the
following information:

(i) My beliefs about U t : xt .

(ii) I was healthy at the end of t + 1: the event Gt+1.
If I am a buyer and condition on Gt+1, then I know I did not meet the rogue

seller. The transition from state l − 1 to state l then requires that the rogue seller



Theoretical Economics 14 (2019) Enforcing social norms 1405

meets a healthy buyer, which has probability M−l+1
M , and that this healthy buyer

is different from me, which has probability M−l
M−l+1 . Alternatively, if I am a seller,

conditioning on Gt+1 is irrelevant, since sellers always observe good behavior
during Phase I.

(iii) At most M − 1 buyers were exposed by the end of period t + 1: U t+1 ≤ M − 1
(otherwise I would not have observed g throughout Phase II).

Therefore, given l < M , if I am a buyer, the probability that exactly l buyers are ex-
posed after period t + 1, conditional on the above information, is given by

P
(
lt+1|xt ∩Gt+1 ∩ U t+1 ≤ M − 1

) = P
(
lt+1 ∩Gt+1 ∩ U t+1 ≤ M − 1|xt)
P
(
Gt+1 ∩ U t+1 ≤ M − 1|xt)

=
xtl−1Sl−1�l

M − l

M − l + 1
+ xtlSl�l

M−1∑
k=1

(
xtk−1Sk−1�k

M − k

M − k+ 1
+ xtkSk�k

) �

The expression for a seller would be analogous, but without the M−l
M−l+1 factors. Note

that we can express the transition from xt to xt+1 using a conditional transition ma-
trix, Q̂. Let Q̂ ∈ MM be defined, for each pair k� l ∈ {1� � � � �M − 1}, by Q̂kl := Skl

M−l
M−k , by

Q̂MM := 1, and with all remaining entries being 0.
Since we know that xtM = xt+1

M = 0, we can work in R
M−1. Recall that Q̂1
 and Ŝ1


denote the matrices obtained from Q̂ and Ŝ by removing the last row and the last column
of each. The truncated matrix of conditional transition probabilities Q̂1
 is

Q̂1
 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
M

M − 1
M

M − 2
M − 1

0 0 � � � 0

0
2
M

M − 2
M

M − 3
M − 2

0 � � � 0
���

���
� � �

� � �
���

0 0 0 0
M − 2
M

2
M

1
2

0 0 0 0 0
M − 1
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

We need to understand the evolution of the Markov processes associated with matrices
Q̂1
 and Ŝ1
, starting with only one player being unhealthy. Then, for the buyer case, let
y1
B0 = (1�0� � � � �0) ∈R

M−1 and define yt+1
B0 as

yt+1
B0 = yt

B0Q̂1
∥∥yt
B0Q̂1


∥∥ = y1
B0Q̂

t
1
∥∥y1

B0Q̂
t
1


∥∥ �
Analogously, we define the Markov process for the seller, yt

S0 , by using Ŝ1
 instead of Q̂1
.

Therefore, my intermediate beliefs at the end of period T I, xT
I
, would be given by yT

I

B0 if
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I am a buyer and yT
I

S0 if I am a seller. To compute the beliefs xT
I+T II+1, I would have to

update using the contagion matrix in Phase II, but, as will be discussed in Section 5, our
proof does not need to deal with it explicitly.

Suppose now that after getting infected after history hT I+T II+1 = g � � � gb, during the
next α periods, with 1 ≤ α ≤ M − 2, I face good behavior while I play the Nash action,
leading to a history of the form hT I+T II+1+α = g � � � gbg α� � � g. Suppose that I am a buyer
(the arguments for a seller are analogous). After getting infected in period T I + T II + 1,
I can believe that all players in my community are unhealthy at the end of period T I +
T II + 1. However, this is no longer possible, because I have observed the on-path action
that is played only by healthy players and, moreover, I have been infecting by playing the
Nash action. Thus, after hT I+T II+1+α = g � � � gbg α� � � g, I know that at most M−1−α buyers
were exposed by the end of Phase I. So, for each t ≤ T I and each k ≥ M − α, xtk = 0. My

beliefs are no longer computed using Q̂1
, but rather with Q̂α+1
. Accordingly, denote

my intermediate beliefs at the end of period T I by yT
I

Bα ∈ R
M−1−α if I am a buyer and

yT
I

Sα ∈R
M−1−α if I am a seller. Below we characterize the limit behavior of ytBα and ytSα .

Lemma 8. For each M > 2 and each α ∈ {0�1� � � � �M − 2}, we have limt→∞ ytBα =
limt→∞ ytSα = (0� � � � �0�1) ∈R

M−1−α.

Proof. Since, for each α ∈ {0�1� � � � �M − 2}, the matrix Q̂α+1
 satisfies Property Q2, the
result follows from Lemma 6.

This result is intuitive. Since the largest diagonal entry in matrices Q̂α+1
 and Ŝα+1
 is
the last one, state M − 1 − α is more stable than any other state. Consequently, as more
periods of contagion elapse in Phase I, state M − 1 − α becomes more and more likely.

4.4.2 Contagion matrix in Phase III Suppose that I get infected after observing ht̄+1 =
g � � � gb, with t̄ > T I + T II + 1. My beliefs xt̄+1 also depend on how contagion spreads in
Phase III. The new contagion matrix is S̄ ∈ MM , where, for each pair k� l ∈ {1� � � � �M}, if
k > l or l > 2k, S̄kl = 0; otherwise, i.e., if k ≤ l ≤ 2k, the probability of transition to state
k to state l is (see Figure 4)

S̄kl =

((
k

l − k

)(
M − k

l − k

)
(l − k)!

)2

(2k− l)!(M − l)!

M!

= (k!)2((M − k)!)2(
(l − k)!)2

(2k− l)!(M − l)!M!
�

Since I have observed history ht̄+1 = g � � � gb, given t such that T I +T II < t < t̄, I know
that “at most M − 1 people could have been unhealthy in the rival community at the
end of period t + 1,” i.e., U t+1 ≤ M − 1, and “I was healthy at the end of period t + 1”
(event Gt+1). As before, let xt be my intermediate beliefs after period t. Since, for each
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l-k

k

M-k

Community 2 (Buyers)Community 1 (Sellers)

Already unhealthy

Newly infected

Still healthy

(2k− l)!

(M − l)!

(
k

l − k

)(
M − k
l − k

)
(l − k)!

(
k

l − k

)(
M − k
l − k

)
(l − k)!

Figure 4. Spread of contagion in Phase III. There are M! possible matchings. For state k to
transition to state l, exactly (l − k) unhealthy people from each community must meet (l − k)

healthy people from the other one. The number of ways to choose exactly (l − k) buyers from k

unhealthy ones is ( k
l−k

). The number of ways to choose the corresponding (l−k) healthy sellers

that will get infected is (M−k
l−k

). Finally, the number of ways in which these sets of (l − k) people
can be matched is the number of permutations of l − k people, i.e., (l − k)!. Analogously, we
choose the (l − k) unhealthy sellers who will be matched to (l − k) healthy buyers. The number
of ways in which the remaining unhealthy buyers and sellers get matched to each other is (2k−l)!
and, for the healthy ones, we have (M − l)!.

t ≤ t̄, xtM = 0, we can work with xt ∈ R
M−1. Thus, for each l ∈ {1� � � � �M − 1}, we want to

compute xt+1
l , which is given by

P
(
lt+1|xt ∩Gt+1 ∩ U t+1 ≤ M − 1

) = P
(
lt+1 ∩Gt+1 ∩ U t+1 ≤ M − 1

)|xt)
P
(
Gt+1 ∩ U t+1 ≤ M − 1

)|xt)

=

∑
k∈{1�����M}

xtkS̄kl
M − l

M − k

∑
l∈{1�����M−2}

( ∑
k∈{1�����M}

xtkS̄kl
M − l

M − k

) �

Again, we can express these probabilities using the corresponding conditional tran-
sition matrix. Let Q̄ ∈ MM be defined, for each pair k� l ∈ {1� � � � �M − 1}, by Q̄kl :=
S̄kl

M−l
M−k , by Q̄MM := 1, and with all remaining entries being 0. Then, given a vector of

beliefs at the beginning of Phase III represented by a probability vector ȳ0
B0 , we are inter-

ested in the evolution of the Markov process where ȳt+1
B0 is defined as

ȳt+1
B0 = ȳt

B0Q̄1
∥∥ȳt
B0Q̄1


∥∥ �
There is no need to distinguish between ȳt

B0 and ȳt
S0 , since in Phase III the conta-

gion spreads identically in both communities. For each t ≤ t̄ − T II − T I, ȳt
B0 coincides

with the intermediate beliefs xT
I+T II+t . Below, we characterize the limit behavior of ȳt

B0 .

Importantly, provided that (ȳ0
B0)1 > 0, the limit does not depend on ȳ0

B0 .



1408 Deb and González-Díaz Theoretical Economics 14 (2019)

Lemma 9. Suppose that (ȳ0
B0)1 > 0. Then limt→∞ ȳt

B0 = (0�0� � � � �0�1) ∈R
M−1.

Proof. Since Q̄1
 satisfies Property Q2, the result follows from Lemma 6.

The logic behind the result is less straightforward than that for Lemma 8. The largest
diagonal entries of Q̄1
 are the first and last ones: Q̄11 = Q̄M−1�M−1 = 1

M . Unlike in the
contagion matrix of Phase I, state M−1 is not the unique most stable state. Here, states 1
and M−1 are equally stable, and are more stable than any other state. Yet, in each period
many states transition to M − 1 with positive probability, while no state transitions to

state 1 and so the ratio
(ȳt

B0 )M−1

(ȳt
B0 )1

goes to infinity as t increases.

Suppose that I get infected after ht̄+1 = g � � � gb and in the next α periods, with 1 ≤ α ≤
M − 2, I face good behavior while I play the Nash action, leading to a history ht̄+1+α =
g � � � gbg α� � � g. Then I know that fewer than (M − 1 − α) people in each community were
unhealthy at the end of period t̄ since, otherwise, I could not have faced g in α periods
after getting infected. I have to recompute my beliefs using the information that, for
each t ≤ t̄, U t ≤ M − 1 − α. In particular, for each t ≤ t̄ and each k ≥ M − α, xtk = 0. My
beliefs are computed using Q̄α+1
 and we denote my intermediate beliefs at the end of

period T I by ȳT
I

Bα ∈R
M−1−α (the process for sellers, ȳT

I

Sα ∈R
M−1−α, is the same and can be

omitted).
We have the Markov process that starts with a vector of beliefs at the beginning of

Phase III, represented by a probability vector ȳ0
Bα and such that ȳt+1

Bα is computed as

ȳt+1
Bα = ȳtBαQ̄α+1
∥∥ȳtBαQ̄α+1


∥∥ �
As before, for each t ≤ t̄ − T I − T II, ȳtBα coincides with the intermediate beliefs xT

I+T II+t .
We want to study the limit behavior of ȳtBα as t goes to ∞.

The extra difficulty comes from the fact that, for each α with 1 ≤ α ≤ M − 2,
Q̄M−1−α�M−1−α < Q̄11 = 1

M , and so matrix Q̄α+1
 does not satisfy Property Q2. There-
fore, the intuition behind Lemma 9 do not apply and, indeed, the limit beliefs do not
converge to (0� � � � �0�1). Yet, Property Q1 holds and we can rely on Lemma 6 to ensure
convergence.

Lemma 10. Let M > 2 and α ∈ {1� � � � �M−2}. Suppose that (ȳ0
Bα)1 > 0. Then limt→∞ ȳtBα =

ȳMBα , where ȳMBα is the unique nonnegative left eigenvector associated with the largest eigen-

value of Q̄α+1
 such that ‖ȳMBα‖ = 1. In particular, ȳMBαQ̄α+1
 = ȳMBα
M .

Proof. Since, for each α ∈ {1� � � � �M − 2}, the matrix Qα+1
 satisfies Property Q1, with
(Q̄α+1
)11 = 1

M , the result follows from Lemma 6.

The result above implies that the limit as t̄ goes to infinity of the beliefs xt̄ is inde-
pendent of T I and T II. Given these results on off-path beliefs, we are now equipped to
study the off-path incentives of players.
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5. Incentives after getting infected in Phase III

Checking incentives of players infected in Phase III is the heart of the proof. We consider
three cases: First, players who gets infected at the start of Phase III. Next, players who
get infected late in Phase III. Finally, we use a monotonicity argument on the beliefs to
check the incentives after infection in intermediate periods in Phase III.

The main idea is that an infected player will always believe that contagion is widely
spread and, therefore, will find it optimal to play the Nash action. Accordingly, we define
a notion of “contagion being widely spread,” and establish two preliminary results.

Definition 2. Let x ∈ R
M represent a probability distribution over the number of un-

healthy people in a community, so that xk is the probability that there are k unhealthy
people. Let p ∈ [0�1] and r ∈ [0�1].

• We say that contagion is totally p-spread given x if xM ≥ p.

• We say that contagion is (r�p)-spread given x if
∑M

j=�rM� xj ≥ p.17

Note that totally p-spread is equivalent to (1�p)-spread. Lemma 11 below relates
Definition 2 with the incentives of an unhealthy player, regardless of how patient he
is. This independence with respect to δ is very important because, given our equilib-
rium strategies, a high δ is needed for on-path incentives, but may make off-path incen-
tives harder to satisfy. Since a seller can profitably deviate throughout Phase I, if T I is
large, sellers must be patient so that the potential losses in Phase III outweigh any pos-
sible gains in Phase I. Alternatively, in Phase III, a very patient infected player may not
want to punish, since that would spread contagion and reduce his continuation payoff.
Lemma 11 shows that if an infected player believes that contagion is widely spread, then
he is willing to play the Nash action because his action cannot affect his continuation
payoff significantly.

Lemma 11. Let G ∈ G. Then there are pG ∈ (0�1) and rG ∈ (0�1) such that, for each p ≥
pG and r ≥ rG, the following statement holds for every game GM

δ with M > 2 and δ ∈
(0�1):

An unhealthy player who, at some period t̄ > T I + T II, believes that the contagion is
(r�p)-spread, finds it sequentially rational to play the Nash action at the given period.

Now, suppose that, at some point in Phase III, I am an unhealthy player who believes
that at least one player is infected in each community. Suppose further that I then play
the Nash action for t periods while observing only g. Thus, in each period I infect a new
player and contagion keeps spreading. As the game proceeds, I will eventually believe
that contagion is (rG�pG)-spread. The lemma below shows that the number of periods
necessary for this to happen depends only on the game G and on the population size
M and, we denote it by φG(M). Since contagion spreads exponentially fast in Phase
III, for fixed G, φG(M) is some logarithmic function of M and the following result is
straightforward.

17The term �z� denotes the smallest integer not smaller than z and the term �z
 denotes the largest
integer not larger than z.
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Lemma 12. Let G ∈ G and r̄ ∈ (0�1). Then there is ¯M ∈ N such that, for each M ≥ ¯M , we
have φG(M) < (1 − r̄)M .

The above result is important to study incentives in Phase III, but we also need to
understand how beliefs evolve before the Nash action has been played for φG(M) pe-
riods. Suppose that I am an infected player who is computing his beliefs after history
ht = g � � � gb, with t > T I + T II. Contagion matrices are used to prove that after ht , I es-
sentially believe that N −1 people were infected at the end of period t−1 and, therefore,
everybody was infected after period t. Histories of the form ht+α = g � � � gbg α� � � g are
more involved and can only be explained by having at most N − α people infected at
the end of period t. Thus, the larger α is, the more people I believe were healthy at the
end of period t. Alternatively, we have an effect that goes in the opposite direction: from
period t to period t +α, I am infecting healthy players (I am observing g) and contagion
keeps spreading. A fundamental part of the results below consists of showing that this
second effect ensures that, regardless of the value of α, I will believe that contagion is
(rG�pG)-spread.

5.1 Infection at the start of Phase III

Let ht̄ be a history in which I got infected in period T I + T II + 1, i.e., ht̄ starts with
hT I+T II+1 = g � � � gb. The equilibrium strategies prescribe that I play the Nash action at
t̄ + 1. The optimality of this action depends on my beliefs xt̄ about the number of un-
healthy players in the other community. I must believe that contagion is (r�p)-spread
with p≥ pG and r ≥ pG. Establishing this is the core of the proof of Proposition 3 below.

Proposition 3. Let G ∈ G. Fix T II ∈ N and M > 2. Let t̄ ≥ T I + T II + 1 and let ht̄ be a
history that starts with hT I+T II+1 = g � � � gb. There is T I

1 ∈N such that, for each T I ≥ T I
1 , if I

observe ht̄ , then it is sequentially rational for me to play the Nash action at period t̄ + 1.

Proof. We show that after ht̄ , I believe that contagion is totally p-spread with p ≥ pG.
Then the result follows from Lemma 11. We analyze three cases.

Case 1. Suppose that ht̄ is a history of the form hT I+T II+1 = g � � � gb. By Lemma 8,
taking T I large enough, the intermediate beliefs xT

I ∈R
M−1, which coincide with yT

I

B0 if I

am a buyer and with yT
I

S0 if I am an seller, can be made arbitrarily close to (0� � � � �0�1).

Suppose that I am a buyer. I will assign probability p ≥ pG to M − 1 players in my
community being exposed at the end of Phase I. Since both healthy and unhealthy sell-
ers play the Nash action in Phase II, I cannot learn anything from play in Phase II. I also
know that there were at least as many unhealthy sellers as unhealthy buyers by the end
of Phase II. Hence, if T I is large enough, the intermediate beliefs xT

I+T II ∈R
M−1 are such

that I assign probability p ≥ pG to M − 1 players being unhealthy in each community.
Then, in period T I + T II + 1, with probability at least p, I got infected by an unhealthy
seller and also the last healthy seller got infected (I was the last healthy buyer). Thus,
my beliefs xT

I+T II+1 ∈R
M are such that after hT I+T II+1, I believe that contagion is totally

p-spread with p ≥ pG.
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Next suppose that I am a seller. Since no buyer infected me in Phase II, the inter-
mediate beliefs xt with t > T I are computed from xT

I
by factoring in this information,

which will shift them toward less people being unhealthy. Yet, if T I

T II is large enough,

Lemma 8 implies that beliefs xT
I+T II+1 are such that I believe that contagion is totally

p-spread with p ≥ pG.
Case 2. Suppose that ht̄ is a history of the form hT I+T II+1+α = g � � � gbg α� � � g. First,

suppose that 1 ≤ α ≤ M − 2. As we argued in the discussion preceding Lemma 8, I know
that at most M − 1 − α buyers were exposed at the end of Phase I. So for each t ≤ T I

and each k ≥ M − α, xtk = 0. Then we can represent the beliefs at the end of period T I

by yT
I

Bα ∈ R
M−1−α if I am a buyer and yT

I

Sα ∈ R
M−1−α if I am a seller. By Lemma 8, for T I

large enough, these beliefs can be made arbitrarily close to (0� � � � �0�1) ∈ R
M−1−α. In

particular, I will assign probability p ≥ PG to M − 1 − α players in my community being
exposed at the end of Phase I. Suppose that I am a buyer. By the same arguments as Case
1, the intermediate beliefs xT

I+T II ∈ R
M−1−α are such that I assign probability p ≥ PG to

M − 1 −α players being infected in each community. Thus, I got infected in period T I +
T II + 1 and at most M − α buyers (and sellers) remained healthy. Then, with probability
at least p, in each one of the following α periods, I faced one of the remaining healthy
sellers and infected him, infecting the last one in period T I + T II + 1 + α. Therefore, my
beliefs xT

I+T II+1+α are such that after hT I+T II+1+α, I believe that contagion is totally p-
spread with p ≥ pG. If I am a seller, similar considerations to those in Case 1 are needed,
where T I

T II has to be large enough.
Finally, suppose that α >M − 2. In this case, by statement (iii) in Lemma 2, I must

assign probability 1 to the following history: The seller who deviated in period 1 met the
same buyer throughout Phases I and II, so that Phase III started with only one infected
player in each community; then, I got infected in period T I + T II + 1 and I infected
healthy players in the next M − 2 periods; from period T I + T II + M − 1 onward, I met
infected players who were making errors. In particular, I believe that contagion is totally
1-spread.

Case 3. Now consider histories where, after getting infected, I observe a sequence
of actions that may include both g and b, i.e., histories starting with hT I+T II+1 = g � � � gb

and where I faced b in one or more periods after getting infected. By definition, every
observation of b shifts my beliefs toward more people being unhealthy. Therefore, since
the beliefs in the two cases above are such that after ht̄ , I believe that contagion is totally
p-spread with p ≥ pG, the same also holds in this third case.

5.2 Infection late in Phase III

We now analyze histories in which I get infected in period t̄ > T I + T II + 1 and study
beliefs and incentives as t̄ goes to infinity. We start with the result for histories of the
form g � � � gb and then move to the most challenging case, g � � � gbg α� � � g with 1 ≤ α ≤
M − 2.

Proposition 4. Let G ∈ G. Fix T I ∈ N, T II ∈ N, and M > 2. Let t̄ > T I + T II + 1 and
let ht̄ = g � � � gb. There is t̂ ∈ N such that, if t̄ > t̂ and I observe ht̄ , then it is sequentially
rational for me to play the Nash action at period t̄ + 1.
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Proof. First consider xt̄−1 ∈ R
M−1, my intermediate beliefs given history ht̄ just before

getting infected. There is a positive probability that the rogue seller who deviated in pe-

riod 1 has met the same buyer throughout the first two phases. Thus, xT
I+T II

1 > 0. Then,

when computing xt̄−1 from xT
I+T II

, we can apply Lemma 9 with ȳ0
B0 = xT

I+T II
and get

that limt→∞ ȳt
B0 = (0�0� � � � �0�1) ∈ R

M−1. Therefore, if t̄ is large enough, the intermedi-

ate beliefs xt̄−1, which coincide with ȳ t̄−1
B0 , are such that I assign probability p ≥ pG to

M − 1 being infected in each community.18 Then, with probability at least p, in period t̄,
I got infected by an unhealthy player and the last healthy player in the rival community
also got infected. Therefore, my beliefs xt̄ are such that after ht̄ , I believe that contagion
is totally p-spread with p ≥ pG. The result follows from Lemma 11.

Next suppose that I get infected in period t̄ > T I + T II + 1 and after that I face
good behavior for α periods, i.e., I observe a history ht̄+α of the form g � � � gbg α� � �

g with 1 ≤ α ≤ M − 2. After these histories, updating of beliefs builds upon the
Q̄α+1
. By Lemma 10, as long as the intermediate beliefs at the start of Phase III,
ȳ0
Bα ∈ R

M−1−α, are such that (ȳ0
Bα)1 > 0, then limt→∞ ȳtBα = ȳMBα , where ȳMBα is such that

‖ȳMBα‖ = 1 and ȳMBα = MȳMBαQ̄α+1
.19 The difficulty comes from the fact that now ȳMBα �=
(0� � � � �0�1).

The core of the current section consists of establishing that, for each r ∈ (0�1) and
each p ∈ (0�1), if M is large enough, I believe that contagion is (r�p)-spread after history
ht̄+α. To do so, the crucial step is to show the following result: let r ∈ (0�1) and m ∈ N;
then, if M is large enough, for each k < �rM�, there are r̄ ∈ (r�1) and k̄ ∈ [�rM�� �r̄M
]
such that (ȳMBα)k̄ >Mm+1(ȳMBα)k.

Two opposing forces affect how my beliefs evolve after I observe g � � � gbg α� � � g. On
the one hand, each observation of g suggests that not too many people are unhealthy,
making me step back in my beliefs and assign higher weight to lower states (fewer un-
healthy people). On the other hand, since I believe that contagion started at t = 1 and
that it is spreading during Phase III, every elapsed period makes me assign more weight
to higher states (more unhealthy people). The intuition behind the magnitudes of these
two effects is as follows. First, each time I observe g, my beliefs get updated with more
weight assigned to lower states and, roughly speaking, this step back in beliefs turns
out to be on the order of M . Second, the state k′ arising after the most likely transition
from a given state k is about

√
M times more likely than the state k. Then, by taking

M large enough, we can find r̄ ∈ (r�1) such that, given k < �rM�, the number of “most
likely transitions” needed to get from state k to a state k′ > �r̄M
 is as large as needed.
In turn, there will be a state k̄ ∈ [�rM�� �r̄M
] that can be made arbitrarily more likely
than k.

18Recall that there is no need to distinguish between ȳt
B0 and ȳt

S0 , since in Phase III an equal number of
players are infected in each community and contagion spreads identically in both communities.

19In our construction, the condition ȳ0
1 > 0 follows from the fact that, with positive probability, the rogue

seller may meet the same buyer in all the periods in Phases I and II.
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We need some preliminaries before proving formally the above observations. Recall
that

(Q̄α+1
)k�k+j = S̄k�k+j
M − k− j

M − k
= (k!)2((M − k)!)2

(j!)2(k− j)!(M − k− j)!M!
M − k− j

M − k
�

Given a state k ∈ {1� � � � �M − 2}, let tr(k) := �k(M−k)
M 
, which, for large M , is such that

k + tr(k) is a good approximation of the most likely transition from state k. Next, we
temporarily switch to the case where there is a continuum of states, i.e., we think of the
set of states as the interval [0�M]. In the continuous setting, a state z ∈ [0�M] can be
represented as rM , where r = z/M can be interpreted as the proportion of unhealthy
people at state z. Let γ ∈R and let fγ : [0�1] → R be defined as

fγ(r) := rM(M − rM)

M
+ γ = (

r − r2)M + γ�

Note that all fγ functions are continuous and that tr(rM) = �f0(r)
, so f0 is the extension
to the continuous case of function tr(·). We want to understand what the likelihood of
the transition from state rM to rM + f0(r) is. Let g : [0�1] → [0�1] be defined as

g(r) := 2r − r2�

The function g is continuous and strictly increasing. Given r ∈ [0�1], g(r) represents the
proportion of unhealthy people if, at state rM , f0(r) healthy people get infected, since
rM + f0(r) = rM + (r − r2)M = (2r − r2)M . Let g2(r) := g(g(r)) and define analogously
any other power of g. Hence, for each r ∈ [0�1], gn(r) represents the fraction of unhealthy
people after n steps starting at rM when transitions are made according to f0(·).

Lemma 13. Let M ∈N and a�b ∈ (0�1), with a > b. Then aM + f0(a) > bM + f0(b).

Proof. Note that aM+f0(a)−bM−f0(b) = (g(a)−g(b))M , and the result follows from
the fact that g(·) is strictly increasing on (0�1).

Let hM
γ : (0�1) → (0�∞) be defined as

hM
γ (r) := (rM!)2((M − rM)!)2(

fγ(r)!
)2(

rM − fγ(r)
)!(M − rM − fγ(r)

)!M!
M − rM − fγ(r)

M − rM
�

This function is the continuous version of the transitions given by the matrix Q̄α+1
. In
particular, given γ ∈ R and r ∈ [0�1], the function hM

γ (r) represents the conditional prob-
ability of transition from state rM to state rM + fγ(r). With some abuse of notation, we
apply the factorial function to non-integer real numbers. In such cases, the factorial can
be interpreted as the corresponding gamma function, i.e., a! = 
(a+ 1).

Lemma 14. Let γ ∈ R and r ∈ (0�1). Then limM→∞ MhM
γ (r) = ∞. More precisely,

lim
M→∞

MhM
γ (r)√
M

= 1

r
√

2π
�
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Proof. We prove the result in two steps.

Step 1: γ = 0. Stirling’s formula implies that limn→∞(e−nnn+ 1
2
√

2π)/n! = 1. Given

r ∈ (0�1), to study hM
γ (r) in the limit, we use the approximation n! = e−nnn+ 1

2
√

2π. Sub-
stituting and simplifying, we get

MhM
0 (r) = M

(
(rM)!)2((

(1 − r)M
)!)2

M!(r2M
)!(((r − r2)M)!)2(

(1 − r)2M
)!(1 − r)

= M(rM)1+2rM(
(1 − r)M

)1+2(1−r)M
(1 − r)

√
2πM

1
2 +M

(
(1 − r)2M

)1+2(1−r)2M((
r − r2)M) 1

2 +(r−r2)M(
r2M

) 1
2 +r2M

=
√
M

r
√

2π
�

Step 2: Let γ ∈ R and r ∈ (0�1). Now

hM
0 (r)

hM
γ (r)

=
(
r2M − γ

)!(((r − r2)M + γ
)!)2(

(1 − r)2M − γ
)!(

r2M
)!(((r − r2)M)!)2(

(1 − r)2M
)!

(1 − r)2M

(1 − r)2M − γ
�

Applying Stirling’s formula again, the above expression becomes

(
r2M − γ

) 1
2 +r2M−γ

(
r2M

) 1
2 +r2M

((
r − r2)M + γ

)1+2(r−r2)M+2γ

((
r − r2)M)1+2(r−r2)M

×
(
(1 − r)2M − γ

) 1
2 +(1−r)2M−γ

(
(1 − r)2M

) 1
2 +(1−r)2M

(1 − r)2M

(1 − r)2M − γ
� (1)

To compute the limit of the above expression as M → ∞, we analyze the four frac-
tions above separately. Clearly, ((1−r)2M)/((1−r)2M−γ) → 1 as M → ∞. So we restrict
attention to the first three fractions. Take the first one,

(
r2M − γ

) 1
2 +r2M−γ

(
r2M

) 1
2 +r2M

=
(

1 − γ

r2M

) 1
2 ·

(
1 − γ

r2M

)r2M

· (r2M − γ
)−γ = A1 ·A2 ·A3�

where limM→∞A1 = 1 and limM→∞A2 = e−γ . Similarly, the second fraction decom-
poses as B1 ·B2 ·B3, where limM→∞B1 = 1, limM→∞B2 = e2γ , and B3 = ((r− r2)M +γ)2γ .
The third fraction can be decomposed as C1 ·C2 ·C3, where limM→∞C1 = 1, limM→∞C2 =
e−γ , and C3 = ((1 − r)2M − γ)−γ . Thus, the limit of expression (1) as M → ∞ reduces to

lim
M→∞

1

eγ
(
r2M − γ

)γ · e2γ((
r − r2)M + γ

)2γ · 1

eγ
(
(1 − r)2M − γ

)γ
= lim

M→∞

( ((
r − r2)M + γ

)2(
r2M − γ

)(
(1 − r)2M − γ

))γ

= 1�
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We are now ready to present the results regarding the properties of ȳM
B1 , which, relying

on Lemma 5, can be used to get properties of the other ȳMBα vectors.

Lemma 15. Let r ∈ (0�1) and m ∈N. Then there are r̄ ∈ (r�1) and ¯M ∈N with the following
property: for each M ≥ ¯M and each k< �rM�, there is k̄ ∈ [�rM�� �r̄M
] such that (ȳM

B1)k̄ >

Mm+1(ȳM
B1)k.

Proof. Fix r ∈ (0�1) and m ∈ N. We start with state k0 = �rM� − 1. Let ρ := 2m + 3 and
r̄ := gρ(r). Recall that functions f0 and g are such that r < r̄ < 1. Let M ′ be such that,
for each M ≥ M ′, r̄M ≤ M − 2. Let k̄ be the number of unhealthy people after ρ steps
according to function tr(·), starting from state k0. Clearly, k̄ > �rM� and, since k0 < rM ,
Lemma 13 implies that k̄ < r̄M . Thus, k̄ ∈ [�rM�� �r̄M
].

For each j ∈ {1� � � � � ρ}, let kj := kj−1 + tr(·). In particular, k̄ = kρ. Recall that, for each
r̂ ∈ (0�1), tr(r̂M) = �f0(r̂)
. Then, for each j ∈ {1� � � � � ρ}, there is γj ∈ (−1�0] such that

tr(kj−1)= fγj (
kj−1
M ). By Lemma 10, ȳM

B1 = MȳM
B1Q̄2
. Then

(
ȳM
B1

)
k1

= M

M−2∑
k=1

(
ȳM
B1

)
k
(Q̄2
)kk1 >M

(
ȳM
B1

)
k0
(Q̄2
)k0k1 = (

ȳM
B1

)
k0
MhM

γ1
(r)�

which, by Lemma 14, can be approximated by
√
M

r
√

2π
(ȳM

B1)k0 if M is large enough. Repeat-

ing the same argument for the other intermediate states that are reached in each of the
ρ steps, we get that there is Mk0 such that, for each M ≥Mk0 ,

(
ȳM
B1

)
k̄
>

M
ρ
2

(r
√

2π)ρ
(
ȳM
B1

)
k0

=Mm+1 M
1
2

(r
√

2π)ρ
(
ȳM
B1

)
k0

>Mm+1(ȳM
B1

)
k0
�

The proof for an arbitrary state k < �rM� − 1 is very similar; the only difference is that
more than ρ steps might be needed to get to a state k̄ ∈ [�rM�� �r̄M
]. Yet, the extra
number of steps makes the difference between (ȳM

B1)k and (ȳM
B1)k̄ even larger. Then it

suffices to define ¯M := max{M ′�maxk≤k0{Mk}}.

The following result is an immediate consequence of Lemma 15.

Corollary 1. Let r ∈ (0�1) and m ∈ N. Then there are r̄ ∈ (r�1) and ¯M ∈ N such that, for
each M ≥ ¯M ,

(i)
∑M−2

j=�rM�(ȳMB1)j > 1 − 1
Mm and

(ii) for each α such that M − 1 − α ≥ �r̄M
,
∑�r̄M


j=�rM�(ȳ
M
Bα)j∑�r̄M


j=1 (ȳMBα)j
> 1 − 1

Mm .

Proof. The proof of statement (i) is straightforward. Moreover, by Lemma 5, for each

α ∈ {2� � � � �M − 2} and each j ≤ M − 1 − α, (ȳMBα)j = (ȳM
B1 )j∑M−1−α

i=1 (ȳM
B1 ) i

. Then, for each α such
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that M − 1 − α ≥ �r̄M
, we have

�r̄M
∑
j=�rM�

(
ȳMBα

)
j

�r̄M
∑
j=1

(
ȳMBα

)
j

=

�r̄M
∑
j=�rM�

(
ȳM
B1

)
j

�r̄M
∑
j=1

(
ȳM
B1

)
j

and the proof of statement (ii) is also straightforward. The condition M − 1 − α ≥ �r̄M

is important, since ȳMBα ∈R

M−1−α.

Proposition 5. Let G ∈ G. Fix T I ∈ N and T II ∈ N. Let t̄ > t > T I + T II + 1 and let ht̄

be a history that starts with ht = g � � � gb. There are t̂ ∈ N and MG
1 ∈ N such that, for each

M ≥ MG
1 , if t > t̂ and I observe ht̄ , then it is sequentially rational for me to play the Nash

action at period t̄ + 1.

Proof. The logic of the proof is similar to that of Proposition 3. We divide the proof into
three cases for which we show that, after ht̄ , I believe that contagion is (rG�pG)-spread.
Then the result follows from Lemma 11.

The case t̄ = t, i.e., ht̄ = ht = g � � � gb, follows from Proposition 4.
Case 1. Suppose that ht̄ is a history of the form ht+1 = g � � � gbg, so t̄ = t + 1. Simi-

larly to the proof of Proposition 4, we are interested in my beliefs xt̄ ∈ R
M , but we start

studying xt̄−2 ∈ R
M−2, my intermediate beliefs given history ht̄ right before getting in-

fected. There is positive probability that the rogue seller who deviated in period 1 has

met the same buyer throughout the first two phases. Thus, xT
I+T II

1 > 0. Then, when

computing my intermediate beliefs xt̄−2 from xT
I+T II ∈ R

M−2, we can apply Lemma 10
with ȳ0

B1 = xT
I+T II

and get that limt→∞ ȳt
B1 = ȳM

B1 . Thus, if t̄ is large enough, xt̄−2, which

coincides with ȳ t̄−2−T I−T II

B1 , is very close to ȳM
B1 . In particular, by taking r ∈ (0�1), r ≥ rG,

and m = 1 in statement (i) of Corollary 1, we have that there are t ′ and M ′ such that, for
each t̄ > t ′ and each M >M ′,

M−2∑
j=�rM�

xt̄−2
j =

M−2∑
j=�rM�

(
ȳ t̄−2−T I−T II

B1

)
j
> 1 − 1

M
≥ pG�

Now we use xt̄−2 to compute xt̄ .

• After period t̄ − 1. I compute xt̄−1 by updating xt̄−2, conditioning on (i) I observed
b in period t̄−1 and (ii) at most M−1 people were unhealthy after t̄−1 (I observed
g at t̄). Let x̃t̄−1 be the belief computed from xt̄−2 by conditioning instead on (i) I
observed g in period t̄−1 and (ii) at most M−2 people are unhealthy. Clearly, xt̄−1

first-order stochastically dominates x̃t̄−1, in the sense of placing higher probability

on more people being unhealthy. Moreover, x̃t̄−1 coincides with ȳ t̄−1−T I−T II

B1 , which

also satisfies that
∑M−2

j=�rM�(ȳ
t̄−1−T I−T II

B1 )j > pG.
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• After period t̄. I compute xt̄ based on xt̄−1 and conditioning on (i) I observed g,
(ii) I infected my opponent by playing the Nash action at t̄, and (iii) at most M

people are unhealthy after t̄. Again, this updating leads to beliefs that first-order
stochastically dominate x̃t̄ , the beliefs we would obtain if we instead conditioned
on (i) I observed g and (ii) at most M − 2 people are unhealthy after t̄. Again, x̃t̄

coincides with ȳ t̄−T I−T II

B1 , which also satisfies that
∑M−2

j=�rM�(ȳ
t̄−T I−T II

B1 )j > pG.

Hence, contagion is (rG�pG)-spread given xt̄ .
Case 2. Suppose that ht̄ is a history of the form ht+α = g � � � gbg α� � � g, so t̄ = t + α.

Again, we start with xt̄−1−α ∈ R
M−1−α, my intermediate beliefs given history ht̄ right

before getting infected. Similarly to Case 1, relying on Lemma 10 with ȳ0
Bα = xT

I+T II ∈
R
M−1−α, we get that limt→∞ ȳtBα = ȳMBα . Thus, if t̄ is large enough, xt̄−1−α, which coin-

cides with ȳ t̄−1−α−T I−T II

B1 , is very close to ȳMBα . Now, by taking r ∈ (0�1), r ≥ rG, and m = 1
in statement (ii) of Corollary 1, we have that there are t ′′ and M ′′ such that, for each t̄ > t ′′
and each M >M ′′, for each α such that M − 1 − α ≥ �r̄M
,

�r̄M
∑
j=�rM�

(
ȳ t̄−1−α−T I−T II

Bα

)
j

�r̄M
∑
j=1

(
ȳ t̄−1−α−T I−T II

Bα

)
j

> 1 − 1
M

≥ pG�

Next we use φG(M), defined after Lemma 11. By Lemma 12, there is M ′′ such that, for
each M >M ′′, φG(M) < (1 − r̄)M . Suppose that M ≥ M ′′ and t̄ > t ′′. We distinguish two
subcases, depending on the value of α.

(a) M − 1 −α≥ �r̄M�. In this case, if we let t∗ := t̄ − 1 − α− T I − T II, we have

M−1−α∑
j=�rM�

xt̄−1−α
j =

M−1−α∑
j=�rM�

(
ȳt

∗
Bα

)
j
=

M−1−α∑
j=�rM�

(
ȳt

∗
Bα

)
j

1

=

�r̄M
∑
j=�rM�

(
ȳt

∗
Bα

)
j
+

M−1−α∑
�r̄M
+1

(
ȳt

∗
Bα

)
j

�r̄M
∑
j=1

(
ȳt

∗
Bα

)
j
+

M−1−α∑
�r̄M
+1

(
ȳt

∗
Bα

)
j

≥

�r̄M
∑
j=�rM�

(
ȳt

∗
Bα

)
j

�r̄M
∑
j=1

(
ȳt

∗
Bα

)
j

> pG�

Therefore,
∑M−1−α

j=�rM� x
t̄−1−α
j > pG. We can repeat the arguments of Case 1 to show that

my beliefs xt̄ first-order stochastically dominate xt̄−1−α, obtaining again that contagion
is (rG�pG)-spread given xt̄ .

(b) M − 1 −α< �r̄M�, Since φG(M) < (1 − r̄)M , we have α > M − 1 − �r̄M
 ≥
(1 − r̄)M >φG(M) and we have, by definition of φG(M), that I believe that contagion is
(rG�pG)-spread given xt̄ .
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Case 3. Now consider histories where, after getting infected, I observe a sequence of
actions that may include both g and b, i.e., histories starting with ht = g � � � gb and where
I faced b in one or more periods after getting infected. By definition, every observation
of b shifts my beliefs toward more people being unhealthy. Therefore, since the beliefs
in the two cases above are such that, after ht̄ , I believe that contagion is (rG�pG)-spread
given xt̄ , the same also holds in this third case.

To conclude the proof, just let MG
1 := max{M ′�M ′′} and t̂ := max{t ′� t ′′}.

5.3 Infection in other periods of Phase III

In Section 5.1 we proved that if I get infected at the start of Phase III, I will believe that
contagion is totally pG-spread. In Section 5.2 we proved that if I get infected late in
Phase III, I will believe that contagion is totally (rG�pG)-spread. Next we show that if I
get infected in other periods of Phase III, my beliefs will lie in between. In some sense,
as a function of the period in which I get infected, my beliefs will move “monotonically”
from the kind of beliefs characterized in Section 5.1 to those characterized in Section 5.2.

Proposition 6. Let G ∈ G and let M ≥ MG
1 . Fix T II ∈ N. There is T I

2 ∈ N such that, for
each T I ≥ T I

2 , it is sequentially rational for me to play the Nash action after each history
in which I get infected in Phase III.

Proof. The cases in which I get infected at the start of Phase III and late in Phase III are
covered by Proposition 3, Proposition 4, and Proposition 5. What remains to be shown is
that the same is true if I get infected at some intermediate period in Phase III. We prove
this for histories in Phase III of the form ht̄ = g � � � gbg. The proof can be extended to
include other histories, just as the proofs of the above propositions. We want to compute
my belief xt̄ after ht̄ . We first compute the intermediate beliefs xt̄−2.

Beliefs are computed using matrix Q̂2
 in Phase I and Q̄2
 in Phase III. We know from
Section 5.1 (the arguments in Proposition 3 that build upon Lemma 8) that by taking
T I large enough, we can make the intermediate beliefs xT

I+T II+1 ∈ R
M arbitrarily close

to (0� � � � �0�1). Since Q̄2
 satisfies Q1 and Q3, by Lemma 7, if I start Phase III with such

beliefs xT
I+T II+1, xt̄−2 first-order stochastically dominates ȳM

B1 . I still need to update my

beliefs from xt̄−2 to xt̄−1 and then from xt̄−1 to xt̄ . The arguments to show that the re-
sulting beliefs are such that I believe that contagion is (rG�pG)-spread are analogous to
those used when proving Case 1 in Proposition 4.

6. Off-path incentives at other histories

In this section, we discuss the incentives at histories not covered in the preceding sec-
tion. For the sake of brevity, the exposition here is informal. The incentives at the histo-
ries discussed here are straightforward after the foregoing analysis in Sections 4 and 5.
In Section 6.4, we conclude our analysis by specifying the order in which the different
parameters of the construction, M , T I, T II, and δ are fixed.
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6.1 Incentives after becoming rogue

6.1.1 A seller becomes rogue in period 1 Exposed and infected players believe that a
seller became rogue in period 1. Thus, the behavior of such a seller is important for the
off-path incentives of infected players.

Recall that the equilibrium strategies prescribe that a seller who turns rogue in pe-
riod 1 of the game plays a′

1 until the end of Phase I and then switches to the Nash action
forever. Upon deviating in period 1, the rogue seller knows that one buyer is exposed
and that this buyer will start playing the Nash action from the start of Phase II. More-
over, there is a T II

1 ∈N such that if T II ≥ T II
1 , this buyer will almost certainly infect all sell-

ers during Phase II. Then, from the start of Phase III, all infected sellers will be playing
the Nash action and, therefore, everybody will almost certainly be infected after period
T I + T II + 1. Now given the length T II of Phase II, there is T I

3 ∈ N such that, for each
T I ≥ T I

3 , the following statements hold:

• The time T I

T II is large enough so that the rogue seller will have an incentive to keep
deviating in Phase I, since his short-run gains in Phase I will be larger than the
potential losses in Phase II and Phase III. This is the case independently of the
discount factor δ ∈ (0�1), and the logic is analogous to that behind Lemma 11.

• The time T I

T II is large enough so that even if the rogue seller faces the on-path action
many times in Phase II, he still believes that, with high probability, M − 1 buyers
got exposed in Phase I and he has been repeatedly meeting the only remaining
healthy buyer in Phase II. Thus, regardless of what he observes after becoming
rogue in period 1, if he plays as prescribed by the strategy from that period onward,
he will start Phase III believing that, with very high probability, at most one buyer
is healthy:
– If he thinks that everybody is infected at the start of Phase III, then playing the

Nash action at the start of Phase III is optimal. In the remainder of Phase III, no
matter what actions he faces, he will always believe that, with very high prob-
ability, everybody is infected. This is so even after observing good behavior,
since after any such observation, he will believe that he has just infected the
last healthy opponent (this argument was discussed more formally during some
parts of the analysis in Section 5).

– Even if he thinks that there is one uninfected buyer, there is MG
2 ∈ N such that,

for each M ≥ MG
2 , the probability of meeting such a buyer in the given period

is so small that the potential gain the seller might get by facing her when not
playing Nash would not compensate the losses when facing any other buyer
(who would be playing the Nash action).

6.1.2 A player becomes rogue after period 1 The behavior of these players has not been
specified but, since no other player would ever assign positive probability to such a
player existing, their behavior is irrelevant for the incentives of other players.
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6.2 Incentives after facing deviations in Phases I and II

6.2.1 A buyer gets exposed in Phase I The strategy prescribes that, during Phase I, an
exposed buyer plays the on-path action and reverts to the Nash action at the start of
Phase II. Since deviations of buyers during Phase I are non-triggering, her incentives
at a given period of Phase I just depend on her expected payoff in that period. Since
the action profile played in Phase I has one-sided incentives, the exposed buyer could
profit only by deviating from the on-path action if she happened to meet the rogue seller.
Then there is MG

3 ∈ N such that, for each M ≥ MG
3 , the probability of meeting the rogue

seller in the given period is so small that the potential profit the buyer might get by fac-
ing him when deviating would not compensate the losses when facing any other seller.
Therefore, playing as if on path during Phase I is optimal for her.

Once Phase II starts, two things can happen:

(i) The buyer has observed an off-path action in every period of Phase I. Then she
knows that she has met the rogue seller in every period of Phase I and that no
other buyer is infected. Moreover, she knows that the rogue seller believes that,
almost certainly, he has infected all buyers in Phase I, and is playing Nash and
will spread the contagion in Phase III. Then there is T II

2 ∈ N such that, for each
T II ≥ T II

2 , she will have an incentive to play Nash in Phase II, since her short-run
gains in Phase II will be larger than the potential losses in Phase III. This is the
case independently of the discount factor δ ∈ (0�1) (the logic is analogous to that
of Lemma 11).

(ii) The buyer has observed the on-path action at least once in Phase I. In this case,
Phase II starts with at least two infected buyers and, regardless of the actions of
this buyer, contagion would spread during this Phase II. Thus, the incentives to
play Nash and make short-run gains during Phase II are even larger than in the
case above.

Finally, once Phase III starts, the buyer will believe that everybody is infected and
so she has the incentive to keep playing Nash. As before, observations of good behavior
during Phase III would not change these beliefs, because after every such observation,
the buyer would think that she has just infected the last healthy opponent.

6.2.2 A player gets infected in Phase II Next consider players who get infected in Phase
II. The strategy prescribes that these players, buyers or sellers, should switch to play
Nash forever. These players would believe that the contagion is widely spread, the logic
being very similar to the case of a player getting infected at the start of Phase III, dis-
cussed in Section 5.1. In particular, a result analogous to Proposition 3 holds: Given T II

and M > 2, there is T I
4 ∈ N such that, for each T I ≥ T I

4 , it is sequentially rational for a
player to play Nash after every history in which he got infected by observing a triggering
action in Phase II.

6.2.3 A non-triggering action is played in Phase I The equilibrium strategy prescribes
that these deviations are ignored. Thus, both the seller observing this deviation and the
buyer playing it believe that his opponent will continue to play as if on path. Given that
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the opponent will indeed ignore the deviation, the incentives for both players coincide
with the on-path ones.

6.3 Incentives after histories with multiple deviations

A complete analysis of off-path incentives requires the study of histories that involve
multiple off-path deviations. At some of these histories, behavior has not yet been spec-
ified explicitly. Since these histories are of secondary importance, we discuss them in
Appendix B.2, which also contains a classification of all off-path histories that can arise
and describes the relevant arguments for the incentives at each of them.

6.4 Choice of the parameters

To establish the intermediate results used in the proof of Proposition 2, we have used
bounds on the different parameters M , T I, T II, and δ. Thus, it is important to specify
the order in which they have to be chosen so that all the results can be applied.

(i) Population size: ¯M . The first parameter to be fixed is ¯M . Recollecting the differ-
ent bounds obtained for M , we have MG

1 in Proposition 5, MG
2 in Section 6.1.1,

and MG
3 in Section 6.2.1. Then it suffices to take ¯M ≥ max{MG

1 �MG
2 �MG

3 �3}. Note
that M just depends on the payoffs of G, so Proposition 2 is not a limiting result
on M .

(ii) Length of Phase II: T II. Recollecting the different bounds for T II, we have T II
1 in

Section 6.1.1 and T II
2 in Section 6.2.1. Then it suffices to take T II ≥ max{T II

1 �T II
2 }.

(iii) Length of Phase I: T I. Once T II has been fixed, we pick T I. Regarding the bounds
for T I, we have T I

1 in Proposition 3, T I
2 in Proposition 6, T I

3 in Section 6.1.1, and
T I

4 in Section 6.2.2. The length bT II must be fixed already because some of these
bounds depend on T II. Then it suffices to take T I ≥ max{T I

1�T
I
2�T

I
3�T

I
4}.

(iv) Discount factor ¯δ. The last parameter to be chosen is the discount factor, whose
role is twofold: to ensure that deviations from the equilibrium path are not prof-
itable and to ensure that σ̄ approximates the target payoff v. To this end, bounds
δ1 and δ2 are given in Section 3.4. Thus, once ¯M , T I, T II, and the degree of ap-
proximation ε have been chosen, it suffices to take ¯δ ≥ max{δ1� δ2}.20

7. Discussion

7.1 The role of calendar time

We implicitly assume that all players know when the game started and can perfectly
coordinate using calendar time. Although this is a standard and quite innocuous as-
sumption in game theory, it turns out to be more substantive in our setting.

20It is worth highlighting that Lemma 11 is crucial. It states that if an unhealthy player believes that
contagion is (r�p)-spread with r ≥ rG and p≥ pG, then, regardless of discount factor, he will find it optimal
to play the Nash action. This independence with respect to the discount factor δ is what allows us to choose
δ last and ensure that this choice does not interfere with the results related to the off-path incentives.
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Commonly known start of the game. The fact that all players know that the game
starts at time t = 1 is important in our construction. When a player is required to pun-
ish a deviation by playing the Nash action, she believes that enough people are already
infected, which makes the Nash action optimal. Here, we use the fact that players know
how long the game has been played and can, therefore, deduce that enough people are
infected. An interesting line of investigation may be to consider a model of repeated in-
teractions in which the start date is not commonly known. For instance, one possible
approach would be to consider a setting where players enter and leave the game as time
unfolds and have limited information about past history. A detailed analysis of this issue
is beyond the scope of this paper.

Perfectly synchronized interactions. In our setting, it is commonly known that in
every period, all players participate. One could consider alternate models in which only
some players are matched in every period or in which matches take place with some
probabilities in a continuous time setting. An analysis of this is beyond the scope here.
We think that synchronized play is not crucial, and that a result like Proposition 2 may
still hold.21

7.2 Introduction of noise

Since players have strict incentives, our equilibria are robust to the introduction of some
noise in the payoffs. Suppose, however, that players were constrained to make mistakes
with probability at least ε > 0 at every history. Our equilibrium construction is not ro-
bust to this modification. Our assumption that early deviations are believed to be more
likely ensures that when players are required to punish, they think that the contagion
has spread enough for punishing to be optimal. If mistakes occur with positive and
equal probability in all periods, this property is lost.

7.3 Alternative systems of beliefs

What is important for our delayed grim trigger strategies to work is that an infected
player believes that almost everybody was infected after Phase I. We can guarantee this
with our assumption that a player who observes a triggering action believes that some
player from community 1 deviated in the first period of the game. However, our con-
struction would work as long as the first triggering deviation is believed to have hap-
pened early enough in the game, not necessarily in the first period. We work with the
extreme case for tractability.

Our extreme belief also yields the weakest bound on M . With other assumptions, for
a given game G ∈ G and given T I and T II, the threshold population size ¯M required to
sustain cooperation would be weakly greater than the threshold we obtain. Why is this
so? Formally, on getting infected at period t, let a vector xt ∈ R

M denote my belief about
the number of people who are not healthy in the other community at the end of period t,

21Some “problematic” histories of our setting would not arise under asynchronous matching; e.g., there
could be no history in which a buyer starts Phase II knowing that she and the rogue seller have only faced
each other in Phase I.
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where xtk denotes the probability of exactly k people not being healthy. Then my belief
xt can be expressed as xt = ∑t

τ=1 μ(τ)y
t(τ), where μ(τ) is the probability I assign to the

first deviation having occurred at period τ, and yt(τ) is my belief about the number of
people who are not healthy if I know that the first deviation took place at period τ. Since
contagion is not reversible, every elapsed period of contagion results in a weakly greater
number of infected people. Thus, my belief if I think the first infection occurred at t = 1
first-order stochastically dominates my belief if I think the first infection happened later,
at any t > 1, i.e., for each τ and each l ∈ {1� � � � �M}�∑M

i=l y
t
i (1) ≥ ∑M

i=l y
t
i (τ). Now consider

any belief x̂t that I might have had with differently chosen trembles. This belief will be
some convex combination of the beliefs yt(τ) for τ = 1� � � � � t. Since we know that yt(1)
first-order stochastically dominates yt(τ) for all τ > 1, it follows that yt(1) will also first-
order stochastically dominate x̂t . Therefore, the belief system in this paper is the one for
which players will think that the contagion is most widespread at any given time.

Appendix A: Proofs omitted in the text

A.1 Proofs of results in Section 4.1

Proof of Lemma 1. So as to prove a property for μ̄, we need to study the sequences
{σn}n∈N and {μn}n∈N. Consider the following three events:

• ETr := “there has been a triggering action”

• E1 := “a seller played a triggering action in period 1”

• E0 := “no seller played a triggering action in period 1.”

For each n ∈ N, we use Pn to denote probabilities of different events given σn. Note that
E1 and E0 are disjoint events and that ETr = E1 ∪E0. Since player i is in the exposed or
infected mood at ht , Pn(E

Tr|ht ) = 1 for each n ∈ N. We are interested in Pn(E
1|ht ) and

Pn(E
0|ht )= 1 − Pn(E

1|ht ). We want to prove that limn→∞ Pn(E
1|ht ) = 1. Note that

Pn
(
E0|ht

)
Pn

(
E1|ht

) =

Pn
(
E0 ∩ ht

)
Pn

(
ht

)
Pn

(
E1 ∩ ht

)
Pn

(
ht

) = Pn
(
E0 ∩ ht

)
Pn

(
E1 ∩ ht

) = 1 − Pn
(
E1 ∩ ht

)
Pn

(
E1 ∩ ht

) �

and, therefore, to prove that Pn(E
1|ht ) converges to 1, we can equivalently prove that

limn→∞(1 −p1
n)/p

1
n = 0, where p1

n = Pn(E
1 ∩ ht).

If t = 0, no player can be exposed or infected after ht , so there is nothing to prove. If
t = 1, no player can be infected after ht and only a buyer can be exposed after ht , which
would happen only if she has faced a triggering action in period 1. Hence, for such a
buyer, Pn(E

1|ht ) = 1 for every n ∈ N. If t > 1 and player i has faced a triggering action in
period 1, then also Pn(E

1|ht )= 1 for every n ∈N.
Suppose now that t > 1 and that player i has neither faced a triggering action in

period 1 nor a non-triggering action in ht . The case with non-triggering actions in ht is
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discussed at the end. Given M , t, and ht , let F1(M� t�ht) denote the number of different
ways to match the 2M players through periods 1 to t. Next, we construct a lower bound
for p1

n and an upper bound for 1 −p1
n.

We start by computing a lower bound on the probability of the most unlikely com-
plete history (not just personal history) compatible with E1 ∩ ht with the following two
properties: (i) the only deviation from σ̄ by a healthy or exposed player is made by a
seller in period 1 and (ii) at most one player deviates from σ̄ at any given period. First,
since matching is uniform, 1

F1(M�t�ht )
is the probability of the corresponding matches

having been realized. Then, since a seller deviated in period 1, such a deviation had
probability εnn

D (recall that D+ 1 is the number of actions available to sellers in the stage
game). By (ii), no one else deviated in period 1, which has probability (1 − εn)

2M−2. In
each of the remaining t − 1 periods, the most unlikely profile that is compatible with
(i) and (ii) is that a rogue player deviated and that no one else did.22 The probability of

such a profile at a period τ is bounded below by ε
1/τ
n
D (1 − ε

1/nτ
n )2M−2; the second term re-

flects that no other player deviated and it represents a lower bound since 1 − ε
1/nτ
n is the

probability that an infected player does not deviate (and infected players are the most
likely ones to do so). Thus, the probability of the complete history under discussion is
bounded below by

1

F1(M�t�ht
) εnn
D

(1 − εn)
2M−2

t∏
τ=2

(
ε

1/τ
n

D

(
1 − ε

1/nτ
n

)2M−2
)

≥ 1

F1(M�t�ht
)G(n)

εn+1
n

Dt �

where limn→∞ G(n) = 1. Since the above probability corresponds to just one of the pos-
sible histories compatible with E1 ∩ ht , we have that

p1
n ≥ 1

F1(M�t�ht
)G(n)

εn+1
n

Dt �

Now we do the opposite exercise and compute an upper bound on the probability of the
most likely complete history compatible with E0 ∩ ht . Since such a history must con-
tain a triggering action in a period different from period 1, the associated probability is

bounded above by ε2n
n
D , which is the probability of a triggering action in period 2 (and for-

getting about all other terms dealt with in the case above, since all of them are bounded
above by 1). Thus, we have that 1 −p1

n can be bounded by

1 −p1
n ≤ F∗(M�t�ht�D

)ε2n
n

D
�

22Recall that deviations by infected players are more likely than deviations by rogue players and that (i)
requires that no healthy or exposed players deviate in ht after period 1.
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whereF∗(M� t�ht�D) denotes the number of complete histories compatible with E0 ∩ht .
Therefore, we have

1 −p1
n

p1
n

≤
F∗(M�t�ht�D

)ε2n
n

D

1

F1(M�t�ht
)G(n)

εn+1
n

Dt

= F∗(M�t�ht�D
)
F1(M�t�ht

)
Dt−1

G(n)
· ε2n

n

εn+1
n

�

Since limn→∞ G(n)= 1 and all other terms not including εn are constant in n,

lim
n→∞

1 −p1
n

p1
n

= 0�

which implies that limn→∞ Pn(E
1|ht ) = 1. Yet, one has to ensure that there exists a com-

plete history compatible with E1 ∩ ht satisfying (i) and (ii), but this readily follows from
the fact that the σn strategies are completely mixed (and all histories have positive prob-
ability of being realized).

Finally, suppose that the player i has faced some triggering action in ht . These ac-
tions can only be made by healthy or exposed players and have no impact on the fu-
ture behavior of other players. Thus, the computations of the bounds above for p1

n and
1 − p1

n can be immediately extended by requiring that the studied histories contain the
observed non-triggering actions. Since this inclusion would be in the histories associ-
ated with both E1 and E0, with the same probabilities in both cases, the corresponding

terms would cancel out when computing 1−p1
n

p1
n

.

Proof of Lemma 2. Suppose that ht has probability 0 conditional on a seller playing a
triggering action in period 1 and play proceeding according to σ̄ thereafter. Lemma 1
still guarantees that player i puts probability 1 on E1. Yet, additional deviations from σ̄

are needed to explain ht .
We start with statements (i) and (ii). If player i is a buyer and has faced a triggering

action before period T I + 2, since no seller can be in the infected mood before that pe-
riod, then either a healthy or a rogue seller made that deviation. Since deviations by a
rogue seller become infinitely more likely as n goes to ∞, in the limit player i will put
probability 1 on such a deviation coming from the rogue seller. If player i is a seller and
has faced some non-triggering action in Phase I, then these deviations from σ̄ are errors
by definition.

Consider now statement (iii). Since player i did not get exposed in period 1, with
positive probability a buyer became exposed in period 1 and then infected some seller in
period T I + 2. Thus, for each n ∈N, player i puts positive probability on the event “there
is at least one infected player in each community after period T I + 1.” Suppose now that
ht has probability 0 conditional on a seller playing a triggering action in period 1 and
play proceeding according to σ̄ thereafter except for possibly some deviation already
covered by statements (i) and (ii). Consider the following three events:

• AAd := “ht cannot be explained with a single deviation in period 1 and some devi-
ation covered by statements (i) and (ii)”
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• A1 := “all additional deviations have been made by infected players (errors)”

• A0 := “at least one additional deviation has been made by a healthy or rogue
player.”

The arguments are now similar to those in the proof of Lemma 1. We want to show that
limn→∞ Pn(A

1|ht ) = 1. The construction again relies on the computation of lower and
upper bounds for Pn(A

1 ∩ ht) and Pn(A
0 ∩ ht), respectively.

Setting aside terms that are constant in n or that converge to 1 as n goes to ∞, the
lower bound on Pn(A

1 ∩ht) would be on the order of εnn (deviation by a seller in period 1)

multiplied by
∏t

τ=T I+2 ε
1/nτ
n (a deviation by an infected seller in each and every period

from T I + 2). Thus, this lower bound would be on the order of

εnn ·
t∏

τ=T I+2

ε
1/nτ
n ≥ εnn ·

t∏
τ=1

ε
1/n
n = εnn · εt/nn �

Alternatively, the upper bound on Pn(A
0 ∩ ht) would arise when considering that,

apart from the deviation by a seller in period 1, there was only one additional deviation,
which was made by a rogue player at period t (late deviations by rogue players are the
most likely ones). Then an upper bound can be given by εnn ·ε1/t

n . Hence, since the terms

εnn in the two bounds cancel out and, as n goes to ∞, ε1/t
n becomes infinitely smaller than

ε
t/n
n , we have

lim
n→∞

Pn
(
A0 ∩ ht

)
Pn

(
A1 ∩ ht

) = 0�

Therefore, limn→∞ Pn(A
1|ht ) = 1.

A.2 Proofs of general results for contagion matrices (Section 4.3.1)

Proof of Lemma 3. Let λ be the largest eigenvalue and let x be a left eigenvector asso-
ciated with it. Suppose k is the first coordinate of x such that xk �= 0 and assume that
xk > 0 (the case xk < 0 is analogous). We want to prove that xi > 0 for all i ≥ k. The proof
is done by induction on i − k. The case i − k = 0 follows by assumption. Suppose that
the result is true for i− k= j, i.e., xi = xk+j > 0. We want to show that xi+1 = xk+j+1 > 0.

Clearly, since Q is a contagion matrix, the properties of x and λ imply that (xQ)i+1 =
xiQi�i+1 + xi+1Qi+1�i+1 = λxi+1. Then xiQi�i+1 = (λ − Qi+1�i+1)xi+1. By the induction
hypothesis, xi > 0, and since Q is a contagion matrix, Qi�i+1 > 0. Then xiQi�i+1 > 0 and
since λ≥Qi+1�i+1, we have λ >Qi+1�i+1 and xi+1 > 0.

Proof of Lemma 4. Let l be the largest index such that Qll = λ > 0, and let y be a non-
negative left eigenvector associated with λ. We claim that, for each i < l, yi = 0. Suppose
not and let i be the largest index smaller than l such that yi �= 0. If i < l − 1, we have
that yi+1 = 0 and since Qi�i+1 > 0, we get (yQ)i+1 > 0, which contradicts that y is an
eigenvector associated with λ. If i = l − 1, then (yQ)l ≥ Qllyl + Ql−1�lyl−1 > Qllyl = λyl,
which, again, contradicts that y is an eigenvector associated with λ. Then we can restrict
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attention to matrix Q�(l−1). Now, λ is also the largest eigenvalue of Q�(l−1), but, by def-
inition of l, only one diagonal entry of Q�(l−1) equals λ and, hence, its multiplicity is 1.
Then z ∈ R

k−(l−1) is a left eigenvector associated with λ for matrix Q�(l−1) if and only if
(0� � � � �0� z) ∈R

k is a left eigenvector associated with λ for matrix Q.

Proof of Lemma 5. Let l < k and let z := (y
Q
1 � � � � � y

Q
k−l) ∈ R

k−l. Since a contagion ma-
trix is upper triangular, we have that, for each, j ∈ {1� � � � �k− l}, (zQl
)j = (yQQ)j . There-
fore, z is a left eigenvector associated with the largest eigenvalue of Q, which, therefore,
is also the largest eigenvalue of Ql
. Then, by definition, yQl
 = z

‖z‖ = z∑k−l
i=1 y

Q
i

.

Proof of Lemma 6. Clearly, since Q is a contagion matrix, if t is large enough, all the
components of yt are positive. Then, for the sake of exposition, we assume that all the
components of y are positive. We distinguish two cases.

The matrix Q satisfies Property Q1. This part of the proof is a direct application of

the Perron–Frobenius theorem. First, note that yQt

‖yQt‖ can be written as y(Qt/λt)
‖y(Qt/λt)‖ . Now

using, for instance, Theorem 1.2 in Seneta (2006), we have that Qt

λt
converges to a matrix

that is obtained as the product of the right and left eigenvectors associated to λ. Since in
our case the right eigenvector is (1�0� � � � �0), Qt

λt
converges to a matrix that has yQ in the

first row and with all other rows being the zero vector. Therefore, the result follows from
the fact that y1 > 0.

The matrix Q satisfies Property Q2. We show that, for each i < k, limt→∞ yti = 0. We
prove this by induction on i. Let i = 1. Then, for each t ∈N,

yt+1
1

yt+1
k

= Q11y
t
1∑

l≤k

Qlky
t
l

<
Q11y

t
1

Qkky
t
k

≤ yt1
ytk

�

where the first inequality is strict because yk−1 > 0 and Qk−1�k > 0 (Q is a contagion

matrix); the second inequality follows from Property Q2. Hence, the ratio
yt1
ytk

is strictly

decreasing in t. Moreover, since all the components of yt lie in [0�1], it is not hard to see
that, as far as yt1 is bounded away from 0, the speed at which the above ratio decreases is
also bounded away from 0.23 Therefore, limt→∞ yt1 = 0. Suppose that the claim holds for
each i < j < k− 1. Now

yt+1
j

yt+1
k

=

∑
l≤j

Qljy
t
l

∑
l≤k

Qlky
t
l

<

∑
l≤j

Qljy
t
l

Qkky
t
k

=
∑
l<j

Qlj

Qkk

ytl
ytk

+ Qjj

Qkk

ytj

ytk
≤

∑
l<j

Qlj

Qkk

ytl
ytk

+ ytj

ytk
�

23Roughly speaking, this is because the state k will always get some probability from state 1 via the in-
termediate states, and this probability will be bounded away from 0 as far as the probability of state 1 is
bounded away from 0.



1428 Deb and González-Díaz Theoretical Economics 14 (2019)

By the induction hypothesis, for each l < j, the term
ytl
ytk

can be made arbitrarily small

for large enough t. Then the first term in the above expression can be made arbitrarily

small. Hence, it is easy to see that, for large enough t, the ratio
ytj
ytk

is strictly decreasing

in t. As above, this can happen only if limt→∞ ytj = 0.

Proof of Lemma 7. For each i ∈ {1� � � � �k}, let ei denote the ith element of the canon-
ical basis in R

k. By Property Q1, Q11 is larger than any other diagonal entry of Q. Let
yQ be the unique nonnegative left eigenvector associated with Q11 such that ‖yQ‖ = 1.
Clearly, yQ1 > 0 and, hence, {yQ�e2� � � � � ek} is a basis in R

k. With respect to this basis,
matrix Q is of the form ⎛

⎜⎝Q11 0

0 Q�1

⎞
⎟⎠ �

Now, we distinguish two cases.
The matrix Q�1 satisfies Property Q2. In this case, we can apply Lemma 6 to Q�1 to

get that, for each nonnegative vector z ∈ R
k−1 with z1 > 0, limt→∞

zQt
�1

‖zQt
�1‖

= (0� � � � �0�1).

Now let y ∈ R
k be the vector in the statement of this result, since y is very close to

(0� � � � �0�1). Then using the above basis, it is clear that y = αyQ + v, with α ≥ 0 and
v ≈ (0� � � � �0�1). Let t ∈N. Then, for each t ∈N,

yt = yQt∥∥yQt
∥∥ = λtαyQ + vQt∥∥yQt

∥∥ =
λtαyQ + ∥∥vQt

∥∥ vQt∥∥vQt
∥∥∥∥yQt

∥∥ �

Clearly, ‖yQt‖ = ‖λtαyQ + ‖vQt‖ vQt

‖vQt‖‖, and since all the terms are positive,

∥∥yQt
∥∥ = ∥∥λtα∥∥∥∥yQ∥∥ + ∥∥vQt

∥∥∥∥∥∥ vQt∥∥vQt
∥∥
∥∥∥∥ = ∥∥λtα∥∥ + ∥∥vQt

∥∥
and, hence, we have that yt is a convex combination of yQ and vQt

‖vQt‖ . Since v ≈
(0� � � � �0�1) and vQt

‖vQt‖ → (0� � � � �0�1), it is clear that, for each t ∈ N, vQt

‖vQt‖ first-order

stochastically dominates yQ in the sense of more people being unhealthy. Therefore,
yt will also first-order stochastically dominate yQ.

The matrix Q�1 satisfies Property Q1. By Q1, the first diagonal entry of Q�1 is
larger than any other diagonal entry. Let yc�1 be the unique associated nonnegative
left eigenvector such that ‖yc�1‖ = 1. It is easy to see that yc�1 first-order stochastically
dominates yQ; the reason is that yc�1 and yQ are the limit of the same contagion pro-
cess, with the only difference that the state in which only one person is unhealthy is
known to have probability 0 when obtaining yc�1 from Q�1. Clearly, y

c�1
2 > 0 and, hence,
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{yQ� yc�1� e3� � � � � ek} is a basis in R
k. With respect to this basis, the matrix Q is of the form⎛

⎜⎜⎜⎜⎜⎝
Q11 0 0

0 Q22 0

0 0 Q�2

⎞
⎟⎟⎟⎟⎟⎠ �

Again, we can distinguish two cases.

• The matrix Q�2 satisfies Property Q2. In this case, we can repeat the arguments

above to show that yt is a convex combination of yQ, yc�1 , and vQt

‖vQt‖ . Since both

yc�1 and vQt

‖vQt‖ first-order stochastically dominate yQ, yt also does.

• The matrix Q�2 satisfies Property Q1. Now we would get a vector yc�2 , and the
procedure would continue until a truncated matrix satisfies Property Q2 or until
we get a basis of eigenvectors, one of them being yQ and all the others first-order
stochastically dominating yQ. In both situations, the result immediately follows
from the above arguments.

A.3 Proofs of results in Section 5

Proof of Lemma 11. Let G ∈ G, M > 1, δ ∈ (0�1), and r ∈ (0�1). Consider game GM
δ .

Let k ∈ {1�2} and let i ∈ Ck be a player who is unhealthy after some history ht̄ , with
t̄ > T I + T II. Suppose that exactly �rM� people are infected in each community. Given
σi ∈ �i, the payoff associated with the continuation strategy σi|ht̄ can be decomposed
as (1 − δ)(ut̄+1 + V (σi� r�M�δ)), where ut̄+1 denotes the expected payoff in period t̄ + 1
and V (σi� r�M�δ) denotes the (expected) sum of discounted continuation payoffs from
period t̄ + 2 onward. Let σ∗

i be a maximizer of V (σi� r�M�δ) for given r, M , and δ. Then
define

�(r�M�δ) := V
(
σ∗
i � r�M�δ

) − V (σ̄i� r�M�δ)�

the difference between the (expected) sums of discounted continuation payoffs asso-
ciated with σ∗

i and σ̄i (which prescribes to play the Nash action). We first establish a
claim that is a consequence of the fact that contagion spreads exponentially fast during
Phase III.

Claim 1. Let G ∈ G. There is ŪG ∈ R such that, for each r > 1
2 , each M > 1, and each

δ ∈ (0�1), if �rM�> M
2 + 1, then �(r�M�δ)≤ ŪG.

Proof. Consider a situation in which there are k unhealthy players in each community
playing the Nash action in a given period t in Phase III and, hence, less than M − k

healthy players. Then let P(k�M) be the probability that there are more than M−k
2

healthy players in each of the communities at the end of period t. We want to show
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that if k > M
2 , then P(k�M) < 1

2 . Clearly, P(k�M) is strictly decreasing in k, so it suf-
fices to show that P(M2 �M) ≤ 1

2 . We want to show that the probability that more than
M−M

2
2 = M

4 players remain healthy is not larger than 1
2 .

Recall that the transition matrix in Phase III, S̄ ∈ MM (defined in Section 4.4), is such
that for each pair k� l ∈ {1� � � � �M}, S̄kl is 0 unless k ≤ l ≤ 2k, in which case

S̄kl = (k!)2((M − k)!)2(
(l − k)!)2

(2k− l)!(M − l)!M!
and, hence,

S̄M
2 l =

(
M

2
!
)2((

M − M

2

)
!
)2

((
l − M

2

)
!
)2(

(M − l)!)2
M!

�

The above probabilities are symmetric in the sense that transitioning from M
2 to M

2 + α

is as likely as transitioning from M
2 to M −α. Thus, for each transition that results in less

than M
4 new infections, there is an equally likely transition that delivers more than M

4 .
Thus, the probability that more than M

4 players in each community remain healthy is
not larger than 1

2 , and so P(k�M) < 1
2 whenever k> M

2 .
Now recall that �(r�M�δ) = V (σ∗

i � r�M�δ) − V (σ̄i� r�M�δ), defined in the proof of
Lemma 11, is the difference between the (expected) sums of discounted continuation
payoffs from period t̄+2 onward associated with σ∗

i and σ̄i (which prescribes to play the
Nash action). Given that �rM�> M

2 +1, the computation behind �(r�M�δ) assumes that
there are at least �rM� > M

2 + 1 unhealthy players in each community. Thus, regardless
of the action of player i in period t̄+1, more than M

2 unhealthy players will be playing the
Nash action. Therefore, by the above result regarding the P(k�M) probabilities, there is
p̂ such that P(�rM� − 1�M) ≤ p̂ < 1

2 . We start by computing the probability of meeting
a healthy player in future periods.

• Period t + 1. Regardless of the action chosen by player i in period t, the probability
that less than half of the healthy players got infected in period t is at most p̂ . Then
the probability of meeting a healthy opponent in period t + 1 is at most

p̂(1 − r)+ (1 − p̂)
1 − r

2
<

1 − r

2
+ p̂(1 − r)= (1 − r)

(
1
2

+ p̂

)
�

• Period t + 2. Similarly, the probability of meeting a healthy opponent in period

t + 2 is at most p̂(p̂(1 − r)+ (1 − p̂) 1−r
2 )+ (1 − p̂)

p̂(1−r)+(1−p̂) 1−r
2

2 , which reduces to

p̂2(1 − r)+ 2p̂(1 − p̂)
1 − r

2
+ (1 − p̂)2 1 − r

4
= (1 − r)

(
1
2

+ p̂

)2
�

• Period t+τ. In general, regardless of the actions chosen by player i, the probability
of meeting a healthy opponent in period t + τ is less than (1 − r)( 1

2 + p̂)τ .
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We turn to the computation of �(r�M�δ) = V (σ∗
i � r�M�δ) − V (σ̄i� r�M�δ). Suppose

the payoffs in G are such that (i) the payoff loss from deviating from the strict Nash a∗ is
at least ¯l > 0 and (ii) the maximal possible gain from not playing according to a∗ against
an opponent who is not playing according to a∗ is at most m̄. Then we have

�(r�M�δ) ≤
∞∑
τ=1

(1 − r)

(
1
2

+ p̂

)τ

δτm̄−
(

1 − (1 − r)

(
1
2

+ p̂

)τ)
δτ¯l

≤
∞∑
τ=1

(1 − r)

(
1
2

+ p̂

)τ

δτm̄ ≤ m̄

∞∑
τ=1

(
1
2

+ p̂

)τ

�

Since 1
2 + p̂ < 1, the above series converges. Thus, if we define ŪG := m̄

∑∞
τ=1(

1
2 + p̂)τ ,

the result follows.

We can use Claim 1 to now prove the lemma. Claim 1 captures the fact that once the
contagion has infected half of the population, no matter how patient a player is, there is
not much to gain by slowing down the contagion (regardless of the value of M).

Now suppose that player i believes that contagion is (r�p)-spread and chooses a con-
tinuation strategy in which he does not play the Nash action in period t̄. Then we have
the following possibilities.

(i) Player i meets an unhealthy player. This event has probability at least rp, player i
incurs some loss ¯l > 0 by not playing Nash, and does not slow down the contagion.

(ii) There are two cases in which player i can meet a healthy player:

• Case 1. At least rM people are unhealthy and player i meets a healthy player.
This event has probability at most 1 − r.

• Case 2. At most rM people are unhealthy and player i meets a healthy player.
This event has probability at most 1 −p.

In both cases above, player i makes some gain m̄ in the current period and, pro-
vided that �rM�> M

2 + 1, at most ŪG in the future.

Hence, the gain from not playing the Nash action instead of doing so is bounded above
by

(1 −p)(m̄+ ŪG)+ (1 − r)(m̄+ ŪG)− rp¯l�
Since m̄, ¯l, and ŪG just depend on the stage game G, there exist pG ∈ (0�1) and rG ∈
(0�1) such that, for each p ≥ pG and each r ≥ rG, we have that the above expression is
negative and, moreover, �rM� > M

2 + 1 for all M > 2 (so that we can rely on bound ŪG).
Thus, for such values, it is sequentially rational for player i to play the Nash action.
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