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Predictions under common knowledge of payoffs may differ from those under ar-

bitrarily, but finitely, many orders of mutual knowledge; Rubinstein’s (1989) Email

game is a seminal example. Weinstein and Yildiz (2007) showed that the discon-

tinuity in the example generalizes: for all types with multiple rationalizable (ICR)
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quence whose term λn is the probability players attach to (n− 1)th-order belief in

rationality. We find that Weinstein and Yildiz’s discontinuity remains when λn is
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1. Introduction

An extensive literature has taught us that small perturbations to players’ beliefs may in-
duce large changes in our strategic predictions. In particular, Rubinstein’s email game
(detailed below) is a seminal example along these lines: it showed that predictions un-
der common knowledge of payoffs may differ from those under arbitrarily, but finitely,
many orders of mutual knowledge. That is, if I know that you know that I know, etc.,
what the payoffs are, but this chain breaks after finitely many levels, some outcomes
that would be rationalizable under full common knowledge will be nonrationalizable
under this partial knowledge. Weinstein and Yildiz (2007) showed that the discontinu-
ity in the example generalizes: for any type with multiple rationalizable actions, there
are types with very similar beliefs that have a unique rationalizable action. We call this
the “WY-discontinuity.” The notion of “small” changes in beliefs, i.e., the topology on
types, is of course highly relevant here: we use here the product topology, as in Wein-
stein and Yildiz (2007). The significance of this choice is that arbitrary changes in very
high-order beliefs are measured as small. Alternatively, recent papers such as Chen et al.
(2010) have shown that requiring uniform convergence of belief hierarchies does imply
convergence of strategic behavior.

The main result of Weinstein and Yildiz (2007) uses the solution concept of interim
correlated rationalizability (ICR), which assumes common belief in rationality. In this
paper we ask: what happens to the WY-discontinuity if we weaken this assumption?
Specifically, we weaken ICR to the more permissive interim correlated λ-rationalizability
(ICRλ) where λ= (λn)n∈N is a sequence of probabilities with the interpretation that λn is
the reliability that players attach to nth-order belief in rationality; ICR itself would be the
special case that λ= (1�1� � � � ). The answer is twofold: when each element λn is above a
threshold close enough to 1, we find that WY-discontinuity remains (Proposition 5), but
when (λn)n∈N → 0 as n→ ∞ we find that continuity is restored (Proposition 6). That is,
when common belief in rationality breaks down almost completely at high orders, the
continuity of behavior with respect to perturbations of belief hierarchies is restored. As
we discuss in Section 3.2, the ICRλ concept is very flexible; as λ varies it covers concepts
close to ICR as well as those much further away (such as rationality without any mutual
belief in rationality).

This restoration of continuity is important, because, as discussed in Weinstein and
Yildiz (2007), the WY-discontinuity has profound implications for the large applied lit-
erature on equilibrium refinements. When the discontinuity obtains, all nontrivial re-
finements are nonrobust to the introduction of incomplete information, or to changes
in the assumptions on players’ information. Here, we show that some (but not all) relax-
ations of common knowledge of rationality restore continuity, and hence the possibility
of robust refinements.

In addition to our main results in Propositions 5 and 6, we also prove some stan-
dard robustness properties of ICRλ. We show that different types that induce the same
belief hierarchy induce the same set of ICRλ actions (type-representation invariance,
Proposition 1). We also show that, for each fixed λ, ICRλ is an upper-hemicontinuous
correspondence, i.e., small misspecifications of beliefs do not give rise to unexpected



Theoretical Economics 15 (2020) Uncertain rationality 91

behavior (Proposition 2). Regarding robustness to the weakening of common belief
in rationality, we show that when the belief hierarchy is fixed, ICRλ, as a correspon-
dence of λ, is upper-hemicontinuous everywhere and is lower-hemicontinuous at λ =
(1�1� � � � �1� � � � ), where it coincides with ICR (Proposition 3). This result establishes the
full robustness of ICR to a slight weakening of common belief in rationality. Finally, we
provide an epistemic foundation of ICRλ to show that it characterizes rationality and
common λ-belief in rationality, thus confirming its suitability for the formalization of
perturbations in common belief in rationality (Proposition 7). In particular, all these
results, besides Propositions 5 and 6, are formulated for generic λ and are therefore ap-
plicable to a variety of well-known solution concepts obtained by considering particular
subfamilies of λ (e.g., ICR, p-rationalizability or k-level rationalizability).

1.1 Rubinstein’s Email game

The incomplete information game given by the following payoff matrix is an adaptation
of Rubinstein’s game:

θ
θ

0
θ− 1

θ− 1
0

0
0

Attack No attack

Attack

No attack

for θ ∈
{
−2

5
�

2
5

}
.

Ex ante, players assign probability 1/2 to each of the values −2/5 and 2/5. Player
1 observes the value of θ and automatically sends a message to Player 2, if θ = 2/5.
Each player automatically sends a message back whenever he receives one, and each
message is lost, with probability 1/2. When a message is lost, the process auto-
matically stops and each player takes one of the actions Attack or No attack. This
game can be modeled by the type space T = {−1�1�3�5� � � � } × {0�2�4�6� � � � }, where
the type ti is the total number of messages sent or received by player i (except for
type t1 = −1, who knows that θ = −2/5), and the common prior μ on T × �, where
μ(θ = −2/5� t1 = −1� t2 = 0) = 1/2 and for each integer m ≥ 1, μ(θ = 2/5� t1 = 2m − 1�
t2 = 2m− 2)= 1/22m and μ(θ= 2/5� t1 = 2m− 1� t2 = 2m)= 1/22m+1. Here, for k≥ 1, type
k knows that θ= 2/5, knows that the other player knows θ= 2/5, and so on, through k or-
ders. Now, type t1 = −1 knows that θ= −2/5, and hence, his unique rationalizable action
is No attack. Type t2 = 0 does not know θ but puts probability 2/3 on type t1 = −1, thus
believing that player 1 will play No attack with at least probability 2/3, so that No attack
is the only best reply, and hence, the only rationalizable action. Applying this argument
inductively for each type k, one concludes that the new incomplete-information game
is dominance-solvable and the unique rationalizable action for all types is No attack.

Consider Rubinstein’s commentary on his example: “It is hard to imagine that [when
many messages are sent] a player will not play [according to the Pareto-dominant equi-
librium]. The sharp contrast between our intuition and the game-theoretic analysis is
what makes this example paradoxical. The example joins a long list of games [. . . ] in
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which it seems that the source of the discrepancy is rooted in the fact that in our formal
analysis we use mathematical induction while human beings do not use mathematical
induction when reasoning. Systematic explanation of our intuition [. . . ] is definitely a
most intriguing question.” Indeed, the goal of this paper is to formalize this intuition.
Our main results will show that some weakenings of the inductive reasoning of rational-
izability will maintain the unique, counterintuitive selection in the email example that
underlies the WY-discontinuity, while others will return us to the more intuitive case of
multiple equilibria, from which we may select according to a criterion such as Pareto-
dominance.

When reasoning is the same at every level, even if it assigns less than full confidence
to opponents’ rationality, the unique selection persists. Indeed, assume that each player
i assigns probability p > 2/3 to the other player being rational, assigns probability p
to the other player assigning probability p to i being rational, and so on. Again, type
t1 = −1 knows that θ= −2/5, and hence, plays No attack, regardless of her beliefs about
the other player’s choice. Type t2 = 0 does not know θ but puts probability 2/3 on type
t1 = −1, thus believing that player 1 will play No attack with at least probability p · 2/3>
2/5, so that No attack is the only best reply, and hence, the only p-rationalizable action.
Similarly, type t1 = 1 puts probability 2/3 on type t2 = 0, and thus will play No attack
with at least probability p · 2/3> 2/5, so that, again, No attack is the only best reply, and
hence, the only p-rationalizable action, and so on. This is an example of Proposition 5:
under appropriate conditions, there will always be a p < 1 large enough that unique
selection survives in this way.

The opposite result obtains when players lose almost all confidence in their reason-
ing at later iterations. Specifically, assume that each player i assigns probability λ1 to the
other player being rational, assigns probability λ2 to the other player assigning proba-
bility λ1 to i being rational, and so on, where λk → 0, so that the effect of higher-order
restrictions vanishes as we move up in the hierarchy. Now note that even if t2 = k − 1
is a type that always plays No attack, if λk < 2/5, we cannot guarantee that No attack is
the only best reply for type t1 = k. Thus, we can always find a sufficiently high number
of messages for which the action Attack survives the iterated deletion procedure. This is
an example of Proposition 6: when confidence in higher-order reasoning breaks down at
high orders, all strictly rationalizable actions will be rationalizable in any perturbation.

1.2 Other related literature

This paper scrutinizes the discontinuity in the rationalizable set by altering the solution
concept. Specifically, it studies the impact of weakening common belief in rationality on
the WY-discontinuity, in the spirit of the quote above from Rubinstein (1989). Also in this
line, previous papers have studied the effects of departure from the standard rationality
benchmark by invoking finite depth of reasoning assumptions. Strzalecki (2014) and
Heifetz and Kets (2018) extend the notion of type/belief hierarchy so that it incorporates
uncertainty and higher-order beliefs about the depth of reasoning. Within this richer
framework, Heifetz and Kets (2018) perturb common belief in infinite depth of reasoning
(an implicit feature of the standard notion of type in Weinstein and Yildiz 2007) and
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find that under almost common belief in infinite depth of reasoning, the corresponding
notion of ICR does not exhibit the WY-discontinuity.1

A second research agenda spawned by the finding of discontinuities in rational-
izability considered replacing the product topology with alternate notions of proxim-
ity. Dekel et al. (2006) introduce the strategic topology that is implicitly defined as
the coarsest topology for the space of belief hierarchies under which ICR is upper-
hemicontinuous and strict ICR is lower-hemicontinuous. Previous papers by Monderer
and Samet (1996) and Kajii and Morris (1997) ensure the robustness of equilibria un-
der incomplete information by proposing topologies whose corresponding notion of
perturbation, based on common p-belief, require (unlike perturbations in the prod-
uct topology) approximations to take similarity of all higher-order beliefs into account.
Recent work by Chen et al. (2010, 2017) bridges the gap between the two approaches
by providing the exact metric that characterizes the strategic topology and some of its
refinements.

Finally, in a third category, an important branch of the literature exploits disconti-
nuities of behavior to construct equilibrium selection arguments (e.g., Carlsson and van
Damme 1993), explain large changes on behavior induces by small changes in economic
fundamentals (e.g., Morris and Shin 1998), and extend the domain in which the WY-
discontinuity holds to dynamic games (Penta 2012 and Chen 2012) and to more general
cases of payoff uncertainty (Penta 2013, Chen et al. 2014a, 2014b).

2. Preliminaries

In this section, we briefly review some well-known ideas central to our study. First, in
Section 2.1 we describe the game-theoretical framework employed to model interac-
tion. This will consist of games with incomplete information and Bayesian games. Re-
member that in such games the uncertainty each player faces is twofold: it refers to
states of nature that affect preferences (payoff uncertainty) and to the actions the rest of
players choose (strategic uncertainty). Payoff uncertainty is dealt with by exogenously
setting either types as defined by Harsanyi (1967, 1968a, 1968b) or belief hierarchies.
The construction of the latter, together with that of universal type space, is recalled
in Section 2.2. Strategic uncertainty is endogenously resolved by means of a solution
concept, namely interim correlated rationalizability. This is presented in Section 2.3,
where we also recall the structure theorem of Weinstein and Yildiz (2007) and some of
its implications.

2.1 Games with incomplete information and Bayesian games

A (static) game with incomplete information consists of a list G = 〈I��� (Ai�ui)i∈I〉,
where: (i) I is a finite set of players, (ii)� is a finite set of payoff states, and for each player
i we have (iii) a finite set of actions, Ai, and (iv) a utility function ui :A×�→ [−M�M],
where A = ∏

i∈I Ai denotes the set of action profiles.2 For each player i, we refer to a

1The connection of this paper and Heifetz and Kets (2018) is examined in further detail in Section 4.2.2.
2In a previous version, we allowed � to be any compact metric space, and our main results still hold in

that case. We switched to the finite case because it connects more closely with the previous literature and
so significantly shortens our proofs.



94 Germano, Weinstein, and Zuazo-Garin Theoretical Economics 15 (2020)

probability measure μi ∈ �(A−i × �),3 where A−i = ∏
j �=i Aj , as a conjecture, and for

each ε ∈R player i’s ε-best-reply correspondence is ε-BRi : �(A−i ×�)⇒Ai, given by

μi 	→
⎧⎨
⎩ai ∈Ai

∣∣∣∣∣
For every a′

i ∈Ai \ {ai}�∫
A−i×�

(
ui

(
(a−i;ai)�θ

) − ui
((
a−i;a′

i

)
� θ

))
dμi ≥ −ε

⎫⎬
⎭ �

When ε= 0, the ε-best-reply correspondence boils down to the standard best-reply cor-
respondence and in such case, we simply denote it by BRi. Notice that due to the topo-
logical assumptions specified above, the ε-best-reply correspondence is known to be
nonempty when ε ≥ 0, and upper-hemicontinuous for all ε ∈ R.4 We typically repre-
sent players’ beliefs over � by endowing G with a type structure à la Harsanyi (1967).
A type structure is a list T = 〈Ti�πi〉i∈I where for each player i we have: (i) a compact
and metrizable set of types, Ti, and (ii) a continuous belief map πi : Ti → �(T−i × �)

where T−i = ∏
j �=i Tj . We refer to a pair 〈G�T 〉 as a Bayesian game. The beliefs in type

structures are not assumed to arise from a common prior.

2.2 Belief hierarchies and universal type space

We follow Brandenburger and Dekel’s (1993) formulation of universal type space. For
each player i set first X1

i =� and Z1
i = �(X1

i ), and call each element τi�1 ∈Z1
i first-order

belief. Then, set recursively Xn+1
i =Xn

i × ∏
j �=i Znj and Zn+1

i = �(Xn
i ) for any n ∈ N. We

refer to each τi�n ∈Zni as nth-order belief, and to the elements of T 0
i = ∏

n∈NZni , as belief
hierarchies. A belief hierarchy τi is said to be coherent if higher-order beliefs do not
contradict lower order ones, i.e., if margXni τi�n+1 = τi�n for any n ∈ N. Let T 1

i denote
the set of coherent belief hierarchies and Ti, the set of belief hierarchies that exhibit
common belief in coherence.5  Brandenburger and Dekel (1993) show that there exists a
homeomorphism ϕi : Ti → �(T−i ×�), with T−i = ∏

j �=i Tj , such that margXni ϕi(τi)= τi�n
for any belief hierarchy τi and any n ∈ N. Obviously, T ∗ = 〈Ti�ϕi〉i∈I is a type structure
for game with incomplete information G; we refer to it as the universal type space.

Throughout the above constructions, as is standard, we topologize spaces of beliefs
by the weak∗ topology and product spaces by the product topology, and in this way the
space of belief hierarchies inherits a topology. A corresponding metric is also inherited
at each step of the recursion: first normalize the metric on the basic space� so its diam-
eter is at most 1 (this property will be inherited at each step). Then apply the Prohorov

3For a given topological space X , we denote by �(X) the space of all probability measures on the Borel
subsets of X endowed with the weak∗ topology, so that if X is compact and metrizable, so is �(X). In par-
ticular, every continuous function under this topology will be measurable under the corresponding Borel
σ-algebra, B(X). Topologies for the other spaces are standard: the induced topology for subsets and the
product topology for Cartesian products.

4When necessary, with some abuse of notation we will write ε-BRi(ηi) = ε-BRi(margA−i×� ηi) and
BRi(ηi)= BRi(margA−i×� ηi) for any compact and metrizable spaceX and any belief ηi ∈ �(X ×A−i ×�).

5Formally, Ti = ⋂
n≥0 T ni , where T n+1

i = {τi ∈ T ni |τi�m[ProjXmi (T
n
−i ×�)] = 1 for anym ∈ N} for each n ∈ N,

being T n−i = ∏
j �=i T n

j . For any product space X × Y and any subset S ⊆X × Y , we denote projections on
some component ofX by ProjX S = {x ∈X|(x� y) ∈ S for some y ∈ Y }.
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metric to spaces of beliefs, the sup metric to finite products, and the discounted metric,

d
(
x�x′) =

∞∑
n=1

2−nd
(
xn�x

′
n

)

to infinite product spaces. Thus, the space of belief hierarchies also inherits a metric
structure.

Finally, for each type structure T , each type ti induces a belief hierarchy τi(ti) =
(τi�n(ti))n∈N as follows: consider first-order belief τi�1(ti)= marg�πi(ti) and then, for any
n ∈N define (n+ 1)th-order belief τi�n+1(ti) by setting,

τi�n+1(ti)[En+1] = πi(ti)
[{
(t−i� θ) ∈ T−i ×�|(τ−i�n(t−i)� θ

) ∈En+1
}]
�

for any measurable En+1 ⊆ T n+1
−i × �. The recursive construction being well-defined

follows from the fact that, as proved by Brandenburger and Dekel (1993), every τi�n :
Ti → Zni is continuous. In addition, is is easy to see that τi(Ti)⊆ Ti; thus, τi : Ti → Ti is
a well-defined continuous map. Furthermore, if Ti has nonredundant types,6 then it is
homeomorphic to τi(Ti).

2.3 Rationalizability and the WY-discontinuity

Once a player’s uncertainty with respect to the set of payoff states is formalized by means
of some type or belief hierarchy, it becomes pertinent to wonder which subset of actions
constitutes a reasonable choice at the interim stage. By “reasonable” we will mean those
actions consistent with rationality and common belief in opponents’ rationality, or in
other words, to those actions that survive iterated deletion of strictly dominated actions.
This idea is formalized by interim correlated rationalizability (ICR), introduced by Dekel
et al. (2007). First, let us recall the more general version of ICR embodied by ε-ICR due
to Dekel et al. (2006). Given a Bayesian game 〈G�T 〉 and a real number ε, player i’s set of
(interim correlated) ε-rationalizable (ε-ICR) actions for type ti is defined as ε-ICRi(ti)=⋂
n≥0 ε-ICRi�n(ti), where

ε-ICRi�0(ti)=Ai�
ε-Ci�0(ti)= {

μi ∈ �(T−i ×A−i ×�)|margT−i×�μi = πi(ti)
}
�

and recursively,7

ε-ICRi�n(ti)= {
ai ∈Ai|ai ∈ ε-BRi(μi) for some μi ∈ ε-Ci�n−1(ti)

}
�

ε-Ci�n(ti)= {
μi ∈ ε-Ci�0(ti)| suppμi ⊆ Graph(ε-ICR−i�n)×�}

�

for any n ∈N. In the case of ε= 0, the definition collapses to Dekel et al.’s (2007) (interim
correlated) rationalizability (ICR) and in such case we denote the resulting correspon-
dence simply by ICRi. Dekel et al. (2007) and Battigalli et al. (2011) show that when

6That is, if every two distinct types induce different belief hierarchies: ti �= t ′i implies that τi(ti) �= τi(t ′i).
7In addition, let us denote Graph(ε-ICR−i�n)= ∏

j �=i{(tj� aj) ∈ Tj ×Aj |aj ∈ ε-ICRj�n(tj)}.
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ε= 0 the specific type structure employed to codify belief hierarchies is immaterial: the
set of rationalizable actions corresponding to a type coincides with the set of rational-
izable actions corresponding to the belief hierarchy induced by the type.8 We refer to
this property of ICR as type-representation invariance. In addition, it is shown by Dekel
et al. (2006) that the correspondence ε-ICRi : Ti ⇒Ai is upper-hemicontinuous, and by
Dekel et al. (2007) and Battigalli et al. (2011), that ICR characterizes the behavioral im-
plications of rationality and common belief in rationality. Notice that we permit both
positive and negative ε; when ε > 0, the concept is more permissive than standard ICR,
and when ε < 0 it is more strict.

In their the study of ICR, Weinstein and Yildiz (2007) find a striking property that
generalizes the discontinuity in the Email game from an isolated phenomenon to a
general feature of games with incomplete information. To better understand this phe-
nomenon, let us recall the richness condition first.

Definition 1 (Richness condition). We say that a Bayesian game satisfies the rich-
ness condition if for all actions ai of any player i, there is a θ such that u(ai� a−i� θ) >
u(a′

i� a−i� θ) for all (a′
i� a−i) with a′

i �= ai.

That is, in games that satisfy the richness condition, no action is commonly known
not to be strictly dominant. In this context, the main result by Weinstein and Yildiz
(2007) tells us that for any type ti and any action ai ∈ ICRi(ti) there exists some sequence
of belief hierarchies (τni )n∈N converging to τi(ti) such that ICRi(τni )= {ai} for any n ∈N.9

This property, which we refer to as the WY-discontinuity, has important implications for
games with incomplete information:

• Nonrobustness of refinements. No nontrivial refinement of ICR is robust in the
sense of upper-hemicontinuity on Ti. To see why, suppose that Si : Ti ⇒ Ai is a
nontrivial refinement of ICRi. Then there exists some belief hierarchy τi such that
ICRi(τi)\Si(τi) contains some action ai. By Weinstein and Yildiz’s (2007) result, we
know that there exists some sequence (τni )n∈N such that ∅ �= Si(τ

n
i ) ⊆ ICRi(τni ) =

{ai} for any n ∈ N; hence Si cannot be upper-hemicontinuous. In particular, the
fact that equilibrium outcomes refine ICR outcomes implies that equilibrium pre-
dictions are not robust: small misspecifications of players’ uncertainty by the an-
alyst lead to outcomes overlooked in the original model.

• Generic uniqueness of rationalizability. There exists an open and dense subset of
Ti such that the set of ICRi actions corresponding to each belief hierarchy in the
set is unique. Thus, rationalizability generically (in a particular topological sense)
yields a unique prediction.

8That is, for any player i and any type ti it holds that ICRi(ti)= ICRi(τi(ti)).
9Recently, Penta (2013) found that the rather demanding richness condition can be abandoned and the

discontinuity result extended to relatively mild relaxations of common knowledge assumptions.
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3. Interim correlated λ-rationalizability

3.1 Definition

We now introduce interim correlated λ-rationalizability (ICRλ), the solution concept
that formalizes our relaxation of common belief in rationality. This concept captures the
ideas that (A) rationality may not be common belief and (B) players’ confidence in the
rationality of others may be different at different orders. The sequence λ ∈ [0�1]N sig-
nifies that when performing stage n of the elimination process, players have confidence
λn that others have followed the elimination process at previous stages, as captured in
the following definition.

Definition 2 (Interim correlated λ-rationalizability). Let 〈G�T 〉 be a Bayesian game
and λ, a sequence of probabilities. Then player i’s set of (interim correlated) λ-
rationalizable actions for type ti is defined as ICRλi (ti)= ⋂

n≥0 ICRλi�n(ti), where

ICRλi�0(ti)=Ai�
Cλi�0(ti)= {

μi ∈ �(T−i ×A−i ×�)|margT−i×�μi = πi(ti)
}
�

and recursively, for any n ∈N,10

ICRλi�n(ti)= {
ai ∈ ICRλi�n−1(ti)|ai ∈ BRi(μi) for some μi ∈ Cλi�n−1(ti)

}
�

Cλi�n(ti)= {
μi ∈ Cλi�n−1(ti)|μi

[
Graph

(
ICRλ−i�n

) ×�] ≥ λn
}
�

For p ∈ [0�1], we will use λ= p̄ to signify the constant sequence λn ≡ p. Then ICRp̄

will reflect reasoning that is depth-independent, capturing departures from common
belief in rationality in the sense of (A), but not (B) above. Also, we use the usual termwise
partial ordering on sequences, so in particular λ≥ p̄ will mean that λn ≥ p for all n. Our
examples all focus on the natural case of decreasing λ, though we do not require this
in the definition. This case is natural because it represents depth-dependent reason-
ing that is less confident at higher orders, hence capturing both (A) and (B) above. We
will especially consider the case λ→ 0, which represents a near-complete breakdown in
confidence of others’ reasoning at high orders.

3.2 Special cases of ICRλ

Let �= [0�1]N represent the set of probability sequences. Certain subsets of � give rise
to different well-known solutions concepts as special cases of ICRλ:

(i) p-Rationalizability. λ = p̄, for any p ∈ [0�1]. These sequences follow the idea
by Monderer and Samet (1989) of perturbing common belief by employing p-
beliefs; this approach was also followed by Hu (2007) in his analysis of robust-
ness to perturbation in common belief in rationality in the context of games with
complete information. We sometimes refer to ICRp̄ actions as interim correlated
p-rationalizable.

10We will show later, in Remark 1, that the set Graph(ICRλ−i�n) appearing in the last equation of this defi-
nition is indeed always measurable.
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(ii) Rationalizability. The special case λ= 1̄. The standard case of common belief in
rationality, i.e., infinite depth of reasoning in which player adhere probability 1
to rationality at every iteration. The case ICR1̄ reduces to the standard notion of
ICR, as defined by Dekel et al. (2007) and discussed above.

(iii) Models with k orders of belief in rationality. For each k≥ 0, define sequence λk =
(λkn)n∈N by

λkn = 1 if n≤ k and λkn = 0 otherwise�

An action ai ∈ ICRλ
k

i (τi) corresponds to the choice of a player who assumes that
others are rational for k− 1 orders and makes no further assumptions.11

(iv) Models with distinct “cognitive bound” and “rationality bound,” Friedenberg et al.
(2018) define the following (on p. 3):

– Rationality: Say Ann is rational if she maximizes her expected utility given
subjective belief about how Bob plays the game.

– Cognition: Say Ann is cognitive if she has a subjective belief about how Bob
plays the game.

From this they further define:

– Reasoning About Rationality: Say that Ann has a rationality bound of level
n if she is rational, thinks that Bob is rational, thinks that Bob thinks she is
rational, and so on up to the statement that includes the word “rational” n
times, but no further.

– Reasoning About Cognition: Say that Ann has a cognitive bound of level m
if she is thinking about Bob’s strategy choice, if she is thinking about what
Bob is thinking about her strategy choice, and so on up to the statement that
includes the word “thinking”m times, but no further.

Since rationality is stronger than cognition, we must have n≤m. In our model,
a rationality bound of n and cognitive bound ofm are captured by a λwith λk = 1
for k≤ n, λk ∈ (0�1) for n < k≤m, and λk = 0 for k>m.

A related distinction between rationality and cognitive ability was analyzed in
Alaoui and Penta (2016). In that paper, players choose whether to make the effort
of reasoning as much as their cognitive bound allows. This idea is also similar
to the framework in Camerer et al. (2004), which unlike standard level-k reason-
ing, allows for uncertainty on the level of rationality attached to opponents. Kets
(2014) and Heifetz and Kets (2018) generalize the σ-algebras attached to types so
that they are able to capture a similar idea, and apply their construction to the
study of the WY-discontinuity.

11This has a similar flavor to “level-k reasoning,” with the distinction that level-k models begin with a
level 0 type who takes a specific baseline action (possibly randomized), leading to specific actions for types
at each level. We, rather, allow the full range of possible actions at stage 0 and continue with a set-valued
concept at each stage. See Stahl and Wilson (1994) or Nagel (1995), among others, for “level-k reasoning.”
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(v) Unlimited depth of reasoning, with uncertainty on opponents’ depth. Pick se-
quence λ satisfying,

∀n ∈N� λn ≥ λn+1�

Here, we allow λ to be positive at all orders, which would signify that the player
has unlimited depth of reasoning and attaches positive probability to all levels of
opponents’ reasoning. Again, λn is the probability he attaches to opponents’ rea-
soning to at least depth n. He attaches probability limk→∞ λk to his opponents’
having unlimited depth of reasoning.

Most of the results of this paper (Propositions 1, 2, and 3, and Proposition 7) apply
to every sequence λ, so in particular, also for the families of solution concepts consid-
ered above (in particular, Proposition 7 provides an epistemic foundation for all of them
within a standard epistemic framework). In Proposition 6, we will focus on a particular
class of perturbations:

(vi) Fading higher-order belief in rationality.

�0 =
{
λ ∈�

∣∣∣∣ (i) lim
n→∞λn = 0�

(ii) λn ≥ λn+1 for any n ∈ N

}
�

The interpretation here is that each player is capable of reasoning to arbitrary
levels, but is sufficiently uncertain of his opponents’ depth that he loses almost
all confidence at higher orders.

3.3 Elementary properties

Before continuing to our main results in Section 4, we present some elementary proper-
ties of ICRλ. First, we check that ICRλ is type-representation invariant; that is, the spe-
cific type structure employed to model a certain belief hierarchy does not affect interim
correlated λ-rationalizable predictions.

Proposition 1 (Type-representation invariance). Let 〈G�T 〉 be a Bayesian game. Then,
for any player i, any type ti, and any sequence of probabilities λ, ICRλi (ti)= ICRλi (τi(ti)).

Proposition 1 can be regarded as a robustness result of ICRλ: different type repre-
sentations of the same belief hierarchy lead to the same predictions. An additional ro-
bustness property of ICRλ is presented in the following proposition, which shows that
ICRλi : Ti ⇒Ai is an upper-hemicontinuous correspondence. This means that behavior
which is excluded by ICRλ at a certain type will still be excluded at nearby belief hierar-
chies. This is similar to results shown for ordinary ICR and ε-ICR in Dekel et al. (2007).

Proposition 2 (Robustness to higher-order uncertainty about payoffs). Let 〈G�T 〉 be
a Bayesian game. Then, for any n ≥ 0, any player i, and any sequence of probabilities λ,
correspondence ICRλi�n : Ti ⇒Ai is upper-hemicontinuous. It follows that ICRλi : Ti ⇒Ai
is upper-hemicontinuous, too.
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Remark 1. Notice that, for any n ∈ N, any player i, and any sequence of probabilities
λ, the correspondence ICRλi�n : Ti ⇒ Ai has closed domain and is closed-valued; thus,

Proposition 2 and the closed graph theorem imply that Graph(ICRλ−i�n) is closed and,
therefore, measurable, justifying Definition 2.

Proposition 1 turns out to be helpful not only in simplifying the definition of ICRλ,
but also in the proof of the next result in this section, Proposition 3, which shows that:
(i) ICR and ICRλ coincide as perturbations in common belief in rationality vanish (i.e.,
when λ= 1̄) and, based on the latter, that (ii) ICR is robust to higher-order uncertainty
about rationality:12 behavior is not only upper-hemicontinuous, but indeed, continu-
ous (i.e., also lower-hemicontinuous) when common belief in rationality is perturbed.
Furthermore, Proposition 3, when combined with Propositions 1 and 2 above shows that
both type-representation invariance and upper-hemicontinuity, as robustness prop-
erties of ICR, happen to be themselves robust to perturbations in common belief in
rationality.

Proposition 3 (Robustness to higher-order uncertainty about rationality). Let 〈G�T 〉
be a Bayesian game. Then, for any player i and any type ti, we have that

(i) ICRi(ti)= ICR1̄
i (ti).

(ii) The correspondence given by λ 	→ ICRλi (ti) is upper-hemicontinuous everywhere
and continuous at λ= 1̄�

The last result in this section illustrates the connection between λ-rationalizability
and ε-rationalizability: for any ε > 0, there exists some strictly positive amount of sus-
picion of lack of common belief in rationality, represented by λ = p̄ with p < 1, such
that for every player and every belief hierarchy, every λ-rationalizable action is also ε-
rationalizable.

Proposition 4 (λ-rationalizability and ε-rationalizability). Let 〈G�T 〉 be a Bayesian
game. Then, for any ε > 0, any n ≥ 0, any player i and any type ti, we have that, for
every p≥ 1/(1 + ε/(2M)), ICRp̄i�n(ti)⊆ ε-ICRi�n(ti).

4. Main results

We present now the main results of the paper, which study whether perturbations in
higher-order belief in rationality eliminate the failures in continuity of rationalizability
discovered by Weinstein and Yildiz (2007) in their structure theorem. To this end, we
study the behavior of interim correlated λ-rationalizability for different λ. Our findings

12A related result by Germano and Zuazo-Garin (2017) shows that their notion of p-rational outcomes
(which coincide with the correlated equilibria when p = 1 and otherwise generalize these by assuming
common knowledge of mutual p-belief in rationality rather than common knowledge of rationality) are
continuous in p, for any p≤ 1, which, in particular, implies robustness of correlated equilibria to bounded
rationality.
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are twofold. Proposition 5 proves the robustness of the WY-discontinuity for sequences
λ with components λn sufficiently close to 1; even under perturbation in common be-
lief in rationality, if higher-order belief in rationality remains above some threshold p,
unique selection arguments à la Weinstein and Yildiz (2007) still work. However, Propo-
sition 6 shows that the discontinuity goes away when λ converges to 0: if higher-order
in rationality becomes eventually low enough, unique selection becomes impossible to
accomplish. Similar results are found by Heifetz and Kets (2018), who instead of explic-
itly relaxing higher-order belief in rationality, introduce a more sophisticated framework
that allows for higher-order uncertainty about players’ cognitive bounds. The relation
between Heifetz and Kets’s (2018) work and this paper is examined in Section 4.2, where
we also discuss the relevance of our results to global games.

4.1 The WY-discontinuity and common belief in rationality

First, we show that the WY-discontinuity persists under perturbations in common be-
lief in rationality that keep higher-order belief in rationality above some high enough
threshold. To formalize this insight, we need to recall first the following refinement of
ICR due to Chen et al. (2014b).

Definition 3 (Robust selection, cf. Definition 4 by Chen et al. 2014b). Let 〈G�T 〉 be
a Bayesian game. Then, for any player i and any type ti we say that action ai can be
robustly selected for type ti if there exists some ε > 0 and some sequence (τni )n∈N ap-
proaching τi(ti) such that ε-ICRi(τni ) = {ai} for any n ∈ N. Let RSi(ti) denote the set of
actions that can be robustly selected for type ti.

Obviously, it is possible that a type does not admit a robust selection; however, it
follows from Weinstein and Yildiz’s (2007) structure theorem and Proposition 5 by Chen
et al. (2014b) that if the richness assumption is satisfied then the set of belief hierarchies
that admit a robust selection is generic. We can now state our first main result.

Proposition 5 (WY-discontinuity for persistently high λ). Let 〈G�T 〉 be a Bayesian
game with finite type space. Then there exists some p < 1 such that for any player i,
any type ti, any λ with λ≥ p̄, and any ai ∈ RSi(ti), there exists some convergent sequence
(τni )n∈N approaching τi(ti) such that ICRλi (τ

n
i )= {ai} for all n ∈N.

Thus, at any type admitting the WY-discontinuity (i.e., with multiple robustly se-
lected actions), the discontinuity persists when the ICR concept is replaced by ICRp̄, or
by ICRλ with λ ≥ p̄. That is, even under this more permissive solution concept, rep-
resenting bounded rationality, unique selection procedures work and any refinement
sharper than robust selection will fail to be robust. Since, as shown by Chen et al.
(2014b), under the richness condition every action which is ε-ICR for some ε < 0 can
be robustly selected, the theorem applies to such actions. Thus, for large enough λ as in
the proposition, any refinement that makes a selection among strict equilibria will fail
to be robust under ICRλ. Indeed, we have the following.
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Corollary 1 (Robust selection of strictly rationalizable actions for persistently high λ).
Let 〈G�T 〉 be a Bayesian game, with finite type space, which satisfies the richness condi-
tion. Then, for any type ti and any ai ∈ ε-ICR(ti) for some ε < 0, there exists some p < 1
such that for any λ with λ≥ p̄, there exists some convergent sequence (τni )n∈N approach-
ing τi(ti) such that ICRλi (τ

n
i )= {ai} for all n ∈N.

We note here that the converse of Proposition 5 fails. The following simple example,
where no action can be robustly selected but the conclusion of Proposition 5 holds, is
inspired by Section 4 in Chen et al. (2014b). Consider a case where a player is insensitive
to others’ actions and has two actions which are tied for best reply. Proposition 3 of Chen
et al. (2014b) shows that no robust selection is possible in such a case. The conclusion
of our Proposition 5, though, is satisfied for both actions. Since λ now has no impact,
the choice of p is irrelevant, and one can simply use any sequence where payoffs are
perturbed in a consistent direction to select one of the actions.13

Results such as Proposition 5 fail if we allow a different weakening of common belief
in rationality, where belief in rationality becomes very low at high orders.

Proposition 6 (No WY-discontinuity for vanishing λ). Let 〈G�T 〉 be a Bayesian game
with finite type space. Then, for any ε < 0, any player i, any type ti, and any λwith λn → 0,
there exists a neighborhood U of τi(ti) such that ε-ICRi(ti)⊆ ICRλi (τi), for any τi ∈U .

If, for instance, each ICR action of type ti is actually a strict best reply for some
belief, then the ICR and ε-ICR sets are identical at a type ti for some ε < 0. Proposi-
tion 6 then implies that ICRλi is continuous at ti for any λ with λn → 0. Notice that
Propositions 5 and 6 provide contrasting cases of the impact of higher-order belief in
rationality on the WY-discontinuty. On the one hand, Proposition 5 states that the WY-
discontinuity remains under perturbations of that maintain higher-order belief in ratio-
nality above a high-enough threshold. On the other hand, Proposition 6 tells us that the
WY-discontinuity vanishes under perturbations of a different kind: when the weight at-
tached to higher-order belief in rationality becomes arbitrarily smaller as higher-order
beliefs are considered, the unique selection of actions that can be made in the case of
common belief in rationality turns out to be impossible. That is, as long as the assump-
tion that higher-order beliefs become eventually negligible for players is introduced, no
matter how slowly this diminishing impact of higher-order beliefs takes place, continu-
ity of behavior with respect to perturbations of belief hierarchies is reestablished (even
when such perturbations are considered in the sense of the product topology).14 A spe-
cial case was mentioned in Section 3.2: when λn = 0 for all n > k, a version of level-k
reasoning. A rough justification for this result, in the level-k case, is that (1) ε-ICR ac-
tions (for ε < 0) remain in ICRi�k when the first k levels of the hierarchy are close enough
to the original type, and (2) the tail of the hierarchy becomes irrelevant when we reason
only to level k.

13We thank an anonymous referee for suggesting this example.
14Notice that in one natural sense this is a small departure from common belief in rationality: if we

put the product topology on the set of possible sequences λ, 1̄ is a limit point of the set of λ with λn → 0
referenced in Proposition 6.



Theoretical Economics 15 (2020) Uncertain rationality 103

A corollary to Proposition 6 states that the generic uniqueness result of Weinstein
and Yildiz (closely related to WY-discontinuity) also fails whenever λn → 0 and there is
any type with multiple ε-rationalizable actions for some ε < 0. Under these conditions,
there is an open set of types in which every element admits multiple λ-rationalizable
actions.

Corollary 2 (Nonrobustness of generic uniqueness). Let 〈G�T 〉 be a Bayesian game.
Then, for any player i for which there exist some ε < 0 and some type ti such that
|ε-ICRi(ti)|> 1, and for any λwith λn → 0, the following set is not dense:

Uλi = {
τi ∈ Ti|

∣∣ICRλi (τi)
∣∣ = 1

}
�

Proposition 6 is related to previous work showing that for finite n, ICRn satisfies a
form of lower-hemicontinuity. See, for instance, Proposition 2 of Chen et al. (2010). In
the case, mentioned earlier, that λ consists of finitely many 1’s followed by 0’s, ICRλ is
equivalent to ICRn for finite n.

4.2 Discussion

4.2.1 Implications for global games Carlsson and van Damme (1993) introduced an ar-
gument for selection of “risk-dominant” equilibria, based on a discontinuity of the equi-
librium correspondence. Given a complete-information game with multiple equilibria,
they construct a family of incomplete-information games based on noisy observations
of payoffs in the original game (a “global game”), where the risk-dominant equilibrium
is unique even as the noise goes to zero. As discussed in Weinstein and Yildiz (2007),
the WY-discontinuity weakens this argument in the sense that, for a larger family of per-
turbations of the original game, any action may be uniquely rationalizable. Our main
results shed some light on these issues in the context of weakened common knowledge
of rationality, as represented by ICRλ. Under the conditions in Proposition 5, the selec-
tion of risk-dominant equilibria in global games will persist for large enough p, but so
will the critique that the WY-discontinuity can lead to any selection. Under the condi-
tions in Proposition 6, unique selection will be impossible for games close enough to the
original game, because all actions played in a strict equilibrium, e.g., all actions in a 2×2
coordination game, remain rationalizable in small enough perturbations.

4.2.2 Almost common belief in rationality and almost common belief in infinite depth
of reasoning Proposition 6 shows that, under certain arbitrarily small perturbations in
common belief in rationality, the WY-discontinuity vanishes; that is, continuity of be-
havior is restored, even under almost common belief in rationality. Going back to the
terminology of Alaoui and Penta (2016) and Friedenberg et al. (2018), the theorem de-
parts from the standard model in Weinstein and Yildiz (2007) by introducing perturba-
tions in common belief assumptions regarding players’ rationality bounds. Strzalecki
(2014) and Heifetz and Kets (2018) study the impact on the WY-discontinuity of per-
turbations in common belief assumptions regarding players’ cognitive bound. Specif-
ically, Heifetz and Kets (2018) provides a framework that allows for modeling players’
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uncertainty about each others’ depth of reasoning (i.e., cognitive bound), and show that
under almost common belief in infinite depth of reasoning, the WY-discontinuity fails.
That is, almost common belief in infinite depth is consistent with robust multiplicity
(i.e., absence of generic uniqueness).

Our Proposition 6 sheds light on both rationality bounds and cognitive bounds. As
discussed in Section 3.2, for given λ the cognitive bound is sup{n ∈ N|λn > 0} and the
rationality bound is sup{n ∈ N|λn = 1}. When λ satisfies λn > 0 for every n, ICRλ repre-
sents common belief in infinite depth of reasoning (synonymously, a cognitive bound
of ∞, also called unbounded cognition.) Thus, the failure of the WY-discontinuity in
Proposition 6, and, in particular, robust multiplicity, are consistent with common belief
in unbounded cognition, since the proposition requires only that λ be a sequence con-
verging to 0. Of course, if λ converges to 0, there must exist some m such that λn < 1 for
every n ≥m, meaning that every players’ rationality bound is finite. Within the frame-
work of ICRλ, we see a clear distinction between unbounded cognition, which in many
cases allows robust multiplicity, and the much stronger unbounded rationality, which
eliminates robust multiplicity and restores the WY-discontinuity.

4.2.3 Alternate definition of ICRλ An anonymous referee proposed an interesting alter-
nate definition of ICRλ, with the same general motivating ideas. We will call it ICR2λ and
discuss its merits here. To determine ICR2λk, one applies elimination steps using the first
k values of λ, but reversed from our order. That is, one first runs a round with confidence
λk in remaining actions being played, then with confidence λk−1, etc. down to λ1, for k
total rounds of elimination. To determine ICR2λk+1, then requires an entirely different
(k+ 1)-step process, starting with λk+1. As before, the infinite intersection of the ICR2λk
determines ICR2λ. This may sound like a surprising way to apply the sequence λk, but it
has a nice motivation. The final step, using λ1, ensures that all players best-respond to a
belief assigning at least λ1 to rational actions of the other players. The penultimate step,
using λ2, means that other players’s actions are based on assigning probability at least
λ2 to opposing actions, and so on. As pointed out by the referee, this process reflects ac-
tions that are consistent with a natural infinite sequence of statements. For Player 1, the
first statement would be that Player 1 is rational and believes with probability at least λ1

that Player 2 is rational. The second is that Player 1 is rational, and believes with proba-
bility at least λ1 that: Player 2 is rational and believes Player 1 is rational with probability
at least λ2.

Our definition involves a much simpler and more intuitive modification to the elimi-
nation process. Players analyze the game by first reducing the available actions for each
player to actions that are sometimes a best reply. Then they reduce to best replies to
the remaining actions, but assuming only λ1 confidence that the previous step has been
applied, and so on. Our concept is motivated by the idea of players who apply the de-
ductive process of successive elimination rules with only partial confidence. Both con-
cepts also have an epistemic foundation, in terms of players’ higher-order beliefs about
rationality, as distinct from the elimination process. The foundation for ICR2λ reduces
to a single infinite statement, while ours requires an infinite series of independent state-
ments, so this gives ICR2 a rival claim to simplicity.



Theoretical Economics 15 (2020) Uncertain rationality 105

In two significant special cases that we have mentioned, the case of constant λ and of
λ consisting of finitely many 1’s followed by zeroes (cases (i)–(iii) in Section 3.2), the two
concepts coincide. Indeed, the two concepts are close enough that replacing ICRλ with
ICR2λ has no effect on the two main results, Propositions 5 and 6. The constant case
suffices to imply that Proposition 5 is unaffected. Proposition 6 is unaffected because
the proof hinges on the fact that λn → 0 makes the elimination process effectively finite,
and this idea applies for either concept.

5. Epistemic foundation of λ-rationalizability

Finally, we formally analyze the epistemic foundation of λ-rationalizability. The exer-
cise corresponds to the incomplete information version of the case already studied by
Hu (2007), with the addition that beliefs of different order can be given different con-
sideration in the decision making process. Specifically, in Section 5.1 we introduce the
epistemic framework needed for our study, which consists of a particular instance of
the environment defined by Battigalli et al. (2011). Next, in Section 5.2 we introduce
the notion of common λ-belief, with λ a sequence of probabilities. This concept gen-
eralizes the standard notion of common p-belief due to Monderer and Samet (1989),
allowing heterogeneous weights on higher-order beliefs. Common λ-belief serves as the
base of our epistemic characterization result in Proposition 7, which generalizes several
well-known characterization results in the epistemic game theory literature.

5.1 Epistemic framework

By applying Brandenburger and Dekel’s (1993) construction to family of basic uncer-
tainty spaces (A−i × �)i∈I , an alternative universal type space, 〈Ei�ψi〉i∈I , is obtained.
We refer to each belief hierarchy ei ∈ Ei as epistemic hierarchy. This way, following Bat-
tigalli et al. (2011), the epistemic analysis is based on epistemic hierarchies and per-
formed in state space � = E × A × �, where E = ∏

i∈I Ei. For each player i, we de-
note �i = Ei × Ai, and for each state ω, we will consider the following projections:
ωi = Proj�i(ω), ei(ω) = ProjEi (ω), ai(ω) = ProjAi(ω) and θ(ω) = Proj�(ω). Thus, each
state is a description of players’ epistemic hierarchies and actions, and payoff states.
The epistemic language is completed as follows.

5.1.1 Rationality and common (p-)belief We say that player i is rational at state ω
whenever her choice at ω is optimal given her first-order beliefs at ω. This event is for-
mally represented by set Ri = {ω ∈�|ai(ω) ∈ BRi(ei�1(ω))}. As usual let R= ⋂

i∈I Ri and
R−i = ⋂

i∈I Ri. Note that all of these sets are closed and, therefore, measurable due to
BRi being closed-valued and ProjAi , continuous. Assumptions on players’ beliefs can be
represented by means of p-belief operators, as originally introduced by Monderer and
Samet (1989). For positive probability p, player i’s p-belief operator is defined as map
E 	→ B

p
i (E), where for any event E,

B
p
i (E)= {

ω ∈�|ψi
(
ei(ω)

)[{(
ω′

−i� θ
) ∈ E−i ×A−i ×�|(ω′

−i�ωi� θ
) ∈E}] ≥ p}

�
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That is, event Bpi (E) is the collection of states in which player i assigns at least prob-
ability p to event E; we refer to it as the event that player i p-believes E. The mutual
p-belief operator is given by E 	→ Bp(E)= ⋂

i∈I B
p
i (E) for any event E. When p equals 1,

we drop superscripts and refer to 1-belief as simply, belief. Note that it follows from
the fact that every ψi is a homeomorphism that p-belief operators are closed-valued
and, therefore, yield measurable sets. Finally, higher-order belief restrictions can be
imposed using the common p-belief operator, which is recursively defined as follows:
for each player i, let CBpi (E) = ⋂

n≥0B
p
i (B

n�p(E)), where B0�p(E) = E, and recursively,

Bn+1�p(E) = Bp(Bn�p(E)) for any n ≥ 0. We write simply CBi(E) = CB1
i (E) to represent

common belief.

5.1.2 Epistemic hierarchies and belief hierarchies Unsurprisingly, epistemic hierar-
chies and belief hierarchies are closely related. As shown by Battigalli et al. (2011), it
is possible to construct, by recursive marginalization, quotient maps qi : Ei → Ti and
q̄i : �(E−i ×A−i ×�)→ �(T−i ×�) that make the following diagram commutative:

Ei

�(E−i ×A−i ×�)

Ti

�(T−i ×�)

qi

ψi

q̄i

ϕi

so that consistency between events that are expressible in each domain, the ones corre-
sponding to uncertainty about � and uncertainty about A−i ×�, is guaranteed. Then,
for any player i and belief hierarchy τi, let [qi = τi] = {ω ∈�|qi(ei(ω))= τi} be the event
that player i’s belief hierarchy is exactly τi. Note that [qi = τi] is closed due to qi being
continuous.

5.2 Characterization result

We introduce now the epistemic operator that allows for our characterization result.

Definition 4 (Common λ-belief). Let E ⊆ � be an event, and λ, a sequence of prob-
abilities. Let Bλ�0(E) = E, and set recursively Bλ�n+1(E) = ⋂

i∈I B
λn+1
i (Bλ�n(E)) for each

n ≥ 0. Then, for each player i, CBλi (E) = ⋂
n≥0B

λn+1
i (Bλ�n(E)) is the event that player i

exhibits common λ-belief in E.

Thus, common λ-belief generalizes the notion of common p-belief, so that at each
iteration, the weight assigned to the corresponding epistemic restriction is not neces-
sarily constant. The epistemic characterization of interim correlated λ-rationalizability
exhibits then the expected pattern.

Proposition 7 (Epistemic foundation of ICRλ). Let 〈G�T 〉 be a Bayesian game and λ, a
sequence of probabilities. Then λ-rationalizability characterizes rationality and common
λ-belief in rationality; that is, for any player i and any type ti it holds that

ICRλi (ti)= ProjAi
(
Ri ∩ CBλi (R)∩ [

qi = τi(ti)
])
�
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Common λ-belief

in rationality

Common belief

in rationality

ICRλ

ICR

Approximates

as λ→ 1̄

UHC on λ

Continuous at λ= 1̄
(Proposition 3)

Induced behavior

(Dekel et al. 2007)

(Battigalli et al. 2011)

Induced behavior

(Proposition 7)

Figure 1. Rationalizability and perturbations in common belief in rationality.

The theoretical relevance of Proposition 7 lies in two features. First, as depicted
in Figure 1, it shows that rationalizability is robust to a wide range of perturbations
of common belief in rationality: not only perturbations à la p-belief, but also to the
more general ones captured by nonconstant λ parameters. This follows from the facts
that: (i) interim correlated λ-rationalizability represents rational choice under depar-
tures from the standard rational benchmark by relaxing higher-order belief in rationality
not necessarily weighting different order belief in an homogeneous way (Proposition 7)
and (ii) interim correlated λ-rationalizability is upper-hemicontinuous on λ and indeed,
continuous when λ = 1̄ (Proposition 3). Second, since the result holds for arbitrary se-
quence λ, the epistemic foundation result covers the cases of particular λ sequences
characterizing the different solution concepts reviewed in Section 2.3. This is already
known in the case of standard solution concepts such as ICR (see Theorem 1 by Battigalli
et al. 2011, which corresponds to the λ= 1̄ case) or p-rationalizability (see Proposition 1
by Hu (2007), which corresponds to the case of λ= p̄ and τi exhibiting common belief in
some game). The fact that solution concepts based on complex formal departures such
as finite depth of reasoning models can be formalized and given epistemic formulation
by means of already well-known tools reinforces the strength of the standard and classic
game-theoretical approach.

Appendix A: Proofs: Properties of ICRλ

A.1 Elementary properties

For convenience, we begin with the proof of Proposition 2.

Proposition 2 (Robustness to higher-order uncertainty about payoffs). Let 〈G�T 〉 be
a Bayesian game. Then, for any n ≥ 0, any player i, and any sequence of probabilities λ,
correspondence ICRλi�n : Ti ⇒Ai is upper-hemicontinuous. It follows that ICRλi : Ti ⇒Ai
is upper-hemicontinuous, too.

Proof. We proceed by induction. The initial step (n= 0) is immediate: τi 	→ ICRλi�0(τi)=
Ai is trivially upper-hemicontinuous for any i ∈ I and λ ∈�. For the inductive step, sup-
pose the claim holds for n ≥ 0. Then, to check the (n+ 1) case, fix i ∈ I and λ ∈ �, and
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pick a convergent sequence (τki )k∈N with limit τi and ai ∈Ai such that ai ∈ ICRλi�n+1(τ
k
i )

for any k ∈ N. Then we know that for any k ∈ N there is some ηki ∈ Cλi�n(τ
k
i ) such that

ai ∈ BRi(ηi)k. Let (ηkmi )m∈N be a convergent subsequence of (ηki )k∈N and let ηi de-
note its limit. Since margT−i×� is continuous, ηi ∈ Cλi�0(τi). Now, notice that we know

by the induction hypothesis that ICRλ−i�� : T−i ⇒A−i is upper-hemicontinuous for any
� = 1� � � � � n. Then it follows from the closed graph theorem that for any � = 1� � � � � n,
M� = Graph(ICRλ−i��) is closed and, therefore, measurable. Obviously, this implies that

η
mk
i [M�] ≥ λ� for any � = 1� � � � � n and any m ∈ N. Then, since (ηi)

km
m∈N converges to ηi

and (M�)
n
�=1 is a family of closed sets,

ηi[M�] ≥ lim sup
m→∞

ηkmi [M�] ≥ λ�

for any � = 1� � � � � n and, therefore, ηi ∈ Cλi�n(τi). Finally, the fact that BRi is upper-

hemicontinuous and ai ∈ BRi(η
km
i ) for anym ∈N implies that ai ∈ ICRλi�n+1(τi).

An immediate corollary of this result is Remark 1, simply because closed sets are
measurable. Remark 1 greatly simplifies the proof of the following lemma, providing an
alternate characterization of ICRλ, which is used in the proofs of Propositions 1 and 3.

Lemma 1. Let G be a game with incomplete information and λ, sequence of probabilities,
and let λ0 = 1. Then, for n ∈N, any player i and any belief hierarchy τi it holds that:

ICRλi�n(τi)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
ai ∈Ai

∣∣∣∣∣∣∣∣∣∣∣

There exists a measurable σ−i : T−i ×�→ �(A−i) such that

(i)
∫
T−i×�

σ−i(τ−i� θ)
[
ICRλ−i�k(τ−i)

]
dϕi(τi)≥ λk for each k= 1� � � � � n− 1

(ii) ai ∈ arg max
a′
i∈Ai

∫
T−i×�

( ∑
a−i∈A−i

σ−i(τ−i� θ)[a−i] · ui
((
a−i� a′

i

)
� θ

))
dϕi(τi)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
�

Proof. We proceed by induction on n.
Initial step (n = 1). For the right-hand inclusion, pick ai ∈ ICRλi�1(τi) and ηi ∈

Cλi�0(τi) such that ai ∈ BRi(ηi). Since ProjT−i×� : T−i ×A−i ×�→ T−i ×� is continuous

and ϕi(τi)[E] = ηi[Proj−1
T−i×�(E)] for any measurable E ⊆ T−i×�, it follows immediately

from the disintegration theorem that there exists a map σ−i : T−i × � → �(A−i) such
that:15

(a) For each E ⊆A−i, map σE−i : T−i×�→ [0�1] given (τ−i� θ) 	→ σi(τ−i� θ)[E] is mea-
surable. Hence, σ−i is measurable, too.16

15See Theorem 5.3.1 in Ambrosio et al. (2006, p. 121). We are working with compact and metrizable
spaces; thus, in particular, all of them are Polish, and hence, Radon.

16Remember that we know from Lemma 4.5 by Heifetz and Samet (1998) that the Borel σ-algebra in
corresponding to A−i is generated by family {{μi ∈ �(A−i)|μi[E] ≥ p}|E ⊆ A−i and p ∈ [0�1]}. Hence, it
follows from the measurability of each σE−i that {(τ−i� θ) ∈ T−i×�|σi(τ−i� θ)[E] ≥ p} is measurable for every
E ⊆A−i and every p ∈ [0�1]. In consequence, σ−i is measurable.
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(b) For any measurable E ⊆ T−i ×A−i ×�,

μi[E] =
∫
T−i×�

σ−i(τ−i� θ)
[
ProjA−i

(
E ∩ {

(τ−i� θ)
} ×A−i

)]
dϕi(τi)�

(c) ∫
A−i×�

ui
(
(a−i;ai)�θ

)
d(margA−i×�ηi)

=
∫
T−i×�

( ∑
a−i∈A−i

σ−i(τ−i� θ)[a−i] · ui
(
(a−i� ai)� θ

))
dϕi(τi)�

Then, since ICRλ−i�0(τ−i) = A−i for and τ−i ∈ T−i, σ−i obviously satisfies conditions (i)
and (ii) in the statement of the lemma. For the left-hand inclusion, pick ai ∈ Ai and
measurable σ−i : T−i ×�→ �(A−i) satisfying conditions (i) and (ii) above. Then define
measure ηi ∈ �(T−i ×A−i ×�) as follows:

ηi[E] =
∫
T−i×�

( ∑
a−i∈A−i

σ−i(τ−i� θ)
[
ProjA−i

(
E ∩ {

(τ−i� a−i� θ)
})])

dϕi(τi)�

for any measurable E ⊆ T−i ×A−i ×�.17 We now make the following two claims:

• ηi ∈ Cλi�0(τi). To see this, pick measurable E ⊆ T−i ×� and develop

ηi[E ×A−i] =
∫
T−i×�

( ∑
a−i∈A−i

σ−i(τ−i� θ)
[
ProjA−i

(
E ×A−i ∩

{
(τ−i� a−i� θ)

})])
dϕi(τi)

=
∫
E

σi(τ−i� θ)[A−i]dϕi(τi)= ϕi(τi)[E]�

• ai ∈ BRi(ηi). To see this, first define for each a−i ∈ A−i, measure νi(a−i) ∈
�(T−i ×�) as E 	→ ηi[E × {a−i}]. Then, for any a′

i ∈Ai,∫
A−i×�

ui
((
a−i;a′

i

)
� θ

)
d(margA−i×�ηi)

=
∑

a−i∈A−i

∫
T−i×�

ui
((
a−i;a′

i

)
� θ

)
dνi(a−i)

=
∫
T−i×�

( ∑
a−i∈A−i

σ−i(τ−i� θ)[a−i] · ui
((
a−i� a′

i

)
� θ

))
dϕi(τi)�

Then the fact that σ−i satisfies property (ii) above proves the claim.

In consequence, ai ∈ ICRλi�1(τi).

17A similar argument to the one in the previous footnote proves that if σ−i is measurable, then so is σE−i
for measurable set E. Since every set ProjA−i (E ∩ {(τ−i� a−i� θ)}) is measurable, we conclude that ηi is a
well-defined measure.
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Inductive step. Suppose that n ≥ 1 is such that the claim holds. Let us check the
(n + 1) case. For the right-hand inclusion, pick ai ∈ ICRλi�n+1(τi) and ηi ∈ Cλi�n(τi) such

that ai ∈ BRi(ηi), and family (Mk)
n
k=1 of measurable sets such thatMk ⊆ Graph(ICRλ−i�k)

and ηi[Mk] ≥ λk for any k= 1� � � � � n. Then, since map ProjT−i×� : T−i ×A−i ×�→ T−i ×
� is continuous and ϕi(τi)[E] = ηi[Proj−1

T−i×�(E)] for any measurable E ⊆ T−i × �, we
know again from the disintegration theorem that there exists a map σ−i : T−i × � →
�(A−i) that satisfies properties (a), (b), and (c) in the paragraph above (in particular, we
saw that such σ−i is measurable). Condition (ii) in the statement of the lemma is trivially
satisfied. To see (i), simply note that for any k= 1� � � � � n,

∫
T−i×�

σ−i(τ−i� θ)
[
ICRλ−i�k(τ−i)

]
dϕi(τi)

=
∫
T−i×�

σ−i(τ−i� θ)
[
ProjA−i

(
T−i × ICRλ−i�k(τ−i)×�∩ {

(τ−i� θ)
} ×A−i

)]
dϕi(τi)

≥
∫
T−i×�

σ−i(τ−i� θ)
[
ProjA−i

(
Mk ∩ {

(τ−i� θ)
} ×A−i

)]
dϕi(τi)

= μi[Mk] ≥ λk�

For the left-hand inclusion, pick ai ∈Ai and measurable map σ−i : T−i×�→ �(A−i)
satisfying conditions (i) and (ii) for the (n+ 1)th version of the statement of the lemma.
Then define measure ηi ∈ �(T−i ×A−i ×�) as follows:

ηi[E] =
∫
T−i×�

( ∑
a−i∈A−i

σ−i(τ−i� θ)
[
ProjA−i

(
E ∩ {

(τ−i� a−i� θ)
})])

dϕi(τi)�

for any measurable E ⊆ T−i ×A−i ×�. We claim now that the following three hold:

• ηi ∈ Cλi�0(τi). To see this, pick measurable E ⊆ T−i ×� and develop

ηi[E ×A−i] =
∫
T−i×�

( ∑
a−i∈A−i

σ−i(τ−i� θ)
[
ProjA−i

(
E ×A−i ∩

{
(τ−i� a−i� θ)

})])
dϕi(τi)

=
∫
E

σi(τ−i� θ)[A−i]dϕi(τi)= ϕi(τi)[E]�

• ηi ∈ Cλi�n(τi). Note that we know from Proposition 2 that Mk = Graph(ICRλ−i�k) is
measurable for any k= 1� � � � � n. Thus,

ηi[Mk] =
∫
T−i×�

σ−i(τ−i� θ)
[
ProjA−i

(
Mk ∩ {

(τ−i� θ)
} ×A−i

)]
dϕi(τi)

=
∫
T−i×�

σ−i(τ−i� θ)
[
ICRλ−i�k(τ−i)

]
dϕi(τi)≥ λk

for any k= 1� � � � � n.
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• ai ∈ BRi(ηi). To see this, first, define, for each a−i ∈ A−i, measure νi(a−i) ∈
�(T−i ×�) given by E 	→ ηi[E × {a−i}]. Then, for any a′

i ∈Ai,∫
A−i×�

ui
((
a−i;a′

i

)
� θ

)
d(margA−i×�ηi)

=
∑

a−i∈A−i

∫
T−i×�

ui
((
a−i;a′

i

)
� θ

)
dνi(a−i)

=
∫
T−i×�

( ∑
a−i∈A−i

σ−i(τ−i� θ)[a−i] · ui
((
a−i� a′

i

)
� θ

))
dϕi(τi)�

The fact that σ−i satisfies property (ii) above proves the claim.

This way we conclude that ai ∈ ICRλi�n+1(τi).

We now apply Lemma 1 to the proofs of the two remaining propositions of Sec-
tion 3.3.

Proposition 1 (Type-representation invariance). Let 〈G�T 〉 be a Bayesian game. Then,
for any player i, any type ti, and any sequence of probabilities λ, ICRλi (ti)= ICRλi (τi(ti)).

Proof. We will prove the slightly more general claim: for any player i, any type ti, any
sequence of probabilities λ, and any nonnegative integer n, it holds that ICRλ�Ti�n (ti) =
ICRλi�n(τi(ti)). Let us proceed by induction on n. The initial case (n= 0) holds trivially. For
the inductive step, suppose that n ≥ 0 is such that the claim holds for any k = 0� � � � � n,
and fix i ∈ I, ti ∈ Ti, and λ ∈ �. For the right inclusion, pick ai ∈ ICRλ�Ti�n+1(ti) and μi ∈
Cλ�Ti�n (ti) such that ai ∈ BRi(μi), and for each k = 1� � � � � n, μi[Graph(ICRλ�T−i�k)×�] ≥ λk.
Define now ηi(μi) ∈ �(T−i ×A−i ×�) as follows:

E 	→ ηi(μi)[E] = μi
[{
(t−i� a−i� θ) ∈ T−i ×A−i ×�|((τ−i(t−i)

)
� a−i� θ

) ∈E}]
�

for any measurable E ⊆ T−i ×A−i ×�. Since τ−i is continuous, ηi(μi) is well-defined.18

Notice that we have (i) that margA−i×�ηi(μi)= margA−i×�μi and (ii) that19

margT−i×�ηi(μi)[E] = ηi(μi)[A−i ×E]
= μi

[{
(t−i� a−i� θ) ∈ T−i ×A−i ×�|((τ−i(t−i)� a−i� θ

) ∈A−i ×E
}]

= margT−i×�μi
[{
(t−i� θ) ∈ T−i ×�|(τ−i(t−i)� θ

) ∈E}]
= πi(ti)

[{
(t−i� θ) ∈ T−i ×�|(τ−i(t−i)� θ

) ∈E}]
= ϕi

(
τi(ti)

)[E]�
18Due to every {(t−i� a−i� θ) ∈ T−i ×A−i ×�|((τ−i(t−i))� a−i� θ) ∈E} being measurable.
19The fifth equality is a special case of formula (4) in Battigalli et al. (2011, p. 10).



112 Germano, Weinstein, and Zuazo-Garin Theoretical Economics 15 (2020)

Thus, it follows from (i) that ai ∈ BRi(ηi(μi)), and from (ii) that ηi(μi) ∈ Cλi�0(τi(ti)). Now,
fix k= 0� � � � � n and note that we know, due to the induction hypothesis that20

ηi(μi)
[
Graph

(
ICRλ−i�k

) ×�] ≥ μi
[{
(t−i� a−i) ∈ T−i ×A−i|a−i ∈ ICRλ−i�k

(
τ−i(t−i)

)} ×�]
= μi

[
Graph

(
ICRλ�T−i�k

) ×�]
≥ λk�

Thus, we conclude that ηi(μi) ∈ Cλi�n(τi(ti)). For the left inclusion, we make use of

Lemma 1. Pick ai ∈ ICRλi�n+1(τi(ti)) and measurable σ−i : T−i × �→ �(A−i) satisfying
conditions (i) and (ii) in the statement of the lemma. Since map f−i : T−i ×�→ T−i ×�
given by (t−i� θ) 	→ (τ−i(t−i)� θ) is continuous, σ̂−i = σ−i ◦f−i is measurable. We can then
define μi ∈ �(T−i ×A−i ×�) as follows:

E 	→ μi[E] =
∑

a−i∈A−i

∫
T−i×�

σ̂−i(t−i� θ)
[
E ∩ {

(t−i� a−i� θ)
}]

dπi(ti)�

for any measurable E ⊆ T−i ×A−i ×�. Then we have that:

• μi ∈ Cλ�Ti�0 (ti). To see this, pick measurable E ⊆ T−i ×� and develop

μi[E ×A−i] =
∫
T−i×�

( ∑
a−i∈A−i

σ̂−i(t−i� θ)
[
ProjA−i

(
E ×A−i ∩

{
(t−i� a−i� θ)

})])
dπi(ti)

=
∫
E
σ̂−i(t−i� θ)[A−i]dπi(ti)= πi(ti)[E]�

• μi ∈ Cλ�Ti�n (ti). Consider continuous map Fi : T−i ×A−i ×� 	→ T−i ×A−i ×� given
by (t−i� a−i� θ) 	→ (f−i(t−i� θ)�a−i). Then we have that

μi
[
Graph

(
ICRλ�T

−i�k
)] =

∫
T−i×�

σ−i(t−i� θ)
[
ProjA−i

(
Graph

(
ICRλ�T

−i�k
) ∩ {

(t−i� θ)
} ×A−i

)]
dπi(ti)

=
∫
T−i×�

σ−i(t−i� θ)
[
ICRλ�T

−i�k(t−i)
]

dπi(ti)≥ λk

for any k= 1� � � � � n.

• ai ∈ BRi(μi). Note first that∫
T−i×�

( ∑
a−i∈A−i

σ̂−i(t−i� θ)[a−i] · ui
((
a−i� a′

i

)
� θ

))
dπi(ti)

=
∫
T−i×�

(∫
τ−1
−i (τ−i)×{θ}

( ∑
a−i∈A−i

σ̂−i(t−i� θ)[a−i] · ui
((
a−i� a′

i

)
� θ

))
dπi(ti)

)
dϕi(τi)

=
∫
T−i×�

(∫
τ−1
−i (τ−i)×{θ}

( ∑
a−i∈A−i

σ−i
(
f−i(t−i)� θ

)[a−i] · ui
((
a−i� a′

i

)
� θ

))
dπi(ti)

)
dϕi(τi)

20Each Graph(ICRλ�T−i�k) is clearly measurable; see Footnote 18.
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=
∫
T−i×�

(∫
τ−1
−i (τ−i)×{θ}

( ∑
a−i∈A−i

σ−i(τ−i� θ)[a−i] · ui
((
a−i� a′

i

)
� θ

))
dπi(ti)

)
dϕi(τi)

=
∫
T−i×�

( ∑
a−i∈A−i

σ−i(τ−i� θ)[a−i] · ui
((
a−i� a′

i

)
� θ

))
dϕi(τi)�

Now, define for each a−i ∈A−i measure νi(a−i) ∈ �(T−i ×�) as E 	→ μi[E× {a−i}].
Then, for any a′

i ∈Ai,∫
A−i×�

ui
((
a−i;a′

i

)
� θ

)
d(margA−i×�μi)=

=
∑

a−i∈A−i

∫
T−i×�

ui
((
a−i;a′

i

)
� θ

)
dνi(a−i)

=
∫
T−i×�

( ∑
a−i∈A−i

σ̂−i(t−i� θ)[a−i] · ui
((
a−i� a′

i

)
� θ

))
dπi(ti)�

Then the fact that σ−i satisfies property (ii) proves the claim.

Thus, we conclude that ai ∈ ICRλ�Ti�n+1(ti).

Proposition 3 (Robustness to higher-order uncertainty about rationality). Let 〈G�T 〉
be a Bayesian game. Then, for any player i and any type ti, we have that

(i) ICRi(ti)= ICR1̄
i (ti).

(ii) The correspondence given by λ 	→ ICRλi (ti) is upper-hemicontinuous everywhere
and continuous at λ= 1̄�

Proof. Since it follows immediately from Lemma 1 that for any n ∈N, any i ∈ I and any
τi ∈ Ti, ICRi�n(τi) = ICR1

i�n(τi), we focus on the claims concerning continuity. We prove
them separately.

Upper-hemicontinuity. We prove first the following claim: for any i ∈ I, any
τi ∈ Ti, and any n ≥ 0, correspondence λ 	→ ICRλi�n(τi) is upper-hemicontinuous. We
proceed by induction on n. The initial step (n = 0) holds trivially. For the inductive
step, suppose that n ≥ 0 is such that the claim holds for any k = 0� � � � � n. In particu-
lar, note that each ICR(·)−i�k(τ−i) is compact-valued, and hence, upper-hemicontinuity

implies that
⋂
n≥0 ICRλ

n

−i�k(τ−i) ⊆ ICRλ−i�k(τ−i) for any (λn)n∈N → λ.21 Now, fix i ∈ I and

τi ∈ Ti, pick convergent sequence (λm�ami )m∈N ⊆ �×Ai such that ami ∈ ICRλ
m

i�n+1(τi) for
any m ∈ N, and denote by (λ�ai) the limit of the sequence. We need to check that
ai ∈ ICRλi�n+1(τi). First, pick (ηmi )∈N ∈ ∏

m∈N Cλ
m

i�n (τi) such that ami ∈ BRi(ηmi ) for any
m ∈N, and notice that, since�(T−i×A−i×�) is compact, there exists a convergent sub-
sequence (ηm�i )�∈N ⊆ (ηmi )m∈N with limit ηi. Obviously, (am�i )�∈N converges to ai, and

21Just write: �(λ)= ICRλ−i�k(τ−i). Since � is compact-valued and upper-hemicontinuous, then a−i ∈ �(λ)
for any (λn)n∈N converging to λ such that a−i ∈ �(λn) for any n ∈ N. Thus,

⋂
n∈N �(λn)⊆ �(λ).
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thus, we know from the upper-hemicontinuity of BRi that ai ∈ BRi(ηi). Since margT−i×�
is continuous, we also know that margT−i×�ηi = ϕi(τi).

It only remains to be checked that ηi[Graph(ICRλ−i�k)×�] ≥ λk for any k= 0� � � � � n.

Fix k = 0� � � � � n and notice that ηm�i [Graph(ICRλ
m�

−i�k)×�] ≥ λm�k for any � ∈ N. Then set

(λ̂m�k ) = (infs≥� λmsk )k∈N and Ak�m� = ⋃
t≥�Graph(ICRλ

mt

−i�k) for any � ∈ N. Since (λ̂m�k ) is

a weakly increasing sequence (i.e., for any t ≥ �, λ̂mtk ≥ λ̂m�k ) and, clearly, λm�k ≥ λ̂m�k , the
following hold for any � ∈N:

(i) Graph(ICRλ̂
mt

−i�k)⊆ Graph(ICRλ̂
m�

−i�k) for any t ≥ �.

(ii) Graph(ICRλ
m�

−i�k)⊆ Graph(ICRλ̂
m�

−i�k).

It follows from (i) and (ii) that Ak�m� ⊆ Graph(ICRλ̂
m�

−i�k) for any � ∈ N.22 Now, notice that

for any � ∈ N, ηm�+ri [Ak�m� × �] ≥ λ̂m�k , and that (ηm�+ri )r≥0 converges to ηi. Thus, we
know from Theorem 15.3 by Aliprantis and Border (1999) that ηi[Ak�m� ×�] ≥ λ̂m�k and,

therefore, that ηi[Graph(ICRλ̂
m�

−i�k)×�] ≥ λ̂m�k for any � ∈ N. The latter, together with (i)

above and the fact that (λ̂m�k )�∈N converges to λk implies that

ηi

[⋂
�∈N

Graph
(
ICRλ̂

m�

−i�k
) ×�

]
= ηi

[
lim
�→∞

(
Graph

(
ICRλ̂

m�

−i�k
) ×�)]

= lim
�→∞ηi

[
Graph

(
ICRλ̂

m�

−i�k
) ×�]

≥ lim
�→∞ λ̂

m�
k = λk�

Notice that we know from the induction hypothesis (see Footnote 17), again together
with the fact that (λ̂m�k )�∈N converges to λk, that

ηi
[
Graph

(
ICRλ−i�k

) ×�] ≥ ηi
[⋂
�∈N

Graph
(
ICRλ̂

m�

−i�k
) ×�

]
�

Thus, we conclude from the last two that ηi[Graph(ICRλ−i�k)×�] ≥ λk, and hence, that

ηi ∈ Cλi�k(τi), and ai ∈ ICRλi�n+1(τi).
It follows from the above that for any i ∈ I, any τi ∈ Ti, and any n ≥ 0,

Graph(ICR(·)i�n(τi)) is closed, and thus, that so is ICRλi�n(τi) = ProjAi(({λ} × Ai) ∩
Graph(ICR(·)i�n(τi))) for any λ ∈ �. Thus, ICR(·)i�n(τi) is a compact-valued correspon-
dence, and hence, by Theorem 17.25 in Aliprantis and Border (1999), we conclude that
ICR(·)i (τi)= ⋂

n≥0 ICR(·)i�n(τi) is upper-hemicontinuous.
Continuity at λ= 1. Fix i ∈ I, and τi ∈ Ti. It suffices to check lower-hemicontinuity

at λ = 1; that is, we need to show (see Aliprantis and Border 1999, Definition 17.2) that
for any open subset U ⊆ Ai such that ICRλi (τi) ∩ U �= ∅, there exists a neighborhood

22By Ak�m� , we denote the closure of Ak�m� ; note that we know from Proposition 2 that ICR
λm�
−i�k has a

closed graph.
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V ⊆� of λ= 1 such that if λ′ ∈ V , then ICRλi (τi)∩U �=∅. This follows immediately from
the fact that, since λ′

n ≥ λn for any n ∈N, then ICRλi (τi)⊆ ICRλ
′
i (τi).

Proposition 4 (λ-rationalizability and ε-rationalizability). Let 〈G�T 〉 be a Bayesian
game. Then, for any ε > 0, any n ≥ 0, any player i and any type ti, we have that, for
every p≥ 1/(1 + ε/(2M)), ICRp̄i�n(ti)⊆ ε-ICRi�n(ti).

Proof. Fix ε > 0, i ∈ I, τi ∈ Ti and p ≥ 1/(1 + ε/(2M)). We proceed by induction on n.
The initial case (n= 0) holds trivially. Suppose that the claim is true for n= k; let us verify
that then it also holds for n= k+ 1. Fix ai ∈ ICRp̄i�k+1(τi) and conjecture μi ∈ Cp̄i�k(τi) for
which ai is a best-reply. Now:

(i) If μi puts probability 1 on Graph(ICR−i�k)×�, then set

μ̄i = μi�

(ii) If μi puts probability q ∈ [p�1) on Graph(ICR−i�k)×�, then set

μ̄i = μi
[·|Graph(ICR−i�k)×�]

and

μ̂i = μi
[·|(Graph(ICR−i�k)×�)c]

�

It follows from the induction hypothesis that in any case μ̄i ∈ ε-Ci�k(τi). Since ai ∈
BRi(μi) it follows that if (i) then, in particular, ai ∈ ε-BRi(μi), and thus, that ai ∈
ε-ICRi�k+1(τi). If (ii) it follows from ai ∈ BRi(μi) that for any a′

i ∈Ai \ {ai},

q · (Ui(μ̄i� ai)−Ui
(
μ̄i� a

′
i

)) + (1 − q) · (Ui(μ̂i� ai)−Ui
(
μ̂i� a

′
i

)) ≥ 0�

and thus, that

Ui(μ̄i� ai)−Ui
(
μ̄i� a

′
i

) ≥ −
(

1 − q
q

)
· (Ui(μ̂i� ai)−Ui

(
μ̂i� a

′
i

))

≥ −
(

1 − q
q

)
· 2M

≥ −
(

1 −p
p

)
· 2M ≥ −ε�

Then, since ai ∈ ε-BRi(μ̄i) and μ̄i ∈ ε-Ci�k(τi), we conclude that ai ∈ ε-ICRi�k+1(τi) in
this case, too.

A.2 Epistemic characterization

Proposition 7 (Epistemic foundation of ICRλ). Let 〈G�T 〉 be a Bayesian game and λ, a
sequence of probabilities. Then λ-rationalizability characterizes rationality and common
λ-belief in rationality; that is, for any player i and any type ti it holds that

ICRλi (ti)= ProjAi
(
Ri ∩ CBλi (R)∩ [

qi = τi(ti)
])
�
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Proof. Fix sequence of probabilities λ. Now, first, for any i ∈ I and any n ≥ 1 define
auxiliary correspondence�i�n : Graph(ICRλi�n)⇒�i as follows:

(τi� ai) 	→ {
ei ∈ q−1

i (τi)|(ei� ai) ∈ ProjEi×Ai
(
Ri ∩Bλ�n−1

i (R)
)} × {ai}�

Note that for any i ∈ I and n ∈ N, correspondence �i�n−1 has closed graph: pick con-
vergent sequence (τmi �a

m
i � e

m
i � a

m
i )m∈N ⊆ Graph(�i�n−1) with limit (τi� ai� ei� ai). Since

qi(e
m
i ) = τmi for any m ∈ N and qi is continuous, we know that ei ∈ q−1

i (τi). Thus, it

suffices to check that (ei� ai) ∈ ProjEi×Ai(Ri ∩ Bλ�n−1
i (R)). But the latter is obvious: it

follows immediately from the facts that Ri ∩ Bλ�n−1
i (R) is closed and (emi �a

m
i )m∈N ⊆

ProjEi×Ai(Ri ∩Bλ�n−1
i (R)). This way, we conclude that (τi� ai� ei� ai) ∈ Graph(�i�n−1).

Now, for any i ∈ I denote Bλ�0i (R)=�. Let us prove that for any n≥ 0 we have that,

Graph
(
ICRλi�n+1

) = {(
qi(ei)� ai

) ∈ Ti ×Ai|(ei� ai) ∈ ProjEi×Ai
(
Ri ∩Bλ�ni (R)

)}
�

We proceed by induction.
Initial step. Fix i ∈ I. For the left inclusion, pick ω ∈ Ri and set (τi� ai) =

(qi(ei(ω))�ai(ω)). Define now ηi ∈ �(T−i ×A−i ×�) as follows:

E 	→ ηi[E] =ψi
(
ei(ω)

)[{
(e−i� a−i� θ) ∈ E−i ×A−i ×�|(q−i(e−i)� a−i� θ

) ∈ E}]
�

Since q−i is a homeomorphism, ηi is well-defined, and obviously, it satisfies the fol-
lowing two conditions: (i) margT−i×�ηi = qi(τi) and (ii) margA−i×�ηi = ei�1(ω). Thus,

we have, first, that ηi ∈ Cλi�0(τi), and, second, since ω ∈ Ri, that ai ∈ BRi(ηi). In con-

sequence, (τi� ai) ∈ Graph(ICRλi�1). For the right inclusion, define first correspondence

�i�0 : Ti × Ai ⇒ �i as follows: (τi� ai) 	→ q−1
i (τi) × {ai}. Obviously, �i�0 is nonempty

and has a closed graph. Thus, it is also weakly measurable and then we know from the
Kuratowski–Ryll Nardzewski selection theorem that it admits a measurable selectorφi�0.
Letφ−i�0 = (φj�0)j �=i. Next, pick (τi� ai) ∈ Ti×Ai such that ai ∈ ICRλi�1(τi), andηi ∈ Cλi�0(τi)
such that ai ∈ BRi(ηi), and define belief ψi(ηi) ∈ �(E−i ×A−i ×�) as follows:

E 	→ψi(ηi)[E] = ηi
[{
(τ−i� a−i� θ) ∈ T−i ×A−i ×�|(φ−i�0(τ−i� a−i)� θ

) ∈ E}]
�

Since φ−i�0 is measurable and its domain is T−i × A−i, ψi(ηi) is well-defined. Set
ei = ψ−1

i (ψi(ηi)). Then we have that: (i) margT−i×�ψi(ei) = margT−i×�ηi and (ii) ei�1 =
margA−i×�ηi. Thus, it follows that qi(ei) = τi and ai ∈ BRi(ei�1), and, therefore, that
(ei� ai) ∈ ProjEi×Ai(Ri). Notice that, in particular, the proof of the right inclusion implies
that �i�1 is nonempty.

Inductive step. Suppose that n≥ 0 is such that for any k= 0� � � � � n the claim holds
and �i�k+1 is nonempty for any i ∈ I. Fix i ∈ I. For the left inclusion, pick ω ∈ Ri ∩
Bλ�n+1
i (R) and let (τi� ai) = (qi(ei(ω))�ai(ω)). Define belief ηi ∈ �(T−i × A−i × �) as

follows:

E 	→ ηi[E] =ψi
(
ei(ω)

)[{
(e−i� a−i� θ) ∈ E−i ×A−i ×�|(q−i(e−i)� a−i� θ

) ∈ E}]
�
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Since q−i is a homeomorphism, ηi is well-defined, and clearly, it satisfies the following
two conditions: (i) margT−i×�ηi = qi(τi) and (ii) margA−i×�ηi = ei�1(ω). Thus, obviously,

we have, first, that ηi ∈ Cλi�0(τi), and second, since ω ∈ Ri, that ai ∈ BRi(ηi). Finally,

notice that, since ω ∈ Bλ�n+1
i (R), for any k= 1� � � � � n+ 1 it holds that

ηi
[
Graph

(
ICRλ−i�k

) ×�]
= ηi

[{
q−i(e−i)� a−i) ∈ T−i ×A−i|(e−i� a−i) ∈ ProjE−i×A−i

(
R−i ∩Bλ�k−1

−i (R)
)} ×�]

=ψi
(
ei(ω)

)[{
(e−i� a−i) ∈ E−i ×A−i|a−i ∈ ICRλ−i�k

(
q−i(e−i)

)} ×�]
=ψi

(
ei(ω)

)[{
(e−i� a−i) ∈�−i

∣∣∣∣ There exists some e′i ∈ q−1
−i (e−i) such that(

e′−i� a−i
) ∈ ProjE−i×A−i

(
R−i ∩Bλ�k−1

−i (R)
)
}

×�
]

≥ψi
(
ei(ω)

)[{
(e−i� a−i� θ) ∈�−i ×�|(e−i� a−i) ∈ ProjE−i×A−i

(
R−i ∩Bλ�k−1

−i (R)
)}]

=ψi
(
ei(ω)

)[{(
ω′

−i� θ
) ∈�−i ×�|(ω′

−i�ωi� θ
) ∈R−i ∩Bλ�k−1

−i (R)
}] ≥ λk�

Thus, ηi ∈ Cλi�k(τi) for any k = 0� � � � � n + 1 and, in consequence, (τi� ai) ∈
Graph(ICRλi�n+2). For the right inclusion, pick (τi� ai) ∈ Ti×Ai such that ai ∈ ICRλi�n+2(τi),
and ηi ∈ Cλi�n+1(τi) such that ai ∈ BRi(ηi). We know from the induction hypothesis that
�j�n+1 is nonempty for any j �= i. Thus, since every�j�n+1 has closed graph, and hence, is
weakly measurable, there exists a measurable map φ−i�n+1 = (φj�n+1)j �=i where for each
j �= i map φj�n+1 is a measurable selector of �j�n+1. Next, let us introduce the following

notational convention: let Z−i�k = Graph(ICRλ−i�k) and W−i�k = Proj�(R−i ∩Bλ�k−i (R)) for
any k= 0� � � � � n+ 1. Then define ψi(ηi) ∈ �(E−i ×A−i ×�) as follows:

E 	→ψi(ηi)[E] =
n+1∑
k=0

ψki (ηi)[E]�

where

ψn+1
i (ηi)[E] = ηi

[{
(τ−i� a−i� θ) ∈Z−i�n+1 ×�|(φ−i�n+1(τ−i� a−i)� θ

) ∈E}]
and

ψki (ηi)[E] = ηi
[{
(τ−i� a−i� θ) ∈ (Z−i�k \Z−i�k+1)×�|(φ−i�k(τ−i� a−i)� θ

) ∈E}]
�

for any k = 0� � � � � n. Since every φ−i�k+1 is measurable, ψi(ηi) is well-defined. Set ei =
ψ−1
i (ψi(ηi)) and ωi = (ei� ai). Then we have that: (i) margT−i×�ψi(ei) = margT−i×�ηi

and (ii) ei�1 = margA−i×�ηi. Thus, it follows that qi(ei)= τi and ai ∈ BRi(ei�1). Now, no-
tice that for any k= 0� � � � � n we have that

ψi
(
ei(ω)

)[{(
ω′

−i� θ
) ∈�−i ×�|(ω′

−i�ωi� θ
) ∈R−i ∩Bλ�k−i (R)

}]
=ψi

(
ei(ω)

)[Proj�−i W−i�k ×�]

=
n+1∑
�=0

ψ�i
(
ei(ω)

)[Proj�−i W−i�k ×�]
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≥
n∑

�=k+1

ηi
[{
(τ−i� a−i) ∈ (Z−i�� \Z−i��+1)|

(
φ−i��(τ−i)� a−i

) ∈ Proj�−i W−i�k
} ×�]

+ηi
[{
(τ−i� a−i) ∈Z−i�n+1|

(
φ−i�n+1(τ−i)� a−i

) ∈ Proj�−i W−i�k
} ×�]

≥
n∑

�=k+1

ηi
[
(Z−i�� \Z−i��+1)×�] +ηi[Z−i�n+1 ×�]

= ηi[Z−i�k+1 ×�] ≥ λk+1�

Thus, we conclude that ω ∈ Ri ∩ Bλ�n+1
i (R) ∩ [qi = τi] and, therefore, that there exists

some (ei� ai) ∈ ProjEi×Ai(Ri∩Bλ�n+1
i (R)) such that qi(ei)= τi. Finally, notice that, in par-

ticular, the proof of the right inclusion implies that for any i ∈ I correspondence �i�n+2

is nonempty.
Now, in order to complete the proof, fix i ∈ I and τi ∈ Ti, and notice that for any n≥ 0,

ICRλi�n+1(τi)= ProjAi
(({τi} ×Ai

) ∩ Graph
(
ICRλi�n+1

))
= ProjAi

(({τi} ×Ai
) ∩ {(

qi(ei)� ai
) ∈ Ti ×Ai|(ei� ai) ∈ ProjEi×Ai

(
Ri ∩Bλ�ni (R)

)})
= ProjAi

({τi} × {
ai ∈Ai|(ei� ai) ∈ ProjEi×Ai

(
Ri ∩Bλ�ni (R)∩ [qi = τi]

)})
= ProjAi

(
Ri ∩Bλ�ni (R)∩ [qi = τi]

)
�

Finally, the fact that

ICRλi (τi)=
⋂
n≥0

ProjAi
(
Ri ∩Bλ�ni (R)∩ [qi = τi]

)

= ProjAi

(
Ri ∩

⋂
n≥0

Bλ�ni (R)∩ [qi = τi]
)

= ProjAi
(
Ri ∩ CBλi (R)∩ [qi = τi]

)
�

completes the proof.

Appendix B: Proofs: Main results

B.1 Robustness of the WY-discontinuity

Proposition 5 (WY-discontinuity for persistently high λ). Let 〈G�T 〉 be a Bayesian
game with finite type space. Then there exists some p < 1 such that for any player i,
any type ti, any λ with λ≥ p̄, and any ai ∈ RSi(ti), there exists some convergent sequence
(τni )n∈N approaching τi(ti) such that ICRλi (τ

n
i )= {ai} for all n ∈N.

Proof. Fix any ti and use τi as an abbreviation for τi(ti). Since ai is robustly selected
for ti, we know that there exists some ε > 0 and some sequence (τni )n∈N converging to
τi such that ai is uniquely ε-rationalizable for τni for every n ∈ N. Then it follows from
Proposition 4 and nonemptiness of p̄-rationalizability that for any p ≥ 1/(1 + ε/(2M)),
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ai is uniquely p̄-rationalizable for τni for every n ∈ N. Then the result follows from the
fact that ICRλ is clearly monotone decreasing, i.e., for λ ≥ p̄ and every ai, ICRλi (ai) ⊆
ICRp̄i (ai).

B.2 Nonrobustness of the WY-discontinuity

Proposition 6 (No WY-discontinuity for vanishing λ). Let 〈G�T 〉 be a Bayesian game
with finite type space. Then, for any ε < 0, any player i, any type ti, and any λwith λn → 0,
there exists a neighborhood U of τi(ti) such that ε-ICRi(ti)⊆ ICRλi (τi), for any τi ∈U .

Proof. Fix i ∈ I, let ti ∈ Ti and abbreviate τi(ti) by simply τi. Let ai ∈ ε- ICRi(τi) for
some ε < 0. We know from Proposition 2 in Chen et al. (2010) that for any n ∈ N there
exists some δn > 0 such that23

2ε-ICRi�n(τi)⊆ ε-ICRi�n(τ̂i)

for any τ̂i ∈Uni = Bδn(τi). Clearly, it follows that

ai ∈ ε-ICRi�n(τ̂i)⊆ ICRi�n(τ̂i)

for any τ̂i ∈Uni .
Now, since λ converges to 0 we know that there exists some n0 ∈N such that

λn ≤ x := −ε
2M − ε

for any n ≥ n0. Then, for any τ̂i ∈ Ui take arbitrary η̂1
i ∈ ε-Ci�n0(τ̂i) and arbitrary η̂2

i ∈⋂
n>n0

Ci�n(τ̂i) and define:

η̂i = (1 − x) · η̂1
i + x · η̂2

i �

Then:

• ai ∈ BRi(η̂i). To see this, simply notice that for any a′
i ∈Ai \ {ai} we have

Ui(η̂i� ai)−Ui
(
η̂i� a

′
i

) = (1 − x) · (Ui(η̂1
i � ai

) −Ui
(
η̂1
i � a

′
i

))
+ x · (Ui(η̂2

i � ai
) −Ui

(
η̂2
i � a

′
i

))
≥ (1 − x) · (−ε)+ x · 2M = 0�

• η̂i ∈ ⋂
n≥0 Cλi�n(τ̂i). Obviously, η̂i ∈ Cλi�0(τ̂i). Now, for any natural n≤ n0 we have

η̂i
[
Graph

(
ICRλ−i�n

) ×�] ≥ η̂i
[
Graph(ε-ICR−i�n)×�] = (1 − x)+ x≥ λn�

Whereas for n > n0 we have

η̂i
[
Graph

(
ICRλ−i�n

) ×�] ≥ x · η̂2
i

[
Graph(ICR−i�n)×�] = x≥ λn�

23Proposition 2 by Chen et al. (2010) is stated for ε > 0. It is routine to verify that the authors’ proof
generalizes to arbitrary ε. For better comparison between that result and this claim, suppose that γ = 2ε
and ε= γ+ 4Mδn and then take δn = −ε/4M .
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Thus, we conclude that ai ∈ ICRλi (τ̂i) for every τ̂i ∈Un0
i . The fact that the action sets are

finite ensures thatUi, the intersection of all theUn0
i corresponding to each rationalizable

action, is open too, and thus, the proof is complete.

Corollary 2 (Nonrobustness of generic uniqueness). Let 〈G�T 〉 be a Bayesian game.
Then, for any player i for which there exist some ε < 0 and some type ti such that
|ε-ICRi(ti)|> 1, and for any λ with λn → 0, the following set is not dense:

Uλi = {
τi ∈ Ti|

∣∣ICRλi (τi)
∣∣ = 1

}
�

Proof. This follows directly from Proposition 6: fix sequence λ with limit 0 and pick
i ∈ I and ti ∈ Ti such that |ε-ICRi(ti)|> 1 for some ε < 0. Then we know that there exists
some open neighborhoodU of ti such that ε-ICRi(ti)� ICRλi (t̂i) for any t̂i ∈U . Thus, the
set Ui does not intersect open set U , and is not dense.
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