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Locally Bayesian learning in networks
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Agents in a network want to learn the true state of the world from their own signals
and their neighbors’ reports. Agents know only their local networks, consisting
of their neighbors and the links among them. Every agent is Bayesian with the
(possibly misspecified) prior belief that her local network is the entire network.
We present a tractable learning rule to implement such locally Bayesian learning:
each agent extracts new information using the full history of observed reports in
her local network. Despite their limited network knowledge, agents learn correctly
when the network is a social quilt, a tree-like union of cliques. But they fail to
learn when a network contains interlinked circles (echo chambers), despite an
arbitrarily large number of correct signals.

KeyworbDs. Locally Bayesian learning, rational learning with misspecified priors,
efficient learning in finite networks.

JEL crLassIFicaTION. D03, D83, D85.

1. INTRODUCTION

People often learn from those they interact with, who in turn talk to and learn from
their neighbors. In order to make correct decisions, people must account for informa-
tion overlaps and distortions when learning from their social networks. Failure to do
so can lead to learning errors with serious consequences, such as political polarization,
entrenched poverty, and disease outbreaks. For instance, in Minnesota’s close-knit So-
mali community, MMR vaccination rates among children dropped from 92% in 2004

Wei Li: wei.li@ubc.ca

Xu Tan: tanxu@uw.edu

This paper has previously been circulated under the title “Learning in Local Networks.” We thank Andrea
Blume, Jeff Ely, Ben Golub, Vitor Farinha Luz, Drew Fudenberg, Fahad Khalil, Jacques Lawarrée, Stephen
Morris, Marit Rehavi, Tanya Rosenblat, Edward Schlee, Joel Sobel, Kyungchul (Kevin) Song, Wing Suen, Joel
Watson, Quan Wen, and three anonymous referees for helpful comments. We are especially grateful for
extensive discussions and numerous comments from Matt Jackson, Li Hao, and Mike Peters. We thank
Anubhav Jha for excellent research assistance. We also thank the seminar participants at UBC, UW, UCR,
PKU, UIBE, SHUFE, HKU, Emory University, SFU, UNSW, UTS, WUSTL, UNC, MSU, the Second Annual
Conference on Network Science and Economics, the 2016 CETC, the 2016 North American Summer Meet-
ing of the Econometric Society, the 2017 ASSA annual meeting, and the 2017 NSF/CEME Decentralization
Conference for great feedback. Wei Li thanks SSHRC Insight Grant 435-2018-0265 and the Hampton Estab-
lished Scholar Grant for financial support.

© 2020 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://econtheory.org. https://doi.org/10.3982/TE3273


http://econtheory.org/
mailto:wei.li@ubc.ca
mailto:tanxu@uw.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://econtheory.org
https://doi.org/10.3982/TE3273

240 Liand Tan Theoretical Economics 15 (2020)

to 43% in 2013. If a new mother in this community hears from her neighbors that MMR
causes autism, she may decide not to vaccinate her baby. Her neighbors may have heard
this news from their neighbors. Thus, one piece of false information, such as the fraudu-
lent research paper linking MMR to autism, which was fully retracted, may influence the
opinions of many of her neighbors. As a consequence, she believes erroneously—and in-
creasingly if the same information travels back to her again in the guise of stronger opin-
ions against MMR—that MMR is dangerous. Eventually, she may believe MMR causes
autism despite overwhelming evidence to the contrary.!

Motivated by this phenomenon, we propose a novel model of locally Bayesian learn-
ing. The model is Bayesian in that each agent updates her beliefs rationally using all the
observed reports from her neighbors and her own signals. In particular, she tracks the
changes in each neighbor’s reports over time and attributes any unexpected change to
new, independent information. The model is local in that each agent knows and extracts
new information within only her local network, consisting of her neighbors and the
links among them.? We show that, despite limited network knowledge, locally Bayesian
agents are capable of partialing out repeated information and forming correct beliefs in
social quilts, networks in which any two agents in the same circle must be connected.>
Moreover, social quilts are also necessary for agents to learn correctly. Our correct learn-
ing result holds for finite networks, and thus complements the existing literature focus-
ing on when the law of large numbers holds and when agents can learn asymptotically
in large networks.? In addition, the features of a social quilt are observable; thus, our
result is potentially testable even with small datasets.

Because a locally Bayesian agent treats any unexpected change in her neighbors’
reports as new, independent information, we identify two network features that are cru-
cial for correct learning. First, if the network contains simple circles, as illustrated in
Figure 1(a), then a locally Bayesian agent treats correlated information as independent
signals. For instance, in Figure 1(a), agent 1’s information travels through a four-agent
simple circle in both directions to reach agent 3. Agent 3 (not knowing agent 1) be-
lieves these two copies of the signal are independent, and thus double counts them.
The problem is exacerbated in networks with multiple simple circles, or echo chambers,
in which duplicate copies of each signal travel among the simple circles repeatedly and
grow exponentially. As a result, the law of large numbers may fail: everyone believes in

IThe Minnesota Department of Public Health has had very limited success in changing these beliefs,
even as they encountered the largest and growing measles outbreak in two decades. For more information,
see Howard, Jacqueline, “Anti-vaccine groups blamed in Minnesota measles outbreak” CNN, May 8, 2017.
In the result sections, we will show why the retraction of the fraudulent paper and announcements from
public health officials may not overturn such erroneous beliefs.

2Agents having limited knowledge of their network is consistent with evidence from surveys. For in-
stance, Krackhardt (1990) finds that the accuracy of knowing other people’s connections is 15%—-48% in a
small startup of 36 people, and Casciaro (1998) finds the accuracy is approximately 45% in a research cen-
ter of 25 people. Moreover, Breza et al. (2018) find that each agent’s knowledge about the network is highly
localized, declining steeply with the pair’s network distance from the agent.

3A path is an ordered sequence of agents, and each pair of adjacent agents in the sequence is connected.
A circle is a path going from one agent back to the same agent.

4Asymptotic learning requires that each agent has a negligible influence on the limit beliefs of the net-
work. See Golub and Jackson (2010) and Mossel et al. (2015), among others.
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FIGURE 1. (a) A four-agent simple circle. (b) Failure of local connection symmetry.

a wrong signal despite an arbitrarily large number of correct signals, reminiscent of the
MMR example above. Second, if a network fails local connection symmetry, then alocally
Bayesian agent may extract signals negatively correlated with an exogenous signal, lead-
ing to opinion swings and belief nonconvergence. Local connection symmetry requires
that if a pair of connected agents has two common neighbors, then these two neighbors
must be connected. Figure 1(b) shows a failure of this property. In this diamond-with-
a-link network, agents 2 and 4 know they both learn from agent 1, so they do not double
count agent 1’s report. However, agent 3 expects agent 2 to treat agent 4’s report as new
and independent, and vice versa. When these two agents do not learn from each other’s
reports, agent 3 believes that agent 2 and 4 each receive a private signal negatively cor-
related with the original signal. Agent 3 then overreacts in the opposite direction.

A social quilt is characterized by two features: it contains no simple circles and it sat-
isfies local connection symmetry. Therefore, neither of the two types of learning errors
mentioned above is present. Each piece of information reaches an agent once and only
once because no simple circles exist. Moreover, agents do not make local learning er-
rors due to local connection symmetry. In short, any unexpected change in a neighbor’s
report is truly due to new signals in the social quilt; thus, locally Bayesian agents learn
correctly.

Our main theoretical contribution is that we retain an important feature of Bayesian
learning: agents have perfect memory and use their memory to update their beliefs via
Bayes’ rule. Specifically, in each period, each agent uses all her neighbors’ reports from
the first period to the previous period to form her belief. So far, perfect memory has
been understudied due to a lack of tractability. To make the model tractable, we make a
crucial behavioral assumption: each agent believes her local network is the entire net-
work (and it is common knowledge that each agent holds such a belief). Formally, our
model studies the learning outcomes of Bayesian agents who focus entirely on their lo-
cal networks due to their (possibly misspecified) priors of the network. This assumption
reflects the heavy cognitive and computational burden agents would face if they were to
properly update their beliefs about the entire network. It also allows us to study the rela-
tionship between network structure and agents’ learning outcomes when all agents use
local network information efficiently. Because an agent can identify and remove some
old information if she makes sufficient use of the history of reports, allowing for perfect
memory is a first step toward modeling how people avoid being misled by repeated and
distorted information from social networks.
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Locally Bayesian learning is easy to define and conceptualize but may be difficult to
analyze. Methodologically, we identify an iterative learning rule that implements locally
Bayesian learning. Specifically, suppose there are finitely many states and that agents
want to learn the true state, such as whether MMR causes autism in our opening exam-
ple. Each agent learns by forming and updating her belief about the state distribution.
Time is discrete, and each agent receives one signal at the end of each period. From
the second period onward, each agent first extracts any new information contained in
her neighbors’ most recent reports, which is the unexpected change mentioned above.
The main innovation of our learning rule is that we identify a set of statistics—closely
related to the agent’s higher-order beliefs—that each agent can use to identify and to
remember existing information. For example, these statistics include her second-order”
beliefs—her belief about each neighbor’s belief in the event that the neighbor’s most
recent private signal is uninformative. Because a locally Bayesian agent believes that
her second-order” belief contains all the old information a neighbor has except for his
most recent private signal, she attributes any difference between her second-order” be-
lief and her neighbor’s actual report to new information. Moreover, under the behav-
ioral assumption, she believes this new information must be the neighbor’s most recent
private signal from nature. She then incorporates all the newly extracted signals and up-
dates her belief using Bayes’ rule. This iterative learning rule is tractable and allows us
to study when agents’ learning outcomes are correct and when learning errors occur.

Literature review

People are known to learn from their social networks.® One strand of the theoretical lit-
erature on network learning shows that Bayesian agents can learn (asymptotically) if the
network is common knowledge (see Gale and Kariv 2003, Mueller-Frank 2013, Mossel
etal. 2015, among others). Another strand eschews the complexity of Bayesian learning
by assuming that agents learn by following reasonable rules of thumb.® For instance,
agents in DeGroot (1974) treat their neighbors’ reports in each period as new informa-
tion and update their opinions by taking a weighted average of these reports. Related
literature in computer science studies consensus when agents use mechanical rules to
compute changes in opinions, for example, as a function of the differences between
an agent and her neighbors’ opinions (see Xie and Wang 2012, Yang et al. 2014, among
others). In our model, agents do not employ any mechanical learning rule; they are
Bayesian when they learn from their neighbors (subject to the behavioral assumption).
More closely related to our paper is the growing literature on quasi-Bayesian learn-
ing in networks. In Bala and Goyal (1998), each agent rationally updates her belief about
the optimal action based on the outcomes observed in her local network, but she does

5For instance, Conley and Udry (2001) show that pineapple farmers in Ghana learn to use fertilizer from
neighbors. Duflo and Saez (2002) find employee participation in retirement savings plans is strongly in-
fluenced by their peers. Mébius and Rosenblat (2001) study the opposite side—the effect of isolation and
reduced opportunities to learn from social networks—on inner-city neighborhoods in Chicago. See Golub
and Sadler (2017) for a detailed survey on the progress and challenges of learning in social networks.

6See Ellison and Fudenberg (1993, 1995), DeMarzo et al. (2003), Golub and Jackson (2010), Jadbabaie
etal. (2012), among many others.
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not infer information from the actions chosen by her neighbors. Bala and Goyal (1998)
focus on the long-run convergence of actions in any network, whereas we study how
network structures affect the agents’ learning outcomes. Several recent papers feature
imperfect memory in a context that is otherwise the same as our model—agents ap-
ply Bayes’ rule to all the information they believe to be independent (Molavi et al. 2018,
Levy and Razin 2018, Mueller-Frank and Neri 2019). The underlying assumption of these
models, as shown by Molavi et al. (2018), is that in each period, each agent treats a neigh-
bor’s most recent report as a sufficient statistic for all the information available to that
neighbor.” We differ from these models in a new and significant way: our agents have
perfect memory and can account for correlations of information locally. Therefore, the
learning errors of locally Bayesian agents (if any) are driven by their failure to learn about
the entire network. As a result, these agents’ learning outcomes, including their learn-
ing errors, have a clean relationship with the network structure. By contrast, the learning
errors in quasi-Bayesian learning are primarily driven by the agents’ imperfect memory.

Our paper is also related to the social learning literature in which each agent takes
one and only one action sequentially.® In the context of misspecified beliefs, Eyster and
Rabin (2010) assume that each agent believes every predecessor chooses an action by
following his own private signal, even though her predecessors learn from their own
predecessors in reality. Eyster and Rabin (2014) note that rational agents should anti-
imitate some predecessors to remove repeated information; however, if agents fail to ac-
count for the redundancy in their predecessors’ actions, they imitate too much. Bohren
(2016) and Bohren and Hauser (2018) allow agents to have incorrect beliefs about primi-
tives such as the signal distribution or others’ preferences. Our model differs from these
papers in that first, we study undirected networks with repeated exchanges of informa-
tion. Therefore, our agents’ beliefs evolve in a more complex manner due to the large
set of reports they receive over time. Second, our misspecified beliefs are about the net-
work structure, which implies that locally, each agent is Bayesian in how she processes
information from her neighbors.?

Many experiments have studied learning and information aggregation in the lab and
in the field.1? Recently, Bai et al. (2015) and Enke and Zimmermann (2017) show people
often fail to remove repeated and correlated information when they learn. In particular,
people are prone to double counting and opinion swings in simple (directed) networks.

"More specifically, Mueller-Frank and Neri (2019) assume that an agent treats each neighbor’s action as
depending on only that neighbor’s private signal. In Levy and Razin (2018), agents use a Bayesian Peer
Influence heuristic, namely, they believe each neighbor’s belief contains only independent information. In
Alatas et al. (2016), agents know more about the network and treat all signals received as independent.

8Examples include Banerjee (1992), Bikhchandani et al. (1992), Lee (1993), Smith and Serensen (2000),
Acemoglu et al. (2011), Harel et al. (2018), and Dasaratha and He (2019). Note that if agents report their
posterior beliefs instead of actions, all our agents’ learning outcomes are correct because a linear chain is a
social quilt.

90ur paper is also related to Lipnowski and Sadler (2019), who assume that agents form correct conjec-
tures only about their neighbors’ strategies. Thus, in a complete network in which every pair of agents is
connected, agents use Nash equilibrium strategies, just as our agents learn correctly.

10See Anderson and Holt (1997), Celen and Kariv (2004), Alevy et al. (2007), Cai et al. (2009) and Mobius
etal. (2015), among others.
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It stands to reason that such learning errors may persist if the environment is more com-
plex, as in a typical network. Chandrasekhar et al. (2018) and Grimm and Mengel (2018)
compare the two benchmark models of Bayesian learning and naive learning. Grimm
and Mengel (2018) find that while some subjects appear to be naive learners, others try
to account for old information by reducing the weight attached to their neighbors’ later
reports.

Section 2 sets up our model and Section 3 introduces the locally Bayesian learning
rule. Section 4 shows when agents can learn correctly, and Section 5 characterizes and
quantifies their learning errors when they cannot. All proofs are in the Appendix.

2. THE MODEL
2.1 Network and beliefs about the network

Consider a network (g, G), where g ={1, 2, ..., I} represents a finite set of agents and G
represents the set of the links among agents. Additionally, ij € G if i and j are linked.!!
The network is undirected, so information flows both ways: ij € G if and only if ji € G.
The network is also path-connected: for any i, 4 € g, there is a path (iyi; ... ;) such that
all agents are distinct, ig = i, i; = h and i3 iy 1 € G for all kK < /. A subset of agents in g is
a clique if any pair of agents in this subset is linked.

Let the set of agent i’s neighbors be N; = {j : ij € G}. Agent i’s local network consists
ofherself, all her neighbors, and all the links among them in the original network. We de-
note her local network as (g;, G;), where g; =N; U {i} and G, = {hj : h, j € g; and hj € G}.
Agent i and her neighbor j’s shared local network is the intersection of their local net-
works, consisting of themselves, their common neighbors, and all the links among them.
We denote their shared local network as (g;;, Gjj), where g;; = g; N g; and G;; = G; N G;.
Similarly, the shared local network of any clique {i, j, ..., [} C g; consists of themselves,
common neighbors to all of them, and all the links among them.!? We denote this shared
local network as (g;;..;, Gjj..1), where g;; ;=giNg;N---Ng,and G;; ;= G;NG;N---NG,.
For instance, consider a triangle network: g = {1,2, 3} and G = {12, 13, 23}. The shared
local network of any pair of agents, or that of all three agents, is the triangle: g; = g1, =
gi3=gand G; =G =G3 =G.

Each agent i is assumed to observe only her local network (g;, G;). What does an
agent believe about the entire network? Intuitively, we assume that each agent treats
her local network as the entire network, ignoring what she cannot observe.

AssuMPTION 1. Every agent believes that her local network is the entire network: g; = g,
G = G. Moreover, it is common knowledge that each agent holds this belief.

Under this (possibly misspecified) prior, agent i does not update her belief about
the network when she communicates with her neighbors. We call an agent with the

'Throughout this paper, the generic agent is agent i (“she”), and her generic neighbor is agent j (“he”).
12Erom now on, we use (ij ... 1) to denote a sequence of agents in which the order matters, such as those
inapath, and {i, j, ..., [} to denote a set of agents whose order does not matter, such as those in a clique.
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above belief, or one who acts as if she has the above belief, locally Bayesian. Each lo-
cally Bayesian agent processes information as a Bayesian within her local network. As-
sumption 1 has two implications. First, it pins down each agent’s higher-order beliefs
about the network. Since agent i believes (g;, G;) is the entire network, she believes that
her neighbor j’s local network is their shared local network (g;;, G;;) and that agent j be-
lieves (g;j, G;j) is the entire network. Similarly, for any clique {i, j, ..., [}, agent i believes
that j believes ... that agent / believes the shared local network (g;;. s, Gj;...;) is the en-
tire network. Second, because it is common knowledge that each agent believes that no
other agents exist outside her local network, an agent forms higher-order beliefs corre-
sponding to only cliques of agents within her local network. In Figure 1(b), for example,
the set {1, 2, 3, 4} is not a clique because agents 1 and 3 are not linked. Because agent 2
knows that agent 3 believes that agent 1 does not exist, agent 2 does not form any belief
about what agent 3 believes about agent 1. We remark on this assumption further in
Section 2.3.

2.2 Information structure

Agents in the network want to learn an unknown state, which takes values in a finite
state space S = {s1, ..., sy}. All the states are a priori equally likely: Pr(s,) = 1/N for all
sn € S. Agents receive signals from nature about the state.

In this model, we need agent i’s belief about every neighbor j’s information structure
to be sufficiently rich that she can rationalize any signal as agent j’s signal from nature.
Below, we specify one way, among many others, to ensure such richness. The support of
agent i’s signals is finite: X' = {x*, x1, ..., x"Mi}, Agent i receives the uninformative sig-
nal x°, where Pr(x’ | s,) = ¢}, € (0, 1) for all s,.. Clearly, this implies that Pr(s, | x*) = 1/N
for all s5,,. She also receives M; > 2 possible informative signals. For each informative
signal x>, let ¢!, =Pr(x"™ | s,) € (0, 1) be agent i’s conditional probability of receiving
signal x>™ if the state is s,. That is, no signal can completely rule out a state.'®> Each
agent’s information structure (q’)é, M;, { d)i,m}ms M;,n<N) is identically and independently
drawn. First, ¢, is uniformly randomly drawn from (0, 1), and M; € N\ {1} is drawn
randomly according to a strictly positive discrete probability distribution Py;. That is,
Py(z) > 0 for each z e N\ {1} and Y 2, Py (z) = 1. Then, for each state s,, the infor-
mative signals’ probability distribution (q,’>§n, cees ¢§Win) is independently and uniformly
drawn from the interior of the set {(p1, ..., pu,) : Z,A;{’:l pm=1— ¢} and p,, > 0Vm}.14

Time is discrete: t =0, 1,.... In each period up to T, agent i receives a realized pri-
vate signal x’ according to her information structure. No informative signal arrives at or

130ur model easily accommodates the case where signals can rule out some state s,, that is, ¢/, =0
for some signal x>™. This assumption merely eases the notation since we use log-likelihood ratios of the
agents’ beliefs throughout this paper.

14This assumption allows agent j to rationalize any posterior belief of agent i because he believes that
there is a potential signal in X* (with the appropriate conditional probabilities) that can generate that par-
ticular posterior of agent i.
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after period T, which is randomly drawn from an (improper) uniform distribution over
N U {o0}.1

Agents’ common knowledge includes the (prior) distribution over S, the distribu-
tion of each agent i’s information structure (d)é, M;, {<¢>£,m}mS M;,n<N), and the distribu-
tion of T. Moreover, it is common knowledge that the signals are independent across
agents and time conditional on the state. The true state, each agent’s information struc-
ture, and T are realized before learning begins. Each agent privately observes her own
information structure but does not observe the true state, T, or the other agents’ infor-
mation structures.

2.3 Communication and learning

Agent i learns about the true state based on her own signals and the reports from her
neighbors. In each period ¢, agent i first forms her beliefs about the state distribution.
We denote agent i’s period-¢ belief as bl = (bi(sy), ..., bi(sy)), where bi € A(S).18 To
ease exposition, we use the log-likelihood ratios of these beliefs and call them agent i’s
estimate at period ¢, namely,

Bi=(Bi(s1),..., Bi(sn)), where Bi(s,) =logbi(s,) —logbi(sy).

Agent i reports her estimate to her neighbors and simultaneously receives their re-
ports.!” She then observes signal x! € X from nature, and period ¢ ends. Figure 2 sum-
marizes the timing. Note that agent i’s estimate B! is based on the reports and signals
she observed prior to period ¢. We formally introduce Bij , ij k, ...in Section 3.

Before showing how locally Bayesian agents learn, we remark on the critical role of
our behavioral assumption. First, Assumption 1 allows us to model agents with perfect
memory. Allowing for perfect memory substantially increases the complexity of char-

acterizing the agents’ learning outcomes. Specifically, the agents’ beliefs do not satisfy

Form estimates Report estimate Receive new
B, B, B",... B! and receive ] signal x!
| |

t t+1
FIGURE 2. Timeline. T

I5Tf T = 00, agents can receive an infinite number of signals, and if T = 1, agents receive their initial signal
only. The latter is the focus of many existing models, whereas we consider a more general setup allowing
for the possibility that signals arrive over time.

16Throughout this paper, we use boldface letters to denote vectors.

17We do not model a utility function formally, but each agent’s report (or action) is consistent with her
maximizing a quadratic utility function. Namely, agent i myopically chooses a report ri at period ¢ to max-
imize the following expected utility using her beliefs at period r: Ey;[— 3, (rl(sn) — L5,=5*)?], where s* de-
notes the true state. It is easy to verify that the optimal report must be her beliefs about the state distribution
at period ¢, that is, r = bi.
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the memoryless property of Markov chains; thus, classic results, such as the Perron-
Frobenius theorem, do not apply.!® This motivates us to develop a tractable learning
rule to implement locally Bayesian learning and to derive its useful properties, both of
which we do in the next section.

Second, Assumption 1 removes an important component—learning about the net-
work structure—from Bayesian learning. Bayesian agents with nondegenerate priors
should learn about the network, as well as the true state, from their neighbors’ reports.
However, the cognitive and computational cost of Bayesian learning about an unknown
network is very high.!% Instead, our agents believe that no outside network exists, and
thus behave as if all the information from outside their local network is due to exoge-
nous signals. This feature implies that a locally Bayesian agent does not need to up-
date her beliefs about her neighbors’ information structure. Intuitively, we show in Sec-
tion 3.1 that agent i believes that she can extract each of neighbor j’s private signals
using all the reports agent i observes. Because she does not rely on her beliefs about
agent j’s information structure to learn the true state, we do not include these beliefs in
the analysis.

3. THE LOCALLY BAYESIAN LEARNING RULE
3.1 Extracting new signals using higher-order beliefs

Agent i updates her belief in each period based on all the past reports from her local
network and her most recent private signal.?’ Formally, her belief at = 1 is based on xé,
and for all ¢ > 2, her belief is based on {(bi’ NM<r<i—1,heg> x‘t'_l}. The key to locally Bayesian
learning is how agent i extracts new information contained in the reports she observes.
We now define her higher-order beliefs and illustrate how she uses them to extract new
information.

Recall that the underlying uncertainty among agents is the true state in S, and agent
i’s first-order belief is bi € A(S). Agent i’s second-order belief is her belief over the space
of § and all her neighbors’ first-order beliefs; that is, her second-order belief belongs to
A(S x (A(S))!8i |_1).. Next, agent i’'s marginal second-order belief about each neighbor j’s
first-order belief b] can be formed by taking the expectations of i’s second-order beliefs

18In a model where agents recall only the most recent reports (often beliefs) from their neighbors, an
agent’s belief in period ¢ depends on only the period-(¢ — 1) beliefs of her neighbors. Thus, one can use
Markov chain theory to study learning dynamics, convergence, and steady-state beliefs. By contrast, with
perfect memory, an agent’s belief in period ¢ depends directly on new information—the difference between
her period-(¢ — 1) beliefs and her beliefs based on the earlier information shared in her local network.
Thus, current belief depends indirectly on earlier beliefs in an iterative fashion. While some explorations of
the theory of Markov chains with finite memory have been performed, no simple sufficient conditions for
convergence exist.

19An agent must first form beliefs about the total number of agents in the network. Then, for each fixed
number of agents, say /, the number of total possible networks is 2//~1/2, For each of the path-connected
networks among agents, she assigns probabilities to all the possible signals and travel paths through which
a signal may reach her. She also needs to update all of these beliefs every period.

20As defined in Section 2, each agent reports the log-likelihood ratios of her belief every period. One
can think of an agent’s report as her belief because there is a one-to-one mapping between them given our
assumption that no state is ruled out by any signal.
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over $ and all the other neighbors’ (except for agent j’s) beliefs. Each of agent i’s marginal
second-order beliefs belongs to the space A(A(S)); that is, it is a distribution over agent
j’s belief. Agent i knows that agent j’s belief is formed using all the information that
agent j has received, including the signal xL] that agent j received after they exchange
reports. This marginal second-order belief is often difficult to compute because agent i
needs to form a belief about xﬁ_l. Instead, we introduce a set of simpler statistics and
we show that these statistics are sufficient for locally Bayesian learning. For example,
agent i needs to keep track only of what j’s belief would be in one event: when xi_l is
uninformative. We call this statistic agent i’s marginal second-order belief about agent
J's interim belief. The belief is about agent j’s interim belief because the belief is based
on all the reports that (agent i believes) agent j has observed but before agent j receives
his private signal xi_l. Agent i needs only this statistic because she believes that she
can compare her belief about j’s interim belief with his actual report to extract his signal
xi_l, as shown in expression (1). Henceforth, we denote agent i’s marginal second-order
belief about each neighbor’s interim belief as her second-order” belief.

We can define the rest of the statistics, namely, agent i’s higher-order’ beliefs,
which are similarly derived from her (marginal) higher-order beliefs. For instance, her
marginal third-order belief for sequence (ijk) is her belief about neighbor j’s belief
about another neighbor k’s first-order belief bf, which belongs to the space A(A(A(S))).
Her third-order” belief is her marginal third-order belief about agent k’s interim belief
in the event that qu is uninformative. The log-likelihood ratios of agent i’s higher-
order” beliefs are her corresponding higher-order” estimates: B;j , ﬁj k, .... The next re-
sult shows that these higher-order” beliefs are degenerate and easy to compute.

OBSERVATION 1. Under Assumption 1, all higher-order” beliefs are degenerate. For each
clique {i, j,..., [}, when xi_l is uninformative, agent i believes with probability 1 that
agent j believes with probability 1 ... that agent /’s belief is some probability distribution
over S, that is, b;]"'l e A(S).

To see this, start with agent i's second-order” belief, b;, about agent ;s interim belief
in period ¢. By definition, b; contains all the information (agent i believes that) agent
j has learned from his neighbors’ reports prior to period ¢. By Assumption 1, agent i
believes that she knows agent j’s entire local network, which she believes is (g;;, G;). In

the event that xi_l is uninformative, agent i believes that she has access to all the re-
ports that agent j has learned. Therefore, she can make the same inferences using these
reports and form the same interim belief as agent j; that is, she believes with proba-
bility 1 that j’s interim belief is by € A(S). This argument also applies to all of agent i’s
higher-order” beliefs. '

It follows immediately that when agent i hears agent j’s report b/, she attributes any
difference between agent j’s report and her second-order” beliefs to his private signal
xiq- From agent i’s perspective, this is the only new information that agent j has that

she does not.?! To differentiate the actual signal x{_l from what agent i believes to be

211n reality, this difference could be a combination of agent j’s signal and what agent j has learned from
his neighbors who are not connected to agent i.
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this signal, we denote the latter as x |- Formally, agent i recovers x/ .1 by using b] as

her prior and agent j’s belief b’ as her posterlor. By Bayes’ rule, for any s, € S,

bj(sn)Pr( | Sn)
N

Zb](sn’)Pr 1|sn)

bl (sp) =

Taking the log-likelihood ratios of state s, over state sy, we obtain

b b Pr(x’ s
log 2100) _ g P10 1o, (,-3-‘“ n)
bl (sn) b (sn) Pr(x] | |sn)

Using the definition of B{ and Bﬁj , we have
i Pr(x’
Bi(sn) = (Sn) + log

Let aij be the vector of the log-likelihood ratios of the conditional probabilities of xij_l;
we then have

(I)

rx 1SN

o (sp) =log =Bl(sn) — BY(sn). 1)

Intuitively, agent i extracts the new signal by removing old information from agent j’s re-
port, as shown on the right-hand side of (1). Henceforth, we slightly abuse the notation
and refer to a;) —instead of x |, —as the signal agent i extracts from j.

Similarly, agent i makes inferences about what signal each neighbor in a clique may
extract from another neighbor. For instance, consider a triangle {i, j, k}. By definition,
bij ¥ is what agent i believes about what agent j believes about agent k’s interim belief

when xf_l is uninformative. Agent i believes that agent j attributes any difference be-

tween agent k’s report b¥ and bij 1o agent k’s private signal xffl. As above, to differen-
tiate the actual signal xk | from what agent i believes agent j believes to be this signal,

we denote the latter as x ;- Inagent i’s mind, agent j uses b] as the prior and b as the
posterior to extract agent k s private signal. Similar derlvatlons show that the vector of
log-likelihood ratios of the conditional probabilities of x?/ 1 is

ij Bz ljk‘
Similarly, in any clique {i, j, ..., [}, agent i believes that agent j believes ... that agent /
extracts a 1 from agent h € g;;. ;, where
j...lh jj...lh
o " =g — @)
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3.2 How do locally Bayesian agents learn?

We first describe a learning rule and then show how this rule implements locally
Bayesian learning (see Example 1 for an illustration). Specifically, for each agent i and
each period ¢, the locally Bayesian learning rule LB:(-) maps all the reports she observed
({ﬁﬁ’}lgft_l’ heg;) and x’t;l into (the log-likelihood ratios of) a point in A(S). Similarly,
for each clique {;, j, ..., 1}, LB?"'I(.) maps what she observed into (the log-likelihood ra-
tios of) a point in A(S). Thus, this locally Bayesian learning rule is iterative and self-
contained. Note that in each period, agent i simultaneously forms her estimate 8 by
Bayes’ rule and calculates LBi(-) by the learning rule. While they may be different in
principle, we show in the next subsection that these two outcomes are the same under
Assumption 1; thus, the function LB§(~) fully describes the formation of ﬁﬁ.

We now describe how agent i learns period-by-period. To be consistent with the
other signals agent i extracts, let a‘;" = {aii (s1), ...,aii (sy)} be the vector of the log-
likelihood ratios based on the conditional distribution of her signal x/; that is, for each
Sny @li(sy) =logPr(x! | s,) — logPr(xi | sy).

INITIAL VALUES. At the beginning of ¢ = 1, agent i learns only from her initial signal.
Let LB’ ()= a . Furthermore, let the initial values LBU l( )= LBU lh( ) =0, where &
{i, ], ...,l} for each clique {i, j,...,I}.

At the beginning of each period 1= 2, agent i learns from the most recent reports in
her local network and her own signal x;_,. Then agent i forms LBi() in two steps:

Step 1: Extracting new information. Agent i extracts a new signal a[_ from each
neighbor j. From expression (1), we have

ol =p_ -B., 3)

Similarly, she extracts the signal she believes that agent j believes that ... agent/ extracts
from agent h, h € g;._;. That is, she extracts o’ " '1”’ according to expression (2).

Step 2: Updating. Agent i then updates LBi(-) using the signals extracted from each
neighbor and from nature,

hegi
In an analogous fashion, for every clique {i, j, ..., [}, agent i updates LB? "'l( -) using the
signals agent i believes that j believes ...that agent / extracted:
LBij"'l(-) _ z] N + Z 1] lh‘ (5)
hegl/.“l
ij...lh

To complete the learning rule, agent i sets LB,/ (:) = LB? "'l(-) for each & €
{i, ], ..., 1}, where h occurs for the second time in this sequence. Agent i does not use
the locally Bayesian learning rule for any other sequence of agents involving repeated
agents.
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We hasten to note that agents who are not locally Bayesian can still use part of this
learning rule (expressions (3) and (4)), but they may form their (pseudo) second-order”
estimates differently. In particular, this learning rule easily accommodates the familiar
DeGroot learning model, as well as models in which agents have imperfect memory. To
illustrate, let agent i always set her (pseudo) seconq-order* estimate about agent j to be
the likelihood ratios of the uninformative prior: [%?,1 = 0 for any ¢ > 2. This is because
she does not recall the reports from period 1, ..., — 2 in period ¢. Then, by expression
3), &i’;l = Bf_ ;- That is, she treats each neighbor’s entire report at period ¢t — 1 as a new
signal; then, she can compute her estimate according to expression (4).

3.3 Implementing locally Bayesian learning

We now show that agents who follow the above learning rule form locally Bayesian be-
liefs; thus, our learning rule is an algorithm to implement locally Bayesian learning.

ProrosiTION 1. If agent i follows expressions (2), (3), (4), and (5), then for all i, t, and
clique {i, j, ..., 1}, LBi(-) = Bi, and LB/ (.) = g,

Intuitively, under Assumption 1, agent i believes that she knows all the links among
her neighbors; thus, she can form estimates just like them. As shown in Section 3.1,
agent i believes that her second-order” estimate of agent j includes all the information j
has learned, except for his most recent private signal xifl. She also believes that she can

correctly extract xﬁ_l after hearing agent j’s report containing that signal. Thus, agent
i believes that all these signals extracted from her neighbors are independent, and she
should update her estimate using them via Bayes’ rule, which is expression (4). This
argument implies that LBi(-) is indeed her estimate 8. The same argument also applies
to all of agent i’s higher-order” estimates.?? This result also implies that it is without loss
for agents to form higher-order” estimates involving only distinct agents.?® In practice,
the locally Bayesian learning rule substantially reduces the agents’ computations.

3.4 Properties of the locally Bayesian learning rule

We now illustrate how our learning rule works and showcase some of its properties.

221t will become clear using the results in the next section that Proposition 1 continues to hold if we use
a weaker version of Assumption 1 such that every agent believes that the network outside her local network
is either empty or consists of one or multiple unconnected components, each of which is a tree-like union
of cliques with the root being one of her neighbors. Moreover, it is common knowledge that each agent
holds this belief. These types of beliefs are consistent with Fainmesser and Goldberg (2018). They show
in a random network in which the number of each agent’s neighbors is bounded that as the population
becomes large, each agent believes asymptotically that the network is a random tree in which she is the
root agent.

Z3In Appendix A.1, we show that the agents’ learning outcomes do not change even if they form all the
(infinitely many) higher-order” estimates.
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B (s1) B2(s1) B3 (s1)
t=1 @1 0 (P3
-2 qol (,Dl+(,03 QD3
t>3 o'+ ¢ o'+ ¢ ol +¢°

TaBLE 1. A three-agent line.

ExamPLE 1. The network has three agents connected in a line: g ={1,2,3} and G =
{12, 23}. The states are binary: S = {s1, s,}. The set of signals is X’ = {x’, x"!, x"2}, where
x¥ is uninformative. Let agent 1 receive x; = x-!, agent 2 receive x”, and agent 3 receive
x3 = x>1. The corresponding log-likelihood ratios given the two informative signals are
log(Pr(sy | x1)/Pr(sy | x'1)) = ¢! and log(Pr(s; | x>1)/ Pr(sy | x*1)) = ¢°.

Throughout our examples, we use the special case of binary states and binary infor-
mative signals. Moreover, we present only Bﬁ(sl) when we describe the agents’ reports
Bi. Since the states are binary and the estimates are log-likelihood ratios, all ,B;'(sz) =0.
The agents’ learning dynamics are summarized in Table 1.

At t =0, agents 1 and 3 observe xé and xg, respectively. At = 1, agent 1 reports
her estimate based on x(l): B%(sl) = ¢!. Agent 2 has no informative signal and reports
B3(s1) = 0. Agent 3 reports her estimate based on x3: 83(s1) = ¢>. The initial second-
order” estimates are all 0. These estimates are summarized in the first row of Table 1.

At t =2, agent 2 extracts a%l(sl) = B%(sl) — ,8%1(&) = ¢! from agent 1 and extracts
a?(sl) = B% (s1) — B?(sl) = ¢ from agent 3, both by expression (3). By means of expres-
sion (4), B%(S]) =l 4¢3 Agents 1 and 3 do not learn from agent 2: a%z(sl) = a%z(ﬁ) =0.

At ¢ =3, agent 1 extracts al?(s) = ¢® and agent 3 extracts a3%(s;) = ¢'. Their esti-
mates are those in the third row of the table. Agent 2 expects agents 1 and 3 to learn
from her and does not change her estimate. For all ¢ > 4, no agent changes her estimate,
and their beliefs are the correct Bayesian posterior given the informative signals. O

Two useful properties of our locally Bayesian learning rule greatly simplify our analy-
sis. First, a signal travels through the network independent of other signals. Specifically,
the learning outcomes of an agent given multiple signals can be decomposed as follows:
divide the full sequence of realized signals by the end of period t — 1, X,_1, into any two
disjoint sets of signals, X/* , and X? ,. Recall that B! is agent i’s estimate when X,_; is
the set of signals from nature. Let g " and B’t”i be her estimates when the set of signals
from nature is X!* | and X7 ,.

LEMMA 1. Foranyt>1,
Bi=B"" + Bl ()
=B+ B 9

Lemma 1 shows the agent’s estimate under X,_; is equal to the sum of her esti-
mates under X! ; and X ,. This property allows us to study one signal at a time: if
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the agents’ learning outcomes are correct under every signal, their learning outcomes
are also correct under any sequence of these signals. The intuition can be seen from
Example 1: divide the two signals into X* | = {x}} and X” | = {x}}. Under X! |, every
agent i’s estimate is 85 ’i(sl) = ¢! at t = 3. Similarly, under X ;_1» every agent i’s estimate
is B’,”i (s1) = ¢> at t = 3. When nature sends both signals, even to different agents (or in
different periods), the learning outcome given one signal is independent of the other. At
t =3, the estimate is the sum of the estimates under X t“_ 1 and X b1

The second property characterizes the travel of each signal through the network over
time. Recall that a locally Bayesian agent uses Bayes’ rule in each period to extract in-
formation (expression (3)) and to incorporate this information into her own estimate
(expression (4)), as do her neighbors. Combining these two steps, the new signal that
agent i extracts from agent j is the unexpected change in j’s report due to what agent i
did not observe.

LEMMA 2. Foranyt>?2,

aij = Z afl_l + Z (a{]il - a?j'l). 8)

le(gj\gij} hegi\{j}

We can decompose aij, the signal agent i extracts from neighbor j at the beginning of
period ¢+ 1, into two parts according to equation (8). The first part consists of what agent
j has just learned from nature (ai]_ 1) and from his neighbors who are not connected to

agent i (a{il for /€ g;\ g;). In Example 1, the signal that agent 1 extracts from agent 2
at t = 3 is the new signal that agent 2 extracted from agent 3 at r = 2: a%z = a?. More-
over, this part shows that agent i does not mistakenly learn old information from her
local network again, unlike in models with imperfect memory, such as that in DeGroot
(1974).24

The second part consists of a potential error term whenever agent i and j share at
least one common neighbor, say agent /4. Each of the differences (a{ﬁl — “?le) is the
difference between what agent j extracted from /% and what agent i believes agent j ex-
tracted from /4. These differences are zero in certain networks, such as the three-agent
line in Example 1. But it is not zero in other networks in which some agents know that
they learn from the same source while others do not, which is the failure of the local
connection symmetry described in the Introduction. For example, in the diamond with
alink in Figure 1(b), agents 2 and 4 know that any signals they extract from 1 are perfectly
correlated, but agent 3 believes the signals are independent. Therefore, what agent 3 be-
lieves agent 2 extracts from agent 4 could differ from what agent 2 truly extracts from

agent 4: a?ﬁ 1 F a?

»71- We discuss this type of learning error in more detail in Section 5.2.

24To see this, note that the first part of expression (8) does not include what j has learned from i (no a{il)

K keN;NNj).

or what agent j has learned from a common neighbor k (no e;”,,
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4. WHEN ARE LEARNING OUTCOMES EFFICIENT?

Can agents learn correctly given the signals a network receives? How do their learning
outcomes depend on the network structure? Before answering these central questions,
we present our notions of correct learning.

The strongest notion of correct learning is that each agent learns correctly in every
period given the travel paths of signals. Begin with the set of signals that can reach agent
i in period . Recall that X; is the union of X/, the set of signals agent i receives from
nature up to and including period ¢. Since T is the period at or after which the agents
receive no informative signal, X7 contains all the realized signals the network receives.
Let d(il) be the distance, or the length of the shortest path, between agent i and agent
[ € g, with d(ii) = 0. The diameter of the network is D, which is the longest distance
between any two agents. One period is required for agent / to incorporate a private
signal into his report, and d(i/) periods are required for the signal to travel from / to i.
Therefore, at the beginning of period ¢, the set of agent /’s signals that can reach agent
iis Xg—d(il)—l’ where th_d(ﬂ)_l =@ if t < d(il) + 1. Suppose that agent i can correctly
identify and incorporate every signal that has reached her at the beginning of ¢ once
and only once; then, for every s, € S, her Bayesian posterior is

' 1 I
@i (sn) =Pr(sn | X;_gii1)_10 > X{_aqin—1)-

DerinITION 1. For all sequences of realized signals X7,

e Agent i’s learning is strongly efficient if her report in period ¢ is the log-likelihood
ratio of her Bayesian posterior: Bﬁ(sn) =log qi(sn) —log qi(sN).

e Agent i’s learning is efficient if her report converges to the log-likelihood ratio of
her Bayesian posterior: lim,_, Bi(sn) =logPr(s, | XT) —logPr(sy | X71).

e Agent i’s learning is asymptotically efficient if she learns the true state almost
surely as t — oo when every agent receives an arbitrarily large number of signals
(T = 00).

Strong efficiency implies that when 7 is finite, all agents form the correct posterior at
or before period T + D.2> We use strong efficiency to prove our positive result, showing
that agents learn correctly in every period, not just eventually. Efficiency and asymptotic
efficiency are weaker notions used to prove our negative results about the agents’ learn-
ing errors. When every agent receives an arbitrarily large number of signals, we adopt
asymptotic efficiency, which is commonly used in the network learning literature. How-
ever, asymptotic efficiency is not appropriate when agents receive only a finite number
of signals because the correct Bayesian posterior is bounded away from 0 and 1. In this
case, we use efficient learning, which requires the agents’ estimates in the long run to
match (the log-likelihood ratios of) the Bayesian posterior.

25This is the strongest notion of correct learning in the network context, because it often takes much
longer than the diameter of the network for agents to learn even when the network is common knowledge
and all agents are Bayesian (see Mossel et al. 2016).
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4.1 Strongly efficient learning in social quilts

To learn correctly, an agent must treat a signal as new information once and only once.
In particular, she should not count a signal as a new signal at any point after her first
encounter with the signal. Given that each agent exchanges reports with only her neigh-
bors, her local network, as well as the entire network (even though she does not know
it), need to meet certain conditions for strongly efficient learning. We now show that
a particular type of network, a social quilt, and only this type of network, meets these
conditions. Recall that a path (i; ... ;) is a circle if i;i; € G. Additionally, a graph is a tree
if it contains no circle.

DErINITION 2. A network (g, G) is a social quilt if any agents i and j who belong to the
same circle are connected: ij € G.

Definition 2 requires that in a social quilt, any circle must be embedded in a clique.
In a tree, any two nodes are connected by a unique path. Intuitively, a social quilt can
be thought of as a tree of cliques. Figure 3 shows a social quilt, which in general could
include subnetworks, such as trees, cliques, stars, lines, and some of the core-periphery
networks.?® Our main result is an intuitive and clean relationship between social quilts
and strongly efficient learning outcomes.

i3

/

ip

)i/\

hy

F1GURE 3. A social quilt.

26The overall tree structure is important theoretically. For example, the limit of a large Erd6s—Rényi net-
work with bounded degree is a random tree, and the binary tree has high expansiveness, as defined by
Ambrus et al. (2014), which is shown to be important for risk-sharing networks. In addition, some networks
with the core-periphery structures are social quilts, which are important for financial markets (Babus and
Kondor 2017). This occurs when a few core members are connected in a clique, and peripheries are con-
nected to one core member. Jackson et al. (2012) and Ali and Miller (2013) show that social quilts and
cliques are important for favor exchanges and cooperation in the network.
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ProrosiTION 2. All agents’ learning outcomes are strongly efficient if the network is a
social quilt; otherwise, there exists some sequence of realized signals such that at least one
agent’s learning outcomes are not strongly efficient.

Proposition 2 shows that in social quilts, the agents do not suffer from correlation
neglect, a commonly observed learning error. To explain this result, observe that a lo-
cally Bayesian agent treats any “unexpected” change in her neighbors’ reports as new,
independent information. However, this approach has two pitfalls. First, if information
travels through a large circle (beyond those embedded in an agent’s local network), she
cannot identify this information as old information, and thus will double count it. This
problem cannot occur in a social quilt because such a network is a global tree (connect-
ing all cliques); thus, no information can travel back and reach an agent a second time.
Second, if her neighbors have a common neighbor who she cannot observe, then her
neighbors’ reports can be correlated, but she does not know that and still treats these
reports as independent. This mistake also cannot occur in a social quilt because each
agentisin alocal clique, and if two of her neighbors share a common neighbor, she must
know that common neighbor. A social quilt—a global tree of local cliques—ensures that
any unexpected change in a neighbor’s report is truly due to a new signal; thus, the lo-
cally Bayesian agents’ learning outcomes are strongly efficient.

We now define two features that jointly characterize a social quilt before examining
their respective roles in more depth in Proposition 2.

LEMMA 3. Network (g, G) is a social quilt if and only if:

1. it contains no simple circle, which is a circle that contains at least four agents where
each agent has exactly two links to other agents in the circle, and

2. every agent i’s local network satisfies local connection symmetry: i and j's shared
local network (g;j, Gy;) is a clique for every j € N;.

By definition, a social quilt has no simple circles. Whenever a network has simple
circles, multiple paths exist between one agent and another. As a result, each signal
could travel along different paths and reach an agent repeatedly. For example, (1234) in
Figure 1(a) is a simple circle. If agent 1 has a signal, it reaches agents 2 and 4 first, and
then agent 3 will double count the signal as she learns from both of her neighbors.

Next, local connection symmetry for agent i (LCS; from now on) holds if for any
neighbor j € N;, N; N N; = @, which is the case when the agents are part of a simple
circle or aline. For example, in the simple circle (1234) in Figure 1(a), LCS; holds because
agents 1 and 2, as well as agents 1 and 4, do not have any common neighbors. LCS; also
holds if each agents i and j’s common neighbors £ and / are connected, for instance, if
the network is a clique. By contrast, in the diamond with a link network in Figure 1(b),
LCS; does not hold because g4 = {1, 2, 3, 4}, but the agents are notin a clique since 1 and
3 are not connected. We say that a network satisfies local connection symmetry (LCS) if
LCS; holds for all i € g. Given these definitions, it is easy to show that if a network satisfies
LCS and contains no simple circles, then any circle must be in a clique and the network
must be a social quilt.
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LCS ensures that agents have symmetric knowledge about information correlation
in their local networks, which is crucial for the agents’ higher-order” estimates to be well-
behaved. To prove Proposition 2, we show that cross-agent consistency holds: agent i’s
estimate of j’s estimate of their common neighbor 4’s estimate are exactly j’s estimate of
’s estimate, and so on for all higher-order” estimates. To see why this consistency mat-
ters, recall the iterative rule characterizing a signal’s travel from Lemma 2. The second
part of expression (8) is

Z (aiﬁl - “;j—hl)- ©)
hegij\{j}
If the network satisfies LCS, then we show that Bi’fll = B{ﬁl in the Appendix; thus, all
the differences in (9) are zero. That is, no local learning errors occur because the signal
agent i believes agent j has extracted from agent / is exactly what agent j extracted from
agent i. The same argument applies to all higher-order” estimates.

The above two features imply that every agent learns a signal correctly the first time
it reaches her clique by LCS, and the signal never travels back to her again because no
simple circles exist. Then, by Lemma 1, the agents correctly learn all sequences of real-
ized signals. Specifically, agent i’s estimate at period ¢ includes signals observed by each
agent / from period 0 to period ¢ — d(il) — 1; thus, her learning outcomes are strongly
efficient. Proposition 2 also shows that social quilts are necessary for the agents to have
strongly efficient learning outcomes for all realized sequences of signals. When a net-
work is not a social quilt, the network must either contain simple circles or fail LCS,
each of which leads to a specific type of learning error which we turn to next.

5. WHEN EFFICIENT LEARNING IS IMPOSSIBLE
5.1 Repetition due to echo chambers

To isolate the learning error caused by simple circles, we consider a network that sat-
isfies LCS but that is not a social quilt. By Lemma 3, the network contains at least one
simple circle. In such a network, all agents make the error of repetition, believing they
receive many independent signals that are in fact all perfectly correlated copies. Intu-
itively, because each agent knows only her local network, she keeps extracting “new”
signals from her neighbors when the signal is the same signal reaching her repeatedly
through the simple circle(s).

ExaMPLE 2. Consider the four-agent simple circle in Figure 1(a). Assume that S =
{s1,52). Let X = {x°, x, x?} and that the informative signals are symmetric: Pr(x! | s;) =
Pr(x? | s;) = ¢. Agent 1 receives the only informative signal xé = x!. The corresponding
log-likelihood ratio is log(Pr(s; | x1)/Pr(sy | x1)) = o.

The signal x(l) travels from agent 1 in both directions. Agent 1 incorporates x(l) into
her estimate at ¢t = 1. At ¢ =2, agents 2 and 4 extract the signal and incorporate it into
their reports. At ¢ = 3, agent 3 extracts two copies of the signal: one from 2 and the other

from 4. At t = 4, expression (3) yields a3’ (s1) = 3’ (s1) = ¢; that is, agent 2 (and agent 4)
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Bi(s1) B3(s1) = B (s1) B3 (s1)
t=1 @ 0 0
t=2 ¢ ¢ 0
t=3 ¢ ® 2¢
t=4 @ 2¢ 2¢
t=5 3¢ 2¢ 2¢

TABLE 2. Learning in a simple circle.

extracts a second copy of the signal from agent 3 because he expects agent 3 to learn
only one copy from himself, but agent 3 reports 2¢ instead. At r =5, agent 1 extracts
two new copies from agent 2 and agent 4, and thus believes in a total of three copies
of the signal (the first five periods are summarized in Table 2). Similarly, in every four
periods, the agents extract two additional copies of the signal. In each period r =47+ 1,
7=0,1,...,agent 1 believesin 27 4 1 copies of the signal, and all other agents believe in
27 copies. O

The error of repetition persists in networks with multiple simple circles even when
the network receives a large number of informative signals.

ProposiTION 3. Suppose that a network satisfies LCS but contains ksc > 1 simple cir-
cles.

1. With a finite number of informative signals, no agent’s learning outcome is efficient.

2. When each agent receives an infinite number of informative signals, if ksc = 1, the
agents’ learning outcomes are asymptotically efficient. If ksc > 1, the agents’ learning
outcomes are not asymptotically efficient with a positive probability.

The first part of the result generalizes the error of repetition from Example 2. Con-
sider the case of only one informative signal (xf)) ; the signal is repeatedly learned by
agents in the network because of the simple circle(s). As time passes (t — 00), every
agent holds incorrect beliefs because they believe in the state that is most likely given
xé with probability. 1. However, the correct Bayesian posterior is bounded away from 0
and 1.

To see whether the agents’ learning is asymptotically efficient, we must study the rate
of repetition. In the case of one simple circle, Proposition 3 shows that locally Bayesian
agents have the wisdom of the crowd when they receive infinitely many signals. Con-
sider one simple circle of k£ agents, where agent i learns a signal at time ¢. The signal
travels in both directions, reaching all other £ — 1 agents in the simple circle. At time
t+ 1+ k, agent i extracts two new copies of this signal. Similarly, each agent in the sim-
ple circle extracts two new copies every k periods after a signal reaches them, just like
in Example 2. The key is that all these repeatedly extracted signals grow at the same
rate—two additional copies per k periods—for each signal that reaches the simple cir-
cle. Therefore, with multiple signals, only the relative precision of these signals, not
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their arrival times, matters. When each agent receives an infinite number of informative
signals, the law of large numbers still holds, and every agent learns asymptotically.

With multiple simple circles, however, the agents’ learning outcomes become qual-
itatively worse: the law of large numbers can fail. Specifically, each signal travels both
within a simple circle and back and forth from one simple circle to another. Agents in
one simple circle continue to extract more and more new signals from all the other sim-
ple circles and pass along their own repeatedly extracted signals: the number of copies
of each signal grows exponentially. Thus, in any network with two or more simple circles,
there exists a period after which agents can receive an arbitrarily large number of cor-
rect signals—signals that are the most informative of the true state—but still believe in
a wrong state. This persistent error occurs when each of the correct new signals arrives
too late and is dominated by the exponentially growing number of existing signals.

Proposition 3 suggests that fake news—propaganda and disinformation pretend-
ing to be real news—may thrive in networks containing multiple simple circles (“echo
chambers”).2” Moreover, “facts might not beat falsehoods”: an objective source of infor-
mation has limited ability to counter the influence of fake news in the presence of echo
chambers. More concretely, consider the network depicted in Figure 4.

ExampLE 3. Eight agents are connected in a cube in Figure 4. The information structure
is the same as in Example 2. The true state is s;. Suppose that each agent observes
xf) =x?att=0and that x/ = x! forall t > 1. As t — oo, every agent believes the true state
is s, with a probability arbitrarily close to 1.

All agents are symmetric in this example, and their estimates are updated as in Ta-
ble 3. Why do the agents believe in state s, despite so many correct signals from ¢ =1
onward? Observe that at t = 1, each agent reports ,B‘i (s1) = —¢, which is based on the
initial signal x>. At ¢ = 2, each agent extracts three signals of x> from their neighbors
in addition to her own signal of x!. Therefore, her count of copies of x? increases

by two and she reports Bé(sl) = —3¢. Her estimate of each neighbor j’s estimate is
5 6
/ /
1 2
8 7
/ /
4 — 3

F1GURE 4. A cube of eight agents.

27This is a common theme of discussions following the Brexit campaign. For instance, see Bell, Emily,
“The truth about Brexit didn’t stand a chance in the online bubble,” Guardian, July 3, 2016. Moreover, if we
extend the model such that agents shares fake news more often than the truth, as suggested by Vosoughi
et al. (2018), then with echo chambers, a slight increase in the sharing of fake news can lead to total domi-
nance.
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Bi(s1) —¢ =3¢ —5¢ —-2t-1e

TaBLE 3. Learning in a cube.

Bl(s1) B3(s1) = B (s1) B (s1) a2 (s1)=at (s1)

t=1 @ 0 0 n/a

t=2 ) ) 0 0

t=274+1,7eN ® ¢ 2¢ @

t=27+2,7eN @ @ 0 —¢

TABLE 4. Learning in a diamond with a link.

Bg (s1) = —2¢ because she believes that agent j learns a signal of x> from herself plus
his own signal of x2. Therefore, at ¢ = 3, each agent extracts another x? from each neigh-
bor, alzj (s1) = sz(sl) - Bg (s1) = —¢, net of one copy of x! from nature. Thus, her count of

copies of x? increases by two, just like in period 2. The agents’ learning in each ensuing
period is identical to that in period 2. In the limit, agents believe that the true state is s,
with probability 1. O

5.2 Opinion swings due to the failure of local connection symmetry

Proposition 2 shows that for strongly efficient learning, the network must contain no
simple circles and satisfy LCS. Below, we first isolate the role of the second feature by
considering a network that fails LCS even though it has no simple circles. Then we dis-
cuss the agents’ learning outcomes when both features fail.

If a network fails LCS, a novel type of learning error arises, namely, belief oscillation
and nonconvergence. We first illustrate this learning error with an example.

ExaMPLE 4. Consider the diamond with a link network in Figure 1(b). The information
structure is the same as in Example 2. Let x(l] = x! be the only informative signal. The
corresponding log-likelihood ratio remains log(Pr(s; | x')/ Pr(s | ) =e.

The agents’ learning outcomes are summarized in Table 4. Recall that agent 2’s and
agent 4’s local networks fail LCS, and LCS,. At f = 1, agent 1 reports B}(s1) =@.Att=2,
agent 2 and 4 learn the signal from agent 1; thus, B%(ﬁ) = ,B‘Z‘(s1) = ¢. Since agents 2
and 4 know the entire network, they form the correct posterior, as does agent 1 since he
does not learn new information from 2 and 4: B (sy) = B7(s1) = B¥(s1) = ¢ for t > 2.

At r = 3, agent 3 extracts two signals, one from agent 2 and one from agent 4, so
33(81) = 2¢. Furthermore, agent 3 believes that agents 2 and 4 should learn from each
other because he believes these two signals are independent; that is, 3%(s1) = B3*(s1) =
2¢. Interestingly, at ¢ = 4, agent 3 compares B3(s;) = ¢ with B3°(s;) = 2¢ and extracts
agz(sl) = —¢, a signal negatively correlated with the initial signal. He extracts another
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negatively correlated copy from agent 4; thus, Bi(sl) = 0. Intuitively, agent 3 can justify
the fact that agents 2 and 4 do not learn from each other only by believing that they have
each learned an offsetting signal. Agent 3’s estimates in the later periods oscillate in the
same way: in each odd period, he reports 2¢ and in each even period, he reports 0.

In contrast with the simple circle in Example 2, agents 2 and 4 both expect agent 3 to
report 2¢ in odd periods and 0 in even periods because they know that agent 3 does not
know agent 1. Their own estimates are unaffected by agent 3’s opinion swings. O

In the example above, the failure of LCS affects agents differently. Those who know
more about their local networks may learn correctly, but those who know less have long-
lasting opinion swings. This oscillation and nonconvergence can persist even if the net-
work receives a large number of signals.

ProrosiITION 4. Consider a network with no simple circles that fails LCS. There exists a
sequence of signals X1, T = oo, such that at least one agent’s learning outcomes are not
efficient (and not converging).

If the network fails LCS, then we can find at least one diamond with a link embedded
in the network; that is, some agent / (such as agent 3 in Example 4) has two (or more)
neighbors who share a common neighbor, whom agent / does not know. Proposition 4
shows that the oscillation of agent /, as found in Example 4, persists when the four agents
are embedded in a larger network. To prove this result, we use a key feature of learning
in networks without simple circles: a signal travels sequentially away from the agent
who receives it and never travel backwards. If agent i receives a signal, we can classify
the agents by their distance to agent i, le = {h € g:d(ih) = d}. This feature means that
no agent in N? extracts any new signal from her successors in N?“. Therefore, when
agent i receives the only (correct) signal, agent /’s oscillation persists because he does
not extract any signal back from his successors. If agent i receives more correct signals,
it could exacerbate agent /’s oscillation. Moreover, all the successors of agent / have
opinion swings—possibly divergent opinion swings if any of their local networks also
fails LCS. This type of learning error may lead to unreliable poll results and unstable
experimental outcomes.

If a network has simple circles and fails LCS, both repetition and belief oscillations
occur locally. For any such network, our learning rule provides an algorithm to calcu-
late the learning dynamics, but we are unable to fully characterize the agents’ learning
outcomes because this problem lacks structure in general. Note that whenever a sig-
nal reaches a subnetwork that fails LCS, some agent in the subnetwork extracts signals
negatively correlated with the original signal. Unlike in Proposition 4, the presence of
simple circles means that both the positively correlated copies of this signal (due to rep-
etition) and the negatively correlated copies (due to belief oscillation) are propagated
throughout the network. No simple rule exists to characterize the net number of signals
for any network.?8

28While one can treat each agent’s estimate and all her higher-order” estimates as one set of estimates to
form a memoryless Markov process, each of these estimates is updated via a matrix with both positive and
negative entries (negative signs from removing old information). No sufficient conditions for convergence
exist, without which long-run outcomes are difficult to characterize.
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Periods 1-10

A
i

F1GURE 5. (a) Expanded diamond with a link. (b) Learning dynamics in this network.

We conjecture that nonconvergence is robust in networks that have simple circles
and also fail LCS. The intuition is that the (endogenously) generated negatively corre-
lated signals are just as strong as the positively correlated signals. For example, consider
the network in Figure 5(a), an expanded diamond with a link that contains two sim-
ple circles (1235) and (1435). What happens if agent 1 receives an initial signal of x!?2
The signal travels through both the simple circles and the diamond with a link. The
agents initially believe the true state is more likely to be s; due to the positively corre-
lated signals from the simple circles. But each time these positively correlated signals
reach agent 3 through the diamond with a link, she will extract just as many negatively
correlated copies. In short, for every positively correlated signal there is always an equal
negatively correlated signal. Figure 5(b) shows the number of copies of x! each agent
believes in from period 1 to period 10; clearly, agents begin to oscillate quickly. As time
passes, every agent alternates between believing in s; and s;. Other simulation results
suggest similar patterns of diverging opinion swings in these types of networks.

6. CONCLUSION

Our modeling approach is primarily positive: we want to study agents’ learning out-
comes even if they know only their local networks. The agents try to discern new in-
formation from old information in a locally Bayesian way. This approach brings the
predictions of our model closer to the actual learning outcomes of agents with limited
network knowledge. This approach adds more sophisticated Bayesian reasoning to ex-
isting models with imperfect memory. Moreover, locally Bayesian learning is far more
tractable than Bayesian learning and is thus potentially useful for other network learning
models.

Our model can be extended in several directions. First, we can relax the behavioral
assumption that makes agents believe information from outside their local networks is
independent. Suppose agents account for repeated information from outside their local
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networks by a simple rule-of-thumb: dismiss any signal they have already extracted as
old information. We can show that with this simple rule, learning outcomes are strongly
efficient in any network if all signals reach the same agent initially. Therefore, a pol-
icymaker may want to disseminate information through one central agent over time.
Second, one may argue that locally Bayesian learning still demands a high level of cog-
nitive and computational ability from agents. In Li and Tan (2019), we study how agents
with cognitive constraints learn in local networks. We show that there exists a critical
level of cognitive ability (which can be very low) above which agents’ learning outcomes
will be correct.

APPENDIX: AN EXTENSION AND PROOFS
A.1 A general learning rule allowing for any sequence of agents

In our locally Bayesian learning rule described in Section 3, agent i forms LB? "'l(~) for
each clique {i, j, ..., /} within her local network. Moreover, she directly sets values (in-
stead of forming them through the learning rule) when the last agent is a repeated agent,
thatis, for h € {i, ], ..., [}, she sets LB?'"”’(-) = LB?"‘I(-). One may wonder whether our
learning rule is with loss because agent i does not apply the learning rule to all other
sequences of agents involving repeated agents. In this section, we show that the answer
is no.

To do so, we first describe a complete locally Bayesian learning rule, denoted as
CLB!(-). We say a sequence of agents is fully-connected if it contains at least two dis-
tinct agents, and every pair of distinct agents in the sequence is connected. We allow
agent i to apply CLB!() to all sequences of fully-connected agents in her local network
(we drop (-) for simplicity in the rest of the Appendix). Then we show that the learn-
ing outcomes of these two rules are the same. Clearly, the learning rule in Section 3
economizes on computation.

INITIAL VALUES. At the beginning of + = 1, agent i learns from her initial signal. Let
CLB‘i = ag. Also, let the initial values CLB‘I"’ = 0 for every sequence of fully-connected
and possibly repeated agents (i...r).

At the beginning of each period ¢ > 2, agent i learns from the most recent reports in
her local network and her own signal xﬁ_ 1~ Then agent i forms CLB! in two steps:

Step 1: Extracting new information. Agent i extracts a new signal aij_l from each
neighbor j. This is the same as expression (3),

ij _ pl if
a =B, —B

Similarly, she extracts the signal she believes that ... agent r extracts from agent 4, & €
gi..r- That is, she extracts ai:{h as follows:

alth = gh — pglrh, (10)

which is the counterpart of expression (2) in the text.
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Step 2: Updating. Agent i then updates CLBﬁ_1 using the signals extracted from each
neighbor and from nature. This is the counterpart of expression (4):

CLB{=B;_; +)_a/".
heg;

In an analogous fashion, agent i updates CLB?;{ using the signals agent i believes... that
agent r extracted. This is the counterpart of expression (5):

CLB{"" =B+ > ai-", (11)
hegi..r

for each sequence of fully-connected (possibly repeated) agents (i...r).

Agent i applies the complete locally Bayesian learning rule to infinitely many se-
quences of agents in her local network, which involves a large amount of computation.
We now show that only sequences of distinct agents matter. Therefore, the much simpler
locally Bayesian learning rule in the text yields the same learning outcomes.

LemwMmA 4. Let the set of distinct agents in a sequence of fully-connected agents (I ...1,)
beli,j,...,1}. Then CLB'" = CLBY' = LBV forallt > 1.

ProOF OF LEMMA 4. At ¢ = 1, by definition, CLBlll“‘lz = CLBij"'l = LBij‘“l = 0. Next, con-
sider any period ¢ > 2. To begin with, because {i, j, ..., /} is the set of distinct agents
in the sequence (/;...[;), the shared local networks include the same set of agents:
gij..1 = &1,..1,- By Assumption 1, agent i believes that agent j believes ... that agent /
believes the set of agents in the network is g;; ;. Agent i forms her higher-order” esti-
mates Bﬁj"'l in the event that xLl is uninformative; that is, agent i only uses the reports
in the shared local network. The same is true when agent /; forms her higher-order” es-
timates Bil”'lz. Thus, the higher-order” estimates ij"'l and Bil'"lz are the same, because
they are formed based on the same set of reports {Bi’} l<r<i—1,heg;. - Then by expression
(2) and (10), we have forany h € g;;. 4,

ij..lh ij...lh l..I;h Ly..l;h
a " =B (s) - B =B =B = (12)

Then, using expression (5), (11), and (12), we have

il pij.d il oyl Lolh Il
CLBY g b S al gt Y e LBl
hegj..1 heg .1,

Lastly, by expression (5) and (11), it is easy to see that

ij...l ij...l ij..Lh ij..l
CLB/ "=+ > a/7"=LB/".
hegij.i

Thus, the two learning rules yield the same learning outcomes. O
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A.2 Proofs

Proor oF ProposiTiON 1. Recall that for all # > 2, agent i forms LB;(-) from the en-
tire history of reports ({Bi’}lyft_ 1,heg;) and her latest private signal x£_1. Appendix A.1
above shows that it is without loss for agents to apply the locally Bayesian learning rule
only to sequences of distinct agents. We now show LBi(-) = gi, and LB/ (.) = g/ for
all i, t and clique {i, j, . .., [}. For simplicity, we drop the (-) from the learning rule in the
rest of the proof.

Att=1, agenti only has her initial signal xb The log-likelihood ratio of her Bayesian
posterior is ﬂl = “‘0 by definition. All her higher-order” estimates B = 0, because
they are formed in the event agent / has no informative signals. By deﬁnltlon, the initial
values LB’i = ag and LB’lj”'l =0.

For all ¢ > 2, by expression (3), agent i extracts &, =B  — B’  fromeachjeN;
which is the log-likelihood ratio of signal xij_z as described in Section 3.1. By Assump-
tion 1, agent i believes these are the log-likelihood ratios of xLz, and believes that they
are all the new signals the other agents received since the previous set of reports. Recall
that bi_l is her Bayesian posterior belief given all her information ({ﬁf M<r<i—2,hegs xi_z)
up to the end of period 7 — 2. She only incorporates what she believes to be new informa-
tion into her estimate. That is, she uses bﬁ_ , as her prior and incorporates all the signals
she extracted (xi]_z) and her own signal (xi_l) into bi by Bayes’ rule. For every s, € S, we
have

bf(sn)O(b 1(s,,)Pr( X,y | Sn) l_[Pr |sn)
JjeN;
Take the log-likelihood ratios, and we have g; = Bt 1+ 2Lheg @ - This is exactly ex-

pression (4), and thus LBi Bﬁ.

Next, recall that B” * is her higher-order” estimates given all her information up to
the end of period ¢t — 2 when agent / receives an uninformative signal. Similar to above,
agent i believes that (g;;..;, Gjj..;) = (g..1» Gj..;) by Assumption 1, and thus she knows
all the reports agent j believes that ...agent / can observe. Therefore, she can extract all
the signals one neighbor can extract from another using expression (2). Specifically, for
every s, € S, by Bayes' rule,

A A lh
b7 (sn) o b (sw) [T Pr(xls" 1sn).
hEgl].“l

Take the log-likelihood ratios, and agent i’s updated higher-order” estimates Btj 1 fol-
lows expression (5) exactly. Thus, LB/ = g/, O

PrROOF OF LEMMA 1. Recall the deﬁnltlon of the disjoint sets (X, X?). For each agent
i, let {(x¥', x}"} = {xt, x%}, where x¥ is the uninformative signal. That is, agent i is un-
informed in one and learns xi in the other. In addition to equations (6) and (7) in the
lemma, we claim that for any clique, {i, j,...,/} and r > 1,

1]1_Bpujl+Bv1]l (13)

We now prove all three equations hold by induction on time ¢.
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By the definition of {x0 Xy 1 we have {B’l"i, BT”’} = {B},0}. Also, all the higher-
order” estimates are 0 by definition since there has been no previous report. Thus, equa-
tions (6), (7), and (13) hold at r = 1.

Next, suppose equations (6), (7), and (13) hold at time ¢. We now show they also hold
at time 7 + 1. Recall that agent i’s extracted signals under X!* and X? are respectively

o =g g7, and o) =gy -y
Further, by the induction hypothesis, from (6) and (7), we have
=B B/ =B +B) - BT+ B ) =t - a). (14)

That is, the signal i extracts from j under the complete set of signals is the sum of
the ones she extracts from j under the two disjoint sets of signals. Similarly, since
{xﬁ‘”, x?”’} = {x;', %Y}, i’s own signal from nature can be expressed as the sum of the ones
she receives under the two disjoint sets of signals. Formally, {a; Hoal ”} = {a ,0} and

thus o = &"" + """ Then we have

. . . F i Jih ih i
ﬁ;+1=35+Z“ih=ﬁfl+ﬁlt/l+2(a¢l +a") = Bt+l+B1tj+ll'

hegi hegi

The second equality holds by (6) and (14), and the last equality holds because it is ex-
pression (4) of the learning rule under X! and X7, respectively. Thus, (6) holds at time
t + 1. Moreover, all the new information agent i believes one neighbor has learned from
another under X, can be expressed as the sum of the corresponding new information
under X} and X? similar to equation (14). Specifically,

v,ij...lh

] jj..l ij..l
i]h =a! woijh —I—aty ik and a;] h_ af’l] h +a,

Then we can show that:

ijh _ pu,ij v,ij u,i]‘h ok M if v,ij
t+1_ +Za =B +B; +Z(at a"") =B+ B

hegij hegij
In a similar way, we can show for all cliques {i, j, ..., [}, B;j +11 f +l{[ + B’;ﬁll Thus, (7)
and (13) also hold at time ¢ + 1. O

ProoF oF LEMMA 2. By definition, for any ¢ > 2,

a,—ﬁ‘] ;’j=<11+2 ) ( Z z/h)

keg; hegij

(’ﬁZa )‘( EEIDY Uh)
kegj hégu\
= Z jl ot Z ;]h1)

le(gj\giUij} hegii\{j}
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The first term concerns what agent j learns from his neighbors (and nature) who are not
connected to agent i. The second term concerns i and j’s common neighbors. O

Proor oF PropPosiTiON 2. We first show several properties of social quilts. First, if
d(ih) = d, then there must be a unique path of length d from i to 4. Suppose instead,
there are two such distinct paths between them. Let these two paths be (iii;...i4_1))
and (ij1j2 ... ja—1j), with i = iy = jo and j = iy = j;. Then there must exist parts of the two
paths that differ, that is, there must exist two numbers k and 4,0 <k <h <dand h—k >
2 such that iy = ji, and i, = j,, but i; # j; if k <[ < h. Clearly, Gklgs1---Injn—1---Jk+1)
must be a circle, going from i, to herself through distinct agents. The agents are distinct
because by assumption i; # j; for any !/ € (k, h), and since d(ii;) =l and d(ijy) = ', i; # jp
whenever / # I'. In a social quilt, any two agents in a circle are linked. Thus, agent iy and
i, must be linked, but this contradicts (ii1i;...i;_1j) being a shortest path.

Second, by Lemma 3 (which we will prove next), a social quilt contains no simple
circles and satisfies LCS. We now show a property of social quilts which highlight the
role of no simple circles. Specifically, if agent i’s signal travels from agent / to k, and
then extracted by # who connected to £ but not /, then & must be further away from i.
Specifically, if / is the agent before k on the shortest path from i to k, such that d(ik) =
d(il) + 1 and k! € G, then for any & with hk € G and hl ¢ G, the shortest path from i
to & must go through / and k: d(ih) = d(ik) + 1. To see this, note that since ik € G,
the maximum possible distance between i and % is d(ih) < d(ik) + 1. Next, if d(ih) <
d(ik) — 1, then the path through / cannot be the unique shortest path between i and k.
If d(ih) = d(ik), then the shortest path between i and # must not involve &, or agent /
since &l ¢ G. Thus, we have a circle involving {4, k, [} and i’s shortest path to agent 4 and
[, which is a contradiction to the definition of social quilts. Therefore, d(ih) = d(ik) + 1.

Next, we show that because a social quilt satisfies LCS, the agents’ higher-order” es-
timates have cross-agent consistency, which is important for efficient learning.

LemMmaA 5. For any agent j € N;, ﬂﬁj = B{i. Moreover, if (gi, G;) satisfies LCS;, then for any
cliqueli, j, k,...,1},

g " . g . -

Il =.=pl. and BI=pl=..=pl"
PrROOF oF LEMMA 5. First, Bij = Bﬁj is immediate from Lemma 4 in Appendix A.1 be-
cause they are estimates involving the same distinct agents. We now prove the second
part of the lemma by induction on time ¢. At ¢ = 1, all the higher-order” estimates are
based on uninformative signals. Thus, for any clique {;, j, k, ..., 1}, B’lj = B‘ik = Blljk =

ijk...l
=gt =0.
Next, suppose this is true at time ¢, we want to show it also holds at time ¢ + 1. Notice

that by LCS;, g;; is a clique, implying g;; = gix for all k& such that agent {i, j, k} form a
triangle. By the induction hypothesis, for any # € g;; = gi,

ijh _ ph ijh _ ph ikh _ _ikh
a; =B,/ —-B; =B —B;"=a;".
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Then, using expression (5), we have

ijh _ ikh _ lk
B!, = +Z“ = t"’Z“ Biii-
hegij hegiy

Similarly, since g;; is a clique, g;; = g;jx..; for all cliques {i, j, k, ..., [} containing i
and j. By the induction hypothesis, for any % € g;; = gjjx..,

z;h B z]h ﬁh l]k dh ijk..,lh
t a; .

Then, using expression (5),

Uh ljk p) z]k lh ljk A
z+1 = + 2 : + § : B
heg,j hegt_/k.“l

Thus, ), =Bk, =B = =Bl 0

We now proceed to prove the proposition. By Lemma 1, if we can show the agents’
learning outcomes are strongly efficient for each signal, then it is also true for multiple
signals. Without loss of generality, let agent i receive an initial signal xé. By the first
property, there is a unique shortest path from i to each agent /. That is, there is a unique
neighbor k of & who is on 4’s shortest path to i. We want to show that agent /4 extracts
the signal at t = d(ih) + 1 from this neighbor £ (who can be agent i), and this is the only
signal agent / extracts from his neighbors at any time. Specifically, for any k' € N;, and
any time ¢, a/¥" = @l if and only if ¢ = d(ik’) + 1 = d(ih). Otherwise, a/*" = 0. Notice
that this implies agent % learns the signal and changes his estimate once at t = d(ih) + 1.

We prove this claim by induction on time ¢. First, this holds at t = 2. If d (ih) =1, or
h € N;, then agent 4 extracts the signal from agent i’s report 31 such that “1 = ag No
other agents (including agent i) extract any new signal from their neighbors. If a = ay,
then clearly k =i and d(ik) =0, d(ih) = 1.

Next, suppose this holds at time ¢, we show that it also holds at time ¢ + 1. First, if
alk = 0‘0 attime ¢ + 1, then using the iterative relationship between extracted signals in
equation (8) and the fact that the second term is zero by Lemma 5, we have

hk _ kl
Y SN

le(gr\gn)Vik}

That is, agent £ must extract the signal from someone (say /) outside gy in the previous
period, so Al ¢ G. By the induction hypothesis, since afll = ao, we have d(ik) =t —1
and d(il) = t — 2. By the second property above, it must be true that d(ih) =t. Second, if
d(ih) =t and d(ik) =t — 1, by the induction hypothesis al 1= aO for some neighbor /.

Because d(il) =t — 2 and d(ih) = ¢, [ isnot connected to h l € gk \g;Z Since agent / has
not learned any new information so far, a/** = ao Thus, a}* = “‘o ifand onlyifd(ih) =1t
and d(ik) =t — 1. Since agent 4 incorporates signal xO exactly once at period d(ih) + 1,
B = af]" if ¢ > d(ih) and B" = 0 otherwise. Thus, the learning outcomes are strongly
efficient with signal x;,.
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Lastly, if the network is not a social quilt, there exists some sequence of realized sig-
nals such that at least one agent’s learning outcomes are not strongly efficient. To see
this, note that Lemma 3 shows that when a network is not a social quilt, it must either
contain simple circles or violate LCS. We show in Propositions 3 and 4 that both lead to
learning errors. d

Proor oF LEMMA 3. For necessity, if a network is a social quilt, it does not contain a
simple circle by definition. Moreover, (g;, G;) satisfies LCS; because for any j € N;, if
there exist agents k and &’ such that k, k" € N; N Nj, then (kik’j) must be a circle. In a
social quilt, kk’ € G, and thus every agent i’s local network satisfies LCS;.

For sufficiency, we show by induction that if the network satisfies LCS and contains
no simple circle, then any circle of at least three agents must be a clique. In a circle
of three agents, a triangle, clearly all three agents are connected. So, we start with any
four-agent circle. No simple circle means that there must be at least one link between
two nonadjacent agents. Since the network satisfies LCS, all four agents must be a clique.
Next, suppose any circle of / > 4 agents is part of a clique. Consider a circle of / + 1 agents.
Because it is not a simple circle, there exists at least one link between two nonadjacent
agents ij. The original circle is now divided into two smaller circles of no more than /
agents, and thus each must be a clique by the induction hypothesis. In addition, any pair
of agents, one from each smaller circle, are common neighbors of i and j. Because agent
i’s local network satisfies LCS;, they are connected. Therefore, this circle of / + 1 agent
must be a clique, which is the definition of a social quilt. Next, if the network satisfies
LCS and there is no circle, then the network is a tree, and thus also a social quilt. O

Proor oF ProrosiTiON 3. For Part 1, by our definition of efficient learning, it suffices
to show that the agents’ learning outcomes are not efficient for some sequence of real-
ized signals X7. We now show this is the case if the network receives only one initial
informative signal. We begin with the repetition of one signal xé within a simple circle.
For any k-agent simple circle C = (i; ... i), there are two cases: agent i€ C or i ¢ C.
First, suppose that i € C and without loss, let i = i;. Then at 7 =2, agent i; and ix—;’s
extracted signals are a?i = a’l"’” = af)i . Recall that LCS holds, and thus the second term
of the iterative relationship between extracted signals in equation (8) is zero. Also, by
assumption, a!/ =0 forany ¢ > 0, / € g. Then equation (8) can be rewritten as

jh o _ hl
=) .

legp\gj

At period ¢ = k + 1, the signal finishes traveling around the simple circle in both direc-
tions, and thus aZ"‘] = ag and aZ' = af)i. At this point, agent i learns a total of three
copies of her original signal and everyone else in the simple circle learns two copies.
From now on, agent i and all other agents in the simple circle extract two copies of xé in
every k periods.

Next, if i ¢ C, then the first time this signal arrives at the circle, it must reach either

only one agent (say i), or two linked agents (say i, and i; learn from their common
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neighbor). To see this, suppose to the contrary, iy and i; learn the signal at the same
time, but either [/ # 1, k — 1; or i; learns from a different source. Then there is another
simple circle inside the path from i to i, i; to i; through C, and i; to i. It contradicts
the assumption that C is the only simple circle. Moreover, once the signal reaches the
circle, agents in C do not extract any other new signal from outside C, because there is
no other simple circle through which information can travel back. Without loss of gen-
erality, assume i, (and i1) learns the signal from some agent j (who could be i) outside
the simple circle, such that a;*/ = o/ for some j € N;, . Because i; and i_; are not linked
by definition of a simple circle and (g;, , G;,) is assumed to satisfy LCS;,, j cannot be
linked with i;_1. Then ai’jr‘f = a(i)" , and it is passed on to i;_, and so on. Also, the signal
travels through i; to iy, because i; learns from either j or i;. Similar to the first case, we
can show agent i, and all other agents in the simple circle extract two more copies of xf)
every k periods. Recall that D is the diameter of network. These newly extracted signals
will travel to all the other agents outside the simple circle in at most D periods. Clearly,
all agents believe in the state most likely given signal x6 as t — oco. Therefore, the agents’
learning outcomes are not efficient.

Similarly, in a network with multiple simple circles, we can show that the agents’
estimates are wrong when there is one initial informative signal. Let k be the number of
agents in the largest simple circle. For any z € R, [z] is the smallest integer that is greater
or equal to z. Then simple algebra can show thatatany ¢ € [7(D+ [«/2])+ 1, (t+ D)(D +
[k/21)], any agent / in a simple circle believes there are at least two copies of xf) ifr=1;
and at least

T—1 ,

2742 (2xse— D)’

=1
copies of signal x(i) if 7 is an integer larger than 1. The first part captures the signal rep-
etition in one simple circle, and the second part shows that agents in one simple circle
keep extracting more and more new signals from all the other . — 1 simple circles, and
passing their own repeatedly extracted signals to them. As ¢t — oo, each agent believes
in the state most likely given xf) while the Bayesian posterior is bounded away from 0
and 1.

For part 2 of the result, we begin with a network with one simple circle. Specifically,
to study asymptotic efficiency, we consider the case with a finite number of informative
signals (T < o0), and then let it go to infinity. When T is finite, at time t =T + D, all
signals must have reached the simple circle. Let an" N D(xﬁ) be the number of copies of
signal x! agent i; believes in at time T + D, then

Bif+D= Z (7’%+D(x£)'ail)'
leg,t<T

As before, in every k periods, agent i, must receive two more copies of each signal due
to the repetition in the simple circle, such that for any integer o,

ﬁlTk-s-D-s-ok = Z ((niTK+D (xi) + 20) : ail)'
leg,t<T



Theoretical Economics 15 (2020) Locally Bayesian learning 271

Given the agents’ information structure, let s* = argmax;, s Pr(s, | X7) since the prob-
ability that there are multiple states that maximizes Pr(s, | X7) is zero. Thus, for any
given T, as o — oo, the agents believe that only s* can be the true state. The case is sim-
ilar for any other ¢ between 7'+ D + ok and T + D + (0 + 1)« and any other agent in the
network. Thus, all agents believe the true state is s* with probability arbitrarily close to
1 as t — co. When each agent in the network receives an infinite number of signals, by
the law of large numbers, s* = argmax;, s Pr(s, | X7) is the true state if 7 = co.

When the network has multiple simple circles, we show by construction that agents’
learning outcomes are wrong with a positive probability even with an infinite number of
informative signals (7' = co0). Let the true state be s = s*. Recall that the set of all possible
signals that agents can receive from nature is X = | J; X, which is randomly drawn by
nature. Fix a (possibly large) value B; consider the set of all realizations of X such that
Pr(s, | x)/Pr(s,y | x) < Bforall x € X, s, # s,y. That is, for any signal x € X, the ratio of
the conditional probability of any pair of states is bounded by B. Denote this set as X.
Clearly, this set X occurs with a positive probability. We focus on the case that X € X
from now on. Given the agents’ information structure, with probability 1, there exists a
possible signal x> belonging to some agent i such that some other state s’ # s* is the
most likely state given x>, that is, s’ = argmax, Pr(s, | x*"). Denote x> as x'. Clearly,
Pr(s’ | x') > Pr(s* | x).

Consider the following sequence of signals. Let nature send signal x’ to agent i in ev-
ery period from r =0 to ¢ = ¢* (¢* > k). Recall that the largest simple circle has k agents.
This interval is set to insure that starting from some finite time, each simple circle re-
ceives new copies of x’ from every other simple circle in every ensuing period. This
interval also allows each signal x’ to reach every other simple circle and travels back to
the initial simple circle. It takes two steps to determine ¢*. In the first step, we identify
the integer &’ such that

Pr(s’ | k" copies of x') . Pr(s* | x*)
Pr(s* | k" copies of x") ~ Pr(s’ | x*)

. Pr(s* | x)
, Wwhere x* = argmax (15)

xeX Pr(s'|x)’
Here, x* is the signal most in favor of s* relative to s’. To avoid carrying this likelihood
ratio for the rest of the proof, for any signal x (or set of signals), we introduce

B(s',s* | x) =logPr(s' | x) — logPr(s* | x).

In the second step, we require that in each period from period #* — k, the repetition must
be strong enough such that every signal one simple circle extracts from any other simple
circle includes at least (2k + D + 1)1k’ copies of x” (excluding other later exogenous sig-
nals), where I = |g| is the number of agents in the network. We let this start from period
t* — k so that by period #*, everyone in each simple circle has extracted such a strong
signal.

Next, we claim that regardless of the signals agents receive from nature after pe-
riod ¢*, all agents believe s’ is increasingly more likely than s* over time. That is,
lim;_ oo Bf’(s’) - ,Bﬁ’(s*) = oo for all & € g. We consider the signal one simple circle (for
instance, the largest one, C = (i1i;...i;)) extracts from another simple circle. Without
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loss, suppose the signal is learned by agent iy from her neighbor j who has only one link
to C (more links only make it easier to dominate the later signals). By design, for ¢ > ¢*,
from agent i ’s perspective,

aﬁlj(s/) - ailj(s*) > B(s',s* | 2k + D + 1)Ik' copies of x'). (16)

That is, the signal i; extracts from j should favor s’ over s* by at least as many as (2k +
D + 1)1k’ copies of x” since period #* (excluding other later exogenous signals).

Next, ;! travels around the simple circle C clockwise and counterclockwise, and
each time it overwhelms the exogenous signal(s) from the agent it reaches along the
simple circle. Formally, in period ¢ + 1, using equation (8), agent i, extracts a;ﬂ from
agent i1 such that

aizfl (s) — a?fl (s*) = B(s',s* | (2k + D+ 1)Ik' — Ik") copies of x').
This is because agent i gets fewer than I exogenous signals most favorable to s* from
nature and from her neighbors outside the simple circle in each period. Moreover, each
of these new exogenous signals can offset a maximum of k" copies of signal x’ by the
definition of &k’ in equation (15). The same is true for agents i3, iy, ..., iy at period ¢ +
3,...,t+ k. By period ¢ + k + 1, agent i} and i, each must pass on a signal to i;. Note
that 2k +D + 1)Ik' — kIk' = (k+ D + 1)Ik’, and thus

aﬁf}c (s') - aiﬂf’,‘c (s*) = B(s',s* | (k + D+ 1)k’ copies of x').

i1iz

And the same is true for als.

Use equation (8) again for the next period, we have

a{ikﬂ (s') - aﬂkﬂ (s*) = B(s',s* | 2k + 2D + 1)1k’ copies of x').

I1ig
t+k t-
exogenous signals reaching agent #; in time ¢ + k). Then this signal aﬂk 41 travels to
all the other agents in the network. For example, it reaches agent /; at simple circle
C' = (l1...1;) from agent & at time 7. Since the travel takes at most D periods, the
strength of the signal favoring s’ over s* is reduced by at most DIk’ copies of x’, so

and a''2 (net of the

That is, the signal agent j extracts from agent i; includes « ik

alih(s') — alt"(s*) = B(s', s* | (2k + D + 1)IK' copies of x').

This shows that the initial condition about the signal one simple circle extracts from
outside that simple circle (expression (16)) persists regardless of the exogenous signals
reaching the network after period ¢*. Therefore, the process we described above will last
forever. Because in each period each extracted signal increases the likelihood of state s’
over that of s*, all agents believe s* is not the true state with probability arbitrarily close
tolast— oo.

Lastly, for any state § # s/, we can repeat the same process above replacing s* with 5.
As a result, we can show all agents believe in s’ with probability arbitrarily close to 1
as t — oo. Because the number of periods up to ¢* are finite and we do not restrict the
signals starting from period ¢* 4 1, agents believe in the wrong state with a positive prob-
ability. O
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ProOF OF PROPOSITION 4. Since there exists some agent whose local network does not
satisfy LCS, we consider a neighbor of this agent, and denote this neighbor as agent /.
Suppose agent / receives x(’), which is the only informative signal. We can classify all
agents based on their distance to /, that is, Nf ={heg:d(h)=d}, and Nl1 =N;. To
begin with, we claim that if agent ¢ and ¢ € N;l are both linked to some agent / in Nf”,
then ac € G. To see why, find a’s connection to some agent f in Nf’l, then agent f and
h are not linked, because their distance must be 2. Similarly, the agent who is linked to ¢
in N;iil, say f’, cannot be linked to 4. If agent a and ¢ are not linked, then there exists a
simple circle consisting of agent f, a, &, and ¢ (with possibly other agents like f’ and /),
which is a contradiction.

We first show a general feature of learning in networks without simple circles: agents
in Nfl never extract new signals from their neighbors in Nf“. Suppose to the contrary,
the first time some agent extracts from her successor is agent a in Nfl extracts a new
signal from # in Nf”. Notice that in the previous period, # does not extract new signal
from her successors, so the new signal a extracts must come from /’s neighbors in either
Nj’ or Nf“. Suppose that the new information a extracts comes from some c in N;’ to h
then to g, then by the first claim, a is linked to all #’s neighbors in Nj’ . Thus, a knows
all the information # learns from agents in N¢, contradicting the fact that a extracts
new information from /. The other possibility is that the new information a extracts
comes from agent /' in Nf“, which reaches /4 and then to a. Then ah’ must not be
linked, because otherwise a can learn directly from /', contradicting the assumption
that a extracts from # is the first time any agent learns from a successor. There are again
several cases. The first one is agent /4’ has learned the new information from c in Nfl. To
make sure no simple circle exists, ch must be linked, so # would have learned it at the
same time as 4’ from c¢. So we are back to the first possibility where the new information
goes from c to & then to a, which is impossible. The other case is that 4’ has learned
the new information from another peer 4” in N;”] , which can be ruled out using a very

similar argument. Since Nf“

Né+,

contains finitely many agents, we can show a cannot learn
from anyone in

The argument above shows that agent / never learns any new information, and thus
her estimate remains at Bi = af)l (which reflects her initial signal xé). Moreover, the esti-
mates of agents in N; must remain at af)l . This is because, first, they cannot extract new
information from their successors. Second, for any linked agents in N;, they learn from
agent / simultaneously and expect each other to learn it. Thus, they cannot extract new
information from each other.

Lastly, we claim that there must exist some agent /" € N7, who is linked to at least
two agents in N; but does not extract new signals from his peers (those with the same
distance to / as him). Therefore, the estimates of agent /’ oscillate and his learning out-
comes do not converge. Recall that by definition, there exist i, j € N; and k € le such
that k € g;;. Start with this agent k who is linked to i and j, and possibly more agents in
N;. If k does not extract new signals from his peers in le, then he must keep oscillating.
Because by the claim above, agents in N; who are linked to £ must be linked with each
other. So k keeps extracting multiple copies of xé in odd periods, and multiple copies of
the signal that offsets xé in even periods for 7 > 3.
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Suppose instead agent k extracts new information from one of his peers. The first
case is that he learns from agent /# € N?, whose new signal comes from some agent j' € N;
different from i/ and j. Then j'/ are linked, while j'k are not linked. Consider the circle
(ljkhj"), in which [k, [h and j'k cannot be linked. Because there can be no simple circles,
jj and jh must be linked. Similarly, i and i# must be linked, otherwise there will be a
simple circle (/j'hki). This implies that 4 never extracts new signals from k because /4 is
linked to all k’s neighbors in N;. If # does not learn new information from his peers in
le, then his estimate must oscillate.

In the second case, agent k learns new information indirectly from some peer
W e le. That is, he learns new information from /4’ through agent 4. Suppose agent
h learns information from /', who learns the information from some agent j' € N;. The
arguments are similar to the case above. We can show that i, j, and j’ are all linked to
agent 4’ while kj’ and 4j’ cannot be linked. Moreover, i2 must also be linked here to
avoid a simple circle, so in this case {i, j, &, k} is a clique. In fact, {i, j, h, h'} is also a
clique. Therefore, 4’ is linked to more agents in N; than agent k and 4. Agent /&’ does
not learn anything from agent /, and her estimate keep oscillating if she does not learn
anything from her peers. If instead, & learns new information from 4” through 4 and #/,
and agent /" learns the new information from some agent in N, then we can show he
does not learn anything from agent 4’ and his estimate must oscillate. This is because
like before, we can show agents {i, j, k, 4} is a clique, then {i, j, &, 4’} has to be a clique,
{i, j, W', h"} has to be a clique, and so on. Since there are a finite number of agents, there
must be one last agent who learns new information from some agent in N;, but who has
no peer to learn from. And this agent’s estimate must oscillate because he is linked to
multiple agents (more than i, j) in N;. We denote this agent in le who does not learn
from peers as agent k*.

Next, we construct a sequence of signals X, under which the Bayesian posterior is
to believe in a unique state with probability 1. By assumption, the signal xé uniquely fa-
vors one state almost surely, and the Bayesian posterior under an arbitrarily large num-
ber of xé is to believe this unique state is the true state with probability arbitrarily close
to 1. Let nature give this signal to agent / initially and also in every even period until
T = co. That is, x| = x! for all even 7. Recall from above that each such signal x/ makes
some agent k* extracts multiple copies of xf) in odd periods, and multiple copies of the
signal that offsets x(l) in even periods for all # > 7 + 3. In total, the estimates of agent
k* never converge. In fact, the swing of his estimates increases and goes to infinity as
t— oo. O
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