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The no-upward-crossing condition, comparative statics,
and the moral-hazard problem
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We define and explore no-upward-crossing (NUC), a condition satisfied by every
parameterized family of distributions commonly used in economic applications.
Under smoothness assumptions, NUC is equivalent to log-supermodularity of the
negative of the derivative of the distribution with respect to the parameter. It is
characterized by a natural monotone comparative static and is central in estab-
lishing quasi-concavity in a family of decision problems. As an application, we
revisit the first-order approach to the moral-hazard problem. NUC simplifies the
relevant conditions for the validity of the first-order approach and gives them an
economic interpretation. We provide extensive analysis of sufficient conditions
for the first-order approach for exponential families.

Keywords. Log-supermodularity, quasi-concavity, moral hazard, first-order ap-
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1. Introduction

In this paper, we introduce, motivate, and show the usefulness of a condition on a pa-
rameterized family of distributions. We term the condition no-upward-crossing (NUC),
a choice of terminology that we justify shortly. NUC is satisfied for every distribution
that we are aware of that is commonly used in economic applications. Indeed, NUC
holds if and only if an intuitive comparative static holds, and, hence, while one can
construct examples where NUC fails, such examples are necessarily somewhat artifi-
cial. NUC simplifies the analysis of some important economic problems, including the
question of when the first-order condition is sufficient for a global optimum in a variety
of problems and when some natural comparative statics results hold. NUC also allows
for economic interpretations of otherwise hard-to-interpret technical conditions.

To be concrete, consider the family of distributions {F(·|a)}a∈A on the reals, param-
eterized by a ∈ A ⊂ R, where we speak of the argument x as the “outcome” and often
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refer to a as the “effort.” We assume that F satisfies strict first-order stochastic domi-
nance (FOSD). That is, increases in effort strictly decrease the probability of an outcome
below any given interior output.

To see the motivation and definition of NUC, consider two ordered pairs of effort,
al < a

′
l and ah < a′

h, where al ≤ ah and a′
l ≤ a′

h (and where, in the interesting case, at
least one of the later two inequalities is strict). For example, a might be the amount of
exercise a subject gets, where al is “completely sedentary” and a′

l is “occasionally goes
for a stroll,” while ah is “walks regularly” and a′

h is “jogs on a regular basis.” Let x be the
number of miles the subject is able to cover on foot in a particular 30-minute period.

Now fix a threshold t and compare the probabilities of various types coming in above
or below the threshold. Consider first a low threshold t, say 1 mile. Then both the walker
and the jogger will almost surely exceed t, and so F(t|ah) − F(t|a′

h) will be small. But
there is likely to be a significant increase in the probability that the occasional stroller
versus the sedentary subject exceeds the threshold, so that F(t|al) − F(t|a′

l) is larger.
Alternatively, if we take the threshold t to be 3 miles, then the opposite will hold, as
covering 3 miles in 30 minutes is probably almost impossible for either of the unfit types,
but more likely to discriminate between the two fitter types. Driven by this intuition, the
condition we impose, NUC, is simply that the ratio of these two probability differences
rises with the threshold. That is, NUC holds if

F(t|ah)− F(
t|a′

h

)
F(t|al)− F(

t|a′
l

)
is increasing in t.

When F is twice continuously differentiable, NUC holds if and only if −Fa (which is
positive by FOSD) is log-supermodular (lsm) in output and effort. Since −Fa is a mea-
sure of the marginal return to effort, this characterization says that if extra effort has
diminishing marginal returns at given x, then in proportionate terms these returns fall
more slowly above x. If extra effort has increasing marginal returns at x, then in propor-
tionate terms they rise even faster above x.

The condition that −Fa is lsm is in turn equivalent to the condition that for each real
number τ and for each effort a, Faa(·|a)− τFa(·|a) is never first strictly negative and then
strictly positive. This version of NUC is useful in many applications and the property is
the genesis of the name.1

We next turn to sufficient conditions for NUC. These are useful in practice, both
to check NUC and to tie NUC to well known classes of distributions, and also help to
build our intuition. We provide a set of such conditions, interpret them economically,
and show that exponential families satisfy the most stringent such condition. Along the
way, we show that NUC is automatic for any distribution that satisfies the monotone
likelihood ratio property (MLRP) and is totally positive of order 3 (TP3).2

1In the moral-hazard context, a weaker version of this condition appears in one result in Jung and Kim
(2015a) as sufficient to justify the first-order approach. We discuss this paper further below.

2TP3 has appeared in the literature on the first-order approach to the moral-hazard problem, most
prominently in Jewitt (1988, p. 1182) (where one can find a definition and discussion), and also in Jung
and Kim (2015a).
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In information economics, it is so standard as to be barely commented on to assume
MLRP, which is that the density or probability distribution f associated with F is lsm.
This is not because MLRP is without loss of generality. Rather, MLRP is invoked because
it both has a clear economic motivation and simplifies the analysis. We think of NUC
in the same way. As for MLRP, NUC is not without loss (although we argue the loss is
pretty mild). But, as for MLRP, we show that NUC has a clear economic motivation and
usefully simplifies both analysis and interpretation. Indeed, NUC is MLRP’s fraternal
twin. To see the family relationship, note that when F is differentiable, MLRP is the
condition that Fx is lsm and, hence, each condition is a log-supermodularity condition
on one of the derivatives of F .

One central reason for our belief in the naturalness of NUC is that it holds if and only
if an intuitive comparative static holds, one somewhat related to a statistical thought ex-
periment discussed by Jewitt et al. (2008). Consider a university department with junior
faculty of varying ability who face a tenure standard that depends on whether their re-
search output exceeds some given threshold t, where t is set exogenously, for example,
by the central administration. The department gets a negative payoff when low-ability
faculty are tenured and gets a positive payoff when their ability is above some threshold.
It can offer the junior faculty more or less aid in their research—mentoring, research
assistants, equipment—with research output being stochastically distributed accord-
ing to F(·|α(a�δ)), where α is an increasing function of ability, a, and the amount of
aid received, δ. The department faces the trade-off that more aid makes it more likely
that high-ability faculty make the tenure threshold, which the department likes, but also
makes it more likely that low-ability faculty make the hurdle, which the department dis-
likes.

The comparative static that we want is that if the tenure standard is raised, then the
optimal amount of research aid to offer does not go down. This seems to us very intuitive:
When the tenure threshold is low, the high-ability faculty are likely to exceed the thresh-
old without help, so giving aid predominantly helps the low-ability faculty. Hence, the
optimal amount of aid is low. When the threshold is higher, the low-ability faculty are
unlikely to exceed the threshold even with substantial aid, but aid may well lift the high-
ability faculty above the threshold. Thus, the optimal level of aid will be higher. We show
that this comparative static—that optimal aid rises with the tenure standard—holds for
all relevant settings if and only if NUC holds.

We also explore when NUC might fail.3 At a mathematical level, such examples are
easy to construct; indeed, we provide a recipe for doing so. Exploring examples suggests
that failing NUC while satisfying MLRP is hard. We show that NUC fails most naturally
in a situation where F is a mixture of two distributions, where each distribution satisfies
NUC, but the mixture does not.4

A main application of NUC is the following. Imagine that one receives utility v(x)
from outcome x, but that effort comes at some utility cost c(a), so that one wishes to

3We are very grateful to two referees who helped us to think about the intuition for when NUC might fail.
4This is related to the fact that the mixture of two distributions each satisfying MLRP need not itself do

so.
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maximize U(a) = ∫
v(x)dF(x|a) − c(a) by choice of a.5 The central question is under

what conditions is U strictly quasi-concave, so that a solution to Ua(a) = 0 is also a
global maximizer of U .6

NUC very much simplifies the analysis of this problem. We show that where Ua = 0,

Uaa(a)= −
∫
v′(x)

(
Faa(x|a)− τFa(x|a)

)
dx�

where τ = caa(a)/ca(a). By one of the equivalent characterizations of NUC, Faa(·|a) −
τFa(·|a) does not go from negative to positive. Hence, if v is increasing and concave,
then v′ puts more weight on Faa(·|a) − τFa(·|a) where it is positive and less where it
is negative. But then a sufficient condition for U to be strictly quasi-concave is that∫
(Faa(x|a)− τFa(x|a))dx > 0, which by integration by parts is equivalent to

(
E[x|a])

aa(
E[x|a])

a

<
caa(a)

ca(a)
�

Hence, a single integral involving Faa − τFa needs to be checked, and the relevant in-
equality has the simple and clean economic interpretation that expected output is (in
proportionate terms) less convex in effort than c. Obviously, if Faa is positive and c is
convex in a, then the result is immediate.7 A convenient implication of NUC is that an
almost equally simple argument yields Uaa negative without convexity requirements in
F and c.

If v is not concave, then we show that it is enough to find a strictly increasing and
differentiable function q such that v′/q′ is decreasing and such that the expectation of q
is less convex than c. This generalization turns out to be very useful when we turn to the
moral-hazard problem.

One way to satisfy these assumptions is to assume expected output is concave in ef-
fort and cost is convex. We view this as unnecessarily restrictive. To see why, note first
that there is no reason why the economically natural way to write down such a prob-
lem leads to a convex c. For instance, one might think about effort expended on a given
day writing a paper; the cost per minute of effort initially decrease as one “gets into” the
problem and then eventually strongly increase, yielding a c, which is initially concave
and then convex. One could also imagine a setting where F does not lead to a con-
cave expected outcome, but one is willing to assume convexity in c that is sufficient to
overcome this.

A highly relevant application of the results just described is the question of the va-
lidity of the first-order approach (FOA) in the classical moral-hazard problem (Hölm-
strom 1979, Mirrlees 1999) in which a risk-averse agent chooses effort, but a principal

5In this paper, an integral
∫

without delimiters is understood to be over the entire range of relevant
values.

6We actually analyze a slightly more general setup where there is an unknown state θ distributed
according to � and, thus, the decision maker chooses an action a (independent of θ) that maximizes∫ ∫

v(x�θ)dF(x|a�θ)d�(θ)− c(a). The conditions we are about to describe must then apply pointwise for
each θ.

7In the moral-hazard context, Rogerson (1985) showed that F convex in a validates the first-order ap-
proach.
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can see—and reward—only a noisy signal of that effort.8 Implementing a specific effort
by the agent requires the design of an optimal contract that deters all possible devia-
tions, a decidedly intractable problem. The FOA focuses on the relaxed problem that
considers only local deviations in effort. The question is when does a solution to this
problem satisfy all of the omitted constraints. But that is exactly the problem considered
above, where the extra interest comes because v is itself endogenous.

We first show how a version of the central result of Jewitt (1988) falls out as an im-
mediate corollary to our analysis. In particular, mimicking Jewitt, under the right con-
ditions on the curvature of the agent’s utility function and likelihood ratio, the agent’s
utility from income, v, is concave in output for the optimal contract that solves the re-
laxed problem for any given effort. But then, from above, the agent’s expected utility is a
quasi-concave function of effort as long as expected output is less convex in effort than
c, and so the FOA is validated.

Except for the fact that we incorporate the curvature of c, our goal here is not to
generalize (Jewitt 1988).9 Rather, it is to show how NUC simplifies both the application
and the interpretation of his central result. First, for each a, rather than a continuum of
integrals (of the form

∫ x
x Faa(s|a)ds for each x), only a single integral must be checked.

Second, as discussed above, this integral has the correct sign if and only if expected out-
put is less convex in effort than c, and, hence, the condition takes on a simple economic
interpretation.

We then turn to a version of a central result of Jung and Kim (2015a), who focus on
the distribution of the likelihood ratio rather than on the distribution of the outcome it-
self. Indeed, fix any given action â and consider the likelihood ratio function l̂ evaluated
at that â. If the expectation of the function l̂ is concave in effort (that is, l̂ continues to
be evaluated at â, but the expectation is taken with respect to f (·|a) as a varies), then
we show that as an immediate consequence of the construction involving v′/q′, one can
drop Jewitt’s condition on the shape of the likelihood ratio.10 Furthermore, the concavity
condition on the expected likelihood ratio is weaker than that on the expected outcome.
Here again, our role is not to generalize (Jung and Kim 2015a), but to show how NUC
clarifies the analysis.

We are not the first researchers to make the observation that Faa may be well be-
haved and that this can simplify checking the Jewitt conditions or the Jung and Kim

8If the talent of the agent is unknown, as in the standard two-period career-concern model of Dewa-
tripont et al. (1999) without explicit contracts, then the setting described in footnote 6 applies.

9Brown et al. (1986) provide some limiting curvature and complementarity conditions on the agent’s util-
ity for wage and effort (not necessarily additively separable). Simultaneous work by Jung and Kim (2015b)
also looks at the curvature of c, but follows a different approach, which relies on a double-crossing prop-
erty between the agent’s utility for income and disutility of effort. Note that an alternative to including the
curvature of c is to linearize it by rescaling effort, thus folding any curvature of c into F . But while this
is conceptually straightforward, inverting the relevant cost function may be intractable and the resulting
conditions may be hard to check and interpret. Forcing c to be linear also makes it essentially impossible to
build a model where the expected cost to the principal of inducing effort is continuous at zero effort, since
effort zero can be implemented with a flat contract, while, since the marginal cost of effort is positive at
zero, implementing any positive effort requires imposing a strictly positive amount of risk on the agent.

10This condition has a slightly less economically intuitive interpretation, but extends the analysis beyond
a concave likelihood function.
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variations to them. Indeed, the related idea that it is useful that Faa crosses zero ap-
propriately already appears in Jung and Kim (2015a) as one of the conditions that help
to justify the FOA (see their Proposition 7 and Lemma 2) by showing that the sufficient
conditions in Jewitt (1988) hold. Less directly, the observation is at the heart of the sim-
plification that Jewitt (1988, Corollary 1) makes when discussing exponential families
(which satisfy NUC). Our main contribution is to explore the considerable generality
with which NUC holds, and to explore and understand its foundations and implications.
Also, our analysis shows that by exploiting NUC, one can show directly that the FOA is
valid, without the need to show that (the continuum of integrals in) Jewitt’s conditions
hold. This has pedagogical value, since our proof of the validity of FOA is only slightly
more difficult than that of Rogerson (1985), but without the restrictive convexity of F .

The final part of out paper is devoted to a deeper exploration of the exponential fam-
ilies. In particular, we examine the question of when the expectation of the likelihood
ratio is indeed less convex in effort than c. Since exponential families subsume many of
the most common distributions used in applications and have a number of other desir-
able properties for the modeler, a complete off-the-shelf result on the FOA in this setting
is of considerable practical use.

The paper proceeds as follows. Section 2 presents the model. Section 3 defines NUC,
characterizes it for twice continuously differentiable functions, and presents several suf-
ficient conditions for NUC. Section 4 discusses the relationship between NUC and com-
parative statics. Section 5 shows how NUC aids in the analysis of the quasi-concavity of
the objective function of an optimization problem. Section 6 discusses when NUC fails.
Section 7 applies those results to the validity of the FOA in the moral-hazard problem.
Finally, Section 8 discusses exponential families. Proofs omitted from the main text are
given in the Appendix.

2. The setting

Let A be a subset of R and let X be an interval of R with infimum x and supremum
x̄ in the extended reals. We often speak of a ∈ A as the effort taken by an agent and
of x ∈ X as the outcome, reflecting that one central use of our ideas is in principal–
agent settings. The outcome x has cumulative distribution (cdf) conditional on a,
F(·|a) : X → [0�1], with, as appropriate, density or probability distribution function
f (·|a).11 We assume that Fa(x|·) < 0 for all interior x, so that first-order stochastic dom-
inance (FOSD) strictly holds. Regarding f , we occasionally also assume the stronger
condition that f is strictly log-supermodular (lsm) in a and x (or, equivalently, satisfies
strict MLRP), so that f (·|ah)/f (·|al) is strictly increasing in xwhen ah > al. When f is dif-
ferentiable in a, this is equivalent to l(·|a)≡ fa(·|a)/f (·|a) being strictly increasing in x.
We are very explicit when we impose MLRP.12

11When f is a density, we freely impose high-order differentiability assumptions on f and F in the inter-
est of simplicity and clarity, although many of the results in this paper rely on less. We also assume that the
functions fa, faa, Fa, andFaa are integrable, and take for granted the validity of interchanging differentiation
and integration, which can be justified under mild conditions (see Chade and Swinkels 2019).

12We use increasing, decreasing, convex, concave, etc. in the weak sense, adding “strictly” when appro-
priate. A twice continuously differentiable real-valued function g with domain on a rectangle of the plane
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3. The no-upward-crossing condition

Say that F satisfies no-upward-crossing (NUC) if, for all {al�a′
l� ah�a

′
h} with al < a′

l, ah <
a′
h, al ≤ ah, and a′

l ≤ a′
h,

F
(
x|a′

h

) − F(x|ah)
F

(
x|a′

l

) − F(x|al)
(1)

is increasing in x (recall that we use “increasing” in the weak sense). We justify the choice
of nomenclature below.

In words, F satisfies NUC if the ratio by which an increase in action from ah to a′
h

versus an increase in action from al to a′
l affects F goes up with the outcome x. That is,

changes in effort between two lower effort levels matter relatively more to F at low out-
comes, while changes in effort between two higher effort levels matter relatively more at
high outcomes.

3.1 NUC for continuous distributions

Under some smoothness assumptions on F , NUC has a simple characterization.

Proposition 1. LetA andX be intervals, and let F be C2. Then the following statements
are equivalent:

(i) NUC.

(ii) The function −Fa is log-supermodular in a and x.

(iii) For each a ∈ A and τ ∈ R, Faa(·|a) − τFa(·|a) never crosses 0 from below on the
interior ofX .

The proof is given in Appendix A.1. To show that (i) and (ii) are equivalent, one ex-
presses the ratio in (1) as a ratio of integrals of −Fa, and then shows that the deriva-
tive of this ratio with respect to x has the sign of the difference of the expectation of
fa(x|·)/Fa(x|·) over [ah�a′

h] and [al�a′
l] with respect to the (artificial) density on a given

by

ξ(a)= −Fa(x|a)∫ (−Fa(x|s))ds
�

Since a′
h ≥ a′

l and ah ≥ al (with at least one inequality strict except in the trivial case), this
difference is always positive if and only if fa(x|·)/Fa(x|·) is increasing, which is equiva-
lent to −Fa lsm.

Condition (iii) is very useful in applications and is the progenitor of the term NUC.
Under NUC, z(·� τ�a)≡ Faa(·|a)− τFa(·|a) has only three possible sign patterns: for any

is supermodular if ∂2g/∂x∂y ≥ 0 and it is log-supermodular if logg is supermodular. We use the notation
g ≥ 0, etc. to mean that g(x) ≥ 0 for all x. For simplicity, we often omit the argument of functions when it
causes no confusion. We also use =s to mean “has strictly the same sign as.”
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Figure 1. NUC. The figure depicts the behavior of the function z(·� τ�a) for three different levels
of τ: depending on τ it can be always negative, always positive, or first positive and then negative.
In all cases, it starts and ends at 0.

given a and depending on τ, it can be everywhere positive, everywhere negative, or first

positive and then negative (see Figure 1). It has, in particular, no-upward-crossing on

the interior ofX .

Condition (ii) helps our intuitive understanding of NUC. Note that −Fa is the

amount by which extra effort raises the probability of an outcome above x, and, thus,

−Faa/(−Fa) measures the proportionate change in the benefit of extra effort as effort is

increased. By (ii), NUC is equivalent to this proportional change being more favorable

at higher outcomes. That is, at points x where Faa > 0, so that extra effort has dimin-

ishing marginal returns, −Faa/(−Fa) is becoming less negative: the diminishing returns

are smaller at higher outputs. Similarly, if Faa < 0, so that there are increasing marginal

returns to effort at x, then the increasing returns are yet larger at higher x.13

Using Proposition 1, we see that MLRP and NUC are in the same spirit. In particular,

MLRP is the condition that Fax/Fx is increasing in x, while NUC is the condition that

Faa/Fa is increasing in x. Thus, MLRP asks that Fx be log-supermodular in a and x,

while, given FOSD, NUC asks for the same condition on −Fa. Each condition fails in

specific examples (see below), but imposes useful regularity on the problem. Indeed, in

the location families F(x|a)=Q(x− a), we have Fx(x|a)=Q′(x− a)= −Fa(x|a), and so

MLRP and NUC reduce to the same condition.

Remark 1. As suggested by the example in the Introduction, our intuition for the mono-

tonicity of the expression in (1) is strongest when a′
l < ah. It can be seen from the proof

of Proposition 1 (see in particular (17)) that even if one weakened the definition of NUC

to consider only cases where a′
l < ah, NUC would remain equivalent to −Fa lsm. Hence,

for F ∈ C2, the two definitions agree.

13Since log-supermodularity is robust to an increasing transformation of x or a, so is NUC. The proof of
this assertion is immediate and, thus, is omitted.
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3.2 Three sufficient conditions for NUC

In this section, we provide three increasingly strong conditions that imply NUC. We con-
tinue to assume that A and X are intervals, and we take F to be C5. These conditions
help to check NUC in examples and to build intuition.

Proposition 2. Assume strict MLRP and let F be C5. Then

(log f )ax lsm =⇒ f 2(log f )ax lsm =⇒ F2(logF)ax lsm =⇒ NUC�14

The proof is provided in Appendix A.2.15 Note that (log f )ax > 0 is equivalent to the
condition that f is strictly lsm (strict MLRP). Hence, the conditions on f in this proposi-
tion can be interpreted as repeated applications of lsm.

The condition (log f )ax lsm is most stark when we consider exponential families. In
Section 8, we show that for such families, (log(log f )ax)ax = 0 (and, indeed, that only the
exponential families satisfy this condition). Leading examples of exponential families
are the exponential, Poisson, gamma, normal, and beta distributions, and truncations
thereof.

To interpret the condition (log f )ax lsm, fix a and, for ε small, note that the likelihood
ratio of a versus a− ε given x is (recall that l = fa/f is the likelihood ratio in differential
form)

f (x|a)
f (x|a− ε)

∼= 1 + εl(x|a)�

So l is steep around x if and only if changes in the outcome around x provide signifi-
cantly different information about a versus a−ε. Take x′′ > x′. Then, since (log f )ax = lx,
the condition (log f )ax lsm is equivalent to the condition that as a increases, l becomes
relatively steeper at x′′ versus x′. That is, as a goes up, changes in the outcome near x′′
become more informative about a versus a− ε relative to changes in the outcome near
x′.

This is intuitive. If a is low, then any high outcome may be largely a matter of (good)
luck, with the relative probability of these outcomes not depending much on small dif-
ferences in effort. This leads to a relatively flat l at high outcomes. Conversely, when a is
high, it is low outcomes that are largely a matter of (bad) luck, leading to a relatively flat
l at low outcomes.

Finally, we connect NUC to TP3, a condition explored by Jewitt (1988, p. 1182).

Lemma 1. Assume MLRP and let F be C5. Then

f 2(log f )ax strictly lsm =⇒ TP3 =⇒ f 2(log f )ax lsm�

Hence, by Proposition 2, NUC is considerably more permissive than TP3. See Ap-
pendix A.3.

14Because f is strictly lsm, each of the relevant objects is strictly positive on (x� x̄).
15We are very grateful to a referee who helped us toward a simpler proof of the second implication.
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4. NUC, threshold tests, and comparative statics

In this section, we provide a first application of NUC. This application is economically
relevant in its own right and also illuminates an intuitive foundation for NUC. We begin
with a simplified setting and show that an intuitive comparative static holds if and only if
NUC is in force. We then consider a more elaborate and economically realistic version of
the problem, and show that strict NUC remains the right condition to imply the desired
comparative static. Together, these results substantially strengthen our belief that NUC
is a natural condition to impose.

A university department that has junior faculty of ability θ ∈ {��h}, where the prob-
ability of type � is p and the probability of type h is 1 − p. The department can offer
research support δ ∈ {0�1} to its junior faculty. Research output with ability θ and sup-
port δ is distributed according to F(·|α(θ�δ)), where α(θ�0) < α(θ�1) for θ ∈ {��h} and
α(��δ) < α(h�δ) for δ ∈ {0�1}. That is, output is stochastically increased both by ability
and by the level of research support. Tenure is granted if and only if output exceeds a
threshold t. The department gets utility −1 from tenuring type �, utility 1 from tenuring
type h, and utility 0 from not tenuring, for an expected payoff of

π(t�δ)= −p(
1 − F(

t|α(��δ))) + (1 −p)(1 − F(
t|α(h�δ)))� (2)

Say that preferences are monotone if for all pairs (p�α), the function π(t�1)−π(t�0)
never crosses zero from above at some interior t. That is, the department never wants to
support faculty facing an easy tenure hurdle, but not to support them when they face a
harder hurdle. As discussed in the Introduction, we find monotonicity quite intuitive.

Proposition 3. Preferences are monotone if and only if F satisfies NUC.

Proof. Using (2) at δ= 0 and δ= 1, and rearranging, at any interior t,

π(t�1)−π(t�0)=s − p

1 −p + F
(
t|α(h�1)

) − F(
t|α(h�0)

)
F

(
t|α(��1)

) − F(
t|α(��0)

) � (3)

using FOSD. The result follows from the definition of NUC, since the range of p
1−p is

[0�∞).

Remark 2. This setting is equivalent to one in which an observer is trying to guess a
state based only on the information of whether output exceeds threshold t, and is choos-
ing which of two information environments (δ= 0 or δ= 1) she prefers for any given t.
This is similar to a setting considered by Jewitt et al. (2008). In this interpretation, it is
intuitive to let the observer also guess according to her prior, simply ignoring whether
or not the threshold was exceeded. In Appendix A.4, we show that if F is C2 and satisfies
a log-concavity condition, then any failure of NUC allows one to choose α and p such
that (a) the observer uses her information (and so optimally guesses state h if and only
if the threshold is exceeded) and (b) a failure of monotonicity occurs.
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Remark 3. This sort of situation is ubiquitous in any setting where what is reported to
the decision maker is a coarsening of a raw “score.” For example, in many areas restau-
rant goers can only see whether a given restaurant earned an A or a B placard, corporate
lenders can only see which of a small number of possible ratings a borrowing firm re-
ceived, a professional school may provide only a coarse report of student performance,
and Amazon provides customers only some of the information it uses to certify the ven-
dors using its platform. Our condition corresponds to a situation where if the threshold
score for a high rating goes up, the users of the information do not switch their prefer-
ences from an easier inspection/grading/certification system to a harsher one.

To see that NUC is really the “right” condition for this sort of problem, let us elab-
orate our base setting. Let θ have arbitrary distribution � (atomic or otherwise), let
δ ∈ [0�1], and let v(θ) be the value to the department of tenuring a faculty member of
ability θ, where we assume v single-crosses zero from below (we do not need the nat-
ural but stronger condition that v is increasing). Let output for the faculty member be
distributed as F(·|α(θ�δ)), where αθ and αδ are strictly positive. For given t and δ, the
payoff to the department is thus

π(t�δ)=
∫
v(θ)

(
1 − F(

t|α(θ�δ)))d�(θ)�
This problem embeds the problem originally considered, and so NUC remains neces-
sary for monotonicity. In its strict form, it also remains sufficient.

Proposition 4. Fix (p�α), and assume that F is C2 and satisfies NUC strictly (i.e., that
−Fa is strictly lsm). Then, for every pair δ� < δh, π(·� δh)− π(·� δ�) has the strict single-
crossing property and, hence, the optimal choice of δ is increasing in t.16

Proof. It is enough to show that if π(t�δh)−π(t�δ�) is 0, then (π(t�δh)−π(t�δ�))t > 0.
But

π(t�δh)−π(t�δ�)=
∫
y(θ� t)d�(θ)�

where y(θ� t)= v(θ)(F(t|α(θ�δ�))− F(t|α(θ�δh))), and, hence,

(
π(t�δh)−π(t�δ�)

)
t
=

∫
yt(θ� t)d�(θ)=

∫
yt(θ� t)

y(θ� t)
y(θ� t)d�(θ)�

Since v single-crosses 0 from below and since F(t|α(·� δ�)) − F(t|α(·� δh)) > 0, it fol-
lows that y(·� t) is first strictly negative and then strictly positive. Hence, since

∫
y(θ�

t)d�(θ) = 0, it is enough, using an inequality in Beesack (1957), to show that yt(·� t)/
y(·� t) is strictly increasing.17 This is established in Appendix A.5, where the proof hinges
on the fact that

yt(θ� t)

y(θ� t)
= f

(
t|α(θ�δ�)

) − f (t|α(θ�δh))
F

(
t|α(θ�δ�)

) − F(
t|α(θ�δh)

) �
16In particular, if th > tl , then the smallest optimal δ at th is larger than the largest optimal δ at tl .
17The version of Beesack’s inequality we use states that if G is a measure, h is a function that strictly

single-crosses 0 from below, and q is a strictly increasing function, then
∫
hdG= 0 =⇒ ∫

qhdG> 0.
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which can be expressed as an expectation of fa(t|·)/Fa(t|·) with respect to the density
ξ on a, where we recall that ξ(a) = −Fa(t|a)/

∫ −Fa(t|s)ds and where we condition on
a ∈ [α(θ�δl)�α(θ�δh)]. Since α is increasing in θ, the result follows since the conditional
expectations of an increasing function over an interval increase in the endpoints of that
interval. But, by Proposition 1, fa(·|a)/Fa(·|a) is strictly increasing since F satisfies NUC
strictly.

5. NUC and quasi-concave expectations

NUC is of particular use when one is considering maximizing the expectation of a func-
tion with respect to a parameterized distribution. To be concrete, let an agent have abil-
ity θ ∈�⊆ R that she views as coming from prior �, let the relationship between effort,
ability, and output be given by F(·|a�θ), and let the payoff to the agent of output x and
ability θ be v(x�θ). Let the cost of effort a to the agent be c(a), with c strictly increasing
and C2. Then the agent maximizes

U(a)=
∫
�

(∫
X
v(x�θ)f (x|a�θ)dx

)
d�(θ)− c(a)�

If � is degenerate and v is independent of θ, then this is the problem faced by an agent
in a standard moral-hazard problem with contract v (in utils), a topic on which we have
more to say in Section 7. If � is nondegenerate, then this is a key building block for a
career-concerns model, where v, which does not depend on θ, is the market’s estimate
of the value of the agent given output x and the market’s conjectured effort level by the
agent.18

In any such application, analysis of the problem via the first-order condition is very
convenient. But to do so, one needs to know that the first-order condition characterizes
the global optimum. In the following proposition, we use NUC to provide such a result.

Proposition 5. Assume that, for each θ, F(·|·� θ) satisfies NUC, where F(·|·� θ) has a C2

density f (·|·� θ), and assume that there is a differentiable function q of x and θ that is
strictly increasing in x and such that, for each θ, vx/qx is decreasing in x and

(
E[q|a])

aa(
E[q|a])

a

<
caa(a)

ca(a)
� (4)

Then U is strictly quasi-concave and, hence, the first-order condition characterizes the
optimal choice of a.

Proof. We have

Ua(a)=
∫
�

∫
X
v(x�θ)fa(x|a�θ)dxd�(θ)− ca(a)

and

Uaa(a)=
∫
�

∫
X
v(x�θ)faa(x|a�θ)dxd�(θ)− caa(a)�

18See Dewatripont et al. (1999) for details on the two-period career-concerns model.
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When Ua = 0,

caa(a)= caa(a)

ca(a)
ca(a)=

∫
�

∫
X

caa(a)

ca(a)
v(x�θ)fa(x|a�θ)dxd�(θ)�

and so, substituting and rearranging, we have

Uaa(a)=
∫
�

∫
X
v(x�θ)

(
faa(x|a�θ)− caa(a)

ca(a)
fa(x|a�θ)

)
dxd�(θ)�

It is thus enough that the inner integral is negative for each θ. Integrating the inner
integral by parts, it suffices that for each θ,

0<
∫
X
vx(x�θ)

(
Faa(x|a�θ)− caa(a)

ca(a)
Fa(x|a�θ)

)
dx

=
∫
X

vx(x�θ)

qx(x�θ)
qx(x�θ)

(
Faa(x|a�θ)− caa(a)

ca(a)
Fa(x|a�θ)

)
dx�

Since qx(·� θ) > 0 for all θ, it follows by NUC that qx(Faa−(caa/ca)Fa) is never first strictly
negative and then strictly positive. Hence, since vx/qx is positive and decreasing in x
by assumption, we can apply another inequality of Beesack (1957).19 It is in particular
sufficient that for each θ,

∫
X
qx(x�θ)

(
Faa(x|a�θ)− caa(a)

ca(a)
Fa(x|a�θ)

)
dx > 0 (5)

or, equivalently (integrating by parts and rearranging), that
(
E[q|a])

aa(
E[q|a])

a

<
caa(a)

ca(a)

for all θ, and we are done.

In decision problems under uncertainty, where, for example, v is the utility function
for income, it is commonly assumed that v is concave in x and then q(x�θ)= x suffices.
Then (4) asks simply that for each type of the agent, c is at least as convex as the expected
value of the outcome.20 This holds if expected outcome is concave and costs are convex
(with one strictly so), but can also easily hold in applications where expected outcome
is not concave or costs are not convex. An attractive feature of Proposition 5 is that both
NUC and (4) have clean interpretations.

As we will see below (see in particular Corollary 2), the generality offered by q is very
useful in applications. To see where q comes from, note that it may be that either v is
not concave in x or expected output is insufficiently concave. But it may also be that

19This version of Beesack’s inequality states that if G is a measure, h is a function that strictly single-
crosses 0 from below (above), and r is an increasing (decreasing) positive function, then

∫
hdG > 0 =⇒∫

rhdG> 0.
20In the two-period career-concerns model, v is a composition of functions whose curvature is much

more difficult to pin down. When v will be concave in this case is well beyond the scope of this paper.
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by a change of variables, the requisite properties hold. This is the role of q, which, for
any given θ, corresponds to simply stretching the x axis according to z = q(x�θ). Denote
the inverse of q with respect to x by ϕ. If under this relabelling, v̂(z�θ)= v(ϕ(z�θ)�θ) is
concave in z for each θ, while the expectation of z = q(x�θ) is more concave than c for
each θ, then we are done as well.21

6. When does NUC fail?

In this section, we explore settings where NUC fails. We begin with a continuous distri-
bution and then provide a discrete example that exposes intuition.

For an example where NUC fails but strict MLRP holds, let a ∈ [0�0�48], x ∈ [0�1], and

f (x|a)=
(

1
6

− 2
(

1
2

− x
)2)a2

2
+ 4

(
x− 1

2

)
a+ 1�

which is quadratic in awith coefficients that depend on x. It can be checked that f satis-
fies strict MLRP. But faa has sign pattern −/+ /−, and so Faa = ∫ x

0 faa will be first strictly
negative and then strictly positive. In fact, this example contains a recipe for construct-
ing examples where NUC fails: the key step is to appropriately craft the coefficient of
a2.

To see a discrete example, consider a student who chooses an effort level in {0�1�2},
with probability and cumulative distributions over grades given effort given by

f = 0
1
2

A⎡
⎢⎣

0
1 − y
1/2

B
1 − x
y −w
1/2

C

x

w

0

⎤
⎥⎦ and F = 0

1
2

A⎡
⎢⎣

1
1
1

B
1
y

1/2

C

x

w

0

⎤
⎥⎦ �

where rows indicate effort and columns indicate grades. Then strict MLRP is equivalent
to (1/2)/(1/2) > (1 − y)/(y − w) and (y − w)/w > (1 − x)/x or, equivalently, w < 2y − 1
and w < yx, and, thus, requires y > 1/2. Similarly, NUC holds if (1/2 − y)/(−w) > (y −
1)/(w − x) or, equivalently, using that by strict FOSD, w − x < 0, w < (2y − 1)x. Thus,
strict MLRP holds but NUC fails when

x ∈ (0�1)� y ∈ (1/2�1)� and w ∈ (
(2y − 1)x� yx

) ∩ [0�2y − 1)�

In Figure 2, y is fixed in (1/2�1), with the shaded areas representing pairs (x�w) where
MLRP holds and the lighter area representing pairs where NUC also holds.22

21If v is independent of θ, then the decision maker’s expected utility can be written as∫
v(x)(

∫
f (x|a�θ)d�(θ))dx, and so one might hope to work simply with the density

∫
f (x|a�θ)d�(θ). But

as the next section illustrates, NUC need not be inherited by a mixture of distributions that satisfy NUC,
and so it may be convenient to retain the θ structure here as well.

22In this example, NUC implies MLRP. An example that satisfies NUC and FOSD, but fails MLRP is

f = 0
1
2

A⎡
⎣ 0

1/4
3/4

B
1/2
1/2
1/8

C
1/2
1/4
1/8

⎤
⎦ and F = 0

1
2

A⎡
⎣ 1

1
1

B
1

3/4
1/4

C
1/2
1/4
1/8

⎤
⎦ �

where MLRP fails because f (B|2)/f (C|2) < f(B|1)/f (C|1).
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Figure 2. Failure of NUC.

In these examples, increasing effort from 0 to 1 moves substantial weight from B to
A, while increasing effort from 1 to 2 moves relatively more weight from C to B. More
generally, NUC fails when, starting from a low effort level, incremental effort has an ef-
fect more on high outcomes, while starting from a high effort level, incremental effort
has an effect more on low outcomes.23

If x= 1/2, y = 3/4, and w= 3/8, then

f = 0
1
2

A⎡
⎢⎣

0
1/4
1/2

B
1/2
3/8
1/2

C

1/2
3/8
0

⎤
⎥⎦ and F = 0

1
2

A⎡
⎢⎣

1
1
1

B
1

3/4
1/2

C

1/2
3/8
0

⎤
⎥⎦ �

For a professor with known grading standards, this situation is quite odd: turning
in some work should primarily turn Cs into Bs, while turning in all the work instead of
some of the work should be relatively more important in turning Bs into As.

To see how such a failure of NUC might still occur, imagine f reflects a professor with
unknown type, which can be soft (S) or harsh (H), with P[S]/P[H] = 3 and with

fS = 0
1
2

A⎡
⎢⎣

0
1/3
2/3

B
2/3
1/2
1/3

C

1/3
1/6
0

⎤
⎥⎦ and fH = 0

1
2

A⎡
⎢⎣

0
0
0

B
0
0
1

C

1
1
0

⎤
⎥⎦ �

with associated FS and FH . Each distribution (weakly) satisfies MLRP and NUC, but as
we saw above, the mixture of fS and fH , given by f , fails NUC. Indeed, changes in effort

23If (x� y�w) is uniform on [0�1]3, then the probability of NUC given MLRP is 87%, where we had to
explore several low-dimensional parameterizations of this 3 by 3 example before we found one where NUC
ever failed while MLRP held.
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from 0 to 1 affect only the grade given by the soft professor, who is quite likely to change
a B to an A in response. In contrast, the change in effort from 1 to 2, because it affects
the grade given by the harsh professor, has a relatively larger effect on B versus C, leading
NUC to fail.24

7. NUC and the first-order approach

An important context in which NUC is very helpful is in verifying the validity of the first-
order approach in the standard moral-hazard problem. In this section, we remind the
reader of the basic issue, and then see how NUC and Proposition 5 simplify the analysis.

A risk-neutral principal hires a strictly risk-averse agent whose effort a ∈A is unob-
servable to the principal. The principal sees a signal x ∈X that is distributed according
to F(·|a), where f is strictly lsm (strict MLRP). The agent’s utility for income is u, his cost
of effort is c, both of which are assumed to be C2, and his wage is a function of output w.
For any contract w and effort a, the agent’s expected utility is

∫
u(w(x))f (x|a)dx− c(a),

while the principal’s expected profit is
∫
(x− w(x))f (x|a)dx. The agent has an outside

option that yields utility u0. The principal’s problem is to choose a contract w and rec-
ommend an effort a to maximize expected profits subject to incentive compatibility and
participation. Formally, the principal’s problem is

max
w�a

∫ (
x−w(x))f (x|a)dx

s.t.
∫
u
(
w(x)

)
f (x|a)dx− c(a)≥ u0

a ∈ arg max
a′∈A

∫
u
(
w(x)

)
f
(
x|a′)dx− c(a′)�

(6)

As is standard (Hölmstrom 1979, Mirrlees 1999), the FOA begins by considering the re-
laxed problem in which (6) is replaced by the agent’s first-order condition

∫
u
(
w(x)

)
fa(x|a)dx= ca(a)� (7)

for which an optimal solution is of the form (recall that l≡ fa/f )

1
u′(w(x)) = λ+μl(x|a)� (8)

where λ > 0 is the Lagrange multiplier associated with the participation constraint, and
μ > 0 is the one associated with (7) (see Jewitt 1988 for the proof that μ is strictly posi-
tive). The question the FOA addresses is when can we conclude that the solution to this
relaxed problem satisfies (6) as well. But this is true as long as

∫
u(w(x))f (x|a)dx− c(a)

is quasi-concave in a.25 Hence, from Proposition 5, the key question is to understand

24This is mathematically the same point as the fact that the convex combination of two distributions
each satisfying MLRP need not satisfy MLRP.

25As in Proposition 5, we derive conditions for strict quasi-concavity, but there are versions of all the
results in this section where the appropriate inequality is weak.
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the behavior of of u(w(·)), where one can exploit the structure inherent in (8) to put
structure on u(w(·)).

As in Jewitt (1988), let ρ carry 1/u′ to u.26 Then, from (8), if the action being imple-
mented is â, then u(w(x))= ρ(λ+μl(x|â)) and so

(
u
(
w(x)

))
x

= ρ′(λ+μl(x|â))μlx(x|â)� (9)

which is strictly positive since lx > 0 by strict MLRP. We can, thus, use Proposition 5 in
one of two ways. The first is a direct variation of Theorem 1 in Jewitt (1988).

Corollary 1. Assume f is C2, F satisfies NUC and MLRP, ρ is concave, l is concave in x
for each a, and (

E[x|a])
aa(

E[x|a])
a

<
caa(a)

ca(a)
� (10)

Then the FOA is valid.

The proof is immediate from Proposition 5, taking q to be the identity function and
noting that v, given by v(x)= u(w(x)), is concave under the stated conditions on ρ and l.

Jewitt (1988, Corollary 1) observes that for exponential families (defined in Section 8)
with l(·|a) concave, it is enough to check that expected output is concave in effort. The
force of our result is that under NUC, this basic insight of exponential families holds
regardless of the distribution. Under NUC, there is only one integral to check (recall that
(10) is equivalent to (5) with qx = 1), instead of a continuum of such expectations as in
Jewitt (1988). In addition, the relevant integral has a simple economic interpretation.

Proposition 5 also yields the following corollary, which, modulo the use of the disu-
tility of effort, is similar to a result in Jung and Kim (2015a) (see their Proposition 7 and
Lemma 2).

Corollary 2. Assume f is C2, F satisfies NUC and MLRP, ρ is concave, and that for all a
and â, (

E[l̂|a])
aa(

E[l̂|a])
a

<
caa(a)

ca(a)
� (11)

where l̂= l(·|â). Then the FOA is valid.

The proof is immediate from Proposition 5 and from (9), taking q= l(·|â) and v(x)=
u(w(x)), and noting that v′/lx(·|â)= μρ′ is decreasing, since ρ is concave by assumption.

As mentioned in the Introduction, we stress that both corollaries follow effortlessly
from Proposition 5, which in turn follows easily from a single integration by parts plus
the application of an integral inequality to sign a single integral.

We see in the next section that for exponential families, (11) is easy to check. Also,
removing the concavity condition on l(·|â) is especially useful for some exponential fam-
ilies, where E[l(·|â)|a] is quite tractable; see Section 8, Example 1.

26That is, define ρ(·) by ρ(z)= u([u′]−1(1/z)).
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Remark 4. If l(·|a) is concave in x for each a and if NUC holds, then (11) is weaker than
(10).

See Appendix A.6 for a direct proof of this remark and see Jung and Kim (2015a,
Proposition 8) for an alternative argument. Thus, Corollary 2 generalizes Theorem 1
in Jewitt (1988) in three directions. First, it incorporates the curvature of c. Second, it
allows for examples in which l is not concave. Third, even when l is concave, the in-
tegral condition typically becomes strictly weaker, as shown by the remark above. For
examples where l is convex but the integral condition holds, and where l is concave but
the distinction between (10) and (11) has real bite, see Section 8.

So far we have explored the implications of Proposition 5 for the moral-hazard prob-
lem, but there is also an interesting implication of the condition (log(log f )ax)ax ≥ 0,
which, as Proposition 2 shows, under strict MLRP is a sufficient condition for NUC.
Pick (a�λ�μ) and (â� λ̂� μ̂) with â > a. Let φ(x) = λ + μl(x|a) and φ̂(x) = λ̂ + μ̂l(x|â)
be the corresponding contracts considered as functions from x to 1/u′. Since ρ is strictly
increasing, the associated monetary contracts w = ρ(φ) and ŵ = ρ(φ̂) have the same
crossing properties as φ and φ̂. Now φ̂′(x)/φ′(x)= μ̂lx(x|â)/μlx(x|a) and, thus,

(
φ̂′(x)
φ′(x)

)
x

=s

(
lxx

lx
(x|â)− lxx

lx
(x|a)

)
=s

(
lxx

lx

)
a

= (
log(log f )ax

)
ax
�

where we remind the reader that “=s” means “has strictly the same sign as” and where
we note that by the last equality and the premise, (lxx/lx)a is everywhere positive. So
(log(log f )ax)ax ≥ 0 holds if and only if the ratio of the slope of the higher effort contract
to the slope of the lower effort contract increases in x, so that the higher effort contract
is more convex than the lower effort contract. An implication is that (except if they are
the same contract) φ̂ can cross φ at most twice, and if it does so, it does so first from
above and then from below.27 For the exponential families, (log(log f )ax)ax = 0 and,
hence, contracts either coincide everywhere, cross exactly once, or do not cross at all,
something that is potentially useful to the modeler.

We have followed the standard method to study the validity of the FOA, which im-
poses conditions on the conditional distribution of the outcome x (and also on u and c).
The central point of Jung and Kim (2015a), however, is that one can instead focus on the
distribution of the likelihood ratio l, which leads to conditions for the validity of the FOA
that do not require strict MLRP on l and that apply also to the multidimensional-signal
case.

For completeness, let us see how Proposition 5 implies a key part of their analysis.
To do so, fix â and for each ζ ∈R, defineX(ζ� â)= {x|l(x|â)≤ ζ}. Let

G(ζ|a� â)≡
∫
X(ζ�â)

f (s|a)ds

27If (log(log f )ax)ax < 0, then φ̂ and φ cross at most twice, with φ̂ crossing φ first from below and then
from above.
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be the probability, given effort a, that output satisfies l(x|â) ≤ ζ, and let g(·|a� â) be the
associated density. Let r(ζ) ≡ ρ(λ+ μζ) for each ζ and write the agent’s expected util-
ity given effort a as

∫
r(ζ)g(ζ|a� â)dζ − c(a). We then have the following variation on

Proposition 7 and Lemma 2 of Jung and Kim (2015a), which unlike Corollary 2 does not
assume that l is increasing in x.

Proposition 6. Assume thatG(·|a� â) satisfies FOSD in a for each â, and thatG(·|·� â) is
C2 and satisfies NUC for each â. Assume also that ρ is concave and that for all a and â,

(
EG(·|a�â)[ζ|a]

)
aa(

EG(·|a�â)[ζ|a]
)
a

<
caa(a)

ca(a)
�

Then the FOA is valid.

The proof is immediate from Proposition 5, with ζ taking the role of x,G(·|·� â) taking
the role of F , and r taking the role of v, taking q as the identity, and noting that r′ = μρ′
is decreasing, since ρ is concave by assumption.

The degree to which this result is useful depends on the degree to which one can
check thatG(x|·� â) satisfies FOSD in a for each x and â, and thatG(·|·� â) satisfies NUC
for each â. Note in particular that once one has abandoned MLRP, the sets X(ζ� â) are
in principle arbitrary, and so it is not clear what primitives on F are required even for
FOSD, let alone NUC. See Jung and Kim (2015a, Section 4.3) for some positive examples.

As an alternative, one could tackle the multidimensional-signal case directly, as in
Jewitt (1988) and as in the general analysis in Conlon (2009). The difficulty in extending
our results to the multidimensional case is to come up with the analog of the crossing
condition that characterizes NUC in the one-dimensional case. One case in which NUC
remains useful is the two-signal case when signals are independent (this case was also
analyzed by Jewitt (1988)). In this case, it is easy to use strict MLRP, ρ concave, and NUC
on the distribution of each signal to justify the FOA. To see this, let y be a second signal
with support on an interval with infimum y and supremum y, and with parameterized

distribution P and density p. Assume that F and P are C2 and that f and p satisfy strict
MLRP. Denote by � the likelihood ratio of y, that is, �≡ pa/p, and for any â the principal
wants to implement, let �̂ ≡ �(·|â). Then we have the following result, whose proof is
given in Appendix A.7:

Proposition 7. Assume that x and y are independent signals with C2 densities f and
p that satisfy strict MLRP, and with distributions F and P that satisfy NUC. Assume also
that ρ is concave, and that for all a and â, l̂ and �̂ satisfy (11). Then the FOA is valid.

Here again, NUC simplifies the analysis and leads to interpretable sufficient condi-
tions.

8. The exponential families

In this section, we explore the exponential families. As mentioned, the exponential,
Poisson, gamma, normal, and beta distributions, and their truncations are exponen-
tial families. Such truncations are important when applying some of the results in this
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section to the FOA, since they bound the likelihood ratio and, thus, rule out a stan-
dard nonexistence issue. Motivated by our previous results, we focus on the behavior
of E[x|a] and E[l(·|â)|a].

Recall that a family of densities {f (·|a)}a∈A is a (one-parameter) exponential family
if it can be expressed as

f (x|a)=m(a)n(x)eH(a)j(x)� (12)

where n≥ 0 andm(a)= 1/
∫
n(x)eH(a)j(x) dx.28 LetH be analytic, set h≡H ′, and assume

that h> 0. Note that

l(x|a)= h(a)j(x)+ m′(a)
m(a)

(13)

and so lx(x|a) = h(a)j′(x). Hence, f satisfies MLRP if and only if j is increasing, as we
henceforth assume. Finally, note that lax(x|a)= h′(a)j′(x) and so

(
log(log f )ax

)
ax

=
(
lax

lx

)
x

=
(
h′

h

)
x

= 0�

as claimed following Proposition 2.
With this in hand, let us return to the moral-hazard problem and, in particular, to the

question of when the relevant integral condition holds for exponential families. Then,
by (13), the inequality (11) reduces simply to

(
E[j|a])

aa(
E[j|a])

a

<
caa(a)

ca(a)
� (14)

where the problem is more tractable because we can throw away the multiplicatively
separable factor h(â) > 0. By Corollary 1, if j is concave, then it also suffices to check

(
E[x|a])

aa(
E[x|a])

a

<
caa(a)

ca(a)
�

as observed by Jewitt (1988), which may be simpler in some settings. Examples include
the exponential and Poisson distributions.

There are two reasons to want to go further. First, once j is non-concave, it is not
enough to check concavity of output. Second, even when j is concave, concavity of
output is more than we need, and may unnecessarily exclude cases of interest. In the
following example, j is concave, but it is both easier to check concavity of E[j|x] than
E[x|a] and critical to do so.

Example 1. Consider

f (x|a)= abxab−1 = abe(ab−1) logx

28It is implicit in this definition that n, H, and j are chosen such that n(x)eH(a)j(x) is integrable for all a
in (a� ā). It follows (e.g., Lehmann and Romano 2005, Theorem 2.7.1) that if H is analytic on (a� ā), then so
ism, and that f has finite moments of all orders.
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for x ∈ [0�1], a > 0, and b > 0. As an exponential family, NUC holds. It is then a matter
of simple calculation that, since j = logx, E[j|a] = −1/ab, which is concave in a for any
b > 0, while E[x|a] = ab/(ab + 1), which fails to be concave for any b > 1.29 ♦

Our next result illuminates what is needed to satisfy (14). To simplify notation, write
σ for the standard deviation of j and write γ = E[(j(x)− j)3|a]/σ3 for the skewness of j.

Proposition 8. Let F be an exponential family. Then for each a, (14) holds if and only if

h′(a)
h(a)

+ h(a)σγ < caa(a)

ca(a)
� (15)

This holds if c is strictly relatively more convex than H (since h′/h = H ′′/H ′) and j is
negatively skewed. Sufficient for j to be negatively skewed is that H is positive and j′/n is
decreasing.

The proof is provided in Appendix A.8 and its main step shows that (E[j])aa/(E[j])a =
(h′(a)/h(a))+h(a)σγ. The result implies that, for exponential families, the FOA is valid
if c is strictly relatively more convex than H, H ≥ 0 and j′/n is decreasing in x. Given
Proposition 8, to construct simple examples where j need not be concave but where the
integral condition holds, let j be an arbitrary increasing and differentiable function, and
take n= j′ andH positive and concave.

Remark 5. The exponential families satisfy (log f )ax lsm weakly. We can, however,
modify this family and construct tractable F for which (log f )ax lsm is strict. Say
that F is a blended exponential family if it can be written in the form f (x|a) =
m(a)n(x)ej(x)H(a)+ĵ(x)Ĥ(a), where j, ĵ,H, and Ĥ are increasing. Then l(x|a)= j(x)h(a)+
ĵ(x)ĥ(a)+ m′(a)

m(a) and (log f )ax(x|a)= lx(x|a)= j′(x)h(a)+ ĵ′(x)ĥ(a) > 0, and so MLRP is
satisfied. Further,

(
log(log f )ax

)
a
(x|a)= j′(x)h′(a)+ ĵ′(x)ĥ′(a)

j′(x)h(a)+ ĵ′(x)ĥ(a)
and it is now possible to construct distributions with a rich set of behaviors for
(log(log f )ax)ax.30 Indeed, take H(a) = a2/2 and Ĥ(a) = −(1 − a)2/2. Then h(a) =
a, ĥ(a) = 1 − a, lx(x|a) = j′(x)a + ĵ′(x)(1 − a), and (log(log f )ax)a(x|a) = (j′(x) −
ĵ′(x))/aj′(x) + (1 − a)ĵ′(x). By suitable choice of ĵ(x) and j(x), we can make
(log(log f )ax)ax strictly positive. For example, if j′′/j′ > ĵ′′/ĵ′, then (log(log f )ax)ax > 0
and, thus, NUC holds.

29In this example, the likelihood ratio is unbounded below. This is easy to modify by assuming that

x ∈ [η�1 + η] with η > 0, so that f (x|a)= (abxa
b−1)/((1 + η)ab − ηab). One can verify that for each b > 1, if

one takes η sufficiently small, the expectation of j(x) is concave in a, but the expectation of x is not.
30One can actually go further by letting f (x|a)=m(a)n(x)e

∫
j(x�s)H(a�s)dK(s) for some distribution K and

running through the same derivation.
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9. Concluding remarks

We have introduced, motivated, and illustrated the economic relevance of a log-
supermodularity condition, which we call NUC, on a parameterized family of distri-
butions. We provided a characterization for NUC under differentiability assumptions as
well as several sufficient conditions that are easier to check in some settings. We showed
that NUC has a strong intuitive foundation in terms of a natural monotonicity property
in a statistical decision problem.

We showed that NUC is useful in the analysis of some interesting economic prob-
lems. It is especially relevant when characterizing a global optimum using first-order
conditions in some problems under uncertainty. Two such problems are the principal–
agent problem with moral hazard, where a technical hurdle is to justify the FOA, and the
career-concerns problem, where the agent’s first-order condition becomes an equilib-
rium condition under rational expectations.

We also explored the limitations of NUC and provided examples where NUC fails.
Although NUC can fail, we contend that the instances where this happens are somewhat
artificial, lending further credibility to NUC as a natural condition.

In the last part of the paper, we provided a thorough analysis of the validity of the
FOA in the moral-hazard problem using NUC and we related the results to those in the
analysis in Jewitt (1988) and Jung and Kim (2015a). In particular, we explored the use-
fulness of NUC in the case of exponential families and illustrated its tractability in com-
monly used examples of this class. It is our hope on a forward-going basis that, as for
MLRP, NUC turns out to simplify and clarify analysis in a broad set of problems.

Appendix: Omitted proofs

A.1 Proof of Proposition 1

Lemma 2. Let χ : R2 → R be strictly positive and C2. Then χ is lsm if and only if for each
τ ∈ R and each a, −χa(·� a)+ τχ(·� a) is never first strictly negative and then strictly posi-
tive.

Proof. Sufficiency follows since

−χa(x�a)+ τχ(x�a)=s τ− χa(x�a)

χ(x�a)
�

Sinceχ is lsm, χa/χ is increasing in x, so once −χa(x�a)+τχ(x�a) is negative, it remains
so.

For necessity, assume χ is not lsm. Then there are x′�x′′ ∈ (x� x̄) with x′′ > x′ such
that

χa

χ

(
x′′� a

)
<
χa

χ

(
x′� a

)
�

and so for any τ ∈ (χaχ (x
′′� a)� χaχ (x

′� a)), −χa(x′� a) + τχ(x′� a) < 0 < −χa(x′′� a) +
τχ(x′′� a), contradicting the premise.
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Proof of Proposition 1. That (ii) is equivalent to (iii) is immediate by applying
Lemma 2 to χ(x�a) = −Fa(x|a), which is positive under our maintained assumption
of FOSD.

To see that (i) and (ii) are equivalent, let

R(x)≡ F
(
x|a′

h

) − F(x|ah)
F

(
x|a′

l

) − F(x|al)
=

−
∫ a′

h

ah

Fa(x|s)ds

−
∫ a′

l

al

Fa(x|s)ds

and so

R′(x)=s (logR)x

=

∫ a′
h

ah

fa(x|s)ds
∫ a′

h

ah

Fa(x|s)ds
−

∫ a′
l

al

fa(x|s)ds
∫ a′

l

al

Fa(x|s)ds

=
∫ a′

h

ah

fa

Fa
(x|s) −Fa(x|s)∫ a′

h

ah

(−Fa(x|s))ds
ds−

∫ a′
l

al

fa

Fa
(x|s) −Fa(x|s)∫ a′

l

al

(−Fa(x|s))ds
ds

= Eξ

(
fa

Fa
(x|a)|a ∈ [

ah�a
′
h

]) −Eξ

(
fa

Fa
(x|a)|a ∈ [

al�a
′
l

])
� (16)

Assume that −Fa is lsm in (x�a). Then fa/Fa increases in a and (16) implies that
R′ ≥ 0, since the expectation of an increasing function increases in either bound of the
conditioning set.

Assume thatR′ ≥ 0. Then, for any interior x, any a′′ > a′, and for each ε > 0, it follows
from (16) that

Eξ

(
fa(x|a)
Fa(x|a)

∣∣∣a ∈ [
a′′� a′′ + ε]

)
−Eξ

(
fa(x|a)
Fa(x|a)

∣∣∣a ∈ [
a′� a′ + ε]

)
≥ 0 (17)

and so, taking ε→ 0,

fa
(
x|a′′)

Fa
(
x|a′′) ≥ fa

(
x|a′)

Fa
(
x|a′) �

Hence, −Fa is lsm in (x�a).

A.2 Proof of Proposition 2

The first implication is trivial since f is lsm and the product of lsm functions is lsm.



468 Chade and Swinkels Theoretical Economics 15 (2020)

Let us prove that f 2(log f )ax lsm =⇒ F2(logF)ax lsm. Note that F2(logF)ax = faF −
Faf . Now

(faF − Faf )a
faF − Faf = faaF + faFa − Faaf − Fafa

faF − Faf =
faa

f
− Faa

F

fa

f
− Fa

F

≡ η(x|a)

and so, to establish that faF − Faf is lsm, we need to show that ηx ≥ 0. But

faa

f
(x|a)− Faa

F
(x|a)=

∫ x

x

(
faa

f
(x|a)− faa

f
(z|a)

)
f (z|a)
F(x|a) dz

=
∫ x

x

∫ x

z

(
faa

f
(s|a)

)
x

ds
f (z|a)
F(x|a) dz

=
∫ x

x

(
faa

f
(s|a)

)
x

(∫ s

x

f (z|a)
F(x|a) dz

)
ds

=
∫ x

x

(
faa

f
(s|a)

)
x

F(s|a)
F(x|a) ds�

where the second equality uses the Fundamental Theorem of Calculus and the third
equality exchanges the order of integration over the domain x≤ z ≤ s ≤ x. Similarly,

fa

f
(x|a)− Fa

F
(x|a)=

∫ x

x

(
fa

f
(s|a)

)
x

F(s|a)
F(x|a) ds

and so

η=

∫ x

x

(
faa

f
(s|a)

)
x

F(s|a)ds
∫ x

x

(
fa

f
(s|a)

)
x

F(s|a)ds

=
∫ x

x

(
faa

f
(s|a)

)
x(

fa

f
(s|a)

)
x

(
fa

f
(s|a)

)
x

F(s|a)
∫ x

x

(
fa

f
(τ|a)

)
x

F(τ|a)dτ
ds

=
∫ x

x
β(s)

ψ(s)

�(x)
ds�

where

β(s)=

(
faa

f
(s|a)

)
x(

fa

f
(s|a)

)
x

� ψ(s)=

(
fa

f
(s|a)

)
x

F(s|a)
∫ (

fa

f
(τ|a)

)
x

F(τ|a)dτ

and� is the cumulative distribution function of ψ.
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We would then be done if β is increasing, since the conditional expectation of an
increasing function over an interval increases in the endpoints of that interval. But

β=

(
faa

f

)
x(

fa

f

)
x

= faaxf − faafx
faxf − fafx = (faxf − fafx)a

faxf − fafx �

which is increasing in x, since faxf − fafx = f 2(log f )ax is lsm by assumption.
Finally, we prove that F2(logF)ax lsm =⇒ NUC. Fix a and at any x ∈ (x� x̄], differen-

tiate the identity Fa = FFa/F by a to get

Faa = FaFa
F

+ F
(
Fa

F

)
a

and so

ν ≡ Faa − τFa = F
((

Fa

F

)2
+

(
Fa

F

)
a

− τFa
F

)
�

where we think of ν as a function purely of x. Thus,

ν′ = f
((

Fa

F

)2
+

(
Fa

F

)
a

− τFa
F

)
+ F

(
2
(
Fa

F

)(
Fa

F

)
x

+
(
Fa

F

)
ax

− τ
(
Fa

F

)
x

)

or

ν′(x)= f

F
ν(x)+ F

(
Fa

F

)
x

(x|a)(r(x)− τ)� (18)

where

r = 2
(
Fa

F

)
+

(
Fa

F

)
ax(

Fa

F

)
x

and where it is standard that lsm is preserved by integration, so f is lsm implies that F is
lsm and, thus, (Fa/F)x > 0. Note also that

r =
(

log
(
F2

(
Fa

F

)
x

))
a

= (
log(FaxF − FaFx)

)
a

and, hence, r is increasing in x if and only if (FaxF − FaFx)= F2(logF)ax is lsm.
Assume that F fails NUC, so that there is x′ < x′′ such that ν(x′) < 0 < ν(x′′). Then

there must be x̃ ∈ (x′�x′′) such that ν(x̃) = 0 and ν′(x̃) ≥ 0, and so from (18), r(x̃) ≥ τ.
Since r is increasing, it also follows from (18) that for all x ∈ (x̃� x̄), if ν > 0, then ν′ > 0.
Thus, since ν(x′′) > 0, ν is strictly increasing after x′′ and so ν(x̄) > ν(x′′) > 0. But ν(x̄)=
Faa(x̄)− τFa(x̄)= 0, contradicting that F fails NUC.
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A.3 Proof of Lemma 1

Let

d =

∣∣∣∣∣∣∣
f fa fa2

fx fax fa2x

fx2 fax2 fa2x2

∣∣∣∣∣∣∣
�

Given MLRP, Karlin (1957, Theorem 2) shows that necessary for TP3 is that d ≥ 0 for each
x and a, and sufficient is that d > 0 for each x and a (see Karlin 1957, pp. 289–290 for a
discussion of the case d = 0). Lemma 1 then follows from the observation that

(
log

(
f 2(log f )ax

))
ax

= (
log(faxf − fafx)

)
ax

=
(
(faxf − fafx)a
faxf − fafx

)
x

=
(
fa2xf − fa2fx

faxf − fafx
)
x

=s (fa2x2f − fa2fx2)(faxf − fafx)− (fa2xf − fa2fx)(fax2f − fafx2)

= f (−fafxfa2x2 + fxfa2fax2 + fafx2fa2x − faxfa2fx2 + ffa2x2fax − ffax2fa2x)

=s f (faxfa2x2 − fa2xfax2)− fa(fxfa2x2 − fx2fa2x)+ fa2(fxfax2 − fx2fax)

= d�

A.4 Proof of Remark 2

Let us now formalize and prove Remark 2.

Proposition 9. Assume thatA is an interval, that F is C2, and that F(t|·) and 1 −F(t|·)
are strictly log-concave for all t interior. Then if F fails NUC, then there exists α, p, and t̂
such that π(·�1)− π(·�0) crosses 0 from above at t̂ and such that on a neighborhood of t̂,
max{π(·�1)�π(·�0)}>max{0�1 − 2p}.

Noting that max{0�1 − 2p} is the observer’s payoff from guessing using her prior, this
means that near t̂, the observer is strictly better off to use the results of the test rather
than act according to the prior, where just to the left of t̂, the observer strictly prefers
δ= 1, while just to the right of t̂, the observer strictly prefers δ= 0.

Proof. If NUC fails, then by Proposition 1(ii), there exist t̂, al, and ah > al such that

fa

Fa
(t̂|al) > fa

Fa
(t̂|ah)

and so there is δ > 0 such that

Eξ

(
fa(t̂|a)
Fa(t̂|a)

∣∣∣a ∈ [al�al + δ]
)

−Eξ

(
fa(t̂|a)
Fa(t̂|a)

∣∣∣a ∈ [ah�ah + δ]
)
> 0�

Take α(l�0) = al, α(l�1) = al + δ, α(h�0) = ah, and α(h�1) = ah + δ, and choose p such
that

p

1 −p = F(t̂|ah + δ)− F(t̂|ah)
F(t̂|al + δ)− F(t̂|al)

�
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Then, by (3) and (16), π(t�1) − π(t�0) strictly crosses 0 from above at t̂. It remains to
show that π(t̂�1)= π(t̂�0) >max{0�1 − 2p}.

Let us show first that π(t̂�0) > 1 − 2p or, equivalently, that

−p(
1 − F(t̂|al)

) + (1 −p)(1 − F(t̂|ah)
)
> 1 − 2p�

This is equivalent to

F(t̂|ah)
F(t̂|al)

<
p

1 −p = F(t̂|ah + δ)− F(t̂|ah)
F(t̂|al + δ)− F(t̂|al)

�

where the equality uses our choice of p. Rearranging the end expressions (recalling that
the denominator on the right-hand side is negative), we arrive at

F(t̂|ah)
F(t̂|al)

>
F(t̂|ah + δ)
F(t̂|al + δ)

�

which holds for all ah > al and δ > 0 since

F(t̂|ah + τ)
F(t̂|al + τ)

= exp
∫ ah

al

(
∂

∂a
logF(t̂|a+ τ)

)
da�

which is strictly decreasing in τ since F(t̂|·) is strictly log-concave. The proof that
π(t̂�1) > 0 is analogous, using that 1 − F(t̂|·) is strictly log-concave.

A.5 Proof that yt(·� t)/y(·� t) is increasing

Since y(θ� t)= v(θ)(F(t|α(θ�δ�))− F(t|α(θ�δh))), we have that

yt(θ� t)

y(θ� t)
= f

(
t|α(θ�δ�)

) − f (t|α(θ�δh)
F

(
t|α(θ�δl)

) − F(
t|α(θ�δh)

)

= 1
F

(
t|α(θ�δl)

) − F(
t|α(θ�δh)

)
∫ α(θ�δh)

α(θ�δl)

(−fa(t|a))da

= 1
F

(
t|α(θ�δl)

) − F(
t|α(θ�δh)

)
∫ α(θ�δh)

α(θ�δl)

fa(t|a)
Fa(t|a)

(−Fa(t|a))da

=

∫
−Fa(t|s)ds

F
(
t|α(θ�δl)

) − F(
t|α(θ�δh)

)
∫ α(θ�δh)

α(θ�δl)

fa(t|a)
Fa(t|a)

−Fa(t|a)∫
−Fa(t|s)ds

da

= Eξ

(
fa(t|a)
Fa(t|a)

∣∣∣a ∈ [
α(θ�δl)�α(θ�δh)

])
�

Since fa(t|·)/Fa(t|·) is increasing and since α is increasing in θ, the result follows.
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A.6 Proof of Remark 4

It is enough to show that when l(·|a) is concave, then (E[l̂|a])aa/(E[l̂|a])a ≤ (E[x|a])aa/
(E[x|a])a for all a. Consider the densities Fal̂x/

∫
Fal̂x dx and Fa/

∫
Fa dx, and note that

since l̂(·|a) is concave, the first density is likelihood ratio dominated by the second (i.e.,
the ratio of the first density to the second is decreasing in x). Thus,

(
E[l̂|a])

aa(
E[l̂|a])

a

=
−

∫
l̂xFaa dx

−
∫
l̂xFa dx

=
∫
Faa

Fa

−Fal̂x∫
−Fal̂x dx

dx≤
∫
Faa

Fa

−Fa∫
−Fa dx

dx=
(
E[x|a])

aa(
E[x|a])

a

�

where the first and last equalities follow by integration by parts, and the inequality fol-
lows because Faa/Fa is increasing in x by NUC (see Proposition 1(ii)) and by likelihood
ratio dominance.31

A.7 Proof of Proposition 7

Let v(x� y)≡ u(w(x� y)) for all (x� y), where w is the contract conditioned on the realiza-
tion of the two signals. The agent’s problem is

max
a

∫ ∫
v(x� y)f (x|a)p(y|a)dxdy − c(a)�

The first-order condition is∫ (∫
v(x� y)fa(x|a)dx

)
p(y|a)dy +

∫ (∫
v(x� y)pa(y|a)dy

)
f (x|a)dx− ca(a)= 0�

which is equal to (by integration by parts)
∫ (∫

vx(x� y)
(−Fa(x|a))dx

)
p(y|a)dy

+
∫ (∫

vy(x� y)
(−Pa(y|a))dy

)
f (x|a)dx− ca(a)= 0�

The second derivative can be written as∫ (∫
vx(x� y)

(−Faa(x|a))dx
)
p(y|a)dy +

∫ (∫
vy(x� y)

(−Paa(y|a))dy
)
f (x|a)dx

+ 2
∫ ∫

vxy(x� y)Fa(x|a)Pa(y|a)dxdy − caa(a)�

where the last integral follows by integrating two terms by parts.
Using the first-order condition, we obtain

−
∫ (∫

vx(x� y)

(
Faa − caa(a)

ca(a)
Fa(x|a)

)
dx

)
p(y|a)dy

31Note that if Faa/Fa is not a constant (which can only happen in the trivial case Faa ≡ 0) and if l̂ is strictly
concave, then this inequality is strict.
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−
∫ (∫

vy(x� y)

(
Paa(y|a)− caa(a)

ca(a)
Pa(y|a)

)
dy

)
f (x|a)dx

+ 2
∫ ∫

vxy(x� y)Fa(x|a)Pa(y|a)dxdy�

We show that this expression is strictly negative under the premises. In particular, note
that by Hölmstrom (1979), v(x� y) = ρ(λ + μl̂ + μ�̂). Thus, vx = ρ′μl̂x and vy = ρ′μ�̂y ,

which are both strictly positive under strict MLRP. Also, vxy = ρ′′μ2 l̂x�̂y , which is negative
if ρ is concave. It follows that the last term is negative by FOSD. Regarding the first term,
it is strictly negative since ρ′ > 0, μ> 0, and

(
E[l̂|a])

aa(
E[l̂|a])

a

<
caa(a)

ca(a)
�

and similarly for the second term. Hence, the FOA is valid and we are done.

A.8 Proof of Proposition 8

We begin with two lemmas. To simplify notation, we set k≡ n(x)ej(x)H(a).

Lemma 3. If F is an exponential family, then

lim
x→x̄

Fa(x|a)j(x)= lim
x→x

Fa(x|a)j(x)= 0�

Proof. Consider first the case x→ x̄. Note that

F = 1 −m(a)
∫ x̄

x
kds

and so

Fa = −m(a)
(
h(a)

∫ x̄

x
j(s)kds+ m′(a)

m(a)

∫ x̄

x
kds

)
�

But sincem(a)= 1/
∫
kdx,

m′(a)
m(a)

= −
h(a)

∫
jkds∫

kds

= −h(a)j̄� (19)

where j̄ = E[j(x)|a] and, hence,

Fa = −h(a)m(a)
∫ x̄

x

(
j(s)− j̄)kds

and

j(x)Fa = −h(a)m(a)
∫ x̄

x
j(x)

(
j(s)− j̄)kds�
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But by MLRP, for x sufficiently large, j(s) − j̄ > 0 for all s > x, and so for x sufficiently
large,

∣∣j(x)Fa(x|a)∣∣ ≤ ∣∣h(a)m(a)∣∣
∣∣∣∣
∫ x̄

x
j(s)

(
j(s)− j̄)kds

∣∣∣∣�
But since σ2 =m(a)∫ j(s)(j(s)− j̄)kds is finite (see footnote 28), it must be that

lim
x→x̄

∫ x̄

x
j(s)

(
j(s)− j̄)kds = 0

and so, since |h(a)m(a)| is a constant independent of x, we have limx→x̄ j(x)Fa(x|a)= 0.
The case x→ x is similar.

Lemma 4. Let F be an exponential family. Then (σ2)a = h(a)σ3γ.

Proof. We have

σ2 =

∫
j2kdx∫
kdx

−

(∫
jkdx

)2

(∫
kdx

)2

and, hence,

(
σ2)

a
=

⎛
⎜⎜⎜⎝

∫
j2kdx∫
kdx

−

(∫
jkdx

)2

(∫
kdx

)2

⎞
⎟⎟⎟⎠
a

= h(a)

⎛
⎜⎜⎜⎝

∫
j3kdx∫
kdx

−

∫
j2kdx

∫
jkdx

(∫
kdx

)2 − 2

∫
jkdx∫
kdx

⎛
⎜⎜⎜⎝

∫
j2kdx∫
kdx

−

(∫
jkdx

)2

(∫
kdx

)2

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

= h(a)(E[
j3|a] − 3jE

[
j2|a] + 2j

3)
= h(a)E[

(j − j)3|a]
= h(a)σ3γ�

where the fourth equality is standard from the third central moment of a distribution.

This in hand, note that

(
E[j])

a
=

∫
jfa dx=

∫
j
fa

f
f dx=

∫
j

(
hj + m′

m

)
f dx= h(a)

∫
j(j − j̄)f dx= h(a)σ2�

where the third equality uses (13) and the fourth equality uses (19).
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Differentiating again and using Lemma 4, we obtain

(
E[j])

aa
= h′(a)σ2 + h(a)(σ2)

a
= h′(a)σ2 + h2(a)σ3γ�

Hence, (E[j])aa/(E[j])a = (h′(a)/h(a))+ h(a)σγ and, thus, (14) holds if and only if (15)
holds.

To prove the final assertion, note that we desire that

−γ =s −E
[
(j − j)3|a] = −

∫ (
j2 − 2j̄j

)
(j − j̄)f dx≥ 0�

Integrating by parts yields

−γ =s −(
j2 − 2j̄j

) ∫ x

x

(
j(s)− j̄)f (s)ds

∣∣∣∣
x̄

x

+ 2
∫
(j − j̄)j′

∫ x

x

(
j(s)− j̄)f (s)ds dx

= 2
∫
(j − j̄)j′

∫ x

x

(
j(s)− j̄)f (s)ds dx�

where the integrand in the last expression has sign pattern +/− since
∫ x
x (j(s) −

j̄)f (s)ds ≤ 0 and since j′ > 0. By a standard integral inequality (see Beesack 1957), it
would thus be enough that j′/f is decreasing and

∫
(j − j̄)f

∫ x

x

(
j(s)− j̄)f (s)ds dx≥ 0� (20)

To see that (20) holds, note that since

(
j(x)− j̄)f (x)= ∂

∂x

∫ x

x

(
j(s)− j̄)f (s)ds�

the left-hand side of (20) is equal to

1
2

(∫ x

x

(
j(s)− j̄)f (s)ds

)2∣∣∣∣
x̄

x

= 0�

To see that j′/f is decreasing, note that

(
j′

f

)
x

=s
j′′

j′
− fx

f
= j′′

j′
− n′

n
− j′(x)H(a)≤

(
log

j′

n

)
x

=s

(
j′

n

)
x

≤ 0�

where the two sign equalities use j′ > 0, the second equality uses (12), the first inequality
follows sinceH(a)≥ 0, and the second inequality follows by assumption.
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