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This paper studies a model of mechanism design with transfers where agents’
preferences need not be quasilinear. In such a model, (i) we characterize domi-
nant strategy incentive compatible mechanisms using a monotonicity property,
(ii) we establish a revenue uniqueness result (for every dominant strategy imple-
mentable allocation rule, there is a unique payment rule that can implement it),
and (iii) we show that every dominant strategy incentive compatible, individually
rational, and revenue-maximizing mechanism must charge zero payment for the
worst alternative (outside option). These results are applicable in a wide variety of
problems (single object auction, multiple object auction, public good provision,
etc.) under suitable richness of type space. In particular, our results are applica-
ble to two important type spaces: (a) type space containing an arbitrarily small
perturbation of quasilinear type space and (b) type space containing all positive
income effect preferences.
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1. Introduction

We analyze a model of mechanism design with transfers where preferences of agents
over transfers are not necessarily quasilinear. We assume agents have classical prefer-
ences over the set of consumption bundles, where a consumption bundle consists of an
alternative and a transfer amount. A preference (type) is classical if it is monotone and
continuous in transfers.
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We provide results that cover a variety of important problems: the single object auc-
tion problem, the multi-object auction problem, the public good provision problem,
and so on. If the type space satisfies a richness property, we provide a simple mono-
tonicity condition that along with a posted-price property, is necessary and sufficient for
a mechanism to be (dominant strategy) incentive compatible. The posted-price prop-
erty requires the payment decisions at various types to agree whenever the allocation
decisions at these types agree. Further, we establish a revenue uniqueness result: for
every implementable allocation rule, there is a unique payment rule such that the cor-
responding mechanism is incentive compatible. Though we do not have revenue equiv-
alence in our model, our results can be interpreted as a counterpart of the monotonicity
and revenue equivalence results with quasilinearity.

There are at least two important type spaces where our results apply. Let Q be the
set of all quasilinear preferences in some standard problem. The first example of a type
space where our results apply is any superset of Q containing “small perturbations” of
types in Q. Our second example is a type space containing all positive income effect
preferences.

We study the implications of individual rationality without quasilinearity. Recall that
a straightforward consequence of revenue equivalence in a quasilinear environment is
that a revenue-maximizing, incentive compatible, and individually rational mechanism
charges zero payment for allocating the worst alternative. In other words, individual
rationality “binds” for the worst alternative. We show that this result continues to remain
valid in arbitrary non-quasilinear type spaces.

We apply our results to provide a template for identifying an optimal contract in
a principal–agent model. An important insight from the mechanism design literature
with quasilinearity is that the optimization problem for finding an optimal contract can
be reduced to an optimization problem over the set of monotone allocation rules. The
objective function can be rewritten in terms of the allocation rule using the revenue
equivalence formula. Furthermore, the incentive and individual rationality constraints
can be replaced by a monotonicity constraint on the allocation rule. This approach is
key to solving tractable optimal contract problems (Mussa and Rosen 1978, Myerson
1981). We show that this approach can be extended to our model with non-quasilinear
preferences. We now proceed to the details.

2. The model

Let A be a finite set of alternatives with |A| ≥ 2. We endow A with a strict partial or-
der �. This partial order reflects a possible ex ante ordering of alternatives if there is
no monetary compensation. The partial order � may be empty; for instance, if A is the
set of public goods and there is no ex ante distinction among the public goods. In the
problem of selling multiple units of a homogeneous good, a standard assumption is that
more units are preferred to less. If there are two alternatives a and bwith a being k units
of the good and b being � units of the good, we may impose a� b if and only if k > �. In
combinatorial auctions for selling multiple objects, � may be the partial order induced
by the set inclusion relation over subsets of objects.
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There is a single agent in our model. Our main results extend to a model with mul-
tiple agents in a straightforward manner as our solution concept is dominant strat-
egy equilibrium. We allow for monetary transfers or payments. Hence, a consump-
tion bundle for the agent is a pair (a�p), where a ∈ A is an alternative and p ∈ R is
the payment of the agent. The set of all such consumption bundles is denoted by
Z := {(a�p) : a ∈A�p ∈R}.

The agent has a complete and transitive preference over Z . A typical preference is
denoted byRwith its strict and indifferent components denoted byP and I, respectively.
We call a preference R over Z classical if it satisfies the following conditions.

• Money monotonicity. For all p�p′ ∈R with p>p′ and for all a ∈A, (a�p′)P(a�p).

• Respect for �. For all p ∈R and for all a�b ∈A with a� b, (a�p)P(b�p).

• Continuity. For all z ∈ Z , the sets {z′ ∈ Z : zRz′} and {z′ ∈ Z : z′Rz} are closed.

• Possibility of compensation. For every z ∈ Z and for every a ∈A, there exists p and
p′ such that (a�p)Rz and zR(a�p′).

While monotonicity and continuity are natural restrictions, we impose the possibil-
ity of a compensation condition for technical reasons. We are only concerned with clas-
sical preferences in this paper, so whenever we write “preference,” we mean a classical
preference.

2.1 Indifference vectors

It is convenient to think of a preference in terms of its indifference vectors. A vector
v ∈R|A| is an indifference vector of preferenceR if for all a�b ∈A, we have (a� va)I(b� vb).
Denote the set of all indifference vectors of R by I(R). For every preference, its indif-
ference vectors satisfy many natural properties. So as to discuss them, we introduce the
notion of a valuation.

The valuation of the agent with preference R for alternative a at consumption bun-
dle z is denoted by V R(a� z), where (a�V R(a� z))Iz. In other words, V R(a� z) is the
unique payment that makes the agent indifferent between consumption bundle z and
(a�V R(a� z)). The existence of V R(a� z) and its uniqueness is guaranteed by the assump-
tions on preferences. As a result, for every preference R and for every pair of distinct
indifference vectors v� v′ ∈ I(R), we have either v > v′ or v′ > v, i.e., v and v′ do not in-
tersect.1 Further, every indifference vector of R respects �: for every v ∈ I(R), we have
va > vb if a� b.

A typical indifference vector v of a preference R can be represented by the diagram
shown in Figure 1. We use such figures throughout our paper and we refer to them as
indifference diagrams.2  Figure 1 shows how a indifference diagram can be constructed
for four alternatives. Each horizontal line in the indifference diagram corresponds to a

1Whenever, we write v > v′, we mean vx > v′
x for all x ∈A.

2William Thomson popularized such diagrams to represent preferences in private goods models with
indivisible goods and money.
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Figure 1. An indifference vector for the case a� b� c � d.

Figure 2. A preference and its indifference diagram for the case a� b� c � d.

unique alternative. Every point on a horizontal line corresponds to a payment level. So
the four horizontal lines in this indifference diagram comprise the set of all consump-
tion bundles Z . As we move rightward along a horizontal line, the payment of the agent
increases. Hence, consumption bundles to the right (left) of the indifference vector v in
Figure 1 are worse (respectively, better) than the four consumption bundles correspond-
ing to v.

An equivalent way to think of a preferenceR is through its infinite set of indifference
vectors I(R). Hence, the indifference diagram of a preference consists of an infinite
collection of such vectors; a representative indifference diagram is shown in Figure 2.

2.2 Positive income effect

Two special kinds of preferences are worth highlighting. Vectors v� v′ ∈R|A| are parallel if
for all a�b ∈A, we have va−vb = v′

a−v′
b. Vectors v� v′ ∈R|A| with v > v′ satisfy decreasing

differences (DD) if for all a�b ∈A, we have

[va > vb] ⇒ [
v′
a − v′

b > va − vb
]
�
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Figure 3. Indifference diagram of a preference satisfying PIE.

Figure 4. Indifference diagram of a preference that does not satisfy PIE.

Definition 1. A preference R is quasilinear if every pair of indifference vectors v� v′ ∈
I(R) is parallel. A preference R satisfies positive income effect (PIE) if every pair of indif-
ference vectors v� v′ ∈ I(R) satisfies DD.

We denote the set of all quasilinear preferences and the set of all preferences sat-
isfying PIE by Q and R+, respectively.3 Note that Q ∩ R+ = ∅. For any R ∈ R+, the
indifference diagram corresponding to R is shown in Figure 3.

To understand PIE, take anyR ∈ R+ and v ∈ I(R). Consider another vector v̂ defined
by v̂x = vx − δ ∀x ∈A, where δ > 0. Suppose that for some a ∈A, we have va > vx for all
x 	= a (as in Figure 3). Then we see that for any x 	= a, the consumption bundle (a� v̂a)
is strictly preferred to (x� v̂x) according to R. As we decrease the payment by a constant
amount δ from v to v̂ (i.e., increase the wealth level by δ), the highest payment consump-
tion bundle at v is now the most preferred. This is the idea of a positive income effect,
which is usually observed in normal goods. Contrast this with a quasilinear preference,
where the agent will be indifferent between all the bundles on v̂.

The decreasing differences property imposes restrictions on admissible indifference
vectors. To further highlight these restrictions, consider A= {a�b} and that � is empty.
The indifference diagram for a preference R for this example is shown in Figure 4. We

3To be precise, Q is the set of all preferences that respect � and are quasilinear. For notational simplicity,
we suppress the dependence of Q on �. Further, we refer to Q as the quasilinear domain, meaning the
quasilinear domain corresponding to a given �. A similar comment applies to R+ and other domains
discussed henceforth.
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argue that R does not satisfy PIE. This is because the indifference vectors v� v′ ∈ I(R)
satisfy v > v′ but fail DD: vb > va but v′

b − v′
a < 0< vb − va. This is the intuition for Fact 1

below.4

Fact 1 (Remark 2 in Zhou and Serizawa (2018)). Suppose R is a preference that satisfies
PIE. Then there exists a weak ordering � on the set of alternatives such that for every a�b ∈
A and every v ∈ I(R),

[a� b] ⇒ [va ≥ vb]�

Fact 1 implies that even if � is empty, there is an underlying weak order for every
positive income effect preference. Notice that, potentially, such a weak order may be
different for different positive income effect preferences. To understand the interaction
between � and �, fix anR that satisfies PIE. Then (a) � is weak but complete (but � may
be empty); (b) � must match � whenever the latter is nonempty, i.e., for any a�b ∈A,
a� b implies a� b holds but b� a does not hold. Hence, if � is a complete order, � =�.

We are also concerned with the following weaker notion of decreasing differences.
A pair of vectors v� v′ ∈ R|A| with v > v′ satisfies � decreasing differences (�DD) if for all
a�b ∈A, we have

[a� b] ⇒ [
v′
a − v′

b > va − vb
]
�

If v, v′ respect � and satisfy DD, they satisfy �DD. Based on this, we can define a weaker
notion of PIE. A preference R satisfies � positive income effect (�PIE) if every pair of
indifference vectors v� v′ ∈ I(R) satisfies �DD. Let R+� denote the set of all preferences
satisfying �PIE. Obviously, R+ ⊆ R+� for each �. If � is complete and v respects �, then
a � b if and only if va > vb. Hence, R+� = R+ if � is complete. This equivalence is not
necessarily true if � is not complete. For instance, the preference shown in Figure 4
satisfies �PIE vacuously since � is empty (though it does not satisfy PIE).

2.3 Domains, mechanisms and questions

Let R be the set of all (classical) preferences. A type space or domain D is any subset of
R. A mechanism on a domain D is a pair of maps (f�p), where f :D →A is an allocation
rule andp : D → R is a payment rule. Throughout the paper, we consider only allocation
rules that are onto: for every a ∈A, there exists some preference R ∈ D such that f (R)=
a.5 We investigate the implications of two desiderata for our mechanisms.

Definition 2. A mechanism (f�p) on D is dominant strategy incentive compatible
(DSIC) if for every R�R′ ∈ D, we have (f (R)�p(R))R(f (R′)�p(R′)).

In addition to incentive compatibility, we consider individual rationality. Whenever
we talk about individual rationality, we assume the existence of an alternative a0 ∈ A

4Its proof is available in Appendix A of Zhou and Serizawa (2018).
5In some sense, “ontoness” is without loss of generality. If we have an allocation rule f whose range is

A′ �A, then we can consider the entire model whereA is replaced byA′.
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such that a � a0 for all a 	= a0. Alternative a0 can be interpreted as the outside option,
for instance, not getting any object in a multiple object auction model or not providing
any public good in a public good model. We do not require the existence of such an
alternative for our results involving only DSIC.

Definition 3. A mechanism (f�p) on D satisfies individual rationality (IR) if for every
R ∈ D, we have (f (R)�p(R))R(a0�0).

We answer three questions in our model of preferences.

• In the quasilinear domain, a monotonicity condition of allocation rule and a rev-
enue equivalence formula characterize a DSIC mechanism. What is the analogue
of such a characterization without quasilinearity?

• What happens to revenue equivalence without quasilinearity?

• Does the IR constraint bind for the worst alternative without quasilinearity?

3. Richness

Our results require our domains to be suitably rich. The weakest richness condition that
we require is the following.

Definition 4. A domain of preferences D satisfies one-point (OP) richness if for every
v ∈R|A| that respects �, there exists R ∈ D such that v ∈ I(R).

OP richness is satisfied by Q, the set of all quasilinear preferences. It is therefore sat-
isfied by any domain D ⊇ Q. It is also satisfied by R+, the set of all positive income effect
preferences (and supersets of that). OP richness allows us to construct a preference that
has one specific indifference vector. It is silent on the other indifference vectors in the
preference.

The quasilinear domain Q satisfies OP richness. By definition, Q contains all quasi-
linear preferences respecting �. OP richness is violated if we take a strict subset of Q.
For example, suppose A= {a0� a1� a2} with a2 � a1 � a0. A quasilinear preference is rep-
resented by a valuation vector v ∈ R3+ with va2 > va1 > va0 = 0. The quasilinear domain
Q contains preferences corresponding to all such vectors in R3+. Now consider a spe-
cific kind of quasilinear preference whose valuation vector is va2 = 2θ, va1 = θ, va0 = 0
for some θ ∈R++. The set of all such preferences is

Q1 := {
R ∈ Q : ∃ θ ∈R++ such that V R

(
a1� (a0�0)

) = θ�V R(
a2� (a0�0)

) = 2θ
}
�

It is clear that Q1 is a strict subset of Q and it contains very specific “one-dimensional”
quasilinear preferences. The domain Q1 fails OP richness. Though our richness condi-
tions exclude domains like Q1, they still admit interesting domains where a large class
of DSIC mechanisms exist. For instance, the family of Groves mechanisms are DSIC in
Q.

Our next notion of richness requires the existence of a preference for some specific
pair of indifference vectors.
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Figure 5. Indifference diagram of a candidate preference for satisfying TP�+ richness.

Definition 5. Let �> 0. Vectors v, v̂ with v̂ > v are �+ parallel if (i) they satisfy DD and
(ii) |(v̂a − v̂b)− (va − vb)|<� for all a�b ∈A.

Our next richness condition gives us the flexibility to construct some preference us-
ing every pair of �+ parallel vectors.

Definition 6. Let � > 0. A domain D satisfies �+ two-point richness (TP�+ richness) if
for every v, v̂with v̂ > v such that v, v̂ are�+ parallel and v, v̂ respect �, there existsR ∈ D
such that v� v̂ ∈ I(R).

Notice that TP�+ richness is for a fixed �. Obviously, if we choose �′ > � and D sat-
isfies TP�

′
+ richness, it also satisfies TP�+ richness. Next, TP�+ richness is about existence

of some R ∈ D for every pair v, v̂ satisfying the two conditions in the definition above.
This preference may be different for a different pair of vectors. Further, the richness
condition is silent about the properties of other indifference vectors in this preference.
For illustration, consider the indifference diagram in Figure 5. The indifference diagram
shows two indifference vectors v and v̂ that are �+ parallel and respect �. The vectors v
and the one represented by dashed lines are parallel. It also shows a preferenceR (show-
ing a subset of indifference vectors ofR) such that v� v̂ ∈ I(R). Notice that there are other
indifference vectors of R that are not necessarily �+ parallel. For this reason, a domain
satisfying TP�+ richness need not contain the quasilinear domain. Example 1, which is
given later in this section, highlights this point.

We now introduce our final notion of richness.

Definition 7. Let � > 0. Vectors v, v̂ with v̂ > v are �� parallel if (i) they satisfy �DD
and (ii) |(v̂a − v̂b)− (va − vb)|<� for all a�b ∈A.

Notice that �� parallel requires a pair of vectors to satisfy �DD but �+ parallel re-
quires them to satisfy DD. If v, v̂ satisfy decreasing differences, the first condition in
Definition 7 is automatically satisfied. Hence, any pair of vectors v, v̂ that are �+ parallel
are also �� parallel. Further, if � is a complete order, for every vector v that respects �,
we have a � b if and only if va > vb. Hence, if � is complete, a pair of vectors v, v̂ that
respect � are �+ parallel if and only if they are �� parallel. Our final richness requires
that for every pair of vectors that are �� parallel, there is a preference that contains them
as indifference vectors.
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Definition 8. Let � > 0. A domain D satisfies �� two-point richness (TP�� richness) if
for every v, v̂with v̂ > v such that v, v̂ are�� parallel and v, v̂ respect �, there existsR ∈ D
such that v� v̂ ∈ I(R).

We have argued earlier that if v, v̂ are �+ parallel, they are also �� parallel. Hence,
TP�� richness implies TP�+ richness. Further, these two notions of richness coincide if �
is complete.

Examples of domains

Though Q satisfies OP richness, it fails both the notions of TP richness. Obviously, the set
of all (classical) preferences satisfy all the notions of richness that we have introduced.
The set of all positive income effect preferences R+ satisfies TP�+ richness for every �>
0. However, R+ may fail TP�� richness for all �> 0 and for some �. When � is complete,
TP�+ richness and TP�� richness coincide for all �> 0. Hence, R+ satisfies TP��.

We now give more examples of domains that satisfy our richness. Pick any a∗ ∈A.
For every pair of preferences R, R′, define the distance between R and R′ as

d
(
R�R′) := sup

t
max
a	=a∗

∣∣V R(
a�

(
a∗� t

)) − V R′(
a�

(
a∗� t

))∣∣�
Note that d(R�R′) ∈ R+ ∪ {+∞}. Further, (i) d(R�R′) = d(R′�R), (ii) d(R�R′) = 0 if and
only if R=R′, and (iii) d(R�R′)+ d(R′�R′′)≥ d(R�R′′) for all R, R′, R′′.

Pick any �> 0. Define Q�� and Q�+ as

Q�� := {
R ∈ R+� : ∃R′ ∈ Q such that d

(
R�R′)<�}

Q�+ := {
R ∈ R+ : ∃R′ ∈ Q such that d

(
R�R′)<�}

�

Since R+ ⊆ R+�, we have Q�+ ⊆ Q��. Intuitively, Q�� and Q�+ are domains of preferences
that are “�-close” to the domain of quasilinear preferences (and satisfy �PIE and PIE,
respectively). Since Q�� � R+� and Q ∩ R+� = ∅, we see that Q�� ∩ Q = ∅. Also, Q�+ �

Q�� and, hence, Q�+ ∩ Q = ∅. Further, Q�+ �R+. We show below that any domain that
contains Q�� satisfies TP�� richness.

Lemma 1. Let � > 0. Suppose domain D ⊇ Q��. Then D satisfies TP�� richness. Similarly,
suppose domain D ⊇ Q�+. Then D satisfies TP�+ richness.

The proof of Lemma 1 is given in Appendix B. An important consequence of this
lemma is that even though Q fails our richness requirements, there are domains arbi-
trarily close to Q that satisfy our richness. Further, such domains need not contain Q.
The following corollary provides a statement of domains that satisfy various notions of
richness.

Corollary 1. Suppose �> 0. Then the following statements are true:

(i) Q, Q�+, Q��, R+, R+�, R satisfy OP richness
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(ii) Q�+, R+, R+�, R satisfy TP�+ richness

(iii) Q��, R+�, R satisfy TP�� richness; R+ and Q�+ satisfy TP�� richness if � is complete.

Our results require one of the three notions of richness. Corollary 1 shows the appli-
cability of our results to specific economic domains of interest.

We emphasize here that TP�+ richness (or TP�� richness) is weaker than the require-
ment that a domain D includes Q�+ (or Q��). Indeed, a domain satisfying TP�+ richness (or
TP�� richness) can be very different from a small perturbation of the quasilinear domain.
This is illustrated by the following example.

Example 1. Suppose A = {0�1} and 1 � 0. Consider the preference represented by the
utility function

u(a�p;w�θ)=w · a · e−θp −p ∀a ∈A�
where w ∈ R++ and θ ∈ R++. The domain D contains all such preferences. It is easy to
see that D satisfies TP�+ richness and TP�� richness, but it does not include Q�+ or Q�� or
Q.6 Note that preferences in D are parameterized by only two parameters: w�θ ∈ R++.
On the other hand, Q�+ (or Q��) contains a greater variety of preferences. To highlight this
point further, we provide another example, which shows that Q�+ contains far greater
variety of preferences than the domain in Example 1. ♦

Example 2. We fix some �> 0 and explicitly construct a subset of preferences in Q�+ for
A = {0�1} with 1 � 0. Let H denote the set of all decreasing and continuous functions
from R to (−1�1). For every θ ∈ R++ and for every h ∈H, define a preference R(θ�h) by
defining V R(θ�h)(1� (0�p)) as

V R(θ�h)
(
1� (0�p)

) := θ+p+ min(θ��) · h(p) ∀p ∈R�

Readers can verify that for every θ ∈R++ and every h ∈H, we haveR(θ�h) ∈ Q�+.7 So
Q�+ contains preferences that cannot be parameterized by a finite number of parame-
ters. Thus, it contains a greater variety of preferences than the domain in Example 1. ♦

4. Monotonicity and incentive compatibility

Incentive compatibility is usually equivalent to some form of monotonicity in various
models of mechanism design. Though the precise nature of monotonicity may differ

6In fact, this domain satisfies a stronger notion of two-point richness. Take any two vectors v and v′ that
respect � and satisfy DD. In particular, let v= (v0� v1 = v0 +δ), where δ > 0 and v′ = (v′

0� v
′
1 = v′

0 +δ′), where

δ′ > 0. Let v′
0 > v0 and δ′ < δ to ensure that v′ > v and (v� v′) satisfy DD. Then we can choose θ := log δ

δ′
v′0+δ′−v0−δ

and w := δ
e−(v0+δ)θ to have a utility function in this domain that has indifference vectors v and v′. Hence, for

any �> 0, this domain satisfies TP�+ richness.
7Fix θ ∈ R++ and h ∈ H. For every p, since h(p) ∈ (−1�1), we have V R(θ�h)(1� (0�p)) > p. Since h is

decreasing, the indifference vectors in R(θ�h) satisfy DD. So R(θ�h) respects � and satisfies PIE. Finally,
for every R(θ�h), if we consider the quasilinear preference R0 defined by V R

0
(1� (0�p))= θ+p, where θ is

interpreted as the valuation of the agent, we note that d(R(θ�h)�R0) < �.
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Figure 6. Illustration of necessity of monotonicity for DSIC.

from model to model, its usefulness is beyond doubt. For instance, in optimal single
object auction design, Myerson (1981) uses it to simplify the optimization problem of
revenue maximization; we elaborate further on such an application in Section 7.

We begin with an informal description of the notion of monotonicity relevant for
our model. Let (f�p) be a DSIC mechanism on a domain D. Consider two preferences
R� R̂ ∈ D. Let f (R)= a and f (R̂)= b. Consider the two indifference vectors correspond-
ing to R and R̂, and passing through z ≡ (b�p(R̂)), i.e., the consumption bundle as-
signed to the agent with preference R̂. Figure 6 shows the indifference diagram for this

situation. DSIC implies that zR̂(a�p(R)). Hence, p(R)≥ V R̂(a� z) as shown in Figure 6.
Similarly, DSIC implies that (a�p(R))Rz. Hence, p(R) ≤ V R(a� z) as shown in Figure 6.

This implies that V R(a� z)≥ V R̂(a� z). We chose the consumption bundle z at preference
R̂ and alternative a atR. Monotonicity requires that the valuation for a at z must weakly
increase from R̂ to R. This is a necessary condition for DSIC.

Definition 9. A mechanism (f�p) on D is monotone if for every R, R̂ with f (R) = a

and z ≡ (f (R̂)�p(R̂)), we have V R(a� z)≥ V R̂(a� z).

We discuss the precise connections between our notion of monotonicity and the
monotonicity condition used in the quasilinear domain in the literature in Section 8.
Besides monotonicity, we use the following condition on payments.

Definition 10. A mechanism (f�p) on D satisfies the posted-price property if there ex-
ists a map κ :A→ R such that p(R)= κ(f (R)) for all R ∈ D.

The posted-price property is a trivial consequence of DSIC. It says that if two pref-
erences are assigned the same alternative, they cannot be assigned different payments.
It is obvious that DSIC implies the posted-price property. We are now ready to state our
first main result.

Theorem 1. Let �> 0. Suppose D satisfies TP�� richness and (f�p) is a mechanism on D.
Then the following statements are equivalent.

(i) Mechanism (f�p) is DSIC.

(ii) Mechanism (f�p) is monotone and satisfies the posted-price property.
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Figure 7. Illustration of proof of Theorem 1 for two alternatives with a� b.

The necessity of the posted-price property and monotonicity has been already ar-
gued. The proof of the other direction (ii) ⇒ (i) is rather involved and is provided in
Appendix A. We present a sketch of the proof for the case of two alternatives.

Consider the two alternatives case: A= {a�b}. Suppose a� b (if � is empty, the proof
is simpler). Fix some � > 0 and a domain D that satisfies TP�� richness. Let (f�p) be a
mechanism on this domain that satisfies monotonicity and the posted-price property.
Hence, there are two numbers κ(a) and κ(b) such that for every R ∈ D, we have p(R)=
κ(f (R)). Assume, to the contrary, that there is a preference R ∈ D such that f (R) = a

and (b�κ(b))P(a�κ(a)). Then it must be that V R(a� (b�κ(b))) < κ(a). Define

η := inf
R′:f (R′)=a

V R
′(
a�

(
b�κ(b)

))
�

By ontoness, there is some R′′ with f (R′′) = b. By monotonicity, we have V R
′
(a� (b�

κ(b))) ≥ V R
′′
(a� (b�κ(b))) for every R′ with f (R′) = a. Hence, η ≥ V R

′′
(a� (b�κ(b))) >

κ(b), where the strict inequality follows from the fact that a� b andR′′ respects �. Since
V R(a� (b�κ(b))) < κ(a), we have η < κ(a). We conclude that η is a real number that
satisfies

κ(b) < η< κ(a)� (1)

We construct two pairs of vectors (u�u′) and (v� v′) as

ub = vb = κ(b)� ua = η+ δ� va = η− δ

u′
a = v′

a = κ(a)� u′
b = ub + κ(a)− ua + 3δ� v′

b = vb + κ(a)− va + 1
2
δ�

where δ > 0 but sufficiently small. The vectors u, u′, v, and v′ are shown in Figure 7 using
an indifference diagram. Using the inequality (1), it is routine to verify that u, u′, v, and
v′ respect �, (u�u′) are �� parallel, and (v� v′) are �� parallel. This uses the fact that for
all values of �> 0, we can always find δ > 0 but sufficiently small such that these pairs of
vectors are �� parallel. Using TP�� richness, we construct two preferences R̂ and R̃ such
that u�u′ ∈ I(R̂) and v� v′ ∈ I(R̃). By definition of η, there exists a preference R∗ such
that f (R∗)= a and V R

∗
(a� (b�κ(b))) < η+δ. Since V R̂(a� (b�κ(b)))= η+δ, monotonic-

ity implies that f (R̂)= a. Similarly, by the definition of η, we see that f (R̃)= b. But by
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the definition of u′ and v′, we have V R̂(b� (a�κ(a)))= u′
b > v

′
b = V R̃(b� (a�κ(a))), which

contradicts monotonicity. A similar argument shows that no manipulation is possible
from a preference where b is chosen. The general proof uses similar ideas but it is more
involved becauseA can have more than two alternatives and � need not be a complete
order.

We make two remarks about Theorem 1 before stating our next result.

Remark 1. Theorem 1 is the analogue of monotonicity-based characterization found
in the literature on quasilinear domain. However, there are significant differences as we
explain in Section 8. Informally, such a characterization for the quasilinear domain re-
quires monotonicity of the allocation rule and a revenue equivalence formula (which is
significantly stronger than the posted-price property). Theorem 1 shows that under TP��
richness, monotonicity of the mechanism and the posted-price property are equivalent
to DSIC. Of course, monotonicity of the mechanism is different from the monotonicity
of the allocation rule alone (though they coincide in the quasilinear domain; see Sec-
tion 8 for details).

Remark 2. As discussed earlier, TP�� richness is a stronger richness requirement than
TP�+ richness. We give a simple example to show that Theorem 1 may not hold with TP�+
richness; of course, if � is a complete order, then the two richness notions are equiva-
lent.

Example 3. SupposeA= {a�b} and � is empty. Suppose D = R+, i.e., the domain is the
set of all positive income effect preferences. Fix two numbers κ(a) and κ(b) with κ(a) >
κ(b). Define a subset of PIE preferences as D∗ := {R ∈ D : V R(a� (b�κ(b))) < κ(b)}. Now
consider the following mechanism (f�p) on D: for every R ∈ D:

(
f (R)�p(R)

) =
{(
b�κ(b)

)
if R ∈ D∗(

a�κ(a)
)

otherwise.

By definition, (f�p) satisfies the posted-price property. To verify monotonicity, pick
R such that f (R) = a and R′ such that f (R′) = b. The indifference vectors of prefer-
ence R are shown in the indifference diagram in Figure 8. Since R′ ∈ D∗ but R /∈ D∗, we
get V R

′
(a� (b�κ(b))) < κ(b)≤ V R(a� (b�κ(b))). This shows that one of the monotonicity

conditions holds: V R
′
(a� (b�κ(b))) < V R(a� (b�κ(b))). For the other monotonicity con-

dition, we use the fact thatR,R′ satisfy PIE. Using Fact 1, (a) V R
′
(a� (b�κ(b))) < κ(b) im-

plies V R
′
(b� (a�κ(a))) ≥ κ(a) and (b) V R(a� (b�κ(b))) ≥ κ(b) implies V R(b� (a�κ(a))) ≤

κ(a) (since R satisfies PIE). Combining these two, we get the other monotonicity condi-
tion: V R(b� (a�κ(b)))≤ V R′

(b� (a�κ(a))).
However, this mechanism is not DSIC. Since κ(a) > κ(b), there is R /∈ D∗ such that

V R(b� (a�κ(a)))= κ(a) > κ(b). As shown in Figure 8, since (f (R)�p(R))= (a�κ(a)), we
see thatR is better off manipulating to a preference in D∗ to get the consumption bundle
(b�κ(b)).

Note that if � is empty, R+� = R (the entire set of preferences). Consider the earlier
mechanism (f�p) in Example 3 on D = R. The earlier argument again shows that f is
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Figure 8. Indifference diagram of a preference R satisfying PIE with V R(b� (a�κ(a)))= κ(a).

Figure 9. Illustration of violation of monotonicity of f when � is empty.

not DSIC. We know that Theorem 1 holds in R. Hence, f must violate monotonicity. To
see this, consider R and R′ as shown in Figure 9. Note that R′ violates PIE and f (R) =
a, f (R′) = b by definition of f . However, V R

′
(b� (a�κ(a))) < V R(b� (a�κ(a))). Hence,

monotonicity is violated. ♦

5. A revenue uniqueness theorem

One of the fundamental results in mechanism design with quasilinearity is the revenue
equivalence. It helps us to understand why seemingly different auction formats generate
the same expected revenue. From a methodological point of view, revenue equivalence
allows significant simplification of the optimization problem for maximizing revenue.

Definition 11. A domain D satisfies revenue equivalence if for every pair of DSIC
mechanisms (f�p) and (f� p̂) on D, we have

p(R)− p̂(R)= p(R̂)− p̂(R̂) ∀R� R̂ ∈ D�

In other words, if two mechanisms differ from each other only in their payment
rules, then the payment rules must be translations of each other. It is well known that Q
is a revenue equivalence domain.

What happens to revenue equivalence without quasilinearity? Consider an exam-
ple with four alternatives. Let (f�p) and (f� p̂) be two DSIC mechanisms such that p̂
is a translation of p. By the posted-price property, we have two maps κ : A → R and
κ̂ : A→ R corresponding to these two mechanisms. Assume that κ and κ̂ are transla-
tions of each other. The indifference diagram is shown in Figure 10. As shown in Fig-
ure 10, we can construct two vectors v and v̂ such that v is to the left of κ and v̂ is to
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Figure 10. Failure of revenue equivalence.

the right of κ̂. If we can ensure that there exists a preference R such that v� v̂ ∈ I(R),
then we get a contradiction from DSIC as follows: DSIC of (f�p) implies that f (R) = a

(since (a�κ(a))P(x�κ(x)) for all x 	= a) but DSIC of (f� p̂) implies that f (R) 	= a (since
(x� κ̂(x))P(a� κ̂(a)) for all x 	= a). We show that the existence of such a preference R is
guaranteed by TP�+ richness even if κ and κ̂ are not parallel. Hence, we get the following
result.

Definition 12. A domain D satisfies revenue uniqueness if for every pair of DSIC mech-
anism (f�p) and (f� p̂) on D, we have p= p̂.

Theorem 2. Let�> 0. Every domain that satisfies TP�+ richness satisfies revenue unique-
ness.

Proof. Let D be a domain that satisfies TP�+ richness for some � > 0. Assume, to
the contrary, that there exist two DSIC mechanisms (f�p) and (f�p′) such that p 	= p′.
DSIC implies that the posted-price property holds; see the discussion immediately af-
ter Definition 10. Hence, there exist maps κ and κ′ such that κ(f (R)) = p(R) and
κ′(f (R))= p′(R) for all R ∈ D. Since p 	= p′, we get κ 	= κ′. We now complete the proof
in three steps.

Step 1. In this step, we show that κ and κ′ respect �.8 Pick any a�b ∈A and suppose b�
a. Pick R such that f (R) = a (by ontoness, this is possible). By incentive compatibility,
V R(b� (a�κ(a)))≤ κ(b). SinceR respects �, we have κ(a) < V R(b� (a�κ(a))). Combining
the two inequalities, we get κ(b) > κ(a) as desired. A similar proof works for κ′.

Step 2. In this step, we show that either κ > κ′ or κ′ > κ. Without loss of generality, as-
sume that κ(a) > κ′(a) for some a ∈A. We show that κ(b) > κ′(b) for all b ∈A. Assume,
to the contrary, that κ(b)≤ κ′(b) for some b ∈A. Let δ > 0 but sufficiently close to zero.
Define v as vx := κ(x)− δ for all x 	= b and vb := κ(b). Since δ is chosen sufficiently small
and κ respects � (by Step 1), v respects �. Further, va > κ′(a). By OP richness (which is
implied by TP�+ richness), there is R ∈ D such that v ∈ I(R).

8Of course, if � is empty, then there is nothing to prove.
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For each x 	= b, we have (b�κ(b))P(x�κ(x)) by construction of v. Thus, DSIC of (f�p)
implies f (R)= b. However, since va > κ′(a) and κ(b)≤ κ′(b), we have(

a�κ′(a)
)
P

(
b�κ(b)

)
R

(
b�κ′(b)

)
�

Then DSIC of (f�p′) implies f (R) 	= b. This is a contradiction. Hence, κ(b) > κ′(b) for all
b ∈A.

Step 3. We now complete the proof. Since κ and κ′ respect � and κ > κ′, Lemma 4
(whose statement and proof are given in Appendix B) implies the existence of vectors
v� v′ ∈ R|A| that respect � and are �+ parallel. Further, by Lemma 4, there exists a∗ ∈A
such that

va∗ = κ(
a∗)� vx < κ(x) ∀x 	= a∗ and v′

a∗ = κ′(a∗)� v′
x > κ

′(x) ∀x 	= a∗�

By TP�+ richness, there exists a preference R such that v� v′ ∈ I(R). By definition of v′,
(x�κ′(x))P(a∗�κ′(a∗)) for all x 	= a∗. Since (f�p′) is DSIC, we must have f (R) 	= a∗. Alter-
natively, vx < κ(x) for all x 	= a∗. But va∗ = κ(a∗) implies that (a∗�κ(a∗))P(x�κ(x)) for all
x 	= a∗. Since (f�p) is DSIC, we must have f (R)= a∗. This is a contradiction.

Theorem 2 provides an analogue to a fundamental result in the quasilinear domain.
Once an allocation rule is fixed, in a domain satisfying TP�+ richness, DSIC leaves little
flexibility in the construction of a payment rule.

6. Does individual rationality bind?

A well known result in the screening problem with quasilinearity is that the individual ra-
tionality constraint binds for “low types” in the expected revenue-maximizing contract
for the principal (Mussa and Rosen 1978). This result leads to a major simplification on
obtaining a solution to the optimal contract. In this section, we explore the validity of
this result on non-quasilinear domains.

We assume that a0 ∈A is the worst alternative according to � and that the IR con-
straint is defined with (a0�0) being the outside consumption bundle (Definition 3). We
state a straightforward lemma on IR below.

Lemma 2. Suppose (f�p) is a DSIC mechanism. Then it is IR if and only if p(R) ≤ 0 for
all Rwith f (R)= a0.

Proof. If (f�p) is IR, then (a0�p(R))R(a0�0) for all R with f (R) = a0, and this implies
that p(R)≤ 0. For the converse, pick any Rwith f (R)= a. There exists a R′ with f (R′)=
a0. By DSIC, (a�p(R))R(a0�p(R

′))R(a0�0), where the last relation comes from the fact
that p(R′)≤ 0. Hence, (f�p) is IR.

Lemma 2 assumes that the range of f includes a0. If the range of f does not include
a0, our assumption implies the agent pays zero whenever she exercises her outside op-
tion (a0�0). The point of this section is to show that if a0 is in the range of a DSIC and
IR mechanism, we can construct another DSIC and IR mechanism such that IR binds in
the following sense.
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Definition 13. IR binds in a domain D if for every DSIC and IR mechanism (f�p) on D,
there exists a DSIC and IR mechanism (f̂ � p̂) on D such that

p̂(R)= 0 ∀R ∈ D such that f̂ (R)= a0

p̂(R)≥ p(R) ∀R ∈ D�

If IR binds, we can convert any DSIC and IR mechanism to another DSIC and IR
mechanism such that payment for a0 is zero and revenue does not fall.

The IR constraint binds in Q. This can be seen as follows. Pick (f�p) that is DSIC
and IR. By Lemma 2, we see that p(R) ≤ 0 for all R with f (R)= a0. By the posted-price
property, κ(a0)= p(R)≤ 0 for allRwith f (R)= a0. Define p̂(R)= p(R)−κ(a0) for allR.
Since p̂ is a translation of p and the domain is the quasilinear domain, we see that (f� p̂)
is DSIC and IR. Since κ(a0) ≤ 0, we have p̂(R) ≥ p(R) for all R. Hence, IR binds in Q.
A crucial aspect of this simple argument is that we only changep to p̂while constructing
the new mechanism. The allocation rule f was unchanged. Such an argument does not
work if the domain is not Q. Even then, we can establish that IR binds in any domain of
preferences.

Theorem 3. IR binds in every domain of preferences.

Proof. Suppose D is a domain of preferences. Let (f�p) be a DSIC and IR mechanism
defined on D. By the posted-price property, there exists κ :A→ R such that κ(f (R))=
p(R) for all R ∈ D. By Lemma 2, we know that κ(a0)≤ 0. Let A \ {a0} = {a1� � � � � aK} and
without loss of generality, assume that κ(a1)≤ · · · ≤ κ(aK). We now define another map
κ̃ :A→R as κ̃(a0) := 0 and

κ̃(a1) := inf
R:f (R)=a1

V R
(
a1�

(
a0� κ̃(a0)

))
�

Having defined κ̃(a1)� � � � � κ̃(ak), we define

κ̃(ak+1) := min
aj∈{a0�����ak}

inf
R:f (R)=ak+1

V R
(
ak+1�

(
aj� κ̃(aj)

))
�

The mechanism (f̃ � p̃) is defined as follows. For every R, the agent chooses her best
consumption bundle according toR from the set {(a0� κ̃(a0))� � � � � (aK� κ̃(aK))}, with ties
broken in favor of the higher indexed alternative. More formally, for every R, define

M(R) := {(
aj� κ̃(aj)

) : (aj� κ̃(aj))R(
ak� κ̃(ak)

) ∀ak ∈A}
�

Then f̃ (R) := a� if a� ∈M(R) and � > j for all aj ∈M(R) \ {a�}. Further, p̃(R) := κ̃(a�).
Trivially, (f̃ � p̃) is DSIC. Since κ̃(a0)= 0, by Lemma 2, (f̃ � p̃) is IR. We now complete

the proof by showing that p̃(R)≥ p(R) for all R.

Step 1. In this step, we show that κ̃(aj)≥ κ(aj) for all aj ∈A. Since (f�p) is IR, we know
that κ(a0)≤ 0. By definition, 0 = κ̃(a0)≥ κ(a0). Now, we prove the step using induction
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on the indices: suppose κ̃(aj)≥ κ(aj) for all aj ∈ {a0� � � � � ak}. Then we observe that

κ̃(ak+1)= min
aj∈{a0�����ak}

inf
R:f (R)=ak+1

V R
(
ak+1�

(
aj� κ̃(aj)

))
≥ min
aj∈{a0�����ak}

inf
R:f (R)=ak+1

V R
(
ak+1�

(
aj�κ(aj)

))
(by the induction hypothesis)

≥ κ(ak+1)�

where the last inequality follows from the fact that for every R with f (R) = ak+1, DSIC
implies that V R(ak+1� (aj�κ(aj))≥ κ(ak+1) for all aj ∈A.

Step 2. We now complete the proof. Pick any R ∈ D. Let f (R) = ak. By definition,
κ̃(ak)≤ V R(ak� (aj� κ̃(aj))) for all j < k. Hence, (ak� κ̃(ak))R(aj� κ̃(aj)) for all j < k. But
then by the tie-breaking rule, f̃ (R) 	= aj for all j < k. So f̃ (R)= a� for some �≥ k. Hence,
we get

p(R)= κ(ak)≤ κ(a�)≤ κ̃(a�)= p̃(R)�
where the first inequality follows from the fact that �≥ k and the second inequality fol-
lows from Step 1.

Remark 3. The allocations rules f and f̃ in the proof of Theorem 3 can be quite
different on an arbitrary domain. They are identical if the domain is Q. However,
we can establish a relationship between f and f̃ . As in the proof of Theorem 3, let
A \ {a0} = {a1� � � � � aK}, and without loss of generality, assume that κ(a1) ≤ · · · ≤ κ(aK).
We can show that for any R, f (R) = aj and f̃ (R) = ak implies k ≥ j. The claim is ob-
vious if j = 0. So assume that j > 0. Now pick a�, where � < j. By the definition of
κ̃(aj), we have κ̃(aj)≤ V R(aj� (a�� κ̃(a�))). Hence, (aj� κ̃(aj))R(a�� κ̃(a�)). Further, � < j
and the tie-breaking rule for f̃ implies f̃ (R) 	= a�. In particular, when � is complete
with aK � aK−1 � · · · � a1 � a0, we have κ(a1) < · · · < κ(aK). This implies that f̃ (R) is
assigned an alternative ak such that κ(ak) > κ(aj), where f (R) = aj . Thus, f̃ assigns
“higher valued” alternatives (i.e., higher in the rank of �) at each preference to increase
payments.9

Theorem 3 implies that IR binds in Q and all the other domains discussed in Corol-
lary 1. This has implications in solving optimization problems with incentive and indi-
vidual rationality constraints as we discuss in the next section.

7. A template for optimal contract design

In this section, we demonstrate the usefulness of the results in the previous section in
finding the solution to the optimal contract problem in non-quasilinear environments.
We assume the existence of a0 such that a � a0 for all a ∈ A and the IR constraint is
defined with (a0�0) as the outside option. We fix a domain D. Let μ be a probability

9We are grateful to an anonymous referee for suggesting this discussion.
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measure on D. A mechanism (f ∗�p∗) is optimal if it is a solution to the program (in all
the optimization programs below, we assume that a maximum exists)

max
f :D→A�p:D→R

∫
D
p(R)dμ(R)

subject to (f�p) is DSIC and IR.

Using our results, we show that the optimization program above can be simplified. To do
so, we define the notion of a canonical mechanism. For every allocation rule f : D →A,
define its canonical payment rule pf :D →R as

pf (R)=
⎧⎨⎩0 if f (R)= a0

inf
R′:f (R′)=a

V R
′(
a� (a0�0)

)
if f (R)= a 	= a0�

A mechanism (f�p) is a canonical mechanism if p = pf . A canonical mechanism is
uniquely defined by the allocation rule only. A canonical mechanism is not necessar-
ily DSIC. However, if it is DSIC, then it is IR too, since the payment is zero when a0 is
allocated. We show below that an optimal mechanism is a canonical mechanism.

Theorem 4. Suppose D satisfies OP richness. Then an optimal mechanism on D is a
canonical mechanism.

Proof. The proof uses the following lemma that characterizes DSIC mechanisms in
domains satisfying OP richness.

Lemma 3. Suppose D satisfies OP richness and (f�p) is a mechanism defined on D. Then
(f�p) is DSIC if and only if, for every R�R′ ∈ D, we have

p(R)= inf
R̂:f (R)=f (R̂)

V R̂
(
f (R)�

(
f
(
R′)�p(

R′)))�
Proof. Suppose (f�p) satisfies the condition in the statement of the lemma. Then pick
any R, R′ and we get

p(R)≤ V R(
f (R)�

(
f
(
R′)�p(

R′)))�
Hence, (f (R)�p(R))R(f (R′)�p(R′)), which implies that (f�p) is DSIC.

Now suppose (f�p) is DSIC. Then DSIC implies, from the necessity of the posted-
price property and Step 1 in the proof of Theorem 2, that there exists a map κ :A→ R

such that κ respects � and κ(f (R)) = p(R) for all R. Then pick any a�b ∈ A. Choose
ε > 0 but arbitrarily close to zero and consider the following vector v ∈R|A|:

va = κ(a)+ ε� vx = κ(x) ∀x 	= a�
Since κ respects � and ε is sufficiently close to zero, v respects �. By OP richness, there
is a preference R̂ such that v ∈ I(R̂). Since va > κ(a) and vx = κ(x) for all x 	= a, DSIC
implies that f (R̂)= a. Hence, we have V R̂(a� (b�κ(b)))= κ(a)+ ε. Taking ε→ 0, we get

κ(a)= inf
R̂:f (R̂)=a

V R̂
(
a�

(
b�κ(b)

))
�
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We can now complete the proof of the theorem. By Theorem 3, IR binds. Hence,
every optimal mechanism (f�p) must have p(R) = 0 if f (R) = a0. Then, by Lemma 3,
OP richness guarantees that for every R with f (R) = a 	= a0, we have p(R) =
infR′:f (R′)=a V R

′
(a� (a0�0)). Hence, p= pf , and every optimal mechanism is a canonical

mechanism.

Remark 4. Theorem 4 assumes that a0 lies in the range of the optimal mechanism. This
is without loss of generality for any probability measure that assigns zero probability
to a set containing one preference. To see this, suppose (f�p) is an optimal mecha-
nism such that a0 is not in the range of f . Suppose the range of f is A′ :=A \ {a0}. By
the posted-price property, there is a map κ :A′ → R such that for all R with f (R) = a,
we have p(R) = κ(f (R)). Then consider the vector v, where va0 = 0 and va = κ(a)

for all a ∈ A′. By OP richness, there is a preference R such that v ∈ I(R). By defini-
tion, (f (R)�p(R))I(a0�0). Consider a new mechanism (f ′�p′) such that f ′(R)= a0 and
p′(R)= 0, and f ′(R′)= f (R′), p′(R′)= p(R′) for all R′ 	= R. Since (f�p) is DSIC and IR,
the new mechanism (f ′�p′) is also DSIC. By Lemma 2, the new mechanism (f ′�p′) sat-
isfies IR. Further, the two mechanisms differ at only one preference. By our assumption
on the probability measure, the expected revenue from both mechanisms is the same.10

Theorem 4 and Theorem 1 have an immediate corollary that allows us to reduce
the search space of our optimal mechanism. First, Theorem 4 shows that we need to
search only over canonical mechanisms. Second, Theorem 1 says that if the domain sat-
isfies TP�� richness for some � > 0, we need to search only over canonical mechanisms
that satisfy monotonicity. By construction, every DSIC canonical mechanism is IR and,
hence, we can get rid of the IR constraint. Further, every canonical mechanism satisfies
the posted-price property. Therefore, DSIC can just be replaced by the monotonicity
condition of the canonical mechanism. Since a canonical mechanism is uniquely de-
fined by the corresponding allocation rule, the search space of the optimal mechanism
problem becomes the space of all allocation rules such that the canonical mechanism is
monotone. This leads to the following corollary.

Corollary 2. Let � > 0. Suppose D satisfies TP�� richness. Then every optimal mecha-
nism is a solution to the program

max
f :D→A

∫
D
pf (R)dμ(R)

subject to
(
f�pf

)
is monotone.

This result parallels a similar result in the quasilinear domain. As argued earlier, The-
orem 4 holds in the quasilinear domain. We say an allocation rule f is implementable
if there exists a payment rule p such that (f�p) is DSIC. It is difficult to verify imple-
mentability of an allocation rule without quasilinearity (because of the nonseparable
nature of allocation and payment in the utility function of the agent). However, if the

10We are grateful to an anonymous referee for motivating this discussion.
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domain is Q, an allocation rule is implementable if and only if it is weakly monotone
(Bikhchandani et al. 2006). An allocation rule f (defined on the quasilinear domain)
is weakly monotone if for every quasilinear preferences R and R′ with f (R) = a and
f (R′)= b such that valuation vectors v and v′ represent R and R′, respectively, we have
va − vb ≥ v′

a − v′
b. As we show later, in the quasilinear domain, a mechanism (f�p) is

monotone if and only if f is weakly monotone. We also know that if f is implementable
on Q, then, by revenue equivalence, we can construct pf such that (f�pf ) is DSIC and
IR (Heydenreich et al. 2009). Hence, the analogue of the program in Corollary 2 is well
known to be the following program on Q:

max
f :Q→A

∫
Q
pf (R)dμ(R)

subject to f is weakly monotone.

Such a simplification is useful for computing an optimal contract. For instance, in the
single object allocation problem, it is standard to solve the unconstrained optimization
problem and then verify that the unconstrained optimum satisfies weak monotonicity.

Our program in Corollary 2 has similar features: the search space of the optimal
mechanism is only over allocation rules such that the corresponding canonical mech-
anism is monotone. Thus, we provide a template for designing optimal mechanisms
without quasilinearity. Such a template is useful if the underlying optimization problem
is tractable. This depends on the specific domain considered. We now briefly outline
how it can be applied to a model with two alternatives.

Suppose A= {a0� a1} with a1 � a0. In a model, where a single object needs to be al-
located, a0 can be thought of as the alternative where the object is not allocated and a1
is the alternative where the object is allocated. To find a revenue-maximizing mecha-
nism in such a model, Theorem 4 says that we need to focus on canonical mechanisms
that correspond to monotone allocation rules. Given an allocation rule f , the canonical
mechanism in this model has a payment rule characterized by

κf (a0)= 0

κf (a1)= inf
R:f (R)=a1

V R
(
a1� (a0�0)

)
�

Since a1 � a0, we have V R(a1� (a0�0)) > 0 for all R and, hence, κf (a1) ≥ 0. A canonical
mechanism (f�κf ) requires only that an agent with preference R submits her valuation
V R(a1� (a0�0)).

Monotonicity of (f�κf ) requires that for anyRwith f (R)= a0 andR′ with f (R′)= a1,
we must have

V R
(
a0�

(
a1�κ

f (a1)
)) ≥ V R′(

a0�
(
a1�κ

f (a1)
))

V R
′(
a1� (a0�0)

) ≥ V R(
a1� (a0�0)

)
�

These conditions are equivalent to requiring that f (R) = a1 if V R(a1� (a0�0)) > κf (a1)

and f (R) = a0 if V R(a1� (a0�0)) < κf (a1). So every canonical mechanism can be con-
structed by a cutoff κ∗ such that for all R, if V R(a1� (a0�0)) > κ∗, we have f (R)= a1, and
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if V R(a1� (a0�0)) < κ∗, we have f (R)= a0 (if V R(a1� (a0�0))= κ∗, we can assign either a1
or a0 in the allocation rule). Further, if f (R)= a1 for any R, then p(R)= κ∗. Otherwise,
p(R)= 0 if f (R)= a0.

The revenue from such a canonical mechanism is κ∗(1 − G(κ∗)), where G is the
cumulative probability distribution of valuation for a1 at (a0�0) (i.e., distribution of
V R(a1� (a0�0))). Hence, finding an optimal mechanism is choosing an optimal value
of κ∗ to maximize κ∗(1 −G(κ∗)). It is well known that this expression is maximized un-
der the monotone hazard rate condition at a value of κ∗ that satisfies κ∗ = 1−G(κ∗)

g(κ∗) , where
g is the probability density function associated withG.

8. Relationship with the quasilinear domain results

In this section, we formally compare our results to analogous results in the quasilinear
domain. The comparison below highlights how our results extend and generalize exist-
ing results with quasilinearity. As defined earlier, indifference vectors in every pair in a
quasilinear preference are parallel. Hence, any one indifference vector represents the
entire quasilinear preference. We call it the valuation vector. Denote the valuation (vec-
tor) attached to quasilinear preferences R�R′�R′′� � � � by v� v′� v′′� � � � , respectively. Let
V ⊆ R|A| be the domain of valuations in the quasilinear preference domain. Notice that
two valuation vectors that differ by the same constant in each component represent the
same preference over consumption bundles.

Monotonicity in the quasilinear domain

Our monotonicity condition reduces to the following condition in quasilinear domains.
Take two valuation vectors v� v′ ∈ R|A| and denote the underlying quasilinear prefer-
ences corresponding to them by R and R′, respectively. Consider a mechanism (f�p)

and let f (R)= a and f (R′)= b. Note that

V R
(
a�

(
b�p

(
R′))) = va − vb +p(

R′) and V R
′(
a�

(
b�p

(
R′))) = v′

a − v′
b +p(

R′)�
Hence, our monotonicity condition V R(a� (b�p(R′))) ≥ V R′

(a� (b�p(R′))) is equivalent
to requiring va− vb ≥ v′

a− v′
b. This is the familiar weak monotonicity or two-cycle mono-

tonicity condition from the quasilinear domain literature (Bikhchandani et al. 2006, Saks
and Yu 2005, Ashlagi et al. 2010). Hence, in the quasilinear domain, monotonicity of the
mechanism reduces to weak monotonicity of the allocation rule f .

Mechanism characterization

The monotonicity condition is too weak in the quasilinear domain and, hence, the
posted-price property needs to be significantly strengthened to a revenue equivalence
formula to imply incentive compatibility of a mechanism. We consider a result for the
quasilinear domain to compare it with our Theorem 1. The result is owing to Jehiel et al.
(1999), but we report a version of this result given in Ashlagi et al. (2010). To state this
result conveniently, we slightly abuse notation to write a mechanism (f�p) on a quasi-
linear type space with domain of valuations V ⊆ R|A| as maps f : V →A and p : V →R.
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Fact 2 (Proposition 1 in Jehiel et al. 1999). Suppose (f�p) is a mechanism defined on a
convex domain of valuations V ⊆ R|A|. Then the following statements are equivalent.

(i) The mechanism (f�p) is DSIC.

(ii) The rule f is weakly monotone and for every v� v′ ∈ V , we have

p(v)= p(
v′) + [

vf(v) − v′
f (v′)

] −
∫ 1

0
ψv

′�v(x)dx�

where ψv
′�v(x) = (v − v′) · If (v′+x(v−v′)) for all x ∈ [0�1]. Here, Ia is an indicator

vector in R|A|, where the component that corresponds to a is set to 1 and all other
components are zero.

Fact 2 generalizes analogous results for two alternatives case in Myerson (1981),
where he develops this result in the single object auction framework. Statement (ii) in
Fact 2 implies that if we have two incentive compatible mechanisms with the same al-
location rule, (f�p) and (f�p′), then p(v) = p′(v) for some v implies that p = p′. This
is usually referred to as the revenue equivalence formula or the envelope formula (Mil-
grom and Segal 2002, Krishna and Maenner 2001). Contrast this to our Theorem 2, which
states that in domains that satisfy TP�+ richness (for any �> 0), we have revenue unique-
ness.

We can contrast our Theorem 1 with Fact 2. Theorem 1 characterizes incentive
compatibility by monotonicity of the mechanism and the posted-price property. On
the other hand, Fact 2 characterizes incentive compatibility using weak monotonicity
of the allocation rule and the revenue equivalence formula. The richness of our non-
quasilinear type space allows us to use the monotonicity of the mechanism along with a
simple condition on payments in Theorem 1 to characterize incentive compatibility.

Allocation rule characterization

In the quasilinear domain, due to the separability (and linearity) of the payment from
the allocation rule, one can focus attention on the implementability question; if we
know that f is implementable, then due to Fact 2, there is an explicit way to compute
payments using f (up to an additive constant). The following fact answers the question,
“When is an allocation rule f implementable?”; i.e., there exists a p such that (f�p) is
DSIC.

Fact 3 (Saks and Yu 2005, Ashlagi et al. 2010). Suppose closure of V ⊆ R|A| is convex and
f is an allocation rule defined on V . Then f is implementable if and only if it is weakly
monotone.

Fact 3 was first shown for the quasilinear domain (i.e., V consists of all valuation
vectors in R|A| respecting �) in Bikhchandani et al. (2006). Though Theorem 1 seems to
be an extension of their result to non-quasilinear domains, it should not be confused as
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an analogue of Fact 3. There are two important differences: (i) Theorem 1 is a charac-
terization of incentive compatible mechanisms using monotonicity of the mechanism
and Fact 3 is a characterization of implementable allocation rules in the quasilinear
domain using monotonicity of the allocation rule; (ii) Theorem 1 uses richness of the
non-quasilinear domain and it does not apply to the quasilinear domain.

9. Related literature

The literature on mechanism design with quasilinearity is extensive, and almost im-
possible to describe exhaustively. We discussed some relevant papers in detail in Sec-
tion 8, but refer the reader to two excellent books on this topic (Vohra 2011, Börgers
2015). Following Myerson (1981), several papers have extended his monotonicity and
revenue equivalence characterizations to various models with multidimensional types,
where more than two alternatives are allocated and agents have values for each of those
alternatives. Because of quasilinearity, the allocation rule and the payment rule of a
mechanism appear in separable form in the utility function of the agent. This allows
one to provide separate characterizations of implementable allocation rules and the
class of payment rules that implement an implementable allocation rule. The former
is characterized by (weak) monotonicity (Bikhchandani et al. 2006, Saks and Yu 2005,
Ashlagi et al. 2010, Cuff et al. 2012, Mishra and Roy 2013, Mishra et al. 2014, Carbajal and
Müller 2015).11 The latter is characterized by a revenue equivalence formula ((Krishna
and Maenner, 2001), Milgrom and Segal 2002, Chung and Olszewski 2007, Heydenreich
et al. 2009). These results exploit the geometric structure induced by quasilinearity, and
make use of convex analysis machinery (Rockafellar 1970). A paper by Carbajal and Ely
(2013) establishes that revenue equivalence may not hold in some problems even with
quasilinearity; this is due to the nonconvex and nondifferentiable nature of valuation
function. They further show that in specific problems where revenue equivalence fails,
one can still do revenue maximization using revenue inequalities.

In the absence of quasilinearity, it is not possible to provide separate characteriza-
tions of monotonicity and revenue equivalence since the allocation and payment are no
longer separable. Our monotonicity condition is indeed a condition on the mechanism,
but reduces to the weak monotonicity condition on the allocation rule in the quasilin-
ear domain. Unlike the quasilinear domain, we find revenue uniqueness of incentive
compatible mechanisms in our benchmark rich type space.

There is a small but relevant literature on mechanism design with non-quasilinear
preferences. The closest paper to ours is Kos and Messner (2013). They derive a nec-
essary condition for incentive compatibility in a model with non-quasilinearity. Their
condition is a generalization of the cycle monotonicity condition in Rochet (1987) for
quasilinear preferences. They show that their condition is not sufficient for incentive
compatibility. In contrast, our monotonicity condition is significantly weaker than their
condition and is a necessary and sufficient condition for incentive compatibility along
with the posted-price property. However, we focus on deterministic mechanisms that

11These papers (a) extend Myerson’s monotonicity condition to a multidimensional environment and
(b) simplify a complicated monotonicity characterization of Rochet (1987).
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assume some form of richness in type space, while Kos and Messner (2013) do not make

such assumptions.

Baisa (2017) considers the single object auction model with non-quasilinear prefer-

ences but allows for randomization. He introduces a novel mechanism in his setting and

studies its optimality properties (in terms of revenue maximization). Garratt and Pycia

(2016) study the bilateral trading model with non-quasilinear preferences, where they

allow for randomization. Further, their solution concept is Bayesian incentive compat-

ibility. Their main finding is that for a generic set of non-quasilinear preferences, the

Myerson–Satterthwaite impossibility result (Myerson and Satterthwaite 1983) on bilat-

eral trading disappears. Unlike both of these papers, we do not consider randomization

and our solution concept is different from theirs. More importantly, we have a more gen-

eral model of non-quasilinear preferences, albeit with deterministic mechanisms, that

covers many problems of interest.

In a recent paper, Nöldeke and Samuelson (2018) analyze the principal–agent prob-

lem and the matching problem with non-quasilinear preferences. They establish an

implementation duality to characterize the implementable utility profiles, which allows

them to extend results from the quasilinear domain. Our results are specific to deter-

ministic mechanisms, which is not assumed in Nöldeke and Samuelson (2018). Alter-

natively, Nöldeke and Samuelson (2018) impose topological assumptions on the set of

alternatives to derive their results. The objectives and the results in both the papers are

quite different.

There is a literature on axiomatic treatment of mechanisms in models without quasi-

linearity. The broad conclusion of this literature is that in a variety of problems, dom-

inant strategy incentive compatibility, individual rationality, and efficiency (along with

some other mild axioms) are incompatible without quasilinearity. The literature also

identifies problems where these properties are compatible: see, for instance, Saitoh and

Serizawa (2008), Hashimoto and Saitoh (2010), Morimoto and Serizawa (2015), Kazu-

mura and Serizawa (2016), Zhou and Serizawa (2018), Baisa (2019), Ma et al. (2016) and

references therein.

There is a literature in auction theory and algorithmic game theory on single ob-

ject auctions with budget-constrained bidders; see Che and Gale (2000), Pai and Vohra

(2014), Ashlagi et al. (2010), Lavi and May (2012). The budget constraint in these papers

introduces a particular form of non-quasilinearity in the preferences of agents. Further,

the budget constraint in these models is hard, i.e., the utility from any payment above

the budget is minus infinity. This assumption is not satisfied by the preferences consid-

ered in our model. Hence, our results do not apply directly to these models.

In a companion paper (Kazumura et al. 2020), we investigate the revenue-maxi-

mizing auction by a seller who is selling multiple objects to agents who can buy at

most one object. The minimum Walrasian equilibrium price mechanism is shown to

be revenue-optimal in a class of mechanisms that satisfy dominant strategy incentive

compatibility, individual rationality, and some other reasonable axioms.
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Appendix A: Sufficiency part of Theorem 1

We prove the sufficiency part of Theorem 1.12

Proof of Theorem 1. Take any (f�p) that satisfies monotonicity and the posted-price
property. Then there exists a map κ :A→ R such that p(R)= κ(f (R)) for all R. For any
a�b ∈ A, we say incentive constraint a→ b holds if for every R ∈ D with f (R) = a, we
have (a�κ(a))R(b�κ(b)). Assume, to the contrary, that there exists x ∈A and a prefer-
ence R such that f (R)= x and (y ′�κ(y ′))P(x�κ(x)) for some y ′ ∈A, i.e., x→ y ′ does not
hold. Without loss of generality, assume that for all y with y � x, incentive constraints
y → b holds for all b ∈A (in other words, x is a maximal alternative according to � that
can manipulate).

Let Zκ := {(y�κ(y)) : y ∈ A} be the set of consumption bundles in the range of the
mechanism (f�p). Among the consumption bundles in Zκ, let (y∗�κ(y∗)) be a max-
imum according to R. Then we have (y∗�κ(y∗))P(x�κ(x)) and (y∗�κ(y∗))R(y�κ(y))
for all (y�κ(y)) ∈ Zκ. The first relation implies that V R(x� (y∗�κ(y∗))) < κ(x). By on-
toness, there is a preference R′ such that f (R′)= y∗. Hence, monotonicity implies that
V R

′
(x� (y∗�κ(y∗)))≤ V R(x� (y∗�κ(y∗))), so we have

V R
′(
x�

(
y∗�κ

(
y∗))) ≤ V R(

x�
(
y∗�κ

(
y∗)))< κ(x)� (2)

Also, since (y∗�κ(y∗))R(y�κ(y)) for all (y�κ(y)) ∈Zκ, we have

V R
(
y�

(
y∗�κ

(
y∗))) ≤ κ(y) ∀y ∈A� (3)

Using this, we define a vector v∗ ∈R|A| as follows: for every y ∈A, let

v∗
y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V R

(
y�

(
y∗�κ

(
y∗))) = κ(

y∗) if y = y∗

V R
(
y�

(
y∗�κ

(
y∗))) + ε if y = x

V R
(
y�

(
y∗�κ

(
y∗))) − ε if y � x and y 	= y∗

min
{
V R

(
y�

(
y∗�κ

(
y∗)))� V R′(

y�
(
y∗�κ

(
y∗)))} − ε otherwise,

where ε > 0 but is sufficiently small. An illustration of v∗ is provided in the indifference
diagram in Figure 11 for an example with A = {a�b�x� y∗� c}, where a � b � x � y∗ � c.
Now, the proof is completed in four steps.

Step 1. We show that v∗ respects �, but we prove a slightly general assertion, which
is useful to us in later steps. Pick any v ∈ R|A| such that vy = v∗

y ∀y ∈ A \ {x} and

vx ∈ [V R′
(x� (y∗�κ(y∗)))− δ�v∗

x + δ] for sufficiently small δ > 0 with δ < ε; note that by
inequality (2), V R

′
(x� (y∗�κ(y∗))) < v∗

x. We show that v respects �. For this, pick any pair
a�b ∈ A such that a � b. Suppose a = y∗ or a � x. We have va ≥ V R(a� (y∗�κ(y∗))) −
ε. Alternatively, vb ≤ V R(b� (y∗�κ(y∗))) + ε. Since R respects � and a � b, then
V R(a� (y∗�κ(y∗))) > V R(b� (y∗�κ(y∗))). Since ε is sufficiently small, we obtain va > vb.

12We are grateful to an anonymous referee whose comments led to a simpler proof.
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Figure 11. Illustration of v∗ for the case a� b� x� y∗ � c.

Next suppose a 	= y∗ and a � x. We have va ≥ min{V R(a� (y∗�κ(y∗)))�V R′
(a� (y∗�

κ(y∗)))} − ε. If b = y∗, then vb = κ(y∗) = min{V R(y∗� (y∗�κ(y∗)))�V R′
(y∗� (y∗�κ(y∗)))}.

Else, a � x implies that b � x and b 	= x; hence, vb = min{V R(b� (y∗�κ(y∗)))�V R′
(b� (y∗�

κ(y∗)))} − ε. Since R and R′ respect � and a� b,

min
{
V R

(
a�

(
y∗�κ

(
y∗)))� V R′(

a�
(
y∗�κ

(
y∗)))}

>min
{
V R

(
b�

(
y∗�κ

(
y∗)))� V R′(

b�
(
y∗�κ

(
y∗)))}�

Since ε is sufficiently small, va > vb. Hence, v respects �.

Step 2. We construct the set of preferences

R∗ := {
R∗ ∈ D : V R∗(

y�
(
y∗�κ

(
y∗))) = v∗

y ∀y 	= x}�
By Step 1, v∗ respects �. Thus, by OP richness (implied by TP�� richness), there is a
preference R∗ such that v∗ ∈ I(R∗) and, clearly, R∗ ∈ R∗. This implies that R∗ is non-
empty.

In this step, we show that for each R̄ ∈ R∗, we have f (R̄) ∈ {x� y∗}. Suppose
f (R̄) = y and y /∈ {x� y∗}. If y � x, then V R̄(y� (y∗�κ(y∗))) = v∗

y < V R(y� (y∗�κ(y∗))).
By our assumption, y → y∗ holds. Hence, we must have (y�κ(y))R̄(y∗�κ(y∗)) or
V R̄(y� (y∗�κ(y∗))) ≥ κ(y). Combining, we get V R(y� (y∗�κ(y∗))) > κ(y). This is a
contradiction to inequality (3). Next, if y � x, then we have V R̄(y� (y∗�κ(y∗))) <
V R

′
(y� (y∗�κ(y∗))). This is a contradiction to monotonicity since f (R̄) = y and f (R′) =

y∗. This completes the proof that every R̄ ∈ R∗ satisfies the fact that f (R̄) ∈ {x� y∗}.

Step 3. As before, using OP richness, choose R∗ ∈ R∗ such that v∗ ∈ I(R∗). By Step 2,
f (R∗) ∈ {x� y∗}. Further, V R

∗
(x� (y∗�κ(y∗)))= v∗

x > V
R(x� (y∗�κ(y∗))) and monotonicity

implies that f (R∗)= x. Hence,

η= inf
R̂∈R∗:f (R̂)=x

V R̂
(
x�

(
y∗�κ

(
y∗)))
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is well defined. Note that η is a real number since monotonicity implies that η ≥
V R

′
(x� (y∗�κ(y∗))). Note also that since f (R∗)= x, we have η≤ V R∗

(x� (y∗�κ(y∗)))= v∗
x.

Step 4. We now define two vectors u�v ∈R|A| as

ux = η+ δ� vx = η− δ� uy = vy = v∗
y ∀y 	= x�

where δ > 0 but sufficiently small. Let v̂ ∈ R|A| be such that v̂x = η and v̂y = v∗
y for ev-

ery y 	= x. By Step 3, V R
′
(x� (y∗�κ(y∗))) ≤ η = v̂x ≤ v∗

x. Hence, by Step 1, v̂ respects
�. Thus, since δ is sufficiently small, u and v also respect �. By Step 3, η ≤ v∗

x =
V R(x� (y∗�κ(y∗))) + ε < κ(x), where the last inequality follows from inequality (2) and
the fact that ε is sufficiently small. Hence, η < κ(x), and using the fact that δ is suffi-
ciently small, we get ux < κ(x) and vx < κ(x). By construction, uy∗ = vy∗ = v∗

y∗ = κ(y∗).
Hence, by Lemma 5 (whose statement and proof are given in Appendix B), we have two
vectors u′ and v′ that respect � such that (u�u′) are �� parallel, (v� v′) are �� parallel
with u′

x = v′
x = κ(x), and u′

y∗ > v′
y∗ .

Now, by TP�� richness, there is a preference R̂ such that u�u′ ∈ I(R̂) and there is a
preference R̃ such that v� v′ ∈ I(R̃). By Step 2, f (R̂)� f (R̃) ∈ {x� y∗}. By definition of η
and the fact that V R̃(x� (y∗�κ(y∗))) = vx < η, we get f (R̃) = y∗. Also, by definition of
η, there is a preference R′′ ∈ R∗ such that f (R′′) = x and V R

′′
(x� (y∗�κ(y∗))) < η+ δ =

V R̂(x� (y∗�κ(y∗))). By monotonicity, f (R̂)= x. But then, V R̃(y∗� (x�κ(x)))= v′
y∗ < u′

y∗ =
V R̂(y∗� (x�κ(x))). This is a contradiction to monotonicity.

Appendix B: Missing lemmas and proofs

We give all the missing proofs in this section. We start by giving some elementary lem-
mas that we use throughout our proofs.

Proof of Lemma 1. Fix � > 0. We show that Q�+ satisfies TP�+ richness. This implies
that every domain D ⊇ Q�+ satisfies TP�+ richness. To show that Q�+ satisfies TP�+ rich-
ness, we pick two vector v, v̂ with v̂ > v that are �+ parallel and respect �. Let Rq be
the quasilinear preference with v ∈ I(Rq), i.e., I(Rq) consists of all indifference vectors
parallel to v.

We now construct a new preference R as follows. Fix a0 ∈A. It is enough to specify
V R(a� (a0� t)) for each t ∈ R and all a ∈A \ {a0}. Let v′ < v be such that v and v′ are �+
parallel. Let v̂′ > v̂ be such that v̂′ and v are �+ parallel. For all t ∈R and all a ∈A \ {a0},

V R
(
a� (a0� t)

)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t + α · (va − va0)+ (1 − α) · (v′
a − v′

a0

)
� where α= −1

t − va0 − 1
if t < va0

t + α · (va − va0)+ (1 − α) · (v̂a − v̂a0)� where α= v̂a0 − t
v̂a0 − va0

if va0 ≤ t ≤ v̂a0

t + α · (v̂a − v̂a0)+ (1 − α) · (v̂′
a − v̂′

a0

)
� where α= 1

t − v̂a0 + 1
if t > v̂a0 �
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Note for all t ∈ R, α ∈ [0�1], that V R(a� (a0� va0)) = va and V R(a� (a0� v̂a0)) = v̂a, and
that α → 1 as t → va0 , α → 0 as t ↗ v̂a0 , and α → 1 as t ↘ v̂a0 . Thus, V R(a� (a0� t)) is
continuous with respect to t. Also note α→ 0 as t → −∞ or t → ∞. Thus, since v′ < v <
v̂ < v̂′, and v, v̂, v′, and v̂′ satisfy DD, every pair of vectors in I(R) also satisfy DD. Hence,
R satisfies PIE.

Next, we complete the proof by showing that d(R�Rq) < �, thus showing that R ∈
Q�+. For every t < va0 ,∣∣V R(

a� (a0� t)
) − V Rq(a� (a0� t)

)∣∣
= ∣∣[t + α · (va − va0)+ (1 − α) · (v′

a − v′
a0

)] − [
t + (va − va0)

]∣∣
= ∣∣(1 − α)[(v′

a − v′
a0

) − (va − va0)
]∣∣<��

where the inequality follows from α ∈ [0�1] and |(v′
a − v′

a0
)− (va − va0)|<�.

For every t ∈ [va0� v̂a0],∣∣V R(
a� (a0� t)

) − V Rq(a� (a0� t)
)∣∣

= ∣∣[t + α · (va − va0)+ (1 − α) · (v̂a − v̂a0)
] − [

t + (va − va0)
]∣∣

= ∣∣(1 − α)[(v̂a − v̂a0)− (va − va0)
]∣∣<��

where the inequality follows from α ∈ [0�1] and |(v̂a − v̂a0)− (va − va0)|<�.
For every t > va0 ,∣∣V R(

a� (a0� t)
) − V Rq(a� (a0� t)

)∣∣
= ∣∣[t + α · (v̂a − v̂a0)+ (1 − α) · (v̂′

a − v̂′
a0

)] − [
t + (va − va0)

]∣∣
= ∣∣α · [(v̂a − v̂a0)− (va − va0)

] + (1 − α) · [(v̂′
a − v̂′

a0

) − (va − va0)
]∣∣

≤ ∣∣α · [(v̂a − v̂a0)− (va − va0)
]∣∣ + ∣∣(1 − α) · [(v̂′

a − v̂′
a0

) − (va − va0)
]∣∣

<α ·�+ (1 − α) ·�= ��

where the second inequality follows from |(v̂a − v̂a0)− (va − va0)|< � and |(v̂′
a − v̂′

a0
)−

(va − va0)| < �. These observations imply that d(R�Rq) < �. Hence, we have R ∈ Q�+.
A similar proof can also be done for the case when D ⊇ Q�� to show that D satisfies TP��
richness.

The following technical lemma is used in the proof of Theorem 2.

Lemma 4. Suppose w�w′ ∈ R|A| are two vectors that respect � with w > w′. Then there
exists a∗ ∈A and two vectors v� v′ ∈ R|A| that respect � and are �+ parallel such that the
following conditions hold:

(i) va∗ =wa∗ , vx < wx ∀x 	= a∗

(ii) v′
a∗ =w′

a∗ , v′
x > w

′
x ∀x 	= a∗.
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Proof. Let η be defined as

η := min
a∈A

(
wa −w′

a

)
�

Let A∗ := {a ∈A : wa − w′
a = η}. Let A1� � � � �AK be the partitioning of A that satisfies,

for every j ∈ {1� � � � �K}, for every a�b ∈Aj , wa = wb, and for every a ∈Aj with j ≤K − 1
and b ∈Aj+1, wa > wb. Pick a∗ ∈A∗ such that wa∗ ≤wa for all a ∈A∗. Suppose a∗ ∈Ak,
hence, for all a ∈A∗ if a ∈Aj , then j ≤ k.

Pick δ > 0 but arbitrarily close to zero. Define two vectors v� v′ ∈R|A| as

va∗ = wa∗� vx =wx − δ

4
� ∀x 	= a∗

v′
a∗ = wa∗ −η=w′

a∗� v′
x =wx −η−

(
j − k− 2

3

)
δ� ∀x 	= a∗� where x ∈Aj�

By construction, v satisfies condition (i) of the claim. Further, since δ is sufficiently
close to zero and w respects �, v respects �. Again, since w respects �, and for every
y ∈A, v′

y is arbitrarily close to wy − η, v′ also respects �. Thus, v, v′ respect �. In the
following discussion, we show that condition (ii) holds.

Condition (ii). Since v′
a∗ = w′

a∗ by construction, we only show that v′
x > w

′
x for all

x 	= a∗. Pick x 	= a∗ with x ∈Aj . If x /∈A∗, then η<wx −w′
x. As a result, if δ is sufficiently

small, η+ (j−k− 2
3)δ < wx−w′

x. Hence, v′
x =wx−η− (j−k− 2

3)δ > w
′
x. If x ∈A∗, then

by construction, k≥ j and η=wx −w′
x. As a result, v′

x =wx −η− (j − k− 2
3)δ > w

′
x.

Finally, to show that v, v′ satisfy DD, pick x� y ∈ A and consider the following two
cases. Note that v > v′.

Case 1: x� y 	= a∗. Suppose x ∈Aj , y ∈Ah, and vx > vy . Then wx > wy and j < h. As a
result, v′

x − v′
y =wx −wy − (j − h)δ >wx −wy = vx − vy .

Case 2: x 	= a∗, y = a∗. Suppose x ∈Aj . As a result,

v′
x − v′

a∗ =wx −wa∗ −
(
j − k− 2

3

)
δ= vx − va∗ + δ

4
−

(
j − k− 2

3

)
δ�

If vx > va∗ , then wx > wa∗ and j < k. This means that the previous expression is strictly
greater than vx − va∗ . If vx < va∗ , then since δ is sufficiently small, wx < wa∗ . Hence,
j−k≥ 1. As a result, the previous expression is smaller than vx− va∗ . Hence, v, v′ satisfy
DD. Further, since v′

y is arbitrarily close to wy − η for each y ∈ A with η > 0 and v is
arbitrarily close to w, we conclude that v, v′ are �+ parallel.

The following technical lemma is used in the proof of Theorem 1.

Lemma 5. Let a�b ∈A. Suppose u�v ∈R|A| are two vectors that respect � and satisfy

ua = va = κ(a)� ub = η+ δ� vb = η− δ�
where η< κ(b) and δ > 0 is sufficiently small. Then there exists u′� v′ ∈R|A| that respect �
such that the following statements hold.
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(i) u′
b = v′

b = κ(b) and u′
a > v

′
a

(ii) (u�u′) are �� parallel and (v� v′) are �� parallel.

Proof. Consider the partitioning (A1� � � � �AK) of A as follows. Let A1 := {x ∈A : y �
x ∀y ∈A}. Having defined A1� � � � �Ak−1, define Ak := {x ∈A \ ⋃k−1

j=1 Aj : y � x ∀y ∈A \⋃k−1
j=1 Aj}. Note that x� y with x ∈Ah and y ∈A� implies that h< �.

Suppose a ∈Ak and b ∈Aj . We consider three cases.

Case 1: a � b. Then k < j. In that case, we define two vectors u′ and v′ as follows. For
every � ∈ {1� � � � �K} and for every x ∈A�, we define

u′
x = ux − ub + κ(b)− (j − �)1

2
δ� v′

x = vx − vb + κ(b)− (j − �)3δ�

Since δ is sufficiently small and κ(b) > ub > vb, we have u′ > u and v′ > v. We show
that u′, v′ respect �. Pick x ∈ Ah and y ∈ A� with x � y. Hence, we have h < �. Now
u′
x − u′

y = ux − uy + (h − �) 1
2δ > 0, where the strict inequality follows since u respects

� and, hence, ux > uy , and δ is sufficiently small. This shows that u′ respects �. An
identical argument shows that v′ respects �. By construction, u′

b = v′
b = κ(b) and j > k

implies that

u′
a − v′

a = (ua − va)− (ub − vb)+ (j − k)5
2
δ≥ 1

2
δ > 0�

So property (i) of the claim holds.
Finally, we show that (u�u′) are �� parallel and (v� v′) are �� parallel. To do so, pick

x ∈Ah and y ∈A� with x� y, and, hence, h < �. Now(
u′
x − u′

y

) − (ux − uy)= (h− �)1
2
δ < 0�

where the inequality follows since � > h and δ > 0. Hence, (u�u′) are �� parallel. A
similar argument shows that (v� v′) are�� parallel. This completes the proof of the claim
for this case.

Case 2: b � a. Then k > j. In this case, we define two vectors u′′ and v′′ as follows. For
every � ∈ {1� � � � �K} and for every x ∈A�, we define

u′′
x = ux − ub + κ(b)− (j − �)3δ� v′′

x = vx − vb + κ(b)− (j − �)1
2
δ�

Following the same argument as in Case 1, we can show that u′′, v′′ respect �, (u�u′′)
are �� parallel, and (v� v′′) are �� parallel. Further, since ub < κ(b) and δ is sufficiently
small, we have u′′ > u and v′′ > v. Finally, since k> j, we have u′′

a − v′′
a = (vb − ub)+ (k−

j) 5
2δ ≥ 1

2δ > 0. Hence, u′′
a > v

′′
a as required by property (i). This completes the proof of

the claim for this case.

Case 3: a � b and b � a. In this case, we define two vectors u∗ and v∗ using u′′ and v′′
defined in Case 2 as follows. For every � ∈ {1� � � � �K} and for every x ∈A�, we define u∗
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as

u∗
a = u′′

a + δ′� u∗
x = u′′

x ∀x 	= a�
where δ′ > 0 is sufficiently small; in particular, δ′ < δ. Since u′′ respects � and δ′ is suffi-
ciently small, u∗ also respects �. Similarly, we define v∗ as

v∗
a = v′′

a − δ′� v∗
x = v′′

x ∀x 	= a�
Since v′′ respects � and δ′ is sufficiently small, v∗ also respects �.

By construction u∗
b = v∗

b = κ(b). Further, u∗
a − v∗

a = 2δ′ > 0. Hence, property (i) holds.
We now show that (u�u∗) are �� parallel. First, since u′′ > u, and u′′ and u∗ are suf-

ficiently close, u∗ > u. Now pick x ∈ Ah and y ∈ A� with x � y, and, hence, h < �. If
a /∈ {x� y}, then (u∗

x − u∗
y) − (ux − uy) = (u′′

x − u′′
y)− (ux − uy) < 0, where the inequality

follows from Case 2. Suppose a= x. Then h= k< � and we get(
u∗
a − u∗

y

) − (ua − uy)= (
u′′
a − u′′

y

) − (ua − uy)+ δ′ = (k− �)3δ+ δ′ < 0�

where the inequality follows since δ′ < δ and k < �. Finally, suppose a = y. Then
h < k= �,(

u∗
x − u∗

a

) − (ux − ua)= (
u′′
x − u′′

a

) − (ux − ua)− δ′ = (h− k)3δ− δ′ < 0�

where the inequality follows since h< k.
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