
Theoretical Economics 15 (2020), 669–714 1555-7561/20200669

Equilibrium coalitional behavior

Mert Kimya
School of Economics, University of Sydney

I develop two related solution concepts—equilibrium coalitional behavior and
credible equilibrium coalitional behavior—that capture foresight and impose the
requirement that each coalition in a sequence of coalitional moves chooses opti-
mally among all its available options. The model does not require, but may use,
the apparatus of a dynamic process or a protocol that specifies the negotiation
procedure underlying coalition formation. Therefore, it forms a bridge between
the non-cooperative and the cooperative approaches to foresight.
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1. Introduction

This paper contributes to the literature on farsighted coalition formation. I define a
cooperative domain—extended coalitional games—and two related solution concepts
on this domain—equilibrium coalitional behavior (ECB) and credible equilibrium coali-
tional behavior (CECB)—that capture foresight.

Extended coalitional games

Let N be a set of players and let Z be a set of nodes. Let Az denote the set of all possible
coalitional actions available at node z, where an action is a triple (z� z′� S) that denotes
the possibility of coalition S to move the game from node z to node z′. At some nodes,
it might not be feasible for any coalition to take an action. This is represented as the
particular action (z� z�∅) that denotes remaining at node z. A path is a sequence of
feasible actions. A terminal path is a path that is either infinite or that ends with no
action.

An extended coalitional game is defined as � = {N�Z� {Az}z∈Z� {�i}i∈N}, where the
preferences are defined over the set of terminal paths.

An extended coalitional game is a direct generalization of an extensive form game
of perfect information, but it is most closely related to the domain of the abstract game
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(see, for example, Chwe 1994, Rosenthal 1972, and Xue 1998). There are two differences
between an abstract game and an extended coalitional game.

(i) In an abstract game, utilities are defined over the nodes, whereas in an extended
coalitional game, they are defined over the paths. This is the major difference between
the two domains. Nevertheless, given an abstract game, the utility a player gets from a
path can be appropriately defined based on the approach one wants to use. There are
two main approaches in the literature: the static approach and the dynamic approach.
The former assumes that players care only about the final outcome the negotiations lead
to; hence, the utility of a path should correspond to the utility of the final node on the
path. The latter approach assumes that players discount the utilities with a discount
factor δ; hence, the utility of a path should correspond to the discounted utility of the
nodes along the path (see Section 4.2 for a formal analysis).1

The point is that defining the utilities over the paths cause no loss in generality. This
is because the approaches on the abstract game also implicitly use utilities over paths
derived from the utilities on the nodes.

(ii) In an abstract game, it is always possible to take no action at each node, whereas
in an extended coalitional game the modeler is free to choose whether to include no-
action as a possible action. This is a minor difference that is self-evident.

(Credible) equilibrium coalitional behavior

A coalitional behavior is a complete plan of action defined on the extended coalitional
game. That is, it assigns a unique action to each node of an extended coalitional game.
Thereby, it also assigns a “path of play” (terminal path) to each node of an extended
coalitional game.

A coalition S ⊆N can deviate from a coalitional behavior by refusing to take some of
the prescribed actions, for this S needs to have a nonempty intersection with the coali-
tions taking these actions. Instead, S can take actions unspecified by the coalitional
behavior, for this S needs to contain the coalitions that have the power to take these ac-
tions. A deviation is profitable if every i ∈ S prefers the resulting path of play to the initial
path of play at each node where an action changes.

An ECB is simply a coalitional behavior that is immune to profitable deviations.
A profitable deviation is credible if it cannot be followed by further deviations that

would make the initial deviator worse off, in a sense that is clarified later. A CECB is a
coalitional behavior that is immune to profitable and credible deviations.

1.1 Contribution

The literature on farsighted coalition formation has developed extensively in recent
years. Earlier solution concepts suffered from what is known as the problem of maxi-
mality (see Ray and Vohra 2014), where players form unreasonable expectations instead
of taking the best course of action available to them.

1There are other approaches. For instance, some authors define a non-cooperative game from the ab-
stract game and define their concepts over this non-cooperative game. Notable examples include Herings
et al. (2004) and Granot and Hanany (2016). This approach is discussed in Section 4.2.1.
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(C)ECB directly overcomes this problem by imposing consistent expectations. This
is not new as several other solution concepts have overcome this problem similarly be-
fore (see Dutta and Vohra 2017, Konishi and Ray 2003, and Ray and Vohra 2014). There
are two ways in which (C)ECB supports this claim further.

Backward Induction. Intuitively, one might expect a farsighted solution concept to
incorporate considerations similar to backward induction in a cooperative setting. Nev-
ertheless, in the absence of the structure of an extensive form, it is not clear how to
incorporate such considerations. Extended coalitional games have this structure in cer-
tain contexts and indeed we see that (C)ECB can be found through backward induction
whenever it is possible.

Non-cooperative Justification. The problem of maximality is not present in non-
cooperative solution concepts such as the subgame perfect equilibrium. Hence, if it
is possible to develop an intuitive non-cooperative game from an extended coalitional
game, whose subgame perfect equilibrium outcomes coincide with the cooperative so-
lution concept, then this is a good indication that the solution concept we start with
incorporates the notion of maximality. With (C)ECB, this exercise can be done under
certain conditions on the domain.

Second, (C)ECB directly looks at possible profitable deviations to see if a plan of ac-
tion is stable. Some other solution concepts, such as the equilibrium process of coalition
formation (see Konishi and Ray 2003 and Ray and Vohra 2014) and the (strong) rational
expectations farsighted stable set (see Dutta and Vohra 2017), also require immunity
from deviations. A process of coalition formation is a dynamic process that specifies the
coalition that moves at each node and the particular node the coalition moves to. An
equilibrium process of coalition formation (EPCF) is a process of coalition formation,
where coalitional moves at every state are immune to single-step deviations and prefer-
able to inaction. (Strong) rational expectations farsighted stable set ((S)REFS) is a set of
nodes that satisfy certain farsighted external and internal stability conditions and that
can be supported by an expectation function, which specifies the transitions between
nodes. Although both EPCF and (S)REFS also require immunity from deviations, (C)ECB
diverges in one important aspect: it does not restrict attention to one-step deviations.

One might surmise that restriction to one-step deviations is without loss of general-
ity, but depending on the situation and how the utilities are defined, this might not be
the case. Indeed, there are situations where one cannot replicate a profitable deviation
by a one-step deviation under (C)ECB. Mainly because, a deviation to a “cycle” (or an
infinite path) might be the only profitable deviation available.

Hence, the issue is also related to the issue of cycles. The static solution concepts
never prescribe cycles. As the utilities are defined over the paths, (C)ECB allows cycles
to be incorporated as in the dynamic approach. But even the dynamic solution con-
cepts such as the EPCF ignore cycles to some extent by restricting attention to one-step
deviations. In some situations this assumption rules out (possibly profitable) deviations
to cycles (see the example in Figure 7 in Section 4.2). This is no longer the case with
(C)ECB.
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Finally, and perhaps most importantly, the literature on farsighted coalition forma-
tion is very fragmented and (C)ECB shows that it is possible to connect the different
approaches to foresight.

(C)ECB is a versatile solution concept that might be used to study a variety of do-
mains existing in the literature. The versatility of (C)ECB is a result of the generality of
its domain: extended coalitional games.

In an extended coalitional game, utilities of the players are defined over the paths.
This allows one the flexibility to define the solution concept as a static concept, where
players care only about the final outcome the negotiations lead to, and as a dynamic
concept, where players also care about the outcomes along the paths through which an
agreement is reached.

In this way (C)ECB is able to bridge these two different strands of the literature on
farsighted coalition formation. Indeed, ECB can be directly related to solution concepts
in both approaches: SREFS in the static approach and EPCF in the dynamic approach.2

The versatility of the extended coalitional games also allow us to study certain non-
cooperative games with (C)ECB. In particular, extensive form games of perfect informa-
tion are extended coalitional games and (C)ECB is closely related to the most popular
solution concept on this domain: the subgame perfect equilibrium. In finite extensive
form games of perfect information, (C)ECB reduces down to subgame perfect equilib-
rium and ECB refines subgame perfect equilibrium in infinite horizon games.

The variety of the approaches and solution concepts used to study farsighted coali-
tion formation is one of the problems of the literature: “as one surveys the landscape of
this area of research, the first feature that attracts attention is the fragmented nature of
the literature” Ray and Vohra (2014).

Hence, it would be useful to have a framework that could connect the different ap-
proaches to foresight. By allowing a translation of the assumptions of the different ap-
proaches into its own structure, extended coalitional games provide this framework to a
certain extent.

Indeed, ECB shows that the developments in the literature have made it possible to
achieve some level of unification between both the non-cooperative and cooperative
strands of literature and within the cooperative approach. The evidence for this is the
relationships ECB engenders with solution concepts in all three approaches discussed
above. This is especially important when one considers how fragmented the literature
on farsighted coalition formation is.

1.2 Outline of the results

A CECB exists in finite extended coalitional games. In finite acyclic games,3 both ECB
and CECB satisfy the one-step deviation property and, hence, can be found through a
simple backward induction algorithm. Also, an algorithm to find the CECB can be pro-
vided for finite games with cycles.

2CECB is also related to SREFS (albeit not as strongly as ECB), but not to EPCF.
3A game is acyclic if whenever node z �= z′ is reachable from z′ through some sequence of actions, z′ is

not reachable from z.
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On the non-cooperative side, one can find a simple bargaining game defined over
an extended coalitional game whose stationary subgame perfect equilibrium is related
to (C)ECB. In particular, in games that satisfy a condition called strong acyclicity, each
ECB can be supported as a stationary subgame perfect equilibrium of the bargaining
game. Furthermore, if we impose further conditions, then we can obtain full implemen-
tation of both ECB and CECB through the stationary subgame perfect equilibrium of the
bargaining game.

One attractive feature of (C)ECB is that it can be applied to general classes of games
that are used extensively in the literature. In Section 4, I choose three such domains: the
extensive form games, the abstract game, and characteristic function games. I demon-
strate that (C)ECB is related to attractive solution concepts in these domains: subgame
perfect equilibrium in extensive form games, SREFS and EPCF in the abstract game, and
the core in characteristic function games.

Finally, to demonstrate the strength and novelty of the solution concepts, I apply the
(C)ECB to network formation games and show that it is able to make novel predictions in
this widely studied environment. One of the findings of the strategic network formation
literature is the tension between efficiency and stability. Furthermore, Dutta et al. (2005)
and Herings et al. (2009) show that this tension persists even if we consider farsighted
solution concepts. It turns out that (C)ECB is able to overturn these results. In particular,
we can show that there is a “reasonable” way to allocate the value of a network such that
every efficient graph can be supported as the prediction of a (C)ECB when players are
sufficiently patient. I also provide conditions under which all of the predictions of a
(C)ECB would be efficient and uncover a relationship between the solution concept and
what I call the pessimistic network core.

I start with the description of the domain and the solution concept in Section 2.
Section 3 analyzes the properties of (C)ECB, Section 4 studies (C)ECB and compares it
to solution concepts in extensive form games, characteristic function games, and the
abstract game. Section 5 studies network formation under (C)ECB, Section 6 includes
the literature review, and Section 7 concludes with a remark. All proofs are provided in
the Appendix.

2. Preliminaries

2.1 Extended coalitional games

An extended coalitional game is defined as � = {N�Z� {Az}z∈Z� {�i}i∈N}, where N is the
finite set of players, Z is the set of nodes, Az is the set of actions available at node z ∈Z,
and �i is the preference relation of player i ∈N over the set of terminal paths, which are
defined shortly.

An action is a triple (z� z′� S), where the first entry z ∈ Z denotes the node at which
the action can be taken, the second entry z′ ∈Z denotes the node to which the action is
leading, and the third entry denotes the coalition S ⊆ N that can take the action. This
coalition is called the initiator of the action. At some nodes, it might be possible for
no coalition to take an action. This is represented as the particular action (z� z�∅) that
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denotes the possibility of remaining at node z. The set of actions Az is required to be
nonempty: Az = {(z� z�∅)} at a no-action node z.

A path is a sequence of actions {ak}k=1�����K = {(zk� zk+1� Sk)}k=1�����K , where K might
be infinite. A path {ak}k=1�����K is terminal if it is infinite or if aK = (zK� zK�∅). Let P
denote the set of all terminal paths and let �i denotes the preference relation of i ∈ N

on P .

2.2 Equilibrium coalitional behavior

A coalitional behavior is a complete plan of action. It prescribes a unique action to
each node of an extended coalitional game. Let A denote the set of all actions, i.e.,
A= ⋃

z∈Z Az .

Definition 1 (Coalitional behavior). A coalitional behavior is a mapping φ : Z → A,
where φ(z) ∈Az for all z ∈Z.

In turn, each coalitional behavior also prescribes a unique terminal path to each
node of an extended coalitional game; this path is called the path of play. Let Pz denote
the set of terminal paths that start at node z.

Definition 2 (Path of play). Given a coalitional behavior φ, a path of play is a mapping
σ : Z → P such that for each z ∈ Z, σ(z) = {(zk� zk+1� Sk)}k=1�����K = {φ(zk)}k=1�����K ∈ Pz ,
where z1 = z.

Throughout the paper, when the coalitional behavior is denoted by φ, the corre-
sponding path of play is denoted by σ , and when the coalitional behavior is denoted
by φ′, the corresponding path of play is denoted by σ ′. To define our solution concept,
we need the definition of a coalitional deviation from a prescribed plan of action. Intu-
itively, no coalition can be forced to take an action. Hence, each coalition S might refuse
to take a prescribed action φ(z) if S has a nonempty intersection with the initiators of
φ(z). Instead, S can take an action (z� z′�T ), which it has the power to implement, i.e.,
where S contains the initiators of this action. A deviation by S is profitable if at every
node at which an action changes, everybody in S prefers the new path of play to the
initially prescribed path of play.

Definition 3 (Coalitional deviation). The relationship S ⊆ N has a deviation from a
coalitional behavior φ to a coalitional behavior φ′ if for every z ∈ Z such that φ(z) �=
φ′(z) we have the following relationships.

• If φ(z) = (z� z′�T ), where T �= ∅, then S ∩T �= ∅. (If an action specified by φ is not
taken, then S has a member who can refuse to take this action.)

• If φ′(z) = (z� z′�T ), then S ⊇ T . (If an action not specified by φ is taken, then S

should be able to induce this action.)

We say that the deviation by S is profitable if for every z ∈ Z such that φ(z) �= φ′(z),
we have σ ′(z) 
i σ(z) for all i ∈ S.
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Note that the definition allows for a coalition T ⊆ S to block a specified action
(z� z′� S) and take no other action at z, if no action is possible at z. An ECB is simply
a coalitional behavior that is immune to profitable deviations.

Definition 4 (Equilibrium coalitional behavior). A coalitional behavior φ is an ECB if
there does not exist a profitable coalitional deviation from φ.

Note the simplicity of the definition, which is in contrast to most other farsighted
solution concepts. The typical approach in the literature is to look at a set of outcomes
or paths that has some “stability” properties, whereas ECB directly looks at profitable
deviations from plans of actions.

In contrast to this simplicity, ECB is also a powerful concept in the sense that it is re-
lated to a wide variety of solution concepts from different strands of the literature, such
as subgame perfect equilibrium, the core, SREFS and EPCF. However, ECB has issues re-
garding existence. CECB gets over this problem by also considering the credibility of a
profitable deviation.

2.3 Credible equilibrium coalitional behavior

The subgame at z ∈ Z, denoted by �(z), is the game that includes only those nodes that
are reachable from z and the actions between these nodes. The utilities are defined the
same way as in the original game. We say that a subgame is nontrivial if it includes
(strictly) more than one node.

Definition 5 (Basic game). An extended coalitional game is a basic game if the only
nontrivial subgame of the game is the game itself.4

An example of a basic game is a tree of length 1; another example would be a stand-
alone cycle (see Figure 1(b) and Figure 2(b), (c) for examples of basic games). We first
define the notion of credibility for a basic game and then extend it to any extended coali-
tional game.

The idea is that a profitable deviation should only be credible if it cannot be followed
by further farsighted deviations that would make one of the initial deviators worse off.
To incorporate this idea, I define a credible set of coalitional behaviors as a set of coali-
tional behaviors such that any profitable deviation from a coalitional behavior in the set
might be followed by further farsighted profitable deviations back into a coalitional be-
havior in the credible set that makes one of the initial deviators worse off. Hence, any
profitable deviation from a credible coalitional behavior is avoided by further deviations
to a credible coalitional behavior.

Let � denote the set of all coalitional behaviors. For φ�φ′ ∈ �, we say that φ dom-
inates φ′, φ >D φ′, if there exists a profitable deviation from φ′ to φ. We write φ >S

D φ′
if there exists a profitable deviation from φ′ to φ by coalition S ⊆ N . Finally, for any

4Formally, � is a basic game if for every z ∈ �, either �(z) = � or z′ ∈ �(z) implies that z′ = z.
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two coalitional behaviors φ�φ′ ∈ �, φ 
i φ
′ if for every z ∈ Z such that φ(z) �= φ′(z),

σ(z) 
i σ
′(z).

The definition of indirect dominance through profitable deviations below is the
usual indirect dominance relation due to Harsanyi (1974) and Chwe (1994), where the
relation is defined over the set of coalitional behaviors.5

Definition 6 (Indirect dominance through profitable deviations). A coalitional behav-
ior φ ∈ � indirectly dominates φ′ ∈ � through profitable deviations, denoted by φ�φ′,
if there exists φ0�φ1� � � � �φn ∈ � and S0� S1� S2� � � � � Sn−1 such that φ0 = φ′, φn = φ,
φi+1 >

Si
D φi, and φ 
Si φi for all i = 0� � � � � n− 1.

A set of coalitional behaviors Y is a credible set if a coalitional behavior φ is in Y if
and only if any profitable deviation from φ can be followed by a sequence of profitable
deviations into Y , which makes one of the initial deviators worse off. Furthermore, the
sequence of profitable deviations has the property that each coalition moving along the
sequence foresees the final coalitional behavior the sequence leads to and prefers that
final coalitional behavior to the coalitional behavior it replaces.

Definition 7. In a basic game, a set of coalitional behaviors Y ⊆ � is credible if φ ∈ Y

if and only if for all S ⊆ N and φ′ ∈ � such that φ′ >S
D φ there exists φ∗ ∈ Y with φ∗ �φ′

and φ∗ �S φ.6

The definition of a credible set mirrors the definition of a consistent set of Chwe
(1994) with two major differences: (a) the focus is on coalitional behaviors instead of the
outcomes and (b) the profitable deviation relation is taken as the effectiveness relation
in Chwe (1994).7

There might be multiple credible sets, but the lemma below, which is due to Chwe
(1994), establishes that there always exists a unique credible set that contains all of the
other credible sets. This set is called the largest credible set (LCRS), following the largest
consistent set of Chwe (1994).

Lemma 1. In any basic game, there uniquely exists a Y such that Y is credible and
(Y ′ credible =⇒ Y ′ ⊆ Y). The Y is called the LCRS.

In a basic game, we say that a coalitional behavior is credible if it is included in the
LCRS. Similarly, we say that a profitable deviation from φ to φ′ by coalition S is credible if
it cannot be followed by profitable deviations to a credible coalitional behavior φ∗ such
that φ∗ �S φ.

5See Section 4.2 and Definition 14 for the standard definition of an indirect dominance relation in an
abstract game.

6We have φ∗ 
S φ if φ∗ 
i φ for all i ∈ S.
7Point (b) is reminiscent of the difference between the original definition of indirect dominance given

in Harsanyi (1974) and the modified definition in Chwe (1994). The former imposes that the coalition im-
proves at every step. In this sense, the definition used here is closer to Harsanyi’s (1974) definition. As you
will see, the current definition has the advantage of making ECB a refinement of CECB.
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Definition 8 (Credible deviation in a basic game). In a basic game, a profitable devi-
ation from φ to φ′ by coalition S is credible if there does not exist a credible coalitional
behavior φ∗ such that φ∗ �φ′ and φ∗ �S φ.

It is easy to see that, in a basic game, a coalitional behavior φ is immune to profitable
and credible deviations if and only if φ is in the LCRS. One could choose to use the
LCRS as the solution concept in the whole extended coalitional game instead of basic
games. But LCRS has some problems that I would like to avoid; see Remark 1 for a brief
discussion of these problems and see Section 7 for a more detailed explanation. To avoid
these problems, I extend the definition of a credible deviation from a basic game to any
extended coalitional game using the notion of “reduced games,” which is explained now.

Once a coalition S deviates from a coalitional behavior φ′ to a coalitional behavior φ,
the players would expect the game to continue as in φ at any proper subgame �(z). That
is, players might assume that any action leading to the proper subgame �(z) is going to
be followed by σ(z). I define a reduced game based on this idea.

We say that z leads to a proper subgame of �(z∗) if �(z) is a proper subgame of �(z∗)
and if z is directly reachable from a node that shares the same subgame as z∗. Let z∗
denote the set of nodes that lead to a proper subgame of �(z∗). Formally, z∗ = {z ∈ �(z∗) |
�(z) ⊂ �(z∗) and there exists (z′� z� S) ∈A such that �(z∗) = �(z′)}.

If �(z∗) is a tree, then z∗ is composed of those nodes that are directly reachable
from z∗. For instance, in the game depicted in Figure 1, a = {b� c�d}. If z∗ is on a cy-
cle, then z∗ is composed of those nodes that are directly reachable from the cycle that
z∗ belongs to, but it does not include any node that is in the same cycle with z∗. For
instance, in the game depicted in Figure 2, a= b = {c}.

To see whether a deviation is credible at node z∗, the players can simply “remove”
the subgames that start at nodes in z∗ and treat those nodes in z∗ as terminal nodes,
where the payoff of any node in z∗ is given by the associated path of play. The definition
of a reduced game formalizes this idea.

Definition 9 (Reduced game). Given the game � = {N�Z� {Az}z∈Z� {�i}i∈N}, the re-
duced game at z∗ ∈ Z given φ, denoted by �(z∗�φ), is defined as �(z∗�φ) = {N�Z∗�
{A∗

z}z∈Z∗� {�∗
i }i∈N}, where the following statements hold:

• We have Z∗ = {z ∈ Z | either z ∈ z∗ or (z ∈ �(z∗) and z /∈ �(z′) for any z′ ∈ z∗)}. (All
nodes that are part of a proper subgame are removed from �(z∗) except those lead-
ing to a proper subgame.)

• We have A∗
z = Az if z ∈ Z∗ \ z∗ and A∗

z = (z� z�∅) if z ∈ z∗. (Nodes that lead to a
proper subgame are treated as terminal nodes.)

• For any terminal path p, let p∗ = (p�σ(z)) if p terminates at z ∈ z∗; otherwise let
p∗ = p. Then for any two terminal paths p1, p2 and for any i ∈N , we have p1 �∗

i p2

if and only if p∗
1 �i p

∗
2. (Each path p terminating at a node z leading to a proper

subgame has the “utility” of the terminal path (p�σ(z)) in the original game.)
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Figure 1. An acyclic game.

Figure 2. A game with cycles.

The main idea behind a reduced game is simple: at node z∗, the players expect the
game to be continued as in φ in any proper subgame of �(z∗). Hence, they treat each
node z leading to a proper subgame as a terminal node and they assign the utility of
the terminal path (p�σ(z)) to any path p terminating at z. One important point to note
is that while finding reduced games, we never break cycles. This is because reduced
games are obtained by removing proper subgames and two nodes in a cycle are always
associated with the same subgame. Finally, note that each reduced game is necessarily
a basic game.

See Figure 1 for a reduced game in a tree structure. Assume that the utility of a ter-
minal path is the utility of the node the path terminates in and consider the coalitional
behavior that assigns φ(c) = (c� e� {2}). To find the reduced game at the root, note that
there is only one (nontrivial) proper subgame, which starts at c. Once we remove every
node reachable from c and assign c the utility associated with the path prescribed by the
coalitional behavior φ, we are left with the game in Figure 1(b).

See Figure 2 for an example with cycles. Assume that no-action is available at every
node and the utility of a terminal path is the discounted utility of the nodes along the
path with discount factor δ= 1

2 . Consider the coalitional behavior φ that assigns φ(c) =
(c�d� {1}) and φ(d) = (d�d�∅). To find the reduced game at node a, observe that the
game has only one proper subgame, which is the cycle composed of c and d. Hence,
we remove only this cycle. We treat node c, which connects this cycle to the game, as
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a terminal node and assign the utility associated with σ(c) to this node. In this case, φ
specifies that at node c, the players will receive a payoff of 16 indefinitely but with one
period delay. Since δ = 1

2 , this is equivalent to receiving a payoff of 8 indefinitely, so we
can plug in (8�8) on node c. Finally, we obtain the reduced game in Figure 2(b).

We have seen the reduced game at node a, but what about the reduced game at any
node on the cycle composed of c and d? The subgame at node c and node d is the cycle
itself and this cycle does not contain any proper subgames. Hence, the reduced game
at any node in the cycle would be the cycle itself. For instance, �(c�φ) = �(c) for any
coalitional behavior φ (see Figure 2(c)).

Each reduced game is necessarily a basic game. Hence, we can check the credibility
of a deviation at each reduced game, the idea being that if the players expect the game
to be continued as in φ, then at any reduced game their deviation should be credible.

To formalize this idea, we need an additional definition. The deviation from φ′ to
φ restricted to the reduced game �(z�φ) is the deviation in �(z�φ) from the coalitional
behavior that matches with φ′ in the nonterminal nodes included in �(z�φ) to the coali-
tional behavior that matches with φ in the nonterminal nodes included in �(z�φ).

Definition 10 (Credible deviation). A profitable deviation from φ′ to φ is credible if for
each z ∈ Z for which φ(z) �= φ′(z), the deviation restricted to �(z�φ) is credible in the
reduced game �(z�φ).

Definition 11 (Credible ECB). A coalitional behavior φ is a CECB if it is immune to
profitable and credible deviations.

In a basic game, φ is a CECB if and only if φ is an element of the LCRS. The use of
reduced games to define CECB implies that this equivalence no longer holds when we
go beyond basic games. Remark 1 below explains why we use the formalism of reduced
games instead of directly looking at the LCRS of the whole game.

Remark 1 (LCRS versus CECB). Imagine a situation, where the game comes to a point
in which a player chooses between a payoff of 1 and a payoff of 2, and when the player
makes this decision the game ends. In such a game, LCRS might as well specify that
the player would choose the lower payoff because she can be unreasonably concerned
that her deviation to the higher payoff might trigger a wave of deviations in the past that
could make her worse off. Such an example is formalized in Section 7.

With the use of reduced games, CECB overcomes such problems. This provides
CECB with certain desirable properties such as the fact that it can be found with back-
ward induction whenever possible. Furthermore LCRS is a very permissive solution con-
cept, and the reduced game formalism allows CECB to alleviate this multiplicity prob-
lem to a great extent without compromising it from existence. All of these points are
shown with a concrete example in Section 7.
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2.4 Examples

Consider the game represented in Figure 1(a). There are three players, 1, 2, and 3. There
are six nodes, four of which are terminal. The utility of a terminal path is the utility of
the node the path terminates in.

Consider the coalitional behavior φ1 that assigns φ1(a) = (a�d� {1}) and φ1(c) =
(c� f� {2�3}). This is not an ECB, because the coalition {1�2} has a profitable devia-
tion in which player 1 blocks the action (a�d� {1}). Instead the coalition {1�2} takes
the action (a� c� {1�2}) and player 2 blocks the action (c� f� {2�3}) at node c, and, in-
stead, takes the action (c� e� {2}). Let us call the resulting coalitional behavior φ2, where
φ2(a) = (a� c� {1�2}) and φ2(c) = (c� e� {2}).

But now the coalition {2�3} has a profitable deviation from φ2 in which player
2 blocks the action (a� c� {1�2}) and, instead, the coalition {2�3} takes the action
(a�b� {2�3}). Let us call the resulting coalitional behavior φ3, where φ3(a) = (a�b� {2�3})
and φ3(c) = (c� e� {2}). It is easy to see that there is no profitable deviation from φ3 and,
indeed, this is the unique ECB of this game.

CECB incorporates the idea that the initial deviation from φ1 is not credible since it
can be followed by another deviation that would make the initial deviator worse off. To
see this formally, consider the reduced game at node a given φ2, which is depicted in Fig-
ure 1(b). The unique LCRS of this game is {(a�b� {2�3})� (a�d� {1})}. Note that (a�d� {1})
is in the LCRS, because any profitable deviation will be followed by another profitable
deviation to an action in the LCRS that makes one of the initial deviators (player 1) worse
off. Hence, the initial profitable deviation is not credible.

Nevertheless, there exists a profitable and credible deviation from φ1 in which player
2 blocks the action (c� f� {2�3}) and, instead, takes the action (c� e� {2}). Note that the re-
duced game at node c is the subgame that starts at node c, which has a singleton LCRS
composed of (c� e� {2}); hence, the deviation is credible. Let us call the resulting coali-
tional behavior φ4, where φ4(a) = (a�d� {1}) and φ4(c) = (c� e� {2}).

The behavior φ4 is a CECB and since φ3 is an ECB, it is also a CECB. One can easily
check that these are all the CECBs of this game.

For an example with cycles, look at the game in Figure 2(a). Assume that no-action is
available at every node and the utility of a terminal path is the discounted utility of the
nodes along the path with discount factor δ = 1

2 , i.e., the utility of player i ∈ N from the
terminal path {(zk� zk+1� Sk)}k=1�2�����K is

∑
k=1�����K δk−1ui(zk)+

∑
k=K���� δ

kui(zK), where

δ = 1
2 .
Consider the subgame at node c (see Figure 2(c)), which is a basic game. In this

game, LCRS is composed of a single coalitional behavior φ1, which assigns φ1(c) =
(c�d� {1}) and φ1(d) = (d�d�∅). To see this, observe that in this subgame there is a prof-
itable deviation from any other coalitional behavior to φ1.

But then, in the whole game, any CECB φ should necessarily assign φ(c) = (c�d� {1})
and φ(d) = (d�d�∅). Otherwise there is a deviation from the coalitional behavior, in
which only the actions at node c and d change to the actions assigned by φ1. Since only
these actions change, and since the LCRS of the reduced game at both node c and node
d is composed of φ1, we have that the deviation is credible and profitable.
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Now observe that the LCRS of the reduced game at node a given φ1 (see Figure 2(b))
is composed of a single coalitional behavior φ2, which assigns φ2(a) = (a� c� {1�2}) and
φ2(b) = (b�a� {2}). This is because there is a profitable deviation from any other coali-
tional behavior to φ2 and φ2 is immune to profitable deviations.

When we combine φ1 and φ2, we obtain a coalitional behavior that is necessarily
a CECB for the whole game. Let us call it φ. If there exists any other CECB φ′, by the
observation above, φ′(c) =φ(c) and φ′(d)= φ(d). If φ′(j) �=φ(j) for j = a�b, then there
will be a profitable deviation to φ. Furthermore, the deviation will necessarily be cred-
ible because the reduced game given φ (depicted in Figure 2(b)) has a singleton LCRS
composed of φ2, which coincides with φ in this reduced game.

This implies that the unique CECB of the game is φ. Since φ is immune to profitable
deviations, it is also the unique ECB.8

An easier way to find the (C)ECBs in both of these examples is to use backward in-
duction. That is, one can solve these games by recursively finding (C)ECBs of basic
games, starting from subgames that are themselves basic games and then plugging in
the utilities of the found path of plays onto the nodes leading to these subgames. One
can continue doing this until every (C)ECB of the game is found. This is shown rigor-
ously in Section 3.3, which also provides an algorithm to find the CECBs in finite cyclic
games.

3. Properties

3.1 Existence

Proposition 1. CECBs exists in any finite extended coalitional game.

The existence of CECBs in basic games reduces down to the existence and nonempti-
ness of the LCRS in basic games. Chwe (1994) shows that a largest consistent set would
exist and be nonempty. This directly implies the existence and nonemptiness of the
LCRS in basic games, hence the existence of CECB in basic games.

In any finite game, one can find the CECBs through recursively finding the CECBs of
basic games. Hence, a CECB exists in any finite game. See the Appendix for details.

3.2 One-step deviation property

We say that a deviation is a one-step deviation if every action involved in the deviation
stems from the same node. We say that ECB satisfies the one-step deviation property
if the existence of a profitable deviation implies the existence of a profitable one-step
deviation. Similarly, CECB satisfies the one-step deviation property if the existence of a
credible and profitable deviation implies the existence of a one-step credible and prof-
itable deviation. An acyclic game is a game that does not contain cycles.

Proposition 2. In finite acyclic games, both ECB and CECB satisfy the one-step devia-
tion property.

8This is because each ECB is necessarily a CECB.



682 Mert Kimya Theoretical Economics 15 (2020)

In such games, any deviation leads to finite paths and, hence, in any deviation there
exists a node at which the action changes, but the action at each node reachable from
this node stays the same. The deviation in which only the action at this node changes
would be one-step, credible, and profitable.

The one-step deviation property no longer holds in infinite games or games with
cycles. The reason is that, under a (C)ECB, a deviation is profitable only if it improves
the payoffs of the deviators at every node at which an action changes. Hence, in infinite
games, for a deviation to be profitable, a coalition might need to promise to change its
actions at infinitely many places. An example is available in Section 4.1.

3.3 Computation in finite games and backward induction

3.3.1 Finite acyclic games A nice implication of the one-step deviation property is that
both ECB and CECB can be found through backward induction in finite acyclic games.
Let � be a finite acyclic game. For any z ∈ Z, let �(z) denote the subgame starting at z
and let l(�(z)) be the length of this game (the length of the longest terminal path).

Backward induction works as follows. For any z for which l(�(z)) = 1, find a (C)ECB
for �(z) and let the path of play at z be denoted by p(z). Suppose the (C)ECBs of every
subgame of length l < k are found and take any z with l(�(z)) = k. Let �̂(z) denote
the reduced basic game in which the set of nodes is only those nodes that are directly
reachable from z and the utility of taking an action (z� z′� S) is given by the utility of
{(z� z′� S)�p(z′)}. Find the (C)ECB of this reduced basic game and let p(z) denote the
resulting path of play at z. Continue in this way until all of the nodes are exhausted.

The backward induction algorithm above finds all of the (C)ECBs of any finite acyclic
game.

3.3.2 Finite games with cycles Even when the game has cycles, one can use backward
induction to a certain extent. For instance, if a node z′ is reachable from node z and if
�(z′) is a proper subset of �(z), then by the same argument as above, without loss of
generality, one can first find the (C)ECB of �(z′) and then move up.9

Given this, the question is the computability of the (C)ECB in basic games with cy-
cles. The question is particularly relevant for the CECB, as its definition requires us to
check deviations from deviations. Chwe (1994) has already provided an algorithm to
compute the largest consistent set, so we can easily adapt the algorithm to work for the
CECB.

Assume that � is a basic game and let � be the set of coalitional behaviors. Define
the function f : 2� → 2�, where f (X) = {φ ∈� | for all S ⊆N and φ′ ∈� such that φ′ >S

D

φ�∃φ∗ ∈X with φ∗ �φ′ and φ∗ �S φ}.
Note that a set of coalitional behaviors X is credible if and only if f (X) = X . Fur-

thermore, f is isotonic, i.e., X ⊆ Y =⇒ f (X) ⊆ f (Y). We iteratively apply the function

9The example in Figure 2 clearly demonstrates this process: We can start solving this game from the
“final” proper subgame of the game, which is the cycle depicted in Figure 2(c). After we find the CECB of
this subgame, we can plug the utility of the CECB into node c, which connects this subgame to the game
itself. Once we do this, we end up with the game in Figure 2(b). This is a basic game, which means that we
cannot reduce it any further. Hence, we solve this game and then we are done.
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f starting from �. Since f is isotonic, we have that � ⊇ f (�) ⊇ f (f (�)) � � � . Since �

is finite, there exists j such that f j(Z) = f j+1(Z), implying that f j(Z) is a credible set.
Clearly there cannot be a set K strictly containing f j(Z) that is also credible. But then
by Lemma 1, f j(Z) is the LCRS. Hence a coalitional behavior φ is a CECB if and only if
φ ∈ f j(Z).

3.4 A non-cooperative game

A stationary subgame perfect equilibrium of a simple bargaining game defined over an
extended coalitional game can be associated with the (C)ECBs of the underlying game,
which provides further evidence that (C)ECB embodies the idea of maximality.

The extensive form game will be defined for extended coalitional games in a tree
structure, but it is easy to see that the results can be generalized to any acyclic extended
coalitional game. Furthermore, we assume that the extended coalitional game satisfies
the following property: if (z� z�∅) ∈ Az , then Az = (z� z�∅), i.e., if no-action is available
at node z, then node z is a terminal node.

We start with the description of the extensive form. An order of players for each node
is given. The game starts at the root z0.

Step 1. The first player in the exogenously given order becomes the proposer.

Step 2. The proposer proposes an action available at the node.

Step 3. Each player active at that action sequentially accepts or rejects the proposal
according to the given order.

Step 4. If everyone accepts, the action is taken. The game moves on to the corre-
sponding node. Go back to Step 1 if it is not a terminal node. If it is terminal,
the payoffs are realized.

Step 5. If someone rejects, then he becomes the new proposer. Go back to Step 2.

If the negotiations come to an end, i.e., if a terminal node is reached, then each
player gets the utility corresponding to the utility of the terminal path the game visits.
Ongoing negotiations provide the worst utility.

We say that a game is strongly acyclic if the game is acyclic and the dominance re-
lation >D defined on � is acyclic. The first result shows that any ECB can be supported
as a stationary subgame perfect equilibrium in finite strongly acyclic games. Proposi-
tion 3 provides further evidence that the predictions of ECB are indeed sensible, where
sensibility is checked against the stationary subgame perfect equilibrium of a simple
bargaining game.

Proposition 3. In finite strongly acyclic games, any ECB φ can be supported as a sta-
tionary subgame perfect equilibrium outcome for some order of players.

Both of the solution concepts can be found through backward induction, so one can
restrict attention to trees of length 1. Suppose (z�x�S) is an ECB for such a tree. Suppose
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the order of players is such that someone in S comes first. Consider the stationary (in-
complete) strategy in which everybody in S offers (z�x�S) and accepts this offer. Note
that for any action (z� y�T ) �= (z�x�S), either (z�x�S) �S (z� y�T ) or there exists i ∈ T

with (z�x�S) �i (z� y�T ). In the former case, everyone in S would like to prevent the ac-
tion; in the latter case, there exists i ∈ T , who would be willing to reject the action for the
sake of (z�x�S). This gives a rough idea as to how the given incomplete strategies can
be completed in a way that supports (z�x�S) as the stationary subgame perfect equilib-
rium outcome, where strong acyclicity is needed to complete the described strategy. See
the Appendix for the details of the proof.

One might wonder if there exists a condition that would relate the stationary sub-
game perfect equilibrium to the (C)ECB in a stronger way. It turns out that indeed there
is. The condition is somewhat strong, but it provides us with full implementation of both
ECB and CECB.

For a coalitional behavior φ, let I(φ) denote the set of individuals that become active
at some point according to φ, i.e., I(φ) = {i ∈ N | for some z ∈ Z� i ∈ I(φ(z))}, where
I(φ(z)) is the initiator of φ(z).

Definition 12. A coalition S is potent if there exists a coalitional behavior φ∗ such that

• I(φ∗) = S and I(φ)∩ S �=∅ for all φ �=φ∗

• for any φ ∈ �, either φ∗ 
S φ or φ∗ ∼S φ.10

The potent coalition has the ability to impose their most preferred coalitional be-
havior. Furthermore, for any coalitional behavior, the potent coalition has a member
who is needed to impose that coalitional behavior.

Proposition 4. Suppose � is a finite acyclic game that contains a potent coalition. Then
φ is a stationary subgame perfect equilibrium outcome if and only if φ is a CECB if and
only if φ is an ECB.

The proposition states that the existence of a potent coalition makes certain predic-
tions highly salient and that all three solution concepts predict these coalitional behav-
iors.

Since the predictions of all three solution concepts can be found recursively, Propo-
sition 4 can also be applied recursively. Namely, one can show that when applying back-
ward induction, each reduced game has a potent coalition. Then Proposition 4 still ap-
plies even if the whole game does not have a potent coalition. That is, in such games we
still have equivalence between stationary subgame perfect equilibrium, ECB, and CECB.
A good example is the domain of extensive form games of perfect information. In this
domain, in general, no potent coalition would exist. But it is easy to see that in the pro-
cess of backward induction, each reduced game definitely contains a potent coalition.
Hence, the theorem applies on this domain.

10Remember that φ∗ 
S φ if φ∗ 
i φ for all i ∈ S. Similarly, φ∗ ∼S φ if φ∗ ∼i φ for all i ∈ S, where φ 
i φ
′

(φ∼i φ
′) if for every z ∈ Z such that φ(z) �= φ′(z), σ(z)
i σ

′(z) (σ(z) ∼i σ
′(z)).
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4. Classes of games

In this section we look at applications to general classes of games that are being ex-
tensively used in the economics literature. We start by analyzing the (C)ECBs of exten-
sive form games, which is followed by the abstract game and the characteristic function
games.

4.1 Extensive form games

It is easy to see that an extensive form game of perfect information is an extended coali-
tional game.

Definition 13 (Extensive form games of perfect information). An extended coalitional
game � is an extensive form game if the graph of � is a tree and for all z ∈Z, the following
statements hold.

• Either Az = {(z� z�∅)} (i.e., z is a terminal node) or for all (z� z′� S) ∈ Az , we have
S = {i} for the same i ∈N (i.e., only one individual is active at each node).

• For p′�p′′ ∈ Pz and i ∈ N , p′ �i p
′′ if and only if (p�p′) �i (p�p

′′) for any path p

that ends at z.

The first condition basically states that a single individual is active at each node. The
second condition is the usual consistency condition on the payoffs that is inherent in
extensive form games: namely, if p′ and p′′ are two terminal paths that start at z, then
an individual prefers p′ to p′′ if and only if she prefers (p�p′) to (p�p′′) for any path p

ending at z.
In finite extensive form games, since both subgame perfect equilibrium and (C)ECB

satisfy the one-step deviation property, it is easy to show that subgame perfect equi-
librium and (C)ECB are equivalent. However, the equivalence breaks down in infinite
games. But one can easily establish that every ECB is going to be a subgame perfect
equilibrium.

Proposition 5. In any finite extensive form game, φ is an ECB if and only if φ is a CECB
if and only if φ is a subgame perfect equilibrium. Furthermore, if φ is an ECB for any
extensive form game, then φ is a subgame perfect equilibrium.

The reason why equivalence breaks down in infinite games is that unlike subgame
perfect equilibrium, the one-step deviation property of (C)ECB is not inherited in in-
finite horizon games that are continuous at infinity, such as games with discounting.
In games that are continuous at infinity, under the subgame perfect equilibrium, any
profitable infinite deviation can be replaced with a profitable finite deviation. This
is done by truncating the deviation after some period T . As the payoffs get less and
less important in future periods the resulting deviation is still profitable. But under a
(C)ECB, this may not be the case, because whatever T at which we truncate the devia-
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Figure 3. Favor exchange.

tion, (C)ECB also imposes the restriction that at period T − 1, the deviation should be
profitable.

For instance, consider the favor exchange game in Figure 3. Here, player 1 can do a
favor for player 2 or not. Following player 1’s decision, player 2 decides whether to do a
favor for player 1 or not. A player who receives a favor gets a utility of 1 and a player who
provides a favor incurs a cost of 1

2 .
There is a unique subgame perfect equilibrium of this game, which specifies that

each player chooses to provide no favor at each node of the game. By Proposition 5, this
is also the unique (C)ECB of the game.

Suppose that the players repeatedly play the favor exchange game. At each period
they get the payoffs of the favor exchange game played in that period and the payoffs are
discounted with a common discount factor δ ∈ (0�1).

There is still a subgame perfect equilibrium of this game in which each player
chooses {N} in each period. But this subgame perfect equilibrium is not a (C)ECB for
δ big enough. This is because there is a profitable deviation by S = {1�2} in which the
players change to playing {F} as long as no {N} is chosen. The deviation is profitable
since at every node at which S changes its action, both of the players are better off. Fur-
thermore, the deviation is credible, because if any player chooses to deviate from the
newly prescribed action, then he will be punished by the perpetual play of {N}.

This example also shows that unlike subgame perfect equilibrium, under (C)ECB,
the one-step deviation property no longer holds in infinite horizon extensive form
games with discounting. The above deviation cannot be replaced by a finite deviation,
because in any finite deviation, the last player to deviate would have no incentive to
keep his promise.
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4.2 The abstract game

An abstract game is defined as � = {N�Z� {vi}i∈N� { S−→}S⊆N�S �=∅} (see, for example, Chwe
1994, Rosenthal 1972, and Xue 1998), where N is the set of players, Z is the set of states,

{vi} is player i’s utility function defined on the set of states, and { S−→}S⊆N�S �=∅ are effec-

tiveness relations defined on Z. The effectiveness relation { S−→} describes what coalition

S can do at every state, i.e., a
S−→ b for a�b ∈ Z if and only if when a is the status quo

coalition, S can exchange state a with state b.
All of the ingredients of an abstract game, except for the utilities, admit an obvious

translation to the extended coalitional game. The set of players N and the set of nodes
Z at the same. The set of actions available at any node is given by the effectiveness
relation, but also note that in an abstract game, it is possible for no-action to be taken
at every node. Hence, for each z ∈ Z, Az is defined as (z�x�S) ∈ Az if and only if ((x = z

and S =∅) or (z
S−→ x for S �= ∅)).

By changing the way we define the utilities over the paths, (C)ECB is able to mimic
the way different solution concepts analyze the abstract game. Main approaches can be
divided into two.

The static approach Some solution concepts such as largest consistent set (LCS), far-
sighted stable set (FSS) (see Chwe 1994), optimistic stable standard of behavior (OSSB),
conservative stable standard of behavior (CSSB) (see Xue 1998), REFS, and SREFS (see
Dutta and Vohra 2017) assume that players care only about the final outcome the path
leads to. This might be easily represented with the following assumption on preferences:
For any p ∈ P , let T (p) denote the node in which the path terminates if p is finite; other-
wise let T (p)= ∅. For all i ∈N and p ∈ P , we set ui(p) = vi(T (p)) if p is finite; otherwise
ui(p) = −∞. I call the (C)ECB under this assumption the static (C)ECB.11

The dynamic approach Some solution concepts such as the EPCF (see Konishi and Ray
2003 and Ray and Vohra 2014) assume that there is a discount factor δ and players dis-
count the utilities among a path. This might be easily represented with the following
assumption on preferences: For p = {zk}k=1�����K ∈ P , let ui(p) = ∑

k=0�����K δkvi(zk) +
∑

k=K+1���� δ
kvi(zK). I call the (C)ECB under this assumption the dynamic (C)ECB.

Early approaches to study farsighted coalition formation suffered from what Ray and
Vohra (2014) call the problem of maximality. This refers to the observation that instead
of considering the best course of action, players form extreme expectations based on
optimism (such as FSS and OSSB) or pessimism (such as LCS and CSSB).

The example in Figure 4 demonstrates this for the LCS. In this example, the LCS is
{a� c�d}. According to LCS, a is stable because under the assumptions of the LCS, players
are pessimistic and player 1 is afraid that player 2 will move to state c following state b.
It is easy to see that (C)ECB makes the “correct” prediction in this game.12

11Assigning the lowest utility to infinite paths causes no loss in generality, as the solution concepts in the
static approach never prescribe cycles or infinite paths.

12The unique (C)ECB φ specifies φ(a)= (a�b� {1}) and φ(b) = (b�d� {1�2}).
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Figure 4. LCS differs from (C)ECB.

Figure 5. FSS differs from (C)ECB.

Figure 6. OSSB/CSSB differ from (C)ECB (example taken from Herings et al. 2004).

Similarly, the example in Figure 5 demonstrates the problem for the FSS. The rea-
sonable prediction and the unique (C)ECB φ of this game specify φ(b) = (b� c� {2}),
φ(a) = (a�a�∅), and φ(x) = (x�a� {3}). However, under the FSS, a is not stable, because
1 optimistically and unreasonably believes that 2 will move to d with him, but this in
turn makes x stable under the unique FSS. Hence, FSS = {x� c�d}.

Xue (1998) proposed to deal with the issues related to the FSS and the LCS by en-
dowing individuals with perfect foresight in the sense that under Xue’s (1998) solution
concepts, individuals not only consider the final outcomes, but also consider how these
outcomes are reached. For this reason, Xue (1998) looks at the stability of a set of paths
instead of the stability of a set of outcomes while defining his solution concepts OSSB
and CSSB.

One problem with OSSB and CSSB is that both of these solution concepts might fail
to make some obvious predictions, clearly violating the notion of maximality. Nice and
simple examples of these problems are provided in Herings et al. (2004). In all of these
examples it is easy to see that (C)ECB makes the right prediction. Here I replicate only
one of the examples provided by Herings et al. (2004).

Consider the game in Figure 6 taken from Herings et al. (2004). The authors note
that in this example, under the unique OSSB/CSSB state, a is stable. This should not be
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Figure 7. Profitable deviation to a cycle.

the case, because if player 1 moves to b, then she will certainly be better off. The reason
OSSB/CSSB fails is that at node b, both the OSSB and the CSSB are empty and this leads
both concepts to fail to make the right prediction at the node preceding node b. Finally,
it is easy to see that (C)ECB makes the correct prediction in this game. Indeed, there
are two (C)ECBs, φ1 and φ2, where φ1(a) = φ2(a) = (a�b� {1}), φ1(b) = (b�d� {1}), and
φ2(b) = (b� c� {2}).

Nevertheless, some recent solution concepts such as the REFS, SREFS, and EPCF
have managed to solve these issues by considering consistent expectations just like
(C)ECB does. One important way in which (C)ECB differs from these solution concepts
on the domain of the abstract game is that all these solution concepts restrict attention
to one-step deviations, whereas (C)ECB allows for any arbitrary deviation.

This does not seem to be a problem in static solution concepts such as the REFS and
SREFS. However, the same cannot be said of the dynamic solution concepts such as the
EPCF.

To see this, consider the example in Figure 7. Assume that the utilities are defined
as discounted utilities over paths. At node b, player 1 moves to a and settles for a payoff
of 1. Similarly, player 2 moves from c to d and settles for a payoff of 1. There is no
profitable one-step deviation from this coalitional behavior for δ big enough. But there
is a profitable deviation by the coalition {1�2} to the cycle. Hence, for δ big enough, the
depicted coalitional behavior is not a (C)ECB, but it is an EPCF, although the profitable
deviation to the cycle would increase the payoff of every individual.

As has been demonstrated, one advantage of (C)ECB is its versatility. By changing
the way we define the utilities over the paths, (C)ECB is able to mimic the way different
solution concepts analyze the abstract game.

Indeed, one can easily show that ECB is related to a solution concept in both the
static approach (SREFS) and the dynamic approach (EPCF). When one also includes
the relationship between (C)ECB and SPE, one obtains a solution concept that is able
to bridge the non-cooperative approach with the static and the dynamic approaches to
foresight. Now we show this formally.

Definition 14 (Indirect dominance). The relationship x ∈ Z indirectly dominates y ∈
Z(x � y) if there exists x0�x1� � � � � xn ∈Z and S0� S1� S2� � � � � Sn−1 such that x0 = y, xn = x,
(xi�xi+1� Si) ∈Axi , and vj(xn) > vj(xi) for all j ∈ Si, for all i = 0� � � � � n− 1.

The solution concepts in the static approach are defined using the indirect domi-
nance relation, which uses strict preference, whereas under the (C)ECB, coalitions might
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take some actions even if they are indifferent. We always see a difference between these
concepts and the (C)ECB due to the different ways with which they treat indifference.
I do not view this difference as essential. Therefore, not to bump on it again and again,
from now on I assume that the environment satisfies no indifference.

Definition 15 (No indifference). An abstract game � satisfies no indifference if for all
i ∈ N and z� z′ ∈Z, where z �= z′, we have vi(z) �= vi(z

′).

Using coalitional behavior rather than expectations, we can restate the stability con-
cept used in SREFS in the language of our framework. Let S(φ) denote the set of stable
nodes in coalitional behavior φ, i.e., S(φ)= {z ∈Z | φ(z) = (z� z�∅)}.

Definition 16 (SREFS (Dutta and Vohra 2017)). A set V ⊆ Z is an SREFS if there ex-
ists an acyclic coalitional behavior φ such that S(φ) = V and the following statements
hold.

(IS) If x ∈ V , then there does not exist y ∈ Z and S ⊆ N such that (x� y�S) ∈ Ax and
vi(T (σ(y))) > vi(x) for all i ∈ S.

(ES) If x /∈ V , then σ(x) is an indirect dominance path.

(M) If x /∈ V and if T is the initiator at x, then there does not exist y ∈ Z and F ⊆ N

with T ∩ F �= ∅ and (x� y�F) ∈ Ax such that vi(T (σ(y))) > vi(T (σ(x))) for all
i ∈ F .

The first and second conditions are interpreted as internal and external stability con-
ditions with respect to the expectation, whereas the third condition requires optimality
of the move at any node x, where optimality is conditioned on a one-step deviation.

It turns out that under the weak assumption that actions are monotonic, in the sense
that whenever a coalition S is able to take a certain action, then any coalition T contain-
ing S can also take this action, ECB is equivalent to SREFS.

Definition 17 (Monotonicity of actions). We say that an extended coalitional game
satisfies monotonicity of actions if whenever (z� z′� S) ∈ Az for some z ∈ Z, we also have
that (z� z′�T ) ∈Az for all T ⊇ S.

Proposition 6. Let � be an abstract game that satisfies no indifference and monotonic-
ity of actions. Then the following statements hold.

• If V is an SREFS and φ is the coalitional behavior that supports it, then φ is a static
ECB and, hence, is a static CECB.

• If φ is a static ECB, then S(φ) is an SREFS supported by φ.

This establishes that (C)ECB (when defined as a static concept) is closely related to
a solution concept in the static approach and in turn it also means that static (C)ECB’s
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predictions also satisfy the internal and external stability properties imposed by this so-
lution concept. On the side of SREFS, this result shows that the conditions of internal
and external stability with the one-step deviation condition rule out every possible prof-
itable deviation, even those that involve multiple actions.

EPCF also uses consistent expectations just like SREFS and (C)ECB. The difference
between EPCF and SREFS (apart from one being a static and the other being a dynamic
concept) is that the former is directly defined as an expectation (a coalitional behav-
ior) that is immune to certain deviations. Using coalitional behavior, we can restate the
definition of EPCF under no indifference in the language of our framework.13

Definition 18 (EPCF). A (deterministic) EPCF14 is a coalitional behavior φ such that
for all x ∈ Z, the following statements hold, where for any z� z′ ∈ Z, σ(z) 
i σ

′(z) if and
only if the discounted utility of the former is greater.

• If φ(x) = (x� y�S), where y �= x, then σ(y) 
S σ(x) and there does not exist z with
(x� z�S) ∈ Ax and σ(z)
S σ(y).

• If x is such that there exists y ∈ Z and S ⊆ N with (x� y�S) ∈ Ax and σ(y) 
S σ(x),
then φ(x) �= (x�x�∅).

The definition is similar to the definition of dynamic (C)ECB with the major differ-
ence being that this definition does not consider deviations that involve multiple ac-
tions.15 With the dynamic assumption on the utilities, dynamic (C)ECB does not satisfy
the one-step deviation property. This means that the restriction to one-step deviations
in the above definition is with loss of generality. In particular, there might exist a devia-
tion to a cycle that might make the deviators better off (see Figure 7), which also implies
that there will be EPCFs that are not ECBs (again see Figure 7 for an example).

Finally, it is easy to establish that every dynamic ECB is an EPCF.

Proposition 7. If φ is a dynamic ECB, then it is an EPCF, but an EPCF may not be a
dynamic ECB.

When one adds the relationship of ECB to subgame perfect equilibrium to these, one
gets a solution concept that is directly or indirectly related to a wide area of the literature
on farsighted coalition formation; see Figure 8.

Hence, I believe that one major contribution of this paper is to show that the devel-
opments in the literature have made it possible to achieve some level of unification be-
tween both the non-cooperative and the cooperative strands of the literature and within
the cooperative approach to farsighted coalition formation.

13The assumption of no indifference is needed here for an altogether different reason. In particular in
the original definition of EPCF, Konishi and Ray allow a coalition to move at state x even if it is indifferent
between moving or staying at x. But they do not allow this if there exists a coalition that can move at x and
that would strictly improve by taking an action at x, whereas under a (C)ECB, this is also allowed.

14Konishi and Ray’s (2003) EPCF can also be stochastic, as mixing is not included in the definition of an
ECB. I restrict attention to deterministic EPCFs.

15Another difference is that the definition of the deviations is, in general, weaker under EPCF.
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Figure 8. An overview.

4.2.1 Other approaches on the abstract game Some solution concepts such as those
studied in Herings et al. (2004) and Granot and Hanany (2016) propose to define solu-
tion concepts on the abstract game by directly defining a non-cooperative game from
the abstract game. Specifically, Granot and Hanany (2016) model the evolution of play
resulting from coalitional deviations as an infinite extensive form game and define their
solution concept—subgame perfect consistent set (SPCS)—as all the states that can be
supported by a subgame perfect equilibrium of the extensive form, refined to addition-
ally satisfy internal and external stability in line with the stable set. They show the exis-
tence of the solution concept in finite acyclic games and show that surprisingly the SPCS
leads to efficiency in any normal-form game having a pure strategy Nash equilibrium.

Herings et al. (2004) take the abstract game as the primitive and define a multistage
game associated with the abstract game. Then they define an appropriate notion of ra-
tionalizability on this multistage game. In an earlier version (see Herings et al. 2000),
they define the notion of social rationalizability directly on the abstract game. The so-
lution aims to be weak and identifies the coalitions that are likely to form and the out-
comes that are likely to occur if the individuals are rational and they are endowed with
a hierarchy of hypothesis, which is common knowledge at the status quo. They show
that the set of socially rationalizable outcomes is nonempty and it satisfies a coalitional
rationality property: that when the outcomes are Pareto ranked, it always chooses the
Pareto dominant outcome.

The approaches taken in Granot and Hanany (2016) and Herings et al. (2000, 2004) is
fruitful, but also fundamentally different than the approach I am taking with the (C)ECB
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and the other approaches discussed so far, where the solution concept is directly de-
fined over the domain with no use of individual beliefs or strategies. That is, all of the
solution concepts defined up to now, including the (C)ECB, directly make their predic-
tions by considering coalitional actions/deviations, whereas Granot and Hanany (2016)
appeal directly to a non-coooperative solution concept and Herings et al. (2000, 2004)
appeal to individual beliefs to define their solution concept. In this sense, (C)ECB and
the solution concepts of the dynamic and static approaches are firmly situated as “co-
operative solution concepts,” where cooperation is not explained through the help of a
non-cooperative game or individual beliefs/strategies, whereas in Herings et al. (2004)
and Granot and Hanany (2016), this is not the case.

These approaches should be seen as complementary and each would have its own
advantages. Nevertheless, here I would like to mention some properties that I regard
as advantages of (C)ECB over the solution concepts in Granot and Hanany (2016) and
Herings et al. (2004).

First, appealing to the non-cooperative approach increases the complexity of the so-
lution concept to a great extent. This is especially true when we compare these concepts
to ECB, but also true to an extent for CECB. Consider the following example taken from
Herings et al. (2000, 2004).

Example 1. We have N = {1�2� � � � � n} and Z = {x0�x1� � � � � xK}, and for all i ∈ N and
k �= 0�K, we have ui(xK) > ui(xk) > ui(x0); x0 is assumed to be the status quo. From x0,
N can move to any xi, where i = 1�2� � � � �K. It is assumed that the payoff of a path is the
payoff of the final outcome on the path.

The example above is a simple example in which N chooses between outcomes, one
of which strictly Pareto dominates the others. It is immediate that the unique (C)ECB
in this game specifies that N is going to move to the Pareto optimal outcome xK . Social
rationalizablity of Herings et al. (2000, 2004) also makes the same prediction, but it is
much harder to show; it takes the authors several pages to come to this conclusion. The
same critique, although in a different way, also applies to Granot and Hanany (2016).
The fact that their solution concept requires the formation of an infinite extensive form
game to solve the above simple example implies a considerable complication on the side
of their solution concept.

Second, (C)ECB and its domain allows us much more flexibility than these solution
concepts. Indeed, both social rationalizability and SPCS are static solution concepts in
the sense that payoffs are assumed to be realized only when a stable state is reached,
whereas (C)ECB allows for much richer preferences over the paths.

This flexibility allows (C)ECB to unify the different approaches to farsighted coali-
tion formation. The approaches unified by (C)ECB range from the noncooperative ap-
proach to the static and dynamic approaches on the abstract game. This is the most
clear contribution of (C)ECB over these other solution concepts.
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4.3 Characteristic function games

A characteristic function game is a pair (N�V ), where N is the finite set of players and
for each coalition S ⊆N , V (S)⊆RS denotes the set of payoff vectors achievable by coali-
tion S. A coalition structure P is a partition of N . A state z is a pair (x�P), where P is a
coalition structure and x is an allocation that satisfies xS ∈ V (S) for all S ∈ P . Let Z de-
note the set of all states. The core is probably the most well known solution concept
defined for characteristic function games. It is the set of states that no coalition can
improve upon.

Definition 19. The core of the game (N�V ) is defined as

C(N�V ) = {
(x�P) ∈Z | there does not exist S ⊆N and yS ∈ V (S) such that yS > xS

}
�16

I am going to study characteristic function games in line with the farsighted coalition
formation literature, which assumes that a deviation by a coalition might be followed by
any deviation by any other coalition and the players are farsighted in the sense that they
care about the final allocation the negotiations lead to.

Basically, I translate the abstract game used in Ray and Vohra (2015) to an extended
coalitional game. For any (x�P) ∈ Z, Ray and Vohra (2015) require the set of actions
to satisfy the three conditions below. (Also see Konishi and Ray 2003 and Kóczy and
Lauwers 2004, who use similar conditions.)

(i) We have ((x�P)� (x�P)�∅) ∈A(x�P).

(ii) If ((x�P)� (y�P ′)� S) ∈ A(x�P), then yS ∈ v(S) and if T ∈ P is such that S ∩ T = ∅,
then T ∈ P ′ and xT = yT .

(iii) For all (x�P) ∈ Z, T ⊆ N and zT ∈ V (T) such that either zT �= xT or T /∈ P , there
exists ((x�P)� (y�P ′)�T) ∈A(x�P) such that T ∈ P ′ and yT = zT .

The first condition states that it is possible to stay in every state. The second con-
dition requires that when a coalition deviates from an outcome, it has to get something
feasible for itself and it cannot dictate the payoffs and structures of the coalitions that
are unrelated to it. Finally, the third condition states that if a payoff zT is feasible for
a coalition T (zT ∈ V (T)), then T should be able to get zT or if a coalition T has not
formed, then T should be able to form.

Hence, an extended coalitional game that corresponds to a characteristic function
game is � = {N�Z� {Az}z∈Z� {ui}i∈N}, where N is the set of players, Z corresponds to all
states, {Az}z∈Z is any set of actions that satisfy the restrictions above, and the utilities
correspond to the static approach, i.e., for all i ∈ N and p ∈ P , we set ui(p) = vi(T (p)) if
p is finite; otherwise ui(p) = −∞, where vi((x�P)) = xi.

CECB is not a very satisfactory concept for characteristic function games for a partic-
ular set of reasons: (a) Characteristic function games are basic games; hence, backward
induction cannot be applied even at the basic game level. This makes the solution con-
cept too permissive on characteristic function games. (b) Because of the multitude of

16We have yS > xS if yi > xi for all i ∈ S.
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coalitional behaviors possible in such games, it is very hard to find the set of CECBs. For
these reasons, I only analyze the ECB in this class.

The proposition below establishes that if, under an ECB, the path of play from every
node terminates at the same state, then this state is in the core. Furthermore, if a state
is in the core, then there exists an ECB such that the path of play from every node ter-
minates at this core state. That is, ECBs with a single prediction completely characterize
the core.

Proposition 8.

• If (x∗�P∗) ∈ C(N�V ), then there exists an ECB φ such that T (σ(x�P)) = (x∗�P∗) for
every (x�P) ∈Z.

• If φ is an ECB such that T (σ(x�P)) = (x∗�P∗) for every (x�P) ∈ Z, then (x∗�P∗) ∈
C(N�V ).

The proposition establishes that a farsighted solution concept completely character-
izes a well known myopic concept: the core. The result also complements other results
in the literature that are close in spirit to this result. Other results that show that the core
incorporates foresight include Ray (1989), Diamantoudi and Xue (2003), Konishi and
Ray (2003), Mauleon et al. (2011), and Ray and Vohra (2015). 

17
 Ray (1989) shows that

the core is immune to nested objections. The results in Diamantoudi and Xue (2003),
Mauleon et al. (2011), and Ray and Vohra (2015) concern the FSS, whereas Konishi and
Ray’s (2003) result is related to the EPCF.

Proposition 8 implies that if a characteristic function game has an empty core, then
we cannot find an ECB for that game with a single stable outcome. But this does not
mean that an ECB does not exist in such a game. An example is available from the author
upon request.

5. An application: Network formation

There is a tension between efficiency and stability in myopic models of network forma-
tion (see Jackson 2010 and Jackson and Wolinksy 1996). Furthermore, Dutta et al. (2005)
and Herings et al. (2009) have shown that this tension continues in farsighted solution
concepts.

In this section, we see that (C)ECB helps to alleviate this tension to a great extent.
In particular, Proposition 9 shows that whatever the value of the network is, as long as
it satisfies a mild assumption, there is a reasonable way to allocate this value to each
player so that every efficient network can be supported by both the dynamic ECB and
the dynamic CECB if the players are sufficiently patient.18 This proposition is almost
completely the opposite of Theorem 1 in Jackson and Wolinsky (1996), Theorem 2 in

17Green (1974), Feldman (1974), Kóczy and Lauwers (2004), and Sengupta and Sengupta (1996) show
how myopic objections lead to the core in specific environments. Although these papers are also related,
they are fundamentally different from the current paper, since players are not assumed to be farsighted.

18This result would still hold with the static (C)ECB.
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Dutta et al. (2005), and Theorem 6 in Herings et al. (2009), which show the tension be-
tween stability and efficiency in a myopic stability concept in an approach based on the
EPCF and in FSS, respectively.

But then, what allows (C)ECB to achieve this “possibility of efficiency” result that
is different from the results in the literature? The idea is that a certain simple way to
allocate the value of the network allows the players to punish any coalition that deviates
from the efficient network, while rewarding the punishers with a payoff higher than what
they would get under the efficient network. The key here is nonstationarity, which allows
the players to punish the deviator. Hence, the actions assigned by the (C)ECB not only
depend on the network structure, but also on the identity of the deviators.

Building upon this result, Proposition 10 provides a simple condition under which
every prediction of (C)ECB is an efficient network structure if the players are sufficiently
patient.

Network formation games can be seen as a generalized version of characteristic
function games. From Section 4.3, we know that ECBs with a unique outcome com-
pletely characterize the core of a characteristic function game. Is there a corresponding
result for network formation games?

It is not even immediate what core is in this context, because there might be
widespread externalities across links. Nevertheless, we can show that (see Proposi-
tion 12) static ECBs with a unique prediction completely characterize the pessimistic
network core, which assumes that when a coalition deviates, it can only form a network
within itself.

This result is only partially true with the dynamic ECB. The reason is that the defini-
tion of the core ignores deviations to cycles, and in a dynamic ECB, it is quite possible
that the players may prefer to cycle between different network structures (see Exam-
ple 5).

The bottom line is that (C)ECB does more than unify the alternative approaches to
foresight. This section demonstrates this through showing that in an application that
is quite general and that has already been extensively studied, (C)ECB can make novel
predictions, some of which go against the findings in the literature.

This is not to say that (C)ECB is better than the other approaches to foresight. In-
deed, how can we claim this given that it is equivalent to certain prominent solution
concepts under mild assumptions? But this section clearly shows that there is value
added in the flexibility provided in (C)ECB beyond the unification aspect of the solution
concept. This flexibility allows us to establish results that have been overlooked in the
literature.

5.1 Preliminaries

Let N = {1�2� � � � � n} be a finite set of players. The complete graph on N is denoted by gN .
The set of all possible networks (undirected graphs) on N is denoted by G = {g | g ⊆ gN }.
A component of a network g is a subset c of g such that no i ∈ c is linked to j /∈ c and
every distinct i and j in c are either directly or indirectly linked to each other. Note that
this definition treats isolated players as components. The set of all components of g is
denoted by C(g).
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The value of a network is given by a value function v : G → R. The set of all value
functions is denoted by V . A value function is anonymous if, for any permutation of
the set of players π, v(gπ) = v(g), where gπ = {π(i)π(j) | ij ∈ g}. A value function is
component additive if v(g) = ∑

{c∈C(g)} v(c) for all g ∈ G. Throughout, the value function
is assumed to be component additive.

An allocation rule is a function Y : G × V → Rn such that
∑

i∈N Yi(g� v) = v(g).
It describes how the value of the network is distributed among individuals. An allo-
cation rule Y is anonymous if for any v ∈ V , g ∈ G, and permutation of players π,
Yπ(i)(g

π� vπ) = Yi(g� v), where vπ is defined as vπ(gπ) = v(g). An allocation rule Y is
component balanced if for any v ∈ V , g ∈ G, and c ∈ C(g),

∑
i∈c Yi(g� v)= v(c).

The componentwise egalitarian allocation rule, denoted by Y ce, is defined as fol-
lows. For any v ∈ V , network g, and i ∈N ,

Y ce
i (g� v)= v(c)

|c| � where c ∈ C(g) is such that i ∈ c�

Finally, we say that a network g is efficient if v(g) ≥ v(g′) for all g′ ∈ G. Note that this
is a strong definition of efficiency; in particular, it is stronger than Pareto efficiency.

5.2 The extended coalitional game

I model network formation as an infinite horizon tree, where the payoffs are realized dy-
namically. Hence, two important modeling decisions are made: (i) to study the game as
an infinite horizon tree as opposed to a game with cycles and (ii) to analyze the dynamic
(C)ECB as opposed to the static (C)ECB. On the latter, studying the dynamic (C)ECB as
opposed to the static (C)ECB is without loss of generality in the context of my results.
Remark 2 explains that all of the results of this section still hold if we consider the static
(C)ECB instead of the dynamic (C)ECB.

On the former, modeling network formation as an infinite tree allows us to capture
the richness of the process. For instance, modeling the game as a finite cyclic game
would impose stationarity, whereas here we allow for the action specified at a particular
network to depend on the set of actions that lead to that particular network structure.
See Remark 3 for a discussion of this point.

Now I formalize the extended coalitional game. Each node z of the extended coali-
tional game is represented by a pair (g�h), where g ∈ G is the associated network and
h denotes the history, i.e., the set of actions that lead to the node z from the root of the
tree. For any histories h and h′, let h ·h′ denote the concatenation of h with h′. The game
starts at z0 = (g∅�∅), where g∅ is the empty network and h = ∅ denotes the empty his-
tory.19 At any node z = (g�h), it is possible for no coalition to move, but also coalition S

can move the game to z′ = (g′�h · (gg′� S)) if g′ �= g and

(i) ij ∈ g′ and ij /∈ g implies i� j ∈ S

(ii) ij ∈ g and ij /∈ g′ implies {i� j} ∩ S �=∅.

19This is without loss of generality. The results of this section would hold no matter where the game
starts.
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Hence, I allow for coalition-wise deviations. Most of the literature (including the
farsighted literature on network formation) analyzes network formation with pairwise
deviations. I focus on coalition-wise deviations, because doing so allows me to present
the results in a more straightforward manner. With pairwise deviations we are able to
get similar results, although the analysis is complicated. Remark 4 further elaborates on
this point.

Finally, the payoffs are obtained in real time as in Dutta et al. (2005). That is, our
focus in on the dynamic (C)ECB, where the payoff of a terminal path is the discounted
utility of the networks visited along the path with a common discount factor δ.

5.3 Efficiency and (C)ECB

The literature has shown that there is a trade-off between efficiency and stability. Fur-
thermore, simply considering farsighted solution concepts does not help with this trade-
off to a great extent. In particular, there is no allocation rule that is component bal-
anced and anonymous such that for each value function v, at least one efficient network
is in the set of pairwise stable networks (see Jackson and Wolinsky 1996) and the far-
sighted stable set (see Herings et al. 2009). 

20
 Dutta et al. (2005) show the same result for

a solution concept based on EPCF, assuming anonymity and limited transfers instead of
anonymity and component balance, where an allocation rule permits limited transfers
if Yi(g� v)≤ v(g) for all i ∈N .

The proposition below shows that with (C)ECB, these results are no longer valid
under a mild assumption. With the simple componentwise egalitarian rule, which is
anonymous, is component balanced, and allows limited transfers, each efficient net-
work can be supported as the prediction of a (C)ECB as long as the value function is
anonymous. Note that g is a prediction of a (C)ECB φ if the path of play from the root of
the game terminates at g, i.e., T (σ(z0)) = g.

Proposition 9. There exists a rule Y that is anonymous, is component balanced, and
allows limited transfers such that for each anonymous v ∈ V , every efficient network can
be supported as the prediction of a (C)ECB for δ large enough. One such rule is Y ce.

The proof is lengthy, but with a simple basic idea behind it, which nicely demon-
strates the workings of (C)ECB in this environment and how and why it makes different
predictions. If we take the componentwise egalitarian rule, then for any efficient net-
work g∗ and for any player i, we can find a punishment network gi that would decrease
i’s utility while increasing the utility of the players needed to sustain gi. But then we can
avoid a deviation by any player i through the threat of gi. Similarly, we can avoid a devi-
ation by any coalition S by singling out a player i ∈ S as the would-be punished player in
the case of a deviation by S.

20The result in Herings et al. (2009) is more general than this and applies to a solution called pairwise
farsightedly stable sets. But they show that each farsighted stable set is also a pairwise farsightedly stable
set.
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The following example demonstrates the construction in the proof. The value func-
tion used in the example is the same as that used by Herings et al. (2009) to show the
opposite result.

Example 2. Let N = {1�2�3}. Take the value function v(12�13�23) = 9, v(12) = v(13) =
v(23)= 8, and v(g) = 0 for any other network.

We can easily find Y ce for this value function: every player gets a payoff of 3 in the
complete network, each connected player gets a payoff of 4 in a network with a single
link, and every player gets a payoff of 0 in all remaining networks.

The efficient network is the complete network, but any two player coalition has an
incentive to deviate to the network where the other player is isolated. The construction
in the proof avoids such a deviation by the punishment that leaves one of the deviators
as the isolated player indefinitely. Note that the punishment also rewards the other play-
ers by giving them the best payoff they can possibly get. Through this punishment, the
efficient network can be supported indefinitely if the players are sufficiently patient.

The following example shows that v needs to be anonymous for the proposition to
hold. When v is not anonymous, one might not be able to find punishment strategies to
support the efficient network under Y ce.

Example 3. Let N = {1�2�3}. Take the following value function: v(12�13�23) = 9,
v(12) = 8, and v(g) = 0 for any other network. This v is not anonymous as v(13) =
v(23)= 0, while v(12)= 8.

With this value function, the efficient network is the complete network. But under
Y ce, the unique CECB (so, ECB) specifies that the coalition {1�2} directly moves to the
network g = {{12}} and stays there indefinitely. The reason that the efficient network
cannot be supported is that player 3 is a weak player and he cannot be a part of any
punishment to the deviation by coalition {1�2}.

Although the efficient network can always be supported with a (C)ECB, it is not the
unique prediction. Indeed, we can see this in Example 2, where the efficient network is
supported through the threat of a network that is not efficient; hence, the punishment
network can also be supported as the prediction of a (C)ECB. So under what conditions
can we find an allocation rule such that all of the predictions of a (C)ECB are efficient?
The following proposition provides an answer to this question.

Let gS denote the complete network on the set of players S. For any v and S ⊆ N , let
p(v�S) = maxg⊆gS

v(g)
|S| . We say that a value function v is strictly top convex if p(v�N) >

p(v�S) for all S �=N . Strict top convexity is a simple modification of Jackson and van den
Nouweland’s (2005) top convexity, where the only difference is that the strict inequality
is replaced with a weak inequality.

Proposition 10. Suppose v is strictly top convex. Then there exists a discount factor δ∗
and a rule Y that is anonymous and component balanced such that g is a prediction of a
(C)ECB for every δ ∈ (δ∗�1) if and only if g is efficient.



700 Mert Kimya Theoretical Economics 15 (2020)

To prove this result, I use the rule Y ce. We already showed that under this rule, any
efficient network can be supported as the prediction of a (C)ECB. Hence, all we need to
do is to show that each prediction is efficient. Note that when v is strictly top convex,
under Y ce, each efficient network also (strictly) maximizes the payoff of each player.
Hence, if the efficient network is not predicted from some network g′, then the players
can deviate and directly impose an efficient network from g′. The deviation is certainly
profitable, as the efficient network (strictly) maximizes the payoff of each player. For the
same reason, the deviation is also going to be credible.

Jackson and van den Nouweland (2005) show that the set of strongly efficient net-
works is the set of strongly stable networks under the componentwise egalitarian allo-
cation rule if v is top convex. In addition, Grandjean et al. (2011) show that the set of
strongly efficient networks is also the unique farsightedly stable set under the compo-
nentwise egalitarian allocation rule if v is top convex. Together with Proposition 10, we
see that when v is strictly top convex, the set of strongly stable networks, the farsighted
stable set, and the (C)ECB all predict the same network structures, which are the efficient
networks.21

The condition of strict top convexity is a strong condition. Also it is not necessary for
each prediction of (C)ECB to be efficient under Y ce, as the following example demon-
strates.

Example 4. Let N = {1�2�3�4}, v(ij) = 4 for i �= j and v(g) = 0 for any other network. In
this example, v is not strictly top convex and each efficient network consists of two pairs.
Furthermore, it is clear that under Y ce, each (C)ECB predicts an efficient network.

5.4 ECBs with a unique prediction

Network formation games can be seen as a generalized version of characteristic function
games. From Section 4.3, we know that static ECBs with a unique prediction completely
characterize the core of a characteristic function game. One could wonder if a similar
result can be obtained in network formation games.

It is not even immediate what core is in network formation games, because there
might be widespread externalities across links. Nevertheless, we can show that it is pos-
sible to get the corresponding result with a pessimistic core definition.

Definition 20 (Pessimistic network core). Given a value function v and an allocation
rule Y , the pessimistic network core is defined as

C(v�Y)= {
g ∈ G | �S ⊆ N and g′ ⊆ gS such that Yi(g

′� v) > Yi(g� v) for all i ∈ S
}
�

21Note that unlike the other results mentioned, Proposition 10 would not hold under top convexity. To
see this, let N = {1�2�3}, v(ij) = 4 for i �= j, v(gN) = 6 for the complete network and v(g) = 0 for any other
network. The value function is top convex. Nevertheless, it is easy to see that the networks with a single
link can be supported as the prediction of a (C)ECB. The reason is that both the efficient network and the
networks with a single link provide the same payoff to each individual getting a positive payoff.
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The definition requires immunity from deviations to network structures that only
include the deviators. This is the reason for the word “pessimistic”: when deviating, a
coalition does not just deviate to any other network, but contemplates only those net-
works that are isolated from the other players. Hence, further actions by other players
cannot affect the deviators’ payoffs.

Proposition 11 shows that if a certain network is predicted from every other net-
work when the players are sufficiently patient, then this network is necessarily in the
pessimistic network core. An ECB φ is said to have the unique absorbing network g∗ if
T (σ(g�h)) = g∗ for every (g�h) ∈ Z, i.e., the path of play from every node terminates
at g∗.

Proposition 11. Suppose there exists δ∗ such that for any δ ∈ (δ∗�1), φ is an ECB with
the unique absorbing network g∗. Then g∗ ∈ C(v�Y).

If g∗ is the unique prediction from every node, then from any other network g′,
someone should be willing to take an action that eventually leads to g∗. For this, for any
possible set of players S that form a component c ∈ c(g′), at least one person in S should
(weakly) prefer g∗ to g′; otherwise, the relevant component will never be disrupted. This
shows that g∗ ∈ C(v�Y).

The converse is not true for one particular reason: the definition of the pessimistic
network core ignores the dynamic nature of the problem considered here. That is, when
checking for a deviation, it ignores checking for deviations in which the deviator cycles
between several network structures. The next example demonstrates this.

Example 5. Let N = {1�2�3} and let v be defined by v(ij) = −2, v(ij� jk) = 9, v(ij� jk�
ik) = −9, and v(∅) = 0. Finally let Y be anonymous and component balanced with
Yj((ij� jk)� v) = −3. In this game, C(v�Y) is composed of the empty network. However,
we cannot support the empty network as the unique prediction of an ECB for δ large
enough. The reason is that if the players deviate together and choose to cycle between
the star structures, then each of them can get a higher payoff when δ is large enough.22

This problem does not exist in the static ECB, where the payoffs are realized only
when a stable network forms. Indeed, it turns out that static ECBs with a unique predic-
tion completely characterize the pessimistic network core.

With the static ECB, every ingredient of the extended coalitional game is the same,
except for the preferences: Given a valuation function v and an allocation rule Y , the
utility of player i ∈N from a finite path that terminates at some network g is Yi(g� v) and
the player assigns the lowest utility to infinite paths.

Proposition 12.

• If g∗ ∈ C(v�Y), then there exists a static ECB φ such that T (σ(g�h)) = g∗ for every
(g�h) ∈Z.

• If φ is an ECB such that T (σ(g�h)) = g∗ for every (g�h) ∈ Z, then g∗ ∈ C(v�Y).

22The star network is a network where all players are linked to one central player and there are no other
links. Here, it is g = (ij� jk).
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We have already seen the reason why if a network is the unique prediction, then it
has to be in the pessimistic network core in the dynamic ECB when the discount fac-
tor approaches 1. The same reason also applies here. Hence, all we need to do is to
show that each network in the pessimistic network core can be supported as the unique
prediction of a static ECB.

Suppose that g∗ is in the pessimistic network core. In any network g �= g∗ in which
there is a nonsingleton component c ∈ g that is not a component of g∗, there necessarily
exists an individual in that component who (weakly) prefers g∗ to g; otherwise, g∗ would
not be in the pessimistic core. But then, at any network g that is not composed of the
components of g∗, a player is willing to sever all of her links in expectation of g∗. The
constructed coalitional behavior in the proof (see the Appendix) uses this fact and makes
these players sever their links until we reach a network g′ such that every nonsingleton
component of g′ is also a component of g∗. Following this, isolated players can merge to
form g∗. Each profitable deviation from the described coalitional behavior is necessarily
finite, as infinite paths provide the worst utility. Furthermore, it is easy to see that there
is no one-step deviation, because at every node, the coalition that moves prefers the
final outcome to the status quo and each path leads to the same final outcome. Hence,
the described coalitional behavior is an ECB.

I complete this section with a few remarks on the modeling choices and how they
affect the results.

Remark 2. I have mostly studied the dynamic ECB as opposed to the static ECB. This is
without loss of generality. It is easy to see that all of the results still hold if we considered
the static ECB with almost no change in the proofs.

Remark 3. I have chosen to model the network formation game as an infinite horizon
game with a tree structure as opposed to a finite cyclic game. The choice of an infinite
tree helps us capture the richness of the process by allowing us to consider coalitional
behaviors in which actions taken at a network might depend on the coalitions that lead
to that network. This would not be possible if we modeled network formation as a finite
cyclic game and some results would change. For instance, the proof of Proposition 9
would no longer hold for the simple reason that it relies on individual specific punish-
ments.

Remark 4. Finally, most of the literature considers pairwise deviations as opposed to
the coalition-wise deviations that I consider. This decision is made for tractability. None
of the results rely on the choice of coalition-wise deviations as opposed to pairwise de-
viations, but the choice of coalition-wise deviations greatly simplifies the argument and
the proofs.

6. Literature review

In this section I briefly review the different strands of the literature on farsighted coali-
tion formation. Inevitably, the review is incomplete; for extensive reviews, see Mariotti
and Xue (2003), Ray (2008), and Ray and Vohra (2014).
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The quest to incorporate foresight into the static cooperative solution concepts goes
back at least to Harsanyi (1974), who criticized von Neumann and Morgenstern’s stable
set (1944) for being myopic. Chwe (1994) formalized Harsanyi’s criticism and developed
the solution concepts of the FSS and the LCS. These are set valued concepts in the tra-
dition of von Neumann and Morgenstern’s stable set, which use the indirect dominance
relation instead of the direct dominance relation the stable set uses.23

Xue (1998) argued that this approach is not entirely satisfactory, as farsighted players
should not only consider the final states their actions lead to, but they should also con-
sider how these states are reached. By using Greenberg’s (1990) framework, Xue (1998)
proposed to use paths to incorporate foresight into his solution concepts.24 But Xue
(1998) still used a framework in which players form arbitrary expectations based on op-
timism or pessimism to evaluate different sets of paths. Questions remain about these
extreme expectations players hold to evaluate sets of paths; for details, see Bhattacharya
and Ziad (2012), Herings et al. (2004), and Ray and Vohra (2014).

Dutta and Vohra (2017) propose to deal with these issues by embodying the far-
sighted stable set with consistent expectations and introducing one-step deviations
(also see Jordan 2006 for an earlier work concerning common expectations and far-
sighted stability, and see Bloch and van den Nouweland 2017, where players might hold
heterogeneous expectations).25

Given the problems of the static approach, some authors found the way out by in-
troducing an explicitly dynamic solution concept. The main solution concept in the
dynamic approach is the EPCF (Konishi and Ray 2003 and Ray and Vohra 2014), which
models coalition formation as an explicitly dynamic process, and the payoffs are dis-
counted with a common discount factor.26

Other authors have tried to remedy the problems with the static approach by tak-
ing a cooperative domain such as the abstract game as the primitive and proposing a
solution concept by defining a non-cooperative game from the abstract game. Exam-
ples include Herings et al. (2004) and Granot and Hanany (2016). Herings et al. (2004)
take the abstract game as the primitive and define a multistage game associated with
the abstract game; then they define an appropriate notion of rationalizability on this
multistage game. In Granot and Hanany (2016), the evolution of play resulting from
deviations is modeled as an extensive form game.

Recently, the literature has started to extend the solution concepts in two directions:
(i) by incorporating history dependence and (ii) by allowing for different degrees of fore-
sight. Vartiainen (2011) incorporates history dependent expectations into EPCF and
shows that this greatly enhances the existence property of the solution concept. More

23For more on farsighted stable sets, see Diamantoudi and Xue (2003), Mauleon et al. (2011), and Ray
and Vohra (2015). For more on the largest consistent set, see Béal et al. (2008), Bhattacharya (2005), Herings
et al. (2009), Mauleon and Vannetelbosch (2004), Page et al. (2005), and Xue (1997).

24Also see Mariotti (1997) for an approach inspired by Greenberg (1990) on strategic form games.
25Another related work is Karos and Kasper (2018), in which the authors extend the work by Dutta and

Vohra (2017) by using “extended expectation functions” to capture a coalition’s belief about subsequent
moves of other coalitions.

26Also see Dutta et al. (2005) and Vartiainen (2011).
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recently, Dutta and Vartiainen (2020) and Ray and Vohra (2019) incorporate history de-
pendent expectations to the REFS and SREFS. On the second development, Herings et al.
(2019) introduced the concept of level-K farsightedness to incorporate differing levels
of foresight. More recently, Herings et al. (2017) study matching when the players might
have heterogeneous levels of foresight.27

7. A concluding remark

This section briefly describes the advantage of using CECB over LCRS with the favor
exchange game analyzed in Section 4.1.

For convenience, I represent a coalitional behavior with three ordered letters that
correspond to the actions chosen at each node. For instance, {F�N�F} corresponds to
the coalitional behavior where player 1 chooses F , and player 2 chooses N if he observes
that player 1 has chosen F and chooses F if he observes N .

We already know that in this game, there is a unique CECB, which is {N�N�N}. This
is not the case for the LCRS: it turns out that LCRS = {{N�N�N}� {F�F�N}� {F�N�F}}. To
see the problem with the LCRS here, consider {F�F�N}. Player 2 has a profitable devi-
ation from this coalitional behavior to {F�N�N}, but this deviation might be followed
by a profitable deviation by player 1 to {N�N�N}, which would make player 2 worse off.
Hence, player 2 will refrain from deviating in the first place and {F�F�N} ∈ LCRS.

But there is a problem with this argument. In particular, player 2 does not choose the
optimal action at one of his nodes, because he unreasonably believes that a deviation
can trigger further deviations in the past that would make him worse off.

This problem means that LCRS will not posses the many desirable features of CECB
such as backward induction, non-cooperative justification, and a relationship to certain
attractive solution concepts such as subgame perfect equilibrium.

On top of this, we also see that LCRS has a multiplicity problem. Even in this simple
example, we have multiple coalitional behaviors in the LCRS. CECB reduces these to a
unique coalitional behavior. This suggests that CECB alleviates the problem of multi-
plicity without compromising from existence.28

Appendix

Proof of Lemma 1. Note that a credible set is a consistent set as in Chwe (1994) when
one takes the set of coalitional behaviors as the set of outcomes and takes the profitable
deviation relation as the effectiveness relation. Hence, the lemma directly follows by
Proposition 1 in Chwe (1994).

Proof of Proposition 1. Step 1: Showing the Existence for a Basic Game. Since each
credible set can be rephrased as a consistent set (see the proof of Lemma 1), the exis-
tence in a basic game follows Proposition 2 in Chwe (1994).

27Also see Kirchsteiger et al. (2016), who provide evidence of behavior in favor of limited foresight.
28One might conjecture that if we refine LCRS by requiring that the solution concept should be an LCRS

in every subgame, then we could get over these problems. Indeed, if we do this, then the problem in this
example would disappear. Nevertheless, this solution concept would still suffer from similar drawbacks
and we would still lose the certain desirable features of CECB such as backward induction.
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Step 2: Generalizing to any Finite Game. We show that the CECBs of any finite game
can be found through recursively finding the CECBs of basic games. The result will fol-
low by Step 1.

Let � be any finite extended coalitional game. For any z ∈ Z, let l(�(z)) denote the
length of the subgame at z, where length is the number of proper subgames �(z) in-
cludes. Since the game is finite, there exists z ∈Z for which l(�(z)) = 0.

For any z for which l(�(z)) = 0, by Step 1, there exists a CECB for �(z). Pick one
CECB for each such z and call their union φ0.

Suppose φi is defined for each i < n. For any z for which l(�(z)) = n, consider the
reduced game at z given φn−1. Since this is a basic game, there exists a CECB for this
game—call it φ′—and let φn = φn−1 ∪ φ′. Continue this process until all the nodes are
exhausted. The process defines an action for each node of the game and, hence, a coali-
tional behavior for the whole game.

Suppose φ is the resulting coalitional behavior. I show that φ is a CECB. Toward
a contradiction, assume that there exists a profitable and credible deviation to φ′. Let
Z0 = {z ∈ Z | φ(z) �= φ′(z)} and let Z1 = {z ∈ Z0 | l(�(z)) ≤ l(�(z′))∀z′ ∈ Z0}. For any
node z ∈ Z1, the reduced game at z corresponds to the game used in the construction
and, hence, by the construction there cannot exist a profitable and credible deviation
from z in this reduced game. A contradiction.

Proof of Proposition 2. Assume S has a profitable (and credible) deviation from φ

to φ′. Let z∗ be such that φ(z∗) �= φ′(z∗); σ ′(z∗) is not a cycle and there are finitely
many z ∈ σ ′(z∗) such that φ(z) �= φ′(z). Then there exists z′ ∈ σ ′(z∗) such that φ(z′) �=
φ′(z′), but φ(z) = φ′(z) for all z ∈ σ ′(z′) such that z �= z′. Think about the deviation in
which S changes only φ(z′) to φ′(z′) and let the resulting coalitional behavior be φ′′.
This is a one-step deviation. Since the initial deviation is profitable, we have σ ′′(z′) 
S

σ(z′); hence, this one-step deviation is also profitable. Finally, credibility also follows as
�(z′�φ′)= �(z′�φ′′).

The following definition and the lemma are useful in proving Propositions 3 and 4.

Definition 21. In an acyclic basic game with root z, we say that an action a ∈ Az s-
dominates an action (z�b�S) ∈Az if and only if there exists i ∈ S with a 
i (z�b�S).

An action a ∈Az weakly s-dominates an action (z�b�S) ∈Az if and only if there exists
i ∈ S with a�i (z�b�S).

Lemma 2. For an acyclic basic game, if a set of actions V satisfies internal stability with
the s-dominance relation and external stability with the weak s-dominance relation, then
any a ∈ V can be supported as the stationary subgame perfect equilibrium of the bargain-
ing game.

Proof. Consider the following strategies: i ∈N offers the most preferred action in V ; i ∈
N accepts (z�x�S) if (z�x�S) ∈ V . If (z�x�S) /∈ V , then the last player accepts if (z�x�S)
is better than any stable action and rejects otherwise. The second to last player accepts
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if the last player accepts and if (z�x�S) is better than any stable outcome, and rejects
otherwise, and so on. Note that by weak external stability, any action that is not in V will
be rejected.

The strategy is stationary and it leads to an outcome in V . Furthermore, any action
in V can be supported as the outcome with these strategies with an appropriate order of
players. Hence, all we need to show is that the strategy is indeed subgame perfect.

First consider the acceptance–rejection stage. Suppose i accepts (z�x�S). First as-
sume that (z�x�S) ∈ V . Note that by rejecting, i can only induce actions in V ; how-
ever, by internal stability for any (z� y�T ) ∈ V , (z�x�S) �i (z� y�T ). Now assume that
(z�x�S) /∈ V , but then i accepts only the action if it is better than every stable action and
everybody else responding after him accepts the action (by rejecting, i can induce only
actions in V ).

Now suppose i rejects some action (z�x�S). But then this can only be because the
implemented action is better than (z�x�S) or someone after i will reject, and the even-
tual implemented action is (weakly) worse than that implemented when i rejects. Fi-
nally, it is easy to see that at the proposal stage everyone is taking the optimal action.

Proof of Proposition 3. By backward induction, it is sufficient to prove the result for
a basic game. Let � be a strongly acyclic basic game with root z and let φ be an ECB for
such a game.

Let A0 = φ. Let A1 be the set of actions that are weakly s-dominated by φ. Let A2 =
φ′ be an action that is undominated in A \ (A0 ∪ A1). Note that φ is not s-dominated
by φ′, as otherwise there would exist a profitable deviation from φ to φ′.29 Let A3 be
the set of actions in A \ (A0 ∪A1 ∪A2) that are weakly s-dominated by φ′. Let A4 = φ′′
be an action that is undominated in A \ (A0 ∪ A1 ∪ A2 ∪ A3). Continue until the set
of all coalitional behaviors is exhausted (by strong acyclicity and finiteness, the set will
eventually be exhausted).

Let V = ⋃
keven Ak. The result follows by Lemma 2, since V satisfies internal sta-

bility with the s-dominance relation and external stability with the weak s-dominance
relation.

Proof of Proposition 4. All solution concepts can be found through backward in-
duction; hence, it is sufficient to show the result for a basic game. Let � be a basic game
with root z. Let S∗ be the potent coalition and let φ∗ be the corresponding coalitional
behavior.

Let �∗ = {φ ∈ � | φ ∼S φ∗}. It is clear that �∗ is the set of ECBs of the game. Fur-
thermore, since from any other coalitional behavior there exists a profitable deviation
to �∗, it is also the set of CECBs. Finally, any φ ∈ �∗ satisfies external stability with the
weak s-dominance and trivially satisfies internal stability with s-dominance;30 hence,
by Lemma 2, it can be supported as a stationary subgame perfect equilibrium.

29Let us say φ′ = (z�x�T) and φ = (z� y�S). We already know that φ′ is not weakly s-dominated by φ,
which implies that (z�x�T) 
T (z� y�S). But then if φ is s-dominated by φ′, clearly there exists a deviation
from φ to φ′

30The statement does not claim that �∗ satisfies internal stability. Indeed �∗ need not satisfy internal
stability. The statement claims that a singleton from the set �∗ trivially satisfies internal stability.
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Now all we need to show is that no other coalitional behavior can be supported as a
stationary subgame perfect equilibrium. Toward a contradiction, assume that in a ba-
sic game, (z�x�T) /∈ �∗ can be supported as a stationary subgame perfect equilibrium.
Note that S∗ ∩ T �= ∅, but no one in S∗ ∩ T rejects (z�x�T) and offers φ∗, although they
prefer φ∗. This could only be because there exists some i ∈ S∗ who rejects φ∗ in anticipa-
tion of some φ′. But then φ′ �i φ

∗, implying φ′ ∼S φ
∗. But then it is better for someone

in S∗ ∩ T to reject (z�x�T) and offer φ′, a contradiction.

Proof of Proposition 5. Both of the backward induction algorithms in Section 3 re-
duce down to the well known way to find subgame perfect equilibrium through back-
ward induction in finite extensive form games.

To show that ECB is always a subgame perfect equilibrium, suppose φ is a coalitional
behavior that is not a subgame perfect equilibrium. Then there exists an individual i ∈ N

who can deviate to a coalitional behavior φ′ such that σ ′(z∗) 
i σ(z
∗) for some z∗ ∈Z.

Let Z1 = {z ∈ σ ′(z∗) | φ(z) �= φ′(z)} and let Z2 = {z ∈ Z1 | σ(z) �i σ
′(z)}. If Z2 = ∅, then

consider the deviation from φ by i that includes only the actions in Z1, which is a devi-
ation that increases the payoff of i at every node at which an action changes. If Z2 �= ∅,
then let z′ be the node in Z2 that is closest to z∗. Consider the deviation by i from φ that
involves only the actions at the nodes in Z1 that are between z∗ and z′ (including z∗, not
including z′). The resulting deviation increases the payoff of i at every node at which an
action changes; hence, it is profitable. That is, φ is not an ECB.

Proof of Proposition 6. Take � that satisfies no indifference and monotonicity of ac-
tions.

First suppose that V is an SREFS and φ is the coalitional behavior that supports it.
I show that φ is a static ECB. First note that static ECB satisfies the one-step deviation
property on this domain. This is because any profitable deviation necessarily leads to
finite paths. Hence, it suffices to check one-step deviations.

Suppose there is a profitable deviation at some unstable x in which some i blocks
the move. But then vi(x) > vi(T (σ(x))), which is a contradiction to (ES). Suppose there
is a profitable deviation at some unstable x where i blocks an action leading to z and T

takes an action leading to y. By monotonicity of actions, there is also a profitable devi-
ation in which i blocks the action leading to z and T ∪ {i} takes an action leading to y.
Furthermore, since the initial deviation is profitable, we have vj(T (σ(y))) > vj(T (σ(x)))

for all j ∈ {T ∪ i}, which is a contradiction to (M). Finally suppose there is a prof-
itable deviation at some stable outcome x by coalition S to an outcome z. But then
vj(T (σ(z))) > vj(T (σ(x))) for all j ∈ S, a contradiction to (IS). We have exhausted all
possible one-step deviations; hence, φ is a static ECB.

Now suppose that φ is a static ECB. We show that S(φ) is an SREFS supported
by φ. Note that at any state x with φ(x) = (x�x�∅), we have that there does not exist
y and S such that (x� y�S) ∈ Ax and vi(T (σ(y))) > vi(T (σ(x))) for all i ∈ S, as other-
wise S has a profitable deviation. Hence (IS) is satisfied. Now take any state x for which
φ(x) = (x� y�S) for some y and S. First note that vj(T (σ(x))) > vj(x) for all j ∈ S, since
otherwise, by no indifference, there exists i ∈ S for which vi(x) > vi(T (σ(x))), in which
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case i has a profitable deviation at x. Hence, (ES) is satisfied. Finally, if (M) is violated,
then trivially there exists a profitable deviation and φ is not an ECB, so (M) is also satis-
fied.

Proof of Proposition 7. Figure 7 shows that an EPCF may not be a dynamic ECB, so
here I show only that each dynamic ECB is an EPCF. Let φ be an ECB.

Take any x ∈ Z with φ(x) = (x� y�S), where x �= y. First observe that σ(x) 
S

(x�x�∅), as otherwise, by no indifference, there exists i ∈ S for which (x�x�∅) 
i σ(x),
who would have a profitable deviation in which she blocks the taken action. This also
implies that σ(y) 
S σ(x). Toward a contradiction, assume that there exists z with
(x� z�S) ∈ Ax and σ(z) 
S σ(y). But then there exists a profitable deviation by S to z,
a contradiction. So φ satisfies the first condition.

Now assume that x is such that there exists y, S with (x� y�S) ∈Ax and σ(y) 
S σ(x).
Toward a contradiction, assume φ(x) = (x�x�∅). Then σ(y) 
S (x�x�∅), but this im-
plies that {(x� y�S)�σ(y)} 
S (x�x�∅). Then there is a profitable deviation by S to y, a
contradiction. So φ also satisfies the second condition and it is an EPCF.

Proof of Proposition 8. The construction used in the proof is similar to that found
in Diamantoudi and Xue (2003) and Konishi and Ray (2003).

Step 1. If (x∗�P∗) ∈ C(N�V ), then there exists an ECB φ such that T (σ((x�P))) =
(x∗�P∗) for all (x�P) ∈Z.

The proof is by construction. I construct an ECB with the desired property.
Take any (x∗�P∗) = (x∗� {S∗

1� S
∗
2� � � � � S

∗
K}) ∈ C(N�V ). For any coalition S, let S denote

the partition of S composed of singletons. Let φ(x∗�P∗) = ((x∗�P∗)� (x∗�P∗)�∅).
Let (xt�Pt) = (xt� {S∗

1� � � � � S
∗
t �

⋃
j=t+1�����K S∗

j }), where xt(S
∗
j ) = x∗(S∗

j ) for all j =
1� � � � � t and xt({i}) = maxv({i}) for any i ∈ ⋃

j=t+1�����K S∗
j . For any t = 0�1� � � � �K − 1,

let φ(xt�Pt)= ((xt�Pt)� (xt+1�Pt+1)� S
∗
t+1).

For any (x�P) �= (xt�Pt) for some t = 0�1� � � � �K, let i be the player with the smallest
index for which x∗

i ≥ xi and i ∈ S ∈ P , where |S| ≥ 2. Note that since (x∗�P∗) ∈ C(N�V ),
such a player exists. Let φ((x�P)) = ((x�P)� (x′�P ′)� {i}), where x′({i}) = maxv({i}) and
{i} ∈ P ′.

This completes the specification of φ. Note that φ is a coalitional behavior, as it
assigns a unique action for each z ∈ Z. Furthermore, T (σ(z)) = (x∗�P∗) for all z ∈ Z.
Now we need to show that φ is an ECB. As any deviation leading to an infinite path
would lead to the lowest utility, we can restrict attention to one-step deviations.

As any one-step deviation at (x∗�P∗) leads to a cycle, there exists no profitable one-
step deviation at (x∗�P∗). Assume that there is a profitable one-step deviation at some
(x�P) �= (x∗�P∗). But if the deviating coalition is taking another action at (x�P), then
the deviation is not profitable since it will again end up at (x∗�P∗). Then the deviating
coalition is inducing no-action at (x�P), but since the coalition moving at (x�P) weakly
prefers (x∗�P∗) to (x�P), this cannot be a profitable deviation. Contradiction. Hence, φ
is an ECB.

Step 2. Suppose φ is an ECB such that T (σ((x�P))) = (x∗�P∗) for all (x�P) ∈Z. Then
(x∗�P∗) ∈ C(N�V ).
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Toward a contradiction, suppose φ is an ECB under foresight such that T (σ(x�P)) =
(x∗�P∗) for every (x�P) ∈ Z but (x∗�P∗) is not in the core. Then there exists (x�P) such
that S ∈ P and xS > x∗(S). But φ induces a finite path from (x�P) to (x∗�P∗) and at some
point someone in S is active on this path. Let (x′�P ′) be the first node on the path for
which some j ∈ S is active and let j deviate by refusing to take the action. The resulting
deviation is profitable, as j is getting x′

j = xj instead of x∗
j . A contradiction.

Proof of Proposition 9. Take any anonymous v. We prove the result using Y ce,
which is anonymous, is component balanced, and permits limited transfers. Let g∗ be
the efficient network we are trying to support. Let g∗ = {c∗

1� c
∗
2� � � � � c

∗
K}, where the com-

ponents are ordered in decreasing order of utility according to Y ce.
Any network g can be written as g = {c∗

1� c
∗
2� � � � � c

∗
L� c1� c2� � � � �cF }, where the highest

paying L components of g∗ is preserved and the remaining components are written in
any order.31 Let I(c) denote the set of players who are a part of component c.

Now I describe the punishment network for player i given a network g = {c∗
1� c

∗
2� � � � �

c∗
L� c1� c2� � � � � cF }, denoted by gi(g). This network is used to punish i whenever there is

a deviation at some node z, where the path of play at z terminates at g. To get the pun-
ishment network, I slightly modify the algorithm Jackson (2003) uses to find a pairwise
stable network under Y ce.

If i /∈ ⋃
j=1�����L c∗

j = I∗, then gi(g) is some network that satisfies (i) gi(g) = {c∗
1� c

∗
2� � � � �

c∗
L� c

′
1� c

′
2� � � � � c

′
F }, (ii) for any k = 1� � � � �F , c′

k maximizes Y ce
j (c� v) over j and c on the

population N \ I∗ \ ⋃
t=1�����k−1 I(c

′
t ), and (iii) i ∈ c′

F . Note that by the anonymity of v, we
can always put i in the last component.

If i ∈ c∗
l , where l ∈ {1� � � � �L}, then gi(g) is some network that satisfies (a) gi(g) =

{c∗
1� c

∗
2� � � � � c

∗
l−1� c

′
1� c

′
2� � � � � c

′
F }, (b) for any k = 1� � � � �F , c′

k maximizes Y ce
j (c� v) over j and

c on the population N \ (⋃t=1�����l−1 I
∗(ct))\ (⋃t=1�����k−1 I(c

′
t )), and (c) i ∈ c′

F . Here again,
we need the anonymity of v to put i in the final component.

Now I construct the (C)ECB, which consists of an initial phase and a punishment
phase for each player.

Initial phase: At z0, N moves to g∗. Thereafter no player takes an action. Hence, the
game stays at g∗ indefinitely.

Punishment phase of player i given g: Suppose the punishment phase of player i

given g is triggered and suppose gi(g) = {c∗
1� c

∗
2� � � � � c

∗
l−1� c

′
1� c

′
2� � � � � c

′
F }. First the players

in c∗
1 move to form c∗

1 if it has not formed yet. Then the players in c∗
2 moves to form c∗

2 .
This continues up to the point where c∗

l−1 has formed. Then players in c′
1 moves to form

c′
1 and so on. Once gi(g) forms, no player takes an action.

Transitions between phases: The game starts at the initial phase. If at node z′
a coalition S deviates from the phase that is supposed to be played and moves to
node z, and if the path of play that is supposed to be played at z′ terminates at g =
{c∗

1� c
∗
2� � � � � c

∗
L� c1� c2� � � � � cF }, then at node z, the punishment phase of player i given g

is triggered, where i is a player getting the highest payoff in I∗(g) ∩ S if I∗(g) ∩ S �= ∅;
otherwise, i is the player with the lowest index in S.

31If the highest paying component of g∗, which is c∗
1 , is not preserved in g, then g = {c1� c2� � � � � cF }, where

the components are written in any order.



710 Mert Kimya Theoretical Economics 15 (2020)

This completes the description of the coalitional behavior. Now we show that it is
a (C)ECB. For this, it is sufficient to show that the described coalitional behavior is im-
mune to profitable deviations. Take any node z. At z, suppose that the coalitional be-
havior leads to network g = {c∗

1� c
∗
2� � � � � c

∗
L� c1� c2� � � � � cF }.

First, note that there does not exist a profitable deviation at node z by coalition S with
S ∩ I∗(g) = ∅. To see this, simply observe that given c∗

1� c
∗
2� � � � � c

∗
L, g is the network that

maximizes the payoff of each player in c1, so nobody in c1 can be a part of the deviation.
But then, given c∗

1� c
∗
2� � � � � c

∗
L� c1, g is the network that maximizes the payoff of the players

in c2 and so on.
Second, note that there does not exist a profitable deviation at z by coalition S

with S ∩ I(c∗
1) �= ∅. To see this, observe that if there is such a deviation, then i ∈ c∗

1
will be punished with a network gi(g) = {c1� c2� � � � � cF }. By the above observation,
the profitable deviation cannot include any node at this punishment phase; hence,
gi(g) = {c1� c2� � � � � cF } is indeed the network the deviation would lead to. By the effi-
ciency of g∗, ui(g∗) = ui(g) ≥ ui(g

i(g)). If ui(gi(g)) < ui(g
∗), then we can find a large

enough δ that would make the deviation unprofitable. If ui(gi(g)) = ui(g
∗), then g∗ is

already the network that maximizes i’s payoff; hence, the deviation is not profitable.
Finally, observe that if at node z there does not exist a deviation by a coalition S

with S ∩ I(c∗
j ) �= ∅ for any j = 1� � � � � t − 1, then at node z there does not exist a prof-

itable deviation by any coalition S with S ∩ I(c∗
t ) �= ∅. To see this, suppose that at

node z there does not exist a deviation by a coalition S with S ∩ I(c∗
j ) �= ∅ for any

j = 1� � � � � t − 1. If there is a deviation by S with S ∩ I(c∗
t ) �= ∅, then i ∈ c∗

t is pun-
ished with a network gi(g) = {c∗

1� � � � � c
∗
t−1� c1� c2� � � � � cF }. By the above observation,

the profitable deviation cannot include any node at this punishment phase; hence,
gi(g) = {c∗

1� � � � � c
∗
t−1� c1� c2� � � � � cF } is indeed the network the deviation would lead to. By

the efficiency of g∗, ui(g∗) = ui(g) ≥ ui(g
i(g)). If ui(gi(g)) < ui(g

∗), then we can find a
large enough δ that would make the deviation unprofitable. If ui(gi(g)) = ui(g

∗), then g∗
is already the network that maximizes i’s payoff; hence, the deviation is not profitable.

With the final observation, all possible deviations are exhausted; hence, the de-
scribed coalitional behavior is an ECB, implying that it is also a CECB.

Proof of Proposition 10. Suppose v is strictly top convex and let Y = Y ce. We first
show that g∗ is efficient if and only if for every i ∈ N , we have Yi(g

∗� v) > Yi(g� v) for
any network g �= g∗. That is, each efficient network is also a network that (strictly) max-
imizes the payoff of each player.32 If for every i ∈ N , we have Yi(g

∗� v) > Yi(g� v) for
any network g �= g∗, then g∗ is trivially efficient. For the other direction, suppose that
g∗ is efficient, but Yi(g

∗� v) ≤ Yi(g
′� v) for some i ∈ N and some network g′. Let S be

the coalition that is in the same component as i in g′. Note that by strict top convex-
ity, g∗ is a connected network in N , so Yi(g

∗� v) = Yj(g
∗� v) for each j ∈ N . But then

Yj(g
′v) = Yi(g

′� v) ≥ Yi(g
∗� v) = Yj(g

∗� v) for any j ∈ S, a contradiction to strict top con-
vexity.

Now, suppose that φ is a CECB, but there exists z = (g�h) such that T (σ(z)) /∈ E(v),
where E(v) is the set of efficient networks. At every such node z, let S be the minimal

32This statement is no longer true with top convexity.
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coalition that can deviate from z to an efficient network g′. First note that the predic-
tion from g′ is necessarily an efficient network, as otherwise, in the reduced game at
g′, any player who moves can deviate to g′, which would be both profitable and credi-
ble. It is credible, because there can be no profitable deviation from g′, which (strictly)
maximizes each player’s payoff.

But then, at the reduced game at node z, think about the deviation where S moves
to g′ instead of whatever the CECB specifies. Since g′ (strictly) maximizes every player’s
payoff, the deviation is profitable. Furthermore, for the same reason, the deviation can-
not be followed by a further deviation; hence, it is credible, which is a contradiction to
the initial supposition that φ is a CECB. Hence, the prediction of every CECB is efficient,
implying that the prediction of every ECB is also efficient.

Proof of Proposition 11. Suppose φ is an ECB such that T (σ(g�h)) = g∗ for every
(g�h) ∈ Z, but g∗ /∈ C(v�Y). Then there exists a coalition S and a network g′ ⊆ gS such
that Yi(g

′� v) > Yi(g� v) for all i ∈ S. Since the prediction from every node is g∗, there ex-
ists a node z = (g�h), where g′ ∈ C(g) and some i ∈ S is taking an action at z.33 Consider
the deviation, where i refuses to move at z. Then the payoff i receives will be higher for δ
sufficiently large, as she is getting Yi(g

′� v) instead of eventually getting Yi(g� v). Hence,
the deviation is profitable.

Proof of Proposition 12. Step 1. Suppose φ is an ECB such that T (σ((g�h))) = g∗
for all (g�h) ∈Z. Then g∗ ∈ C(v�Y). The proof of Proposition 11 applies line by line, so I
do not replicate it here.

Step 2. If g∗ ∈ C(v�Y), then there exists a static ECB φ such that T (σ((g�h))) = g∗ for
all (g�h) ∈ Z. Take any g∗ ∈ C(v�Y). Let C(g∗) = {c∗

1� c
∗
2� � � � � c

∗
k} be the partition of g∗ to

its components and let {S∗
1� S

∗
2� � � � � S

∗
k} be the partition of N , where S∗

i corresponds to the
players in the component c∗

i for each i = 1�2� � � � �k. For any coalition S, let S denote the
empty network on S. Let φ(g∗�h) = ((g∗�h)� (g∗�h)�∅), that is, every node associated
with g∗ is stable.

Let gt = {c∗
1� � � � � c

∗
t �

⋃
j=t+1�����K S∗

j }. For any t = 0�1� � � � �K − 1, let φ(gt�h) =
((gt�h)� (gt+1� ·)� S∗

t+1). For any (g�h), where g �= g∗ and g �= gt for some t = 0�1� � � � �K,
let i be the player with the smallest index for which Yi(g

∗� c) ≥ Yi(g� v) and i is con-
nected in g. Note that since g∗ ∈ C(v�Y), such a player necessarily exists. Let φ((g�h)) =
((g�h)� (g′� ·)� {i}), where {i} is isolated in g′, i.e., i severs all of her links.

This completes the specification of φ. Note that φ is a coalitional behavior, as it
assigns a unique action for each z ∈Z. Furthermore, T (σ(z)) = (g∗� ·) for all z ∈Z. Now
we need to show that φ is an ECB. As any deviation leading to an infinite path would
lead to the lowest utility, we can restrict attention to one-step deviations.

Any one-step deviation at (g∗�h) leads to a path that again ends at the network g∗;
hence, such a deviation would not be profitable. Assume that there is a profitable one-
step deviation at some (g�h), where g �= g∗. But if the deviating coalition is taking an-
other action, then the deviation is not profitable since it will again end up at a node

33Note that in any network in which one of the components is g′, someone from S needs to take an action
for that component to get disrupted.
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where the associated network is g∗. Then the deviating coalition is inducing no-action
at (g�h), but since the coalition moving at (g�h) weakly prefers g∗ to g, this cannot be a
profitable deviation either—a contradiction. Hence, φ is an ECB.
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