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We consider dynamic team production in the presence of uncertainty. Team
members receive interim feedback that depends on both their current effort level
and the project’s uncertain prospects. In this environment, each member can en-
courage the others by making them more optimistic about the project’s prospects.
We study the extent to which this incentive counters the usual free-riding incen-
tive. Restricting the agents’ access to feedback can increase their equilibrium ef-
fort levels by mitigating the ratchet effect. In this case, using joint performance
measures can be beneficial even when individual measures are available.
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1. Introduction

Teams, as agile and adaptable units of production, are commonly utilized in the mod-
ern workplace. Businesses are increasingly moving away from traditional hierarchical
structures to networks of project-based teams (Deloitte 2016). According to Lazear and
Shaw (2007), the percentage of large firms utilizing self-managed teams in the United
States is close to 80%. Similarly, Bandiera et al. (2013) cite evidence that 47% of British
establishments have more than 90% of their workers organized in teams.1

What distinguishes a team from a mere group of workers is “shared responsibility
of work outcomes” (Hackman 1987). The economics literature has long recognized that
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such arrangements are problematic due to inherent free-riding incentives (Hölmstrom
1982). On the positive side, with shared responsibility, each member of a team benefits
from the hard work of others and, therefore, would like to encourage his teammates to
contribute. This feature may be an advantage of using teams and potentially a reason
why businesses use teams so often. When the environment affords tools and channels
by which the team members can indeed encourage each other, the cost of free-riding
can be more than justified by the additional value thereby created. In this paper, we
show that such a counter force exists if the team interacts over time and the environment
features uncertainty.2 Moreover, we show how the organization can further exploit the
encouragement mechanism by designing performance measures and feedback rules.

We consider a team of agents working over a finite horizon, on a joint project whose
true prospects are unknown. Each agent’s effort level is unobservable by the others.
Over time, the agents receive interim public feedback about team performance; then
they can adapt to new information by adjusting their effort levels. This feedback is noisy
but informative about the agents’ efforts and the project’s potential: both high effort and
good prospects statistically improve feedback. When the project ends, agents share the
total output in a prespecified way.

Our main finding is a mutual encouragement effect among team members, associ-
ated with learning about the project’s potential. In environments with uncertainty, team
members’ optimism plays an important role in how hard they work. Optimistic agents
exert more effort as they expect higher returns for it. At the same time, interim feedback
about performance affects the members’ optimism. Given that a team member’s effort
can affect interim feedback, each member has incentives to work harder to preclude
setbacks and, thus, keep her teammates optimistic, encouraging them to exert effort. By
doing this, she encourages higher effort on their part. The possibility of such mutual
encouragement, which we call encouragement via belief manipulation, leads to an in-
creased equilibrium effort level that counters the free-riding problem. Importantly, the
encouragement effect in our model is present only when there is uncertainty about the
prospects of the project. This suggests that introducing uncertainty into team produc-
tion can be welfare improving.3

Similar insights regarding the role of uncertainty in incentivizing agents to take de-
sirable actions have appeared elsewhere, notably in the career concerns literature pi-
oneered by Hölmstrom (1999). Ours is a novel application of such an encouragement
mechanism in a team context, which is further distinguished because it features mutual
(as opposed to one-sided) encouragement among team members.

Our analysis not only demonstrates that encouragement via belief manipulation can
counter free-riding incentives, but also identifies a force that limits its benefits. When
an agent engages in this type of encouragement, she creates optimism among her team-
mates, which in turn translates into high expectations of her own future effort. However,
the agent does not share her teammates’ optimism and, therefore, chooses not to meet

2With few notable exceptions, the existing literature considers either static environments or dynamic
environments with complete information, which explains why this channel has not previously appeared.

3This result is related to Hermalin (1998), which shows that providing only one member (leader) superior
information could lead to a better outcome compared with complete information.
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their expectations. Therefore, optimism generated via belief manipulation is inherently
short-lived. This “ratchet” effect limits the agents’ encouragement incentives, placing
upper bounds on the equilibrium effort levels.4

We consider agents with heterogeneous costs of effort and show that agents with
higher costs may work harder than the socially efficient level. Intuitively, the agents who
are teamed with low-cost partners have a greater incentive to encourage them, since a
low-cost agent’s effort is more sensitive to his beliefs. Therefore, the higher-cost agents,
whose socially efficient effort levels are relatively low, may overwork. However, we derive
an output sharing rule that eliminates effort overprovision and makes bounds on equi-
librium effort coincide with their socially efficient levels. Furthermore, as the feedback
becomes more responsive to manipulation, the equilibrium effort choices converge to
socially efficient levels, provided that the right sharing rule is used.

Our theory has implications for important questions concerning team design,
namely optimal timing of feedback as well as if and when it is desirable to use joint
performance measures. To study this, we introduce a principal who controls the release
of feedback to the agents and seeks to maximize total output. We show that the prin-
cipal may find it optimal to restrict agents’ access to feedback. Doing this allows the
principal to leverage the encouragement incentives by controlling the magnitude of the
ratchet effect. For instance, suppose that the principal fully blocks access to feedback
during some final phase. Then, during this phase, the ratchet effect will be eliminated
as agents’ underperformance does not affect others’ beliefs. Therefore, any optimism
created early on will be long-lived, strengthening the encouragement incentives. We
provide conditions under which “one-time feedback” maximizes team output. We also
consider the problem of a principal who can observe individual outputs of team mem-
bers. We show that such a principal may nevertheless choose to reward agents on joint
output. Doing so introduces free-riding incentives, but it also activates the encour-
agement effect. We show that under certain conditions, the latter can be sufficiently
strengthened via restricted feedback to overcome the former, leading the principal to
prefer joint performance measures.

Another contribution of this paper is to provide a framework that is tractable yet
rich enough to study our economic question. Analyzing dynamic team incentives with
uncertainty requires a model in which learning interacts with unobservable actions. In
such models, however, characterization of behavior off the equilibrium path is severely
complicated, as an agent’s deviation may cause her private belief to diverge from the
public belief. Our setup circumvents this problem by separating the feedback from
the production process, which greatly simplifies belief updating off the equilibrium
path. Moreover, the speed of learning in our model does not depend on agents’ ac-
tion, eliminating their incentives for experimentation. This distinguishes our model
from the strategic experimentation literature (Bolton and Harris 1999, Keller et al. 2005,

4The ratchet effect—the effect of potentially causing high expectations of the agent’s future action—is
extensively analyzed in the literature on dynamic agency models with asymmetric information (Weitzman
1980, Freixas et al. 1985) and dynamic moral hazard with learning and symmetric uncertainty (Bhaskar
2014, Prat and Jovanovic 2014, Cisternas 2018a, Bhaskar and Mailath 2019).
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Bonatti and Hörner 2011). We believe that our framework opens further possibilities to
analyze various aspects of team and feedback design.5

Our work connects to multiple strands of the literature. First, as we have noted,
a large literature on teams analyzes moral hazard in groups (Olson 1965, Alchian and
Demsetz 1972, Hölmstrom 1982). The literature mostly suggests that cooperation can
be sustained by “punishments” of past behavior in the form of either lower monetary
transfers or future non-cooperation by teammates.6 Our paper demonstrates that en-
couragement incentives in the presence of uncertainty could alleviate free-riding when
contractual remedies are not available.

In a paper closely related to ours, Bonatti and Hörner (2011) consider dynamic
moral hazard in teams in the presence of uncertainty. They utilize an exponential ban-
dit framework in which the interaction ends when the common project has a “break-
through.” The probability of a breakthrough depends on the agents’ instant effort level
and the type of the project. By contrast, in our model, the total output of the project
increases in agents’ cumulative effort. To the best of our knowledge, ours is the first pa-
per to tractably incorporate learning in a team production model where agents’ payoffs
depend on the whole history of effort.

Second, as noted earlier, incentives to manipulate others’ beliefs by attempting to
influence realizations of noisy signals have been investigated in various contexts. Since
Hölmstrom (1999), the literature on career concerns has analyzed the “signal-jamming”
incentives of a manager who attempts to affect the market belief about his innate abil-
ity. Riordan (1985) (oligopoly) and Fudenberg and Tirole (1986) (entrant–incumbent
game) examine a firm’s incentive to make the competing firm more pessimistic about fu-
ture profitability. Recently, Cisternas (2018a) substantially expands the career concerns
model by allowing general (nonlinear) payoffs for the long-run player in a stationary en-
vironment. He shows how the ratchet effect shapes the player’s equilibrium incentives.7

Our paper complements Cisternas (2018a) by analyzing the evolution of the ratchet ef-
fect in a nonstationary environment. In general, we contribute to the signal-jamming
literature by analyzing such incentives in a team production environment.

Third, the economic literature has identified various forms of “encouragement
effect” that manifest themselves via mechanisms that are different from ours. In
games with complete information, the literature on dynamic contribution games (Ad-
mati and Perry 1991, Marx and Matthews 2000, Yildirim 2006) shows that a public
project can be completed by agents who contribute small amounts from time to time.

5Our model can trivially accommodate heterogeneity among agents with respect to their productivity
or ability to influence informative feedback and, less trivially, heterogeneity with respect to information.
This, for instance, would open the door to addressing questions on allocation of heterogeneous agents into
teams operating within an organization.

6In the literature on contracts with many agents, a group contract based on total output can mitigate
moral hazard in teams (Hölmstrom 1982, Legros and Matthews 1993); in repeated partnership games, the
threat of future non-cooperation following a deviation sustains various equilibrium dynamics (Radner et al.
1986).

7Cisternas (2018b) generalizes the career concerns model along another dimension by allowing invest-
ment in human capital.
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Georgiadis (2015) provides a continuous-time framework and derives insights for vari-
ous team design issues. These papers assume that the payoff is realized only when the
project’s state reaches a prespecified threshold. Therefore, the effort choices at differ-
ent points in time are strategic complements, which is the channel through which the
encouragement effect operates.8

Several papers analyze the encouragement effect in games with incomplete infor-
mation, but differ from ours in one or more of these crucial aspects. We contribute to
this literature by identifying a novel channel by which encouragement can operate. The
encouragement mechanism in our paper is one of signal-jamming, and, thus, its exis-
tence crucially depends on (i) the presence of symmetric uncertainty, (ii) unobservable
actions, and (iii) payoff externalities. Bolton and Harris (1999) consider a multi-agent ex-
perimentation model in which agents’ effort choices are publicly observable and payoff
is not shared. They show that the possibility of eliciting future experimentation by oth-
ers encourages current experimentation. Dong (2018) analyzes how an encouragement
effect can result from asymmetric information in a canonical exponential bandit model
with observable effort choices. She shows that the better-informed player increases his
effort to “signal” his optimism to the uninformed player, leading to an increase in both
players’ efforts.9  Campbell et al. (2014) consider a public good provision problem in
which players decide whether to directly and credibly disclose their private information
about production successes. They find that when the deadline is close, players hide
successes to increase others’ effort incentives.

Fourth, our result regarding the benefit of joint performance measures relates to
several papers. Che and Yoo (2001) demonstrate that it may be desirable to use joint
performance measures in dynamic environments when team members have an advan-
tage in monitoring each other. Dai and Toikka (2018) reach an analogous conclusion
in a static environment where there is large ambiguity about the production technol-
ogy and the principal maximizes his payoff guarantee. In a contest model, Halac et al.
(2017) show that changing both the reward and the information structure could improve
the outcome. Our result that the use of joint performance measures can be optimal
only when used in conjunction with information control is reminiscent of their conclu-
sion. However their mechanism is distinct from ours: in their model, since the budget is
fixed, agents who succeed early wish to discourage others’ effort under the shared prize
scheme and restricted information helps eliminate this adverse incentive.

Finally, there is a large literature in management regarding the effect of team
potency—collective belief regarding the team’s ability to be successful—on team per-
formance (Mathieu et al. 2008). The literature finds that team potency has a positive
impact on performance through their respective effects on the actions of the team mem-
bers (Gully et al. 2002). Our paper contributes to the literature by suggesting the novel
hypothesis that the team members’ ability to affect team potency via feedback may have
a positive effect on performance.

8See also Georgiadis (2017) for the effects of deadlines and monitoring frequencies on free-riding
incentives.

9Klein and Wagner (2018) demonstrate that the encouragement effect can arise in a strategic investment
model with experimentation due to private information.
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The remainder of this paper is organized as follows. Section 2 describes the model.
Section 3 characterizes the equilibrium and discusses its dynamics. Section 4 conducts
comparative statics. Section 5 analyzes the effect of the feedback timing and perfor-
mance measures on team incentives. Section 6 concludes. The Appendix contains all
the omitted proofs.

2. Model

A team of N agents undertakes a common project over a fixed time period [0�T ], where
T < ∞. At the beginning of the game, nature draws a persistent state θ from a Gaussian
distribution N (μ0�1/ν0). At every time t, agents simultaneously choose private effort
levels ai(t) (i = 1� � � � �N). Agent i’s effort has a quadratic flow cost of ciai(t)2/2. Agents
do not discount the payoffs.

Agents observe neither the state nor the others’ effort choices, but make inferences
based on public feedback Y(t). The feedback evolves according to a stochastic process

dY(t) =
(
θ+ κ

N∑
i=1

ai(t)

)
dt + 1√

η
dW (t)� (1)

where W (t) is a standard Brownian motion. Note that the drift of the above process
is affected by both the unknown state (θ) and the agents’ unobservable actions (ai(t)).
Here, κ measures the responsiveness of feedback on the agents’ efforts and η controls
the feedback precision.

We make a restriction on the feedback timing that the agents observe Y(t) at inter-
vals of time � > 0. Formally, assume (without loss of generality) that T/� is an inte-
ger and that the agents observe Y(t) only at t = k� (k = 1� � � � �T/�). Note that with no
discounting, the agents do not change their effort levels until the new feedback is ob-
served. This effectively makes our model a discrete-time model. In Sections 3 and 4,
we mostly focus on the limit case of continuously observable feedback (� → 0). Our
hybrid model—discrete feedback with continuous effort choices—is especially useful in
analyzing the optimal feedback timing, which we address in Section 5.10

At the end of the project—that is, at time T—an output P is realized. The amount of
output depends on both the project state and the total effort:

P = θ

∫ T

0

N∑
i=1

ai(t)dt�

The output is shared according to an exogenous sharing rule s = (s1� s2� � � � � sN), with
si ≥ 0 and

∑N
i=1 si = 1.

10Another advantage of our model, compared to a full continuous-time version, is that it admits a unique
Nash equilibrium (Theorem 1). In Appendix B, we show that the unique Nash equilibrium converges to the
unique linear Markov perfect equilibrium of the continuous-time version of our model, providing justifica-
tion of the Markov perfection criteria.
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Given an effort profile a = {(a1(t)� � � � � aN(t))}t∈[0�T ] such that ai(t) is measurable
with respect to the information available at time t, agent i’s expected payoff is

Ea�θ

[
siP −

∫ T

0
ci
ai(t)

2

2
dt

]
= Ea�θ

[∫ T

0

(
siθ

N∑
i=1

ai(t)− ci
ai(t)

2

2

)
dt

]
�

A public history of length t = k� is a sequence Yk = {Y(k′�)}{k′=1�����k}. Agent i’s
private history of length t, hi(t), is the combination of public history and his own

past actions up to time t. Formally, hi(t) = {Yk̂(t)� {ai(t ′)}t ′∈[0�t)}, where k̂(t) = max{k :
k� ≤ t}. A pure strategy of agent i is a mapping from his private histories into R. We fo-
cus on pure strategy Nash equilibria. Note that because of the full support assumption
on the feedback process, the only deviations that are detectable by agent i are his own.
Consequently, all Nash equilibria are perfect Bayesian.

Remarks about the model Two aspects of our model deserve further elaboration. First,
note that the output P exhibits complementarity between effort ai(t) and the state θ.
Such complementarity ensures that the expected marginal product of an agent’s effort
is higher when he is more optimistic and thereby generates encouragement incentives
via belief manipulation. Second, feedback Y(t) is additively separable in agents’ actions
and the state. This specification is not necessary for the presence of encouragement
incentives, but it renders our dynamic model tractable. In particular, as Section 2.1
clarifies, this assumption implies that the speed of learning is independent of agents’
actions and, thus, eliminates considerations of experimentation motives. This feature
distinguishes our mechanism from those in the literature on strategic experimentation
(Bonatti and Hörner 2011, Keller et al. 2005).

2.1 Belief updating

In this subsection, we analyze the agents’ belief updating process on and off the equi-
librium path. As a benchmark case, suppose that the agents continuously observe feed-
back Y(t) at every instant. Let a∗(t) = {a∗

i (τ)}i�τ∈[0�t) be the agents’ common conjecture
about their effort paths. Define

Z(t) = 1
t

(
Y(t)− κ

∫ t

0

N∑
i=1

a∗
i

(
t ′
)
dt ′
)
�

By (1), for any t > 0, Z(t) is distributed normally with mean θ and precision ηt as long
as the agents follow the conjectured effort path.

Define public belief as the common posterior belief under the assumption that all
agents follow a∗(t). Then public belief at time t is Gaussian with mean

μ(t) ≡ μ
(
Y(t)�a∗(t)

)= ν0μ0 +ηtZ(t)

ν0 +ηt
(2)

and precision ν(t) = ν0 +ηt.11

11Strictly speaking, the public posterior mean and other posteriors are functions of relevant histories and
not just time. To save on notation, we drop references to the specific history and simply index the beliefs by
time whenever this leads to no confusion.
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If an agent deviates from the conjectured effort path, however, his posterior belief
differs from the public belief. Define agent i’s private belief at time t as a function of his
private history hi(t) and his conjecture of others’ effort paths a∗

−i(t) = {a∗
j (τ)}j �=i�τ∈[0�t).

Define

Ẑi(t) = 1
t

(
Y(t)− κ

∫ t

0

(
ai
(
t ′
)+∑

j �=i

a∗
j

(
t ′
))

dt ′
)
�

Then agent i’s private belief at time t is Gaussian with mean

μ̂i(t) = ν0μ0 +ηtẐi(t)

ν0 +ηt
(3)

and precision ν̂i(t) = ν(t) = ν0 + ηt. Note that if all agents follow a∗(t), private belief
coincides with public belief (that is, μ̂i(t) = μ(t)) for any t.

For future use, we define ρ(t) = η/(ν0 +ηt), and express (2) and (3) as

μ(t) = (1 − ρ(t)t
)
μ0 + ρ(t)tZ(t)� (4)

μ̂i(t) = (1 − ρ(t)t
)
μ0 + ρ(t)tẐi(t)� (5)

Note that while agent i’s private belief is not affected by his own deviation from the con-
jectured path, the mean of public belief is. The parameter ρ(t) captures the rate that an
agent’s effort at time t affects the future public belief.

In our model, feedback is not observed continuously, but is observed at intervals
of time � > 0. In this case, the belief updating processes are identical to (2) and (3),
but beliefs are updated only at the moments when feedback is revealed. Formally, the
public (private) belief path μ�(t) (μ̂�

i (t)) is given by μ̂�
i (t) = μ̂i(k�) (μ�(t) = μ(k�)) for

t ∈ [k�� (k+ 1)�).

3. Equilibrium

Our model admits a unique Nash equilibrium. This equilibrium has a remarkably simple
structure: After any history, the equilibrium action of each agent is linear in the mean
of his private posterior belief. Our main result, Theorem 1, establishes the uniqueness
of equilibrium and characterizes the equilibrium in the continuous-feedback limit (as
� → 0) as solutions of a system of ordinary differential equations. We relegate all formal
proofs to the Appendix.

Theorem 1. For any �> 0, there exists a unique Nash equilibrium. In equilibrium, agent
i’s action is given by

a∗
i

(
hi(t);�

)= ξ�i (t)μ̂
�
i (t)�

where the coefficient ξ�i (t) is a deterministic function of time.
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Let a∗
i (t) be agent i’s equilibrium action under the continuous-feedback limit (�→ 0).

Then a∗
i (t) = ξi(t)μ̂i(t), where {ξi}Ni=1 satisfies

ξ̇i(t) = −ρ(t)κ

[
si
ci

∑
j �=i

ξj(t)− ξi(t)

(
ξi(t)− si

ci

)]
(6)

for i = 1� � � � �N , along with terminal conditions ξi(T) = si/ci.

We call the coefficient ξi(t) agent i’s belief sensitivity of effort at time t: It mea-
sures the rate at which an agent responds to changes in his belief. The belief sensi-
tivity of effort is deterministic and varies only with calendar time. Next, we provide a
heuristic derivation of (6) that characterizes the equilibrium in the continuous-feedback
limit.12,13

First, note that because of our linear-quadratic structure, the equilibrium effort level
is linear in the marginal return to effort. In our model, there are two sources of return to
effort. First is the direct return due to its contribution to the output. If θ is commonly
known, this is the only source of return.

The presence of uncertainty creates a second source of return, as agent i’s behav-
ior affects others’ future effort levels. To understand this, suppose that agent i chooses
ai(t) = a∗

i (t)+α over a small interval [t� t+dt) for some α> 0, while the others follow the
equilibrium profile. Then (1) implies that for any t ′ ≥ t + dt, agent i’s deviation boosts
feedback Y(t ′) by καdt. Since her deviation is not detected, other agents form a more
optimistic belief than agent i does: (5) implies that the positive change in others’ belief
is ρ(t ′)καdt. Then following the equilibrium strategies, other agents increase their effort
levels at t ′ ≥ t + dt by

ρ
(
t ′
)
καdt

∑
j �=i

ξj
(
t ′
)
� (7)

To calculate the correct value of the belief manipulation return, however, we also
need to consider the effect of belief divergence after t + dt. Recall that after an upward
deviation at time t, the other agents’ belief is higher than that of agent i by ρ(t)καdt.
Given their optimistic belief, other agents form a high expectation about agent i’s per-
formance, but agent i optimally chooses a lower effort given her pessimistic belief.
Specifically, agent i’s effort level for [t + dt� t + 2dt) falls short of others’ expectations
by ξi(t + dt)ρ(t)καdt. Combining with (7), the net effect of initial deviation at t and the

12In the Appendix, we derive a closed-form formula for the unique Nash equilibrium for arbitrary �> 0.
With �> 0, an agent’s incentives remain unchanged and, thus, his equilibrium effort must be constant over
the interval [k�� (k+ 1)�). This observation enables us to treat the game as a discrete-time game with T/�

“periods.” Our equilibrium construction and the uniqueness argument utilize backward induction, where
the linear-quadratic structure implies that each agent has a unique best response after any history, which
is linear in his private posterior mean.

13See Appendix B for a characterization of the unique linear Markov equilibrium for a continuous-time
model in which the feedback Y(t) is continuously observed. Also, Appendix B shows that this equilibrium
coincides with the continuous-feedback limit of the equilibrium in Theorem 1 characterized by (6).
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resulting belief wedge at t + dt on the others’ effort level at t ′ ≥ t + 2dt is[
1 − ξi(t + dt)ρ(t)

]︸ ︷︷ ︸
decay due to the ratchet effect

ρ
(
t ′
)
καdt

∑
j �=i

ξj
(
t ′
)
� (8)

Comparing (7) with (8) implies that the effect of the belief divergence, which we refer to
as the ratchet effect, dampens the marginal return from the belief manipulation effect.

Given our understanding of the belief manipulation effect, we now turn to the
derivation of (6) by comparing the values of ξ(t) and ξ(t + dt). Since the direct return of
effort is constant over time, the only difference between ξ(t) and ξ(t+dt) is about return
from belief manipulation. This difference is expressed by the recursive formulation

ξi(t)− ξi(t + dt)= si
ci
ρ(t + dt)κdt

∑
j �=i

ξj(t + dt)

︸ ︷︷ ︸
returns from manipulating (t + dt) belief

− ρ(t + dt)κdtξi(t + dt)︸ ︷︷ ︸
extra discounting

(
ξi(t + dt)− si

ci

)
︸ ︷︷ ︸

future incentives at t + dt︸ ︷︷ ︸
ratchet effect

�

This formulation highlights two differences between belief manipulation incentives over
[t� t + dt) versus over [t + dt� t + 2dt). First, over [t� t + dt), agent i can influence others’
efforts over [t + dt� t + 2dt), while there is no such opportunity over [t + dt� t + 2dt):
This difference corresponds to the first term on the right-hand side. Second, an increase
in effort at time t creates a wedge between public and private belief at t + dt, which
leads to an extra period of ratchet effect. This is manifested as additional discounting
on the future returns from time t + dt onward.14 Simplifying and rearranging the above
expression yields (6).

The system (6) admits a unique solution characterized by

ξi(t) = si
ci

(
1 + ρ(t)κ

∫ T

t

∑
j �=i

ξj(x)e
− ∫ xt ρ(l)dle− ∫ xt κρ(l)ξi(l)dl dx

)
� (9)

This characterization has an intuitive interpretation. Since the cost of effort is quadratic,
after any history, agent i’s optimal effort is equal to her marginal private return per unit
of effort cost. The first term in (7) captures the direct marginal return on effort, which is
given by (si/ci)μ̂i(t). The second term captures the indirect benefit due to encourage-
ment via belief manipulation. The indirect benefit can be split into two parts: the initial
boost in public belief given by ρ(t)κ and the rate at which this boost decays over time.
The decay of the belief boost comes from the two sources. First, as more information is

14The form of this additional discounting can be better understood by referring to (8). At time t + �,
agent i’s effort choice falls short of others’ expectations and, therefore, the belief boost created at time t is
further discounted. Note that ξi(t + dt) represents the full marginal return on effort while si/ci represents
the direct productive benefit. Therefore, ξi(t + dt)− si/ci corresponds to the future returns.
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Figure 1. Simulated equilibrium effort path (N = 5, κ�ν = 1, T = 2).

revealed in the future, the public belief converges to the unbiased belief; this is captured
by the first exponential term (e− ∫ xt ρ(l)dl). The second exponential term (e− ∫ xt κρ(l)ξi(l)dl)
captures the ratchet effect: For every instant after the deviation, agent i underperforms
relative to others’ expectations, speeding up the convergence of the public belief to the
unbiased belief.

3.1 Equilibrium dynamics

Figure 1 depicts a simulated path of the equilibrium effort level a∗(t) = ξ(t)μ(t) in the
case of symmetric agents. Note that the agents’ effort paths are stochastic and typically
non-monotonic, as agents’ beliefs follow the realizations of the Gaussian noise in the
feedback. On the contrary, the belief sensitivity of effort ξi(t) is deterministic, providing
a clearer insight on the equilibrium dynamics. Moreover, ex ante expected output of a
team is a linear function of the sum of agents’ belief sensitivities.15 Therefore, in the rest
of the paper, we mostly focus on analyzing the characteristics of ξi(t).

The next proposition establishes the monotonicity of ξi(t) over time and character-
izes its lower and upper bounds.

Proposition 1. For any i = 1� � � � �N ,

(i) ξi(t) is strictly decreasing for all t ∈ [0�T ), with ξi(T) = si/ci,

(ii) ξi(t) < ξ̄i for any t ∈ [0�T ), where ξ̄i =
√

si
ci

∑N
j=1

√
sj
cj

.

Recall from (6) that ξi(t) consists of two sources of marginal return to the agent’s ef-
fort: the direct return and the indirect return from belief manipulation. Since the direct
return is constant over time (si/ci for all t), the dynamics of ξi(t) shows the evolution of
the belief manipulation incentives over time.

15Since a∗
i (t) = ξi(t)μ̂i(t) and μ̂i(t) = μ(t) on the equilibrium path, the ex ante expected payoff of a team

is given by

Et=0

[∫ T

0
θ

N∑
i=1

a∗
i (t) dt

]
=
∫ T

0
Et=0

[
θμ(t)

] N∑
i=1

ξi(t)dt =
∫ T

0

(
μ2

0 + ηt

ν0(ν0 +ηt)

) N∑
i=1

ξi(t)dt�
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The first part of Proposition 1 implies that the return from belief manipulation
monotonically decreases over time and then disappears at the end of the project. There
are two reasons for this decline. First, higher t simply means that the project is closer to
the deadline, reducing the returns from encouraging others’ future effort. Second, as the
agents learn θ more precisely over time, they place a smaller weight on new feedback in
updating their beliefs (i.e., ρ(t) declines), making it costlier to manipulate beliefs.

The second part implies that there is a limit on the size of the return from belief ma-
nipulation. This is a direct manifestation of how the ratchet effect dampens the belief
manipulation incentives. Notice that in (6), (the change in) the gain from the belief ma-
nipulation (the first additive term) is linear in ξj(t), but (the change in) the ratchet effect
(the second additive term) is quadratic in ξi(t). Therefore, as belief manipulation in-
centives increase, the ratchet effect catches up to the linear gains. The upper bound of
ξi(t) is reached when the ratchet effect fully washes out the direct belief manipulation
incentives.16

Proposition 1 holds only in the continuous-feedback limit (� → 0). If feedback
is observed in discrete intervals, the evolution of the ratchet effect may induce non-
monotonic ξi(t). For example, suppose that ξi(t) is very large (larger than ξ̄i in Propo-
sition 1). Then a small increase in an agent’s effort at t − � leads to a large discrepancy
between his effort level at t and others’ expectation thereof. This in turn implies a large
decrease in others’ belief at t + �, rendering the ratchet effect at t − � very severe. This
can lead to weaker effort incentives at t −� than at t. For small �, the ratchet effect kicks
in immediately so that ξi(t) can never exceed ξ̄i, eliminating this possibility.17 This ob-
servation also hints at our subsequent analysis in Section 5, which demonstrates how a
principal, via use of information control, can induce ξi(t) to exceed the bound ξ̄i.

3.2 Role of project uncertainty

Risk-taking is considered to be one of the main elements of entrepreneurial behavior.
The literature suggests various explanations for risk-taking behavior, such as the higher
premiums or risk-loving preferences of entrepreneurs. This paper identifies an alterna-
tive motivation: Undertaking an uncertain project can benefit organizations by mitigat-
ing the free-rider problem.

It is easy to show that if θ is known (i.e., ν0 = ∞) , the belief manipulation effect dis-
appears and the agents exert their myopic optimum effort (siθ/ci) at any t. The following
proposition formalizes this and analyzes the impact of ν0 on effort incentives away from
this limit.

Proposition 2. For any t ∈ [0�T ) and i = 1� � � � �N , the belief sensitivity of effort ξi(t)
decreases in ν0 and converges pointwise to si/ci as ν0 → ∞.

16The existence of an upper bound is in contrast to the outcome in the model in Hölmstrom (1999),
where the optimal effort level of the long-run player may diverge as the horizon becomes longer. In Hölm-
strom (1999), the agent’s marginal product of effort is independent of beliefs; therefore, even when the pub-
lic belief diverges from his own private belief, no wedge appears between his effort choice and the public
expectation, whereas such a wedge is the driver of the ratchet effect in our model.

17We further elaborate on this possibility in Appendix C.
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Figure 2. Ex ante payoff as a function of ν0 (T = 10, N = 5, κ= η = 1, ci = 1, si = 1/5).

Another necessary condition for the existence of belief manipulation incentives is
imperfect monitoring. If effort choices are perfectly observable, agents cannot bias
each other’s beliefs upward by boosting the feedback and, thus, in any equilibrium, they
choose their myopic optimal effort siμ(t)/ci. In the team production literature, the in-
ability or a high cost to monitor individual effort has mostly been considered as an ob-
stacle to inducing cooperation, as it limits the ability to accurately punish undesirable
actions.18 Our result implies that in the presence of uncertainty, imperfect monitoring
may generate another strategic effect that helps to overcome the free-riding problem.

An important implication of Proposition 2 is that the presence of uncertainty may
increase the welfare of the agents. However, the standard cost of uncertainty—arising
from agents’ uninformed decisions—still exists in this model. This argument leads to a
question regarding the optimal level of project uncertainty. To address this, we consider
classes of projects indexed by (μ0;ν0) that would deliver the same expected total payoff
to the team under complete information, i.e., if the uncertainty were to resolve prior to
the production stage. Figure 2 plots the expected welfare of the agents while varying the
prior precision ν0 within this class. In Appendix D, we conduct a formal and complete
analysis of Figure 2.19 The graph shows that there exists an interior ν0 that optimally
balances the trade-off between benefit from the belief manipulation effect and the cost
from uninformed decisions.

4. Comparative statics

The tractability of our environment allows for several comparative statics results that
add to the understanding of the belief manipulation incentives. The next propositions

18As Alchian and Demsetz (1972) write, “. . . In team production, marginal products of cooperative team
members are not so directly and separably (i.e., cheaply) observable. What a team offers to the market
can be taken as the marginal product of the team but not of the team members. The costs of metering
or ascertaining the marginal products of the team’s members is what calls forth new organizations and
procedures.”

19The team’s surplus under complete information is a convex function of true project quality (θ), which
creates an inherent value for initial uncertainty even without its role in boosting effort incentives. To isolate
the impact of the latter, when calculating the impact of decreased ν0 on total payoff, we reduce μ0 just
enough to nullify the first effect.
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collect these results. Again, our results focus on the belief sensitivity of effort ξi(t) in the
continuous-feedback limit (�→ 0), unless otherwise noted.

Proposition 3. For any t ∈ [0�T ) and i = 1� � � � �N , belief sensitivity of effort ξi(t)

(i) increases in κ and converges pointwise to ξ̄i as κ→ ∞,

(ii) increases in η,

(iii) decreases in ci as well as cj (j �= i).

In addition, when the agents are homogeneous and the sharing rule is symmetric, for any
t ∈ [0�T ), ξ(t) decreases, but Nξ(t) increases in N .

Intuitively, returns to belief manipulation are greater as feedback becomes more
sensitive to effort (higher κ) or feedback becomes more precise (higher η), because in ei-
ther case, feedback carries a larger weight in the updating process (4). The convergence
result in Proposition 3(i) shows that as κ becomes arbitrarily large, the counteracting
ratchet effect cancels out the direct belief manipulation effect, leading to the upper limit
on the belief sensitivity specified in Proposition 1.

It is straightforward that agent i’s incentive decreases in her own cost parameter (ci).
Perhaps more interestingly, her belief sensitivity also decreases in the others’ cost pa-
rameters (cj). This highlights the endogenous strategic complementarity generated by
the belief manipulation incentives. Under a smaller cj , agent j’s incentives for effort di-
rectly increase. Then agent j’s effort choice will be more sensitive to her belief, which in
turn increases agent i’s returns from his own effort.

The last part of Proposition 3 refers to the impact of team size on the effort incen-
tives. Intuitively, increasing the size of the team strengthens both the free-riding incen-
tives and the belief manipulation incentives. The last part of Proposition 3 implies that
the former negative effect dominates the latter as N grows large. However, this weak-
ening of individual effort incentives is more than compensated by the increase in the
team size, leading to higher total effort incentives.20 This is in contrast to the complete
information counterpart, where the sum of belief sensitivities Nξ(t) = N · (1/cN) = 1/c
stays constant.

4.1 Sharing rule and convergence to the first-best

That agents’ effort incentives are stronger when others’ effort is more sensitive to belief
is highlighted by Proposition 3(iii). In fact, these incentives can be too strong relative to
first-best if an agent has high effort cost, but his teammates have low costs and, thus,
are very sensitive to beliefs. Figure 3 plots the belief sensitivities in a two-agent team
with asymmetric effort costs (c1 = 1, c2 = 0�6), with the dashed lines corresponding to

20Bolton and Harris (1999), in a multi-agent experimentation model, show that while per capita exper-
imentation may decrease as the number of agents increases, this decrease is offset by the increase in the
number of players, leading to a nondecreasing value function.
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Figure 3. Asymmetric effort costs c1 = 1 and c2 = 0�6: left panel, s = (1/2�1/2); right panel,
s = (3/8�5/8).

the socially efficient levels 1/ci.21 In the left panel, where the agents’ shares are equal,
the high-cost agent’s effort exceeds its socially efficient level (1/c1), while the low-cost
agent’s effort level is bounded away from 1/c2. Proposition 4 states that it is always pos-
sible to fine-tune the sharing rule such that the upper bound of ξi(t) coincides with the
socially efficient levels. The right panel of Figure 3 demonstrates this result by describing
the equilibrium ξi(t) under s∗i = (3/8�5/8).

Proposition 4. If the sharing rule s = (s1� s2� � � � � sN) satisfies

si = s∗i ≡
1
ci

N∑
j=1

1
cj

�

the upper bound of ξi(t) coincides with its socially efficient level, that is, ξ̄i = 1/ci.

Note that s∗i in Proposition 4 is not necessarily the share structure that maximizes the
expected payoff, as ξi(t) is generally bounded away from ξ̄i. In fact, ξi(t) may not reach
its upper bound for any t, as shown in Proposition 2. However, the following corollary,
which is a straightforward implication of Propositions 3 and 4, identifies a limit case
under which the equilibrium ξi(t) converges to the socially efficient level.

Corollary 1 (Convergence to socially efficient outcome). If the sharing rule satisfies
si = s∗i for all i, the belief sensitivity ξi(t) converges pointwise to its socially efficient level
for t ∈ [0�T ) as κ→ ∞.

21Given the uncertainty about θ and the absence of learning considerations, the socially optimal level
of effort for each agent i would be μ(t)/ci , where μ(t) is the unbiased mean belief about θ given the re-
alizations of the feedback. Since learning happens exogenously in our model, there are no intertemporal
trade-offs between current and future surplus created by varying learning speeds. Therefore, the socially
optimal efforts simply maximize the current surplus given the current information. Therefore, the socially
optimal outcome would prescribe a constant belief sensitivity of ξ∗

i = 1/ci.
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To understand this seemingly unexpected result, consider the marginal return to
agent i’s effort when all agents’ belief sensitivities are close to their upper bounds (that is,
ξj(t) = ξ̄j for all j) and κ is arbitrarily large. Equation (9) implies that if agent i marginally
increases her effort, then the belief manipulation effect provides an initial boost to the
others’ effort levels, the size of which is approximately ρ(t)κ

∑
j �=i ξ̄j . Then, due to the

ratchet effect, the initial boost decays at an approximate rate of ρ(t)κξ̄i.22 Therefore, the
total present value of the increase in the others’ efforts is approximately (

∑
j �=i ξ̄j)/ξ̄i.

This is simply the ratio of the sum of others’ belief sensitivities (which determine the
size of the initial boost) and own belief sensitivity (which acts as a discount rate).

Adding the direct marginal product of agent i’s effort (1) and multiplying by agent i’s
share (si) yields the private marginal return of agent i’s effort:

si

⎛
⎜⎜⎜⎝1 +

∑
j �=i

ξ̄j

ξ̄i

⎞
⎟⎟⎟⎠= si

N∑
j=1

ξ̄j

ξ̄i
�

Social efficiency requires the private marginal return to equal the social marginal return,
which implies that the sharing rule must satisfy

si

N∑
j=1

ξ̄j

ξ̄i
= 1 =⇒ si = ξ̄i

N∑
j=1

ξ̄j

�

This sharing rule is clearly feasible and, indeed, the shares characterized in Proposition 4
are found by plugging ξ̄i = 1

ci
into the above expression for si.

5. Restricted feedback and joint performance measures

This section has two messages. First, a principal who can control the timing of the feed-
back can increase the team’s output relative to its level in our unique equilibrium. Sec-
ond, this improvement can be so drastic that an output-maximizing principal may be
better off choosing to employ such a measure and reward the agents on joint output
even when he is able to observe the individual outputs of the team members, in spite of
the fact that the latter would eliminate all free-riding concerns.

22By the time x > t, this boost is discounted for two reasons: (i) exogenous learning, by e− ∫ xt ρ(l)dl , and

(ii) ratcheting, by e− ∫ xt κρ(l)ξ̄i dl . When κ is large, the variation in ρ(l) is negligible compared to κ and, there-
fore, a linear approximation of the integral

∫ x
t ρ(l)dl by ρ(t)(x − t) becomes appropriate, leading to this

assertion.
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5.1 Restricted feedback

Consider a principal whose payoff is an increasing function of the team’s total output
and who privately observes Y(t). Before production begins he can commit to a “feed-
back schedule,” which is a subset T ⊂ [0�T ], with the understanding that at each t ∈ T,
the principal publicly and credibly reveals Y(t). In all the variations we consider be-
low, agents’ equilibrium efforts are linear in their mean beliefs so that their equilibrium
strategies, as usual, are characterized by their deterministic belief sensitivities. Let ξTi (t)
represent the belief sensitivity of effort under feedback schedule T. Then since agent i’s
time-t effort level on the equilibrium path is ξTi (t)μ(t), the expected output of a team is
given by

P(T) = Et=0

[∫ T

0
θμ(t)

N∑
i=1

ξTi (t)dt

]

=
∫ T

0

(
μ2

0 + γT(t)

ν0

) N∑
i=1

ξTi (t)dt� (10)

where γT(t) is a measure of the precision of information that the agents have at time t.
Specifically,

γT(t) = ητT(t)

ν0 +ητT(t)
�

where τT(t) = sup{t ′ ∈ T|t ′ ≤ t} is the most recent date of feedback preceding time t.
The form of expected output reveals that, all else being equal, the principal prefers

to give as much information as possible (i.e., the output is increasing in γT(t)). Then the
only potential reason he would delay release of feedback is its strategic impact on ξTi (·).
Note that the expected output is also increasing in ξTi . Next we consider an example
illustrating the channel by which such a restriction may help.

A numerical example To fix ideas, consider the simplest possible case: a team con-
sisting of two symmetric agents, with the equal sharing rule. Furthermore, assume that
ci = η = ν0 = μ0 = 1. First, under “continuous feedback” (T = [0�T ]), the equilibrium
belief sensitivities are calculated from (6) as

ξ1(t) = ξ2(t) = 1

1 +
(

1 + t

1 + T

)κ �

We immediately verify that belief sensitivities are increasing in κ but are bounded. To
illustrate how holding back feedback may boost belief sensitivities, consider a very crude
scheme that reveals feedback at a unique instant, say t̃; i.e., consider T = {t̃}. The belief
sensitivities under this feedback schedule are given by

ξi(t) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

[
1 + 1

2
(T − t̃)ρ(t̃)κ

]
if t < t̃�

1
2

if t ≥ t̃�
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Since there is no further feedback after t̃, the belief sensitivities are equal to the di-
rect marginal benefit of effort (in this case, 1/2). The expression for ξi(t) for t < t̃ also
accounts for this while additionally capturing the familiar benefit from belief manipu-
lation. The expression for the latter can be understood as follows. The rate at which
an agent’s effort at t ∈ [0� t̃) boosts his teammate’s time t̃ belief is κρ(t̃). Since the belief
sensitivity of effort for t > t̃ is 1/2, the initial boost in the teammate’s effort is κρ(t̃)/2.
Importantly, lack of further feedback eliminates both further learning and any ratchet
behavior, allowing this boost to remain constant over t ∈ [t̃� T ]. This leads to a total
effort boost of (T − t̃)κρ(t̃)/2, accounting for the second additive term in the expression.

The only gain from restricting the feedback in this manner is the boost in belief sen-
sitivities prior to t̃.23 This gain operates through elimination of the ratchet effect over
[0� t̃). Recall that in our baseline model, the ratchet effect dampens earlier effort incen-
tives because it leads to rapid decay of the optimism generated by boosts to feedback. By
shutting down learning after t̃, the one-time feedback schedule completely eliminates
the ratchet effect. Importantly, in our baseline model, the ratchet effect is most severe
when κ is large and is the force that bounds belief sensitivities. Not surprisingly, and
as is clear by inspecting the expression for ξi(t), when the ratchet effect is shut down,
as κ grows large, the earlier belief sensitivities grow without bound. This advantage of
one-time feedback eventually becomes sufficient so that it is preferred by the principal
when κ is large.

Optimality of one-time feedback schedules The following proposition shows that the
forces at work in the above example exist under a general environment, so that one-time
feedback induces a greater output than continuous feedback if κ is large. The proposi-
tion also characterizes the optimal timing of one-time feedback schedules.

Proposition 5. Among all one-time feedback schedules, expected output is maximized
when feedback is given at

t∗ =
√
ην0T + ν2

0 − ν0

η
�

Moreover, there exists κ̄ such that if κ > κ̄, then the expected output underT∗ ≡ {t∗} exceeds
expected output under continuous feedback T

∗∗ ≡ [0�T ].

As described in the above example, the negative ratchet effect does not exist un-
der one-time feedback, since there is no subsequent feedback after belief divergence.
Proposition 5 implies that when κ is large enough, cost from the ratchet effect also be-
comes large so that the one-time feedback dominates the continuous feedback sched-
ule. The optimal timing t∗ of feedback balances the following trade-off. While delay-
ing the feedback means a longer period for agents to work harder because of the belief
manipulation incentives, the incentives become weaker as there exists a shorter period
during which manipulated beliefs influence behavior.

23When feedback is restricted in this manner, γT(t) is weakly smaller for all t and, for t > t̃, the belief
sensitivities are also smaller than under continuous (unrestricted) feedback.
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Next we show that the one-time feedback schedule is optimal for the principal
among the class of “coarse” feedback schemes under sufficiently large κ. Let �(T) rep-
resent the “coarseness” of a feedback schedule T defined by

�(T) = inf
{∣∣t − t ′

∣∣|t� t ′ ∈ T
}
�

Also, define T (�) as a set of feedback schedules T with �(T) > �.

Proposition 6. Fix � > 0. Then there exists κ̄ such that for any κ > κ̄, the one-time
feedback schedule T

∗ defined in Proposition 5 induces the largest expected output among
the feedback schedules in T (�).

When away from the continuous-feedback limit, i.e., if period length � > 0, the
coarseness of available feedback schemes is bounded below by �. Then Proposition 6
implies that for fixed period length �, as κ becomes sufficiently large, T

∗ is optimal
among all feasible feedback schemes.24

5.2 Joint versus individual performance measures

Now suppose that the principal observes the individual outputs of team members. By
paying each agent his/her own production, the principal can completely eliminate free-
riding. However, doing so also eliminates the belief manipulation incentives as agents
do not gain from others’ hard work.

Under this “individual performance measure” (IPM), the belief sensitivity of each
agent is simply 1/ci and, in particular, is independent of the feedback schedule. There-
fore, the following result immediately follows by inspecting (10).

Proposition 7. Under the IPM, the output-maximizing feedback schedule is the contin-
uous feedback T

∗∗.

In light of Proposition 7, to argue that the principal may prefer joint performance
measures (JPM, i.e., splitting the total output among agents) over IPM, it suffices to show
that JPM together with the best one-time feedback schedule T

∗ is superior to IPM to-
gether with the continuous-feedback schedule T

∗∗. Figure 4 illustrates the equilibrium
belief sensitivities under each of these combinations as well as the benchmark case of
JPM with T

∗∗ for a symmetric team of two agents.
Note that under full-information feedback, IPM generates larger belief sensitivities

and, therefore, larger expected output than JPM.25 However, since under a one-time
feedback schedule, the belief sensitivities over [0� t∗) can be arbitrarily large, the in-
equality can be reversed. The following proposition provides sufficient conditions for
this reversal.

24In the limit when �→ 0, “coarseness” rules out continuous feedback over any positive-length interval.
25In general, this follows because under joint performance measures, the belief sensitivities are bounded

above by ξ̄i < 1/ci .
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Figure 4. Equilibrium belief sensitivity under different feedback schemes and performance
measures. (T = 10, N = 2, ci = 1, si = 1/2.)

Proposition 8. There exists κ̄ such that if κ > κ̄, then the joint performance measure
combined with one-time feedback generates more expected output than the individual
performance measure with continuous feedback.

The comparison of the two schemes (JPM, T∗) versus (IPM, T∗∗) boils down to the
relative impact on output of the additional early effort generated by the former versus
the increased precision generated by the latter. This result is intuitive: By earlier argu-
ments, the larger is the κ, the more advantageous is restricted feedback along with JPM,
and this advantage grows unboundedly, whereas the advantage generated by eliminat-
ing free-riding is bounded.26

6. Concluding remarks

This paper contributes to the recent literature that investigates the effect of uncertainty
on team behavior. While our model is simple, it highlights several interesting trade-offs
that occur when joint production takes place over time and under uncertainty. Nev-
ertheless, it may be of interest to understand how these trade-offs would interact with
others that may appear in more general environments.

Our model can trivially accommodate further heterogeneity (e.g., with respect to
agent productivity, ability to impact feedback) and discounting as long as the linear-
quadratic-Gaussian structure is preserved. Moving away from the linear-quadratic-
Gaussian framework appears to be a worthy path for future research even though it is
more challenging. Allowing for more general production functions to accommodate in-
teraction between agents’ effort choices or a different relationship between the state
and marginal product of effort may lead to strengthening or weakening of the encour-
agement effect that we are highlighting. Investigating these relationships can lead to

26Che and Yoo (2001) and Dai and Toikka (2018) reach conclusions that are similar in spirit. Che and Yoo
(2001) demonstrate that it may be desirable to use joint performance measures in dynamic environments
when team members have an advantage in monitoring each other, while Dai and Toikka (2018) reach an
analogous conclusion in a static environment where there is large ambiguity about the production tech-
nology and the principal maximizes his payoff guarantee.
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fruitful conclusions about the optimality of various feedback schemes and performance
measures in different technological environments.

A different type of heterogeneity that may be of interest is with respect to the agents’
information. Specifically, our linear-quadratic-Gaussian model can be extended to ac-
commodate the asymmetric information among the agents: some members (experts)
may have more precise information about the state than others (novices), leading es-
sentially to a dynamic version of Hermalin (1998). This extension may provide insights
into optimal dynamic sharing rules between experts and novices.

The encouragement effect we highlight in this paper is likely to be present under dif-
ferent specifications. Here we assume that agents observe public feedback while their
actions are private, and that the encouragement effect manifests itself as a form of signal
jamming. Under the alternative specification where agents receive private feedback but
take observable actions, effort incentives are likely to be boosted in an analogous fashion
due to the agents’ incentives to signal their information to others.27 More broadly, anal-
ysis of the optimal contract combined with information design remains an interesting
path for future research.

Appendix

The appendix consists of four parts. Appendix A contains all omitted proofs. Ap-
pendix B characterizes the linear Markov equilibrium in the continuous-time version of
our model and shows the convergence result of the equilibrium in Theorem 1 as � → 0.
Appendix C discusses potential non-monotonicity of the equilibrium belief sensitivity
when � is bounded away from 0. Appendix D describes an exercise that illustrates the
trade-offs associated with determining the optimal level of uncertainty.

Appendix A: Omitted proofs

Proof of Theorem 1

We prove Theorem 1 in two steps. First, we show that there exists a unique Nash equi-
librium in our model for any �> 0 of the feedback interval (Proposition 9). Not only do
we show the existence and uniqueness, but we also characterize the belief sensitivities
ξi in recursive form (12). Second, we take the limit of � → 0 and show that the recursive
forms (12) converge to the system of differential equations (6) in Theorem 1.

Given any pure strategy profile, the Gaussian belief updating process (4) implies that
the agents’ beliefs after every length-t history can be summarized by(

μ(t)�
(
μ̂1(t)� � � � � μ̂N(t)

))
�

where μ(t) and μ̂i(t) are the mean of the public belief and agent i’s private belief at time
t, respectively. These beliefs are constant over intervals [k�� (k+1)�), k = 0� � � � �K−1 =
(T −�)/�. Moreover, over such intervals, the marginal contribution of each agent’s effort

27See Cetemen (2018) for an analysis of dynamic team behavior when members have different informa-
tion about the project quality.
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to feedback Y((k+1)�) and to final output P are constant. Since, in addition, effort cost
is convex, we conclude that in any equilibrium, the effort choices are constant over such
intervals. Thus, the setup is equivalent to a discrete time game with K ≡ T/� periods.
Accordingly, we refer to the time interval [�k��(k+1)) as period k. For ease of notation,
let μk, μ̂ik, and aik (k = 0� � � � �K − 1) stand for the values of μ(t), μ̂i(t), and ai(t) for
t ∈ [k�� (k+ 1)�).

It is convenient to define

Z̃k = Z
(
(k+ 1)�

)−Z(k�)

�
and ρk = η�

νk
�

Then the evolution of the public belief can be expressed recursively as

μk+1 = (1 − ρk+1)μk + ρk+1Z̃k� (11)

The following proposition characterizes the unique equilibrium when feedback is
observed at discrete intervals.

Proposition 9. Fix � > 0. There exists a unique Nash equilibrium of the model. In
equilibrium, agent i’s effort level for t ∈ [k�� (k+ 1)�) (k= 0� � � � �K − 1) is

a∗
ik = ξikμ̂ik�

where ξi�K−1 = si/ci, and

ξik = si
ci

[
1 + κ

K−1∑
l=k+1

∑
j �=i

ξjlρl

l−1∏
m=k+1

(1 − κξimρm)

]
(12)

for k= 0� � � � �K − 1.

Proof. We employ backward induction to prove the proposition. In the last period
(k= K − 1), each agent solves the problem

a∗
i�K−1 = arg max

a
E

[
�siθ

(
a+

∑
j �=i

a∗
j�K−1

)]
−�ci

a2

2

= arg max
a

siμ̂i�K−1

(
a+

∑
j �=i

a∗
j�K−1

)
− ci

a2

2
�

The first-order condition yields agent i’s unique equilibrium effort a∗
i�K−1 = (si/ci)μ̂i�K−1,

which is linear in the mean of the private belief with coefficient ξi�K−1 = si/ci.
Now suppose that the claim of the proposition holds for period k + 1 onward, that

is, in an equilibrium of the game, agent i plays a∗
il = ξilμ̂il for l = k+ 1� � � � �K − 1, where

ξil is defined in (12).
Fix a public history of length �k, and suppose that there exists an equilibrium in

which āik is agent i’s equilibrium effort choice in period k following the public history,
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provided that he has not deviated in the past. Thus, all other agents anticipate that agent
i chooses āik. Then it suffices to show that āik = ξikμ̂ik.

We compute agent i’s payoff from choosing arbitrary a in period k. First, using (11)
we have

μk+1 − μ̂i�k+1 = (1 − ρk+1)(μk − μ̂ik)+ κρk+1(a− āik)

= ρk+1

ρk
(μk − μ̂ik)+ κρk+1(a− āik)� (13)

To calculate the belief divergence in period k+ 2 onward, we use the induction hypoth-
esis that in period l = k + 1� � � � �K − 1 agent i plays ail = ξilμ̂il, while the others expect
him to play āil = ξilμl. Then, for all l = k+ 1� � � � �K − 1,

μl+1 − μ̂i�l+1 = (1 − ρl+1)(μl − μ̂il)− κρl+1ξil(μl − μ̂i�l)= ρl+1

ρl
[1 − κρlξil](μl − μ̂il)�

from which we obtain

μl+1 − μ̂il+1 = (μk+1 − μ̂ik+1)

l∏
m=k+1

ρm+1

ρm
[1 − κρmξm]

= (μk+1 − μ̂ik+1)
ρl+1

ρk+1

l∏
m=k+1

[1 − κρmξm]� (14)

Substituting (13) into (14) and rearranging, we obtain

μl+1 = μ̂il+1 +
(

1
κρk

(μk − μ̂ik)+ (a− āik)

)
ρl+1κ

l∏
m=k+1

[1 − κρmξm]� (15)

Now agent i’s optimal effort a∗ solves

a∗ = arg max
a

siμ̂ik

(
a+

∑
j �=i

a∗
jk

)
− ci

a2

2

+Ek

[
si

K−1∑
l=k+1

μ̂il

(
ξilμ̂il +

∑
j �=i

ξjlμl

)
− ci

ξ2
il

2
μ̂2
il

]
�

Note that μ̂il for l = k + 1� � � � �K − 1 is independent of a and has expectation μ̂ik. Sub-
stituting μl with (13) and (15), eliminating additive terms that are independent of a,
and replacing μ̂il with its expectation whenever appropriate, agent i’s problem can be
rewritten as

a∗ = arg max
a

siμ̂ik

[
1 + κ

K−1∑
l=k+1

∑
j �=i

ξjlρl

l−1∏
m=k+1

(1 − κξimρm)

]
a− ci

a2

2
�

It is clear that the problem is concave in a and has a unique solution. The first-order
condition immediately yields the desired result.
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Now define ξ�i (·) as a step function such that for t ∈ [k�� (k+ 1)�),

ξ�i (t) = ξk�

Then, by Proposition 9, ξ�i (·) constitutes the unique equilibrium of the game where the
feedback is observed at intervals of length �. It remains to show that as � → 0, the limit
of ξ�i (·) satisfies (6). Rewriting (12) in the recursive form yields

ξik = si
ci

+
[
κ
si
ci

∑
j �=i

ξj�k+1ρk+1 + (1 − κξi�k+1ρk+1)

(
ξi�k+1 − si

ci

)]
�

Rearranging and substituting for ρk and ξ�i (·), we obtain

ξ�i (t)− ξ�i (t +�) = κρ(t +�)�

[
si
ci

∑
j �=i

ξ�j (t +�)− ξ�i (t +�)

(
ξ�i (t +�)− si

ci

)]
�

Then dividing by � and letting �→ 0, we obtain the desired result.

Proof of Proposition 1

To establish monotonicity, we first observe that ξ̇i(T ) < 0. Suppose, for a contradiction,
that there exist i and t̃ ∈ [0�T ) such that ξ̇i(t̃) > 0. By the continuity of ξ̇i(t), there exists
�̂i > 0 such that ξ̇i(t) < 0 for t ∈ (T − �̂i�T ] and ξ̇i(T − �̂i) = 0. Without loss of generality,
assume that i = 1 attains min{�̂i|i = 1� � � � �N}, with the convention that �̂j = ∞ if ξ̇j(t) <

0 for all t. This in particular implies that ξ̇j(T − �̂1) ≤ 0 and ξ̇i(t) < 0 for t > T − �̂1 for all
j �= 1.

Step 1. Suppose that for all j = 1� � � � �N , ξ̇j(T − �̂1) = 0. In this case, manipulation

of (6) reveals that each ξj(T − �̂1) must be equal to its upper bound given in (1). Since

they are all nonincreasing over the interval (T − �̂1�T ], they must indeed be constant.
In particular, it must be true that ξj(T) is equal to its upper bound, which violates the
terminal condition ξj(T) = sj/cj . Therefore, we conclude that there exists j �= 1 such that

ξ̇j(T − �̂1) < 0.

Step 2. Next we claim that ξ̈1(T − �̂1) > 0. By taking derivatives of both sides of (6),
and using ξ̇1(T − �̂1) = 0 and (6), we obtain

ξ̈1(T − �̂1) = − ηκ

ν0 +ηt

s1

c1

N∑
j=1

ξ̇j(T − �̂1)�

Then, since ξ̇j(T − �̂1) ≤ 0 with at least one strict inequality, we conclude that

ξ̈1(T − �̂1) > 0. Now, since ξ̇1 is continuous, ξ̇1(T − �̂1) = 0, and ξ̈1(T − �̂1) > 0, there
exists ε > 0 such that ξ̇1(t) > 0 whenever t ∈ (T − �̂1�T − �̂1 + ε), a contradiction, estab-
lishing that ξ̇t ≤ 0 for all t.

Monotonicity immediately implies the lower bound on ξi(t). Again, ξ̇i(t) ≤ 0 im-
plies, by (6), that the term in parentheses on the right-hand side must be nonnegative.
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That is,

si
ci

N∑
j=1

ξj(t) ≥ ξi(t)
2�

Taking the square roots of both sides and summing over i yields√√√√√ N∑
j=1

ξj(t) ≤
N∑
j=1

√
sj

cj
�

Combining the above two inequalities yields the desired upper bound.
The above argument implies that a solution remains bounded in finite time and,

therefore, a solution exists for all T ∈ [0�∞). Next we show that there exists a unique
solution to (6), which defines an autonomous first-order nonlinear system of differential
equations. Define u(t) = (ξ1(t)� � � � � ξN(t)� ν(t)). Then du(t) = F(u(t)), where F is a
Lipschitz continuous function given any (κ�η). Then, by the Picard–Lindelöf theorem
(Teschl 2012, Theorem 2.2), there exists a unique solution to this system in the domain
[0�T ] with the boundary values ξi(T) = si/ci for all i.

Proof of Propositions 2 and 3

Note that ρ(t) = η/(ν0 + ηt) uniformly increases in η and decreases in ν0. Next, take
two appropriate functions ρa(·) and ρb(·) such that for all t ∈ [0�T ], ρa(t) < ρb(t). Let
{ξai (t)}Ni=1 and {ξbi (t)}Ni=1 be the solutions to (6) when ρ(·) = ρa(·) and ρ(·) = ρb(·), respec-
tively. For all i, since ξai (T) = ξbi (T) = si/ci, then ξ̇ai (T ) > ξ̇bi (T ), which implies that there
exists εi > 0 (i = 1� � � � �N) such that ξai (t) < ξbi (t) for any t ∈ (T − εi�T ). Let ε = mini εi.
Suppose there exist t̃ and i such that ξai (t̃) ≥ ξbi (t̃). Then by continuity of ξai (t) and
ξbi (t), there must exist j and t∗ ∈ [t̃� T − ε] such that ξaj (t

∗) = ξbj (t
∗) and for all t ∈ (t∗�T )

and for all i, ξai (t) < ξbi (t). However, since for all i, ξai (t
∗) ≤ ξbi (t

∗), ξaj (t
∗) = ξbj (t

∗), and

ρa(t∗) < ρb(t∗), (6) implies that ξ̇aj (t
∗) > ξ̇bj (t

∗). This in turn implies that there exists

ε′ > 0 such that ξaj (t) > ξbj (t) for all t ∈ (t∗� t∗ + ε′), a contradiction. This establishes that

for all t ∈ [0�T ) and for all i, ξai (t) < ξbi (t). Combined with the monotonicity of ρ(·) in η

and ν0, this completes the proof of Proposition 2 and item (ii) of Proposition 3.
The proof that ξi(t) increases in κ is analogous. For the convergence result in item

(i), note that by (6), for all i, ξ̇i(T ) = −ρ(T)κ(si/ci)
∑

j �=i(sj/cj), which approaches −∞
as κ→ ∞. Together with strict monotonicity of ξi(·), this establishes the pointwise con-
vergence to the upper bound.

For item (iii), fix two constants c̃i and ĉi with 0 < c̃i < ĉi, and let {ξ̃i(t)}Ni=1 and

{ξ̂i(t)}Ni=1 be the solutions to (6) when ci = c̃i and ci = ĉi, respectively. Then it suffices

to show that ξ̃j(t) > ξ̂j(t) for all t ∈ [0�T ) and j = 1� � � � �N .
Take an increasing sequence cki with c0

i = c̃i and limk→∞ cki = ĉi. Let J = {1� � � � �
i− 1� i+ 1� � � � �N}. For j ∈ J ∪ {i}, define ξ0

j ≡ ξ̃j . Then, for k≥ 1, define ξkj recursively as
follows:
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• The ξki solves (6) for ci = cki while keeping ξj(·) fixed at ξk−1
j (·) for all j ∈ J. For-

mally, ξki satisfies

ξ̇ki (t) = −ρ(t)κ

[
si

cki

∑
j �=i

ξk−1
j (t)− ξi(t)

(
ξi(t)− si

cki

)]
� (16)

with a terminal condition ξki (T) = si/c
k
i . That is, ξki is agent i’s best response to

{ξk−1
j }j∈J when his marginal effort cost is cki .

• Given ξki (·), {ξkj }j∈J solves (6), assuming that ξi(·) = ξki (·). Formally, {ξkj }j∈J satis-
fies the system of N − 1 differential equations

ξ̇kj (t) = −ρ(t)κ

[
sj

cj

(
ξki (t)+

∑
l �=j

ξl(t)

)
− ξj(t)

(
ξj(t)− si

cj

)]
� (17)

with terminal conditions ξkj (T) = sj/cj . Note that {ξkj }j∈J is the equilibrium strat-

egy profile in a game played among agents in J, with agent i’s strategy fixed at ξki .

Using an inductive argument, we establish that for all k≥ 0,

ξk+1
i (t) < ξki (t) for t ∈ [0�T ]�

ξk+1
j (t) < ξkj (t) for t ∈ [0�T ) and j ∈ J�

We conduct our analysis in the following three steps.

Step 1. For all t ∈ [0�T ], ξ1
i (t) < ξ0

i (t).

Proof. Note that ξ1
i (T ) < ξ0

i (T ) from the boundary condition. Suppose to the contrary
that there exists t̃ ∈ [0�T ) such that ξ1

i (t̃) ≥ ξ0
i (t̃). Then since ξki (t) is continuous in t,

there must exist t∗ ∈ [t̃� T ) such that ξ1
i (t

∗) = ξ0
i (t

∗) and ξ1
i (t) < ξ0

i (t) for all t ∈ (t∗�T ].
However, since c1

i > c0
i , from (16) we have ξ̇1

i (t
∗) > ξ̇0

i (t
∗), which in turn implies that

there exists ε > 0 such that ξ1
i (t) > ξ0

i (t) for all t ∈ (t∗� t∗ + ε), leading to a contradiction.

Step 2. For all t ∈ [0�T ) and j ∈ J, ξ1
j (t) < ξ0

j (t).

Proof. From the boundary conditions, ξ1
j (T ) = ξ0

j (T ) for all j ∈ J. Since ξ1
i (T ) > ξ0

i (T ),

from (17) we have ξ̇1
j (T ) < ξ̇0

j (T ), implying that there exists ε > 0 such that for all j ∈
J and t ∈ (T − ε�T), ξ1

j (t) > ξ0
j (t). Suppose to the contrary that there exist j ∈ J and

t̃ ∈ [0�T − ε] such that ξ1
j (t̃) ≥ ξ0

j (t̃). Then, by continuity of ξkj (·), there must exist l ∈ J

and t∗ ∈ [t̃� T − ε) such that ξ1
l (t

∗) = ξ0
l (t

∗) and ξ1
j (t) < ξ0

j (t) for all j ∈ J and t ∈ (t∗�T ).

However, since ξ1
i (t

∗) > ξ0
i (t

∗) (by Step 1) and ξ1
j (t

∗) ≥ ξ0
j (t

∗) for all j ∈ J (by continuity

of ξkj (·)), from (17) we have ξ̇1
l (t

∗) > ξ̇0
l (t

∗), which in turn implies that there exists ε′ such

that ξ1
l (t) > ξ0

l (t) for all t ∈ (t∗� t∗ + ε′), leading to a contradiction.
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Step 3 (Induction). Suppose that for some k̄ ∈ N, ξk̄i (t) < ξk̄−1
i (t) for t ∈ [0�T ] and

ξk̄j (t) < ξk̄−1
j (t) for t ∈ [0�T ) and j ∈ J. Then ξk̄+1

i (t) < ξk̄i (t) for t ∈ [0�T ] and ξk̄+1
j (t) <

ξk̄j (t) for t ∈ [0�T ) and j ∈ J.

Proof. The proof is almost identical to those in Steps 1 and 2. First consider ξk̄+1
i ver-

sus ξk̄i . Note that ξk̄+1
i (T ) < ξk̄i (T ) from the boundary condition. Suppose to the con-

trary that there exists t̃ ∈ [0�T ) such that ξk̄+1
i (t̃)≥ ξk̄i (t̃). Then since ξki (t) is continuous

in t, there must exist t∗ ∈ [t̃� T ) such that ξk̄+1
i (t∗) = ξk̄i (t

∗) and ξk̄+1
i (t) < ξk̄i (t) for all

t ∈ (t∗�T ]. However, since c1
i > c0

i and ξk̄j (t) < ξk̄−1
j (t) for all j ∈ J, from (16) we have

ξ̇k̄+1
i (t∗) > ξ̇k̄i (t

∗), which in turn implies that there exists ε > 0 such that ξk̄+1
i (t) > ξk̄i (t)

for all t ∈ (t∗� t∗ +ε), a contradiction. Finally, an argument identical to Step 2 proves that

ξk̄+1
j (t) < ξk̄j (t) for all j ∈ J and t ∈ [0�T ).

Given the arguments in Steps 1–3, we finish the proof by showing that for any j ∈
J ∪ {i} and t ∈ [0�T ],

lim
k→∞

ξkj (t) = ξ̂j(t)�

For any t and j, {ξkj (t)}∞k=0 is a decreasing and bounded sequence, and, therefore, it con-

verges. Then the fact that the limit coincides with ξ̂j(t) follows by continuity of the sys-
tem (6).

For the last part we assume agents are symmetric and each has the same costs and
shares; then we can solve ξN(t) in closed form as

ξN(t) = 1

c + c(N − 1)
(
c(η0 +ηt)

) κ
c
(
c(η0 +ηT)

)−κ
c

or, alternatively,

ξN(t) = 1

c + c(N − 1)
(
cρ(t)

) κ
c
(
cρ(T)

)−κ
c

�

Then as N → ∞, ξN(t) → 0 pointwise. However, the aggregate effort coefficient (ξNt N)
converges pointwise to

lim
N→∞

NξN(t) =
(
ρ(T)

ρ(t)

) κ
c

�

Note that the term inside the parentheses is always greater than 1 and decreasing at t. In
addition, if we examine the derivative of the term NξN(t) with respect to N , we obtain

−(cρ(t)) κc (cρ(T)) κc + (cρ(T)) 2κ
c

c
((
c(N − 1)ρ(t)

) κ
c + (cρ(T)) κc )2 �

which is positive all the time.
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Proof of Proposition 5

Recall from (10) that the expected output under the feedback schedule T is

P(T) =
∫ T

0

(
μ2

0 + ητT(t)

ν0
(
ν0 +ητT(t)

)) N∑
i=1

ξTi (t)dt�

where τT(t) = sup{t ′ ∈ T|t ′ ≤ t} is the most recent date of feedback preceding time t.
Consider a one-time feedback schedule T = {t̂} for some t̂ ∈ (0�T ). Then from (12) in
Proposition 9, agent i’s belief sensitivity of effort is given by

ξTi (t̂) =

⎧⎪⎪⎨
⎪⎪⎩
si
ci

(
1 + κη(T − t̂)

ν0 +ηt̂

∑
j �=i

sj

cj

)
for t < t̂�

si
ci

for t ≥ t̂�

Therefore, the expected output is

P
({t̂})= t̂μ2

0

(∑
i

si
ci

+ 2κη(T − t̂)

ν0 +ηt̂

∑
i �=j

sisj

cicj

)
+ (T − t̂)

(
μ2

0 + ηt̂

ν0(ν0 +ηt̂)

)∑
i

si
ci
� (18)

Let t∗ = arg maxt̂ P({t̂}). Then by the first-order condition, t∗ must solve

−η(
ν0 +ηt∗

)2
(

2μ2
0κ
∑
i �=j

sisj

cicj
+ 1

ν0

∑
i

si
ci

)(
η
(
t∗
)2 + 2ν0t

∗ − ν0T
)= 0�

which has a unique positive solution

t∗ =
−ν0 +

√
ν2

0 +ην0T

η
�

Let T∗∗ = [0�T ] be the continuous feedback schedule. Then

P
(
T

∗∗)= ∫ T

0

(
μ2

0 + ηt

ν0(ν0 +ηt)

) N∑
i=1

ξi(t)dt�

where ξi(t) solves (6) in Theorem 1. By Proposition 1, ξi(t) is bounded above for any
t ∈ [0�T ], implying that P(T∗∗) is bounded. However, (18) implies that P({t∗}) diverges
to infinity as κ→ ∞ and, thus, P({t∗}) > P(T∗∗) for sufficiently large κ.

Proof of Proposition 6

First, we write (12) in a recursive form:

ξi�k = ξi�k+1 + κρk+1
si
ci

∑
j �=i

ξj�k+1 − κρk+1ξ
2
i�k+1� (19)
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Fix any feedback schedule T = {t1� � � � � tl} with l ≥ 2 and tm+1 − tm ≥ � for any m =
1� � � � � l − 1. Note that having l instances of feedback divides [0�T ] into (l + 1) peri-
ods. Then the above recursion implies that there exists κ̄ such that for any κ ≥ κ̄ and
i, ξi�l−2 < 0. In addition, it is straightforward from (19) that if ξi�m < 0 for all i and for
some m, then ξi�k < 0 for all i and k= 1� � � � �m− 1. Moreover, ξi�k−1 is always in a higher
order than ξi�k for all k ∈ {1� � � � � l}. Let t0 = 0 and tl+1 = T . Then from (10), the expected
total output under T is given by

P(T) =
l∑

m=0

(tm+1 − tm)

(
μ2

0 + ηtm

ν0(ν0 +ηtm)

) N∑
i=1

ξi�m�

Now consider the one-time feedback schedule T̂ = {tl}. We claim that the expected
output under T̂ is greater than that under T for sufficiently large κ. Observe that total
output for t ∈ [tl� T ] does not change. If we switch the feedback schedule from T to T̂,
the loss from having less precise information for t ∈ [tl−1� tl) is

(tl − tl−1)
ηtl−1

ν0(ν0 +ηtl−1)

N∑
i=1

ξi�l−1�

However, for any t < tl−1, ξi(t) is negative under T but is positive under T̂. Therefore,
from (19), the gain from higher ξi(t) is at least

−tl−1κρl−1

N∑
i=1

(
si
ci

∑
j �=i

ξj�l−1 − ξ2
i�l−1

)
�

Since the loss is of order κ and the gain is at least of order κ3, the expected output under
T̂ is greater than that under T for sufficiently large κ.

Proof of Proposition 8

From (10), the expected output of a team given performance measure scheme ζ =
IPM� JPM and feedback schedule T is given by

P(ζ�T) =
∫ T

0

(
μ2

0 + ητT(t)

ν0
(
ν0 +ητT(t)

)) N∑
i=1

ξ
ζ�T
i (t)dt�

where τT(t) = sup{t ′ ∈ T|t ′ ≤ t} is the most recent date of feedback preceding time t.
For the scheme (IPM�T∗∗), it is straightforward that ξIPM�T∗∗

i (t) = 1/ci for all t ∈ [0�T ]
and τT∗∗(t) = t. Therefore,

P
(
IPM�T∗∗)= ∫ T

0

(
μ2

0 + ηt

ν0(ν0 +ηt)

)
dt ·

N∑
i=1

1
ci
�
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From the argument in the proof of Proposition 5, the expected output under the scheme
(JPM�T∗) is

P
(
JPM�T∗)= t∗μ2

0

N∑
i=1

ξ̂i +
(
T − t∗

)(
μ2

0 + ηt∗

ν0
(
ν0 +ηt∗

)) N∑
i=1

si
ci
�

where ξ̂is are given by

ξ̂i = si
ci

(
1 + κη

(
T − t∗

)
ν0 +ηt∗

∑
j �=i

sj

cj

)
�

Note that as κ → ∞, ξ̂i → ∞ for all i. Therefore, P(JPM�T∗) > P(IPM�T∗∗) for suffi-
ciently large κ, showing the desired result.

Appendix B: Continuous-time model and equilibrium convergence

In this appendix, we set up a full continuous-time model in which agents observe feed-
back at every instant rather than at the discrete-time intervals of � > 0. In this model,
agents react to information at every instant and change their actions accordingly. We
characterize the equilibrium behavior in this model and show that this coincides with
the unique Nash equilibrium in the continuous-feedback limit (� → 0) of our main
model.

We focus on linear Markovian strategies and construct an equilibrium that is unique
in the class of linear Markov perfect equilibria.28 Formally, we assume that each agent
uses a linear strategy of the form a∗(μ) = ξi�tμt . Define δi(t) = μ(t) − μ̂i(t) as the dif-
ference between public and private belief from agent i’s perspective. Assume that each
agent except agent i follows the equilibrium strategy a∗(μ).

Similar to the main section, we use the private belief and the belief difference be-
tween the public and the private belief as state variables for the agent’s problem. The
evolution of the agent’s private belief is a standard filtering problem, which enables us
to apply the method of Liptser and Shiryaev (2013) (Theorem 12.1). Given the evolution
of belief and the conjectured equilibrium strategy for the other agents, agent i’s best-
response problem becomes a standard stochastic optimal control problem. Therefore,
agent i’s problem can be described recursively by the Hamilton–Jacobi–Bellman (HJB)
equation

0 = sup
a∈R

{
siμ̂i

(
a+

N∑
j �=i

ξj(t)
(
δi(t)+ μ̂i(t)

))− ci
1
2
a2 + 1

2
η2

ν2
t

Vμ̂�μ̂(μ̂� δ)

+
[
η

νt
κ
(
a− ξi

(
δi(t)+ μ̂i(t)

))− η

νt
δ

]
Vδ(μ̂�δ)+ Vt

}
�

dμ̂i(t) = η

ν(t)
dZi(t)�

28We conjecture that it is the unique equilibrium of the game with continuous feedback, although we do
not have a formal proof.
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δ̇i(t) =
(

−η

νt
δt + η

νt
κ
(
at − ξi(t)

(
δi(t)+ μ̂i(t)

)))
dt�

ν̇(t) = η�

where Zi(t) = √
η(Y(t)−κ

∫ t
0 (ai(t

′)+∑j �=i a
∗
j (t

′))dt ′). Since the flow payoff is quadratic,

it is natural to guess a quadratic value function of the form v1�i(t)μ̂
2 + v2�i(t)μ̂δ+ v3�i(t)

for the HJB equation. Then by the first-order condition with respect to ai(t), we have the
equality

ai(t) = si
ci
μ̂+ ηκ

ν(t)ci
v2�i(t)μ̂ ⇒ v2�i(t) =

(
ξi(t)− si

ci

)
ν(t)ci

ηκ
�

Taking the time derivative of both sides and rearranging gives

v̇2�i(t) = 1
ηκ

(
ξ̇i(t)ν(t)ci + ν̇(t)ξi(t)ci − ν̇(t)si

)= ξ̇i(t)ν(t)ci
ηκ

+ ξi(t)
1
κ
ci − si

1
κ
�

Then applying the envelope theorem to the HJB equation (evaluated at δi = 0) and plug-
ging into the equations above, we reach29

(
ξi(t)− si

ci

)
ν(t)ci

ηκ

(
η

ν(t)

(
κξi(t)+ 1

))= si

N∑
j �=i

ξj(t)+ ξ̇i(t)ν(t)ci
ηκ

+ ξi(t)
1
κ
ci − si

1
κ
�

Rearranging yields

ξ̇i(t) = − ηκ

ν0 +ηt

[
si
ci

∑
j �=i

ξj(t)− ξi(t)

(
ξi(t)− si

ci

)]
�

which is identical to the unique Nash equilibrium in the continuous-feedback limit of
our main model.

The individual action (ai(t)) follows an Ito process:

dai(t) = μ(t)

(
− ηκ

ν(t)

(
si
ci

N∑
j

ξj(t)− (ξi(t))2
))

dt + η

ν(t)
ξi(t)dZ

i(t)�

Note that the drift is negative if and only if μ(t) > 0, since the term within the paren-
theses on the right-hand side is always negative.30 The volatility term ( η

ν(t)ξi(t)) is de-
creasing over time, since ν(t) is increasing, and ξ(t) is decreasing. The volatility term
converges to 0 as T → ∞, given that ξ(t)→ si

ci
and ν(t) → ∞. Therefore, if the time hori-

zon is sufficiently long, the equilibrium converges to the equilibrium of the static game
with complete information.

29We evaluate the equation at δi = 0 since the public belief coincides with the private belief on the equi-
librium path.

30Precisely, Zi(t) is a Brownian motion from the perspective of agent i.
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Verification We can evaluate the parameters v1�i(t), v2�i(t), and v3�i(t) as follows. By
matching the coefficients, we obtain

v̇1�i(t) = −si

N∑
j

ξj(t)− ci
1
2
ξi(t)

2�

v̇2�i(t) = v2�i(t)

(
η

νt

(
κξi(t)+ 1

))− si
∑
j �=i

ξj(t)�

v̇3�i(t) = −1
2
η2

ν2
t

v1�i(t)�

The parameter V is twice continuously differentiable in δ and μ̂, and continuously dif-
ferentiable in t. Since the form is quadratic, it satisfies the polynomial growth condition.
Then, by Theorem 3.1 (Fleming and Soner (2006), Chapter IV), we conclude that the
conjectured form solves the agent’s problem.

Convergence from the discrete-feedback model It remains to show that for all i, a�i (t)
converges in distribution to ai(t). Recall that a�i (t) = ξ�i (n)μ

�
i (n), where n is such that

t ∈ [n�� (n+ 1)�]. The parameter ξ�i (t) converges pointwise to ξi(t) and by the Donsker
invariance principle, μ�

i (t) converges in distribution to μ�
i (t). Then by Whitt (1980) mul-

tiplication, ξ�i (t)μ
�
i (t) converges in distribution to ξi(t)μi(t).

Appendix C: Non-monotonicity of belief sensitivity

As discussed in the main text, when the period length � is away from 0, the belief sensi-
tivity ξit may be non-monotonic over time. To see this, consider a special case with two
symmetric agents (i.e., c1 = c2 ≡ c/2, and s1 = s2 = 1/2) and a horizon of three periods.
Furthermore, let η0 = η = κ = 1. Note that in this case, ρt = κ/(t + 2), t = 0�1�2. Letting
ξ1t = ξ2t ≡ ξt , it is easy to calculate ξ0, ξ1, and ξ2 as

ξ2 = 1
c
�

ξ1 = 1
c

[
1 + κ

1 + 3�
�

1
c

]
�

ξ0 = 1
c

[
1 + κ

1 + 2�
�

1
c

[
1 + κ

1 + 3�
�

1
c

]
+
(

1 − κ

1 + 2�
�

1
c

[
1 + κ

1 + 3�
�

1
c

])
κ

1 + 3�
�

1
c︸ ︷︷ ︸

last period return

]
�

It is apparent by observation that ξ1 is necessarily larger than ξ2, while ξ0 can be larger
or smaller than ξ1, depending on the values of �, κ, and c. In particular, for a fixed level
of �, if κ is very large or c is very small, then ξ0 falls below ξ1, since the term marked
“last period return” becomes unboundedly negative. Intuitively, this is because in those
cases, the ratchet effect in the middle period is large. To see this, notice that under the
said conditions, ξ1 can be very large. This means that the effort choice in the middle
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period is very sensitive to beliefs, either because the marginal cost of effort is very small

(i.e., small c) or the feedback is very sensitive to effort choice (i.e., large κ). This implies

that the impact of a divergence between public and private beliefs on effort choices at

the beginning of this period is greatly amplified in this period. In particular, after an up-

ward deviation in period 0, player i in period 1, being less optimistic than his teammate,

chooses an effort level that is far below the teammate’s expectations. This in turn biases

the period 2 belief of his teammate downward by a large amount and, thus, greatly re-

duces teammate’s period 2 effort—in fact to a level below what it would have been with-

out the period 0 deviation of player i. The impact of this reduction overcomes the impact

of the increase in the teammate’s effort in the middle period, rendering the marginal

product of effort in the initial period small and possibly even negative.

It is worth noting that this non-monotonicity is an artifact of our discrete-time spec-

ification. In fact, when actions can be adjusted frequently and feedback is received fre-

quently, this type of behavior disappears. This is easily observed by inspecting the ex-

pressions for ξ0, ξ1, and ξ2 above. Intuitively, this is because the belief divergence after a

deviation causes a ratchet effect that is the source of the non-monotonicity. The strength

of the ratchet effect is positively related to the amount of information released in each

period, which is proportional to the period length �.

Appendix D: Role of project uncertainty

As discussed in Section 4, as the project uncertainty increases, there exists a trade-off

between benefit from the belief manipulation incentives and the standard cost due to

uninformed effort choices. In this appendix, we analyze the effect of project uncertainty

on the agents’ expected payoff, which is used to plot Figure 2.

Suppose that a manager of a team faces a choice of projects with varying uncertainty.

The team manager tries to maximize the ex ante total payoff to the team. To clarify

our analysis of the trade-off, we consider the case in which all projects have the same

ex ante value under complete information. Recall that if the project state θ is perfectly

observed at the beginning, then the equilibrium action is a∗
i (t) = θ/N for all t ∈ [0�T ].

Since the state θ is normally distributed with mean μ0 and precision ν0, the agent’s ex

ante expected payoff before the realization of θ is

E0

[∫ T

0

(
θ · a∗

i (t)−
(
a∗
i (t)

)2
2

)
dt

]
= T

N

(
1 − 1

2N

)
E0
[
θ2]

= T

N

(
1 − 1

2N

)(
μ2

0 + 1
ν0

)
�

Note that the payoff structure of our model implies that the value of the project is convex

in θ. Therefore, choosing a risky project (one with a small ν0) is always beneficial under

complete information.
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Now consider the original model where θ is unknown. We consider the optimal
choice of uncertainty ν0 subject to a constraint μ2

0 + 1
ν0

= k for some k > 0. This con-
straint requires that the mean of the project decreases as its level of uncertainty in-
creases, offsetting the inherent benefit of risk-taking described above. Given the con-
straint, the ex ante expected equilibrium payoff is given by

E0

[∫ T

0

(
θ · ai(t)−

(
ai(t)

)2
2

)
dt

]
=
∫ T

0
ξ(t)

(
1 − ξ(t)

2

)
E0
[
μ(t)2]dt

=
∫ T

0
ξ(t)

(
1 − ξ(t)

2

)(
k− 1

ν(t)

)
dt�

Note that as the project uncertainty becomes larger, the cost of uncertainty (captured
by the term 1/ν(t)) increases, while the free-riding problem is alleviated since ξ(t) uni-
formly increases in ν0 for all t ∈ (0�T ). Figure 2, which plots the above formula as a func-
tion of ν0, shows that there exists an optimal level of project uncertainty that balances
the trade-off between the cost of uncertainty and the benefit of belief manipulation.
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