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School choice with asymmetric information: Priority design and
the curse of acceptance
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We generalize standard school choice models to allow for interdependent prefer-
ences and differentially informed students. We show that, in general, the com-
monly used deferred acceptance mechanism is no longer strategy-proof, the out-
come is not stable, and may make less informed students worse off. We attribute
these results to a curse of acceptance. However, we also show that if priorities are
designed appropriately, positive results are recovered: equilibrium strategies are
simple, the outcome is stable, and less informed students are protected from the
curse of acceptance. Our results have implications for the current debate over
priority design in school choice.
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1. Introduction

Please accept my resignation. I don’t want to belong to any club that would have me as a
member. Groucho Marx

In the last decade, school choice has rapidly expanded across the United States and
around the world, which has led to a vast and rapidly expanding economics literature,
encompassing a wide array of theoretical, practical, and empirical papers. On the mech-
anism design side of this literature, the standard modeling approach emanates from the
seminal paper of Abdulkadiroğlu and Sönmez (2003), and is the analogue of what the
broader mechanism design/auctions literature refers to as private values: each student
is perfectly informed about her own ordinal preference relation over all schools and is
asked to report these preferences to a mechanism, which determines the assignment.
While this simplifies the analysis, it abstracts away from differentially informed students
who likely exist in practice. For example, if some parents have less time or resources to
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research and visit schools to learn about their quality, they may be less informed than
others, as captured by the following excerpt (“Not Everyone Has a Choice,” US News &
World Report, August 31, 2015):

School choice policies are predicated on the assumption that parents have enough infor-
mation to make an informed decision on where to send their children. However, the vast
majority of school districts do not provide families with robust school quality informa-
tion.... Research also shows that districts don’t always do a good job of disseminating in-
formation and explaining options to certain groups—low-income parents and those whose
children are first-generation Americans, for example.

In such situations, a closer theoretical analogue might be the other canonical model rou-
tinely studied in auctions and mechanism design, i.e., common values: every agent has
the same value, but agents may have different information about what this value is. This
manifests in school choice if all parents care about a school’s quality, but some are more
informed about which schools are higher quality than others. More generally, quality
might be one of several factors that influence student preferences (other examples in-
clude location, sibling attendance, etc.), and so student preferences are likely correlated,
although perhaps not perfectly so. The goal of this paper is to reexamine school choice
in a more realistic, interdependent values framework.

Perhaps the most well known result from the literature on auctions with interdepen-
dent values is the so-called winner’s curse. We start by identifying a related “curse” in our
environment, which we call the curse of acceptance: upon observing their assignment,
less informed students update their belief about the quality of their assigned school
downward. Intuitively, the more informed students submit preferences with high qual-
ity schools at the top of their lists, leaving more empty seats at the low quality schools
for the less informed students. While the less informed may not know which schools are
high quality or low quality, they are at least aware that there are others who do have such
information, and so they can infer that any school to which they are eventually assigned
is likely to be of lower quality on average. In short, just like Groucho, less informed
students would prefer not to enroll at the school that admits them.

This environment leads to the failure of many standard properties of well known
assignment mechanisms, such as strategy-proofness and stability. First, strategy-
proofness as conventionally understood is not feasible (for any mechanism), as some
students do not know their true preferences. In fact, as we show, determining an optimal
strategy can be very complex for the less informed students, and dominant strategies
generally do not exist. Second, deferred acceptance (DA), the standard stable mech-
anism in the usual model and the most popular mechanism in applications, may no
longer produce a stable match. Indeed, the standard definition of stability no longer
applies when students may not know their preferences. We thus introduce a definition
of stability for our environment that requires that no student’s expected utility from suc-
cessfully rematching, conditional on her information, is higher than her expected utility
from remaining at her assigned school. We show that stability may not hold in general,
and attribute this to the curse of acceptance: less informed students are able to infer that
other schools are likely better than their assignment, and they may have high enough
priority at one of these schools to block the original match. This is important, because
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instability is not just a theoretical concern. For instance, in New York City in 2004, over
5T000 students appealed the assignment they received from the (supposedly stable) DA
mechanism, with 300 of these appeals coming from students who received their stated
first choice (Abdulkadiroğlu et al. 2005).

Our negative results rely on showing that desirable properties fail for some specific
priority structure. In the second half of the paper, we show that these negative results
motivate looking at the problem in a new light, as one of priority design. We show that
if priorities are designed in an appropriate way, positive results are recovered. In partic-
ular, we introduce the idea of a secure school, which is a school s such that a student j’s
priority ranking at s is below the capacity of s. In other words, a secure school is a de-
fault option that j can be certain she will receive, as long as she ranks it first. We consider
what happens when the priority structure is designed so that each student has a secure
school in two models: perfectly correlated preferences in the standard finite economy
model and imperfectly correlated preferences in a model with a continuum of students.
In both cases, we show that stable matchings exist and the DA mechanism finds one.
Additionally, while DA is still not strategy-proof, the equilibrium strategies are simple
and focal.

Last, and perhaps most importantly, our informational environment highlights an-
other new issue not found in the earlier school choice literature relating to the welfare
consequences of school choice. An important goal of school choice is to provide all stu-
dents (and in particular, those in poorer neighborhoods) with a fair chance of attend-
ing a good school. However, if students are differentially informed, the informed stu-
dents will, on average, be assigned to better schools at the expense of the less informed,
who may be worse off. The US News & World Report quote suggests that it is likely the
case that those in poorer neighborhoods are these less informed students and so school
choice could exacerbate the issue of them not receiving a fair chance of attending a good
school. Indeed, in our continuum model, introducing school choice is actually a Pareto
disimprovement for the less informed students when there are no secure schools: be-
cause of the curse of acceptance, less informed students may actually be worse off than
if there were no school choice at all. However, when all students have a secure school, this
is no longer true, and introducing school choice is a Pareto improvement. In particular,
we show that choice is valuable, as the informed students can use their information to
improve their own assignment, but they do not do this simply at the expense of the unin-
formed students. Thus, the use of secure schools can be seen as a practical compromise:
it allows for choice for students who know their preferences, which increases efficiency,
while still protecting the less informed students from the unintended consequences of
the curse of acceptance.

Related literature The earliest paper to look at incomplete information in a matching
environment is Roth (1989). He considers a model where everyone knows their own
preferences, but have incomplete information about the preferences of others, while in
our model, students may not know even their own preferences. In a similar vein as Roth
(1989), Ehlers and Massó (2007, 2015) study ordinal Bayes–Nash equilibria when agents
have incomplete information about others’ preferences.
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There is other recent work that looks at stability with incomplete information about
one’s own preferences including Liu et al. (2014), Bikhchandani (2017), and Liu (2019).
Liu et al. (2014) consider a model of informed workers and uninformed firms, and intro-
duce an iterative stability concept similar in spirit to the rationalizability ideas of Bern-
heim (1984) and Pearce (1984). They define blocking in a “belief-free” way: firms will
join a blocking pair if they are better off with all types of a worker that are willing to join,
and then iteratively remove matching outcomes that are blocked until nothing more is
blocked. Bikhchandani (2017) extends the belief-free notion of blocking to a Bayesian
notion but follows the same iterative procedure. More closely related is Liu (2019), who
presumes firms have a common prior over worker types and studies which mappings
from states of the world to realized matchings are stable when agents update their be-
liefs using Bayes’ rule. We follow this approach as well, but Liu takes the mapping as
exogenously given, whereas in our model, it is an equilibrium object induced by the
school choice mechanism that is used.

Chakraborty et al. (2010) and Chakraborty et al. (2015) (hereafter, CCO) take a
“mechanism design” approach to studying matching mechanisms under interdepen-
dent values. They also show impossibility results regarding stability under interdepen-
dent values, though our formal model and the driving force behind our impossibility
results are distinct.1 On the positive side, CCO show that a serial dictatorship is stable
in their model when one side of the market has a common ranking over the other and
this is known. Our positive results allow for a larger class of admissible priority struc-
tures, which has important implications for the design of priorities and the welfare of
the students, results which are novel to this paper. Finally, there is also a literature on
interdependent values in decentralized matching (e.g., Chade (2006), Lee (2009), Chade
et al. (2014), Che and Koh (2016)). Most notably, Chade (2006) identifies a phenomenon
he calls the “acceptance curse effect” in a dynamic marriage model where men and
women randomly meet each period and decide whether to accept their current partner
and leave or wait and get a new draw in the next period.

2. Preliminaries

2.1 Model

Let J = {j1� � � � � jN} be a set of students and let S = {s1� � � � � sM} be a set of schools.
Each school s has capacity qs and a priority relation �s, where �s is a strict, complete,
and transitive binary relation over J. We write q = (qs)s∈S and �= (�s)s∈S to denote
the capacity vector and priority profile for all schools, respectively. We assume that∑
s∈S qs ≥N , which is a standard assumption in school choice where each student must

legally be offered a seat at some school.

1They consider mechanisms where agents report their “signal” to the designer, and the counterexam-
ple for their weak stability—which is the closest analogue to our concept of stability—exhibits an informed
party who wants to lie about his preferences to mislead an uninformed party into matching with an un-
desirable agent, while in our model, informed students have a dominant strategy to truthfully reveal, and
stability fails due to the curse of acceptance outlined above.
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We model preference interdependencies by having the students’ preferences de-
pend on an underlying state ω. The state space � is finite, with an associated proba-
bility distribution Pr : �→ [0�1] such that

∑
ω∈� Pr(ω) = 1. Every student has a (state-

dependent) utility function, where uωj (s) is student j’s utility for school s in state ω. We
assume that preferences are strict, i.e., given a state ω, uωj (s) �= uωj (s

′) for all s �= s′ and
denote j’s strict ordinal preferences in state ω by Pj(ω). Where relevant, agents eval-
uate lotteries using von Neumann–Morgenstern preferences. In particular, a student’s
expected utility from matching to school s given information that the true state lies in
some subset of the state space I ′ ⊆� is written

E
(
uωj (s)|I ′) =

∑
ω∈�

uωj (s)Pr
(
ω|I ′)�

where Pr(ω|I ′) is the posterior probability of the true state being ω conditional on in-
formation I ′ and is obtained via Bayes’ rule.

After Nature drawsω, each student receives a signal Ij(ω)⊆�, where Ij(ω) denotes
the subset of states that are possible given j’s signal when the true state isω. We partition
the students into a set of informed students, I,who receive a signal that allows them to
learn their own ordinal preferences, and a set of uninformed students, U , who receive a
completely uninformative signal. Formally, J = I ∪U and, for all j ∈ I, we have Ij(ω)=
{ω′ : Pj(ω′)= Pj(ω)} for all ω ∈�, while for all j ∈U , we have Ij(ω)=� for all ω ∈�.

The state space � defined here is quite flexible, but in what follows we concretely
define state spaces where the students’ utility for a school is determined by an intrinsic
quality, which is common to all students, and, later in the paper, also include an idiosyn-
cratic component that is individual to each student. We also consider only the two levels
of information: perfectly informed about own preferences and completely uninformed.
While it is also possible with this model to define finer levels of “partial informativeness”
on the part of the students, we found that we are able to convey our main points with
this simple, parsimonious formulation, where the informed students represent those
whose parents exert time and effort to learn quality, and the uninformed students’ rep-
resent those whose parents do not. Exploring further findings with more realistic par-
tially informed students is an interesting direction for future research, though, given the
complexities that arise even in the simpler model we consider, we expect that in such a
model, it will be quite challenging to state clear theoretical results.

2.2 Matchings and mechanisms

A matching is a function μ : J ∪ S → 2J∪S such that (i) μj ∈ S for all j ∈ J, (ii) μs ⊆ J

and |μs| ≤ qs for all s ∈ S, and (iii) μj = s if and only if j ∈ μs . In words, μj is the school
assigned to student j and μs is the set of students assigned to school s. Let M denote
the set of all possible matchings.

So as to implement a “good” matching, market organizers (e.g., school districts)
must elicit the private information of the agents. In most real-world settings, the way
this is done is by asking the agents to submit an ordinal preference ranking over the
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set of schools, and then using some mechanism to output a final matching. To be con-
sistent with this, throughout this paper, we define mechanisms in this way; formally, a
mechanism is a function ψ : PN → M, where P is the set of all strict ordinal preference
relations over S, and P = (Pj)j∈J ∈ PN denotes a profile of preference relations, one for
each student. Given some Pj ∈ P , we write sPjs′ to denote that s is strictly preferred to s′
and write sRjs′ if either sPjs′ or s = s′. We use rankPj (s)= |{s′ : s′Rjs}| to denote the rank-
ing of s in the preference relation Pj . We write ψj(P) to denote student j’s assignment
under mechanism ψ when the submitted reports are P . Similarly, ψs(P) denotes the as-
signment of school s. Finally, for shorthand, we sometimes write a preference relation
as a string of schools, e.g., Pj = s(1)s(2) · · · s(M), where s(1) is j’s most preferred school, s(2)

is the second-most preferred school, etc.
A mechanism ψ induces a game in which the action space for each player is P .

A strategy for student j in this game is a mapping σj : � → P that is measurable with
respect to her information (i.e., for any two states ω and ω′ where Ij(ω) = Ij(ω′), it
must be that σj(ω) = σj(ω

′)). A profile of strategies σ = (σ1� � � � �σN) is a (Bayesian)
equilibrium of the game induced by mechanism ψ if

E
[
uωj

(
ψj

(
σ(ω)

))|Ij(ω)] ≥E[
uωj

(
ψj

(
σ ′
j(ω)�σ−j(ω)

))|Ij(ω)]
for all other strategies σ ′

j , all j ∈ J, and all ω ∈�.
In standard matching models, a mechanism is said to be strategy-proof for the stu-

dents if there does not exist a j ∈ J and preferences Pj�P ′
j�P−j such that ψj(P ′

j�P−j)Pj ×
ψj(Pj�P−j). In words, reporting true preferences is a dominant strategy of the induced
preference revelation game. Strategy-proofness is a desirable property because it makes
the mechanism simple for students to play. Strategy-proofness is not actually a feasible
property in our model, since uninformed students do not learn their preferences, and
reporting them is, therefore, not measurable; however, it should be clear that if a mech-
anism is strategy-proof in the sense just defined, it will be a dominant strategy for the
informed students to report their true preferences.

2.3 Full matchings and stability

Suppose the state is ω. In the classical matching literature, given a matching μ, a
student and a school (j� s) are called a (classical) blocking pair if (in our notation) (i)
uωj (s) > u

ω
j (μj) and (ii) either |μs| < qs or j �s j′ for some j′ ∈ μs. A matching μ is then

called (classically) stable if there are no classical blocking pairs.2 In the school choice
literature, stability is sometimes called fairness and is given a normative interpretation

2In the sequel, we reserve the word “stability” to refer to the concept in the incomplete information sense
to be defined below; when we want to refer to the standard definition of stability defined here, we write
“classical stability.” Also, an additional component of stability usually imposed is that every student prefers
her assigned school to being unmatched, and no school wants to unilaterally drop one of its assigned stu-
dents. We assume that students find all schools acceptable and schools find all students acceptable, so this
part of stability is not an issue. We assume this only for ease of exposition; none of our results is driven by
this assumption.
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in that a stable outcome is desirable because no student will justifiably envy the school
assignment of a student over which she has higher priority at that school.

This definition of stability must be generalized to account for incomplete informa-
tion. To do so, we take a stance on the timing of the mechanism and what students
observe at each stage, which we do as follows: students submit preference reports, the
mechanism determines a matching, students observe the school they are matched to,
students (may) propose blocking with another school, and blocking pairs are formed
if proposing students have higher priority than another student at the school or if the
school is not at capacity. Note in particular that students observe only their own school,
rather than the entire (realized) matching. We remark further on these points below,
after introducing the definition of stability formally.

To formally define stability in our environment, we must first introduce the concept
of a full matching, which is a mapping from states to observed matchings. This is an
important object in our setting, because strategies in the preference revelation game
induce this object.

Definition 1. A full matching is a function μ :�→ M that assigns a matching to each
state ω ∈�.

We use bold face type, μ, to denote full matchings, and write μω ∈ M for the match-
ing in stateω, write μωj for the assignment of student j in matching μω, and write μωs for
the assignments of school s in matching μω.

A student who is considering proposing a block knows the full matching μ (an equi-
librium object), and so can narrow down the set of states, first, to those that are con-
sistent with the school they have observed they are matched to and, second, to those
in which they have priority high enough to successfully form a blocking pair (which in-
cludes the possibility of blocking with an empty seat in some state). To capture this for-
mally, we define the following two sets, where, to avoid notational clutter, we suppress
their dependence on μ:

Aj
(
s′

) = {
ω ∈� : μωj = s′}�

Bj(s) = {
ω ∈� : μωj �= s and

∣∣μωs ∣∣< qs or j �s j′ for some j′ ∈μωs
}
�

The set Aj(s′) is the set of states in which student j is assigned to s′, while Bj(s) is the set
of states in which j has high enough priority to block with s. Let Cj(s′� s)= Aj(s′)∩Bj(s).
In words, Cj(s′� s) is the set of states in which student j is assigned to s′, but could block
with s.

Definition 2. Given a full matching μ, student–school pair (j� s) is a blocking pair if
there exists a state ω̃ such that Cj(μω̃j � s) �=∅ and

E
[
uωj (s)|Cj

(
μω̃j � s

) ∩ Ij(ω̃)
]
>E

[
uωj

(
μω̃j

)|Cj(μω̃j � s) ∩ Ij(ω̃)
]
�

Full matching μ is stable if there are no blocking pairs.
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To understand this definition, fix a state ω̃ and notice that the right side of the in-
equality is student j’s expected utility from her current assignment, μω̃j , given her infor-

mation that the true state lies in the set Cj(μω̃j � s) ∩ Ij(ω̃). The left side of the inequality
is j’s expected utility from any other school s with which she may potentially want to
form a blocking pair. If the latter is greater than the former, then (j� s) is a blocking pair
and full matching μ is not stable. Note also that for informed students, Definition 2 is
equivalent to the definition of a classical blocking pair.

Remark 1. Once incomplete information is introduced to matching, stability becomes
harder to define because there is inherently some flexibility in the assumptions about
the information that agents are able to condition on and certain modeling choices must
be made. In particular, choices must be made in the following regard.

• What students know in equilibrium. In an equilibrium, each student knows the full
matching induced by the equilibrium strategies. This allows students to condition
on the states consistent with the information they have received and on whether
the block will be successful. There is actually no flexibility here in modeling, as this
is just a feature of equilibrium, but we want to emphasize it to avoid any confusion
as to why students can condition on having higher priority than another student
even when they do not directly observe this fact.

• What students directly observe about the realized matching. This is the dimension
in which there is clear flexibility. We assume that students observes only their own
assignment, but it is reasonable to examine other models. Liu (2019), for instance,
considers a stability definition very closely related to ours, but allows agents to
observe the entire matching.

• What additional information students could gather. There is flexibility here too.
We assume that a student gathers no additional information while in the process
of blocking. Essentially, this is an assumption that blocking is a static process in
which a student proposes a block, it is accepted or rejected, and then the process
ends. More generally, it is possible to model a dynamic process where the stu-
dent learns additional information by proposing blocks that can then be used to
propose additional blocks.

In summary, our definition of stability assumes that students explicitly observe only
their own match, but take an equilibrium approach in that they have knowledge of the
equilibrium mapping from states to matchings. The blocking definition takes a “one-
shot deviation” approach that assumes the only explicit piece of information a student
uses is his own assigned school combined with his knowledge of the equilibrium map-
ping from states to matchings. This of course is not the only way one might define sta-
bility in the presence of incomplete information. For instance, one could allow students
to observe or gather more information after the initial matching is determined. This
makes stability only harder to achieve and so, given the sparsity of analysis of incom-
plete information in the matching literature thus far, we think the assumptions we use
are a natural way to proceed.
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The following example is instructive for understanding the concepts of full match-
ings and stability.

Example 1. Suppose there are three students, J = {j1� j2� j3}, with j1 uninformed, and
three schools, S = {A�B�C}, each with capacity 1. The priorities at A are j3 �A j1 �A j2.
There are four states � = {ω1�ω2�ω3�ω4} that are all equally likely. Consider the full
matching μω given in the table ♦

μωj1 μωj2 μωj3

ω1 C A B

ω2 C A B

ω3 C B A

ω4 A B C

To understand when blocking pairs form, suppose that j1 is matched to C and is
considering proposing blocking with A. As j1 observes that she is matched to C, she
rules out ω4 as a possible state (Aj1(C) = {ω1�ω2�ω3}). As j1 has lower priority than j3
at A but higher priority than j2, j1 knows that the blocking pair will not form in ω3, but
rather only in states ω1 and ω2 (Bj1(A)= {ω1�ω2}). This means that j1 will condition on
the state being only eitherω1 orω2 (Cj1(C�A)= {ω1�ω2}). As the states are equally likely
ex ante, j1’s updated belief is that each state has occurred with probability 1/2, so j1 will
propose the block if and only if 1

2u
ω1
j1
(A)+ 1

2u
ω2
j1
(A) > 1

2u
ω1
j1
(C)+ 1

2u
ω2
j1
(C).

It should be clear that given a mechanism ψ, any strategy profile σ induces a full
matching μ(σ) defined by μω(σ)=ψ(σ(ω)). This leads naturally to the next definition.

Definition 3. Mechanism ψ is stable if there exists an equilibrium σ such that the in-
duced full matching μ(σ) is stable.

3. The curse of acceptance

In this section, we highlight some of the problematic issues that arise in our model with
incomplete information and uninformed students, and how they can be attributed to
a so-called curse of acceptance. To fix ideas, we do this first in the context of one of
the most familiar mechanisms, the student-proposing deferred acceptance (DA) mech-
anism. DA works as follows (for a more formal description, see, e.g., Abdulkadiroğlu and
Sönmez (2003)).

Deferred acceptance Each student j submits a strict preference ranking Pj . Begin with
all students and schools unmatched.

Step k. Each unmatched student applies to her most preferred school that has not yet
rejected her. Each school s tentatively admits the qs-highest priority students from
the new applicants and previous tentatively admitted students. All students not
tentatively admitted to a school are rejected. If some student is rejected, move to
step k+ 1; otherwise, make all tentative assignments final and end the algorithm.
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DA has a rich history in the literature, going back to the foundational work of Gale and
Lloyd (1962), and in their seminal paper, Abdulkadiroğlu and Sönmez (2003) propose DA
as a promising solution for school choice. DA has since become one of the most widely
used mechanisms in practice, including in such large school districts as New York City,
Boston, and New Orleans, as well as many others in the United States and around the
world. DA has been explored in depth in the literature and is well known to satisfy many
desirable properties in the standard model: most importantly, it is (i) strategy-proof, (ii)
classically stable, and (iii) Pareto dominates any other classically stable mechanism.

Since DA is so popular, and most of the prior work and positive results for DA work in
a private values setting, it becomes particularly important to understand what happens
when these assumptions are relaxed. We start in this section by looking at the following
special case of our model, which we call the common ordinal preferences model: The
state space is � = P and the probability distribution Pr over � is the uniform distribu-
tion. The state should be interpreted as the common ordinal preference held by every
student, and the uniform distribution ensures that the uninformed students are truly
uninformed ex ante, which will be important for our positive results below. Finally, every
student j shares a common utility function uωj (s)=M − rankω(s). This functional form
is for concreteness only. Our positive results are stated in terms of first-order stochastic
dominance, and so any utility function that induces the common ordinal preference—
possibly differing across students-obtains the same results.

School choice problems in this model are specified by a set of students (who are
uninformed), a set of schools, and the school capacities/priorities. Example 2 shows
that when there is even one student who is not informed about her preferences, DA is
no longer stable.

Example 2. There are four students: I = {j1� j2� j3} are informed and U = {j4} is unin-
formed. There are also four schools, S = {A�B�C�D}, each with capacity 1. The priority
structure is ♦

�A �B �C �D
j1 j1 j3 j2
j2 j3 j1 j1
j3 j2 j4 j4
j4 j4 j2 j3

After receiving their signals, each student submits a preference list and the final
matching is computed using the DA algorithm. It has been shown (McVitie and Wil-
son 1971, Dubins and Freedman 1981) that an equivalent way to run DA is to arbitrarily
choose one unmatched student and have him apply to his most preferred school where
he have not yet been rejected. The order in which students are chosen to apply does not
matter; in particular, we consider running DA starting with j1, j2, and j3, and then, when
they are all tentatively matched, have j4 enter the market.

For the informed students, the truthful strategy σj(ω) = ω is weakly dominant, so
that, e.g., in state ω=DABC, students j1� j2, and j3 will all report σj(ω)=DABC. Now
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note that before j4 makes her first application in this method of DA, j1� j2, and j3 are
tentatively matched to the best three schools in every state. Given the priority structure,
student j4 will just get matched to the worst school unless j2 is tentatively matched to
C or j3 is tentatively matched to D. Of the 24 states, this happens in only two of them:
state ω′ =ABCD, where j2 is matched to C, and state ω′′ = BADC, where j3 is matched
to D. The final matching in these two states will depend on what preference relation j4
reports. If j4 reports a preference relation Pj4 with CPj4D, then j4 will match to C in both
ω′ and ω′′, whereas if j4 reports a preference relation P ′

j4
with DP ′

j4
C, then j4 will match

toD in bothω′ andω′′. The key point to notice is that no matter what she submits, j4 will
receive the same assignment in ω′ and ω′′. In one of these states, this assignment will
be the third-best school, and in the other, it will be the worst. Combining this with the
previous discussion, we see that j4 will get the worst school in 23 states and the third-best
school in one state, regardless of what she reports.

We claim that for either report (Pj4 or P ′
j4
), the resulting full matching is not stable.

Suppose j4 reports CPj4D and observes that she is matched to C. In equilibrium, j4 is
matched to C in seven states: the six states where C is worst and ω′ =ABCD. But j3 is
only matched to D in ω′′ = BADC, so if j4 proposes a block with D, it will be accepted
only in state ω′′. Using the notation introduced above, we have

Aj4(C)= {ABCD�ABDC�ADBC�BADC�BDAC�DABC�DBAC}�
Bj4(D)= {BADC}�

Cj4(C�D)= {BADC}�
For any state ω̃, where j4 is matched to C in equilibrium, we thus have

1 = E[
uωj4(D)|Cj4

(
μω̃j4�D

) ∩ Ij4(ω̃)
]
>E

[
uωj4

(
μω̃j4

)|Cj4(μω̃j4�D) ∩ Ij4(ω̃)
] = 0�

where μ is the full matching induced by DA with the specified equilibrium strategies.
So j4 benefits from the block and so μ is not stable. If j4 were instead to report P ′

j4
with

DP ′
j4
C, a symmetric argument shows that she will want to propose blocking withC when

she matches toD. In summary, we have shown the following situation.

Proposition 1. There exist preferences and a priority structure such that no equilibrium
of the deferred acceptance mechanism is stable.

The above impossibility result is in the spirit of most such results in the school
choice and matching literature, which construct specific counterexamples to show cer-
tain properties do not hold in general. There are two ways to proceed from this: one is
to look for other stable mechanisms besides DA, while the other is to look for conditions
under which DA is stable. Starting in the next section, we discuss both approaches; how-
ever, before getting there, we note that there are even larger problems with DA besides
instability. In the last example, the uninformed student gets the worst possible school
in 23 of the 24 states. Of course, part of the reason for this is that she has relatively low
priority at each school. But, as we see later, no matter her priority, she always does worse
than average.
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These two features—no stability and generally poor outcomes for the uninformed
students—can be attributed to a so-called curse of acceptance: uninformed students do
not know which schools are the good schools, but upon seeing their assignment, they
update their beliefs about the quality of the school they were assigned downward. The
reason is that they know that the more informed students know which schools are the
good schools and end up taking them for themselves. This leaves the less informed stu-
dents with the low quality schools, which not only makes them worse off from a welfare
perspective, but also leads to instability.

This still is not the end of the story, as we have yet to consider the incentives for pref-
erence reporting to the mechanism. Though DA is strategy-proof in the standard model,
this is no longer feasible in our model, and it turns out that without it, determining the
equilibrium can be quite complicated. In the previous example, every strategy for j4
yielded the same expected utility and, therefore, every strategy was an equilibrium. This
is just an artifact of the example, however; usually determining an optimal strategy is
far more complicated and depends very much on the details of the full priority struc-
ture. This can make playing the mechanism very difficult for some parents, which is
unappealing to many school districts (see Pathak and Sönmez (2008)).

The next example clearly illustrates this point. It considers two different problems,
which barely differ in their primitives but have vastly different equilibria. Furthermore,
the example shows that a student’s own priority is not sufficient for determining her
equilibrium strategy (i.e., reporting a preference list that orders schools by one’s priori-
ties at them is generally not an equilibrium strategy for the uninformed students).

Example 3. The students and schools are the same as in Example 2. We consider two
more examples with slightly different priority structures: ♦

�A �B �C �D
j3 j2 j2 j2
j4 j1 j1 j1
j2 j4 j3 j3
j1 j3 j4 j4

�′
A �′

B �′
C �′

D

j3 j2 j2 j2
j4 j1 j1 j3
j2 j4 j3 j1
j1 j3 j4 j4

Priority structure �′ alters � only by switching the priority of j1 and j3 at school D
(in particular, j4’s priorities have not changed). It can be checked (following the same
analysis as in Example 2, so we omit the calculations) that under �, the uninformed
student j4’s equilibrium strategies consist of any report that ranks BPj4A (the rankings
of C and D are irrelevant). However, under �′, the equilibrium strategies for j4 consist
of any report whereAPj4B. So just switching the priorities of two students at a school—
who both have higher priority than j4 and to which j4 is never matched unless it is the
worst school—completely reverses the equilibrium strategies. In one case, j4 should
favor the school at which they have second-highest priority, but in the other case, they
should favor the school at which they have third-highest priority. There is no way for j4
to determine her equilibrium strategy without considering the full priority structure of
all students.
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4. Mechanism design versus priority design

Proposition 1 shows that DA is not stable in general. There are two ways to proceed from
this. The first is to ask whether there is some other mechanism that is always stable for
any priority structure (including the counterexample in the last section); the second is to
ask whether there are certain classes of priority structures for which we recover stability
of DA. We look at both of these questions in turn. First, we show that there is a stable
mechanism by construction, but also argue that any stable mechanism inherently suf-
fers from other flaws that prevent it from being a practically useful solution. Motivated
by this impossibility result, we turn to the latter approach of looking at the problem from
a priority design perspective.

First, we show the existence of a mechanism that is formally stable in the common
ordinal preference model of the previous section by introducing the following state-
learning mechanism.

State-learning mechanism. Fix an arbitrary preference profile P̄ and matching μ̄. If
there exists some P̃ ∈ P such that Pj /∈ {P̄� P̃} for at most one j ∈ J (the case P̃ = P̄ is
allowed, in which case this set is a singleton), then output a matching that is classically
stable with respect to P̃ ; otherwise, output the matching μ̄.

The idea behind the mechanism is that informed students (who knowω) submit the
preference Pj =ω, while uninformed students submit Pj = P̄ . These reports are an equi-
librium because any unilateral deviation is ignored. As long as |I| ≥ 3, this allows the
mechanism to learn the state and, therefore, also learn the common preference rank-
ing of all agents. Once the mechanism knows the common preference, it can choose a
classically stable matching for that preference ranking, which will imply that the corre-
sponding full matching μ is stable.

While the state-learning mechanism is formally stable, we do not believe it is a useful
mechanism for practical market design. Intuitively, the reason is that such mechanisms
override the stated preferences of some students, replacing them with different pref-
erences. To make this concrete, consider again Example 2, in which there is a unique
stable full matching μ. Recall that the key states in this example are state ω′ =ABCD,
where μω

′
j4

= C and μω
′

j2
=D, and state ω′′ = BADC, where μω

′′
j4

=D and μω
′′

j3
= C. In all

states ω �= ω′�ω′′, the matching is uniquely determined by stability constraints for the
informed students, as the informed students must be matched to the best three schools.
For statesω′ andω′′, the only other possibilities for students are for j2 to match toC inω′
and/or j3 to match toD in ω′′. But, as shown earlier, the resulting full matchings are not
stable and so μ is the unique stable full matching. Suppose that, for instance, the state
is ω′, and j1, j2, and j3 report Pj = ABCD while j4 reports some preference Pj4 where
DPj4C. Since there is a unique stable full matching, any stable mechanism must assign
j4 to C and j2 to D. On the one hand, there is nothing wrong with this assignment in
the model of common ordinal preferences, because the mechanism knows that the re-
port of j4 does not reflect j4’s true preference. On the other hand, this requires a strong
assumption that the designer is certain in his knowledge about the correlation struc-
ture in the agents’ preferences; that is, while he may not know the state, the designer at
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least knows the mapping from states to agent utilities.3 If the designer is wrong about
his assessment of the agent’s utility functions and actually j4’s report does reflect j4’s
true preference, then the matching implemented is undesirable: j2 and j4 would like to
trade schools and so the matching is not efficient. Even further, this trade would not vi-
olate stability, as neither j1 nor j3 would want to block after the trade was implemented,
and so the final matching is not even constrained efficient. Constrained efficiency here
means Pareto efficient within the set of stable matchings and is one of the celebrated
properties that is satisfied by the DA mechanism.

While a mechanism designer may (quite justifiably) expect that student preferences
are highly correlated and some students are more informed than others, they are un-
likely to know the correlation structure exactly or precisely which students are informed
or uninformed. This suggests that a “good” mechanism should take the reported prefer-
ences into account, rather than simply disregarding them, as the state-learning mecha-
nism (and indeed, any stable mechanism) does. Unfortunately, as our example shows,
there is a no way to ensure stability without risking ending in an undesirable final al-
location if the mechanism has wrongly identified the information and preferences of
students; in other words, stable mechanisms are not robust to misspecification.

To make this point more rigorously, we say that, given some property α, a mecha-
nism ψ satisfies α robustly if it satisfies α in the full information model in which each
student is informed (J = I). The main property that we are concerned with is con-
strained efficiency. Formally, given a matching μ and a profile of ordinal preferences P ,
μ is said to be constrained efficient with respect to P if for any two students j and j′ such
that μj′Pjμj and μjPj′μj′ , there exists j′′ �= j� j′ such that either μj′Pj′′μj′′ and j′′ �μj′ j or
μjPj′′μj′′ and j′′ �μj j′. A mechanism ψ is constrained efficient if there exists an equilib-
rium σ such that the induced matching μω(σ) is constrained efficient with respect to
σ(ω) for each ω; if no such equilibrium exists, then ψ is said to be constrained ineffi-
cient. In the standard model, constrained efficiency is equivalent to student optimality
subject to stability, and one of the celebrated properties of deferred acceptance is that it
produces the so-called student-optimal stable match.

For the next impossibility result, we go beyond DA (and beyond strategy-proof
mechanisms) to consider a natural class of mechanisms that we call truthful mech-
anisms, in which there is an equilibrium in which the informed students all play the
truthful strategy, σtj (ω) = Pj(ω). This is not too restrictive, due to a version of the rev-
elation principle: If ψ is any mechanism and σ∗ is an equilibrium of the game induced
by ψ, then there exists a mechanism ψ′ where ((σtj )j∈I� (σ

∗
j )j∈U) is an equilibrium of the

game induced byψ′ and the resulting matchings are the same in every state.4 The truth-
ful equivalent of any mechanism seems desirable, since informed students must just

3Similar issues arise with “state-verification mechanisms” in many other mechanism design contexts.
While this appears less in the matching literature, which has so far relatively little work on interdependent
values, one exception is Bikhchandani (2017), who provides an incentive compatible and stable mechanism
that works in a similar way. Like us, he seems skeptical of its usefulness, writing that “it is required that the
mechanism designer knows agents’ utility functions, which is a strong assumption.”

4The revelation principle is standard, but we provide a proof in the Appendix that gives the (straightfor-
ward) arguments needed to accommodate both informed and uninformed students.
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report their true preferences, rather than coordinate on some complicated preference
reporting equilibrium.

Proposition 2. There exist preferences and a priority structure such that any stable and
truthful mechanism is robustly constrained inefficient.

Because of this impossibility, in the remainder of the paper, we take the second ap-
proach and analyze the problem from a priority design perspective. We show how this
can be used to recover positive results in the widely used DA mechanism. In particular,
we provide a class of priority structures under which DA is stable, and the equilibrium
strategies are simple and focal. Further, DA is robustly constrained efficient in the sense
just discussed.

Looking at conditions on priorities under which desirable properties hold is a com-
mon approach in the theoretical literature on priority-based object allocation. Ergin
(2002) asks which priority structures ensure that DA is Pareto efficient (rather than just
constrained efficient), an analysis which is extended by Kojima (2013) to multi-unit de-
mand. Ehlers and Erdil (2010), Ehlers and Westkamp (2018), and Han (2018) study re-
lated questions of priority design when weak priorities are allowed. Doval (2015) looks
at dynamic matching markets and proposes a theory of dynamic stability. Since dynam-
ically stable matchings need not exist in general priority-based allocation problems, she
asks which priority structures guarantee the existence of a dynamically stable matching.
Ashlagi and Gonczarowski (2018) provide conditions under which DA will be obviously
strategy-proof in the sense of Li (2017).5

While deepening our theoretical understanding of matching mechanisms, from a
practical market design perspective, questions of priority design are relevant only if the
designer has some control over them in practice. Indeed, school districts often do have
some control over the design of their priority structures and some have attempted to (re-
)design their priorities to achieve particular objectives. For example, Dur et al. (2018)
and Pathak and Shi (2017) explore consequences of different design decisions relating
to the development of walk zones in Boston, a city which has taken an active role in the
design of its priorities. Roughly, schools are divided into quality tiers, and a student’s
menu consists of the two closest tier 1 schools, the four closest tier 2 schools, etc. If a
school is not on a student’s menu, then she is not allowed to list it, which is effectively
a way to give higher priority at the school to those who are allowed to apply to it. Note
that all of the aforementioned papers still work in the standard framework of perfectly
informed students. In the remained of this paper, we analyze the consequences when
perfect information is relaxed.

5. Secure schools

Following the discussion in the previous section, we now introduce a class of priority
structures for which DA has good properties: it is stable, the equilibrium strategies is

5Kesten (2006) and Troyan (2019) analyze complementary questions of priority design for top trading
cycles, while Kumano (2013) does so for the Boston mechanism.
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simple, and the uninformed students is protected from the curse of acceptance, which
improves welfare. We say that school s is a secure school for student j if |{j′ ∈ J : j′ �s
j}| ≤ qs. In words, a secure school is one with enough seats for j and every student who
has higher priority than j. It is useful to point out that while secure schools may seem
reminiscent of “neighborhood schools,” secure schools need not be geographically de-
termined. While geography does happen to be a commonly used criterion in practice, it
is not the only possibility; indeed, some places have begun to recognize it may be better
to use other criteria besides geography (see the discussion of Boston in the previous sec-
tion). We abstract away from such considerations to focus more squarely on the asym-
metric information problem, and in the rest of this section, we show how secure schools
allow uninformed students to guard themselves against the curse of acceptance.6

How do secure schools help the uninformed? The problem for them is the curse
of acceptance, and a secure school allows for them to have a default option that they
can get in every state. Hence, the curse is entirely eliminated by allowing them to ex-
pect to get average utility, rather than always being left with the worst schools in every
state. Theorem 1 formalizes this intuition to all markets in the common ordinal prefer-
ences model. This assumption is necessary to get a clear result in the discrete model,
as the proofs rely on combinatoric arguments that quickly become intractable with-
out it. However, the intuition applies more broadly, and in the next section, we use a
continuum model to analyze the more general case of heterogeneous (but correlated)
preferences.

For the priority structure, we assume that each student has at least one secure
school, but otherwise, the priority structure is arbitrary. Define the strategy profile
σ∗
j (ω) as follows: for all informed j ∈ I, σ∗

j (ω) = ω, and for all uninformed j ∈ U ,

σ∗
j (ω)= P̃j for allω, where P̃j is any preference ranking that lists one of j’s secure schools

first. As discussed above, following σ∗
j is weakly dominant for the informed students;

i.e., after observing their signal, they just report their true preferences. Our theorem
shows that taking their secure school is also optimal for the uninformed students in a
first-order stochastic dominance sense. (A strategy will induce a distribution over the
number of states where j gets the best school in that state, the second-best school, the
third-best school, etc. This is the distribution to which the first-order stochastic domi-
nance result in the theorem applies.)

Theorem 1. Consider any market in the common ordinal preferences model and assume
that every student has a secure school. Then j’s outcome from the deferred acceptance
mechanism under profile (σ∗

j �σ
∗
−j) first-order stochastically dominates her outcome un-

der (σ ′
j�σ

∗
−j) for any other strategy σ ′

j that j could choose. Thus, σ∗ is an equilibrium
strategy profile of deferred acceptance.

6Antler (2015) studies a different type of preference interdependency in one-to-one two-sided matching
between men and women, and also shows failure of stability of standard DA. While the model is quite
different (preferences depend endogenously on how agents are ranked by those on the other side), his
solution to restore stability is a modified DA mechanism that bears a striking resemblance to secure schools.
In his modified DA mechanism, each woman is allowed to rank only one man. Thus, in equilibrium, men
are able to guarantee being matched to certain women as long as they rank them first (it is a complete
information game, so the men know the women’s strategies in equilibrium), just as with students and secure
schools in our model.
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While Theorem 1 constructs one equilibrium, it is a natural equilibrium. When un-
informed students do not have a secure school, determining equilibrium strategies for
the uninformed students can be quite complicated, as seen in Example 3. Designing
priorities such that every student has a secure school results in equilibrium strategies
that are focal and very simple to compute: informed students follow the familiar truth-
telling strategy, while uninformed students simply take their secure school. Doing so is
optimal because it protects them from the curse of acceptance identified previously.

Furthermore, we think that secure schools may be helpful in this environment not
only because there exists an equilibrium in simple strategies, but also because the full
matching induced by these strategies is stable. This is stated in the following theorem.

Theorem 2. Consider any market in the common ordinal preferences model and suppose
every student has a secure school. The equilibrium strategy σ∗ induces a stable matching
and, therefore, the deferred acceptance mechanism is stable.

Each uninformed student receives his secure school, so he learns nothing from ob-
serving his own match. It is tempting to think that this immediately implies that the full
matching is stable, but there is more to the argument than that. The students do not
learn anything explicitly from the realized matching, but because they know the equi-
librium mapping from states to matchings and the priorities, when calculating their ex-
pected utility from proposing a block with a school s, they can still condition on the set
of states in which the block is accepted (recall the set Bj above). If, in equilibrium, the
block is accepted in states where the student is better off but not in states where they
are worse off, the matching may not be stable. Thus, to prove the theorem, it must be
shown that this cannot happen. Intuitively, the reason is that the lowest priority student
initially assigned to s has lower priority according to s’s priority ranking in states where
s is worse (according to the common ordinal preference). Thus, if student j’s proposed
block is accepted in some state where s is the kth best school, then it will also be ac-
cepted when s is the (k+ 1)th best school, the (k+ 2)th best school, etc., down to the
worst school. The complete details of the argument can be found in the Appendix.

6. Heterogeneous preferences

While preferences over schools are likely correlated in the real world, they are almost cer-
tainly not perfectly correlated, which raises the question of how our results extend to this
setting. The proof strategies used for the discrete economies in the previous section rely
on combinatoric arguments that explode and quickly become intractable when prefer-
ences are correlated but heterogeneous. However, the intuition for the curse of accep-
tance still holds when preferences are partially correlated. We can obtain formal results
by moving to continuum economies, which have recently been receiving significant in-
terest in the matching literature because they simplify analysis considerably while still
providing useful insights (see, for example, Miralles (2009), Abdulkadiroğlu et al. (2015),
Azevedo and Leshno (2016)).

Continuum economy with correlated preferences model. There is still a finite set of
schools S = {s1� � � � � sM}, but each school now has a unit mass of seats to fill. There is a
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total massM of students. As in the previous section, the underlying state space is�= P
and Pr is the uniform distribution (which, recall, is necessary to ensure that uninformed
students are truly uninformed ex ante). However, the state now no longer determines
a common ordinal preference for all agents; rather, the state is interpreted as a ranking
of the intrinsic qualities of the schools, and students may have individual rankings that
differ from this due to idiosyncracies.7 Formally, we model each state ω as determin-
ing a measure λω over P , where, for any ordinal ranking P , λω(P) > 0 is the measure
of students who have ordinal preferences P in state ω with

∑
P∈P λω(P) = M . In this

section, we write states asω= (sπ(1)� sπ(2)� � � � � sπ(M)), where π is the permutation of the
set {1� � � � �M} such that rankω(sπ(k))= k for each k= 1 � � � �M . Student j’s cardinal pref-

erence for school s, given that she has ordinal preferences Pj , is u
Pj
j (s) = v(rankPj (s)),

where v is some strictly decreasing function.
Say that a preference ranking P is closer to state ω than P ′ if there exist two schools s

and s′ such that rankω(s) < rankω(s′) and rankP(s) < rankP ′(s), and for all other s′′ �= s� s′,
rankP(s′′) = rankP ′(s′′); in other words, P and P ′ differ only in where they rank s and s′,
and P ranks the two in the same way as ω. We make the following assumptions on λω.

(i) We have λω(P) �= λω(P ′) for all P �= P ′.

(ii) Let π, π̃, and π̂ be any three permutations of the set {1� � � � �M}. For the two
states ω = (sπ(1)� � � � � sπ(M)) and ω̃ = (sπ̃(1)� � � � � sπ̃(M)), and two preferences P =
(sπ̂(1)� sπ̂(2)� � � � � sπ̂(M)) and P̃ = (sπ̃(π−1(π̂(1)))� sπ̃(π−1(π̂(2)))� � � � � sπ̃(π−1(π̂(M)))), we

have λω(P)= λω̃(P̃).
(iii) If P is closer to state ω than P ′, then λω(P) > λω(P ′).

The first condition rules out knife-edge cases where two preference profiles have exactly
the same measure of students, which is not a generic property. The second says that
the distribution of preferences depends only on the rankings of schools relative to their
states, and not on their labels. For example, if the schools are A, B, and C, then the
measure of students with preferences P : B�C�A in state ω= (A�B�C) equals the mea-
sure of students with preferences P̃ : C�A�B in state ω̃= (B�C�A). The last condition,
our assumption on how preferences are correlated, captures the idea that higher quality
schools (as determined by the state) should be more popular in aggregate: if P is closer
to state ω than P ′, then there are more students with preference P than preference P ′.8

For tractability, we move to the case of “weak priorities,” where lotteries are used
to determine final priority and immediately introduce secure schools. We assume each

7In this section, we slightly abuse notation and, when not referring to a specific student j, use P to denote
a generic preference ranking over the schools.

8One concrete way to model preferences in a finite market that satisfies these assumptions is to as-

sume an underlying probability distribution P̃r such that in each state ω = (sπ(1)� � � � � sπ(M)) we have that
P̃r(sπ(1)) > P̃r(sπ(2)) > · · ·> P̃r(sπ(M)), and then we have each student j draw her preferences Pj via repeated
draws from P̃r, removing repetitions, until all M schools have been drawn. This procedure induces a prob-
ability distribution over all preferences P , and the measure λ is the analogue of this probability distribution
in the continuum model. This procedure for drawing preferences is commonly used in the literature (see,
e.g., Immorlica and Mahdian (2005), Kojima and Pathak (2009), and Kojima et al. (2013)).
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student has exactly one secure school and for each school s, there is a measure 1 of stu-
dents such that s is their secure school. For the formal model, each student j is endowed
with priority numbers �j(s) ∈ [0�1], one for each school s, and j’s priority score at s is
�j(s)+1 for each school other than j’s secure school and �j(s) for j’s secure school (where
we use the convention that smaller numbers are better priority). For any x ∈ [0�1], the
measure of students with �j(s)≤ x is equal to x for each s. All students observe their own
priority numbers before submitting their preferences. The uniform distribution is for
convenience only (any distribution with a smooth density would suffice) and the equi-
librium results below continue to hold whether students observe their priority numbers
or not.

Of the total measure M of students, a measure ν are informed, and the remaining
M − ν are uninformed. A student’s information type, preferences, and priorities are in-
dependent; in other words, in each stateω, the measure of informed students who have
preferences P and priority numbers �j(s)≤ x at school s is νλω(P)x and the measure of
respective uninformed students is (M − ν)λω(P)x.

Remark 2. Endowing students with preferences and priorities that add up to the mea-
sures given above is a way to get around a technical problem with perhaps the more
natural way one would want to define the model in a finite world, which is to have each
student j independently draw an ordinal preference Pj from some distribution over P
(which may depend on the state; see footnote 8) and a priority score at each school. The
technical problem is that when we move to the continuum, realizations of such random
draws may result in the set of students with preference P and priority scores less than
x being nonmeasurable. The model as formally defined does not suffer from this prob-
lem. Similar approaches are taken by Miralles (2009) and Abdulkadiroğlu et al. (2015) to
deal with this issue.

As before, each student submits an ordinal preference relation, which then is turned
into a matching using the DA mechanism. Intuitively, the deferred acceptance mecha-
nism works in the same way as in the discrete case: students apply starting at the top of
their (submitted) preference list, schools tentatively admit a measure equal to its capac-
ity of students who have the highest priority, rejected students apply to their next most
preferred school, etc. However, Abdulkadiroğlu et al. (2015) show that in a continuum
model, the DA output can be characterized by a unique vector of cutoffs (�̄s1� � � � � �̄sM )
(see also Azevedo and Leshno (2016)). Each student j is then assigned to her most pre-
ferred school for which her priority score is lower than the school’s cutoff. Any individ-
ual student has no ability to affect the cutoffs and so effectively acts as a “price-taker.”
This simplifies the strategic analysis, since to analyze the equilibrium outcomes of DA,
we only need to understand the structure of these cutoffs. The next proposition pro-
vides the key property of the cutoffs on which the subsequent equilibrium results are
built. As above, let σ∗ be a strategy profile where all informed students report their true
preferences and uninformed students report their secure school first in their preference
list.
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Proposition 3. Consider any market in the continuum economy with correlated pref-
erences model. Fix a state ω = (sπ(1)� sπ(2)� � � � � sπ(M)) and suppose the students play σ∗.
Then the deferred acceptance cutoffs satisfy 1< �̄sπ(1) < �̄sπ(2) < · · ·< l̄sπ(M) ≤ 2.

This proposition gives a characterization of the equilibrium cutoffs under the pro-
posed strategies. Intuitively, the cutoffs are smaller (and so the school is harder to get
into) for the schools that are more likely to be popular. Indeed, if any of these inequali-
ties were reversed, then there is some school that is both more popular in aggregate and
is easier to get into. The proof in the Appendix reaches a contradiction by showing that
this would result in some school being over capacity. Recall also that priority scores at
any school s range from 0 to 2, with scores in [0�1] reserved for students for whom s is
their secure school. Since there is only a unit mass of students for which this is true and
all schools must be filled to capacity (because the total measure of students is equal to
the total capacity of the schools), all cutoffs will be greater than 1 and the highest cutoff
will be 2.

We can now use Proposition 3 to find an equilibrium of the preference submission
game. For the informed students, truthful reporting continues to be a weakly dominant
strategy. What is left to show is that for an uninformed student, listing her secure school
s̄ first gives a higher expected utility than any other strategy. The proof of the following
theorem is technical, but of all the many cases, the one that matters is intuitive. Consider
any other s′ �= s̄, and two states ω and ω′ such that rankω(s̄) < rankω(s′) and rankω′(s′) <
rankω′(s̄) (and the ranks of the other schools are identical). If j submits her secure school
at the top of her list, she will get it in both states. If she instead puts s′ above her secure
school, then it is possible for her priority number to only be small enough to get it when
s′ is less popular (i.e., in stateω), where, by Proposition 3, the cutoff to get into s′ is larger
than in stateω′, giving her the worse school in both states (i.e., s′ in stateω and s̄ in state
ω′)

Theorem 3. Consider any market in the continuum economy with correlated preferences
model. The strategy profile σ∗ is an equilibrium of the deferred acceptance mechanism.

What about stability? As in the discrete case, there is no learning from one’s ob-
served match by uninformed students. However, we still need to address the issue of
conditioning on a potential block being accepted. This turns out to be much simpler
in this setting than in the discrete case, because, by Proposition 3, we can immediately
see that if a school accepts a student in some stateω, then the cutoffs are larger in every
state where the school is less popular and so accept the student in all those states as well.

Theorem 4. Consider any market in the continuum economy with correlated preferences
model. The equilibrium strategy σ∗ induces a stable matching and, therefore, the deferred
acceptance mechanism is stable.

In summary, the results that there is a natural and simple equilibrium, and that this
equilibrium produces a stable matching carry over to the case where preferences are
correlated, but not perfectly so. Of course, this makes sense as the general logic of the
curse of acceptance does not rely on perfect correlation, but requires only some inter-
dependence of student preferences.
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7. The welfare effects of school choice

One of the main motivations for introducing school choice is that it allows parents to
provide information on how they rank various schools, and this preference information
can then be used by the school district to determine a more efficient assignment than
the historical practice of neighborhood assignment. However, if some parents do not
know their preferences, less informed parents may be exploited by more informed par-
ents and fall prey to the curse of acceptance. Thus, to the extent that school districts
are concerned about the welfare of less informed parents (and they probably are given
that the less informed parents may be from economically disadvantaged areas), school
choice may actually have significant downsides. We close this paper by showing that the
use of secure schools can be seen as a practical compromise: it allows choice for those
parents who know their preferences, while still protecting the less informed from being
exploited.

We make this point formally in the context of the continuum model from the pre-
vious section. We consider student welfare under three alternative school assignment
procedures: No Choice (NC), DA with No Secure Schools (DA-NSS), and DA with Secure
Schools (DA-SS). DA-SS is simply the procedure in the previous section in which each
student is given a secure school and assignments are determined by running the DA
algorithm on the submitted preferences. DA-NSS is the same, except students are not
given any secure schools and so their priority score at every school is just equal to their
priority number.9 Under No Choice, students are not asked to submit any information
about their preferences and are simply assigned to a school. To be able to make mean-
ingful comparisons, we assume that under No Choice, students are assigned to whatever
was their secure school under DA-SS.

We are interested in comparing the welfare for each group of students (informed
and uninformed) under each of the procedures. For any agent j, let V αj (σ) denote agent
j’s interim expected utility after she receives her signal about her own preferences, but
before the mechanism is run, under school choice procedure αwhen agents follow strat-
egy profile σ , where α= SS�NSS� or NC. We say that procedure α (with equilibrium σ)

Pareto dominates procedure α′ (with equilibrium σ ′) for some set of students J̃ ⊆ J if

V αj (σ)≥ V α′
j (σ

′) for all j ∈ J̃. Further, if this inequality is strict for a subset ˜̃J ⊆ J̃ that has

strictly positive measure, we say that α strictly Pareto dominates α′ for J̃.
The first point we make is to formalize the idea that school choice can have a sig-

nificant downside for uninformed students. In particular, if there are no secure schools,
then the uninformed students fall prey to the curse of acceptance and are actually be
worse off, in a Pareto sense. Before we can state this formally, we need to analyze equi-
librium under DA-NSS. In fact, there turns out to be a very natural equilibrium of the
DA-NSS game. Let σ̂ be the strategy profile in which informed students report their true
preferences and uninformed students report schools in ascending order of their priority
numbers. We then have the following theorem.

9We note that once preferences have been submitted, the DA-NSS algorithm is equivalent to the DA with
the multiple tie-breaking algorithm considered in the continuum model of Abdulkadiroğlu et al. (2015).
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Proposition 4. Consider any market in the continuum economy with correlated prefer-
ences model with the adjustment to no secure schools. The strategy profile σ̂ is an equilib-
rium of the DA-NSS game.

The outline of the proof of this proposition follows two steps similar to the proof
that σ∗ is an equilibrium of DA-SS. First, the cutoff result of Proposition 3 still holds
because, just as before, an equal number of uninformed students are assigned to each
school. Second, given this cutoff structure, it is optimal for the uninformed students to
list schools where they have better priority first, because those are the schools they can
get when they are more popular and, thus, mitigate the curse of acceptance the most.
While there may be other equilibria, we think that this one is very natural and intuitive
(because the uninformed students report the schools they are most likely to get into at
the top of their preferences), and we use it to establish our welfare results. Our first
main result in this section is that the curse of acceptance means that the uninformed
students would prefer no choice. In particular, school choice has the exact opposite of
its intended effect.

Theorem 5. Consider any market in the continuum economy with correlated preferences
model with the adjustment to no secure schools. No Choice strictly Pareto dominates DA-
NSS (with equilibrium σ̂) for U .

However, when there are secure schools, then school choice does have the intended
effect. In particular, the uninformed students get their secure school in either case, while
informed students can use their information to improve their own assignment.

Theorem 6. Consider any market in the continuum economy with correlated preferences
model. DA-SS (with equilibrium σ∗) strictly Pareto dominates No Choice for J.

To summarize, in general, we have seen that uninformed students may be exploited
by informed students and end up worse off than if there were no school choice at all
due to the curse of acceptance. However, we have also provided school districts worried
about these issues with a potential design response to mitigate their effects. Giving each
student a secure school can be seen as a practical compromise: it allows choice for those
students who know their preferences, which increases efficiency, while protecting unin-
formed students from the unintended consequences of the curse of acceptance. Overall,
the final result is a Pareto-improving allocation.

8. Conclusion

This paper introduces correlation in student preferences and differentially informed
students into school choice. We show that many standard results fail to hold: the pop-
ular deferred acceptance mechanism is no longer strategy-proof or stable, and unin-
formed students are made worse off. While we focus on DA because it is the mechanism
that has gained by far the most traction in practical applications, our results are not spe-
cific to DA and can be attributed to a general curse of acceptance: informed students
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are more likely to list the good schools highly precisely because they know which ones
they are, and so uninformed students expect that any school that accepts them are of
low quality. However, we also show that there is the potential to mitigate these effects by
casting the problem as one of priority design. When all students have a secure school,
positive results are recovered. Secure schools can be seen as a practical compromise that
allows choice and market forces to increase efficiency for those who know their prefer-
ences, while protecting uninformed students from the unintended consequences of the
curse of acceptance, resulting in a Pareto-improving final allocation.

While our model is stylized, our goal is to point out important issues regarding pref-
erence modeling that have not been studied in the school choice literature, and to high-
light how they underscore the need to think carefully about the interplay between pref-
erence information and the design of priorities. We think our paper opens up many
interesting avenues for future research, in particular regarding how priorities should be
designed in light of the asymmetric information problem. For instance, one possibility
is to make everyone’s secure school his neighborhood school, but if less informed and
more disadvantaged students are more likely to live closer to lower quality schools, then
this may not be a desirable policy. Additionally, the definition need not be “binary,” i.e.,
distributing priorities in such a way that students have a relatively high, though not nec-
essarily guaranteeable, priority number at some school still mitigates, though perhaps
not completely eliminates, the negative welfare effects caused by the curse of accep-
tance. These are important issues to understand to bring these ideas into practice.

One intriguing proposal is the priority redesign undertaken by Boston (discussed in
Section 4), in which schools are divided into quality tiers, which are then used to de-
termine each student’s “menu.” If a school is not on a student’s menu, then she is not
allowed to list it, which is effectively a way to at least partially distribute priorities based
on some objective quality measures. Of course, not all students may place equal im-
portance on these quality measures relative to other factors, which is why choice is still
important; at the same time, in light of our results, distributing priorities more evenly
across quality tiers may mitigate the curse of acceptance and raise the welfare of less
informed students. While we leave the question of the “optimal” way to design priori-
ties for future work, we think that information asymmetry issues should not be ignored
in this debate, since, as our results point out, they are likely to have important conse-
quences for student welfare.

Appendix: Proofs

We introduce additional notation as needed below and then sometimes use that nota-
tion again in later proofs, so if notation seems unfamiliar from the main text, refer to
previous proofs in this appendix for definitions.

A.1 Proof of the revelation principle

Let ψ be a mechanism and let σ∗ be an equilibrium of ψ. Consider σ = ((σtj )j∈I�
(σ∗
j )j∈U). Slightly abusing notation, let σ−1

j (Pj) be any ω such that Pj(ω) = Pj (note
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that measurability means that σtj (ω) �= σtj (ω
′) implies Pj(ω) �= Pj(ω

′)) and let σ−1
j (Pj)

be any arbitrary state ω for the uninformed students (note that measurability means
that σ∗

j (ω) = σ∗
j (ω

′) for all states). For additional notation, let σ−1(P) = (σ−1
1 (P1)� � � � �

σ−1
N (PN)), where P = (P1� � � � �PN), and let σ−1

−j (P) denote the inverses of all stu-

dents other than j. Construct the mechanism ψ′ by letting ψ′(P) = ψ(σ∗(σ−1(P))).
We want to show that truthful reporting by the informed and σ∗ by the uninformed
is an equilibrium strategy of ψ′. Denote this report in state ω by P(ω). First,
ψ′(P(ω))= ψ(σ∗(σ−1(P(w)))= ψ(σ∗(ω)) (the last equality holds even if σ−1

j is ω′ �=ω,
because measurability implies that σ∗

j (ω
′) = σ∗

j (ω)). That is, the report P(ω) de-
termines the same matching in mechanism ψ′ as σ∗(ω) determines in mechanism
ψ. Second, for any report P ′

j by j, ψ′(P ′
j�P−j(ω)) = ψ(σ∗(σ−1

j (P ′
j)�σ

−1
−j (P−j(ω)))) =

ψ(σ∗
j (σ

−1
j (P ′

j))�σ
∗
−j(ω)), so by deviating to the report P ′

j ,ψ
′ determines the same match-

ing as deviating from σ∗
j (ω) to σ∗

j (σ
−1
j (P ′

j)) in the mechanismψ. As σ∗ is an equilibrium
ofψ, no deviations yield higher expected payoffs and so the deviation toP ′

j does not yield
higher expected payoffs.

A.2 Proof of Proposition 2

Letψ be a stable and truthful mechanism. Consider Example 2 and suppose j4’s equilib-
rium report toψ hasDPj4C. Then, in stateω′ =ABCD, by truthfulness, it is the case that
jk reports ω′ for k = 1�2�3. By uniqueness of the stable full matching, j1 is matched to
A, j2 is matched toD, j3 is matched to B, and j4 is matched to C. In the full information
game, the reports Pj4 from j4 and ω′ from jk for k= 1�2�3 are the true preferences of all
students because the mechanism is truthful. The resulting matching is not constrained
efficient in the full information game because μj4Pj2μj2 and μj2Pj4μj4 while μjkPjkμj2
and μjkPjkμj4 for both k= 1�3.

Alternatively, suppose j4’s equilibrium report to ψ has CPj4D. Then, in state ω′′ =
BADC, by truthfulness, it is the case that jk reports ω′′ for k = 1�2�3. By uniqueness
of the stable full matching, j1 is matched to B, j2 is matched to A, j3 is matched to C,
and j4 is matched to D. In the full information game, the reports Pj4 from j4 and ω′′
from jk for k= 1�2�3 are the true preferences of all students because the mechanism is
truthful. The resulting matching is not constrained efficient in the full information game
because μj4Pj3μj3 and μj3Pj4μj4 while μjkPjkμj3 and μjkPjkμj4 for both k= 1�2. Thus, ψ
is not robustly constrained efficient.

A.3 Proof of Theorem 1

Recall that a state ω ∈ � can be identified with an ordinal ranking of the schools. We
write a generic state as

ω= (
s(1)� s(2)� � � � � s(M)

)
�

where s(k) denotes the kth best school in stateω. Let μ denote the full matching induced
by the deferred acceptance mechanism when the students choose the strategy σ∗.
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Lemma 1. Let j be an uninformed student. Suppose all students j′ �= j follow the strat-
egy σ∗

j′(·), and let j choose any arbitrary strategy. Consider a state ω = (s(1)� � � � � s(M))

such that under this strategy profile, we have μωj = s(k). Then, in any other state ω′ =
(s′(1)� � � � � s′(M))where s(m) = s′(m) for eachm<k, we have μω

′
j /∈ {s(1)� � � � � s(k−1)� s′(k)}.

Proof. Given the proposed strategies, all of the uninformed students other than j ap-
ply to a secure school in the first round and are admitted. Thus, it is without loss of
generality to consider the submarket that removes these students and their seats. This
means that we can consider a market with only one uninformed student, and the rest of
the students are informed.

Consider DA for this submarket in state ω. First, we show that in all steps m < k,
the informed students who have not matched in a previous step apply to s(m) and the
top qsm priority of them are admitted (where we abuse notation and let qsm denote the
capacity of s(m) in the submarket). Suppose, for contradiction, that this is not true. By
construction of the informed students’ preferences, this is only possible if there is some
stepm where the uninformed student j is matched to s(m) at the end of the step. Since j
is ultimately matched to s(k), there is some stepm′ >mwhere j is rejected from s(m). But
there are only informed students applying in steps m+ 1� � � � �m′ and they have all been
rejected from schools s(1)� � � � � s(m), so this contradicts that any student will apply to s(m)

in step m′. This also means that all the informed students who are tentatively assigned
in steps m < k to s(m) are matched to s(m) at the end of the algorithm (as otherwise it
could only be j’s application that rejects them, but then j would not subsequently get
rejected following the same argument just given).

Now let Ik denote all informed students who are not assigned to s(m) for somem<k.
These Ik students apply to s(k) in step k and the top qsk − 1 priority of them are matched
to s(k) because j ultimately gets matched to s(k) and, given the previous paragraph, none
of the informed students in I\Ik ever applies to s(k).

Now consider state ω′. Given the first paragraph and that informed students rank
the first k − 1 schools identically, steps m < k follow identically those steps when the
state isω. So the same Ik informed students are left that could possibly match with s(k).
As j matches to s(k) in state ω, we know that j has lower priority than at most qsk − 1,
which means that if j applies to s(k), then j will match to s(k). Therefore, j will never
match to a school j ranks lower than s(k).

So what remains to show is that in state ω′, if j ranks s(m) for some m < k or s′(k)

better than s(k), then j is rejected. As the same informed students are matched to s(m)

for each m< k in both states, j must be rejected from each s(m) or else they would have
matched to it in ω as well. For s′(k), the top qs′k students from Ik tentatively match to

s′(k). Suppose, for contradiction, that j matched to s′(k) in state ω′. Then j has higher
priority than one of these students. But the students who get matched to s′(k) in state ω
are a subset of Ik, so j is not rejected from s′(k) in ω, contradicting that j is matched to
the school they rank worse, s(k).
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Fixing the strategies of the other agents at σ∗
j′ , for any strategy σj for the uninformed

student j, let

F(k|σj)= Pr(j matches to a school ranked kth or better|σj)

denote the rank distribution of j’s assignment when she uses strategy σj . We now prove
a theorem from which Theorem 1 is an immediate consequence. Note that F(·|σ∗

j ) first-
order stochastically dominating F(·|σj) immediately implies that σ∗

j is optimal for stu-
dent j.

Theorem 7. For any strategy σj , F(·|σ∗
j ) first-order stochastically dominates F(·|σj).

Before the proof, note that Theorem 1 follows immediately given that first-order
stochastic dominance implies that expected utility (for any utility function that is de-
creasing in rank) is larger from σ∗

j than σj .

Proof of Theorem 7. Suppose not, i.e., suppose there exists some σj and some k such
that F(k|σj) > F(k|σ∗

j ). Note that if j follows strategy σ∗
j , she gets the same school in

every state, call it s̄. There are (M − 1)! states where s̄ is the best school, (M − 1)! states
where it is the second-best school, etc., and so it is easy to see that F(k|σ∗

j ) = (M −
1)!k/M!. Consider the minimum k such that F(k|σj) > F(k|σ∗

j ). For this k, it must be
that j gets the kth or better ranked school in strictly more than k(M − 1)! states, and
because k is the smallest index for which this is true, j must get exactly the kth ranked
school in strictly more than (M − 1)! states.

Partition the state space into groups such that each group contains all of the states
for which the best k schools are the same; in other words, two states ω= (s(1)� � � � � s(M))
and ω̃ = (s̃(1)� � � � � s̃(M)) belong to the same group G if and only if s(�) = s̃(�) for all
� = 1� � � � �k. There are M!/(M − k)! groups, and each group contains (M − k)! states.
Note that each group G can be uniquely identified by listing its top k schools in order,
(s(1)� � � � � s(k)).

Suppose that in state ω = (s(1)� � � � � s(k)� � � � � s(M)), student j matches to school s(k).
Let Gs̃ be the group such that s̃(1) = s(1)� � � � � s̃(k−1) = s(k−1), but s̃(k) = s̃ �= s(k); in other
words,Gs̃ is the group that has the same first (k− 1) best schools asG, but replaces s(k)

with s̃. There areM−k possible choices for s̃ and, hence,M−k such groupsGs̃ . Let S̃ =
S \ {s(1)� � � � � s(k)} and define G̃= ⋃

s̃∈S̃ Gs̃ . Lemma 1 implies that for all ω′ ∈ G̃, student j

ends up with worse than the kth ranked school. Note that |G̃| = (M − k)× (M − k)!.
By our hypothesis, j gets the kth best school in strictly more than (M − 1)! states.

Every group G contains (M − k)! different states, which implies that i must get the kth
best school in at least (M−1)!/(M−k)! different groups. But by the previous paragraph,
for each of these groups G, there is an associated G̃ such that j gets strictly worse than
the kth best school for all ω′ ∈ G̃. Since |G̃| = (M − k)× (M − k)! and there must be at
least (M − 1)!/(M − k)! such G̃s, that means that there are at least

(M − k)× (M − k)! × (M − 1)!
(M − k)! = (M − k)× (M − 1)!
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states where j gets worse than the kth ranked school. Since there areM! total states, this
leaves at most

M! − (M − k)× (M − 1)! = k× (M − 1)!
states where j can get the kth ranked or better school. However, this contradicts that j
gets the kth ranked or better school in strictly more than k× (M − 1)! states.

A.4 Proof of Theorem 2

Choose some uninformed student j. As with the proof of Theorem 1, it is without loss
of generality to consider a submarket that has removed all of the other uninformed stu-
dents j′ ∈U \ {j} together with the seats they take at their secure schools in equilibrium.
We consider the set of students is I ∪ {j}.

We start with the following lemma.

Lemma 2. Assume that j �s′ j′ for some j′ assigned to school s′ in state ω = (s(1)� � � � �

s(k−1)� s′� s(k+1)� � � � � s(M)). Then, for any state ω̃ = (s̃(1)� � � � � s̃(M)) such that s̃(m) = s(m)

for allm<k, we have j �s′ j′′ for some j′′ assigned to school s′ in state ω̃.

In other words, this lemma says that if student j’s proposed rematching is accepted
by school s′ in some state ω, it will also be accepted in any state ω̃ where s′ is ranked
lower; i.e., if s′ accepts j when it is “good,” it will also accept j when it is “bad.”

Proof of Lemma 2. Consider the DA algorithm in state ω. Since all the uninformed
students take their secure school, we need to consider only the informed students. Thus,
at each step m of the algorithm, there is a set of unmatched students Im, and all of
these students apply to school s(m). The qsm-highest priority students are thus admit-
ted (again, abusing notation to let qsm be the capacity left after the uninformed students
whose secure school is sm are matched to it) and since no new students apply to s(m) at
any later step of the algorithm, these students are the ones who will ultimately be as-
signed to school s(m). In stateω, s(k) = s′ and so the qs′ -highest priority students from Ik
are admitted to s′. By assumption, in this set there is some j′ such that j �s′ j′.

Now consider ω̃. By construction, in state ω̃, school s′ is ranked weakly worse than
kth: s′ = s̃(k′) for some k′ ≥ k. Since the schools rankedm<k are the same as in state ω,
the set of students who apply to s′ in state ω̃ is a subset of Ik. This means that the lowest-
ranked student admitted to s′ in state ω̃, j′′, is ranked (weakly) worse than j′ according
to �s′ , and so j �s′ j′ �s′ j′′.

Continuing with the main proof, let s̄ be the secure school that student j lists first
in equilibrium and that j receives in every state ω. After the matching is implemented,
consider j proposing to form a blocking pair with some other school s′. Suppose there is
a state ω where j has higher priority than some j′ that is assigned to s′ and would prefer
s′ to s̄. In particular, let the ranking of s′ in state ω be k and let the ranking of s̄ be � > k:

ω= (
s(1)� � � � � s(k−1)� s′� s(k+1)� � � � � s(�−1)� s̄� s(�+1)� � � � � s(M)

)
�
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By Lemma 2, j also has priority over some j′′ assigned to s′ in the state

ω̃= (
s(1)� � � � � s(k−1)� s̄� s(k+1)� � � � � s(�−1)� s′� s(�+1)� � � � � s(M)

)
�

So for every state where s′ accepts j as the kth ranked school and s̄ is the �th ranked
school for � > k, there is a symmetric state where s′ accepts j as the �th ranked school,
while had j stuck with s̄, she would have received the kth ranked school. Since each of
these states is equally likely, student j is not better off conditional on being admitted
to s′ for these two states. Summing over all state where j can block with s′, and where
s′ is better than s̄ and the companion states where the rankings are reversed, the total
expected utility of rematching with s′ is less than or equal to staying at s̄.

Side note: It is tempting to look at this proof and conclude that every school gives
the same expected payoff (conditional on a block being accepted), which is obviously
not true. The reason is that the above logic does not apply in reverse: that is, if we start
with the fact that j’s block with s′ is accepted in state ω̃, we cannot conclude that j’s
block will be accepted in state ω. But j is worse off when making the switch in state
ω̃, and if she is not accepted in state ω to offset this “loss,” she will be worse off over-
all.

A.5 Proof of Proposition 3

Fix ω. This determines the measure of students of each type who report each ordinal
preference relation (following the given strategy σ∗). As shown by Abdulkadiroğlu et al.
(2015), there is a unique vector of cutoffs (�̄s1� � � � � �̄sM ) that can be used to determine the
DA assignment. Consider two schools sA and sB, and assume without loss of generality
(WLOG) that rankω(sA) < rankω(sB). For any ordinal preference ranking P ∈ P , write
P(r) for the rth ranked school according to P . Partition the ordinal preference space P
into P = PA ∪ PB, where P ∈ PA if and only if sAPsB (and P ∈ PB if and only if sBPsA).
For every P ∈ PA, there is a corresponding P ′ ∈ PB with P(r) = P ′(t) = sA and P(t) =
P ′(r)= sB for some r < t, and P(k)= P ′(k) for all k �= r� t. In words, P and P ′ are exactly
the same except that the ranking of schools sA and sB are swapped. Consider some
such P ∈ PA and corresponding P ′ ∈ PB. By our assumption on the preference measure,
λω(P) > λω(P

′) > 0.
We want to show that �̄sA < �̄sB . Toward a contradiction, suppose that �̄sA ≥ �̄sB .

Each uninformed student is matched to his secure school so there is an equal measure
1
M (M − ν)λω(P) of uninformed students with preferences P matched to each of sA and
sB (because a fraction 1/M have each school as their secure school).

For the informed students, it is helpful to divide them into three distinct classes: (i)
students whose secure school is strictly preferred to sA; (ii) students whose secure school
is sA; (iii) students whose secure school is strictly worse than sA (where the rankings
are according to P). The measure of students in class (i) is r−1

M νλω(P), the measure of
students in class (ii) is 1

M νλω(P), and the measure of students in class (iii) is M−r
M νλω(P)

(recall that rankP(sA)= r, so there are r − 1 better schools andM − r worse schools than
sA).
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Now no student in class (i) is matched to sA, because �̄sA ≥ 1 and so he/she will get
into a school they rank at least as well as sA (in fact, �̄s ≥ 1 for every s, as otherwise
it could not be full to capacity, and every school is full to capacity because there is an
equal measure of seats and students). Students in class (ii) match to sA if and only if
their priority scores at the r−1 schools they prefer to sA are higher than the cutoffs at (all
of) these schools. Thus, the fraction of such students matched to sA is

∏r−1
x=1(2 − �̄P(x))

(we can assume that l̄s ≤ 2 for each school as 2 is the largest possible priority score).
Students in class (iii) are similar, except that they also must have a low enough priority
score at sA, and so the total fraction of students in class (iii) matched to sA is

∏r−1
x=1(2 −

�̄P(x))× (�̄sA − 1). Combining all of this, the total measure of students with preference P
matched to school sA in state ω is

λω(P)

M
×

[
ν×

r−1∏
x=1

(2 − �̄P(x))× (
1 + (M − r)(�̄sA − 1)

) + (M − ν)
]
�

We can do an equivalent analysis for the measure of students with preference P ′ who get
matched to sA (recalling that under P ′, school sA is ranked tth):

λω
(
P ′)
M

×
[
ν×

t−1∏
x=1

(2 − �̄P ′(x))× (
1 + (M − t)(�̄sA − 1)

) + (M − ν)
]
� (1)

Now recall that P(k)= P ′(k) for all k< t, with the exception of k= r, where P(r)= sB. In
particular, we can rewrite (1) as

λω
(
P ′)
M

×
[
ν×

t−1∏
x=1�x �=r

(2 − �̄P(x))(2 − �̄sB)× (
1 + (M − t)(�̄sA − 1)

) + (M − ν)
]
�

The total measure of students assigned to sA who are of preference type either P or P ′ is

δ(P� sA)λw(P)+ δ(P ′� sA
)
λω

(
P ′)�

where, to simplify the notation, we define δ(P� sA) and δ(P ′� sA) as

δ(P� sA) = 1
M

×
[
ν×

r−1∏
x=1

(2 − �̄P(x))× (
1 + (M − r)(�̄sA − 1)

) + (M − ν)
]
�

δ
(
P ′� sA

) = 1
M

×
[
ν×

t−1∏
x=1�x �=r

(2 − �̄P(x))(2 − �̄sB)× (
1 + (M − t)(�̄sA − 1)

) + (M − ν)
]
�

We can do the same analysis for school sB. By symmetry, the expressions are the same
as above, except P is swapped with P ′ and sA is swapped with sB. The total measure of
students matched to sB is

δ(P� sB)λw(P)+ δ(P ′� sB
)
λω

(
P ′)�
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where the δs in this case are defined as

δ(P� sB) = 1
M

×
[
ν×

t−1∏
x=1�x �=r

(2 − �̄P(x))(2 − �̄sA)× (
1 + (M − t)(�̄sB − 1)

) + (M − ν)
]
�

δ
(
P ′� sB

) = 1
M

×
[
ν×

r−1∏
x=1

(2 − �̄P(x))× (
1 + (M − r)(�̄sB − 1)

) + (M − ν)
]
�

We are now interested in comparing the δs. In particular, recall our contradiction
hypothesis that �̄sA ≥ �̄sB . This immediately implies that δ(P� sA) ≥ δ(P ′� sB) and
δ(P ′� sA)≥ δ(P� sB). Adding these two equations and rearranging gives

δ(P� sA)− δ(P� sB)≥ δ(P ′� sB
) − δ(P ′� sA

)
� (2)

Note also that δ(P� sA)− δ(P� sB)≥ 0 with equality if and only if �̄P(x) = 2 for some x < r
(to see this, recall also that r < t). Further, recall that λω(P) > λω(P ′) by our preference
assumption, so we can multiply (2) and obtain the inequality[

δ(P� sA)− δ(P� sB)
]
λω(P)≥ [

δ
(
P ′� sB

) − δ(P ′� sA
)]
λω

(
P ′)�

This rearranges to

δ(P� sA)λω(P)+ δ(P ′� sA
)
λω

(
P ′) ≥ δ(P ′� sB

)
λω

(
P ′) + δ(P� sB)λω(P)�

Note what this says: among those students whose ordinal preference types Pj ∈ {P�P ′},
a weakly greater measure are matched to sA than to sB. Furthermore, the inequality is
an equality if and only if �̄P(x) = 2 for some x < r, in which case no students are matched
to either sA or sB. As sA and sB must be filled to capacity, the inequality must be strict for
at least one pair {P�P ′} in the partition. So if we sum over all of the inequalities for every
corresponding pair in the partition, we conclude that in state ω, the total measure of
students matched to sA is strictly greater than the total measure of students matched to
sB. However, this contradicts that the schools have the same measure of informed stu-
dents in all states. As sAand sB were arbitrary schools such that rankω(sA) < rankω(sB),
we have established that �̄s(1) < �̄s(2) < · · ·< �̄s(M) .

Now we show that �̄s(1) > 1. Suppose, for contradiction, that �̄s(1) = 1 (it cannot be
less than 1, as argued above). Then no student for which s(1) is not his secure school gets
matched to s(1). As there is an equal measure of seats and students, all schools must be
filled to capacity, so every student whose secure school is s(1) must be matched to s(1).
Let s �= s(1) be any other school. As there are a finite number of schools, information
types, and ordinal preferences, for every ε > 0, there is a set of informed students J̃ ⊂ I

of strictly positive measure such that for all j ∈ J̃, (i) j’s secure school is s(1), (ii) sPs(1),
and (iii) �s(j)≤ ε. As these students are not matched to s, this means that �̄s < 1 + ε. As
ε can be arbitrarily small, this implies that �̄s = 1. But this means that �̄s(1) = �̄s, which
contradicts that all cutoffs are distinct, as we just showed in the previous paragraph.

Finally, we show that �̄s(M) = 2. Suppose, for contradiction, that �̄s(M) < 2. By the
above inequalities, we have �̄s < 2 for every school s. This means that every school rejects
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students at some step of DA. Let step k be the first step where the last school rejects
students. Once a school rejects a student, then the school will be at capacity in every
future step and so every school is at capacity at the end of step k. That is, students are
rejected in step k and every school is tentatively filled to capacity with students at the
end of step k. This is a contradiction, as there is an equal measure of students and seats.

A.6 Proof of Theorem 3

Consider an uninformed student j. The cardinal utility for a school is some function
v(x) of its ordinal rank x, where v is strictly decreasing (so that x= 1 is the best possible
rank). Thus, j’s (ex ante) expected utility for school s in state ω is

v̄ωj (s)=
∑
P∈P

λω(P)v
(
rankP(s)

)
�

For a state ω = (s(1)� � � � � s(M)), we first show that v̄ωj (s
(1)) > v̄ωj (s

(2)) > · · · > v̄ωj (s(M)).
Consider any positive integers k< l ≤M and, similar to the proof of the previous propo-
sition, consider P and P ′ with P(r) = P ′(t) = s(k) and P(t) = P ′(r) = s(l) for some r < t,
and P(k) = P ′(k) for all k �= r� t. The contribution to v̄ωj (s

(k)) from just P and P ′ is

λω(P)v(r)+ λω(P ′)v(t) and to v̄ωj (s
(l)) is λω(P)v(t)+ λω(P ′)v(r). As λω(P) > λω(P ′) > 0

(since P is closer to state ω than P ′) and v(r) > v(t) (as r < t), it follows that the contri-
bution is greater for v̄ωj (s

(k)) than for v̄ωj (s
(l)). Partitioning P into M!/2 pairs {P�P ′} and

summing over all members of the partition, we conclude v̄ωj (s
(k)) > v̄ωj (s

(l)). As k and l

were arbitrary, we have established that v̄ωj (s
(1)) > v̄ωj (s

(2)) > · · ·> v̄ωj (s(M)).
Second, by symmetry, for any other state ω̃ = (s̃(1)� � � � � s̃(M)), we have v̄ω̃j (s̃

(k)) =
v̄ωj (s

(k)) for all k= 1� � � � �M . With slight abuse of notation, define v̄k := v̄ωj (s
(k)) for any

ω, k. In other words, we have shown that there are M numbers v̄1 > · · ·> v̄M such that,
conditional on any state ω = (s(1)� � � � � s(M)), j’s expected utility for school s(1) is v̄1, for
s(2) is v̄2, etc. In other words, her expected utility for a school s depends only on the
rankω(s) (note that this may be different from j’s own ordinal ranking of s, which she
only learns ex post).

Assume that all other players are playing their equilibrium strategy. Since j’s strategy
must be measurable with respect to her information, we can identify each of her possible
strategies σj with a (mixture over) the space ordinal preference relations P . Let EUj(Pj)
be j’s expected utility when she reports Pj (and everyone else plays their equilibrium
strategy). More formally, using the above definitions,

EUj(Pj)=
∑
ω∈�

M∑
k=1

Pr(ω)× Pr
(
j receives s(k)|σ∗

−j�ω�Pj
) × v̄k�

In stating the next lemma, we slightly abuse notation and let �j(s) denote j’s overall
priority score at school s (i.e., �j(s) is the priority number for j’s secure school and the
priority number plus 1 for all other schools).
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Lemma 3. Let sA and sB be two schools such that �j(sA) > �j(sB), and consider a pref-
erence report Pj such that Pj(r) = sA and Pj(r + 1) = sB. Let P ′

j be the alternative report
such that P ′

j(r) = sB, P ′
j(r + 1) = sA, and, for all other t �= r� r + 1, P ′

j(t) = Pj(t). Then
EUj(Pj)≤EUj(P ′

j).

Given this lemma, consider any arbitrary strategy Pj for student j who does not
rank her secure school, s̄, first, i.e., Pj : s1� s2� � � � � sr−2� sr−1� s̄� sr+1� � � �. By the lemma,
EUj(Pj)≤EUj(P ′

j), where P ′
j : s1� s2� � � � � sr−2� s̄� sr−1� sr+1� � � �. Applying the lemma again,

EUj(P
′
j) ≤ EUj(P

′′
j ), where P ′′

j : s1� s2� � � � � s̄� sr−2� sr−1� sr+1� � � �. Continuing in this man-
ner, we eventually find a strategy P∗

j : s̄� s1� s2� � � � such that EUj(P∗
j ) ≥ EUj(Pj). Any

strategy that ranks s̄ first gives j school s̄ in every state, with associated expected util-
ity 1

M

∑M
k=1 v̄k. As all strategies that rank s̄ first give the same expected utility, any such

strategy is optimal for player j.
We now prove the lemma.

Proof of Lemma 3. Proposition 3 shows that for any state ω= (s(1)� � � � � s(M)), the lot-
tery cutoffs can be written �̄s(1) < · · · < �̄s(M) . In addition, note that by the symmetry
assumption on preferences, the cutoffs are independent of the state; that is, given any
two statesω= (s(1)� � � � � s(M)) and ω̃= (s̃(1)� � � � � s̃(M)), and corresponding vectors of cut-
offs, we have �̄s(m) = �̄s̃(m) for allm. In other words, we can just write �̄1 < · · ·< �̄M for the
schools ranked first to last in any state. Let μωj (Pj) denote j’s match when j reports Pj in
state ω.

Start by partitioning the state space into � = �A ∪�B, where ω ∈ �A if and only if
rankω(sA) < rankω(sB) (and�B =� \�A). As described in the proof of Proposition 3, for
each ωA ∈ �A, there is a corresponding ωB that swaps the positions of sA and sB, and
leaves all other schools the same. Consider one such pair (ωA�ωB).

Let s = μ
ωA
j (Pj) and first suppose that rankPj (s) < r. In other words, j is matched to

a school she reported as preferred to sA in state ωA. This implies that �j(s) ≤ �̄rankωA(s)

and �j(s′) > �̄rankωA(s
′) for all s′ with rankPj (s

′) < rankPj (s). But note that in moving to
state ωB, the rankings of s and all such s′ do not change (sB is not one of the s′ as
rankPj (sB) = r + 1), so the cutoffs �̄rankωA(s)

and �̄rankωA(s
′) do not change either. Fur-

thermore, by construction, rankPj (s) = rankP ′
j
(s) and rankPj (s

′) = rankP ′
j
(s′) for all such

s′ and so j is always matched to s. In summary, we conclude that j’s match is the same
in all of these scenarios: μωAj (Pj)= μ

ωB
j (Pj)= μ

ωA
j (P ′

j)=μ
ωB
j (P ′

j)= s.
Second, suppose that rankPj (s) ≥ r. For ease of notation, define rankωA(sA) =

rankωB(sB) = k and rankωA(sB)= rankωB(sA)= k′, where k < k′. There are several sub-
cases, depending on the relative magnitudes of �j(sA), �j(sB), �̄k, and �̄k′ . Recall that
�j(sB) < �j(sA) (by assumption) and �̄k < �̄k′ (by Proposition 3), which eliminates many
possibilities.

Subcase (i): �j(sB) < �j(sA) ≤ �̄k < �̄k′ . Note that j has a priority score good enough
to be admitted to both sA and sB in both states ωA and ωB. Thus, she will be admitted
to whichever school she ranks higher in her preferences, regardless of the state. That is,
μ
ωA
j (Pj)= μ

ωB
j (Pj)= sA and μ

ωA
j (P ′

j)= μ
ωB
j (P ′

j)= sB.
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Subcase (ii): �j(sB) ≤ �̄k < �j(sA) ≤ �̄k′ . In this case, if j submits P ′
j , then she will

be admitted to sB in both states. However, if she submits Pj , then she will only be ad-
mitted to sA in state ωB, since her priority score is not good enough in state ωA. Thus,
μ
ωB
j (Pj)= sA and μ

ωA
j (Pj)=μ

ωA
j (P ′

j)=μ
ωB
j (P ′

j)= sB.

Subcase (iii): �j(sB) ≤ �̄k < �̄k′ < �j(sA). In this case, j’s priority score is not good
enough to be admitted to sA in either state, but is good enough for sB in both states.
That is, μωAj (Pj)= μ

ωB
j (Pj)=μ

ωA
j (P ′

j)=μ
ωB
j (P ′

j)= sB.

Subcase (iv): �̄k < �j(sB) < �j(sA) < �̄k′ . In this case, j is matched to the lower-ranked
school in both states regardless of which she submits. That is, μωAj (Pj)= μ

ωA
j (P ′

j)= sB

and μ
ωB
j (Pj)=μ

ωB
j (P ′

j)= sA.

Subcase (v): �̄k < �j(sB) ≤ �̄k′ < �j(sA). In this case, j’s priority score is not good
enough to be admitted to sA in either state, but is good enough to be admitted to
sB in state ωA, which happens under both Pj and P ′

j . In state ωB, j does not have
a good enough priority number for sA or sB, and so she gets some school s that is
ranked (strictly) worse than (r + 1)th. Recall that Pj(t) = P ′

j(t) for all t > r + 1, and so
this will be the same school s under both reports in state ωB. To summarize, in this
case we have μ

ωA
j (Pj) = μ

ωA
j (P ′

j) = sB and μ
ωB
j (Pj) = μ

ωB
j (P ′

j) = s for some s such that
rankPj (s)= rankP ′

j
(s)= t > r + 1.

Subcase (vi): �̄k ≤ �̄k′ < �j(sB) < �j(sA). In this case, j does not have a good enough
priority score for either sA or sB in either state ωA or ωB. By similar reasoning to Sub-
case (v), we have μ

ωA
j (Pj) = μ

ωA
j (P ′

j) = μ
ωB
j (Pj) = μ

ωB
j (P ′

j) = s for some s such that
rankPj (s)= rankP ′

j
(s)= t > r + 1.

Looking back through all of the subcases, j’s assignment is independent of her
choice between reporting Pj and P ′

j (for a fixed state) in all cases except Subcases (i)
and (ii). In Subcase (i), if she reports Pj , she gets sA in both states. Since both states
are equally likely, her expected utility conditional on the true state being ω ∈ {ωA�ωB}
is 1

2(v̄k + v̄k′). If she reports P ′
j , she gets sB in both states, and again her expected utility

conditional on the true state being ω ∈ {ωA�ωB} is 1
2(v̄k + v̄k′). Thus, in this subcase

again, j is indifferent between Pj and P ′
j . Last, consider Subcase (ii). In this case, if she

reports Pj , she receives the (k′)th-ranked school (the worse school of sA and sB) in both
statesωA andωB, for a expected utility conditional onω ∈ {ωA�ωB} of v̄k′ . If she reports
P ′
j , she receives sB in both states, for a conditional expected utility of 1

2(v̄k + v̄k′) > v̄k′ .
In this case, she strictly prefers to report P ′

j .
In summary, j always weakly prefers P ′

j to Pj , and she strictly prefers it if her priority
scores fall in Subcase (ii) conditioned on the state being either ωA or ωB. Formally,
EUj(Pj|ω ∈ {ωA�ωB})≤EUj(P ′

j|ω ∈ {ωA�ωB}). As every pair of states is equally likely ex
ante, summing over all such pairs gives EUj(Pj)≤EUj(P ′

j).

A.7 Proof of Theorem 4

By the properties of DA, informed students have no justified claims at a school they
prefer. Thus, consider an uninformed student j. Let her secure school where she has
high priority be s̄ (and note that she is matched to s̄ in the equilibrium). Consider j
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potentially proposing a block with some other school s′. We use many of the ideas and
notation from the Proof of Proposition 3 and Theorem 3. In particular, we again partition
the states into two groups �s̄ and �s′ : �s̄ consisting of those geoups where the rank of s̄
is lower and �s′ consisting of those groups where the rank of s′ is lower. Take two states
ω ∈�s̄ and ω̂ ∈�s′ that differ only in that the relative positions of s̄ and s′ are swapped.
Let rankω(s′) = rankω̂(s̄) = k and rankω(s̄) = rankω̂(s′) = k′, where k′ > k. Recall that
�̄k < �̄k′ (Proposition 3) and v̄k > v̄k′ (proof of Theorem 3). There are three possibilities
for the outcome states ω and ω̂ if j proposes a block with s′.

Case (i): �j(s′) ≤ �̄k. In this case, i will be rematched with s′ in both states ω and ω̂.
So i’s payoff conditional on the true state being in {ω�ω̂} is 1

2(v̄k+ v̄k′)whether she stays
with s̄ or proposes a block with s′.

Case (ii): �̄k < �j(s′) ≤ �̄k′ . In this case, i is rematched with s′ in state ω̂, but not in
stateω. So i’s payoff conditional on the true state being in {ω�ω̂} is v̄k′ < 1

2(v̄k+ v̄k′). She
is worse off from proposing a block.

Case (iii): �̄k′ ≤ �j(s′). In this case, i will not rematch to s′ in either state ω or ω̂ and,
hence, she is indifferent between proposing a block or not.

Combining these three cases, we see that conditional on the true state lying in
{ω�ω̂}, i prefers to stay at school s̄ (she is indifferent in Cases (i) and (iii), and is strictly
better off in Case (ii)). As j is matched to s̄ in every state, j does not update students’ be-
liefs over the true state upon observing their own match. That is, she must consider the
expected utility of the block conditioned on the state being in �. Summing over each
of the M!/2 pairs of states from �s̄ and �s′ does just this. As she (weakly) prefers not
proposing the block for each pair, she (weakly) prefers not proposing the block condi-
tioned on the state being in � and, thus, the matching is stable.

A.8 Proof of Proposition 4

The first thing to show is that if all students choose σ̂ , then Proposition 3 holds as well.
Fix a stateω. Let γω(P) denote the measure of students who submit preference profile P .
As the uninformed students are equally likely to have any priority numbers, the measure
of uninformed students who submit P is M−ν

M! for every profile P . So γω(P)= νλω(P)+
M−ν
M! . In particular, using the same P and P ′ defined in the proof of Proposition 3, we

have λω(P) > λω(P ′) and, therefore, γω(P) > γω(P ′).
The proof follows very similarly to the proof of Proposition 3 and so only the differ-

ences are noted here. One conceptual difference though is that we count up the mea-
sure of students who submit preference profiles P and P ′ who match to sA and sB rather
than the measure of students whose true preferences are P and P ′ who match to sA and
sB. The measures are actually a little easier to calculate without secure schools. The
measure of students assigned to sA who submit preference type P or P ′ is

δ(P� sA)γω(P)+ δ(P ′� sA
)
γω

(
P ′)�

where δ(P� sA) and δ(P ′� sA) are

δ(P� sA) =
r−1∏
x=1

(1 − �̄P(x))× �̄sA�
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δ
(
P ′� sA

) =
t−1∏

x=1�x �=r
(1 − �̄P(x))× (1 − �̄sB)× �̄sA�

The total measure of students matched to sB is

δ(P� sB)γω(P)+ δ(P ′� sB
)
γω

(
P ′)�

where the δs in this case are defined as

δ(P� sB) =
t−1∏

x=1�x �=r
(1 − �̄P(x))× (1 − �̄sA)× �̄sB �

δ
(
P ′� sB

) =
r−1∏
x=1

(1 − �̄P(x))× �̄sB �

We still have δ(P� sA)≥ δ(P ′� sB) and δ(P ′� sA)≥ δ(P� sB), and so the rest of the proof
follows similarly. The one final difference is that we also may have a weak inequality if
�̄P(x) = 0 for all x= r� � � � � t−1, but this is not a problem because without secure schools it
is obvious that �̄s > 0 for all s (otherwise, some strictly positive mass of students remains
unassigned).

Lemma 3 depends only on the cutoffs increasing and so it applies now as well. In par-
ticular, suppose an uninformed student j chose a profile Pj , where rankPj (s) < rankPj (s

′)
for some s and s′ where �j(s) > �j(s′). We cannot directly apply Lemma 3 because Pj
may not rank them consecutively. However, ranked between s and s′ there must be
consecutively ranked schools where j’s priority is worse at the better ranked school.
In particular, there must be some schools ŝ and ŝ′ with rankPj (ŝ) = rankPj (ŝ

′) − 1 and
�j(ŝ) > �j(ŝ

′). For these schools, the lemma does apply to show that P ′
j : s1� s2� � � � � ŝ′� ŝ� � � �

andEUj(Pj)≤EUj(P ′
j). This process can be iterated as long as there exists s and s′ where

rankPj (s) < rankPj (s
′) and �j(s) > �j(s′). Eventually this leads to the strategy profile σ̂j

that ranks schools in increasing order of priority numbers.

A.9 Proof of Theorems 5 and 6

Theorems 5 and 6 are closely related, and so we prove them jointly. Mathematically, we
show the following:

(i) For all j ∈U , V SSj (σ∗)≥ V NCj ≥ V NSSj (σ̂).

(ii) For all j ∈ I, V SSj (σ∗)≥ V NCj .

(iii) There exists a subset J̃ ⊆ U with strictly positive measure such that V NCj >

V NSSj (σ̂) for all j ∈ J̃.

(iv) There exists a subset J̃ ⊆ I with strictly positive measure such that V SSj (σ∗) >
V NCj for all j ∈ J̃.
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To start, consider an uninformed student j ∈U . Under both DA-SS and NC, j is matched
to her secure school in every state, and so V SSj (σ∗) = V NCj = v̄ := 1

M

∑M
k=1 v̄k. We will

show that V NSSj (σ̂)≤ v̄ for all j ∈U , which completes the proof of (i).
First, partition the state space � as follows. Take an arbitrary state ω, and suppose

that in equilibrium, in stateω, j is matched to school s. Let r = rankω(s). Consider every
state ω′ that maintains the relative rankings of all schools other than s but moves s to a
worse ranking (and includes ω too for ease of notation later). Formally, define the set

�1 = {
ω′ : rankω′(s)≥ r and rankω

(
s′

)
< rankω

(
s′′

)
if and only if

rankω′
(
s′

)
< rankω′

(
s′′

)
for all s′� s′′ �=s}�

As this just moves s down the rankings, each school other than s (weakly) moves up in
rankings and so, by the extension of Proposition 3 in the previous proof, �̄s′ is smaller in
stateω′ than inω for all s′ �= s. Alternatively, s gets worse and so �̄s gets larger. Therefore,
as j is matched to s in ω, j is also matched to s in ω′. There is precisely one state in �1

where rankω′(s) = k for each k = r� � � � �M . Thus, conditional on the true state lying in
�1, j’s expected utility is

1
M − r + 1

M∑
k=r

v̄k ≤ 1
M

M∑
k=1

v̄k = v̄�

Now consider any state ω ∈ �\�1 and form �2 in the same way (find the school j is
matched to in ω and then move it down the rankings). By construction, once again, j’s
expected utility conditional on the state being in �2 is weakly less than v̄.

Continue this procedure until we run out of states. Note that it might be that �l ∩
�k �= ∅ for some l�k. However, if this is the case, then either �k ⊂�l or �l ⊂�k, and so
we simply choose the larger set to form the partition. To see why set containment holds,
suppose �l was created by starting with some ω where j matches to s and rankω(s) =
r. If �k ∩ �l �= ∅, then �k must have been created by starting with some ω′ where j
matches to s and the rankings of all other schools are preserved. So if rankω′(s)= r ′ < r,
then �l ⊂�k, and if rankω′(s)= r′ > r, then �k ⊂�l. Now, conditional on each element
of the partition, j’s expected utility is at most v̄; as all states are equally likely ex ante,
V NSSj (σ̂)≤ v̄. This completes the proof of (i).

To show (ii), consider an informed student j ∈ I with ordinal preferences Pj and let
her secure school be s̄. Under NC, j is assigned to s̄. Under DA-SS, since j knows her
preferences and it is optimal for informed students to report truthfully, it is clear that
her final match will be (weakly) preferred to s̄. Thus, we conclude that V SSj (σ∗)≥ V NCj .

So far, we have shown that DA-SS weakly Pareto dominates NC for all students, and
NC weakly Pareto dominates DA-NSS for the uninformed students. What is left to show
is that these Pareto dominance relations are actually strict, which are statements (iii)
and (iv) above.

We first show (iv), that a strictly positive mass of students prefer DA-SS to NC. Fix a
state ω= (s(1)� � � � � s(M)). Recall that under DA-SS, we have �̄s(1) ∈ (1�2) (Proposition 3).
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Now, for any small ε > 0, there is a set of informed students of mass εM ×ν who have pri-
ority �j(s)≤ 1 + ε for all s ∈ S. By choosing ε such 1 + ε≤ �̄s(1) , we have a set of students
I ′ who all receive their first-choice school, no matter what it is. Since the distribution
of secure schools is independent of preferences, we can find a subset I ′′ ⊆ I ′ of strictly
positive measure such that for all j ∈ I ′′, j’s first-choice school is different from her se-
cure school. There are many ways to construct this set, but, for example, consider two
schools s� s′ and some ordinal preference P that ranks s first. Then there is a subset I ′′ of
measure εM × ν× 1

M × λω(P) whose secure school is s′, but rank school s first and have
high enough priority to be admitted to it. All of the students in I ′′ strictly prefer DA-SS
to NC.

Last, we use a similar argument to show (iii): that a strictly positive mass of unin-
formed students strictly prefer NC to DA-NSS. To do so, first recall that in every state,
the second-to-highest cutoff satisfies �̄s(M−1) < 1. Consider some small ε > 0 such that
1 − ε > �̄s(M−1) . There is a set of uninformed students Ũ ⊂U of mass εM × (M − ν) such
that for all j ∈ Ũ , �j(s)≥ 1−ε > �̄s(M−1) for all schools s ∈ S. In other words, these students
will receive the worst school in every state state and, hence, V NSSj (σ̂) = 0 for all j ∈ Ũ .

Since V NCj = v̄ > 0 for these students, they strictly prefer NC to DA-NSS.
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