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Recent technology advances have enabled firms to flexibly process and analyze
sophisticated employee performance data at a reduced and yet significant cost.
We develop a theory of optimal incentive contracting where the monitoring tech-
nology that governs the above procedure is part of the designer’s strategic plan-
ning. In otherwise standard principal–agent models with moral hazard, we allow
the principal to partition agents’ performance data into any finite categories, and
to pay for the amount of information the output signal carries. Through analy-
sis of the trade-off between giving incentives to agents and saving the monitoring
cost, we obtain characterizations of optimal monitoring technologies such as in-
formation aggregation, strict monotone likelihood ratio property, likelihood ratio–
convex performance classification, group evaluation in response to rising moni-
toring costs, and assessing multiple task performances according to agents’ en-
dogenous tendencies to shirk. We examine implications of these results for work-
force management and firms’ internal organizations.
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1. Introduction

Recent technology advances have enabled firms to flexibly process and analyze sophisti-
cated employee performance data at a reduced and yet significant cost. Speech analytics
software, natural language processing tools, and cloud-based systems are increasingly
used to convert hard-to-process contents into succinct and meaningful performance
ratings such as “satisfactory” and “unsatisfactory” (Murff et al. 2011, Singer 2013, Ka-
plan 2015). This paper develops a theory of optimal incentive contracting where the
monitoring technology that governs the above procedure is part of the designer’s strate-
gic planning.
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Our research agenda is motivated by the case of call center performance manage-
ment reported by Singer (2013). It has long been recognized that the conversations be-
tween call center agents and customers contain useful performance indicators such as
customer sentiment, voice quality and tone, etc. Recently, the advent of speech analyt-
ics software has finally enabled the processing and analysis of these contents, as well
as their conversions into succinct and meaningful performance ratings such as “satis-
factory” and “unsatisfactory.” On the one hand, running speech analytics software con-
sumes server space and power, and this procedure has been increasingly outsourced to
third parties in order to take advantage of the latest development in cloud computing.
On the other hand, managers now have considerable freedom to decide which facets
of the customer conversation to utilize, thanks to the increased availability of products
whose specialties range from emotion detection to word spotting.

We formalize the flexibility and cost associated with the design and implementa-
tion of the monitoring technology in otherwise standard principal–agent models with
moral hazard. Specifically, we allow the monitoring technology to partition agents’ per-
formance data into any finite categories, at a cost that increases with the amount of
information the output signal carries (hereafter monitoring cost). An incentive contract
pairs the monitoring technology with a wage scheme that maps realizations of the out-
put signal to different wages. An optimal contract minimizes the sum of expected wage
and monitoring cost, subject to agents’ incentive constraints.

Our main result gives characterizations of optimal monitoring technologies in gen-
eral environments, showing that the assignment of Lagrange multiplier-weighted like-
lihood ratios to performance categories is positive assortative in the direction of agent
utilities. Geometrically, this means that optimal monitoring technologies comprise con-
vex cells in the space of likelihood ratios or their transformations. This result provides
practitioners with the needed formula for sorting employees’ performance data into per-
formance categories, and exploiting its geometry yields insights into workforce manage-
ment and firms’ internal organizations.

Our proof strategy works directly with the principal’s Lagrangian. It handles general
situations featuring multiple agents and multiple tasks, in which the direction of sorting
vector-valued likelihood ratios into performance categories is non-obvious a priori. It
also overcomes the technical challenge whereby perturbations of the sorting algorithm
affect wages endogenously through the Lagrange multipliers of agents’ incentive con-
straints, generating new effects that are difficult to assess using standard methods.

We give three applications of our result. In the single-agent model considered by
Hölmstrom (1979), we show that the assignment of likelihood ratios to wage categories is
positive assortative and follows a simple cutoff rule. The monitoring technology aggre-
gates potentially high-dimensional performance data into rank-ordered performance
ratings, and the output signal satisfies the strict monotone likelihood ratio property
with respect to the order induced by likelihood ratios. Solving the cutoff likelihood ra-
tios yields consistent findings with recent developments in manufacturing, retail, and
healthcare sectors, where decreases in the data processing cost have been shown to in-
crease the fineness of the performance grids (Bloom and Reenen 2006, Murff et al. 2011,
Ewenstein et al. 2016).
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In the multi-agent model considered by Hölmstrom (1982), the optimal monitoring
technology partitions vectors of individual agents’ likelihood ratios into convex poly-
gons. Based on this result, we then compare individual and group performance evalu-
ations from the angle of monitoring cost, showing that firms should switch from indi-
vidual evaluation to group evaluation in response to rising monitoring costs. This re-
sult formalizes the theses of Alchian and Demsetz (1972) and Lazear and Rosen (1981)
that either team or tournament should be the dominant incentive system when individ-
ual performance evaluation is too costly to conduct. It is consistent with the finding of
Bloom and Reenen (2006), namely the lack of access to information technologies (IT)
increases the use of group performance evaluation among otherwise similar firms.

In the presence of multiple tasks as in Hölmstrom and Milgrom (1991), the resources
spent on the assessment of a task performance should increase with the agent’s endoge-
nous tendency to shirk the corresponding task. Using simulation, we apply this result
to the study of, e.g., how improved precision of some task measurements (caused by,
e.g., the availability of high-quality scanner data measuring the skillfulness in scanning
items) would affect the resources spent on the assessments of other task performances
(e.g., projecting warmth to customers).

1.1 Related literature

Earlier studies on contracting with costly experiments (in the sense of Blackwell 1953)
include, but are not limited to, Baiman and Demski (1980) and Dye (1986), in which
case the principal can pay an external auditor to draw a signal from an exogenous dis-
tribution; as well as Hölmstrom (1979), Grossman and Hart (1983), and Kim (1995), in
which signal distributions are ranked based on the incentive costs they incur. In these
studies, the principal can change the probability space generated by the agent’s hidden
effort and, in the first two studies, through paying stylized costs. In contrast, we focus
on the conversion of the agent’s performance data into performance ratings while taking
the former’s probability space as given. Also, while our assumption that the monitoring
cost increases with the amount of information carried by the output signal is suitable
for studying data processing and analysis, it could be ill-suited for modeling the cost of
running experiments in general.

The current work differs from the existing studies on rational inattention (hereafter
RI) in three aspects. First, early developments in RI pioneered by Sims (1998), Sims
(2003), Maćkowiak and Wiederholt (2009), and Woodford (2009) sought to explain the
stickiness of macroeconomic variables by information processing costs, whereas we
examine the implication of costly yet flexible monitoring for principal–agent relation-
ships.1 Second, we focus mainly on partitional monitoring technologies, because in
reality, adding non-performance-related factors into employee ratings could have dire

1Yang (2020) studies a security design problem in which a rationally inattentive buyer can obtain any
signal about an uncertain state at a cost that is proportional to entropy reduction. Other recent efforts to
introduce RI into strategic environments include, but are not limited to, Matějka and McKay (2012), Martin
(2017), and Ravid (2017).
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consequences such as appeals, lawsuits, and excessive turnover.2 Finally, our monitor-
ing cost function nests entropy as a special case.

Recent works by Crémer et al. (2007), Jäger et al. (2011), Sobel (2015), and Dilmé
(2018) examine the optimal language used between organization members who share a
common interest but face communication costs. The absence of conflicting interests,
hence incentive constraints, distinguishes these works from ours.

The remainder of this paper is organized as follows. Section 2 introduces the base-
line model, Section 3 presents main results, Sections 4 and 5 investigate extensions of
the baseline model, and Section 6 concludes. See Appendices A and B for omitted proofs
and additional materials.

2. Baseline model

2.1 Setup

Primitives. A risk-neutral principal faces a risk-averse agent, who earns a utility u(w)

from spending a nonnegative wage w ≥ 0 and incurs a cost c(a) from privately exerting
high effort or low effort a ∈ {0�1}. The function u : R+ → R satisfies u(0) = 0, u′ > 0, and
u′′ < 0, whereas the function c : {0�1} → R+ satisfies c(1) = c > c(0) = 0.

Each effort choice a ∈ {0�1} generates a probability space (����Pa), where � is a
finite-dimensional Euclidean space that comprises the agent’s performance data, � is
the Borel sigma-algebra on �, and Pa is the probability measure on (���) conditional
on the agent’s effort being a. The Pas are assumed to be mutually absolutely continuous,
and the probability density function pas they induce are well defined and everywhere
positive.

Incentive contract. An incentive contract 〈P�w(·)〉 is a pair of monitoring technol-
ogy P and wage scheme w : P → R+. The former represents a human- or machine-
operated system that governs the processing and analysis of the agent’s performance
data, whereas the latter maps outputs of the first-step procedure to different levels of
wages. In the main body of this paper, P can be any partition of � with at most K cells
that are all of positive measures,3 and w : P → R+ maps each cell A of P to a nonneg-
ative wage w(A) ≥ 0.4 The upper bound K for the rating scale |P| can be any integer
greater than 1, and it is taken as given throughout the analysis.5

For any data point ω ∈ �, let A(ω) denote the unique performance category that
contains ω, and let w(A(ω)) denote the wage associated with A(ω). Time evolves as
follows.

2See standard human resource textbooks for this subject matter. Saint-Paul (2017) demonstrates the
validity of entropy as an information cost in decision problems in which the decision rule is a deterministic
function of an exogenous state variable.

3In Appendix B.2, we allow the monitoring technology to be any mapping from � to lotteries on finite
performance categories. If the lottery is degenerate, then the monitoring technology is partitional.

4Appendix B.1 examines the case where the agent faces an individual rationality constraint.
5The upper bound K, while stylized, guarantees the existence of optimal incentive contract(s). Judging

from the simulation exercises we have so far conducted, the optimal rating scale is typically smaller than K

even when μ is small (see, e.g., Figure 1).
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Stage 1. The principal commits to 〈P�w(·)〉.

Stage 2. The agent privately chooses a ∈ {0�1}.

Stage 3. Nature draws ω from � according to Pa.

Stage 4. The monitoring technology outputs A(ω).

Stage 5. The principal pays w(A(ω)) to the agent.

Implementation cost. A monitoring technology P = {A1� � � � �AN } outputs a signal
X : � → P , whose probability distribution given the agent’s effort choice a is repre-
sented by a vector π(P� a) = (Pa(A1)� � � � �Pa(AN)�0� � � � �0) in the K-dimensional sim-
plex. While X is often taken as given in the existing principal–agent literature, here it is
chosen by the principal as part of the incentive contract.

Given the agent’s effort choice a, the principal incurs the following cost from imple-
menting an incentive contract 〈P�w(·)〉:∑

A∈P
Pa(A)w(A)+μ ·H(P� a)�

This total implementation cost has two parts. The first part
∑

A∈P Pa(A)w(A), i.e., the
incentive cost, has been the central focus of the existing principal–agent literature. The
second part μ ·H(P� a), hereafter termed the monitoring cost, represents the cost asso-
ciated with the processing and analysis of the agent’s performance data. In particular,
μ > 0 is an exogenous parameter which we will further discuss in Section 3.4. Mean-
while, H(P� a) captures the amount of information carried by the output signal and is
assumed to satisfy the following properties.

Assumption 1. There exists a function h : �K → R+ such that H(P� a) = h(π(P� a)) for
any pair (P� a) of monitoring technology and agent effort. Furthermore, h satisfies the
following properties.

(a) For any probability vector (π1� � � � �πK) ∈ �K and any permutation σ on {1� � � � �K},
we have h(π1� � � � �πK)= h(πσ(1)� � � � �πσ(K)) .

(b) For any two probability vectors (0�π2� � � �) and (π′
1�π

′
2� � � �) ∈ �K that differ only

in the first two elements and satisfy π2�π
′
1�π

′
2 > 0 and π2 = π ′

1 + π ′
2, we have

h(0�π2� � � �) < h(π ′
1�π

′′
2 � � � �)

Inspired by the basic principles of information theory, Assumption 1 stipulates that
the amount of information carried by the output signal should depend only on the
latter’s probability distribution and must increase with the fineness of the monitoring
technology. Apart from probabilities, nothing else matters, not even the naming or the
contents of the performance categories. Assumption 1 is satisfied by, e.g., the entropy
−∑A∈P Pa(A) log2 Pa(A) of the output signal, the bits of information log2 |P| carried by
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the output signal, etc.6 In Section 2.2, we motivate the use of this assumption in the
example of call center performance management.

The principal’s problem. Consider the problem of inducing high effort from the
agent.7 Define a random variable Z : � →R as

Z(ω) = 1 − p0(ω)

p1(ω)
∀ω�

where p0(ω)/p1(ω) is the likelihood ratio associated with data point ω. Note that E[Z |
a = 1] = 0, and the range of Z is a subset of (−∞�−1). For any set A ∈ � of positive
measure, define the z-value of A as

z(A) = E[Z | A;a = 1]�
In words, z(A) represents the average value of Z given that the true performance data
point belongs to A.

A contract 〈P�w(·)〉 is incentive compatible for the agent if∑
A∈P

P1(A)u
(
w(A)

)− c ≥
∑
A∈P

P0(A)u
(
w(A)

)
or, equivalently, ∑

A∈P
P1(A)u

(
w(A)

)
z(A) ≥ c� (IC)

and it satisfies the agent’s limited liability constraint if

w(A)≥ 0 ∀A ∈ P� (LL)

An optimal incentive contract that induces high effort from the agent (optimal incentive
contract for short) minimizes the total implementation cost given high effort, subject to
the agent’s incentive compatibility constraint and limited liability constraint:

min
〈P�w(·)〉

∑
A∈P

P1(A)w(A)+μ ·H(P�1) subject to (IC) and (LL)�

In what follows, we will denote any solution to this problem by 〈P∗�w∗(·)〉.

2.2 Monitoring cost

In this section, we first illustrate Assumption 1 in the context of call center performance
management:

Example 1. In the example described in Section 1, a piece of performance data com-
prises the major characteristics of a call history (e.g., customer sentiment and voice
quality) encoded in binary digits, and the monitoring technology represents the speech

6The bit is a basic unit of information in information theory, computing, and digital communications. In
information theory, one bit is defined as the maximum information entropy of a binary random variable.

7The problem of inducing low effort from the agent is standard.



Theoretical Economics 15 (2020) Optimal incentive contract 1141

analytics program that categorizes these binary digits into performance ratings. To for-
malize the design flexibility, we allow the monitoring technology to partition the agent’s
performance data into any N ≤K categories, where K can be any integer greater than 1.
The cost of running the monitoring technology is assumed to increase with the amount
of the processed information, whose definition varies from case to case. For example,
if the monitoring technology runs many times among many identical agents, then the
optimal design should minimize the average steps it takes to find the performance cat-
egory that contains the true performance data point. By now, it is well known that this
quantity equals approximately the entropy of the output signal. In contrast, if the moni-
toring technology runs only a few times for a few number of agents, then the worst-case
(or unamortized) amount of the processed information is best captured by the bits of in-
formation carried by the output signal (see, e.g., Cover and Thomas 2006). In both cases,
the quantity of our interest depends only on the probability distribution of the output
signal and nothing else. ♦

We next introduce the concept of setup cost and distinguish it from our notion of
monitoring cost.

Example 1 (Continued). As its name suggests, setup cost refers the cost incurred to set
up the infrastructure that facilitates data processing and analysis, e.g., fast Fourier trans-
formation (FFT) chips (which transform sound waves into their major characteristics
coded in binary digits), recording devices, etc.

The major role of setup cost is to change the probability space (����Pa)s. For exam-
ple, design improvements in FFT chips enable more frequent sampling of sound waves
and thus cause (����Pa)s to change. In what follows, we will ignore the setup cost and
take the probability spaces of the agent’s performance data as given. That said, one can
certainly embed our analysis into a two-stage setting in which the principal first incurs
the setup cost and then the monitoring cost. Results below do carry over to this new
setting. ♦

3. Analysis

3.1 Preview

Example 2. Suppose u(w) = √
w, Z is uniformly distributed over [−1/2�1/2] given a =

1, and H(P� a) = f (|P|) for some strictly increasing function f : {2� � � � �K} → R+. Below
we walk through the key steps in solving the optimal incentive contract, give closed-
form solutions, and discuss their practical implications.

Optimal wage scheme. We first solve for the optimal wage scheme for any given
monitoring technology P as in Hölmstrom (1979). Specifically, label the performance
categories as A1� � � � �AN , and write πn = P1(An) and zn = z(An) for n = 1� � � � �N . As-
sume zj 
= zk for some j�k ∈ {1� � � � �N} to make the analysis interesting. The principal’s
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problem is then

min
{wn}Nn=1

N∑
n=1

πnwn

subject to
N∑
n=1

πn
√
wnzn ≥ c (IC)

and wn ≥ 0� n = 1� � � � �N� (LL)

Straightforward algebra yields the expression for the minimal incentive cost:

c2

[
N∑
n=1

πn max{0� zn}2︸ ︷︷ ︸
wn

]−1

�

A careful inspection of this expression reveals Hölmstrom’s (1979) sufficient statistics
principle, namely z-value is the only part of the performance data that provides the
agent with incentives.

Optimal monitoring technology. We next solve for the optimal monitoring technol-
ogy. First, note that the principal should partition the performance data based only on
their z-values, and that different performance categories must attain different z-values
and hence different wages. Indeed, if the contrary were true, then it follows from the
sufficient statistic principle and Assumption 1(b) that merging performance categories
of the same z-value saves the monitoring cost without affecting the incentive cost and,
thus, constitutes an improvement to the original monitoring technology.

A more interesting question concerns how we should assign the various data points,
identified by their z-values, to different performance categories. In the baseline model
featuring a single agent and binary efforts, the answer to this question is relatively
straightforward: assign high (resp. low) z-values to high-wage (resp. low-wage) cate-
gories. Here is a quick proof of this result: since the left-hand side of the (IC) constraint is
supermodular in wages and z-values, if our conjecture were false, then reshuffling data
points as above while holding the probabilities of the performance categories constant
reduces the incentive cost while leaving the monitoring cost unaffected.

When extending the above intuition to general settings featuring multiple agents or
multiple actions, we face two challenges. First, in the case where z-values and wages are
vectors, the direction of sorting these objects is not obvious a priori. Second, changes
in the sorting algorithm affect wages endogenously through the Lagrange multipliers of
the agent’s incentive constraints, and the resulting effects could be new and difficult to
assess using standard methods.

The proof strategy presented in Section 3.3 overcomes these challenges, showing
that the assignment of Lagrange multiplier-weighted z-values to performance cate-
gories must be positive assortative in the direction of agent utilities. Geometrically, this
means that any optimal monitoring technology must comprise convex cells in the space
of z-values or their transformations. Theorems 1, 3, and 5 formalize these statements.
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Implications. An important feature of the optimal monitoring technology is infor-
mation aggregation—a term used by human resource practitioners to refer to the ag-
gregation of potentially high-dimensional performance data into rank-ordered perfor-
mance ratings such as “satisfactory” and “unsatisfactory.”

The geometry of optimal monitoring technology yields insights into the practical
issues covered in Sections 3.4, 4.3, and 5.1. Consider, for example, optimal performance
grids. In the current example, it can be shown that the optimal N-partitional monitoring
technology divides the space [−1/2�1/2] of z-values into N disjoint intervals [̂zn−1� ẑn),
n = 1� � � � �N , where ẑ0 = −1/2 and ẑN = 1/2. The optimal cut points {̂zn}N−1

n=1 can be
solved as

min
{̂zn}N−1

n=1

c2

[
N∑
n=1

πn max{0� zn}2

]−1

−μ · f (N)�

where

πn =
∫ ẑn

ẑn−1

dZ = ẑn − ẑn−1

and

zn = 1
πn

∫ ẑn

ẑn−1

ZdZ = 1
2
[̂zn + ẑn−1]�

Straightforward algebra yields

ẑn = 2n− 1
4N − 2

� n= 1� � � � �N − 1�

Based on this result, as well as the functional form of f , we can then solve for the optimal
rating scale N and, hence, the optimal incentive contract completely. ♦

3.2 Main results

This section analyzes optimal incentive contracts. Results below hold true except per-
haps on a measure zero set of data points. The same disclaimer applies to the remainder
of this paper.

We first define Z convexity.

Definition 1. A set A ∈ � is Z-convex if{
ω ∈� : Z(ω) = (1 − s) ·Z(ω′)+ s ·Z(ω′′) for some s ∈ (0�1)

}⊂A

holds for any ω′�ω′′ ∈ A such that Z(ω′) 
= Z(ω′′).

In words, a set A ∈ � is Z-convex if whenever it contains two data points of different
z-values, it must also contain all data points of intermediate z-values. Let Z(A) denote
the image of any set A ∈ � under the mapping Z. In the case where Z(�) is a connected
set in R, the above definition is equivalent to the convexity of Z(A) in R.

A few assumptions before we go into detail. The next assumption says that the dis-
tribution of Z has no atom or hole.
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Assumption 2. The random variableZ is distributed atomlessly on a connected setZ(�)

in R given high effort a = 1.

Assumption 3. The set Z(�) is compact in R.

The next assumption imposes regularities on the monitoring cost function: part (a)
holds for the bits of information carried by the output signal, and part (b) holds for the
entropy of the output signal.

Assumption 4. The function h : �K →R+ satisfies one of the following conditions.

(a) There exists a strictly increasing function f : {1� � � � �K} → R+ such that
h(π(P� a)) = f (|P|).

(b) The function h is continuous.

We now state our main results. The next theorem shows that any optimal incentive
contract assigns data points of high (resp. low) z-values to high-wage (resp. low-wage)
categories. Under Assumption 2, this can be achieved by first dividing z-values into
disjoint intervals and then backing out the partition of the original data space accord-
ingly. The result is an aggregation of potentially high-dimensional performance data
into rank-ordered performance ratings, as well as a wage scheme that is strictly increas-
ing in these performance ratings.

Theorem 1. Assume Assumption 1, and let 〈P∗�w∗(·)〉 be any optimal incentive con-
tract that induces high effort from the agent. Then P∗ comprises Z-convex cells labeled
as A1� � � � �AN , where 0 = w∗(A1) < · · · < w∗(AN). Assume, in addition, Assumption 2.
Then there exists infZ(�) := ẑ0 < ẑ1 < · · · < ẑN := supZ(�) such that An = {ω : Z(ω) ∈
[̂zn−1� ẑn)} for n = 1� � � � �N .

The next theorem proves the existence of an optimal incentive contract.

Theorem 2. An optimal incentive contract that induces high effort from the agent exists
under Assumptions 1–4.

Throughout this paper, proofs omitted from the main text are provided in Ap-
pendix A.

3.3 Proof sketch for Theorem 1

The proof of Theorem 1 consists of three steps. The intuitions of Steps 1 and 2 have
already been discussed in Example 2. Step 3 is new.

Step 1. We first take any monitoring technology P as given and solve for the optimal
wage scheme as in Hölmstrom (1979):

min
w:P→R+

∑
A∈P

P1(A)w(A) subject to (IC) and (LL). (1)

The next lemma restates Hölmstrom’s (1979) sufficient statistic principle.
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Lemma 1. Let w∗(·;P) be any solution to problem (1). Then there exists λ > 0 such that
u′(w∗(A;P)) = 1/(λz(A)) for any A ∈ P such that w∗(A;P) > 0.

Step 2. We next demonstrate that different performance categories must attain dif-
ferent z-values and different wages.

Lemma 2. Assume Assumption 1. Let 〈P∗�w∗(·)〉 be any optimal incentive contract that
induces high effort from the agent, and label the cells of P∗ as A1� � � � �AN such that
z(A1)≤ · · · ≤ z(AN). Then z(A1) < 0 < · · · < z(AN) and 0 =w∗(A1) < · · · <w∗(AN).

Step 3. We finally demonstrate that the assignment of z-values to wage categories
is positive assortative. In Example 2, we sketched a proof based on supermodularity,
and pointed out the difficulties of extending that argument to multidimensional envi-
ronments. The argument below overcomes these difficulties.

Take any optimal incentive contract, and let Aj and Ak be any two distinct per-
formance categories, where z(Aj) 
= z(Ak) by Lemma 2. Fix any ε > 0, and take any
A′

ε ⊂ Aj and A′′
ε ⊂ Ak such that P1(A

′
ε) = P1(A

′′
ε) = ε and z(A′

ε) = z′ 
= z(A′′
ε) = z′′. In

words, A′
ε and A′′

ε have the same probability ε given a = 1 but different z-values that are
independent of ε. Lemma 3 in Appendix A.1.1 proves the existence of A′

ε and A′′
ε when

ε is small.
Consider a perturbation to the monitoring technology that “swaps” A′

ε and A′′
ε .

After this perturbation, the new performance categories, denoted by An(ε)s, become
Aj(ε) = (Aj\A′

ε) ∪ A′′
ε , Ak(ε) = (Ak\A′′

ε) ∪ A′
ε, and An(ε) = An for n 
= j�k. Since this

perturbation has no effect on the probabilities of the performance categories given
a = 1, it does not affect the monitoring cost by Assumption 1(a). Meanwhile, it changes
the principal’s Lagrangian to (ignore the (LL) constraint)

L(ε)=
∑
n

πn
[
wn(ε)− λ(ε)u

(
wn(ε)

)
zn
]+ λ(ε)c�

where πn denotes the probability of An (equivalently An(ε)) given a = 1, wn(ε) denotes
the optimal wage at An(ε), and λ(ε) denotes the Lagrange multiplier associated with the
(IC) constraint. A careful inspection of this Lagrangian leads to the following conjecture:
in order to minimize L(ε), the assignment of Lagrange multiplier-weighted z-values to
performance categories must be positive assortative in the direction of agent utilities.

To develop intuition, we assume differentiability and obtain

L′(0) =
∑
n

πnw
′
n(0)− λ′(0)

[∑
n

πnu
(
wn(0)

)
zn(0)− c

]
︸ ︷︷ ︸

(i) =0

− λ(0)
[∑

n

πn · u′(wn(0)
)
zn(0)︸ ︷︷ ︸

(ii) =1/λ(0)

·w′
n(0)+

∑
n

πnu
(
wn(0)

)
z′
n(0)

]

= −λ(0)
∑
n

πnu
(
wn(0)

)
z′
n(0)

= λ(0)
(
z′′ − z′)[u(wk(0)

)− u
(
wj(0)

)]
�
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In the above expression, (i)= 0 because the (IC) constraint binds under the original con-
tract, and (ii) = 1/λ(0) by Lemma 1. These findings resolve our concerns raised in Sec-
tion 3.1, showing that our perturbation has negligible effects on the Lagrange multipliers
and wages.

To complete the proof, note that L′(0) ≥ 0 by optimality, and that L′(0) 
= 0 because
λ(0) > 0, z′′ 
= z′, and wj(0) 
= wk(0) (Lemma 2). Combining these observations yields
L′(0) > 0, so our conjecture is indeed true. The Z-convexity of optimal performance
categories is now immediate: if an optimal performance category contains extreme but
not intermediate z-values, then the assignment of z-values goes in the wrong direction,
and an improvement can be constructed.

The above proof strategy yields the endogenous direction of sorting raw perfor-
mance data into performance categories, which is relatively straightforward in the base-
line model but is less so in later extensions. The proof in Appendix A.1 does not assume
differentiability and handles the limited liability constraint, too.

3.4 Implications

Strict monotone likelihood ratio property. Theorem 1 implies that the signal generated
by any optimal monitoring technology must satisfy the strict monotone likelihood ratio
property (hereafter strict MLRP) with respect to the order induced by z-values.

Definition 2. For any A�A′ ∈ � of positive measures, write A
z�A′ if z(A) ≤ z(A′).

Corollary 1. The signal X : � → P∗ generated by any optimal monitoring technology

P∗ satisfies strict MLRP with respect to
z�, i.e., any A�A′ ∈ P∗ satisfy A

z� A′ if and only if
z(A) < z(A′).

While the signal generated by any monitoring technology trivially satisfies the weak

MLRP with respect to
z� (i.e., replace < with ≤ in Corollary 1), it violates the strict MLRP

if there are multiple performance categories that attain the same z-value. By contrast,
the signal generated by any optimal monitoring technology must satisfy the strict MLRP

with respect to
z�, because merging performance categories of the same z-value saves

the monitoring cost without affecting the incentive cost.
Comparative statics. The parameter μ captures factors that affect the (opportunity)

cost of data processing and analysis. Factors that reduce μ include, but are not limited
to, the advent of IT-based human resource management systems in the 1990s, advance-
ments in speech analytics, and increases in computing power.

To facilitate comparative statics analysis, we write any choice of optimal incentive
contract as 〈P∗(μ)�w∗(·;μ)〉 to make its dependence on μ explicit.

Proposition 1. Fix any 0 < μ < μ′. For any choices of 〈P∗(μ)�w∗(·;μ)〉 and 〈P∗(μ′)�
w∗(·;μ′)〉,

(i)
∑

A∈P(μ) P1(A)w∗(A;μ) ≤∑
A∈P(μ′) P1(A)w∗(A;μ′).
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(ii) H(P∗(μ)�1) ≥H(P∗(μ′)�1).

(iii) |P∗(μ)| ≥ |P∗(μ′)| under Assumption 4(a).

Part (i) follows from the optimalities of P∗(μ) and P∗(μ′). Parts (ii) and (ii) are im-
mediate.

Proposition 1 shows that as data processing and analysis become cheaper, the prin-
cipal pays less wage on average, and the information carried by the output signal be-
comes finer. In the case where the monitoring cost is an increasing function of the rat-
ing scale (see, e.g., Hook et al. 2011), the optimal rating scale is non-increasing in μ.
For other monitoring cost functions such as entropy, we can first compute the cutoff z-
values and then the optimal rating scale as in Example 2.8

 Figure 1 plots the numerical
solutions obtained in a special case.

The above findings are consistent with several strands of empirical facts. Among
others, access to IT has proven to increase the fineness of the performance grids among
manufacturing companies, holding other things constant (Bloom and Reenen 2010;
Bloom et al. 2012).9 Crowd-sourcing the processing and analysis of real-time data has
enabled the “exact individual diagnosis” that separates distinctive and mediocre per-
formers in companies like General Electric and Zalando (Ewenstein et al. 2016).

4. Extension: Multiple agents

4.1 Setup

Each of the two agents i = 1�2 earns a payoff ui(wi)−ci(ai) from spending a nonnegative
wage wi ≥ 0 and exerting high effort or low effort ai ∈ {0�1}. The function ui : R+ →
R satisfies ui(0) = 0, u′

i > 0 and u′′
i < 0, whereas the function ci : {0�1} → R+ satisfies

ci(1) = ci > ci(0) = 0.
Each effort profile a = a1a2 generates a probability space (����Pa), where � is a

finite-dimensional Euclidean space that comprises both agents’ performance data, � is
the Borel sigma-algebra on �, and Pa is the probability measure on (���) conditional
on the effort profile being a. The Pas are assumed to be mutually absolutely continuous,
and the probability density function pas they induce are well defined and everywhere
positive.

In this new setting, a monitoring technology P can be any partition of � with at most
K cells that are all of positive measures, and a wage scheme w : P → R

2+ maps each cell
A of P to a vector w(A)= (w1(A)�w2(A))� of nonnegative wages. For any data point ω,
let A(ω) denote the unique performance category that contains ω, and let w(A(ω)) be
the wage vector associated with A(ω). Time evolves as follows.

8In general, this is not an easy task because perturbations of cutoff z-values (which differ from the per-
turbation considered in Section 3.3) affect wages endogenously through the Lagrange multipliers of the
incentive constraints.

9See the appendices of Bloom and Reenen (2006) for survey questions regarding the fineness of the per-
formance grids, e.g., “[e]ach employee is given a red light (not performing), an amber light (doing well and
meeting targets), a green light (consistently meeting targets, very high performer) and a blue light (high per-
former capable of promotion of up to two levels),” versus “reward is based on an individual’s commitment
to the company measured by seniority.”
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Figure 1. Plot of the optimal rating scale against μ: entropy cost, u(w) = √
w, Z ∼U[−1/2�1/2],

c = 1, K = 100.

Stage 1. The principal commits to 〈P�w(·)〉.

Stage 2. Agent i privately chooses ai ∈ {0�1}, i = 1�2.

Stage 3. Nature draws ω from � according to Pa.

Stage 4. The monitoring technology outputs A(ω).

Stage 5. The principal pays wi(A(ω)) to agent i = 1�2.

Consider the problem of inducing both agents to exert high effort. Write 1 for (1�1)�,
and define a vector-valued random variable Z = (Z1�Z2)

� as

Zi(ω)= 1 − pai=0�a−i=1(ω)

p1(ω)
∀ω ∈�� i = 1�2�

Define the z-value of any set A ∈ � of positive measure as (z1(A)� z2(A))�, where

zi(A) = E[Zi |A; a = 1] ∀i = 1�2�

A contract is incentive compatible for agent i if∑
A∈P

P1(A)ui
(
wi(A)

)
zi(A) ≥ ci� (ICi)

and it satisfies agent i’s limited liability constraint if

wi(A) ≥ 0 ∀A ∈ P� (LLi)
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An optimal contract minimizes the total implementation cost given the high effort pro-
file, subject to both agents’ incentive compatibility constraints and limited liability con-
straints:

min
〈P�w(·)〉

∑
A∈P

Pa(A)

2∑
i=1

wi(A)+μ ·H(P�1) subject to (ICi) and (LLi), i = 1�2�

4.2 Analysis

The next definition generalizes Z-convexity.

Definition 3. A set A ∈ � is Z-convex if{
ω ∈ � : Z(ω) = (1 − s) · Z

(
ω′)+ s · Z

(
ω′′) for some s ∈ (0�1)

}⊂A

holds for any ω′�ω′′ ∈ A such that Z(ω′) 
= Z(ω′′).

The next two assumptions impose regularities on the principal’s problem analo-
gously to Assumptions 2 and 3.

Assumption 5. The random variable Z is distributed atomelessly on a connect set Z(�)

in R
2 given a = 1.

Assumption 6. The set Z(�) is compact in R
2 and has dim Z(�)= 2.

The next theorems extend Theorems 1 and 2 to encompass multiple agents.

Theorem 3. Assume Assumptions 1, 5, and 6. Then any optimal monitoring technology
P∗ comprises Z-convex cells that constitute convex polygons in R

2.

Theorem 4. An optimal incentive contract that induces high effort from both agents ex-
ists under Assumptions 1, 4, 5, and 6.

Proof sketch. The proof strategy developed in Section 3.3 is useful for handling
vector-valued z-values and wages. As before, we fix any ε > 0, and take any subsets
A′

ε and A′′
ε of two distinct performance categories Aj and Ak, respectively, such that

P1(A
′
ε) = P1(A

′′
ε) = ε and z(A′

ε) := z′ 
= z(A′′
ε) := z′′ (Lemma 5 in Appendix A.2.1 proves

the existence of sets that satisfy weaker properties). After perturbing the monitoring
technology as in Section 3.3, the principal’s Lagrangian becomes (again ignore the (LL)
constraints)

L(ε)=
∑
n

πn

[∑
i

wi�n(ε)− λi(ε)ui
(
wi�n(ε)

)
zi�n(ε)− ci

]
�

where πn denotes the probability of An (equivalently, An(ε)) given a = 1, wi�n(ε) denotes
agent i’s optimal wage at An(ε), and λi(ε) denotes the Lagrange multiplier associated
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Figure 2. Bi-partitional contracts: team and tournament.

with the (ICi) constraint. Assuming differentiability, we obtain

L′(0) = −
N∑
n=1

πn · u�
n

(
λ1(0) 0

0 λ2(0)

)
d

dε
zn(ε)

∣∣∣∣
ε=0

= (uk − uj)
�(̂z′′ − ẑ′)�

where

un := (
u1
(
wi�n(0)

)
�u2

(
wi�n(0)

))�
for n = 1� � � � �N

and

ẑ :=
(
λ1(0) 0

0 λ2(0)

)
z for z = z′�z′′�

Now, since L′(0) ≥ 0 by optimality, the assignment of the Lagrange multiplier-weighted
z-values to performance categories must be “positive assortative,” where the direction of
sorting is given by the vector of agents’ utilities. The Z-convexity of optimal performance
categories then follows from the same reason as in Section 3.3.

Implications. Solving the optimal convex polygons is computationally hard. How-
ever, since the boundaries of convex polygons consist of straight line segments in Z(�),
the following observations are immediate under Assumption 5.

• Any bi-partitional contract takes the form of either a team or a tournament, and
it is fully captured by the intercept and slope of the straight line as depicted in
Figure 2.

• Contracts that evaluate and reward agents on an individual basis are fully deter-
mined by the individual performance cutoffs as depicted in Figure 3.

4.3 Application: Individual evaluation versus group evaluation

This section examines the difference between individual and group performance eval-
uations from the angle of monitoring cost. To obtain the sharpest insights, we assume
that agents are technologically independent.
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Figure 3. An individual incentive contract.

Assumption 7. There exist probability spaces {(�i��i�Pi�ai)}i�ai as in Section 2 such that
(����Pa) = (�1 ×�2��1 ⊗�2�P1�a1 × P2�a2) for any a ∈ {0�1}2.

In the language of contract theory, Assumption 7 rules out any technology linkage
(i.e., ωi depends on a−i) or common productivity shock (i.e., ω1, ω2 are correlated given
a) between agents.

The next definition is standard.

Definition 4. (i) A partition P of � is an individual monitoring technology if for any
A ∈ P , there exist A1 ∈ �1 and A2 ∈ �2 such that A = A1 × A2; otherwise P is a
group monitoring technology.

(ii) Let P be any individual monitoring technology. Then a mapping w : P → R
2+ is

an individual wage scheme if wi(Ai × A′
−i;P) = wi(Ai × A′′

−i;P) for any i = 1�2
and any Ai ×A′

−i�Ai ×A′′
−i ∈ P ; otherwise w : P →R

2+ is a group wage scheme.

(iii) A contract 〈P�w : P →R
2+〉 is an individual incentive contract if P is an individual

monitoring technology and w : P → R
2+ is an individual wage scheme; otherwise

it is a group incentive contract.

By definition, a group incentive contract either conducts group performance eval-
uations or pairs individual performance evaluations with group incentive pays. Under
Assumption 7, the second option is suboptimal by the sufficient statistics principle or
Hölmstrom (1982), thus reducing the comparison between individual and group incen-
tive contracts to that of individual and group performance evaluations.

Define I as the ratio between the minimal cost of implementing bi-partitional in-
centive contracts and that of implementing individual incentive contracts (the latter, by
definition, have at least four performance categories). Note that I < 1 is a definitive in-
dicator that group evaluation is optimal whereas individual evaluation is not. The next
corollary is immediate.

Corollary 2. Under Assumptions 1, 4(a), 5, 6, and 7, I < 1 when μ is large.
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Figure 4. Plot of I against μ: entropy cost, ui(w) = √
w, Zi ∼ U[−1/2�1/2], and ci = 1 for i = 1�2.

Beyond the case considered in Corollary 2, we can compute I numerically based on
the prior discussion about how to parameterize bi-partitional and individual incentive
contracts. Figure 4 plots the solutions obtained in a special case.

Our result formalizes the theses of Alchian and Demsetz (1972) and Lazear and
Rosen (1981), namely either team or tournament should be the dominant incentive sys-
tem when individual performance evaluation is too costly to conduct. It enriches the
insights of Hölmstrom (1982), Green and Stokey (1983), and Mookherjee (1984), which
attribute the use of group incentive contracts to the technological dependence between
agents while abstracting away from the issue of data processing and analysis. Recently,
these views are reconciled by Bloom and Reenen (2006), who find—just as our theory
predicts—that companies make different choices between individual and group perfor-
mance evaluations despite being technologically similar, and that group performance
evaluation is most prevalent when the capacity to sift out individual-level information
is limited by, e.g., the lack of IT access.10 In the future, it will be interesting to nail down
the role of IT in Bloom and Reenen (2006), and to replicate that study for recent advance-
ments in data technologies.

5. Extension: Multiple actions

In this section, the agent’s action space A is a finite set, and taking an action a ∈ A incurs
a cost c(a) to the agent and generates a probability space (����Pa) as in Section 2. The

10See the survey questions in Bloom and Reenen (2006) regarding the choices between individual and
group evaluations, e.g., “employees are rewarded based on their individual contributions to the company”
and “compensation is based on shift/plant-level outcomes.” The former is regarded as an advanced but
expensive managerial practice and is more prevalent among companies with better IT access, other things
being equal.
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principal wishes to induce the most costly action a∗, defined as the unique solution to
maxa∈A c(a). For any deviation from a∗ to a ∈ D := A − {a∗}, define a random variable
Za : � →R as

Za(ω) = 1 − pa(ω)

pa∗(ω)
∀ω ∈��

For any a ∈ D and set A ∈ � of positive measure, define

za(A) = E
[
Za | A;a∗]�

A contract is incentive compatible if for any a ∈ D,∑
A∈P

Pa∗(A)u
(
w(A)

)
za(A) ≥ c

(
a∗)− c(a)� (ICa)

An optimal incentive contract 〈P∗�w∗(·)〉 that induces a∗ solves

min
〈P�w(·)〉

∑
A∈P

Pa∗(A)w(A)+μ ·H(P� a∗) subject to (ICa) ∀a ∈ D and (LL)�

Write Z for (Za)
�
a∈D . For any |D|-vector λ = (λa)

�
a∈D in R

|D|
+ , define a random variable

Zλ : � →R as

Zλ(ω) = λ�Z(ω) ∀ω ∈ ��

The next definition generalizes Z-convexity.

Definition 5. A set A ∈ � is Zλ-convex if{
ω :Zλ(ω) = (1 − s) ·Zλ

(
ω′)+ s ·Zλ

(
ω′′) for some s ∈ (0�1)

}⊂ A

holds for any ω′�ω′′ ∈ A such that Zλ(ω
′) 
= Zλ(ω

′′).

The next theorems extend Theorems 1 and 2 to encompass multiple actions.

Theorem 5. Assume Assumption 1 and Assumption 3 for any a ∈ D. Then for any opti-
mal incentive contract 〈P∗�w∗(·)〉 that induces a∗, there exists λ∗ ∈R

|D|
+ with maxa∈D λ∗

a >

0 such that all cells of P∗ are Zλ∗ -convex and can be labeled as A1� � � � �AN , whereby
0 = w∗(A1) < · · · <w∗(AN). Assume, in addition, Assumption 2 for any a ∈ D. Then there
exists −∞ ≤ ẑ0 < · · · < ẑN <+∞ such that An = {ω : Zλ∗(ω) ∈ [̂zn−1� ẑn)} for n= 1� � � � �N .

Theorem 6. Assume Assumptions 1 and 4, as well as Assumptions 2 and 3 for any a ∈ D.
Then an optimal incentive contract that induces a∗ exists.

In the presence of multiple actions, each performance data point is associated with
finitely many z-values, each corresponding to a deviation from a∗ that the agent can po-
tentially commit. By establishing that the assignment of Lagrange multiplier-weighted
z-values to wage categories is positive assortative, Theorem 5 connects the focus of data
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processing and analysis to the agent’s endogenous tendencies to commit deviations. In-
tuitively, when λ∗

a is large and, hence, the agent is tempted to commit deviation a, the
principal should focus on the processing and analysis of Za in order to detect deviation
a, and the final performance rating should depend significantly on the assessment of
Za. The next section gives an application of this result.

5.1 Application: Multiple tasks

A single agent can exert either high effort or low effort ai ∈ {0�1} in each of the two tasks
i = 1�2, and each ai independently generates a probability space (�i��i�Pi�ai) as in Sec-
tion 2. The goal of a risk-neutral principal is to induce high effort in both tasks.

Write a = a1a2, ω = ω1ω2, A = {11�01�10�00}, a∗ = 11, and D = {01�10�00}. For any
i = 1�2 and ωi ∈�i, define

Zi(ωi) = 1 − pi�ai=0(ωi)

pi�ai=1(ωi)
�

where pi�ai is the probability density function induced by Pi�ai . For any ω ∈ �1 ×�2 and
λ = (λ01�λ10�λ00)

� ∈R
3+, define

Zλ(ω)= (λ01 + λ00) ·Z1(ω1)+ (λ10 + λ00) ·Z2(ω2)− λ00 ·Z1(ω1)Z2(ω2)�

The next corollary is immediate from Theorem 5.

Corollary 3. Assume Assumption 1 and Assumption 3 for any a ∈ D. Then for any
optimal incentive contract 〈P∗�w∗(·)〉 that induces high effort in both tasks, there exists
λ∗ ∈ R

3+ with λ∗
01 + λ∗

00 and λ∗
10 + λ∗

00 > 0 such that all cells of P∗ are Zλ∗ -convex and
can be labeled as A1� � � � �AN , whereby 0 = w∗(A1) < · · · < w∗(AN). Assume, in addi-
tion, Assumption 2 for any a ∈ D. Then there exists −∞ ≤ ẑ0 < · · · < ẑN < +∞ such that
An = {ω : Zλ∗(ω) ∈ [̂zn−1� ẑn)} for n = 1� � � � �N .

In their seminal paper, Hölmstrom and Milgrom (1991) show that when the agent
faces multiple tasks, overincentivizing tasks that generate precise performance data may
prevent the completion of tasks that generate noisy performance data. That analysis
abstracts away from monitoring costs and focuses on the power of linear compensation
schemes.

Corollary 3 delivers a different message: if the principal’s main problem is to allocate
limited resources across the assessments of multiple task performances, then the opti-
mal resource allocation should reflect the agent’s endogenous tendency to shirk each
task. The usefulness of this result is illustrated by the next example.

Example 3. A cashier faces two tasks: to scan items and to project warmth to cus-
tomers. A piece of performance data consists of the scanner data recorded by the point
of sale (POS) system, as well as the feedback gathered from customers. By Corollary 3,
the ratio

R= λ∗
01 + λ∗

00
λ∗

10 + λ∗
00
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captures how the principal should allocate limited resources across the assessments of
the skillfulness in scanning items and warmth. Intuitively, a small R arises when the
cashier is reluctant to project warmth to customers, in which case resources should be
concentrated on the assessment of warmth, and the final performance rating should
depend significantly on such assessment.

We examine how the optimal resource allocation depends on the precision of raw
performance data. We make the following assumptions as in Hölmstrom and Milgrom
(1991).

• First, ωi = ai + ξi for i = 1�2, where ξis are independent normal random variables
with mean zero and variances σ2

i s.

• Second, the cashier’s utility of consumption has a constant absolute risk aversion
(CARA), i.e., u(w) = 1 − exp(−γw).

Unlike Hölmstrom and Milgrom (1991), we do not confine ourselves to linear wage
schemes.

In the case where the monitoring cost is an increasing function of the rating scale,
we compute R for different values of σ2

1 , holding σ2
2 = 1 and |P| = 2 fixed. Our findings

are reported in Figure 5. Assuming that our parameter choices are reasonable, we arrive
at the following conclusion: as skillfulness becomes easier to measure—thanks to the
availability of high quality scanner data—the cashier becomes more afraid to shirk the
scanning task and less so about projecting coldness to customers; to correct the agent’s
incentive, resources should be shifted toward the processing and analysis of customer
feedback and away from that of scanner data. In the future, one can test this prediction
by running field experiments such as that of Bloom et al. (2013). For example, one can
randomize the quality of scanner data among otherwise similar stores and examine its
effect on the resource allocation between scanner data and customer feedback. ♦

6. Conclusion

We conclude by posing a few open questions. First, our work is broadly related to the
burgeoning literature on information design (see, e.g., Bergemann and Morris 2019 for
a survey), and we hope it inspires new research questions such as how to conduct costly
yet flexible monitoring in long-term employment relationships. Second, our theory may
guide investigations into empirical issues such as how advancements in big data tech-
nologies have affected the design and implementation of monitoring technologies, and
whether they can partially explain the heterogeneity in the internal organizations of oth-
erwise similar firms. We hope someone, maybe us, will carry out these research agendas
in the future.

Appendix A: Omitted proofs

A.1 Proofs for Section 3

In this appendix, we identify any N-partitional contract 〈P�w(·)〉 with its corresponding
tuple 〈An�πn� zn�wn〉Nn=1, where An is a generic cell of P , πn = P1(An), zn = z(An), and
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Figure 5. Plot of R against σ2
1 : H(P� a) = f (|P|), |P| = 2; u(w) = 1 − exp(−0�5w); c(00) = 0,

c(01) = 0�3, c(10) = 0�2 and c(11) = 0�5; ξ1 and ξ2 are normally distributed with mean zero and
σ2

2 = 1.

wn = w(An). In addition, we assume without loss of generality (w.l.o.g.) that z1 ≤ · · · ≤
zN .

A.1.1 Useful lemmas

Proof of Lemma 1. The wage-minimization problem for any given monitoring tech-
nology as in Lemma 1 is

min
〈w̃n〉

∑
n

πnw̃n − λ

[∑
n

πnu(w̃n)zn − c

]
−
∑
n

ηnw̃n�

where λ and ηn denote the Lagrange multipliers associated with the (IC) constraint and
the (LL) constraint at w̃n, respectively. Differentiating the objective function with respect
to w̃n and setting the result equal to 0, we obtain λznu

′(wn) = 1 −ηn/πn, and so u′(wn) =
1/(λzn) if and only if wn > 0.

Proof of Lemma 2. Fix any optimal incentive contract that induces high effort from
the agent, and let 〈An�πn� zn�wn〉Nn=1 be its corresponding tuple. By Assumption 1(b),
if wj = wk for some j 
= k, then merging Aj and Ak has no effect on the incentive cost
but strictly reduces the monitoring cost, which contradicts the optimality of the original
contract. Then from the assumption that z1 ≤ · · · ≤ zN , it follows that 0 ≤ w1 < · · · <wN

and, by Lemma 1, z1 < · · · < zN . This last observation, coupled with
∑

n πnzn = 0, implies
z1 < 0 and hence w1 = 0, because otherwise replacing w1 with 0 reduces the expected
wage and relaxes the (IC) constraint while keeping the (LL) constraint satisfied. Finally,
combining wn > 0 for n ≥ 2 and Lemma 1 yields zn > 0 for n ≥ 2.



Theoretical Economics 15 (2020) Optimal incentive contract 1157

Lemma 3. For any A ∈ � such that P1(A) > 0 and any ε ∈ (0�P1(A)], there exists Aε ⊂ A

such that P1(Aε) = ε and z(Aε) = z(A).

Proof. Let A be as above. Since P1 admits a density, it follows that for any t ∈ (0�P1(A)],
there exists Bt ⊂ A such that P1(Bt) = t, and Z(ω′) ≤Z(ω) for any ω ∈ Bt and ω′ ∈A\Bt .
Likewise, there exists Ct ⊂ A such that P1(Ct) = t, and Z(ω′) ≥ Z(ω) for any ω ∈ Ct and
ω′ ∈A \Ct . For t = 0, define B0 = C0 =∅.

Let ε be as above, and notice two things about the set Bt ∪ Cε−t , where t ∈ [0� ε].
First, P1(Bt ∪Cε−t ) = ε by construction. Second, z(Bt ∪Cε−t ) is continuous in t, because
P1 admits a density. The second observation, coupled with z(Bt) ≥ z(A) and z(Cε−t ) ≤
z(A) for any t ∈ (0� ε), implies the existence of t ∈ [0� ε] such that z(Bt ∪ Cε−t ) = z(A).
Thus, let Aε = Bt ∪Cε−t , and we are done.

Proof of Theorem 1. Take any optimal incentive contract that induces high effort
from the agent, and let 〈An�πn� zn�wn〉Nn=1 be its corresponding tuple. Suppose, to the
contrary, that some Aj is not Z-convex. By Definition 1, there exist A′�A′′ ⊂ Aj and
Ã ⊂ Ak for some k 
= j, such that (i) P1(A

′
ε)�P1(A

′′
ε)�P1(Ãε) > 0, and (ii) z′ 
= z′′ and

z̃ = (1 − s)z′ + sz′′ for some s ∈ (0�1), where z′ := z(A′), z′′ := z(A′′), and z̃ := z(Ã). Then
by Lemma 3, for any ε ∈ (0�min{P1(A

′)�P1(A
′′)�P1(Ã)}), there exist A′

ε ⊂ A′, A′′
ε ⊂ A′′,

and Ãε ⊂ Ã such that (i) P1(A
′
ε) = P1(A

′′
ε) = P1(Ãε) = ε, and (ii) z(A′

ε) = z′, z(A′′
ε) = z′′,

and z(Ãε) = z̃.
Consider two perturbations to the monitoring technology: (a) move A′

ε from Aj

to Ak and Ãε from Ak to Aj ; (b) move Ãε from Ak to Aj and A′′
ε from Ak to Ak.

By construction, neither perturbation affects the probability distribution of the out-
put signal given high effort and hence the monitoring cost. Below we demonstrate
that one of them strictly reduces the incentive cost compared to the original (opti-
mal) contract, thus reaching a contradiction. The conclusion is that all Ans are Z-
convex.

Perturbation (a). Let 〈An(ε)�πn� zn(ε)〉Nn=1 be the corresponding tuple to the mon-

itoring technology after perturbation (a), where Aj(ε) = (Aj ∪ Ãε) \ A′
ε, Ak(ε) =

(Ak ∪ A′
ε) \ Ãε, and An(ε) = An for any n 
= j�k. Straightforward algebra shows

that ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

zj(ε) = zj + s
(
z′′ − z′)
πj

ε

zk(ε) = zk − s
(
z′′ − z′)
πk

ε

zn(ε) = zn ∀n 
= j�k�

(2)

Take any wage profile 〈wn(ε)〉Nn=1 with w1(ε) = 0 such that the (IC) constraint remains
binding after this perturbation, i.e.,

N∑
n=1

πnu
(
wn(ε)

)
zn(ε) =

N∑
n=1

πnu(wn)zn = c� (3)



1158 Li and Yang Theoretical Economics 15 (2020)

A careful inspection of (2) and (3) reveals the existence of M > 0 independent of ε

such that when ε is small, we can construct a wage profile as above that satisfies, in
addition, |wn(ε) − wn| < Mε for any n = 1� · · · �N and, hence, the (LL) constraint by
Lemma 2.11

With a slight abuse of notation, write ẇn(ε) = (wn(ε) − wn)/ε and żn(ε) = (zn(ε) −
zn)/ε, and note that ẇ1(ε) = 0.12 When ε is small, expanding (3) using the twice-
differentiability of u(·) and |wn(ε)−wn| ∼ O(ε) yields

N∑
n=1

πnu(wn)zn =
N∑
n=1

πn
(
u(wn)+ u′(wn) · ẇn(ε) · ε+O

(
ε2))(zn + żn(ε) · ε)�

Multiplying both sides of this equation by the Lagrange multiplier λ > 0 associated with
the (IC) constraint prior to the perturbation and rearranging, we obtain

N∑
n=1

πn · u′(wn) · λzn · ẇn(ε) = −λ

N∑
n=1

u(wn) ·πnżn(ε)+O(ε)�

Simplifying using ẇ1(ε) = 0, u′(wn) = 1/(λzn) for n ≥ 2 (Lemmas 1 and 2), and (2)
yields

N∑
n=1

πnẇn(ε) = s
[
u(wk)− u(wj)

](
λz′′ − λz′)+O(ε)� (4)

Perturbation (b). Repeating the above argument for perturbation (b) yields

N∑
n=1

πnẇn(ε) = −λ(1 − s)
[
u(wk)− u(wj)

](
z′′ − z′)+O(ε)� (5)

Then from u(wj) 
= u(wk) (Lemma 2), z′ 
= z′′ (by assumption), and λ > 0, it fol-
lows that the right-hand side of either (4) or (5) is strictly negative when ε is small.
Thus, for either perturbation (a) or (b), we can construct a wage profile that incurs a
lower incentive cost than the original optimal contract, and this leads to a contradic-
tion.

Proof of Theorem 2. By Theorem 1, any optimal monitoring technology with at
most N ∈ {2� � � � �K} cells is fully characterized by N − 1 cut points ẑ1� � � � � ẑN−1, where
minZ(�) ≤ ẑ1 ≤ · · · ≤ ẑN−1 ≤ maxZ(�). Fix any N ∈ {2� � � � �K}, and write ẑ for a generic
vector (̂z1� � � � � ẑN−1)

� of cut points. Equip the set of cut point vectors

ZN = {̂
z : minZ(�)≤ ẑ1 ≤ · · · ≤ ẑN−1 ≤ maxZ(�)

}
11To be precise, recall that u(wn), zn > 0 for n ≥ 2 by Lemma 2, so zn(ε) > 0 for n ≥ 2 when ε is small.

For such ε and 〈zn(ε)〉Nn=2, solving
∑N

n=2 πnu(xn)zn(ε) = ∑N
n=2 πnu(wn)zn yields the desired wage profile

〈wn(ε)〉Nn=2 as above when ε is small.
12We do not assume that wn(ε) and zn(ε) are differentiable with respect to ε here or in the remainder of

this paper.
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with the sup norm ‖·‖,13 and note that ZN is compact by Assumption 3. Let W (̂z) denote
the minimal incentive cost for inducing high effort when the monitoring technology is
given by ẑ ∈ ZN . Note that W (̂z) is finite if and only if minZ(�) < ẑn < maxZ(�) for some
n, since the last condition implies that z(A) 
≡ 0 across the performance category As
generated by ẑ, and so W (̂z) can be obtained by solving the wage minimization problem
considered in Lemma 1.

We proceed in two steps.
Step 1. Show that W (̂z) is continuous in ẑ for any given N ∈ {2� � � � �K}. Fix any ẑ ∈ZN

such that W (̂z) is finite, and consider w.l.o.g. the case where ẑns are all distinct. For a
generic performance category An = {ω : Z(ω) ∈ [̂zn−1� ẑn)} generated by ẑ, we use πn and
zn to denote its probability given a = 1 and z-value, respectively, and use wn to denote
the optimal wage at An. Then, for a sufficiently small δ > 0, we take any δ-perturbation
ẑδ to ẑ such that ‖̂zδ − ẑ‖ < δ. For a generic performance category Aδ

n = {ω : Z(ω) ∈
[̂zδn−1� ẑ

δ
n)} generated by ẑδ, we use πδ

n to denote its probability given a = 1, and zδn to
denote its z-value.

Now, fix any ε > 0, and consider a wage profile that pays, at Aδ
n, wn + ε if zδn > 0

and wn otherwise. This wage profile satisfies the (LL) constraint by construction. Under
Assumptions 2 and 3, it satisfies the (IC) constraint when δ is sufficiently small, because

lim
δ→0

∑
n

πδ
nu(wn + 1zδn>0 · ε)zδn =

∑
n

πnu(wn + 1zn>0 · ε)zn > c�

where the inequality uses the fact that zn > 0 for some n, obtained from combining∑
n πnzn = 0 and zn 
≡ 0. In addition, since

lim
δ→0

∑
n

πδ
n(wn + 1zδn>0 · ε)=

∑
n

πn(wn + 1zn>0 · ε)�

we obtain, when δ is sufficiently small,

W
(̂
zδ
)−W (̂z) ≤

∑
n

πδ
n(wn + 1zδn>0 · ε)−

∑
n

πnwn < ε�

where the first inequality uses the fact that the above constructed wage profile is not
necessarily optimal when the monitoring technology is given by ẑδ. Finally, interchang-
ing the roles between ẑ and ẑδ in the above argument yields W (̂z) − W (̂zδ) < ε, thus
proving that |W (̂zδ)−W (̂z)| < ε when δ is sufficiently small.

Step 2. Under Assumption 4(a), the existence and finiteness of

WN := min
ẑ∈ZN

W (̂z)

for any N ∈ {2� � � � �K} follow from Step 1 and the compactness of ZN . Let mN denote
the minimal rating scale attained by the solution(s) to the above minimization problem.
Solving

min
2≤N≤K

WN +μ · f (mN)

yields the solution(s) to the principal’s problem.

13We use ‖ · ‖ to denote the sup norm in the remainder of this paper.
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Under Assumption 4(b), we can write the principal’s problem as

min
ẑ∈ZK

W (̂z)+μ · h(π (̂z)
)
�

where π (̂z) compiles the probabilities of the output signal generated by a= 1 and ẑ, and
it is clearly continuous in ẑ. The existence of solution(s) to this problem then follows
from Step 1 and the compactness of ZK .

A.2 Proofs for Section 4

In this appendix, we identify any N-partitional contract 〈P�w(·)〉 with its correspond-
ing tuple 〈An�πn�zn�wn〉Nn=1, where An is a generic cell of P , πn = P1(An), zn =
(z1�n� z2�n)

� = (z1(An)� z2(An))
�, and wn = (w1�n�w2�n)

� = (w1(An)�w2(An))
�.

A.2.1 Useful lemmas The next lemma generalizes Lemmas 1 and 2 to encompass mul-
tiple agents.

Lemma 4. Assume Assumption 1. Then for any optimal incentive contract, (i) there exist
λ1�λ2 > 0 such that u′

i(wi�n) = 1/(λizi�n) if and only if wi�n > 0; (ii) wj 
= wk for any j 
= k.

Proof. The wage minimization problem for any given monitoring technology is

min
〈w̃i�n〉

∑
i�n

πnw̃i�n −
∑
i

λi

[∑
n

πnui(w̃i�n)zi�n − ci

]
−
∑
i�n

ηi�nw̃i�n�

where λi and ηi�n denote the Lagrange multipliers associated with the (ICi) constraint
and the (LLi) constraint at w̃i�n, respectively. Differentiating the objective function with
respect to w̃i�n yields the first-order condition in part (i). The proof of part (ii) closely
parallels that of Lemma 2 and is therefore omitted here.

The next lemma plays an analogous role to that of Lemma 3.

Lemma 5. Fix any δ > 0 and any A ∈ � such that P1(A) > 0, and assume Assump-
tion 6. Then for any ε ∈ (0�P1(A)], there exists Aε ⊂ A such that P1(Aε) = ε and
‖z(Aε)− z(A)‖ < δ.

Proof. With a slight abuse of notation, let P be any finite partition of � such that every
B ∈ P is measurable, and ‖Z(ω) − Z(ω′)‖ < δ for any ω�ω′ ∈ B. Such P exists because
P1 admits a density, and Z(�) is a compact set in R

2 (Assumption 6). Define P+ = {B ∈
P : P1(A ∩ B) > 0} and P0 = {B ∈ P : P1(A ∩ B) = 0}, which are both finite. Note that∑

B∈P0 P1(A∩B) = 0,
∑

B∈P+ P1(A∩B) = P1(A), and z(A) =∑
B∈P+ P1(A∩B)z(A∩B).

Since P1 admits a density, it follows that for any B ∈ P+, there exists CB ⊂ A∩B such
that P1(CB) = P1(A ∩ B)ε/P1(A). Also, ‖z(CB) − z(A ∩ B)‖ < δ by construction. Thus
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Aε = ∪B∈P+CB is the desired set, because P1(Aε) =∑
B∈P+ P1(A∩B)ε/P1(A) = ε, and

∥∥z(Aε)− z(A)
∥∥=

∥∥∥∥ ∑
B∈P+

P1(A∩B)

P1(A)

(
z(CB)− z(A∩B)

)∥∥∥∥
≤
∑

B∈P+

P1(A∩B)

P1(A)

∥∥z(CB)− z(A∩B)
∥∥< δ�

Proof of Theorem 3. Take any optimal incentive contract that induces high effort
from both agents, and let 〈An�πn�zn�wn〉Nn=1 be its corresponding tuple. Suppose, to
the contrary, that some Aj is not Z-convex. By definition, there exist A′�A′′ ⊂ Aj and
Ã ∈ Ak for some k 
= j, such that (i) P1(A

′′
ε)�P1(A

′′
ε)�P1(Ãε) > 0, and (ii) z′ 
= z′′ and

z̃ = (1 − s)z′ + sz′′ for some s ∈ (0�1), where z′ := z(A′), z′′ := z(A′′), and z̃ := z(Ã).
Then by Lemma 5, for any δ > 0 and any ε ∈ (0�min{P1(A

′)�P1(A
′′)�P1(Ã}), there ex-

ist A′
ε ⊂ A′, A′′

ε ⊂ A′′, and Ãε ⊂ Ã such that (i) P1(A
′′
ε) = P1(A

′′
ε) = P1(Ãε) = ε, and (ii)

‖z(A′
ε)− z′‖, ‖z(A′′

ε)− z′′‖, ‖z(Ãε)− z̃‖< δ.
Consider two perturbations to the monitoring technology: (a) move A′

ε from Ajto
Ak and Ãε from Ak to Aj ; (b) move Ãε from Ak to Aj and A′′

ε from Aj to Ak. By As-
sumption 1, neither perturbation affects the probability distribution of the output signal
given the high effort profile and hence the monitoring cost. Below we demonstrate that
one of them strictly reduces the incentive cost compared to the original optimal con-
tract.

Perturbation (a). Let 〈An(ε)�πn�zn(ε)〉Nn=1 denote the corresponding tuple to the

monitoring technology after perturbation (a), where Aj(ε) = (Aj ∪ Ãε) \ A′
ε, Ak(ε) =

(Ak ∪A′
ε) \ Ãε, and An(ε) =An for any n 
= j�k. Straightforward algebra shows that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zj(ε) = zj + z(Ãε)− z
(
A′

ε

)
πj

ε

zk(ε) = zk − z(Ãε)− z
(
A′

ε

)
πk

ε

zn(ε) = zn ∀n 
= j�k�

(6)

where∥∥z(Ãε)− z
(
A′

ε

)− (
z̃ − z′)∥∥≤ ∥∥z(Ãε)− z̃

∥∥+ ∥∥z
(
A′

ε

)− z′∥∥< min
{

2δ�4 max
ω∈�

∥∥Z(ω)
∥∥}� (7)

Define Bi = {n : wi�n = 0} for i = 1�2. Let 〈wn(ε)〉Nn=1 be any wage profile such that for
both i = 1�2: (i) wi�n(ε)= wi�n = 0 if n ∈ Bi; (ii) agent i’s incentive compatibility constraint
remains binding after perturbation (a), i.e.,

N∑
n=1

πnui
(
wi�n(ε)

)
zi�n(ε) =

N∑
n=1

πnui(wi�n)zi�n = ci� (8)

A careful inspection of (6), (7), and (8) reveals the existence of M > 0 independent of ε
and δ such that when ε is sufficiently small, we can construct a wage profile as above
that satisfies, in addition, ‖wn(ε)− wn‖<Mε for all n and, hence, both (LLi) constraints.
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With a slight abuse of notation, write ẇn(ε) = (wn(ε) − wn)/ε and żn(ε) = (zn(ε) −
zn)/ε, and note that ẇi�n(ε) = 0 if n ∈ Bi for both i = 1�2. Multiplying both sides of (8) by
the Lagrange multiplier λi > 0 associated with the (ICi) constraint prior to the perturba-
tion and expanding, we obtain, when ε is small,

N∑
n=1

πn · u′
i(wi�n) · λizi�n · ẇi�n(ε) = −λi

N∑
n=1

ui(wi�n) ·πnżi�n(ε)+O(ε)�

Simplifying using ẇi�n(ε) = 0 if n ∈ Bi, u′(wi�n) = 1/(λizi�n) if n /∈ Bi (Lemma 4), and (6)
yields ∑

i�n

πnẇi�n = (uk − uj)
��

(
z(Ãε)− z

(
A′

ε

))+O(ε)�

where un = (u1(w1�n)�u2(w2�n))
� for n = k� j, and � = (

λ1 0
0 λ2

). Further simplifying using
(7) and z̃ = (1 − s)z′ + sz′′ yields, when δ is small,∑

i�n

πnẇi�n = (uk − uj)
��

(
z̃ − z′)+O(ε)+ (uk − uj)

��
(
z(Ãε)− z

(
A′

ε

)− (
z̃ − z′))

= s(uk − uj)
��

(
z′′ − z′)+O(ε)+O(δ)� (9)

Perturbation (b). Repeating the above argument for perturbation (b) yields∑
i�n

πnẇi�n = −(1 − s)(uk − uj)
��

(
z′′ − z′)+O(ε)+O(δ)� (10)

Consider two cases.

Case 1: (uk − uj)
��(z′′ − z′) 
= 0. In this case, the right-hand sides of (9) and (10) have

the opposite signs when ε and δ are sufficiently small. The remainder of the proof
closely parallels that of Theorem 1 and is therefore omitted here.

Case 2: (uk − uj)
��(z′′ − z′)= 0. In this case, note that (uk − uj)

�� 
= 0� by Lemma 4,
where 0 denotes the 2-vector of zeros. Then from Assumption 5 (the distribu-
tion of Z is atomless), there exist B′ ⊂ A′, B′′ ⊂ A′′ and B̃ ⊂ Ã such that P1(B

′),
P1(B

′′), P1(B̃) > 0, z(B̃) = (1 − s′)z(B′) + s′z(B′′) for some s′ ∈ (0�1), and (uk −
uj)

��(z(B′′)− z(B′)) 
= 0. Replacing A′, A′′, and Ã with B′, B′′, and B̃, respectively,
in the above argument gives the desired result.

Proof of Theorem 4. By Theorem 3, any optimal monitoring technology with at most
N ∈ {2� � � � �K} cells is fully characterized by (i) a finite number qN of vertices z1� � � � �zqN
in Z(�), and (ii) a qN ×qN adjacency matrix M, whose lmth entry equals 1 if zl and zm are
connected by a line segment and equals 0 otherwise. By definition, M is symmetric and
is therefore determined by its upper triangle entries, which can be either 0 or 1. Thus M
belongs to MN := {0�1}qN×(qN−1)/2, which is a finite set.

Fix any N ∈ {2� � � � �K}, and write �z for (z1� � � � �zqN )
�. For any adjacency matrix M ∈

MN , define

ZN(M) = {�z : (�z�M) partitions Z(�) into at most N convex polygons
}
�
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equip ZN(M) with the sup norm ‖ · ‖, and note that ZN(M) is compact by Assump-
tion 6. Let W (�z�M) denote the minimal incentive cost for inducing high effort from both
agents when the monitoring technology is given by (�z�M). Note that W (�z�M) is finite if
and only if for both i = 1�2, zi(A) 
≡ 0 across the performance category As generated by
(�z�M).

We proceed in two steps.
Step 1. Show that W (�z�M) is continuous in its first argument for any given N ∈

{2� � � � �K} and M ∈ MN . Fix any �z ∈ ZN(M) such that W (�z�M) is finite, and consider
w.l.o.g. the case where zls are all distinct. For a generic performance category An

generated by (�z�M), we use πn and zi�n to denote its probability given a = 1 and zi-
value, respectively, and use wi�n to denote the optimal wage for agent i at An. Then,
for a sufficiently small δ > 0, we take any δ-perturbation �zδ ∈ ZN(M) to �z such that
‖�zδ−�z‖< δ. Label the performance categories generated by (�zδ�M) as Aδ

ns, such that for
each n = 1�2� � � �, zl is a vertex of cl(Z(An)) if and only if zδl is a vertex of cl(Z(Aδ

n)). For
a generic performance category Aδ

n, we use πδ
n and zδi�n to denote its probability given

a = 1 and zi-value, respectively.
Now, fix any ε > 0, and consider the wage profile that pays, at Aδ

n, wi�n +ε/2 to agent i
if zδi�n > 0 and wi�n otherwise. This wage profile satisfies the (LLi) constraint by construc-
tion. Under Assumptions 5 and 6, the (ICi) constraint is satisfied when δ is sufficiently
small, because

lim
δ→0

∑
n

πδ
i�nu(wi�n + 1zδi�n>0 · ε/2)zδn =

∑
n

πnu(wi�n + 1zi�n>0 · ε/2)zi�n > ci�

where the inequality uses the fact that zi�n > 0 for some n, obtained from combining∑
n πnzi�n = 0 and zi�n 
≡ 0. In addition, since

lim
δ→0

∑
i�n

πδ
n(wi�n + 1zδi�n>0 · ε/2) =

∑
i�n

πn(wi�n + 1zi�n>0 · ε/2)�

we obtain, when δ is sufficiently small,

W
(�zδ�M

)−W (�z�M) ≤
∑
i�n

πδ
n(wi�n + 1zδi�n>0 · ε/2)−

∑
i�n

πnwi�n < ε�

where the first inequality uses the fact that the above constructed wage profile is not
necessarily optimal when the monitoring technology is given by (�zδ�M). Finally, in-
terchanging the roles between �zδ and �z in the above argument yields W (�zδ�M) −
W (�zδ�M) < ε, thus proving that |W (�zδ�M)−W (�zδ�M)| < ε when δ is sufficiently small.

Step 2. Under Assumption 4(a), the existence and finiteness of

WN := min
M∈MN��z∈ZN(M)

W (�z�M)

for any N ∈ {2� � � � �K} follows from Step 1, the compactness of ZN(M), and the finiteness
of MN . Under Assumption 4(b), we can write the principal’s problem as

min
M∈MK��z∈ZK(M)

W (�z�M)+μ · h(π(�z�M)
)
�
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where π(�z�M) compiles the probabilities of the output signal generated by a = 1 and
(�z�M), and it is clearly continuous in �z. The remainder of the proof is identical to that of
Theorem 2 and is therefore omitted here.

A.3 Proofs for Section 5

In this appendix, we write z(A) = (za(A))�a∈D for any set A ∈ � of positive mea-
sure, and identify any N-partitional contract 〈P�w(·)〉 with its corresponding tuple
〈An�πn�zn�wn〉Nn=1, where An is a generic cell of P , πn = Pa∗(An), zn = z(An), and
wn =w(An). In addition, we assume w.l.o.g. that w1 ≤ · · · ≤wN .

A.3.1 Useful lemma The next lemma generalizes Lemmas 1 and 2 to encompass mul-
tiple tasks.

Lemma 6. Assume Assumption 1. Then for any optimal incentive contract that induces
a∗, there exists λ ∈ R

|D|
+ with ‖λ‖> 0 such that (i) u′(wn)= 1/(λ�zn) if and only if wn > 0,

and (ii) λ�z1 < 0 < λ�z2 < · · · . In addition, 0 =w1 <w2 < · · · .

Proof. The wage-minimization problem for any given monitoring technology is

min
〈w̃n〉

∑
n

πnw̃n −
∑
n

πnu(w̃n) ·λ�zn −
∑
n

ηnw̃n�

where λ denotes the profile of the Lagrange multipliers associated with (ICa) con-
straints, and ηn denotes the Lagrange multiplier associated with the (LL) constraint at
wn. Note that ‖λ‖ > 0, because otherwise all (ICa) constraints are slack, so replacing
every wn > 0 with wn − ε for some small but positive ε reduces the incentive cost while
keeping all (ICa) constraints and the (LL) constraint satisfied. Given this, we can then
differentiate the objective function with respect to wn and obtain the first-order condi-
tion in part (i). The remainder of the proof is identical to that of Lemma 2 and is therefore
omitted here.

Proof of Theorem 5. Take any optimal incentive contract that induces a∗. Let
〈An�πn�zn�wn〉Nn=1 be its corresponding tuple, and let λ be the profile of the Lagrange
multipliers associated with (ICa) constraints. Suppose, to the contrary, that some Aj is
not Zλ-convex. Then there exist A′�A′′ ⊂ Aj and Ã ⊂ Ak for some k 
= j, such that (i)
Pa∗(A′

ε)�Pa∗(A′′
ε)�Pa∗(Ãε) > 0, and (ii) λ�z′ 
= λ�z′′ and λ�z̃ = (1 − s)λ�z′ + sλ�z′′ for

some s ∈ (0�1), where z′ := z(A′), z′′ := z(A′′), and z̃ := z(Ã). Then by Lemma 3, for any
ε ∈ (0�min{Pa∗(A′)�Pa∗(A′′)�Pa∗(Ã)}), there exist A′

ε ⊂ A′, A′′
ε ⊂ A′′, and Ãε ⊂ Ã such

that (i) Pa∗(A′
ε) = Pa∗(A′′

ε) = Pa∗(Ãε) = ε, and (ii) λ�z(A′
ε) = λ�z′, λ�z(A′′

ε) = λ�z′, and
λ�z(Ãε)= λ�z̃.

Consider two perturbations to the monitoring technology: (a) move A′
ε from Aj to

Ak and Ãε from Ak to Aj , and (b) move Ãε from Ak to Aj and A′′
ε from Aj to Ak.

By Assumption 1, neither perturbation affects the probability distribution of the output
signal given a = a∗ and hence the monitoring cost. Below we demonstrate that one of
them strictly reduces the incentive cost compared to the original (optimal) contract.
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Perturbation (a). Let 〈An(ε)�πn�zn(ε)〉Nn=1 be the corresponding tuple to the moni-

toring technology after perturbation (a), where Aj(ε) = (Aj ∪ Ãε) \ A′
ε, Ak(ε) = (Ak ∪

A′
ε) \ Ãε, and An(ε) = An for any n 
= j�k. Straightforward algebra shows that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zj(ε) = zj + z(Ãε)− z
(
A′

ε

)
πj

ε

zk(ε) = zk − z(Ãε)− z
(
A′

ε

)
πk

ε

zn(ε) = zn ∀n 
= j�k�

(11)

where ∥∥z(Ãε)− z
(
A′

ε

)∥∥≤ ∥∥z(Ãε)
∥∥+ ∥∥z

(
A′

ε

)∥∥≤ 2 max
ω∈�

∥∥Z(ω)
∥∥� (12)

A careful inspection of (11) and (12) reveals the existence of M > 0 such that when ε is
sufficiently small, we can construct a wage profile 〈wn(ε)〉Nn=1 with w1(ε) = 0 that satisfies
(i) |wn(ε)−wn| <Mε for all n and, hence, the (LL) constraint, as well as (ii)

0 ≤
N∑
n=1

πnu
(
wn(ε)

)
za�n(ε)−

N∑
n=1

πnu(wn)za�n ∼ O(ε) ∀a ∈ D (13)

and, hence, all (ICa) constraints.14

Write ẇn = (wn(ε)−wn)/ε and żn(ε) = (zn(ε)− zn)/ε. Expanding (13) and multiply-
ing the result by λ, we obtain, when ε is small,

N∑
n=1

πn · u′(wn) ·λ�zn · ẇn(ε)= −
N∑
n=1

u(wn) ·πn ·λ�żn(ε)+O(ε)�

Simplifying using ẇ1(ε) = 0, u′(wn) = 1/(λ�zn) for n ≥ 2 (Lemma 6), and (11) yields

N∑
n=1

πnẇn(ε) = s
[
u(wk)− u(wj)

](
λ�z′′ −λ�z′)+O(ε)� (14)

Perturbation (b). Repeating the above argument for perturbation (b) yields

N∑
n=1

πnẇn(ε) = −(1 − s)
[
u(wk)− u(wj)

](
λ�z′′ −λ�z′)+O(ε)� (15)

Now, since u(wk) 
= u(wj) by Lemma 6 and λ�z′′ 
= λ�z′ by assumption, the right-hand
sides of (14) and (15) must have the opposite signs when ε is small. The remainder of
the proof is identical to that of Theorem 1 and is therefore omitted here.

14To see why, define κa =∑N
n=2 πnu(wn)za�n and Sa = {〈xn〉Nn=2 ∈ R

N−1 :∑N
n=2 xnza�n ≥ κa} for each a ∈ D,

and note that 〈πnu(wn)〉Nn=2 ∈ ∩a∈DSa. If, to the contrary, we cannot construct a wage profile as above,

then there must exist a′� a′′ ∈ D such that ∩a=a′�a′′ {〈xn〉Nn=2 ∈ R
N−1 : ∑N

n=2 xnza�n ≥ κa} = {〈xn〉Nn=2 ∈ R
N−1 :∑N

n=2 xnza′�n = κa′ } and, hence, za′′�n = −za′�n for n = 2� � � � �N and κa′′ = −κa′ . In the meantime, we have
κa ≥ c(a∗)− c(a) > 0 for all a ∈ D, and so cannot have κa′′ = −κa′ , a contradiction.
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Proof of Theorem 6. Define

� = {
λ : λ ∈ R

|D|
+ and ‖λ‖|D| = 1

}
�

where ‖ · ‖|D| denotes the |D|-dimensional Euclidean norm. By Theorem 5, any optimal

monitoring technology with at most N ∈ {2� � � � �K} performance categories is fully cap-

tured by some λ ∈ � and N − 1 cut points ẑ1� � � � � ẑN−1 such that minω∈�λ�Z(ω) ≤ ẑ1 ≤
· · · ≤ ẑN−1 ≤ maxω∈�λ�Z(ω). Fix any N ∈ {2� � � � �K}, and write ẑ for (̂z1� � � � � ẑN−1). For

each λ ∈�, define

ZN(λ) =
{̂

z : min
ω∈�

λ�Z(ω) ≤ ẑ1 ≤ · · · ≤ ẑN−1 ≤ max
ω∈�

λ�Z(ω)
}
�

equip ZN(λ) with the sup norm ‖ · ‖, and note that ZN(λ) is compact by Assumption 3.

For any given pair (λ�z), write the minimal incentive cost for inducing a∗ as W (λ�z),

and note that W (λ�z) is finite if and only if two conditions hold: λa > 0 for all a ∈ D,

and minω∈�λ�Z(ω) < ẑn < maxω∈�λ�Z(ω) for some n. To see the necessity of the first

condition, note that if it fails, then there exists a ∈ D such that za(A) ≡ 0 across all the

performance category As generated by (λ�z). But then the (ICa) constraint is violated,

and hence W (λ�z) is infinite, a contradiction.

We proceed in two steps.

Step 1. Show that W (λ� ẑ) is continuous in (λ� ẑ) for any given N ∈ {2� � � � �K}. Fix

any λ ∈ � and any ẑ ∈ ZN(λ) such that W (λ� ẑ) is finite. W.l.o.g. consider the case where

ẑns are all distinct. For a generic performance category An = {ω : λ�Z(ω) ∈ [̂zn−1� ẑn)}
generated by (λ� ẑ), we use πn to denote its probability given a = a∗, ẑ to denote its (|D|-
vector) z-values, and wn to denote the optimal wage at An. Then, for a sufficiently small

δ > 0, we take any δ-perturbations λδ ∈� and ẑδ ∈ ZN(λδ) to λ and ẑ, respectively, such

that ‖λδ − λ‖|D|, ‖̂zδ − ẑ‖ < δ. For a generic performance category Aδ
n = {ω : λδ�Z(ω) ∈

[̂zδn−1� ẑ
δ
n)}) generated by (λδ� ẑδ), we use πδ

n to denote its probability given a = a∗, and

zδn to denote its (|D|-vector) z-values.

Now, fix any ε > 0, and consider the wage profile that pays, at Aδ
n, wn + ε if zδa�n > 0

for all a ∈ D and wn otherwise. This wage profile satisfies the (LL) constraint by con-

struction. Under Assumptions 2 and 3, it satisfies every (ICa) constraint when δ is small,

because

lim
δ→0

∑
n

u

(
wn +

∏
a′∈D

1zδ
a′�n>0 · ε

)
πδ
nz

δ
a�n

=
∑
n

u

(
wn +

∏
a′∈D

1za′�n>0 · ε
)
πnza�n

>
∑
n

u(wn)πnza�n�
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where the last line uses the existence of n such that
∏

a′∈D 1za′�n>0 = 1, obtained from
combining

∑
n πnza′�n = 0 and za′�n being strictly increasing in n for all a′ ∈ D. To com-

plete the proof, note that

lim
δ→0

∑
n

πδ
n

(
wn +

∏
a∈D

1zδa�n>0 · ε
)

=
∑
n

πn

(
wn +

∏
a∈D

1zδa�n>0 · ε
)
�

and so

W
(
λδ� ẑδ

)−W (λ� ẑ) ≤
∑
n

πδ
n

(
wn +

∏
a∈D

1zδa�n>0 · ε
)

−
∑
n

πnwn < ε

holds when δ is sufficiently small. Finally, interchanging the roles between (λ�z)
and (λδ�zδ) in the above argument yields W (λ� ẑ) − W (λδ� ẑδ) < ε, thus proving that
|W (λδ� ẑδ)−W (λ� ẑ)| < ε when δ is sufficiently small.

Step 2. Under Assumption 4(a), the existence and finiteness of

WN := min
λ∈��̂z∈ZN(λ)

W (λ� ẑ)

for any N ∈ {2� � � � �K} follows from Step 1 and the compactness of � and ZN(λ). Under
Assumption 4(b), we can write the principal’s problem as

min
λ∈��̂z∈ZK(λ)

W (λ� ẑ)+μ · h(π(λ� ẑ)
)
�

where π(λ� ẑ) compiles the probabilities of the output signal generated by (λ� ẑ), and it
is clearly continuous in its arguments. The remainder of the proof is the identical to that
of Theorem 2 and is therefore omitted here.

Appendix B: Other extensions

B.1 Individual rationality

In this appendix, let everything be as in the baseline model, except that the agent faces
an individual rationality constraint (rather than a limited liability constraint):∑

A∈P
P1(A)u

(
w(A)

)≥ c + u� (IR)

Under this alternative assumption, an optimal incentive contract that induces high ef-
fort from the agent (optimal incentive contract for short) minimizes the total implemen-
tation cost, subject to the agent’s (IC) and (IR) constraints.

Corollary 4. Under Assumption 1, any optimal monitoring technology comprises Z-
convex cells.

Proof. Take any optimal incentive contract with 〈An�πn� zn�wn〉Nn=1 be its correspond-
ing tuple. Assume w.l.o.g. that z1 ≤ · · · ≤ zN .
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Step 1. Show that z1 < · · · < zN and w1 < · · · <wN . The wage-minimization problem
given 〈An�πn� zn〉Nn=1 is

min
〈w̃n〉Nn=1

N∑
n=1

πnw̃n − λ

[
N∑
n=1

πnu(w̃n)zn − c

]
− γ

[
N∑
n=1

πnu(w̃n)− (c + u)

]
�

where λ and γ denote the Lagrange multipliers associated with the (IC) constraint and
the (IR) constraint, respectively. Standard arguments show that both λ and γ are strictly
positive. Given this, we can then differentiate the objective function with w̃n and obtain

u′(wn) = 1
λzn + γ

�

Thus if, to the contrary, zj = zk for some j 
= k, then we must have wj = wk. As a result,
the principal can strictly benefit from merging Aj and Ak (which reduces the monitor-
ing cost without affecting the incentive cost), which contradicts the optimality of the
current contract.

Step 2. Show Z-convexity. Suppose, to the contrary, that some Aj is not Z-
convex. Consider first perturbation (a) in the proof of Theorem 1. Take any wage profile
〈wn(ε)〉Nn=1 that makes both the (IC) and (IR) constraints binding after this perturbation,
i.e.,

N∑
n=1

πnu
(
wn(ε)

)
zn(ε) =

N∑
n=1

πnu(wn)zn (16)

and
N∑
n=1

πnu
(
wn(ε)

)=
N∑
n=1

πnu(wn)� (17)

A careful inspection of (2), (16), and (17) reveals the existence of M > 0 such that when ε

is sufficiently small, we can construct a wage profile as above that satisfies, in addition,
|wn(ε)−wn| <Mε for any n.15

Write ẇn(ε) = (wn(ε) − wn)/ε and żn(ε) = (zn(ε) − zn)/ε. Expanding λ (16) + γ (17)
yields, when ε is small,

N∑
n=1

πn · u′(wn) · (λzn + γ) · ẇn(ε) = −λ

N∑
n=1

u(wn) ·πnżn(ε)+O(ε)�

and simplifying using u′(wn) = 1/(λzn + γ) and (2) yields

N∑
n=1

πnẇn(ε)= s
[
u(wk)− u(wj)

](
λz′′ − λz′)� (18)

15To see why, define κ1 = ∑N
n=1 πnu(wn)zn, κ2 = ∑N

n=1 πnu(wn), S1 = {〈xn〉Nn=1 ∈ R
N : ∑N

n=1 xnzn ≥ κ1},

and S2 = {〈xn〉Nn=1 ∈ R
N : ∑N

n=1 xn ≥ κ2}, and note that 〈πnu(wn)〉Nn=1 ∈ S1 ∩ S2. Then from z1 < · · · < zN
(shown in Step 1), it follows that dimS1 ∩ S2 = N , which coupled with (2) gives the desired result.
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Next consider perturbation (b) in the proof of Theorem 1. Similar algebraic manip-
ulations as above show that

N∑
n=1

πnẇn(ε) = −(1 − s)
[
u(wk)− u(wj)

](
λz′′ − λz′)� (19)

Then from u(wj) 
= u(wk) and z′′ 
= z′, it follows that sgn (18) 
= sgn (19). The remainder
of the proof is the same as that of Theorem 1 and is therefore omitted here.

B.2 Random monitoring technology

In this appendix, a monitoring technology q : � → �K maps each performance data
point to a lottery on K performance ratings, and a wage scheme w : {1� · · · �K} → R+
specifies a wage payment for each performance rating. Time evolves as follows:

Stage 1. The principal commits to 〈q�w〉.

Stage 2. The agent privately chooses a ∈ {0�1}.

Stage 3. Nature draws ω ∈� according to Pa.

Stage 4. The monitoring technology outputs n ∈ {1� � � � �K} with probability qn(ω).

Stage 5. The principal pays wn to the agent.

Under any given contract 〈q�w〉, the agent receives performance rating n with prob-
ability

πn =
∫

qn(ω)dP1(ω)

if he exerts high effort. Define N = {n : πn > 0} as the set of performance ratings that is
realized with a strictly positive probability given high effort. For each n ∈ N , define

zn =
∫

Z(ω)qn(ω)dP1(ω)/πn

as the z-value of performance rating n. For each n /∈ N , define wn = 0. Then 〈q�w〉 is
incentive compatible if ∑

n∈N
πnu(wn)zn ≥ c� (IC)

in which case the monitoring cost it incurs is proportional to the mutual information of
the agent’s performance data and output signal given high effort:

H(q�1) =
∑
n∈N

∫
qn(ω) log

qn(ω)∫
qn(ω)dP1(ω)

dP1(ω)�
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An optimal incentive contract 〈q∗�w∗〉 that induces high effort from the agent (optimal
incentive contract for short) solves

min〈q�w〉

K∑
n=1

πnwn +μ ·H(q�1) subject to (IC) and (LL)�

The next theorem gives characterizations of optimal incentive contracts.

Theorem 7. For any optimal incentive contract 〈q∗�w∗〉 that induces high effort from the
agent, we have (i) q∗ : Z(�) → �K , (ii) min{w∗

n : n ∈ N ∗} = 0, and (iii) for any j�k ∈ N ∗,
w∗
j 
= w∗

k, and q∗
k(z)/q

∗
j (z) is strictly increasing in z if and only if w∗

j < w∗
k.

Proof. Since the incentive cost is linear in q(ω) whereas the monitoring cost is convex
in q(ω), it follows that q∗ : Z(�) → �K and that w∗

j 
= w∗
k for any j�k ∈ N ∗. Write N ∗ =

{1� � � � �N}, and assume w.l.o.g. that w∗
1 < · · · < w∗

N . Then w∗
1 = 0 for the same reason as

in the proof of Lemma 2. Differentiating the principal’s objective function with respect
to q(z) and setting the result equal to 0 yields

−w∗
n + λu

(
w∗
n

)
z = μ

[
log

q∗
n(z)

q∗
1(z)

− log
π∗
n

π∗
1

]
∀n= 2� � � � �N� (20)

where λ denotes the Lagrange multiplier associated with the (IC) constraint. Part (iii) of
this theorem then follows from λ > 0 and, hence, the left-hand side of (20) being strictly
increasing in z.

The next theorem proves the existence of an optimal incentive contract.

Theorem 8. Assume Assumptions 2 and 3. Then an optimal incentive contract that in-
duces high effort from the agent exists.

Proof. For any given q, the wage-minimization problem admits solution(s) if and only
if zj 
= zk for some j�k ∈ N , in which case we denote the minimal incentive cost by W (q).
If zns are constant across all n ∈ N , then set W (q) = +∞. The principal’s problem is then

min
q

W (q)+μ ·H(q�1)� (21)

By (20) and Assumptions 2 and 3, any solution to (21) must be continuously differen-
tiable on Z(�) (taking the usual care of derivatives at end points). Write C1(Z(�)��K) as
the set of mappings from Z

(
�
)

to �K that is continuously differentiable in its argument,
and equip C1(Z(�)��K) with the sup norm ‖ · ‖, i.e., ‖q′ − q‖ = supz�n |q′

n(z)− qn(z)| for
any q�q′ ∈ C1(Z(�)��K). Rewrite the principal’s problem as

min
q∈C1(Z(�)��K)

W (q)+μ ·H(q�1)� (22)

and note that the objective function is continuous in q.
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To prove that (22) admits solution(s), note that

inf
q∈C1(Z(�)��K)

W (q)+μ ·H(q�1)

is a finite number, hereafter denoted by x. Let {qk} be any sequence in C1(Z(�)��K)

such that limk→∞ W (qk) + μ · H(qk�1) = x. Clearly, qk is uniformly bounded across
ks, and the family {qk} is equicontinuous by Assumption 3 and the definition of
C1(Z(�)��K). Thus, a subsequence of {qk} converges uniformly to some q∞ by Helly’s
selection theorem, and W (q∞)+μ ·H(q∞�1)= x by the continuity of the objective func-
tion.
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