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Common learning and cooperation in repeated games

Takuo Sugaya
Graduate School of Business, Stanford University

Yuichi Yamamoto
Institute of Economic Research, Hitotsubashi University

We study repeated games in which players learn the unknown state of the world
by observing a sequence of noisy private signals. We find that for generic signal
distributions, the folk theorem obtains using ex post equilibria. In our equilibria,
players commonly learn the state, that is, the state becomes asymptotic common
knowledge.
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1. Introduction

In many economic activities, agents face uncertainty about the underlying payoff struc-
ture, and experimentation is useful to resolve such a problem. Suppose that two firms
enter a new market. The firms are not familiar with the structure of the market and,
in particular, do not know how profitable the market is (e.g., the intercept of the de-
mand function). The firms interact repeatedly; every period, each firm chooses a price
and then privately observes its sales level, which is stochastic due to an independent
and identically distributed (i.i.d.) demand shock. Actions (prices) are perfectly observ-
able. In this situation, the firms can eventually learn the true profitability of the mar-
ket through sales; they may conclude that the market is profitable if they observe high
sales frequently. However, since sales are private information, a firm faces uncertainty
about whether the rival firm also believes that the market is profitable. Such higher-
order beliefs have a significant impact on the firms’ incentives. For example, suppose
that choosing a high price is a “risky” action, in the sense that it yields a high profit only
if the market is profitable enough and the rival firm also chooses a high price. Then
even when a firm believes that the market is profitable, if it believes that the rival firm is
pessimistic about the market profitability (and, hence, will choose a low price likely), it
may prefer choosing a low price rather than a high price. Note also that each firm can
manipulate the rival firm’s belief (both the first- and higher-order beliefs) via a signal-
ing effect : Even if firm A believes that the market is not very profitable, it may still be
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tempted to choose a high price today, because by doing so, firm B updates the posterior
upward and starts to choose a high price in later periods, which is beneficial for firm A.
Can the firms sustain collusion in such a situation? That is, is there an equilibrium in
which they can coordinate on the high price if the market is profitable and on the low
price if not? More generally, does a long-run relationship facilitate cooperation when
players privately learn the unknown economic state?

To address this question, we develop a general model of repeated games with indi-
vidual learning. In our model, Nature moves first and chooses the state of the world ω

(e.g., the market profitability in the duopoly market). The state is fixed throughout the
game and is not observable to players. Then players play an infinitely repeated game.
Each period, players observe private signals, whose distribution depends on the state.
A player’s stage-game payoff depends both on actions and on her private signal, so the
state (indirectly) influences expected payoffs through the signal distribution.

In general, when players have private information about the economic state, they
can effectively coordinate their play if they commonly learn the state so that the state
becomes almost common knowledge in the long run. Cripps et al. (2008) show that
common learning indeed occurs if players learn the state from i.i.d. private signals. Un-
fortunately, their result does not apply to our setup, because (i) the signal distribution
is influenced by actions, which are endogenously determined in equilibrium, and (ii) a
player learns the state not only from her private signals, but from the opponents’ ac-
tions. Accordingly, in our model, it is not obvious if common learning occurs. Another
complication in our model is that while actions are perfectly observable, a player needs
to rely on her private signals so as to detect the opponents’ deviations, because, in gen-
eral, the opponents choose different actions depending on their signals in equilibrium.
In this sense, our model is a variant of repeated games with private monitoring, and it is
well known that finding an equilibrium in such a model is a hard problem (see Sugaya
2019, for example).

Despite such complications, we find that there indeed exist equilibria in which play-
ers commonly learn the state and obtain Pareto-efficient payoffs state by state. More
generally, we find that the folk theorem holds so that any feasible and individually ra-
tional payoff (not only efficient outcomes) can be achievable as an equilibrium payoff.
Our solution concept is an ex post equilibrium, in that our equilibrium strategy is a se-
quential equilibrium regardless of the state; so it is an equilibrium even if the initial prior
changes.1 For a fixed discount factor δ, the set of ex post equilibrium payoffs is smaller
than the set of sequential equilibrium payoffs, because providing ex post incentives is
more costly in general. However, it turns out that in our model, this cost becomes al-
most negligible as the discount factor approaches 1 and, accordingly, we can obtain the
folk theorem using ex post equilibria.

1Some recent papers use ex post equilibria in different settings of repeated games, such as perfect mon-
itoring and fixed states (Hörner and Lovo 2009 and Hörner et al. 2011), public monitoring and fixed states
(Fudenberg and Yamamoto 2010, 2011), private monitoring and fixed states (Yamamoto 2014), and chang-
ing states with an i.i.d. distribution (Miller 2012). Note also that there are many papers on ex post equilibria
in undiscounted repeated games; see Koren (1992) and Shalev (1994), for example.
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To establish the folk theorem, we need two conditions. The first condition is the
statewise full-rank condition, which requires that there be an action profile such that
different states generate different signal distributions, even if someone unilaterally de-
viates. This condition ensures that each player can learn the true state from private
signals, and that no one can stop the opponents’ state learning. The second condition is
the correlated learning condition. Roughly, it requires that signals be correlated across
players, so that a player’s signal is informative about the opponents’ signal. These con-
ditions are not only sufficient, but “almost necessary” for our result. Indeed, if the state-
wise full-rank condition does not hold, one can obtain a payoff significantly higher than
the minimax payoff by preventing the opponents’ state learning. Also, if the correlated
learning condition does not hold, we can construct an example in which the folk the-
orem cannot be obtained by ex post equilibria. See the working paper version (Sugaya
and Yamamoto 2019) for more details.

Our proof of the folk theorem is constructive, and it builds on the idea of block strate-
gies in Hörner and Olszewski (2006) and Wiseman (2012). For the sake of exposition,
suppose for now that there are only two players and two states, ω1 and ω2. In our equi-
librium, the infinite horizon is divided into a sequence of blocks. At the beginning of the
block, each player i chooses a state-specific plan about whether to reward or punish the
opponent: Her plan is either reward the opponent at both states, punish the opponent
at both states, reward at state ω1 but punish at ω2, or reward at state ω2 but punish at
ω1. As explained shortly, the use of state-specific punishments is crucial so as to provide
appropriate incentives in our environment.

In the first T periods of the block, player 1 collects private signals and makes an
inference ω(1) about the state ω. Similarly, in the next T periods, player 2 makes an
inference ω(2) about the state. We take T sufficiently large, so that each player i’s in-
ference ω(i) matches the true state almost surely. Then in the next period, each player
reports her inference ω(i) using actions, and checks whether they indeed agree on the
state. Then depending on the reported information and on the plan chosen at the be-
ginning of the block, the players adjust the continuation play in the rest of the block.
For example, if both players report ω1 and plan to reward each other at ω1, they will
choose an action profile that yields high payoffs to both players at ω1. At the end of the
block (again, via actions), players report their private signals during the learning phase
in earlier periods; this information is used to make a minor modification to the contin-
uation play (the punishment plan for the next block), which helps to provide the right
incentives. Once the block is over, a new block starts and players behave as above again.

It is important that players make the inference ω(i) based only on the signals during
the current block; it does not depend on the signals in the previous blocks. This property
ensures that even if someone makes a wrong inference (i.e., ω(i) does not match the true
state), it does not have a long-run impact on payoffs. Indeed, in the next block, players
can learn the true state with high probability and adjust the continuation play. This
implies that even if a player deviates during the learning phase, its impact on a long-run
payoff is not very large, which helps to deter such a deviation.
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We find that this “learning, communication, and coordination” mechanism works
effectively and approximates the Pareto-efficient frontier. Also, common learning oc-
curs in this equilibrium. A key is that players communicate truthfully in our equilib-
rium, which makes (a piece of) their private information public and facilitates common
learning. So in our equilibrium, a signaling effect helps to achieve common learning.

A critical step in our proof is to show that it is indeed possible to provide appropriate
incentives for such truthful communication.2 To provide such truthful incentives, signal
correlation plays a crucial role. Recall that player i makes an inference ω(i) using private
signals pooled over the T -period interval. Since signals are correlated across players, the
opponent’s signal frequency f−i during this interval is informative about player i’s signal
frequency fi and, hence, is informative about player i’s inference ω(i). This suggests that
the opponent can statistically distinguish player i’s misreport. A similar idea appears in
the mechanism design literature (e.g., Crémer and McLean 1988), but a new complica-
tion is that the unknown state ω influences the signal correlation, which makes signals
ambiguous. For example, there may be player i’s signal that is highly correlated with the
opponent’s signal z−i conditional on the state ω1, but is correlated with a different signal
z̃−i conditional on the state ω2.

To deter player i’s misreport using such ambiguous signals, state-contingent pun-
ishments are helpful.3 A rough idea is that the opponent interprets her signal frequency
f−i taking a state ω as given and decides whether to punish player i for that state ω.
For example, suppose that the opponent’s signal frequency f−i is typical of the state ω1,
i.e., it is close to the true signal distribution at ω1. Then conditional on the state ω1, the
opponent believes that player i’s observation is also typical of the state ω1 and, hence,
i’s inference is ω(i) = ω1. By contrast, conditional on the state ω2, the opponent may
not believe that player i’s inference is ω(i) = ω1, since signals are interpreted differently
at different states. Suppose now that player i reports ω(i) = ω1. Should the opponent
punish player i? The point is that this report is consistent with the opponent’s signals
conditional on the state ω1, but not conditional on ω2. This suggests that the opponent
should punish player i only at the state ω2, by playing a continuation strategy that yields
a low payoff to player i conditional on the state ω2 but a high payoff conditional on ω1.
That is, the opponent should choose the plan “reward player i at ω1 but punish at ω2”
more likely in the next block.

In the proof, we carefully construct such a state-contingent punishment mechanism
so that player i’s misreport is indeed deterred. In particular, we find that there is a pun-
ishment mechanism such that the following statements hold:

(i) If everyone reports truthfully, the probability of a punishment being triggered is
almost negligible.

2Allowing cheap-talk communication does not simplify our analysis due to the problem that we need to
find a mechanism under which players report truthfully in the cheap-talk communication stage, and that
is essentially the same as the problem we consider here.

3For this idea to work, it is crucial that players’ signals are correlated conditional on each state ω. In-
deed, if not and signals are independent at some state ω, they are uninformative about the opponent’s
observation conditional on that state and, hence, not useful to detect the opponent’s misreport.
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(ii) The truthful report is ex post incentive compatible, that is, regardless of the true
state ω and the true inference ω(i), reporting ω(i) truthfully is a best reply for
each player i.

The first property ensures that even though a punishment destroys the total welfare
(players choose inefficient actions once it is triggered), the equilibrium payoff can still
approximate the Pareto-efficient outcome.4 The second property implies that any mis-
report is not profitable, regardless of player i’s belief about the state ω. This in particular
implies that player i’s history in the previous blocks, which influences her belief about
ω, is irrelevant to her incentive in the current block; her incentive is solely determined
by her history within the current block. This allows us to use a recursive technique to
construct an equilibrium in the infinite-horizon game.

The design of the state-contingent punishment mechanism is a bit complicated, be-
cause player i’s belief about the opponent’s signal frequency f−i is also influenced by
the unknown state ω. For example, suppose that player i’s signal frequency fi during
the T -period interval is typical of the state ω1, so that her inference is ω(i) = ω1. With
such an observation fi, conditional on the state ω1, she believes that the opponent be-
lieves that player i’s inference is ω(i) = ω1 and, hence, the truthful report of ω(i) = ω1

is a best reply. However, conditional on the state ω2, she need not believe that the oppo-
nent believes ω(i) = ω1 in general. So to satisfy property (ii) above, we need to carefully
design a (state-contingent) punishment mechanism for the state ω2, that is, reporting
ω(i) = ω1 must be a best reply for player i at ω2 even though she does not expect the op-
ponent to believe ω(i) = ω1. More generally, we need to find a mechanism with which,
for each given observation fi, player i’s best reply does not depend on the state (the
truthful report of ω(i) must be a best reply at both states), even though her belief about
the opponent’s belief depends on the state. One way to solve this problem is to let the
opponent make player i indifferent over all reports, regardless of the observation f−i;
then the truthful report of ω(i) is always a best reply for player i. But it turns out that
such a mechanism does not satisfy the property (i) above and causes inefficiency, that is,
a punishment is triggered with positive probability and destroys the total welfare even
on the equilibrium path.5 To avoid such inefficiency while maintaining truthful incen-
tives, we consider a mechanism in which the opponent makes player i indifferent only
after some (but not all) observations f−i. It turns out that this idea “almost” solves our
problem, that is, it allows us to construct a mechanism in which the truthful report of
the summary inference ω(i) is an approximate best reply regardless of the past history,
while minimizing the welfare destruction. Of course, this is not an exact solution to our
problem, as we need the truthful report to be an exact best reply. To fix this problem, in
the last step of the proof, we modify the equilibrium strategy a bit: we let players reveal
their signal sequence during the learning phase (this is different from ω(i), which is just

4Fudenberg et al. (1994) show that this inefficiency can be avoided if continuation payoffs take the form
of “utility transfers.” Unfortunately this technique does not seem to apply to our setup, because players
condition their play on their private signals.

5This is similar to the fact that belief-free equilibria in Ely et al. (2005) cannot attain the Pareto-efficient
outcome when monitoring is imperfect.
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a summary statistics of the observed signals) at the end of each block, and use this in-
formation to provide an extra incentive to report the summary inference ω(i) truthfully.
See Section 4.5 for more details.

Fudenberg and Yamamoto (2010) also use the idea of state-contingent punishments,
but their proof is not constructive. In particular, both the state learning process and the
intertemporal incentives are implicitly described through the motion of continuation
payoffs. The interaction of these two forces complicates the motion of continuation
payoffs, which makes it difficult to see how players learn the state in equilibrium and
how they use this information to punish a deviator. In contrast, our proof is constructive,
and we explicitly describe how each player learns the state in each block and chooses a
state-contingent punishment plan. We hope that this helps people understand the role
of state-contingent punishment in a more transparent way.

Throughout this paper, we assume that actions are perfectly observable. But this as-
sumption is not crucial; in the working paper version (Sugaya and Yamamoto 2019),
we extend the analysis to the case in which actions are not observable. In this new
setup, players need to monitor the opponents’ actions only through noisy private sig-
nals, whose distribution is influenced by the unknown state ω. So it is a repeated game
with private monitoring and unknown monitoring structure. We find that the folk theo-
rem still holds when the identifiability conditions are strengthened. This result general-
izes various efficiency theorems for repeated games with private monitoring6 (in partic-
ular, the folk theorem of Sugaya (2019)) to the case in which the monitoring structure is
unknown.

To the best of our knowledge, this is the first paper to consider common learning
with strategic players.7  Cripps et al. (2008, 2013) consider the case in which players are
not strategic, i.e., players observe private signals about the state each period without
taking actions. They find that common learning occurs when signals are i.i.d., but it
does not occur, in general, for non-i.i.d. signals. Our work extends their analysis by
considering strategic players; now signal distributions are non-i.i.d., and endogenously
determined by players’ equilibrium play. It turns out that players’ strategic behavior has
a substantial impact on the joint learning outcome. We find that with strategic players,
the negative result is overturned and common learning occurs in general, thanks to the
signaling effect discussed above.

Our work belongs to the literature on learning in repeated games. Most of the exist-
ing work assumes that players observe public (or almost public) signals about the state,

6For example, the efficient outcome is approximately achieved in the prisoner’s dilemma when obser-
vations are nearly perfect (Sekiguchi 1997, Bhaskar and Obara 2002, Piccione 2002, Ely and Välimäki 2002,
Yamamoto 2007, 2009, Hörner and Olszewski 2006, Chen 2010, and Mailath and Olszewski 2011), nearly
public (Mailath and Morris 2002, 2006 and Hörner and Olszewski 2009), statistically independent (Mat-
sushima 2004, Yamamoto 2012), and even fully noisy and correlated (Kandori 2011, Fong et al. 2011, and
Sugaya 2012, 2019). Kandori (2002) and Mailath and Samuelson (2006) provide excellent surveys. See also
Lehrer (1990) for the case of no discounting and Fudenberg and Levine (1991) for the study of approximate
equilibria with discounting.

7A recent paper by Basu et al. (2018) considers a similar question, but their analysis is quite different
from ours because (i) they impose a special assumption on the payoff function (there are only two actions,
and one of them is a dominant action) and (ii) they assume conditionally independent signals.
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and focuses on equilibria in which players ignore private information (Wiseman 2005,
2012 and Fudenberg and Yamamoto 2010, 2011). An exception is Yamamoto (2014), who
considers the case in which players learn from private signals only. The difference from
this paper is that he focuses on belief-free equilibria, which are a subset of sequential
equilibria. An advantage of belief-free equilibrium is its tractability; it does not require
players’ coordination, and a player’s higher-order belief is payoff-irrelevant. But unfor-
tunately, its payoff set is bounded away from the Pareto-efficient frontier, in general,
due to the lack of coordination. To avoid such inefficiency, we consider sequential equi-
libria in which players coordinate their play through communication. As noted earlier,
a player’s best reply in such communication is very sensitive to her higher-order belief
(her belief about the opponent’s signals), which makes our analysis quite different from
those in the literature.

2. Repeated games with individual learning

Given a finite set X , let �X be the set of probability distributions over X . Given a subset
W of Rn, let coW denote the convex hull of W .

We consider an N-player infinitely repeated game in which the set of players is de-
noted by I = {1� � � � �N}. At the beginning of the game, Nature chooses the state of the
world ω from a finite set �. Assume that players cannot observe the true state ω and
let μ ∈ �� denote their common prior over ω.8 Throughout the paper, we assume
that the game begins with symmetric information: Each player’s initial belief about ω is
equal to the prior μ. But it is straightforward to extend our analysis to the asymmetric-
information case as in Fudenberg and Yamamoto (2011).9

Each period, players move simultaneously and each player i ∈ I chooses an action
ai from a finite set Ai. The chosen action profile a ∈ A ≡ ×i∈IAi is publicly observable
and, in addition, each player i receives a private signal zi about the state ω from a finite
set Zi. The distribution of the signal profile z ∈ Z ≡ ×i∈IZi depends on the state of the
world ω and on the action profile a ∈ A, and is denoted by πω(·|a) ∈ �Z. Let πω

i (·|a)
denote the marginal distribution of player i’s signal zi given ω and a, that is, πω

i (zi|a) =∑
z−i∈Z−i

πω(z|a). Likewise, let πω
−i(·|a) be the marginal distribution of the opponents’

signals z−i. Player i’s payoff is uωi (a� zi), so her expected payoff given the state ω and the
action profile a is gωi (a) = ∑

zi∈Zi
πω
i (zi|a)uωi (a� zi).10 Let gω(a) = (gωi (a))i∈I be the pay-

off vector given ω and a. As usual, we write πω(α) and gωi (α) for the signal distribution

8Because our arguments deal only with ex post incentives, they extend to games without a common
prior. However, as Dekel et al. (2004) argue, the combination of equilibrium analysis and a noncommon
prior is hard to justify.

9Specifically, all the results in this paper extend to the case in which each player i has initial private
information θi about the true state ω, where the set 
i of player i’s possible private information is a partition
of �. Given the true state ω ∈�, player i observes θωi ∈ 
i, where θωi denotes θi ∈ 
i such that ω ∈ θi . In this
setup, private information θωi allows player i to narrow down the set of possible states; for example, player
i knows the state if 
i = {(ω1)� � � � � (ωo)}.

10If there are ω ∈ � and ω̃ �= ω such that uωi (a� zi) �= uω̃i (a� zi) for some ai ∈ Ai and z ∈ Z, then it might
be natural to assume that player i does not observe the realized value of ui as the game is played; otherwise
players might learn the true state from observing their realized payoffs. Since we consider ex post equilibria,
we do not need to impose such a restriction.
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and the expected payoff when players play a mixed action profile α ∈ ×i∈I�Ai. Similarly,
we write πω(ai�α−i) and gωi (ai�α−i) for the signal distribution and the expected payoff
when players −i play a mixed action α−i ∈ ×j �=i�Aj .

As emphasized in the Introduction, uncertainty about the payoff functions is com-
mon in applications. Examples that fit our model include the following.

• Oligopoly market with unknown demand function. Often times, firms do not have
precise information about the market structure, and such a situation is a special
example of our model. To see this, let I be the set of firms, let ai be firm i’s price,
and let zi be firm i’s sales level. The distribution πω(·|a) of sales levels depends on
the unknown state ω, which means that the firms do not know the true distribu-
tion of the sales level.

• Team production and private benefit. Consider agents working on a joint project
who do not know the profitability of the project; they may learn the true profitabil-
ity through their experience over time. To describe such a situation, let I be the set
of agents, let ai be agent i’s effort level, and let zi be agent i’s private profit from
the project. The distribution πω(·|a) of private profits depends on the unknown
state ω, so the agents learn the true distribution through their observations over
time.

In the infinitely repeated game, players have a common discount factor δ ∈ (0�1).
Let (aτ� zτi ) ∈ A×Zi be player i’s private observation in period τ and let ht

i = (aτ� zτi )
t
τ=1

be player i’s private history until period t ≥ 1. Let h0
i = ∅ and for each t ≥ 0, let Ht

i be
the set of all private histories ht

i . Let ht = (ht
i)i∈I denote a profile of t-period private

histories and let Ht be the set of all history profiles ht . A strategy for player i is defined
to be a mapping si : ⋃∞

t=0 H
t
i → �Ai. Let Si be the set of all strategies for player i and let

S = ×i∈ISi.
The feasible payoff set for a given state ω is defined as

V (ω) ≡ co
{
gω(a)|a ∈A

}
�

that is, V (ω) is the convex hull of possible stage-game payoff vectors at the state ω. Then
the feasible payoff set for the overall game is defined as

V ≡ ×ω∈�V (ω)�

Thus each feasible payoff vector v ∈ V specifies payoffs for each player and for each
state, i.e., v = ((vω1 � � � � � v

ω
N))ω∈�. Note that a given v ∈ V may be generated using dif-

ferent action distributions at different states ω. We show that there are equilibria that
approximate payoffs in V if the state is statistically identified by private signals so that
players learn it over time.

Player i’s minimax payoff for a given state ω is defined as

mω
i ≡ min

α−i
max
ai

gωi (ai�α−i)�
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Let αω(i) denote the (possibly mixed) minimax action profile against player i conditional
on ω. Let V ∗ be the set of feasible and individually rational payoffs, that is,

V ∗ ≡ {
v ∈ V |vωi ≥mω

i ∀i∀ω}
�

Here the individual rationality is imposed state by state; i.e., V ∗ is the set of feasible
payoffs such that each player obtains at least her minimax payoff for each state ω.11

Throughout the paper, we assume that the set V ∗ is full dimensional.

Condition 1 (Full dimension). We have dimV ∗ = |I| × |�|.

3. The folk theorem with individual learning

In this section, we present our main result, the folk theorem for games with individual
learning. In our equilibrium, common learning occurs, so that the state becomes ap-
proximate common knowledge even though players learn the state from private signals.

We use an ex post equilibrium as an equilibrium concept.

Definition 1. A strategy profile s is an ex post equilibrium if it is a sequential equilib-
rium in the infinitely repeated game in which ω is common knowledge for each ω.

In an ex post equilibrium, after every history ht , player i’s continuation play is a best
reply regardless of the true state ω. Hence, these equilibria are robust to a perturbation
of the initial prior, that is, an ex post equilibrium is a sequential equilibrium given any
initial prior.

11If there are only two players and our Condition 2 holds, the minimax payoff mω
i indeed character-

izes player i’s minimum equilibrium payoff in the limit as δ → 1. Precisely, we can show that for any
vi <

∑
ω∈� μ(ω)mω

i , there is δ ∈ (0�1) such that for any δ ∈ (δ�1), player i’s expected payoff (here we con-
sider the expected payoff given the initial prior μ) is at least vi for all Nash equilibria. For simplicity, suppose
that there are only two states, ω and ω̃. (It is not difficult to extend the argument to the case with more than
two states.) Fix an arbitrary Nash equilibrium σ . Let a∗ be as in Condition 2 and let σT

i be player i’s strategy
with the following form:

• Play a∗ for the first T periods and make an inference ω(i) as in Lemma 1.

• In each period t > T , choose ai ∈ arg maxgω(i)
i (ãi�α−i|ω(i)�ht−1

i
), where α−i|ω∗�ht−1

i
is the distribution of

the opponent’s actions conditional on the history ht−1
i and the true state ω∗.

From Lemma 1(i) and (ii), the probability that ω(i) coincides with the true state is at least 1 − 2 exp(−T
1
2 ),

regardless of the opponent’s play. Hence, if player i deviates to σT
i , her payoff is at least

(
1 − δT

)
g
i
+ δT

∑
ω∗∈�

μ
(
ω∗){(1 − 2 exp

(−T
1
2
))
mω∗

i + 2 exp
(−T

1
2
)
g
i

}
�

where g
i
= minω�a g

ω
i (a). Player i’s equilibrium payoff is at least this deviation payoff, which approximates∑

ω∈� μ(ω)mω
i when we take δ → 1 and then T → ∞. This proves the above claim. When there are more

than two players, player i’s minimum equilibrium payoff can be below
∑

ω∈� μ(ω)mω
i even in the limit as

δ→ 1. This is because the opponents may be able to use correlated actions to punish player i when private
signals are correlated.
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We provide a set of conditions under which the folk theorem is established using
ex post equilibria. Our first condition is the statewise full-rank condition of Yamamoto
(2014), which requires that there be an action profile such that each player i can learn
the true state ω from her private signal zi.

Condition 2 (Statewise full rank). There is an action profile a∗ ∈ A such that πω
i (·|aj�

a∗
−j) �= πω̃

i (·|aj�a∗
−j) for each i, j �= i, aj , ω, and ω̃ �=ω.

Intuitively, the statewise full rank implies that player i can statistically distinguish
ω from ω̃ through her private signal zi, even if someone else unilaterally deviates from
a∗.12 We fix this profile a∗ throughout the paper. Note that Condition 2 is satisfied for
generic signal structures if |Zi| ≥ 2 for each i.

Our next condition is about the correlation of players’ private signals. The following
notation is useful. Let πω(z−i|a�zi) denote the conditional probability of z−i given that
the true state is ω, players play an action profile a, and player i observes zi; i.e.,

πω(z−i|a�zi) = πω(z|a)
πω
i (zi|a)

�

Let πω(z−i|a�zi) = 0 if πω
i (zi|a) = 0. Then let Cω

i (a) be the matrix such that the rows
are indexed by the elements of Z−i, the columns are indexed by the elements of Zi, and
the (z−i� zi) component is πω(z−i|a�zi). Intuitively, the matrix Cω

i (a) maps player i’s
observations to her estimate (expectation) of the opponents’ observations conditional
on the true state being ω. To get the precise meaning, suppose that players played
an action profile a for T periods and player i observed a signal sequence (z1

i � � � � � z
T
i ).

Let fi ∈ �Zi denote the corresponding signal frequency, i.e., let fi = (fi[zi])zi∈Zi , where

fi[zi] = |{t≤T |zti=zi}|
T for each zi. Given this observation fi (and given the true state being

ω), the conditional expectation of the opponents’ signal frequency during these T peri-
ods is represented by Cω

i (a)fi. So the matrix Cω
i (a) converts player i’s signal frequency

fi to her estimate of the opponents’ signal frequencies, when the state ω is given.

Condition 3 (Correlated learning). We have Cω
i (a

∗)πω̃
i (a

∗) �= πω
−i(a

∗) for each i and for
each (ω� ω̃) with ω �= ω̃.

Roughly, this condition requires that signals are correlated across players,13 so that
if a player observes some “unusual” signal frequency, then she believes that the oppo-
nent’s observation is also unusual. To better understand, suppose that players played a∗

12 This condition is stronger than necessary. For example, our proof extends with no difficulty as long
as for each (i�ω� ω̃) with ω �= ω̃, there is an action profile a such that πω

i (·|a′
j� a−j) �= πω̃

i (·|a′
j � a−j) for each

j �= i and a′
j . That is, each player may use different action profiles to distinguish different pairs of states. But

it significantly complicates the notation with no additional insights. Also, while Condition 2 requires that
all players can learn the state from private signals, it is easy to see that our proof is valid as long as there are
at least two players who can distinguish the state.

13Condition 3 is only about signal correlation conditional on the action a∗; we allow the signals to be
independent across players if someone deviates from a∗. In the proof of the folk theorem, we construct an
equilibrium in which such a deviation is not profitable. A key is that actions are observable, so players can
detect such a deviation for sure and punish a deviator. See the proof of Lemma 3 for more details.
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for a while and player i’s signal frequency was exactly the expected distribution πω̃
i (a

∗)
for some state ω̃. Note that this signal frequency is unusual if the true state were ω �= ω̃.
Condition 3 requires that in this case, player i believes that conditional on the state ω,
the opponent’s signal frequency is also unusual and different from the ex ante distribu-
tion πω

−i(a
∗). This condition holds for generic signal structures, since it can be satisfied

by (almost all) small perturbations of the matrix Cω
i (a

∗).14

The assumption above is weaker than that of Wiseman (2012), who proves the folk
theorem for the case in which signals are almost public (i.e., highly correlated). He as-
sumes that there is a cheap-talk game after each stage game and considers an equi-
librium in which players report their private signals truthfully in this cheap-talk game.
High correlation of signals is useful to provide incentives for the truthful report. The
idea is that when signals are highly correlated, a player’s signal today is very informative
about the opponent’s observation, so any misreport can be easily detected. In contrast,
our assumption (Condition 3) needs only a minimal amount of correlation. In the proof,
we consider an equilibrium in which players report their inference, which is a summary
statistic of observations over T periods. When T is large enough and signals are corre-
lated, the law of large numbers ensures that players have accurate information about
the opponent’s inference after some (but not all) histories. As we show, this property is
enough to provide appropriate incentives.

We can prove that a folk theorem holds under Conditions 1–3. However, the proof
for a general case is fairly complex, so in this paper, we focus on the special case in which
(i) there are only two players and two states, and (ii) each player has sufficiently many
actions. These extra assumptions significantly simplify the notation and the proof, and
we believe that this is the best way to illustrate our key ideas; in the proof, we show that
there are equilibria in which players learn the state from signals and communicate it via
actions. See the working paper version (Sugaya and Yamamoto 2019) for how this idea
extends to a general case.

The following proposition is the formal statement of our folk theorem. It asserts that
there are ex post equilibria in which players eventually obtain payoffs as if they knew the
true state and played an equilibrium for that state.

Proposition 1. Suppose that |I| = |�| = 2 and |Ai| ≥ |Zi|.15 Suppose also that Condi-
tions 1–3 hold. Then the folk theorem holds, i.e., for any v ∈ intV ∗, there is δ ∈ (0�1) such
that for any δ ∈ (δ�1), there is an ex post equilibrium with payoff v.

Proposition 1 is about players’ equilibrium payoffs, and it does not say anything
about how players’ beliefs about the state change over time. In the working paper ver-
sion (Sugaya and Yamamoto 2019), we show that in any equilibrium constructed in the
proof of Proposition 1, the state asymptotically becomes common knowledge among
players. A rough idea is as follows.

14Condition 3 does not hold if signals are conditionally independent, in that πω(z|a)= ∏
i∈I πω

i (zi|a) for
all ω and a. In the working paper version (Sugaya and Yamamoto 2019), we present an example with con-
ditionally independent signals in which ex post equilibria cannot approximate the Pareto-efficient frontier.

15This assumption greatly simplifies the structure of the “detailed report round” that appears in the
proof.
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In the proof of Proposition 1, we consider an equilibrium in which players (i) learn
the state from private signals, (ii) report these signals truthfully via actions, and then (iii)
adjust the continuation play depending on the report. Thanks to the communication
in phase (ii), all private signals in phase (i) become public information. (This is what
we meant by the signaling effect in the Introduction.) Also, in our equilibrium, signals
observed in phases (ii) and (iii) do not influence the continuation play at all, that is, there
is no correlation between these signals and the chosen actions. So the only way to learn
the opponent’s signals observed in phases (ii) and (iii) is to use correlation of private
signals. As shown in Cripps et al. (2008), in such a situation, the state asymptotically
becomes common knowledge. Hence, the result follows.

4. Proof of Proposition 1

Fix an arbitrary payoff vector v ∈ intV ∗. We construct an ex post equilibrium with payoff
v by extending the idea of block strategies in Hörner and Olszewski (2006). A key dif-
ference from Hörner and Olszewski (2006) is that in our equilibrium, each player makes
an inference about the state ω from private signals and publicly reports it so as to co-
ordinate the continuation play. A crucial step in the proof is how to induce the truthful
report of the inference.

For each state ω, we choose four values, vω1 , vω2 , vω1 , and vω2 , as in Figure 1. That is, we
choose these values so that the rectangle ×i∈I[vωi � vωi ] is in the interior of the feasible and
individually rational payoff set for ω, and contains the payoff v. Looking ahead, these
values are “target payoffs” in our equilibrium: We construct an equilibrium in which
player i’s payoff in the continuation game conditional on the state ω is vωi if the oppo-
nent plans to punish her and is vωi if the opponent plans to reward her.

For each state ω, we take four action profiles, aω�GG, aω�GB, aω�BG, and aω�BB, such
that the corresponding stage-game payoffs surround the rectangle, as in Figure 1. For-

vω1vω1

vω2

vω2

vω

Player 2’s
payoffs

Player 1’s payoffs

V (ω)

gω(aω�GB)

gω(aω�BB) gω(aω�BG)

gω(aω�GG)

Figure 1. Actions aω�GG, aω�GB, aω�BG, and aω�BB.



Theoretical Economics 15 (2020) Learning and cooperation in repeated games 1187

mally, choose these profiles so that16

max
{
gω1

(
aω�BB

)
� gω1

(
aω�GB

)}
< vω1 < vω1 < min

{
gω1

(
aω�GG

)
� gω1

(
aω�BG

)}
and

max
{
gω2

(
aω�BB

)
� gω2

(
aω�BG

)}
< vω2 < vω2 < min

{
gω2

(
aω�GG

)
� gω2

(
aω�GB

)}
�

Intuitively, the ith capital letter in the superscript (G for good, and B for bad) describes
whether player i plans to reward or punish the opponent. Player i’s payoff is above vωi
when the opponent rewards her and is below vωi when the opponent punishes her. Note
that the definition of these action profiles is very similar to that in Hörner and Olszewski
(2006).

Then we pick ε > 0 sufficiently small so that all the following conditions hold.

• For each ω,

max
{
gω1

(
aω�GB

)
� gω1

(
aω�BB

)
�m

ω1
1

}
< vω1 − ε (1)

max
{
gω2

(
aω�BG

)
� gω2

(
aω�BB

)
�m

ω2
2

}
< vω2 − ε (2)

min
{
gω1

(
aω�GG

)
� gω1

(
aω�BG

)}
> vω1 + 2ε (3)

min
{
gω2

(
aω�GG

)
� gω2

(
aω�GB

)}
> vω2 + 2ε� (4)

• For each ω and ω̃ �=ω, ∣∣πω
−i

(
a∗) −Cω

i

(
a∗)πω̃

i

(
a∗)∣∣ > 2

√
ε� (5)

• For each ω, ω̃ �= ω, and fi ∈ �Zi with |πω̃
i (a

∗)− fi| < ε,∣∣Cω
i

(
a∗)πω̃

i

(
a∗) −Cω

i

(
a∗)fi∣∣ <√

ε� (6)

Note that (5) indeed holds for small ε, thanks to Condition 3. Similarly, (1)–(4) follow
from the definition of aω�GG, aω�GB, aω�BG, and aω�BB, and the fact that vωi is larger than
the minimax payoff mω

i . Equation (5) follows from Condition 3. Equation (6) simply says
that if an observation fi is close to πω̃

i (a
∗), then the posterior belief Cω

i (a
∗)fi is close to

Cω
i (a

∗)πω̃
i (a

∗). This inequality holds for any small ε, because
√
ε
ε → ∞ as ε → 0. In the

rest of the proof, we fix this parameter ε.

4.1 Automaton with state-contingent punishment

In our equilibrium, the infinite horizon is divided into a series of blocks with length Tb,
where a parameter Tb is to be specified. Each player i’s equilibrium strategy is described
as an automaton strategy over blocks. At the beginning of the block, she chooses an
automaton state xi from the set Xi = {GG�GB�BG�BB}. (So there are four possible
automaton states.) This automaton state xi determines her play during the block; player
i with an automaton state xi plays a block strategy s

xi
i (to be specified). See Figure 2.

16For some payoff function, such action profiles aω�xω may not exist. In this case, as in Hörner and
Olszewski (2006), we take action sequences (aω�xω(1)� � � � � aω�xω(n)) instead of action profiles; the rest of
the proof extends to this case with no difficulty.
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xi =GG

Play sGG
i

xi =GB

Play sGB
i

xi = BG

Play sBGi

xi = BB

Play sBBi

Figure 2. Automaton.

Reward −i Punish −i

ρωi (B|G�h
Tb
i )

ρωi (G|B�hTb
i )

ρωi (G|G�h
Tb
i ) ρωi (B|B�hTb

i )

xωi = Bxωi = G

Figure 3. Transition of xωi .

The automaton state xi can be interpreted as player i’s state-contingent plan about
whether to reward or punish the opponent. To be more precise, note that each automa-
ton state xi consists of two components, and let xω1

i ∈ {G�B} denote the first component
and let xω2

i ∈ {G�B} denote the second. The first component xω1
i represents player i’s

plan about whether to punish the opponent if the true state were ω1. Similarly, the sec-
ond component xω2

i represents her plan if the true state were ω2. For example, if player
i’s automaton state is xi = GB, then during the current block, she rewards the opponent
at state ω1 and punishes the opponent at state ω2. (In other words, we choose the cor-
responding block strategy sGB

i so that it yields a high payoff to the opponent conditional
on ω1, but a low payoff conditional on ω2.) Likewise, if xi = BG, she punishes the oppo-
nent at state ω1, but rewards at state ω2. If xi = GG, she rewards the opponent at both
states. If xi = BB, she punishes the opponent at both states.

After the block, each player i chooses a new automaton state (plan) x̃i = (x̃
ω1
i x̃

ω2
i ) for

the next block. Specifically, for each state ω, the new plan for the state ω is determined
by a transition rule ρωi (·|xωi �hTb

i ) ∈ �{G�B}; that is, given the current plan xωi and the

current block history h
Tb
i , player i randomly selects a new plan x̃ωi ∈ {G�B} according to

this distribution ρωi . Note that the current plan xω̃i for state ω̃ does not directly influence
the new plan x̃ωi for state ω �= ω̃. See Figure 3
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Learning

Summary Report

Main Detailed Report

2T 1 T 2 4T

Figure 4. Structure of the block. Time goes from left to right.

In what follows, we carefully choose the block strategies sGG
i , sGB

i , sBGi , and sBBi and
the transition rules ρ

ω1
i and ρ

ω2
i so that the resulting automaton strategy is indeed an

equilibrium.

4.2 Block strategy s
xi
i

4.2.1 Brief description Let Tb = 2T + 1 + T 2 + 4T , where T > 0 is to be specified. As
noted, we regard the infinite horizon as a sequence of blocks with length Tb. Each block
is further divided into four parts: The first 2T periods of the block are the learning round,
the next period is the summary report round, and then the next T 2 periods are the main
round. The remaining 4T periods are the detailed report round. See Figure 4.

As will be explained, we choose T sufficiently large so that the main round is much
longer than the other rounds. Thus, the average payoff during the block is approximately
the payoff during the main round. In other words, the payoffs during the learning round
and the two report rounds are almost negligible.

The role of each round is roughly as follows.

Learning round The first T periods of the learning round are player 1’s learning round,
in which player 1 collects private signals and makes an inference ω(1) about the true
state ω. The next T periods are player 2’s learning round, in which player 2 makes an
inference ω(2) about the state. During the learning round, players play the action pro-
file a∗, so Condition 2 ensures that players can indeed distinguish the state statistically.
Player i’s inference ω(i) takes one of three values: ω1, ω2, or ∅. Roughly, she chooses
ω(i) = ω1 if the signal frequency during her learning round is close to the true distribu-
tion π

ω1
i (a∗) at ω1 and she chooses ω(i) = ω2 if it is close to the true distribution π

ω2
i (a∗)

at ω2. Otherwise, she chooses a “null” inference ω(i) = ∅. More details are given in the
next subsubsection. Let T(i) denote the set of the periods included in player i’s learning
round; that is, T(1) = {1� � � � �T } and T(2) = {T + 1� � � � �2T }.

Summary report round The next period is the summary report round, in which each
player i publicly reports her inference ω(i) using her action. For simplicity, we as-
sume that each player has at least three actions, so that she can indeed represent
ω(i) ∈ {ω1�ω2�∅} by one-shot actions.17This “communication” allows players to coor-
dinate their continuation play. Note that ω(i) is just a summary statistic of player i’s

17This assumption is not essential. If there is a player who has only two actions, we can modify the
structure of the block so that the summary report round consists of two periods and each player represents
her inference by a sequence of actions. The rest of the proof remains the same. (When the summary report
round consists of two periods, each player can obtain partial information about the opponent’s inference
ω(−i) after the first period of the summary report round. But this information does not influence players’
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observation during the learning round and, hence, this round is called the summary
report.

Main round The next T 2 periods comprise the main round, in which players coordi-
nate their play depending on the information revealed in the summary report round.
If players report the same state ω in the summary report round, then players play the
block strategy of Hörner and Olszewski (2006) during the main round.

• If both players report the same state ω in the summary report round, then in the
first period of the main round, they “communicate” again and each player i reports
her current plan xωi ∈ {G�B} for this state ω. After that, players choose the action
profile aω�xω until the main round ends, where xω = (xω1 x

ω
2 ) is the reported plan.

(Recall that this action profile aω�xω is chosen as in Figure 1.) If someone (say
player i) deviates from this action profile aω�xω , she will be minimaxed by αω(i);
that is, players minimax the deviation, assuming that the summary report ω is the
true state.

So if players report the same state ω in the summary report round, they coordinate their
play during the main round and choose an action profile that is consistent with the cur-
rent plan. By the definition of the action aω�xω , each player i obtains a payoff higher than
vωi if the opponent plans to reward her (i.e., xω−i = G) and a payoff lower than vωi if the
opponent plans to punish her (i.e., xω−i = B).

If players’ reports in the summary report round do not coincide or if someone re-
ports the null inference ω(i) =∅, they adjust their play in the following way.

• If one player reports ω but the other reports ∅, then the play during the main
round is the same as above. (Intuitively, reporting ω(i) = ∅ is treated as an ab-
stention.)

• If both players report ∅, then the play during the main round is the same as the
case in which both players report ω1.

• If one player reports ω1 while the other reports ω2, then each player i reveals
xω(i)
i in the first period of the main round and then chooses the minimax action

αω(i)
i (−i), where ω(i) denotes the state reported by player i. That is, each player

minimaxes the opponent, assuming that her own summary report is the true state.

Detailed report round The remaining 4T periods of the block comprise the detailed
report round. Recall that in the summary report round, each player reports only ω(i),
which is a summary statistic of her observation during the learning round. Now, in the
detailed report round, each player reports her full history during the learning round.
Specifically, in the first T periods, player 1 reports her observation (zt1)t∈T(1) during her
own learning round. The assumption |Ai| ≥ |Zi| ensures that players can reveal her sig-
nal zi by choosing one action, so she can indeed report her signal sequence (zt1)t∈T(1)

incentives, that is, the truthful report of ω(i) is still a best reply. This is so because in our equilibrium, the
truthful report of ω(i) is a best reply regardless of the opponent’s inference ω(−i).)
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using T periods. In the next T periods, player 2 reports her observation (zt2)t∈T(2) during
her own learning round. After that, player 1 reports her observation (zt1)t∈T(2) during
the opponent’s learning round and then player 2 reports (zt2)t∈T(1). This information
(the detailed report) can be used to double-check whether the opponent’s summary re-
port earlier was truthful and it influences the choice of the new automaton state x̃i for
the next block. We explain more on this later.

For each automaton state xi, let s
xi
i be the block strategy that chooses actions as

described above. That is, sxii chooses the action a∗
i and makes the inference ω(i) in the

learning round, reports the summary inference ω(i) in the summary report round, coor-
dinates the play as above in the main round, and then reports the actual signal sequence
(zti )t∈T(i) in the detailed report round. The definition of sxii here is informal, because we
have not explained how player i forms ω(i).

Remark 1. Why do we want to have a learning round for each player i separately?
A point is that with this structure, player i’s inference ω(i) (the first-order belief in some
sense) and her belief about the opponent’s inference ω(−i) (the second-order belief in
some sense) are made from different information sources: Player i’s first-order belief de-
pends only on her history during her own learning round, while her second-order belief
depends only on her history during the opponent’s learning round. This means that even
if player i reports ω(i) in the summary report round, it does not reveal her second-order
belief to the opponent. This property is crucial to providing appropriate incentives for
the detailed report round. See the proof of Lemma 3 for more details.

4.2.2 Inference rule To complete the definition of the block strategy s
xi
i , we explain how

each player i forms the inference ω(i) during her learning round.
Recall that player i’s learning round consists of T periods. Let hT

i denote player i’s
history during this round and let HT

i denote the set of all such histories. Player i’s infer-
ence rule is defined as a mapping P : HT

i → �{ω1�ω2�∅}. That is, given a private history
hT
i , player i (randomly) chooses the inference ω(i) from the set {ω1�ω2�∅} according to

the distribution P(·|hT
i ). It is important that we allow player i to choose ω(i) randomly;

this property is needed to prove Lemma 1 below.
Given an inference rule P , let P̂(·|ω�a1� � � � � aT ) denote the conditional distribution

of ω(i) induced by P given that the true state is ω and players play the action sequence
(a1� � � � � aT ) during player i’s learning round. That is,

P̂
(·|ω�a1� � � � � aT

) =
∑

hTi ∈HT
i

Pr
(
hT
i |ω�a1� � � � � aT

)
P

(·|hT
i

)
�

where Pr(hT
i |ω�a1� � � � � aT ) denotes the probability of hT

i when the true state is ω and
players play (a1� � � � � aT ). Likewise, for each t ∈ {0� � � � �T − 1} and ht , let P̂(·|ω�ht

−i� a
t+1�

� � � � aT ) be the conditional distribution of ω(i) given that the true state is ω, the oppo-
nent’s history up to the tth period is ht

−i = (aτ� zτ−i)
t
τ=1, and players play (at+1� � � � � aT )

thereafter. Given hT
i , let fi(hT

i ) ∈ �Zi denote player i’s signal frequency induced by hT
i .

That is, fi(hT
i )[zi] = |{t|zti=zi}|

T for each zi.
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The following lemma shows that there is an inference rule P that satisfies some use-
ful properties. The proof is similar to Fong et al. (2011) and Sugaya (2019), and can be
found in the Appendix. Recall that ε is fixed so that (1)–(6) hold.

Lemma 1. Suppose that Condition 2 holds. Then there is T such that for any T > T , there
is an inference rule P :HT

i → �{ω1�ω2�∅} that satisfies the following properties.

(i) If players do not deviate from a∗, the inference ω(i) coincides with the true state
with high probability: For each ω,

P̂
(
ω(i) =ω|ω�a∗� � � � � a∗) ≥ 1 − exp

(−T
1
2
)
�

(ii) Regardless of the past history, the opponent’s deviation cannot manipulate player
i’s inference with high probability: For each ω, t ∈ {0� � � � �T − 1}, ht , (aτ)Tτ=t+1, and
(ãτ)Tτ=t+1 such that aτi = ãτi = a∗

i for all τ ≥ t + 1,

∣∣P̂(·|ω�ht
−i� a

t+1� � � � � aT
) − P̂

(·|ω�ht
−i� ã

t+1� � � � � ãT
)∣∣ ≤ exp

(−T
1
2
)
�

(iii) Suppose that no one deviates from a∗. Then player i’s inference is ω(i) = ω only
if her signal frequency is close to the true distribution πω

i (a
∗) at ω: For all hT

i =
(at� zti )

T
t=1 such that at = a∗ for all t and such that P(ω(i) =ω|hT

i ) > 0,∣∣πω
i

(
a∗) − fi

(
hT
i

)∣∣< ε�

Statement (i) ensures that state learning is almost perfect. Statement (ii) asserts that
state learning is robust to the opponent’s deviation after every history. To see its precise
meaning, suppose that the first t periods of player i’s learning round are over and the
opponent’s history during these periods was ht

−i. The opponent can deviate in the re-
maining periods, but statement (ii) implies that it cannot influence player i’s inference
much. Note that both statements (i) and (ii) are natural consequences of Condition 2,
which guarantees that player i can learn the true state even if someone else unilaterally
deviates. Statement (iii) implies that player i makes the inference ω(i) = ω only when
her signal frequency is close to the true distribution πω

i (a
∗) at state ω. So if player i’s

signal frequency is not close to π
ω1
i (a∗) or π

ω2
i (a∗), her inference must be ω(i) = ∅.

(By contrast, as can be seen from the proof of the lemma, player i mixes ω(i) = ω and
ω(i) = ∅ if her signal frequency is close to πω

i (a
∗); see Figure 5.)

Statement (iii) is useful when we derive a bound on player i’s higher-order belief
(i.e., player i’s belief about the opponent’s signal frequency f−i, which is informative
about player i’s inference ω(i) about the state). Let Pr(f−i|ω�a∗� � � � � a∗� fi) denote the
probability of the opponent’s signal frequency being f−i, given that the true state is ω,
players play a∗ for T periods, and player i’s signal frequency during these periods is fi.
Then we have the following lemma.

Lemma 2. Suppose that Condition 3 holds. Then there is T such that for any T > T , ω,
ω̃ �= ω, and hT

i such that |fi(hT
i )−πω̃

i (a
∗)| < ε, we have∑

f−i:|f−i−πω
−i(a

∗)|<ε

Pr
(
f−i|ω�a∗� � � � � a∗� fi

(
hT
i

))
< exp

(−T
1
2
)
�
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B

A

ω(i) =∅

Mix ω(i) =ω1 and ω(i) =∅

Mix ω(i) =ω2 and ω(i) = ∅

Figure 5. The triangle is the set of signal frequencies �Zi. The point A denotes πω1
i (aG), while

B denotes πω2
i (aG).

Roughly, this lemma implies that if player i has the inference ω(i) = ω̃ (which is un-
usual conditional on the state ω �= ω̃), then she believes that conditional on the state
ω, the opponent’s observation is also unusual and not close to the ex ante distribu-
tion πω

−i(a
∗). To see this, suppose that player i’s inference is ω(i) = ω̃. Then from

Lemma 1(iii), we must have |fi(hT
i )−πω̃

i (a
∗)| < ε. Then from the lemma above, player i

believes that the opponent’s observation is not close to the ex ante distribution. As will
be explained, this result plays a crucial role in inducing the truthful summary report.

Proof of Lemma 2. Pick hT
i such that∣∣πω̃

i

(
a∗) − fi

(
hT
i

)∣∣< ε�

Using (6), we have ∣∣Cω
i

(
a∗)πω̃

i

(
a∗) −Cω

i

(
a∗)fi(hT

i

)∣∣ ≤ √
ε�

Combining this with (5) yields∣∣Cω
i

(
a∗)fi(hT

i

) −πω
−i

(
a∗)∣∣ ≥ √

ε�

Accordingly, so as to have |πω
−i(a

∗) − f−i| < ε, the distance between Cω
i (a

∗)fi(hT
i ) and

f−i must be at least
√
ε− ε. However, Hoeffding’s inequality implies that the probability

of such an event is less than exp(−T
1
2 ) for sufficiently large T .

Remark 2. Allowing the null inference ω(i) = ∅ is important. As noted in the Intro-
duction, given player i’s observation fi, different states induce different beliefs about
the opponent’s observation f−i. In particular, at the point fi = C in Figure 6, player i

has “conflicting beliefs” at different states; she believes that (i) conditional on the state
ω1, the opponent’s signal frequency f−i is typical of the state ω1 so that the opponent
believes that player i’s inference is ω(i) = ω1, but (ii) conditional on the state ω2, the
opponent’s signal frequency f−i is typical of the state ω2 so that the opponent believes
that player i’s inference is ω(i) = ω2. In this case, reporting ω(i) = ω1 cannot be a best
reply at the state ω2, because it contradicts the opponent’s expectation illustrated in
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State ω2State ω1

A

B
C

A

C BL

Figure 6. Each line in the left triangle is the set of signal frequencies fi that give the same ex-
pectation about the opponent’s signal frequency at the state ω1. That is, Cω1

i (a∗)fi = C
ω1
i (a∗)f̃i

for any fi and f̃i on the same line. At the point fi = A, player i believes that the opponent’s ob-
servation is typical of the state ω1 in that Cω1

i (a∗)fi = π
ω1
−i (a

∗), so the same is true at the point
fi = C. Likewise, each line in the right triangle is the set of fi that induce the same expectation
at the state ω2. At the point fi = B, player i believes that the opponent’s observation is typical of
the state ω2 and the same is true at the point fi = C.

(ii) above and triggers a state-contingent punishment. (See the proof of Lemma 3 for
the formal description of the punishment mechanism.) At the same time, reporting
ω(i) = ω2 cannot be a best reply at the state ω1, as it contradicts the opponent’s expec-
tation described in (i). So reporting ω(i) = ω1 and ω(i) =ω2 cannot be ex post incentive
compatible when player i has such conflicting beliefs. Instead, in our equilibrium, she
makes the null inference ω(i) =∅ and reports it truthfully when she has such conflicting
beliefs.

4.3 Transition rule ρi and equilibrium conditions

We have defined the block strategy s
xi
i : Players learn the state in the learning round,

report the summary inference ω(i) in the summary report round, coordinate the play in
the main round, and then report the full information in the detailed report round. What
remains is to find transition rules ρ

ω1
i and ρ

ω2
i so that the resulting automaton strategy

is an equilibrium.
Formally, we choose the transition rules so that both the promise-keeping condi-

tion and the incentive-compatibility condition hold. The promise-keeping condition
requires that the target payoffs be exactly achieved state by state; for example, if the
opponent’s current automaton state is x−i = GB, player i’s payoff in the continuation
game must be v

ω1
i conditional on the state ω1 (since player i is rewarded at ω1) and

be v
ω2
i conditional on the state ω2 (since player i is punished at ω2). Formally, it re-

quires

vωi = (
1 − δTb

) Tb∑
t=1

δt−1E
[
gωi

(
at

)|ω�sx
]

+ δTb
{
vωi −E

[
ρω−i

(
B|G�h

Tb
−i

)|ω�sx
](
vωi − vωi

)}
(7)
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for each ω, i, and x = (x1�x2) with xω−i =G, and

vωi = (
1 − δTb

) Tb∑
t=1

δt−1E
[
gωi

(
at

)|ω�sx
]

+ δTb
{
vωi +E

[
ρω−i

(
G|B�hTb

−i

)|ω�sx
](
vωi − vωi

)}
(8)

for each ω, i, and x with xω−i = B. Equation (7) asserts that if xω−i = G so that the oppo-
nent plans to reward player i for the state ω, then player i’s payoff in the continuation
game is exactly vωi conditional on the state ω. Indeed, the first term on the right-hand
side is player i’s payoff in the current block and the second term is her continuation
payoff. (The term E[ρω−i(B|G�h

Tb
−i)|ω�sx] is the probability that the opponent switches

to the punishment plan xω−i = B after the block, in which case player i’s continuation
payoff goes down from vωi to vωi .) Similarly, (8) asserts that if the opponent plans to
punish player i for the state ω, player i’s payoff in the continuation game is vωi condi-
tional on the state ω. The above conditions imply that player i’s payoff is solely deter-
mined by the opponent’s plan x−i and is independent of her own plan xi. (While her
current block payoff depends on the plan xi, this effect is offset by the continuation
payoffs, so the total payoff is indeed independent of xi.) So in each block, player i is
indifferent over the four strategies sGG

i , sGB
i , sBGi , and sBBi . This in turn implies that ran-

domizing the automaton state xi at the beginning of the block is indeed a best reply for
player i.

The incentive-compatibility condition requires that deviating to any other block
strategy s

Tb
i �= s

xi
i be not profitable, in each period of the block. That is,

(
1 − δTb−t

) Tb∑
τ=t+1

δτ−1(E[
gωi

(
aτ

)|ω�s
Tb
i � s

x−i

−i � h
t
i

] −E
[
gωi

(
aτ

)|ω�sx�ht
i

])

≤ δTb−t
(
E

[
ρω−i

(
B|G�h

Tb
−i

)|ω�s
Tb
i � s

x−i

−i � h
t
i

]
−E

[
ρω−i

(
B|G�h

Tb
−i

)|ω�sx�ht
i

])(
vωi − vωi

)
(9)

for each ω, i, sTbi , t, ht
i , and x with xω−i =G, and

(
1 − δTb−t

) Tb∑
τ=t+1

δτ−1(E[
gωi

(
aτ

)|ω�s
Tb
i � s

x−i

−i � h
t
i

] −E
[
gωi

(
aτ

)|ω�sx�ht
i

])

≤ δTb−t
(
E

[
ρω−i

(
B|B�hTb

−i

)|ω�s
Tb
i � s

x−i

−i � h
t
i

]
−E

[
ρω−i

(
B|B�hTb

−i

)|ω�sx�ht
i

])(
vωi − vωi

)
(10)

for each ω, i, sTbi , t, ht
i , and x with xω−i = B. Here the left-hand side measures how much

the block payoff increases by deviating in period t + 1 of the block and the right-hand
side measures how much it decreases the continuation payoff after the block. So these
inequalities imply that in any period of the block, deviating from the prescribed strategy
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s
xi
i is not profitable, regardless of the true state. Accordingly, the resulting automaton

strategy is an ex post equilibrium.

4.4 Complete-information transfer game

In what follows, we explain how to find the transition rules that satisfy the above con-
ditions (7)–(10). This completes our proof, because the resulting automaton strategy is
indeed an equilibrium and any payoff in the set ×ω∈� ×i∈I [vωi � vωi ] can be achieved by
randomizing the initial automaton state. In particular, the payoff v is exactly achievable.

It turns out that finding such transition rules is equivalent to finding appropriate
“transfer rules.” This is so because continuation payoffs after the block play a role like
that of transfers in the mechanism design. A similar idea appears in various past work,
e.g., Fudenberg and Levine (1994).

As such, we focus on the following complete-information transfer game. Consider
a repeated game with Tb periods. Assume complete information, so that a state ω is
given and is common knowledge. After the game, player i receives a transfer according
to some transfer rule Uω

i :HTb
−i →R, so player i’s (unnormalized) payoff in this game is

Tb∑
t=1

δt−1gωi
(
at

) + δTbUω
i

(
h
Tb
−i

)
�

Let Gω
i (s

Tb�Uω
i ) denote player i’s expected payoff in this game when players play sTb .

Also, for each history ht
i with t ≤ Tb, let Gω

i (s
Tb�Uω

i �ht
i) denote player i’s payoff in the

continuation game after history ht
i .

A few remarks are in order. First, this is the complete-information game, so the
state ω is given and is common knowledge. The analysis of this complete-information
game is useful, because our goal is to construct an equilibrium that satisfies the ex post
incentive-compatibility conditions (9) and (10); these conditions require that player i’s
deviation be not profitable even when the state ω is publicly revealed at the beginning
of the game.

Second, the transfer Uω
i is state-specific, that is, we use different transfer rules Uω

i

for different states ω. This captures the idea that punishments are state-specific in our
equilibrium in the infinite-horizon game. Specifically, once the block is over, the op-
ponent chooses a state-specific punishment plan x−i = (x

ω1
−i � x

ω2
−i ) for the continuation

game and player i’s continuation payoff conditional on ω is solely determined by the
punishment plan xω−i for the state ω (see (7) and (8)). Since the opponent chooses these
plans xω1

−i and x
ω2
−i independently, player i’s continuation payoffs for different states take

quite different values. Hence, the transfer rule Uω
i should depend on ω.

Third, the amount of the transfer depends on the opponent’s history h
Tb
−i, but not on

player i’s history h
Tb
i . Again this comes from the fact that player i’s continuation payoff

is determined by the opponent’s plan x−i, which is influenced by the opponent’s history

h
Tb
−i but not by h

Tb
i .

Our goal in this subsection is to prove the following two lemmas.
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Lemma 3. There is T such that for any T > T , there is δ ∈ (0�1) such that for each
δ ∈ (δ�1), i, and ω, there is a transfer rule U

ω�G
i : HTb

−i → R that satisfies the following
properties:

(i) 1−δ
1−δTb

Gω
i (s

x�Uω�G
i ) = vωi for all x with xω−i =G

(ii) Gω
i (s

Tb
i � s

x−i

−i �U
ω�G
i �ht

i)≤Gω
i (s

x�U
ω�G
i �ht

i) for all sTbi , ht
i , and x with xω−i =G

(iii) −(vωi − vωi ) ≤ (1 − δ)Uω�G
i (h

Tb
−i) ≤ 0 for all hTb

−i.

To interpret this lemma, consider the complete-information game with the state ω1.
Suppose that the opponent plays the block strategy sGG

−i or sGB
−i . That is, the opponent

plans to reward player i for the state ω1. Statement (i) implies that if the transfer rule
U

ω1�G
i is appropriately chosen, then player i becomes indifferent over the prescribed

block strategies, sGG
i , sGB

i , sBGi , and sBBi , and these strategies yield the target payoff vω1
i

exactly. Statement (ii) requires that with this transfer rule U
ω1�G
i , any deviation from the

prescribed strategies should not be profitable. Statement (iii) requires that this transfer
be nonpositive (and bounded), that is, the transfer takes a form of welfare destruction.
This last condition comes from the fact that player i’s continuation payoff at state ω,
which is represented by the second term on the right-hand side of (7) and (9), is in the
interval [vωi � vωi ] and, hence, below the target payoff vωi .

As noted in the Introduction, a key step in the proof is to construct a transfer rule
that induces the truthful summary report while keeping the welfare destruction small.
To do so, we consider a transfer rule with which the opponent makes player i indiffer-
ent over reports in the summary report round after some (but not all) histories. In the
next subsection, we provide a sketch of the proof. The formal proof can be found in the
Appendix. (In the complete-information transfer game, the state ω is common knowl-
edge, but each player i still makes an inference ω(i) and reports it, just as specified in
the description of sxii . In particular, when the inference is ω(i) = ω̃, player i reports it,
even though she knows that it does not coincide with the true state ω. We need to find a
transfer rule under which this report is indeed incentive compatible.)

Once we have this lemma, we can construct a transition rule ρω−i(·|G�h
Tb
−i) that satis-

fies the desired properties (7) and (9) by setting

ρω−i

(
B|G�h

Tb
−i

) = −(1 − δ)U
ω�G
i

(
h
Tb
−i

)
vωi − vωi

for each h
Tb
−i. Indeed, simple algebra shows that Lemma 3(i) implies (7) and Lemma 3(ii)

implies (9). Lemma 3(iii) ensures that ρω−i(B|G�h
Tb
−i) defined here is indeed a probability.

The second lemma is a counterpart to Lemma 3. It considers the case in which the
opponent plans to punish player i (i.e., xω−i = B).

Lemma 4. There is T such that for any T > T , there is δ ∈ (0�1) such that for each
δ ∈ (δ�1), i, and ω, there is a transfer rule U

ω�B
i : HTb

−i → R that satisfies the following
properties:
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(i) 1−δ
1−δTb

Gω
i (s

x�Uω�B
i ) = vωi for all x with xω−i = B

(ii) Gω
i (s

Tb
i � s

x−i

−i �U
ω�B
i �ht

i) ≤Gω
i (s

x�U
ω�B
i �ht

i) for all sTbi , ht
i , and x with xω−i = B

(iii) 0 ≤ (1 − δ)Uω�B
i (h

Tb
−i)≤ vωi − vωi for all hTb

−i.

The last constraint requires the transfer to be nonnegative. This comes from the fact
that player i’s continuation payoff at state ω is chosen from the interval [vωi � vωi ] and is
always above the target payoff vωi .

It turns out that the proof of this lemma is much simpler than that of the previous
lemma. In particular, we can construct a transfer rule with which the opponent makes
player i indifferent over all reports in the summary report round after every history (just
as in belief-free equilibria in Ely et al. 2005). This is analogous to Hörner and Olszewski
(2006); their transfer rule for the punishment state makes a player indifferent over all
actions each period of the block, while the transfer rule for the reward state has a much
more complicated form. See the Appendix for the formal proof.

Again, once we have this lemma, we can construct a transition rule ρω−i(·|G�h
Tb
−i) that

satisfies the desired properties (8) and (10) by setting

ρω−i

(
G|B�hTb

−i

) = (1 − δ)U
ω�B
i

(
h
Tb
−i

)
vωi − vωi

�

So Proposition 1 immediately follows once we prove the above two lemmas.

4.5 Proof sketch of Lemma 3

As noted earlier, a key step in the proof is to show that the opponent can deter a misre-
port of the summary inference ω(i) using a transfer, subject to the constraint that the
expected welfare destruction is small. In what follows, we explain how to construct such
a transfer rule. For simplicity, we assume that players do not deviate from the prescribed
strategy sx during the learning round and the main round. That is, we focus on incen-
tives in the two report rounds.

To begin with, it is useful to point out that player i’s deviation in the summary report
round can be easily deterred by making her indifferent over all summary reports, but it
requires a huge welfare destruction. Let gωi = maxa∈A |gωi (a)|. Pick a constant C and for

each block history h
Tb
−i, choose the transfer Ûω�G

i (h
Tb
−i) so that

1 − δ

1 − δTb

[ Tb∑
t=1

δt−1gωi
(
at

) + δTbÛω�G
i

(
h
Tb
−i

)] = C� (11)

That is, we choose the transfer so that player i’s total payoff is exactly C regardless of
the play during the block. Then obviously player i is indifferent over all actions in each
period of the block, so the truthful summary report is a best reply. Also, if we choose a

small C (say, C = −2gωi ), we can ensure that the transfer Ûω�G
i (h

Tb
−i) is negative for each
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h
Tb
−i so that statement (iii) of the lemma holds. (From (11), the transfer Ûω�G

i (h
Tb
−i) is

negative if the constant C is less than the average block payoff, 1−δ
1−δTb

∑Tb
t=1 δ

t−1gωi (a
t).)

Unfortunately, this transfer rule Ûi does not satisfy statement (i). Indeed, player i’s
payoff in this transfer game is C = −2gωi , which is much lower than the target payoff vωi .
This shows that making player i indifferent requires a huge welfare destruction.

Intuitively, this inefficiency result can be understood as follows. Consider the
infinite-horizon game and suppose that the true state is ω1. Suppose that player i is
indifferent over all summary reports in each block. Then her equilibrium payoff must
be equal to her payoff when she reports ω(i) = ω2 in every block. But this payoff must
be much lower than the target payoff vωi in general, because players never agree that the
true state should be ω1 and they always choose inefficient actions.

In what follows, we show that by modifying the transfer rule above, the expected
welfare destruction can be significantly reduced without affecting player i’s incentive.
We do so in two steps. As a first step, we construct a transfer rule that “approximately”
satisfies the desired properties; i.e., we construct a transfer rule such that the expected
welfare destruction is small and the truthful summary report is an approximate best
reply (but not an exact best reply) for player i. As will be seen, in this transfer rule,
the opponent makes player i indifferent at some histories, but not in other cases; this
helps to reduce the expected welfare destruction without affecting player i’s incentives
by much. Then as a second step, we modify the transfer rule further so that the truthful
summary report is an exact best reply for player i. In this second step, communication
in the detailed report round plays a central role.

Step 1: Approximate incentive compatibility In this step, we construct a transfer rule
such that the expected welfare destruction is small, yet the truthful summary report is
an approximate best reply for player i. We first describe how to choose the transfer rule
and then provide its interpretation.

• If the opponent could not make the correct inference (i.e., ω(−i) �= ω), then
choose the transfer Ũω�G

i (h
Tb
−i) as in (11). This makes player i indifferent over all

reports in the summary report round.

• If the opponent’s signal frequency f−i during player i’s learning round is not typ-
ical of ω (i.e., |f−i − πω

−i(a
G)| > ε), then choose the transfer Ũω�G

i (h
Tb
−i) as in (11).

Again, this makes player i indifferent over all reports in the summary report round.

• If the opponent’s inference is correct (ω(−i) = ω) and if the opponent’s signal fre-
quency f−i is typical of ω (|f−i −πω

−i(a
G)| < ε), then we have the following scenar-

ios:
– If player i reports the wrong inference ω(i) = ω̃, choose the transfer Ũω�G

i (h
Tb
−i)

as in (11).

– If player i reports ω(i) =ω or ω(i) = ∅, choose the transfer Ũω�G
i (h

Tb
−i) so that

1 − δ

1 − δTb

[ Tb∑
t=1

δt−1gωi
(
at

) + δTbŨω�G
i

(
h
Tb
−i

)] = vωi � (12)
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That is, we set the transfer so that player i’s total payoff is exactly vωi . This trans-

fer Ũω�G
i (h

Tb
−i) is still negative and satisfies statement (iii) of the lemma, because

in this case, players play aω�xω with xω−i = G during the main round, so that the

average block payoff 1−δ
1−δTb

∑Tb
t=1 δ

t−1gωi (a
t) is greater than vωi .

The first two bullet points consider the case in which the opponent’s observation is
“irregular.” Indeed, in the complete-information game with the state ω, the probabil-
ity of the opponent not having the correct inference is close to 0 (Lemma 1(i)) and the
probability of the signal frequency f−i being not typical of ω is close to 0 (the law of large
numbers). After such irregular observations, the opponent makes player i indifferent,
using the huge welfare destruction (11).

The third bullet point considers the case in which the opponent’s observation is “reg-
ular.” In this case (given that the opponent’s signal frequency f−i is typical of ω), the
opponent believes that player i’s signal frequency is also typical of ω and, hence, the op-
ponent believes that player i’s inference is ω(i) = ω or ω(i) = ∅. (See Figure 5.) So the
opponent punishes player i when her summary report is not consistent with this belief;
that is, player i receives the huge negative transfer (11) if she reports the wrong inference
ω(i) = ω̃. Otherwise, the opponent sets the transfer as in (12), so that player i enjoys a
high payoff of vωi .

Table 1 summarizes the discussions so far and describes player i’s best reply when
she knows the opponent’s inference ω(−i) and signal inference f−i.

A point of the transfer rule above is that the huge welfare destruction (11) occurs
only when the opponent’s observation is irregular or player i’s summary report is irreg-
ular (i.e., ω(i) = ω̃). In the complete-information game with the state ω, these events do
not occur almost surely and, hence, the expected welfare destruction is small. Indeed,
player i’s expected payoff in the transfer game is approximately vωi , because on the equi-
librium path, the transfer (12) will be used almost surely. Hence, the above transfer rule
approximately satisfies statement (i) of the lemma.

At the same time, with the transfer rule above, the truthful summary report is an ap-
proximate best reply for player i. To see this, suppose, hypothetically, that player i knows
the opponent’s inference ω(−i) before it is reported in the summary report round. The
following lemma shows that the truthful summary report is (at least) an approximate
best reply, regardless of ω(−i). This result implies that the truthful summary report is an
approximate best reply, even if player i does not know ω(−i). A key in the proof is that
when player i’s summary inference is ω(i) = ω̃ (which is not typical in the complete-
information game with the state ω), she believes that the opponent’s observation f−i is
not typical of ω, in which case the opponent makes her indifferent over all summary re-
ports using the transfer rule (11). This property ensures that player i is almost indifferent

If |f−i −πω
−i(a

∗)| < ε If |f−i −πω
−i(a

∗)| ≥ ε

If ω(−i)=ω Report ω(i)= ω or ω(i)= ∅ All reports are indifferent
If ω(−i) �=ω All reports are indifferent All reports are indifferent

Table 1. Player i’s best reply in the summary report round, given the state ω.
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over all summary reports and, hence, the truthful report of ω(i) = ω̃ is an approximate
best reply. Given player i’s signal frequency fi ∈ �Zi during her own learning round, let

pω
i (fi)=

∑
f−i:|πω

−i(a
∗)−f−i|<ε

Pr
(
f−i|ω�a∗� � � � � a∗� fi

)
�

that is, pω
i (fi) denotes the conditional probability of the opponent’s signal frequency f−i

being close to the ex ante distribution πω
−i(a

∗).

Lemma 5. Suppose that no one has deviated from a∗ during the learning round. Sup-
pose that player i knows the opponent’s inference ω(−i) before it is reported in the sum-
mary report round. If ω(−i) �= ω, then player i is indifferent over all actions in the sum-
mary report round and, hence, the truthful summary report is a best reply for player i. If
ω(−i) = ω, then the following properties hold;

• If player i’s inference is ω(i) =ω, the truthful summary report is a best reply.

• If player i’s inference is ω(i) =∅, the truthful summary report is a best reply.

• If player i’s inference is ω(i) = ω̃ �= ω, the truthful summary report is not an exact
best reply: A one-shot deviation by reporting ω(i) = ω or ω(i) = ∅ improves her
payoff by (vωi + 2gi)p

ω
i (fi), where fi is player i’s signal frequency during her own

learning round. However, we have pω
i (fi) < exp(−T

1
2 ), so the truthful summary

report is an approximate best reply when T is large.

Proof. From the last row of Table 1, it is clear that player i is indifferent over all actions
when ω(−i) �=ω. So we focus on the case in which ω(−i) =ω.

Case 1: Player i’s inference is ω(i) = ω. From Table 1, reporting ω(i) =ω is a best reply
regardless of f−i. Hence, the truthful report of ω(i) = ω is an exact best reply, regardless
of player i’s belief about f−i.

Case 2: Player i’s inference is ω(i) =∅. For the same reason, reporting ω(i) = ∅ truth-
fully is a best reply for player i regardless of her belief.

Case 3: Player i’s inference is ω(i) = ω̃ �= ω. Note that player i believes that |f−i −
πω

−i(a
∗)| ≥ ε with probability 1 − pω

i (fi) and that |f−i − πω
−i(a

∗)| < ε with probability
pω
i (fi). From Table 1, player i is indifferent over all summary reports in the former case.

However, in the latter case, the truthful summary report is not a best reply; the truthful
report of ω(i) = ω̃ leads to the huge negative transfer (11) and yields a payoff of −2gωi ,
while reporting ω(i) = ω or ω(i) = ∅ leads to the transfer (12) and yields a payoff of vωi .
So the expected gain by reporting ω(i) =ω or ω(i) = ∅ is indeed (vωi + 2gi)p

ω
i (fi).

Now, recall that from Lemmas 1(iii) and 2, whenever player i’s inference is ω(i) = ω̃,
we have pω

i (fi) < exp(−T
1
2 ). Hence, the expected gain above converges to 0 as T → ∞.

A few comments are in order. First, under the transfer rule Uω
i above, reporting the

null inference ω(i) = ∅ is “executed” in the sense that it always yields the same payoff
as the one by reporting the correct inference ω(i) = ω and, hence, always a best reply in
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the complete-information game with the state ω. Since we choose such a transfer rule
Uω
i for each state ω, reporting the null inference ω(i) =∅ is a best reply regardless of the

state ω, of the opponent’s inference ω(−i), and of the opponent’s signal frequency f−i.
This property is useful to solve the problem raised in Remark 2, because even if player i
has conflicting beliefs about the opponent’s beliefs at different states (recall the point C
in Figure 6 in the Introduction), reporting the null inference ω(i) = ∅ is a best reply for
player i at both states.

Second, for the above argument to work, it is crucial that player i’s inference rule
is chosen in such a way that the set of player i’s observations that induce the inference
ω(i) = ω is isolated with the one that induces the inference ω(i) = ω̃. That is, the two
circles in Figure 5 are disjoint, and there is no “knife-edge” case in which player i’s infer-
ence switches from ω(i) = ω1 to ω(i) = ω2. This property, together with the correlated
learning condition (Condition 3), ensures that the opponent can almost perfectly dis-
tinguish whether player i’s inference is ω(i) = ω or ω(i) = ω̃. Indeed, conditional on
the state ω, the opponent’s signal frequency f−i is typical of ω almost surely given that
player i has the correct inference ω(i) = ω, while f−i is not typical of ω almost surely
given that player i has the wrong inference ω(i) = ω̃. So if player i deviates by reporting
ω(i) = ω when the true inference is ω(i) = ω̃, the opponent can detect this misreport
almost surely. This property is useful to deter player i’s misreport, while keeping the
expected welfare destruction small.

Step 2: Exact incentive compatibility The transfer rule Ũω�G
i in the previous step does

not ensure that the truthful summary report is a best reply. Specifically, when player i

has the wrong inference ω(i) = ω̃, she can improve her payoff by misreporting. So to
satisfy statement (ii) of the lemma, we need to modify the transfer rule further. The idea
is to give a “bonus” to player i when she reports the wrong inference ω(i) = ω̃. This gives
an extra incentive to report ω(i) = ω̃ truthfully.

As in the previous step, we first explain how to choose the transfer rule and then pro-
vide its interpretation. Recall that in the detailed report round, player i reports her full
signal sequence (zti )t∈T(i) during her own learning round. Let (ẑti )t∈T(i) denote the re-

ported signal sequence and let f̂i ∈ �Zi denote the signal frequency computed from this

sequence; that is, f̂i(zi) = |{t≤T |ẑti=zi}|
T . Let e(zi) denote the |Zi|-dimensional column vec-

tor where the component corresponding to zi is 1 and the remaining components are 0.
Similarly, let e(z−i) denote the |Z−i|-dimensional column vector where the component
corresponding to z−i is 1 and the remaining components are 0. We define the transfer
rule U

ω�G
i as follows:

• If the opponent could not make the correct inference (i.e., ω(−i) �= ω), then
choose the transfer Uω�G

i (h
Tb
−i) as in (11). This makes player i indifferent over all

reports in the summary report round.

• If the opponent’s inference is correct (ω(−i) = ω), then the following scenarios
occur:
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– If player i reports ω(i) =ω or ω(i) = ∅, set

Uω�G
i

(
h
Tb
−i

) = Ũω�G
i

(
h
Tb
−i

) − 1 − δTb

δTb(1 − δ)

ε

T

∑
t∈T(i)

∣∣e(zt−i

) −Cω
i

(
a∗)e(ẑti )∣∣2

�

– If player i reports ω(i) = ω̃, set

Uω�G
i

(
h
Tb
−i

) = Ũω�G
i

(
h
Tb
−i

)
+ 1 − δTb

δTb(1 − δ)

(
bωi (f̂i)− ε

T

∑
t∈T(i)

∣∣e(zt−i

) −Cω
i

(
a∗)e(ẑti)∣∣2

)
�

where

bωi (f̂i)=
{(

vωi + 2gi
)
pω
i (fi) if

∣∣f̂i −πω̃
i (a

G)
∣∣ < ε

0 otherwise�

Compared to the transfer rule Ũω�G
i in the previous subsection, here we have two

new terms, bωi (f̂i) and ε
T

∑
t∈T(i) |e(zt−i)−Cω

i (a
∗)e(ẑti )|2. Very roughly speaking, the term

bωi (f̂i) helps to provide truthful incentives in the summary report round, while the term
ε
T

∑
t∈T(i) |e(zt−i) − Cω

i (a
∗)e(ẑti )|2 helps to provide truthful incentives in the detailed re-

port round. In what follows, we explain this transfer rule in more detail.
The first bullet point considers the case in which the opponent does not have the

correct inference. In this case, we choose the transfer rule just as in the previous step,
that is, the transfer is chosen so that regardless of player i’s play, her payoff in the trans-
fer game is C = −2gωi . This implies that if player i can observe the opponent’s infer-
ence ω(−i) and if ω(−i) �= ω, then she is indifferent over all summary reports, just as in
Lemma 5.

The second bullet point considers the case in which the opponent has the correct
inference ω(−i) = ω. In this case, if the transfer rule Ũω�G

i in the previous step is used,
the truthful report of ω(i) = ω̃ is suboptimal; indeed, as shown in Lemma 5, reporting
ω(i) = ω or ω(i) = ∅ improves her payoff by (vωi + 2gi)p

ω
i (fi). To fix this problem, we

give a bonus payment bωi (f̂i) to player i when she reports ω(−i) = ω̃. For simplicity, as-

sume for now that player i is truthful in the detailed report round so that f̂i = fi. When
|fi − πω̃

i (a
G)| < ε, we set the amount of the bonus equal to the expected gain by misre-

porting in the summary report round, (vωi + 2gi)p
ω
i (fi). This makes player i indifferent

over all reports in the summary report round, so the truthful summary report becomes
an exact best reply. See the shaded area in Figure 7.

By contrast, when |fi −πω̃
i (a

G)| ≥ ε, we set bωi (fi) = 0. That is, we do not pay a bonus
payment even if player i reports ω(i) = ω̃. This is so because in this case, Lemma 1(iii)
ensures that player i’s true inference must be either ω(i) = ω or ω(i) = ∅; so if player
i reports ω(i) = ω̃, it should be regarded as a misreport, and we do not pay a bonus
payment.

Thanks to the bonus payment above, the truthful summary report becomes an exact
best reply, provided that player i is truthful in the detailed report round. However, given
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B

A
No bonus; ω(i) = ω1 and ω(i) = ∅ are best replies

Bonus is paid; all reports are indifferent

No bonus; ω(i) = ω1 and ω(i) = ∅ are best replies

Figure 7. Player i’s incentive in the complete-information game with ω1, assuming that fi = f̂i.

the specification of the bonus function bωi above, player i may want to misreport in the

detailed report round. Indeed, since the bonus payment bωi (f̂i) depends on player i’s

detailed report f̂i, she may want to manipulate f̂i so as to maximize this bonus payment
bωi (f̂i).

To deter such a misreport in the detailed report round, we have the additional term
ε
T

∑
t∈T(i) |e(zt−i) − Cω

i (a
∗)e(ẑti )|2 in the transfer Uω�G

i . To better understand this term,
note that Cω

i (a
∗)e(ẑti ) is player i’s forecast about the opponent’s signal distribution in

period t when she observed ẑti in that period. By contrast, the term e(zt−i) is the ac-
tual realization of the opponent’s signal. It turns out that if player i misreports ẑti , then
the difference |e(zt−i)−Cω

i (a
∗)e(ẑti )|2 between the forecast and the realization becomes

larger, which decreases the amount of the transfer. This provides an extra incentive to
report zti truthfully in the detailed report round, and this effect is of order 1

T , as the
coefficient on the this term is ε

T . By contrast, the gain by misreporting zti is at most
of order O(exp(−T

1
2 )), because Lemma 2 ensures that the bonus payment is of order

O(exp(−T
1
2 )). Since the former effect is larger than the latter, player i indeed reports

truthfully in the detailed report round. See Lemma 10 in the formal proof for more de-
tails.

So far we have explained that the transfer rule above induces right incentives in the
two (both summary and detailed) report rounds. Note also that we have made only a
small change in the transfer rule relative to the one in the previous step; indeed, the two
new terms, bωi (f̂i) and ε

T

∑
t∈T(i) |e(zt−i) − Cω

i (a
∗)e(ẑti )|2, are quite small. Accordingly,

player i’s payoff in the transfer game is still approximately the target payoff vωi , so that
statement (i) of the lemma is approximately satisfied. So by adding a small constant
term to the transfer, we can satisfy statement (i) of the lemma exactly. More details are
given in the formal proof.

Appendix: Proofs of lemmas

A.1 Proof of Lemma 1

We formally explain how each player i forms the inference ω(i) from her history hT
i in

the learning round. We introduce three different scoring rules: a base score, a random
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score, and a final score. Then we explain how these scores are converted to the inference
ω(i) and show that the resulting inference rule satisfies all the desired conditions.

Step 1: Base score.

For simplicity, we first consider the case in which no one deviates from a∗ during player
i’s learning round. Let fi(a∗) = (fi(a

∗)[zi])zi∈Zi ∈ �Zi denote player i’s signal frequency
during this round. Given a signal frequency fi(a

∗), we compute a base score qbase
i ∈R

|Zi|
using the formula

qbase
i = Qi

(
a∗)fi(a∗)�

Here Qi(a
∗) is a |Zi| × |Zi| matrix, so it is a linear operator that maps a signal fre-

quency fi(a
∗) ∈ �Zi to a score vector qbase

i ∈ R
|Zi|. (Here both fi(a

∗) and qbase
i are col-

umn vectors.) The specification of the matrix Qi(a
∗) is given later. From the law of

large numbers, if the true state were ω, the score qbase
i should be close to the expected

score Qi(a
∗)πω

i (a
∗) almost surely. So if we choose a matrix such that Qi(a

∗)πω1
i (a∗) �=

Qi(a
∗)πω2

i (a∗), then player i can distinguish ω1 from ω2 using the base score.
If someone deviates from a∗ during the learning round, the base score is computed

by a slightly different formula. Given a history hT
i = (at� zti )

T
t=1 in player i’s learning

round, let β(a) denote the frequency of an action profile a during the round, that is,
let β(a) = |{t∈{1�����T }|at=a}|

T for each a. Also, let fi(a) ∈ �Zi denote the signal frequency
for periods in which the profile a was played, that is, fi(a) = (fi(a)[zi])zi∈Zi , where

fi(a)[zi] = |{t∈{1�����T }|(at �zti )=(a�zi)}|
Tβ(a) . For a that was not played during the T periods, we

set fi(a) = 0. We define the base score as

qbase
i =

∑
a∈A

β(a)Qi(a)fi(a)�

where for each a, Qi(a) is a |Zi| × |Zi| matrix that is specified later. In words, player
i computes the score vector qbase

i (a) = Qi(a)fi(a) for each action profile a and takes a
weighted average of these scores over all a. Note that this formula reduces to the previ-
ous one when no one deviates from a∗.

We choose the matrices Qi(a) as in the following lemma. (This lemma specifies the
matrix Qi(a) only for a with a−j = a∗

−j ; for other a, let Qi(a) be the normal matrix.)

Lemma 6. Suppose that Condition 2 holds. Then for each i, there are |Zi|-dimensional
column vectors q

ω1
i and q

ω2
i with q

ω1
i �= q

ω2
i such that for each j �= i and aj , there is a

full-rank matrix Qi(aj�a
∗
−j) such that

Qi

(
aj�a

∗
−j

)
πω
i

(
aj�a

∗
−j

) =
{
q
ω1
i if ω= ω1

q
ω2
i if ω= ω2�

The proof directly follows from Condition 2.
That is, we choose the matrices Qi(a) so that if the true state is ω, the expected base

score is qωi regardless of the opponent’s actions during the learning round. Since q
ω1
i �=

q
ω2
i , player i can indeed distinguish the true state using the base score.
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While the opponent’s action cannot influence the expected value of the base score,
it may still influence the distribution of player i’s base score. Thus, if player i uses the
base score to distinguish the true state, player j may be able to manipulate player i’s
inference by deviating from a∗, so that statement (ii) of the lemma fails. In the next step,
we modify the scoring rule to avoid this problem.

Step 2: Random score.

Let Qi(a) be as in Lemma 6 and for each zi, let qi(a� zi) be the column of the matrix Qi(a)

corresponding to signal zi. Note that qi(a� zi) is a |Zi|-dimensional column vector, so let
qi�k(a� zi) denote its kth component. Without loss of generality, we assume that each
entry of the matrix Qi(a) is in the interval [0�1], i.e., we assume that qi�k(a� zi) ∈ [0�1].18

For each (a� zi), let κi(a� zi) ∈ {0�1}|Zi| be a random variable such that each compo-
nent is randomly and independently drawn from {0�1}, and such that for each k, the
probability of the kth component being 1 is qi�k(a� zi). Note that given (a� zi), the ex-
pected value of this random variable κi(a� zi) is exactly equal to qi(a� zi).

Let hT
i = (at� zti )

T
t=1 denote player i’s history during her learning round. Given such a

history hT
i , define the random score qrandom

i ∈R
|Zi| as

qrandom
i = 1

T

T∑
t=1

κi

(
at� zti

)
�

That is, we generate independent random variables (κi(a
t� zti ))

T
t=1 for each period-t out-

come (at� zti ) and define the random score as its average.
Note that for a given history hT

i during the learning round, the expected value of
the random score is exactly equal to the base score. This, together with the law of large
numbers, implies that if the true state is ω, the random score is close to qωi almost surely;
hence, player i can distinguish the state using the random score. Also, by the construc-
tion, the opponent’s action cannot influence the distribution of player i’s random score.
(Here we use Lemma 6, which ensures that the expected value of the base score does not
depend on the opponent’s actions.) This implies that if player i uses the random score
to distinguish the true state, then player j cannot manipulate player i’s inference at all.

However, the random score is not a sufficient statistic of player i’s signal frequency fi.
For example, even when the base score is close to qωi so that the signals indicate that ω
is likely to be the true state, if there are too many unlucky draws of the random variables
κi(a

t� zti ), the random scores can be far away from qωi . Accordingly statement (iii) does
not hold if player i uses the random score to make the inference. In the next step, we
introduce the notion of the final score to fix this problem.

Step 3: Final score.

Now we introduce the concept of a final score, which combines the advantages of the
base score and the random score. Let ε̃ > 0 be a small number. Player i’s final score qfinal

i

18If some entry of Qi(a) is not in [0�1], we consider the affine transformation of qi(a� zi), qω1
i , and q

ω2
i so

that each entry is in [0�1].
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is defined as

qfinal
i =

{
qrandom
i if

∣∣qrandom
i − qbase

i

∣∣ < ε̃

qbase
i otherwise.

In words, if the random score is close to the base score, it is used as the final score.
Otherwise, the base score is used as the final score.

By the definition, the final score is always close to the base score. This means that
player i’s final score is an “almost sufficient” statistic for her T -period private history.

Another important property of the final score is that a player’s action cannot influ-
ence the opponent’s score almost surely. To see this, note that conditional on the T -
period history (at� zti )

T
t=1, the expected value of the random score qrandom

i is equal to the
base score qbase

i . This implies that with probability close to 1, the random score is close
to the base score and, hence, the final score is equal to the random score, which does
not depend on the opponent’s deviation. Formally, for any ε̃ > 0, there is T such that
for any T > T , in any period of the learning round, the probability that the opponent’s

action can influence player i’s final score is less than exp(−T
1
2 ).

Step 4: From the final score to the inference.

Now we describe how each player i makes the inference ω(i). Recall that ε̃ > 0 is a small
number. We set ω(i) = ω1 if ∣∣qω1

i − qfinal
i

∣∣< 2ε̃ (13)

and we set ω(i) =ω2 if ∣∣qω2
i − qfinal

i

∣∣ < 2ε̃� (14)

If neither (13) nor (14) holds, then we set ω(i) = ∅. In words, if the score is in the 2ε̃
neighborhood of the expected score at ω, then we set ω(i) = ω. Note that the inference
ω(i) is indeed well defined if ε̃ is sufficiently small.

Now we show that this inference rule satisfies all the desired properties. Statement
(i) is simply a consequence of the law of large numbers. Statement (ii) follows from the
fact that the opponent’s deviation cannot influence player i’s final score almost surely.

To prove statement (iii), suppose that no one deviates from a∗, and pick a signal
frequency fi such that player i will choose ω(i) = ω with positive probability. By the
definition of the final score, given this signal frequency fi, the resulting final score is
always within ε̃ of the base score qbase

i , which is equal to Qi(a
∗)fi. Hence, from (13) and

(14), we must have ∣∣qωi −Qi

(
a∗)fi∣∣ < 3ε̃�

Since Qi(a
∗) has a full rank, this implies

∣∣πω
i

(
a∗) − fi

∣∣ <Kε̃

for some constant K > 0. Hence, statement (iii) follows.
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A.2 Proof of Lemma 3

As in Section 4.5, we first construct a transfer rule Ũω�G
i that approximately satisfies

statement (ii) of the lemma. That is, we construct Ũω�G
i such that playing the prescribed

strategy s
xi
i is a best reply for player i except in the summary report round, and it is an

“approximate” best reply in the summary report round. Then we modify this transfer
rule Ũω�G

i and construct a new transfer rule U
ω�G
i that satisfies statement (ii) exactly.

Then we show that the modified transfer rule Uω�G
i satisfies statements (i) and (iii) as

well.
We begin by introducing the notion of regular histories. We first give the definition

and then give its interpretation. A block history h
Tb
−i is regular given (ω�G) if it satisfies

all the following conditions:

(G1) Players choose a∗ in the learning round.

(G2) In the summary report round, the opponent reports ω(−i) = ω and player i re-
ports ω(i) = ω or ω(i) =∅.

(G3) The opponent reports xω−i = G in the first period of the main round.

(G4) Players follow the prescribed strategy in the second or later periods of the main
round.

(G5) The opponent’s signal frequency f−i during player i’s learning round is close to
the ex ante distribution πω

−i(a
∗), i.e., |f−i −πω

−i(a
∗)| < ε.

A history h
Tb
−i is irregular given (ω�G) if it is not regular.

Roughly, a history is regular if (i) no one makes an observable deviation from the
prescribed strategy sx, (ii) no one reports a wrong inference, and (iii) the opponent’s
signal frequency f−i is typical of ω. Note that this concept is an extension of “regular
observations” briefly discussed in Section 4.5; now we allow players’ deviations in the
learning and the main round, and we call the history irregular if such a deviation occurs.

Step 1: Construction of Ũω�G
i Choose a transfer rule Ũ

ω�G
i : HTb

−i → R such that the fol-
lowing statements hold.

• If the history h
Tb
−i is regular given (ω�G), choose Ũω�G

i (h
Tb
−i) so that it solves

1 − δ

1 − δTb

[ Tb∑
t=1

δt−1gωi
(
at

) + δTbŨω�G
i

(
h
Tb
−i

)] = vωi � (15)

• If the history h
Tb
−i is irregular, choose Ũω�G

i (h
Tb
−i) so that

1 − δ

1 − δTb

[ Tb∑
t=1

δt−1gωi
(
at

) + δTbŨ
ω�G
i

(
h
Tb
−i

)] = −2gωi � (16)

In words, if (i) no one makes an observable deviation, (ii) no one reports a wrong infer-
ence, and (iii) the opponent’s observation f−i is typical of ω, then the transfer Uω�G

i is
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chosen in such a way that player i’s payoff in the complete-information transfer game
is exactly the target payoff vωi . By Contrast, if player i makes an observable deviation or
reports a wrong inference or if the opponent’s observation is not typical of ω, then we
give a huge negative transfer to player i so that the payoff goes down to −2gωi . Note that
this transfer rule is very similar to the one in Section 4.5; the only difference is that player
i receives a huge negative transfer when there is a deviation in the learning round or in
the main round. So (assuming that no one has deviated in the learning round) player i’s
best reply in the summary report round is still as in Table 1 in Section 4.5.

Step 2: Ũω�G
i approximately satisfies statement (ii) Consider the complete-information

transfer game with the state ω and the transfer rule Ũ
ω�G
i above. Suppose that the oppo-

nent’s current plan is x−i with xω−i =G. We show that the prescribed strategies sGG
i , sGB

i ,
sBGi , and sBBi are approximate best replies for player i. We first show that the strategies
sGG
i , sGB

i , sBGi , and sBBi are exact best replies except in the summary report round.

Lemma 7. In the learning round, the main round, and the detailed report round, the
strategies sGG

i , sGB
i , sBGi , and sBBi are best replies for player i, regardless of the past history.

Proof. Actions in the detailed report round and in the first period of the main round do
not influence whether the resulting history is regular or not. Hence, player i is indifferent
over all actions in these periods.

In the learning round and the second or later periods of the main round, player i

prefers not to deviate from the prescribed strategy s
xi
i . This is so because such deviations

are observable and make the history irregular for sure, which yields the worst payoff
payoff, −2gωi .

In what follows, we focus on the incentive problem in the summary report round.
The next lemma shows that if someone has deviated during the learning round, then
the truthful summary report is an exact best reply.

Lemma 8. Suppose that someone has deviated from a∗ during the learning round. Then
player i is indifferent over all actions in the summary report round and, hence, the truthful
summary report is a best reply.

Proof. If someone has deviated from a∗ in the learning round, then the opponent’s
history h

Tb
−i becomes irregular regardless of player i’s summary report. Hence, player i is

indifferent over all summary reports.

Now consider the case in which no one has deviated during the learning round. In
this case, Lemma 5 still holds, because the transfer rule constructed above is exactly the
same as the one in Section 4.5. So the truthful summary report is indeed an approximate
best reply.
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Step 3: Construction of Uω�G
i and statement (ii) As explained, the transfer rule Ũω�G

i

approximately satisfies statement (ii) of Lemma 3, but not exactly. Indeed, as shown in
Lemma 5, the truthful report of ω(i) = ω̃ in the summary report round is not an exact
best reply. So we modify the transfer rule Ũω�G

i in such a way that (ii) holds exactly. The
idea here is very similar to the one presented in Step 2 in Section 4.5; we give a “bonus”
to player i when she reports the incorrect inference ω(i) = ω̃, which gives her an extra
incentive to report ω(i) = ω̃ truthfully.

Define a bonus function bωi :HTb
−i → R as

bωi
(
h
Tb
−i

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if player i reports ω(i) =ω or ω(i) = ∅

0 if someone deviates in the learning round

0 if ω(−i) �=ω

0 if
∣∣f̂i −πω̃

i (a
∗)

∣∣ ≥ ε(
vωi + 2gωi

)
pω
i (f̂i) otherwise�

This bonus function is the same as the one in Section 4.5 except that we specify values
for the case in which someone makes observable deviations. Recall that the amount
of the bonus by reporting ω(i) = ω̃ is (vωi + 2gωi )p

ω
i (f̂i), which is exactly equal to the

expected gain by misreporting in the summary report round (Lemma 5). This makes
player i indifferent over all reports in the summary report round and, thus, the truthful
report of ω(i) = ω̃ becomes a best reply.

The following lemma shows that the amount of the bonus, bωi (h
Tb
−i), is very small

regardless of the opponent’s history h
Tb
−i. To obtain this lemma, it is crucial that we pay

a bonus only if |f̂i −πω̃
i (a

∗)| < ε; this condition ensures that pω
i (f̂i) is small and so is the

bonus.

Lemma 9. There is T such that for any T > T and h
Tb
−i, we have bωi (h

Tb
−i) < 3gωi exp(−T

1
2 ).

Proof. Lemma 2 implies that whenever |f̂i −πω̃
i (a

∗)| < ε, we have pω
i (f̂i) < exp(−T

1
2 ).

Then by the definition of bωi , we obtain the lemma.

Now we define the new transfer rule Uω�G
i as

U
ω�G
i

(
h
Tb
−i

) = Ũ
ω�G
i

(
h
Tb
−i

) + 1 − δTb

δTb(1 − δ)

(
cG + bωi

(
h
Tb
−i

) − ε

T

∑
t∈T(i)

∣∣e(zt−i

) −Cω
i

(
a∗)e(ẑti )∣∣2

)
�

where cG is a constant term that is specified later. Again the specification of the transfer
rule is very similar to the one in Section 4.5; a key is that we add the terms bωi (h

Tb
−i) and

ε
T

∑
t∈T(i) |e(zt−i)−Cω

i (a
∗)e(ẑti )|2 to provide the right incentives in the two report rounds.

In what follows, we verify that this transfer rule indeed satisfies statement (ii) of the
lemma. That is, the prescribed strategy s

xi
i is a best reply in the transfer game. The

following lemma considers incentives in the detailed report round:
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Lemma 10. There is T > 0 such that for any T > T , the truthful report in the detailed
report round is a best reply for player i regardless of the past history. In particular, the
truthful report is a best reply even if player i has misreported in the summary report round.

Proof. Recall that under the transfer rule Ũω�G
i , player i is indifferent over all actions

in the detailed report round. (This is so because her actions in the detailed report round
cannot influence whether the opponent’s history is regular.) Thus, it is sufficient to
check how player i’s deviation in the detailed report round influences the additional

terms, bωi (h
Tb
−i)− ε

T

∑
t∈T(i) |e(zt−i)−Cω

i (a
∗)e(ẑti )|2.

In the detailed report round, player i reports the signals (zti )t∈T(i) during her own
learning round and the signals (zti )t∈T(−i) during the opponent’s learning round. It is
easy to see that the truthful report of (zti )t∈T(−i) is a best reply for player i, because this
report does not influence the additional terms above. So what remains is to show that
the truthful report of the signals (zti )t∈T(i) during her own learning round is a best reply
for player i.

Pick some t ∈ T(i), and suppose that player i deviates by reporting a signal z̃i �= zti
such that Cω

i (a
∗)e(zti ) �= Cω

i (a
∗)e(z̃i); that is, consider a misreport z̃i such that the

corresponding posterior distribution of z−i differs from the true posterior distribution
Cω
i (a

∗)e(zti ). This misreport increases the expected value of |e(zt−i)−Cω
i (a

∗)e(ẑti )|2 and,

hence, reduces the expected transfer.19 This effect is of order 1
T , as we have the coeffi-

cient ε
T . This implies that this misreport is not profitable, as the gain is at most of order

exp(−T
1
2 ) from Lemma 9.

Next suppose that player i deviates by reporting a signal z̃i �= zti such that Cω
i (a

∗)×
e(zti ) = Cω

i (a
∗)e(z̃i). In this case, player i’s payoff is the same as the one when she does

not deviate; indeed, this misreport does not change bωi (h
Tb
−i) or |e(ẑt−i) − Cω

i (a
∗)e(ẑti )|2.

Hence, this misreport is not profitable.

The next lemma shows that thanks to the bonus function bωi , the truthful report in
the summary report round is an exact best reply. This implies that the modified transfer
Uω�G
i satisfies Lemma 3(ii).

Lemma 11. The truthful report in the summary report round is a best reply for player i,
regardless of the past history.

Proof. Throughout the proof, we assume that player i is truthful in the detailed report
round, since we have Lemma 10. Suppose, hypothetically, that player i knows the oppo-
nent’s inference ω(−i) before it is revealed in the summary report round. We show that

19Indeed, as explained in Section 4.2 of Kandori and Matsushima (1998), we have∑
z−i∈Z−i

Cω
i

(
a∗)e(zti )[z−i]

∣∣e(z−i)−Cω
i

(
a∗)e(zti )∣∣2

<
∑

z−i∈Z−i

Cω
i

(
a∗)e(zti )[z−i]

∣∣e(z−i)−Cω
i

(
a∗)e(z̃ti )∣∣2

for this misreport z̃ti , so the expected transfer indeed decreases. Note that the opponent’s block strategy
does not depend on the signal zt−i, so regardless of the opponent’s past actions, player i’s posterior belief
about zt−i is indeed Cω

i (a
∗)e(zti ).
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the truthful report of ω(i) is a best reply for player i regardless of ω(−i). This implies
that the truthful report is a best reply even if player i does not know ω(−i); hence, the
result.

First, suppose that someone deviated from a∗ in the learning round or the oppo-
nent’s inference is ω(−i) �= ω. In these cases, the bonus payment is 0 regardless of player
i’s summary report. Also, from Lemmas 8 and 5, player i is indifferent over all actions in
the summary report round with the transfer Ũω�G

i . Hence, player i is indifferent over all
actions in the summary report round even with the new transfer rule, and the truthful
report is a best reply.

Next suppose that no one has deviated in the learning round and that the opponent’s
inference is ω(−i) =ω. There are two cases to be considered.

Case 1: Player i’s signal frequency fi during her own learning round is such that
|πω̃

i (a
∗) − fi| ≥ ε. In this case, from Lemma 1(iii), player i’s inference must be either

ω(i) = ω or ω(i) = ∅. Then from Lemma 5, the truthful report of ω(i) in the summary
report round is a best reply under the transfer rule Ũ

ω�G
i . The same result holds even

under the new transfer Uω�G
i , because given that |πω̃

i (a
∗) − fi| ≥ ε, the bonus payment

bωi is 0 regardless of player i’s summary report.
Case 2: Player i’s signal frequency fi during her own learning round is such that

|πω̃
i (a

∗) − fi| < ε. We claim that in this case, player i is indifferent over all summary
reports (and, hence, the truthful report of ω(i) is a best reply). Under the transfer rule
Ũω�G
i , reporting ω(i) = ω yields an expected payoff of pω

i (fi)v
ω
i + (1 − pω

i (fi))(−2gωi ),
since the probability of the block history being regular is pω

i (fi). The same is true when
player i reports ω(i) = ∅. By contrast, when player i reports ω(i) = ω̃, the block his-
tory is always irregular and, hence, the expected payoff is −2gωi . Obviously this payoff is
worse than the payoff by reporting ω(i) = ω, and the payoff difference is

(
pω
i (fi)v

ω
i + (

1 −pω
i (fi)

)(−2gωi
)) − 2gωi = (

vωi + 2gωi
)
pω
i (fi)�

Now consider the modified transfer Uω�G
i with which player i can obtain the bonus bωi

by reporting ω̃ in the summary report round. Since the amount of the bonus is precisely
equal to the payoff difference above, player i is indifferent over all summary reports, as
desired.

Step 4: Proof of statement (i) In what follows, we show that the transfer rule Uω�G
i satis-

fies statements (i) and (iii) of Lemma 3 if we choose the constant term cG appropriately.
Let pω

−i denote the probability of the opponent’s block history h
Tb
−i being regular

given (ω�G), conditional on that the state is ω and players play sx with xω−i = G. Note
that this probability does not depend on the choice of x as long as xω−i = G, so it is well
defined. Then let

cG = (
1 −pω

−i

)(
vωi + 2gωi

)
+E

[
ε

T

∑
t∈T(i)

∣∣e(zt−i

) −Cω
i

(
a∗)e(ẑti )∣∣2 − bωi

(
h
Tb
−i

)∣∣∣ω�sx
]
� (17)
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Again, the expected value of |e(zt−i)−Cω
i (a

∗)e(ẑti )|2 and bωi (h
Tb
−i) does not depend on the

choice of x and, thus, cG is well defined.
Given this constant term cG, the resulting transfer rule Uω�G

i satisfies Lemma 3(i).
To see why, suppose that players play sx with xω−i = G. It follows from (15) and (16) that

if the transfer rule ŨG�ω
i is used, player i’s expected payoff in the complete-information

transfer game is

pω
−iv

ω
i − (

1 −pω
−i

)
2gωi �

where pω
−i is the probability of the opponent’s history being regular. Hence, if the mod-

ified transfer rule UG�ω
i is used, player i’s payoff in the complete-information transfer

game is

1 − δ

1 − δTb
Gω

i

(
sx�Uω�G

i

) = pω
−iv

ω
i − (

1 −pω
−i

)
2gωi + cG

+E

[
bωi

(
h
Tb
−i

) − ε

T

∑
t∈T(i)

∣∣e(zt−i

) −Cω
i

(
a∗)e(ẑti )∣∣2

∣∣∣ω�sx
]
�

Plugging (17) into this equation, we obtain statement (i) of Lemma 3.

Step 5: Proof of statement (iii) What remains is to prove Lemma 3(iii). That is, we need

to show −(vωi − vωi ) < (1 − δ)U
ω�G
i (h

Tb
−i) < 0 for all hTb

−i.

We begin by showing the first inequality, −(vωi − vωi ) < (1 − δ)Uω�G
i (h

Tb
−i). By the

definition of gωi , we have 1−δ
1−δTb

∑Tb
t=1 δ

t−1gωi (a
t) ≤ gωi regardless of the action sequence

(a1� � � � � aTb). Plugging this into (15) and (16), we obtain

δTb(1 − δ)

1 − δTb
Ũω�G
i

(
h
Tb
−i

) ≥ −3gωi

and, hence,

δTb(1 − δ)

1 − δTb
U

ω�G
i

(
h
Tb
−i

) ≥ −3gωi + cG + bωi
(
h
Tb
−i

) − ε

T

∑
t∈T(i)

∣∣e(zt−i

) −Cω
i

(
a∗)e(ẑti)∣∣2

for each h
Tb
−i. Equivalently,

(1 − δ)Uω�G
i

(
h
Tb
−i

) ≥ 1 − δTb

δTb

(
−3gωi + cG + bωi

(
h
Tb
−i

) − ε

T

∑
t∈T(i)

∣∣e(zt−i

) −Cω
i

(
a∗)e(ẑti )∣∣2

)
�

For a fixed T , if we take δ close to 1, 1−δTb

δTb
becomes arbitrarily close to 0, so that the right-

hand side is greater than −(vωi − vωi ). This implies the desired inequality, −(vωi − vωi ) <

(1 − δ)Uω�G
i (h

Tb
−i).

Now we prove the remaining inequality, (1 − δ)Uω�G
i (h

Tb
−i) < 0. We consider the fol-

lowing two cases.
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Case 1: h
Tb
−i is regular given (ω�G). In this case, in all but one period of the main

round, players play aω�xω with xω−i = G, which yields more than vωi + 2ε to player
i, according to (3) and (4). So for sufficiently large T and δ close to 1, we have

1−δ
1−δTb

∑Tb
t=1 δ

t−1gωi (a
t) > vωi + 2ε. Plugging this into (15) yields

(1 − δ)δTb

1 − δTb
Ũω�G
i

(
h
Tb
−i

)
< −2ε�

Hence,

(1 − δ)δTb

1 − δTb
Uω�G
i

(
h
Tb
−i

)
<−2ε+ cG + bωi

(
h
Tb
−i

) − ε

T

∑
t∈T(i)

∣∣e(zt−i

) −Cω
i

(
a∗)e(ẑti )∣∣2

≤ −2ε+ cG + bωi
(
h
Tb
−i

)
�

Note that

cG ≤ (
1 −pω

−i

)(
vωi + 2gωi

) + √
2ε−E

[
bωi

(
h
Tb
−i

)|ω�sx
]
�

since |e(zt−i)−Cω
i (a

∗)e(ẑti )|2 ≤ √
2. Plugging this into the above inequality, we have

(1 − δ)δTb

1 − δTb
Uω�G
i

(
h
Tb
−i

)
<−(2 − √

2)ε+ (
1 −pω

−i

)(
vωi + 2gωi

) −E
[
bωi

(
h
Tb
−i

)|ω�sx
] + bωi

(
h
Tb
−i

)
�

Note that when T is large, pω
−i approximates 1 and bωi (h

Tb
−i) approximates 0 for all hTb

−i.
(This follows from Lemma 9.) Hence, for sufficiently large T ,

(1 − δ)δTb

1 − δTb
U

ω�G
i

(
h
Tb
−i

)
<−(2 − √

2)ε < 0

as desired.
Case 2: hTb

−i is irregular given (ω�G). The proof is very similar to that for Case 1 and,
hence, is omitted.

A.3 Proof of Lemma 4

Fix i and ω arbitrarily. In what follows, we construct a transfer rule U
ω�B
i that satisfies

statements (i)–(iii) in Lemma 4.
We begin by introducing the notion of regular histories. The definition here is slightly

different from that in the proof of Lemma 3. The opponent’s history is regular if she
does not deviate from the prescribed strategy s

x−i

−i and she makes the correct inference

ω(−i) =ω. Formally, the opponent’s block history h
Tb
−i is regular given (ω�B) if it satisfies

all the following conditions.

(B1) Player −i chooses a∗
−i in the learning round.

(B2) Player −i reports ω(−i) =ω.
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(B3) Player −i reports xω−i = B in the first period of the main round.

(B4) Player −i followed the prescribed strategy s
x−i

−i in the second or later periods of
the main round.

A history h
Tb
−i is irregular given (ω�B) if it is not regular.

Step 1: Construction of Uω�B
i Let cB > 0 be a constant that is specified later. Then

choose a transfer rule Uω�B
i : HTb

−i →R so that we have the following scenarios.

• For each history h
Tb
−i = (at� zt−i)

Tb
t=1 that is regular given (ω�B), choose Uω�B

i (h
Tb
−i)

so that it solves

1 − δ

1 − δTb

[ Tb∑
t=1

δt−1gωi
(
at

) + δTbUω�B
i

(
h
Tb
−i

)] = vωi − τε

T
− cB� (18)

where τ is the number of periods such that player i deviated from a∗ during the
opponent’s learning round.

• For each irregular hTb
−i, choose Uω�B

i (h
Tb
−i) so that

1 − δ

1 − δTb

[ Tb∑
t=1

δt−1gωi
(
at

) + δTbUω�B
i

(
h
Tb
−i

)] = 2gωi − τε

T
− cB� (19)

In words, if the opponent plays the prescribed strategy and reports the correct in-
ference ω(−i) = ω (so that the history h

Tb
−i is regular), we adjust the transfer Uω�B

i (h
Tb
−i)

in such a way that player i’s total payoff in the complete-information transfer game is
vωi − cB. As will be explained, cB is a constant number close to 0, so this payoff is approx-
imately the target payoff vωi . By contrast, if the opponent deviates or reports something
else, we give a huge positive transfer to player i and her total payoff goes up to 2gωi − cB.
If player i deviates in the opponent’s learning round, it decreases the transfer a bit, due
to the term τε

T .

Step 2: Proof of statement (ii) We claim that the transfer rule above satisfies statement
(ii) of Lemma 4. That is, we show that the prescribed strategies sGG

i , sGB
i , sBGi , and sBBi

are all best replies in the complete-information transfer game with (ω�U
ω�B
i ) if the op-

ponent’s current plan is x−i with xω−i = B. The result follows from the next two lemmas.

Lemma 12. Player i is indifferent over all actions in player i’s learning round, the sum-
mary report round, the main round, and the detailed report round, regardless of the past
history. Hence, deviating from s

xi
i during these rounds is not profitable.

Proof. By the construction of U
ω�B
i , player i’s payoff in the complete-information

transfer game depends only on whether the opponent’s block history h
Tb
−i is regular and

on the number of periods such that player i deviated from a∗ during the opponent’s
learning round. The result follows because player i’s play cannot influence whether the
resulting history is regular.
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Lemma 13. When T is large enough, a∗
i is the unique best reply in each period of the

opponent’s learning round, regardless of the past history. Hence, deviating from s
xi
i during

the opponent’s learning round is not profitable.

Proof. During the opponent’s learning round, deviating from a∗
i has two effects. First,

it affects the distribution of the opponent’s inference ω(−i) and, hence, the probability
of the opponent’s history being regular. Second, it decreases the transfer Uω�B

i due to the
term τε

T . From Lemma 1(ii) and the law of large numbers (more precisely, Hoeffding’s

inequality), the first effect is at most of order O(exp(−T
1
2 )). By contrast, the second

effect is proportional to 1
T . Thus for large T , the second effect dominates, so that playing

a∗
i is optimal. This shows that statement (ii) of Lemma 4 holds.

Step 3: Proof of statement (i) Now we choose the constant term cB in such a way that
the resulting transfer rule Uω�B

i satisfies statement (i) of Lemma 4.
Let pω

−i denote the probability of the opponent making the correct inference ω(−i) =
ω, given that the true state is ω and players play a∗ in the learning round. Then let

cB = (
1 −pω

−i

)(
2gωi − vωi

)
> 0� (20)

Given this constant term cB, the resulting transfer rule Uω�B
i satisfies statement (i) of

Lemma 4. To see why, suppose that players play sx with xω−i = B. It follows from (18) and
(19) that player i’s expected payoff in the complete-information transfer game is

1 − δ

1 − δTb
Gω

i

(
sx�Uω�B

i

) = pω
−i

(
vωi − cB

) + (
1 −pω

−i

)(
2gωi − cB

)
�

where pω
−i is the probability of the opponent’s history being regular. Plugging (20) into

this equation, we obtain statement (i) of Lemma 4.

Step 4: Proof of statement (iii) To complete the proof of Lemma 4, we need to show that
the constructed transfer rule U

ω�B
i satisfies statement (iii) of Lemma 4.

We first show that (1 − δ)Uω�B
i (h

Tb
−i) < vωi − vωi for each h

Tb
−i. By the definition of gωi ,

player i’s average payoff in the block, 1−δ
1−δTb

[∑Tb
t=1 δ

t−1gωi (a
t)], is at least −gωi . Then from

(18), (19), and cB > 0, we have δTb(1−δ)

1−δTb
Uω�B
i (h

Tb
−i) < 3gωi ; equivalently, (1−δ)Uω�B

i (h
Tb
−i) <

(1−δTb)3gωi
δTb

. For a fixed T , by taking sufficiently large δ, the right-hand side becomes ar-

bitrarily small. Hence, we have (1 − δ)Uω�B
i (h

Tb
−i) < vωi − vωi .

Next we show that Uω�B
i (h

Tb
−i) > 0 for each h

Tb
−i. We consider the following two cases.

Case 1: hTb
−i is regular given (ω�B). In this case, in most periods of the main round,

players played the action profile aω�xω with xω−i = B or the opponent played the minimax
action αω

−i(i). Both these actions yield payoffs lower than vωi − ε to player i, according to
(1) and (2). Hence, when T is sufficiently large and δ is close to 1, we have

1 − δ

1 − δTb

[ Tb∑
t=1

δt−1gωi
(
at

)]
< vωi − ε�
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Then since cB → 0 as T → ∞ (this follows from the fact that Lemma 1 ensures pω
−i → 1),

we obtain

1 − δ

1 − δTb

[ Tb∑
t=1

δt−1gωi
(
at

)]
< vωi − ε− cB�

Plugging this into (18), we obtain Uω�B
i (h

Tb
−i) > 0.

Case 2: h
Tb
−i is irregular given (ω�B). Since the value gωi is greater than player i’s

stage-game payoff for any action profile a, we have

1 − δ

1 − δTb

[ Tb∑
t=1

δt−1gωi
(
at

)]
< 2gωi − ε− cB�

Plugging this into (19), we obtain Uω�B
i (h

Tb
−i) > 0.
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