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On the falsifiability and learnability of decision theories
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We study the degree of falsifiability of theories of choice. A theory is easy to falsify
if relatively small data sets are enough to guarantee that the theory can be falsified:
the Vapnik–Chervonenkis (VC) dimension of a theory is the largest sample size for
which the theory is “never falsifiable.” VC dimension is motivated strategically. We
consider a model with a strategic proponent of a theory and a skeptical consumer,
or user, of theories. The former presents experimental evidence in favor of the
theory; the latter may doubt whether the experiment could ever have falsified the
theory.

We focus on decision-making under uncertainty, considering the central mod-
els of expected utility, Choquet expected utility, and max–min expected utility
models. We show that expected utility has VC dimension that grows linearly with
the number of states, while that of Choquet expected utility grows exponentially.
The max–min expected utility model has infinite VC dimension when there are at
least three states of the world. In consequence, expected utility is easily falsified,
while the more flexible Choquet and max–min expected utility are hard to falsify.
Finally, as VC dimension and statistical estimation are related, we study the impli-
cations of our results for machine learning approaches to preference recovery.

Keywords. Revealed preference theory, decision theory, machine learning.

JEL classification. C1, D1.

1. Introduction

We consider the smallest sample size needed for theories of choice to be falsifiable, even
when the experimenter engages in selective experimental design. With small sample
sizes it is harder to falsify a theory than with a large sample size: so for any given theory
of choice, it makes sense to consider the smallest sample size needed for the theory to
be falsifiable. Imagine two agents: a proponent and a consumer (or user) of theories of
choice. The proponent designs a choice experiment and may present the consumer with
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evidence in favor of the theory. The consumer is suspicious about the proponent’s ex-
perimental design. There may exist designs for which no possible outcome could falsify
the theory in question. The consumer’s suspicion can only be addressed through a large
enough sample size, because with enough data, it becomes difficult for the proponent
to successfully manipulate the experimental design through selective testing.

Our paper calculates the smallest sample size needed to rule out manipulations;
we focus on a setting that accommodates a general theory of preference relations and
data from binary choice experiments. This smallest sample size is termed the Vapnik–
Chervonenkis (VC) dimension of a theory (Vapnik and Chervonenkis 1971, Blumer et al.
1989). Roughly speaking, the VC dimension of a model is the largest cardinality of a data
set that the theory can always rationalize. An experiment of given size that validates
a theory with small VC dimension is more convincing than one that validates a theory
with large VC dimension, as the former was, in principle, easier to falsify with the data
at hand than the latter.

While the setting considered in the paper applies more generally, we focus on choice
under uncertainty, and study resulting implications of falsifiability in experimental out-
comes and VC dimension estimates. We first proceed to give a brief overview of choice
under uncertainty and then describe our main results. It is hard to overstate the im-
portance of the theory of choice under uncertainty. Many important models of eco-
nomic behavior, markets, and institutions deal with the existence of uncertainty, and
assume that agents conform to some theory of choice under uncertainty.1 The most
common model is subjective expected utility: economic agents choose among uncer-
tain prospects as if they assigned a probability distribution to the different possible, and
uncertain, events. Given a probability distribution, which is subjective and not observ-
able, agents seek to maximize the expected reward obtained under each prospect. Sub-
jective expected utility was famously axiomatized by Savage (1972).

While ubiquitous, subjective expected utility has some notable problems. Agents’ at-
titude toward uncertainty is not always well captured by a probability distribution over
uncertain events. The best known problems are illustrated by the Ellsberg paradox (Ells-
berg 1961), a thought experiment in which agents’ choices cannot be accommodated by
a probability distribution because they exhibit ambiguity aversion. The Ellsberg paradox
illustrates that while an agent may place a premium on events that have an objectively
known probability, such a premium turns out to be incompatible with a probability dis-
tribution over unknown events. In response, decision theorists have sought to general-
ize the theory of subjective expected utility to allow for ambiguity aversion. The two best
known alternatives are the models of max–min expected utility and Choquet expected
utility. Hence, the outcome of the Ellsberg experiment, while falsifying subjective ex-
pected utility, is rationalizable by the max–min and Choquet models.

The model of max–min expected utility postulates agents who possess multiple
probability distributions over uncertain events, giving each uncertain prospect multi-
ple expected values. In the max–min theory, agents seek to maximize the minimum

1We do not address models of choice under risk, meaning choices over prospects that have stochastic
consequences, with known and objective probabilities. Our paper focuses on (Knightian) uncertainty.
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expected value. Given an uncertain prospect, the agent evaluates it in adversarial, pes-
simistic fashion, using the worst-case probability distribution in her set of possible dis-
tributions. By using more than one probability measure, it is easy to explain the Ellsberg
paradox through the max–min model. Max–min was first axiomatized by Gilboa and
Schmeidler (1989); it was also proposed and used in the statistical decision literature;
see Wald (1950) and Huber (1981). The max–min model is a staple of modern decision
theory and is used extensively in economic applications where agents face uncertainty.

Choquet expected utility assumes that agents have nonadditive beliefs over uncer-
tain events. Instead of additive probability measures, as in the model of subjective ex-
pected utility, agents’ beliefs are represented by a possibly nonadditive capacity. In Cho-
quet expected utility theory, agents evaluate uncertain prospects according to the Cho-
quet expectation with respect to their capacity. The Choquet model can accommodate
the types of aversions to ambiguity exhibited in the Ellsberg paradox because nonaddi-
tivity allows an agent to place a premium on events that are less ambiguous than others.
The model was first axiomatized by Schmeidler (1989).

The three models we have described are arguably the most important models of
decision-making under uncertainty. Our purpose in the present paper is to understand
the VC dimension of the theories of subjective expected utility, max–min, and Choquet
expected utility. In all three cases, we assume an agent who is risk-neutral. If we were
to include the utility function as an additional parameter of the theory, then the VC di-
mension of all three models would increase. In an effort to isolate the role of the prior
beliefs in the theory, we focus here on the risk-neutral version of the three models.

For subjective expected utility theory, we show that the VC dimension is linear in
the number of states of the world. This means that the sample size that is needed for
a consumer of the theory to be convinced of theory-confirming evidence, beyond the
dangers of manipulation, is relatively small. For example, for an experiment with 10
states of the world, a data set of size 11 suffices, and this number grows linearly with the
number of states of the world.

The max–min expected utility (MEU) theory does not fare as well in our analysis
as expected utility theory. It turns out that as long as there are at least three possible
states of the world, then the MEU has infinite VC dimension. In consequence, no sample
size can guarantee a consumer of the theory that evidence in favor of MEU could not
have been the result of an experimental design that never had a chance of falsifying
the theory. Put differently, the consumer’s suspicions cannot be assuaged by empirical
evidence, no matter how large the sample.

Of course, there are ways to avoid our negative conclusion. For example, the ana-
lyst could restrict the possible parameters of the theory. If the model is constrained by
imposing additional restrictions on its parameters, then it will require smaller sample
sizes to test. So our results can be read as saying that such additional restrictions are
indeed needed. Another possibility is that the analyst has substantive information as to
the process that generates the data. She could have knowledge of, or control over, the
way in which the agent is presented with alternatives to choose from. In that case, one
could read our results as saying that such knowledge is essential and must be precise.
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Learnable VC dimension

Expected utility � Linear
Choquet expected utility � Exponential
Max–min (states > 2) X +∞
Max–min (two states) � —

Table 1. Summary of results.

The Choquet expected utility model fairs better than MEU: it has finite VC dimen-
sion and is, therefore, testable beyond a proponent’s incentives to manipulate through
selective testing. Unfortunately, Choquet has VC dimension that grows exponentially
in the number of states. Therefore, it requires that the agent makes a sample size that
is exponential in the number of states. To use the example we mentioned above, if we
consider 10 states of the world, then we would now need a sample size of more than 250,
and if the states of the world were 20, we would need more than 180,000 observations. In
consequence, it quickly becomes impractical to assuage the consumer’s suspicions by
way of sample size.

Table 1 has a summary of our results.
We should emphasize that our paper focuses on the combination of risk neutrality

and the absence of parametric restrictions on beliefs. If one adds a parametric model for
beliefs, then the VC dimension will naturally decrease. The assumption of risk neutrality
can be avoided if one works in an Anscombe–Aumann setting. The paper is also based
on choices from binary menus. A brief discussion of more general choice functions is in
Section 4.1.

Learning interpretation A second interpretation of our results is in terms of overfitting.
Given a theory and a data set, we may want to fit an instance of the theory to the data
or “learn” an instance of the theory. We adopt the paradigm of “probably approximately
correct” (PAC) learning (Valiant 1984, Blumer et al. 1989) and assume an agent who is
choosing among pairs of uncertain prospects. The question is whether choices made
according to the theory of choice under uncertainty allow an outside analyst to recover
the model of choice with high probability and in the limit as the number of choices made
by the agent grows.

We are motivated by the notion that some models in behavioral economics are gen-
eralizations, meaning that they were formulated by relaxing relatively stringent eco-
nomic models; this can make them prone to overfitting. Overfitting as a concern seems
to be new in decision theory and behavioral economics. Economists are used to the
idea that lax models may lead to theories that have few testable implications, but there
are other potential dangers when working with flexible behavioral models. Consider an
economist who fits a model to choice data, perhaps observed from an agent making
choices in a laboratory experiment. If the model is very general and flexible, meaning
that it contains many special cases, and can accommodate many particular behaviors,
then it is possible that the economist fits a model that is too closely adapted to the ob-
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served data. As a result, the model could then perform badly out of sample. The theory
of PAC learning that we use in this paper seeks precisely to capture the presence or ab-
sence of overfitting.

A model with finite VC dimension is learnable; moreover, the VC dimension of the
model controls the sample size needed to fit an instance of the model that is guaran-
teed to perform well in terms of out-of-sample predictions. So by computing the VC
dimension of the model, we can understand how prone it is to overfitting.

Using the language of PAC learning, then, our results mean that subjective expected
utility theory is learnable with relatively small sample sizes and is not prone to over-
fitting. MEU is not learnable: no matter how many choices are made by our subject,
the analyst will be unable to learn the model generating choices with high probability.
Put differently, the family of possible max–min parameters (the sets of multiple proba-
bilities) is large and flexible enough that even with very large data sets, the model can
wrap itself close to the data, while predicting badly out of sample. The Choquet ex-
pected utility model is PAC learnable, but it is still susceptible to overfitting because an
analyst will require extremely large data sets so as to obtain good out-of-sample predic-
tions.

We are not the first researchers to study PAC learning in economic models. Kalai
(2003) considers a choice function, and connects learnability to substantive properties
of choice. Beigman and Vohra (2006), Zadimoghaddam and Roth (2012), and Balcan
et al. (2014) consider learning in the classical demand environment. Some of their re-
sults relate to learning linear utility functions, which is a point in common with our
work, but none of these papers studies questions of choice under uncertainty. Our prim-
itive model of choice is a preference relation, in contrast to demand behavior. As a result,
our model of choice is in line with common practice in decision theory and experimen-
tal economics, where agents make choices over pairs of objects. The model of choice
in the cited papers is more in line with the practice in the revealed preference theory of
consumption. Last, in a different context, Salant (2007) considers PAC learning of the
majority rule in a setting involving social choice.

We also point out prior work in the literature on estimating models of ambiguity
aversion. The papers by Ahn et al. (2014), Chamberlain (2000), Mangelsdorff and Weber
(1994), and Camerer and Weber (1992) all involve estimating the parameters of ambi-
guity aversion models based on real data from experiments and financial markets. The
paper by Ahn et al. (2014) considers portfolio choice experiments, whereas Chamber-
lain (2000) undertakes an econometric analysis of the max–min model in the context
of an autoregressive model with panel data. Mangelsdorff and Weber (1994) study the
Choquet model and conduct experimental tests for various hypotheses regarding the ca-
pacities in the model. Preceding research in this vein was done by Camerer and Weber
(1992), who also expand on various experimental and empirical applications of the am-
biguity aversion models. Finally, large-scale experimental data sets on pairwise choice
are available in, for example, Falk et al. (2018), Chapman et al. (2017), and Chapman
et al. (2018).
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2. Falsifiability and sample size

2.1 Preliminary definitions

Let X be a Euclidean space, endowed with its Borel σ-algebra X . Denote the product
space X ×X by Z.

A preference relation on X is any binary relation �⊆Z such that � is measurable with
respect to the product σ-algebra Z on Z. Denote by P∗ the set of all preference relations
on Z. A theory is a subset P ⊆ P∗. For example, the set of weak orders (complete and
transitive preferences) is a theory. The set of preferences that have a linear, or a Cobb–
Douglas, utility representation is another theory.

2.2 A model

Consider a conflict between two agents: Alice, a theorist, and Bob, an editor of a journal.
Alice has a theory and wants to convince Bob that it is valid empirically. To that end,
she runs an experiment and tries to use her theory to rationalize the outcome of the
experiment. In our setting, Alice’s theory will be about choice under uncertainty. The
experiment will involve a subject making choices from a sequence of choice problems.
Now it should be said that Alice has an agenda: she wants to prove her theory right. In
pursuit of validating her theory, Alice cannot tamper with the subject’s choices, but she
can design the experiment so as to make any experimental result easier to rationalize by
her theory.

Fix a finite set � of states of the world. Alice’s theory of choice is about state-
contingent monetary payoffs, that is, elements of X = R�.2 Her theory consists of a
set P ′ of preference relations over X . For example, P ′ could consist of all the expected
utility preferences over X or all the max–min expected utility preferences.

Now fix a number k, which we think of as a sample size. Alice sets up a choice exper-
iment of size k, meaning a questionnaire

(x1� y1)� � � � � (xk� yk)

of size k. In other words, Alice chooses a “sample” of k pairwise choice situations zi =
(xi� yi) ∈Z that she presents to the subject in her experiment.

Given the questionnaire, the subject selects a choice from each problem. For exam-
ple, x1 from z1 = (x1� y1), y2 from z2 = (x2� y2), and so on. We use an indicator function
ai to record the subject’s choices from each problem. So a1 = 1 because x1 was chosen
from z1 and a2 = 0 because x2 was not chosen from z2. Formally, a size-k data set is any
finite sequence D ∈ ⋃

n≥1(Z × {0�1})k, so a data set takes the form

D = (
(z1� a1)� (z2� a2)� � � � � (zk�ak)

)
�

where ai ∈ {0�1}. The sequence D is interpreted as follows: for each i, if zi = (xi� yi), then
the subject was asked to choose one of the alternatives in the set {xi� yi}, and ai = 1 if
and only if xi is the alternative chosen.

2We use R� and R|�| interchangeably.
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Finally, Alice, our theorist, tries to find an element �∈ P ′ of her theory to explain the
data. We say that a size k data set D = ((z1� a1)� (z2� a2)� � � � � (zk�ak)) is rationalizable by
P ′ if there exists �∈ P ′ for which ai = 1 if and only if xi � yi, 1 ≤ i ≤ k.

Imagine that Alice triumphantly offers Bob an experimental data set Dk with a ra-
tionalizing �∈ P ′. How should Bob react? Like any good editor, Bob is a skeptic. He
worries that Alice has designed her experiment to make it easier for any subject to
make choices that are consistent with her theory. Specifically, say that a question-
naire {z1� � � � � zk} is always rationalizable by P ′, or shattered by P ′, if for any vector
(a1� a2� � � � � an) ∈ {0�1}k, there exists a preference �∈ P ′ that rationalizes the data set
((z1� a1)� (z2� a2)� � � � � (zk�ak)). A questionnaire that is always rationalizable can never
falsify the theory P because no matter how the subject chooses from the questionnaire,
the choices can be explained by the theory. In other words, the questionnaire could
never detect a violation of the theory.3

In sum, Alice has an agenda and, therefore, Bob is suspicious of the empirical evi-
dence produced by Alice. How can the trust issues between Alice and Bob be resolved?
The answer is simple and lies in the number k. When the sample size k is small, it is
going to be easier for Alice to cook up a questionnaire that is always rationalizable by
P ′. When k is large, there may exist subject choices that cannot be rationalized by P ′,
thereby falsifying the theory. The crucial criterion is then the smallest k for which there
exists a questionnaire that is always rationalizable by P ′, or (in other, more standard
terminology) “shattered” by P ′. This number is called the Vapnik–Chervonenkis (VC)
dimension of P ′.4

Formally, the VC dimension of a theory P ′, denoted as VC(P ′), is defined as

VC
(
P ′) = max

{
k : ∃(zi)ki=1 which can be shattered by P ′}�

The VC dimension of a theory may be infinite. For example, suppose that X = R

and let PR be the set of rational preferences, i.e., all complete and transitive preference
relations. This class of preferences has infinite VC dimension. To see this, let k be a given
data size and select the zis in R2 in such a way that for all i 
= j, it is the case that xi 
= yi,
xi 
= xj , and yi 
= yj . Now, in a data set, no matter how the zis are labelled by the ais, we
can always find a rational preference relation to rationalize the data.

Here is another example, this time of a theory with finite VC dimension. Again let
X = R, but now let PSP be the set of single-peaked preference relations. These are the
preferences for which there exists a utility representation u : X → R and a real number
x∗ (the “peak”) such that u is strictly increasing in (−∞�x∗) and strictly decreasing in
(x∗�+∞). Now consider (x1� y1) and (x2� y2), and suppose without loss of generality that
xi < yi for i = 1�2. If x1 < y2, then it is easy to see that setting a1 = 1 and a2 = 0 cannot be
rationalized by a single-peaked preference because a1 = 1 means that the peak is to the

3See Chambers and Echenique (2016) for an overview of falsifiability and rationalizability. Kalai et al.
(2002) provide a combinatorial approach to flexibility in rationalizing choice functions in the spirit of our
paper. See also Rubinstein (1996).

4Our motivation for introducing VC dimension, by way of falsifiability and without resorting to its role in
learning, is not new. See, for example, Vapnik (1998), Vapnik (2006), Corfield et al. (2005), and Corfield et al.
(2009).
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left of x1, while a2 = 0 implies that the peak is to the right of y2. Alternatively, if x1 < y2
does not hold, then we must have x2 < y2 ≤ x1 < y1, and the argument can be applied to
x2 < y1.

In choosing and evaluating theories, and the experimental evidence in their favor,
the VC dimension informs us of the degree of flexibility and falsifiability of the theory.
Evidence confirming a theory that has a small VC dimension is more convincing than
evidence in favor of a theory with large VC dimension. Moreover, a theory with infinite
VC dimension or that has a VC dimension that grows very quickly with the description
of the problem is clearly problematic, as it is very unlikely that a data set could ever
disprove it.

Note that when offering evidence that supports her theory, Alice could argue that
her experimental design could allow for the theory to be falsified. In a sense, our paper
explores the theories and sample sizes for which such an argument is feasible.

2.3 Theories of decisions under uncertainty

We present a model of choice under uncertainty. Uncertainty is introduced through a
state space �, a finite set. A subject chooses among uncertain prospects called acts. An
act is a vector x ∈ R� =: X . The interpretation is that the act x ensures a utility payoff
x(ω) in state ω. A preference relation over acts is defined as a binary relation �⊆X ×X .
The preference relation encodes an agent’s choices among pairs of acts. An exposition
of the theory can be found in Kreps (1988) or Gilboa (2009).5

Throughout the paper, we restrict attention to preference relations that are nontriv-
ial, meaning that there exists a pair x� y ∈X with x� y but not y � x.

We say that two acts x� y ∈X are co-monotonic if there do not exist states ω, ω′ such
that x(ω) > x(ω′) but y(ω) < y(ω′).

We focus our attention on preferences that satisfy a subset of the following axioms.

Axiom 1. Order. For all x� y ∈ X , either x � y or y � x (completeness). Moreover, for all
x� y� z ∈X , if x� y and y � z, then x� z (transitivity).6

Axiom 2. Independence. For all x� y� z ∈X , and all λ ∈ (0�1),

x� y if and only if λx+ (1 − λ)z � λy + (1 − λ)z�

Axiom 3. Continuity. For all x ∈X , the upper and lower contour sets

Ux = {y ∈ X | y � x} and Lx = {y ∈X | x� y}
are both closed subsets of X .

Axiom 4. Monotonicity. For all x� y ∈X , if x(ω) ≥ y(ω) for all ω ∈�, then

x� y�

5Our methods can also be applied to choice under risk, with objectively known probabilities.
6A preference relation that satisfies completeness and transitivity is called a weak order.



Theoretical Economics 15 (2020) Falsifiability and learnability of decision theories 1287

Axiom 5. Co-Monotonic Independence. For all x� y� z ∈ X that are pairwise co-
monotonic and for all λ ∈ (0�1),

x� y if and only if λx+ (1 − λ)z � λy + (1 − λ)z�

Axiom 6. C-Independence. For all x� y ∈ X , any constant vector c ∈ X , and for all λ ∈
(0�1),

x� y if and only if λx+ (1 − λ)c � λy + (1 − λ)c�

Axiom 7. Uncertainty Aversion. For all x� y ∈X , for all λ ∈ (0�1), if x∼ y, then

λx+ (1 − λ)y � x�

In this paper, we consider the following models of decision under uncertainty.

(a) Expected Utility Model. There exists a probability measure p ∈ �|�|−1 ⊆ R� such
that x� y if and only if

p · x≥ p · y�

A preference relation � belongs to this model if and only if it satisfies Axioms 1–4.

(b) Choquet Expected Utility Model. A capacity is defined as a set function ν : 2� →
[0�1] such that ν(∅) = 0 and ν(�) = 1; ν(E) ≥ ν(F) whenever F ⊆ E. The Choquet
expectation of an act x with respect to ν, denoted by Eν , is defined as

Eν(x) =
∫ 0

−∞
[
ν
({
ω : x(ω) ≥ q

}) − ν(�)
]
dq+

∫ ∞

0
ν
({
ω : x(ω) ≥ q

})
dq�

In the Choquet expected utility model, an agent evaluates acts according to their
Choquet expectation. Hence, x� y if and only if

Eν(x) ≥ Eν(y)�

A preference belongs to the Choquet expected utility model if and only if it satis-
fies Axioms 1 and 3–5.

We say that a capacity ν is convex if it satisfies ν(A∪B)+ν(A∩B)≥ ν(A)+ν(B)

for all events A�B ⊆ �. When ν is convex, the Choquet integral takes a specific
form. There exists a compact convex set of probability measures Core(ν) ⊆ �|�|−1

such that

Eν(x) = min
p∈Core(ν)

p · x�

In fact, the set Core(ν) is defined as Core(ν) = {p ∈ �|�|−1 : p(A) ≥ ν(A) for all A}.
This brings us to the next model of preferences we consider, the max–min model.
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(c) Max–min Expected Utility Model. There exists a compact, convex set of probability
measures C ⊆ �|�|−1 such that x� y if and only if

min
p∈C

p · x ≥ min
p∈C

p · y�

The max–min expected utility model is characterized by Axioms 1, 3, 4, 6, and 7.

We use the following notation for the models of decision-making under uncertainty.

• The term PI denotes the set of preferences satisfying Axioms 1 and 2.

• The term PEU denotes the set of preferences satisfying Axioms 1–4.

• The term PCEU denotes the set of preferences satisfying Axioms 1 and 3–5.

• The term PMEU denotes the set of preferences satisfying Axioms 1, 3, 4, 6, and 7.

Note that PEU , PCEU , and PMEU correspond to the expected utility, Choquet expected
utility, and multiple priors models, respectively. However, PI satisfies only Axioms 1
and 2, and is (it turns out) strictly larger than the expected utility model PEU . Interest-
ingly, the model PI itself has some nice properties. For any preference �∈ PI , there exist
finitely many vectors q1� � � � � qK , where K ≤ |�| (see, for example, Blume et al. 1991) such
that

x� y if and only if (qk · x)Kk=1 ≥L (qk · y)Kk=1�

where ≥L denotes the lexicographic ordering on RK . For any two vectors u�v ∈ RK , we
say that u ≥L v if either u = v or ul > vl, where l = min{i : ui 
= vi}. When � additionally
satisfies monotonicity, then we have q1� � � � � qk ∈ �|�|−1 and the resulting model is called
the lexicographic expected utility model (PLEU ). Further, if continuity is also satisfied,
then we have K = 1, which would be the expected utility model. Hence, PEU ⊆ PLEU ⊆
PI . As the VC dimension is monotonic with respect to set inclusion, our result on the
upper bound on the VC dimension of PI has implications for these two models as well.

2.4 Main result

For a model of preferences P ′, let VC(P ′) denote its VC dimension. Our main result is
the following theorem.

Theorem 1. Let PI , PMEU , and PCEU be as defined at the end of the last section.

(i) We have VC(PEU ) = |�|. And, VC(PI) ≤ |�| + 1.

(ii) We have
( |�|
|�|/2

) ≤ VC(PCEU )≤ (|�|!)2(2|�| + 1).

(iii) If |�| = 2, then VC(PMEU ) = 2.

(iv) If |�| ≥ 3, then VC(PMEU )= +∞.
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This means that the conflict between Alice and Bob can be resolved for expected
utility with relatively small sample sizes. Choquet expected utility fares much worse.
There are sample sizes at which the skeptic Bob may be persuaded by Alice, but these
grow very quickly with the complexity of the problem as expressed by the number of
states of the world. Finally, for MEU, as long as there are at least three states, there is no
sample size that would convince Bob of the confirmatory message in Alice’s data.

Our results should be qualified by the formulation of our theories. By assuming risk
neutrality, Alice has tied her hands with respect to the utility over money. More general
classes of utilities would imply larger VC dimensions. Alternatively, the sets of priors in
MEU are “nonparametric,” and one can imagine a parametric specification of MEU that
achieves a smaller VC dimension. For example, if one assumes that the set of priors has
a finite number of extreme points (it is a polytope) and if we have an upper bound on
the total number of extreme points, then the VC dimension will be finite. In fact, one
way to read our results is that parametric assumptions are needed for the credibility of
empirical findings on models that have otherwise large VC dimension.7

3. Learning

The ideas we have introduced so far have traditionally been used in machine learning
to fit models to data in ways that optimize their out-of-sample predictions. We adopt
the notion of probably approximately correct (PAC) learning (Valiant 1984, Blumer et al.
1989) and assume a subject who is choosing among pairs of uncertain prospects. The
question is whether choices made according to the theory of choice under uncertainty
allow an outside analyst to recover the model of choice with high probability and in the
limit as the number of choices made by the agent grows. As a consequence of Theorem 1,
we see that the results are mixed: some models in the theory are learnable, while others
are not.

We imagine a subject making choices from finitely many ordered pairs (xi� yi), i =
1� � � � � n. The subject’s choices are recorded in a collection of labels ai ∈ {0�1}. As before,
a data set is any finite sequence D ∈ ⋃

n≥1(Z ×{0�1})n. The set of all data sets is denoted
by D. The set of all data sets of size n is denoted by Dn.

The analyst assumes that the population of choice instances z is distributed accord-
ing to an unknown probability distribution μ ∈ �(Z). In other words, the analyst ignores
the nature of the process by which the subject is presented with choice problems. All the
analyst knows is that choice problems are selected in an independent and identically
distributed (i.i.d.) fashion from a probability distribution μ on Z, but μ is unknown. We
assume that μ has full support.

When the analyst observes a data set D, she makes a conjecture about the subject’s
preference �. The objective of the analyst is to precisely learn the preference of the
subject. A learning rule is a map σ : D → P . For a data set D, σ(D) is the preference
relation that the analyst believes is guiding the subject’s choices and is what the analyst
will use to make out-of-sample predictions.

7The problem cannot, however, be reduced to parameter counting. There are parametric models with a
single parameter and infinite VC dimension.
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We denote by σn the restriction of σ to Dn.
The analyst would like σ to be such that, for a data set of size n, if n is large, then

the out-of-sample predictions of the learning rule σn, should with high probability be
accurate (that is, close to the choices made by the underlying preference �).

Specifically, we consider the distance between the choices made by a conjectured
relation �′ and � defined by dμ(���′)= μ(� ��′), a pseudometric, where

� ��′= {
(x� y) ∈ Z : x� y and x 
�′ y

} ∪ {
(x� y) ∈Z : x 
� y and x�′ y

}
�

and � denotes the symmetric difference between the preference relation between the
preference relations � and �′. Note that μ(� � �′) is essentially the probability that the
choices made according to each of the preferences will differ.

Now, given a data set D ∈ Dn, we want to control the size of the out-of-sample pre-
diction error dμ(σn(D)��) = μ(σn(D)� �). Note that, given D and σn, the error is deter-
ministic. The data set D is, however, drawn at random according to n i.i.d. draws from μ.
So the probability of an error of size larger than ε is

μn
({
(x1� y1)� � � � � (xn� yn) ∈Zn : dμ

(
σn

((
(x1� y1)�1x1�y1

)
� � � � �

(
(xn� yn)�1xn�yn

))
��

)
> ε

)}
)�

In words, the probability, according to μ, of drawing a sample (x1� y1)� � � � � (xn� yn) such
that, when labelled according to �, σ predicts a preference that differs from � by more
than ε. Below, we write this expression succinctly as μn(dμ(σn��) > ε).

Learnability If the analyst believes that the subject’s preferences are in some theory P ′,
then she would choose a learning rule whose range lies in P ′.

We say that a theory P ′ is learnable if the analyst can design a learning rule such
that whenever the subject’s preference belongs to P ′, large samples of the subject’s
choices would allow him to have a precise estimate of the preference with high prob-
ability. A precise estimate means, in accordance with our previous discussion, that the
out-of-sample predictions made according to the learning rule are accurate with high
probability. Furthermore, this should be the case despite the analyst not knowing the
distribution μ. We next formally define the notion of learnability we consider here.

Definition 1. A theory of preferences P ′ ⊆ P is learnable if there exists a learning rule
σ such that for all (ε�δ) ∈ (0�1)2, there exists an N(ε�δ) ∈N such that for all n ≥N(ε�δ),(∀�∈ P ′)(∀μ ∈ �f (Z)

)(
μn

(
dμ(σn��) > ε

)
< δ

)
� (1)

where �f (Z) is the set of all full support probability measures on Z, μn represents the
product measure induced by � and μ on (Z × {0�1})n, and σn is the prediction made by
the learning rule σ on a data set of size n.

It is important to note the role of N(ε�δ) in the definition above. It represents a
lower bound on the number of samples needed for the condition in (1) to hold under the
learning rule σ . We are interested in the sample complexity8 of a learning rule, which is

8See, for example, Shalev-Shwartz and Ben-David (2014).
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a function Nσ : (0�1)2 →N, such that for all ε, δ, the Nσ(ε�δ) is the minimum number of
samples, n, such that (1) holds. In what follows, we characterize the sample complexity
associated with the preference theories considered in this paper (see Section 2.4).

The following theorem is due to Blumer et al. (1989), adapted to the current setting
involving preferences.

Theorem 2. A theory of preferences P ′ is learnable if and only if it has finite VC dimen-
sion.9

Last, we note that there is a strong connection between the VC dimension of a learn-
able theory and its associated sample complexity. In the PAC setting (see Ehrenfeucht
et al. 1989 and, more recently, the work by Hanneke 2016), it turns out that the sample
complexity of any learning rule, σ , such that (1) holds, is of the order of

�

(
VC

(
P ′) + ln(1/δ)

ε

)
� (2)

Hence, the sample complexity is linear in the VC dimension and independent of the par-
ticular learning rule σ . This implies that if we can estimate the VC dimension of a theory
well, we will also be able to characterize its sample complexity from (2). Indeed, our
main result corresponds to achieving this by providing bounds for the VC dimension.

Theorem 1 has the following implication for sample complexity.

Corollary 3. Preferences PEU , PCEU , and, when |�| = 2, PMEU are learnable. Prefer-
ence PEU requires a minimum sample size that grows linearly with |�|, while PCEU re-
quires a minimum sample size that grows exponentially with |�|. Finally, PMEU is not
learnable when |�| ≥ 3.

It is important to note the role played by the independence axiom in the above re-
sults. For example, our upper bound for the VC dimension of PCEU applies to all theories
of preferences that satisfy co-monotonic independence (Axiom 5) and guarantee the ex-
istence of a certainty equivalent for every act. Hence, the bound applies more generally.
Indeed, from Gilboa and Schmeidler (1994), we know that the Choquet integral can be
represented as a linear functional defined on vectors in R2� . This representation al-
lows us to tighten the VC dimension bound for PCEU to 2|�| + 1 by applying part (i) of
Theorem 1.10

4. Discussion

4.1 Choice functions

Let X be a Borel space of alternatives, endowed with σ-algebra X . A menu or budget
of alternatives is any finite set A ⊆ X . A choice function on a domain B ⊆ 2X is a map

9The theorem also requires an additional measurability hypothesis on the theory P ′. We discuss this
issue in Section 5.1 and show that it is satisfied for the theories we focus on.

10We thank Burkhard Schipper for pointing this out.
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c : B → 2X\{∅}. The interpretation is that for a menu A, the set c(A) consists of the
alternatives chosen by the subject from A.

A choice function represents data that are available on the subject’s choices. The
choices themselves may be guided by an underlying preference relation held by the sub-
ject. Hence, through several instances of observed choice from menus, an outside an-
alyst seeks to recover the underlying preference to the extent that he can make precise
predictions about the subject’s optimal choice. For each preference relation �, we de-
note as c� its associated choice function defined on the domain of menus of size at most
K ≥ 2, i.e., B = {A ⊆ X | 2 ≤ |A| ≤ K}. In other words, we restrict attention to binary
choice.

The choice function associated with a preference relation � is defined as

c�(A) = {x ∈A | x� y for all y ∈A}

for each A ∈ B. For any theory of preferences P , we can define the class of all choice
functions that are generated by the preferences in the theory as

CP = {c� |�∈P}�

We require a notion of how rich or flexible a family of choice functions is. We borrow
the notion of P dimension from Kalai (2003): essentially an application of VC dimension
to the graph of a function. Let X and Y be two sets, and let F ⊆ YX be a collection of
functions f : X → Y . The P dimension of F is the largest number n with the property
that there is x1� � � � � xn in X and y1� � � � � yn in Y such that for any I ⊆ {1� � � � � n} there is
f ∈ F with yi = f (xi) if and only if i ∈ I. The P dimension of a class of functions F is
denoted by P(F).

Our next result connects the VC dimension of a theory with the P dimension of the
class of choice functions associated with that theory. It implies that the negative conclu-
sions we have obtained about theories with large VC dimension carry over to the choice
functions defined by the theory, but that the theories that we have shown are learnable
(and, therefore, have finite VC dimension) also have finite P dimension. Essentially, a
theory P is learnable if and only if its associated choice CP functions are learnable.

Proposition 4. We have VC(P) ≤ P(CP). Further, if VC(P) < +∞, then P(CP) <+∞.

In a followup paper, Basu (2019) shows that in the context of stochastic choice, finite
VC dimension also suffices to learn preference heterogeneity in the population. If the
preference theory has finite VC dimension, then we can recover the distribution over
preferences that generates the choice data via a decision process involving stochastic
preferences. This requires further complexity notions from statistical learning theory
and empirical processes, namely Rademacher complexity.

We should emphasize that our discussion of choice function is restricted to choice
from binary menus. Our conclusion might change if we allow for choices from arbitrar-
ily large menus, because each choice x ∈ c(A) would reveal a large number of binary
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comparisons.11 If, instead, the size of menus in B remains bounded as |X| grows, then
the message of our results remains the same.

4.2 On the PAC model of learning

We make here a few remarks about the PAC framework. In particular, we discuss two
issues: (a) learning and (b) overfitting. When a preference theory is learnable, then it is
the case that the learning rule that always finds a preference consistent with the data
(when the model is correctly specified) leads to precise estimation of the preference
in the PAC sense. One interpretation of the result is that the standard rationalizabil-
ity exercise, which is to find a preference relation consistent with choice data, leads to
consistent estimates. More so, this happens in a uniform sense as is the PAC criterion.
This conclusion is quite nontrivial and the present framework aims to explain the key
elements behind it. Sample complexity gives us rates of convergence for preference re-
covery and, hence, it becomes useful to study the VC dimension of different theories of
preferences.

Now consider the problem of overfitting. Formally speaking, overfitting represents a
situation where there are two preference relations �1 and �2, both of which rationalize
the data set D, but one of which (say �2) has lower error in out-of-sample predictions,
i.e., for the true preference �, we have dμ(�1��) > dμ(�2��). In this case, we say that �1
overfits the data. Hence, when the VC dimension is infinite, it means that for arbitrarily
large sample sizes, the preference conjectured by the learning rule, σ(D), has distance
from the true preference �, dμ(σ(D)��), that remains bounded away from zero. Hence,
the VC dimension of a preference theory then becomes a useful tool to study overfitting
in choice data.

5. Proofs

5.1 Measurability requirement on P ′

For the equivalence result of Theorem 2, an additional measurability requirement is
needed on the model P ′. A class of sets P ′ is said to be image admissible Souslin if it
can be parametrized by the unit interval, i.e., P ′ = {Pt : t ∈ [0�1]}, in such a way that
the set Q = {(z� t) : z ∈ Pt} is an analytic set (see Dudley 2014, Pestov 2011). Whenever
P ′ satisfies this condition, Theorem 2 holds. The following lemma provides a sufficient
condition (satisfied by the models we consider in this paper) on P ′ for it to be image
admissible Souslin.

Lemma 5. Let P ′ be a model of preferences. Suppose there exists an uncountable complete
separable metric space �, a bijection m :� → P ′, and a continuous function V : R�×� →
R such that for each θ ∈�,

xm(θ) y if and only if V (x�θ) ≥ V (y�θ)�

Then the model P ′ is image admissible Souslin.

11The difficulty in large menus is that if, for example x is chosen from {x� y� z}, then we infer a revealed
preference relation among x and y , and x and z, but we learn nothing about how y and z are compared.
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Proof. Since � is an uncountable complete separable metric space, by the Borel iso-
morphism theorem (see Theorem 3.3.13 in Srivastava 2008), there exists a Borel measur-
able bijection σ : [0�1] → �. Now define the class {Pt}t∈[0�1] as

Pt = m
(
σ(t)

)
�

Hence, we obtain

Q = {
(z� t) : z ∈ Pt

}
= {

(x� y� t) : V (
x�σ(t)

) ≥ V
(
y�σ(t)

)}
�

where the latter set is Borel measurable since V is continuous and σ is Borel measurable.
This implies that Q is a Borel set and, hence, is an analytic set.

Now consider the three models of decision under uncertainty. Each satisfies the hy-
pothesis of Lemma 5. The corresponding set � and functions m, V are as follows.

(a) Expected Utility. Here � = �|�|−1 and m(θ) is a unique preference relation on acts
defined by the probability vector θ. The function V is defined as expected utility
of the act x according to probabilities in θ:

V (x�θ)= θ · x�
(b) Choquet Expected Utility. Here � is the set of all nonadditive measures on �,

which is a complete and separable metric space when viewed as a subspace of
R2� . Now m(θ) is the preference induced by the nonadditive measure θ. The
function V is defined as

V (x�θ) = Eθ(x)�

Hence, V (x�θ) is the Choquet expectation of the x under θ.

(c) Max–min Expected Utility. For the max–min priors, the set � is the set of all
nonempty compact convex subsets of �|�|−1. Now � is complete and separable
under the Hausdorff metric. For each θ ∈�, m(θ) is the mutiple priors preference
corresponding to the set of priors θ. Finally, the function V is defined as

V (x�θ) = arg min
p∈θ

p · x�

It is also possible to show that the models PLEU and PI satisfy the condition of being
image admissible Souslin. A counterpart of Lemma 5 can be shown. We know that for
any �∈ PI , there exists q = (qk)

K
k=1 such that x� y if and only if

K∨
k=1

(
k−1∧
l=1

ql�x = ql�y

)
∧ (qk�x≥ qk�y)�

The set of all (x� y�q) that satisfy the above condition is a Borel set and, hence, is analytic.
Finally, we can identify the set of all qs with the unit interval [0�1] as in the proof of
Lemma 5.
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5.2 Technical lemmas

The following lemmas are used in proving Theorem 1.

Lemma 6. Suppose that � satisfies Axioms 1 and 2. Then the following statements hold.

(i) We have x� y if and only if x− y � 0.

(ii) For each x, the upper and lower contour sets Ux and Lx defined as

Ux = {y ∈X : y � x} and Lx = {y ∈X : x� y}

are both convex. Moreover, the sets X\Ux and X\Lx are also convex.

Proof. Consider part (i). Suppose x� y. Then, by Axiom 2, it follows that

(1/2)(x− y) = (1/2)x+ (1/2)(−y)� (1/2)y + (1/2)(−y) = 0�

This means that (1/2)(x − y) = (1/2)0 + (1/2)(x − y) � (1/2)0 + (1/2)0 = 0. Hence, by
Axiom 2 again, x− y � 0.

Now suppose x− y � 0. Then, by Axiom 2, it follows that

(1/2)x = (1/2)(x− y)+ (1/2)y � (1/2)0 + (1/2)y = (1/2)y�

Again, applying Axiom 2, we get x� y.
Now consider part (ii). Let y� z ∈ Ux and λ ∈ [0�1]. By Axiom 2, since y � x, we obtain

λy + (1 − λ)z � λx+ (1 − λ)z�

Since z � x, by Axiom 2, it also follows that

λx+ (1 − λ)z � λx+ (1 − λ)x = x�

Hence, λy + (1 − λ)z ∈ Ux.
The proofs for the convexity of Lx, X\Ux and X\Lx follow along similar lines.

Lemma 7. Suppose � is a preference relation over acts satisfying Axioms 1–5. Then the
following statements hold.

(i) If x� y and z �w such that x, z are co-monotonic and y, w are also co-monotonic,
then, for all λ ∈ [0�1],

λx+ (1 − λ)z � λy + (1 − λ)w�

(ii) If x� y and z �w such that x, z are co-monotonic and y, w are also co-monotonic,
then, for all λ ∈ [0�1],

λx+ (1 − λ)z � λy + (1 − λ)w�
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Proof. We prove only the first part; the second part follows analogously.
The continuity and monotonicity of � imply that for each x, there is a unique scalar

cx such that x ∼ cx, where cx is viewed as a constant act. The proof relies on the obser-
vation that every constant act is co-monotonic with any act.

First note that x ∼ cx, and that x, cx, and z are co-monotonic. Then λx+ (1 − λ)z ∼
λcx + (1 − λ)z, by Axiom 5. Similarly, z ∼ cz and we obtain that λcx + (1 − λ)z ∼ λcx +
(1 − λ)cz . So λx+ (1 − λ)z ∼ λcx + (1 − λ)cz .

Now cz �w, and cz , w, and y are co-monotonic. Thus, (1 −λ)cz +λy � (1 −λ)w+λy.
Finally, cx � y, and cx, cz , and y are co-monotonic. Then λcx + (1 −λ)cz � λy + (1 −λ)cz .

Thus, we obtain that

λx+ (1 − λ)z ∼ λcx + (1 − λ)cz � λy + (1 − λ)cz � λy + (1 − λ)w�

The proof follows from transitivity.

Lemma 8. Let K be a closed convex cone12 in R� such that R�+ ⊆ K � R�. Then there
exists a preference � that belongs to the max–min model, such that

U0 = {
x ∈R� : x� 0

} = K� (3)

where U0 represents the upper contour set of the constant act of zeroes 0 for the prefer-
ence �.

Proof. Consider K∗ = {p ∈R� : p ·x ≥ 0 for all x ∈K}, the dual cone of K. Since R�+ ⊆ K

and since the dual cone of R�+ is itself, it follows that K∗ ⊆ R�+. Further, K∗ is nonempty,
which follows from our assumption that K � R�. Let x ∈ R�\K. Since K is closed and
convex, there exists a hyperplane p 
= 0 such that p · x ≤ p · y for all y ∈ K. Note that it
cannot be the case that p · y < 0 for some y ∈ K. Otherwise, given that K is a cone, one
could choose a large enough α> 0 so that αy ∈K and p · (αy) < p · x. Hence, p · y ≥ 0 for
all y ∈ K. This implies that p ∈K∗.

Now define the following set of probability measures on �:

C := �|�|−1 ∩K∗�

We show that the max–min preference � induced by the set of priors C indeed satisfies
condition (3).

The upper contour set at 0 for the preference � is

U0 = {x : p · x ≥ 0 for all p ∈ C}�
Now, by definition of C, p · x ≥ 0 for all p ∈ C if and only if p · x ≥ 0 for all p ∈ K∗. The
reason is that K∗ is a cone. It follows that

U0 = {
x : p · x≥ 0 for all p ∈K∗}�

the dual cone of K∗. The set K is a closed and convex cone. So the dual cone of K∗ is, in
fact, K. Hence, U0 = K.

12A subset K ⊆ R� is a convex cone if for any x� y ∈ K and α1�α2 ∈R+, it holds that α1x+ α2y ∈ K.
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Lemma 9. Let ei denote the unit vector in R3 for coordinate i ∈ {1�2�3}. For every n, there
exist n points x1�x2� � � � � xn on the plane L = {x : x1 + x2 + x3 = 1} such that for any set
I ⊆ {1�2� � � � � n}, it holds that

xj /∈ conv
({
xi

}
i∈I ∪ {

e1� e2� e3})
for all j /∈ I.

Proof. Let f : R →R be a strictly concave function such that f (0) = 1 and f (1) = 0, and
define the real numbers ri = 1/(1 + i) for each i ∈ {1�2� � � � � n}. Now define a set of points
x1�x2� � � � � xn in R3 by

xi = (
ri� f

(
ri

)
�1 − ri − f

(
ri

))
� i = 1� � � � � n�

Clearly {xi}i ⊆ L. Note also that (0� f (0)�0) = e2 and (1� f (1)�0) = e1. Now let I ⊆
{1�2� � � � � n} and suppose, toward a contradiction, that there exists j /∈ I such that

xj ∈ conv
({
xi

}
i∈I ∪ {

e1� e2� e3})�
This means that there exist vectors {yk}mi=k ⊆ {xi : i ∈ I} ∪ {e1� e2� e3},and positive weights
{αk}k such that

xj =
m∑

k=1

αkyk and
m∑
i=1

αk = 1�

By the preceding equation and the definition of xj ,

m∑
k=1

αkyk2 = x
j
2 = f

(
m∑
i=k

αkyk1

)
�

Note that if yk 
= e3, then yk2 = f (yk1 ), and that if yk = e3, then yk2 = 0 < 1 = f (yk1 ).
Thus, either way,

∑m
k=1 α

kyk2 ≤ ∑m
k=1 α

kf (yk1 ).
Finally, observe that αi < 1 for all i, as xj /∈ {xi : i ∈ I} ∪ {e1� e2� e3}. Then αi < 1 and

the strict concavity of f implies that

f
(
x
j
1

) = f

(
m∑

k=1

αkyk1

)

>

m∑
k=1

αkf
(
yk1

)

≥
m∑

k=1

αkyk2

= x
j
2�

which contradicts the fact that xj2 = f (x
j
1).
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5.3 Proof of Theorem 1

In this section, we provide the proof of Theorem 1. We make use of the technical lem-
mas established above. Lemma 6 pertains to part (i) and Lemma 7 pertains to part (ii).
Lemmas 8 and 9 pertain to part (iv).

5.3.1 Proof of part (i) We will first show that VC(PI) ≤ |�| + 1. Let n > |�| + 1 and let
(z1� z2� � � � � zn) be a set of points in X2. Now, for each zi = (xi� yi), define the act

fi := xi − yi�

Now consider the collection {fi}ni=1 of acts.
Suppose it is the case that not all fis are distinct. That is, there exist j 
= k such that

fj = fk. Now this means any data set (zi� ai)i where aj = 1 and ak = 0 cannot be rational-
ized by the model. This is because, from part (i) of Lemma 6, aj = 1 requires fj � 0, but
ak = 0 requires 0 � fk = fj .

Suppose now that all fis are distinct. Since n ≥ |�| + 2, from Radon’s theorem,13

there exists a partition (I� J) of {1� � � � � n} such that conv({fi}i∈I)∩ conv({fi}i∈J) 
= ∅. Now,
let (ai)i be such that ai = 1 for all i ∈ I and ai = 0 for all i ∈ J. We argue that the data set
(zi� ai)i cannot be rationalized by the model. Now suppose, for contradiction, there is a
preference relation � that satisfies Axioms 1 and 2, and rationalizes the data set. Now let
f̄ ∈ conv({fi}i∈I)∩ conv({fi}i∈J). On the one hand, applying part (ii) of Lemma 6, we have
f̄ � 0, because fi � 0 for all i ∈ I. On the other hand, applying part (ii) again, we have
0 � f̄ , because 0 � fi for all i ∈ J. This gives us a contradiction.

A corollary of the above is that VC(PEU ) ≤ |�| + 1. We can, however, argue that, in
fact, VC(PEU ) = |�|. We first show the lower bound. If n ≤ |�|, then we can choose the
vectors xi = ei, where ei is the unit vector; yi = (1/n�1/n� � � � �1/n) is the constant vector
of 1/ns. Then, no matter how we partition the set {1� � � � � n} into two sets I and J, all
we need is p ∈ �(�) = �n−1 such that we have probability pi ≥ 1/n if and only if i ∈ I.
But this construction is always possible. Hence, VC(PEU ) ≥ |�|. Next, so as to argue
that VC(PEU ) ≤ |�|, we make the simple observation that the VC dimension of PEU is
the same as the VC dimension of the set of linear classifiers {{f ∈ R� | p�f ≥ 0}}p∈�(�).
But, from a standard result, this is upper bounded by the dimension of the set of linear
functions {p�x}p∈�(�), which is at most |�| (see, for example, Mohri et al. 2018). Hence,
this shows that VC(PEU ) = |�|.
5.3.2 Proof of part (ii) We first show that the VC dimension is at most (|�|!)2(2|�| + 1).

We enumerate the set of states as � = {ω1� � � � �ωs}. We say that ωi > ωj if i > j. For
each permutation σ : � → �, define the set Xσ to be the set of all acts that are non-
decreasing with respect to the permutation σ (when the states are arranged according
to σ). That is, Xσ = {x ∈ R� : σ(ω) < σ(ω′) ⇒ x(ω) ≤ x(ω′)}. Clearly, each Xσ contains
all the constant vectors. Also, any two acts in Xσ are co-monotonic. Note that

X2 =
⋃
σ�σ ′

Xσ ×Xσ ′ � (4)

13Radon’s theorem states that any set of |�| + 2 points in R� can be partitioned into disjoint subsets
whose convex hulls have a nonempty intersection
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Now, let n > (|�|!)2(2|�| + 1). This of course implies n ≥ (|�|!)2(2|�| + 1)+ 1. By the
pigeonhole principle, if {z1� � � � � zn} are distinct points in X2, then (4) implies that there
exist permutations σ and σ ′ such that |{zi}ni=1 ∩Xσ ×Xσ ′ | ≥ 2|�|+2. By Radon’s theorem,
there is a partition (I� J) of the set {i : zi ∈ Xσ × Xσ ′ }, where I and J are nonempty, and
such that the convex hulls of (zi)i∈I and (zi)i∈J intersect. Define a labelling (ai)

n
i=1 ∈

{0�1}n by ai = 1 if and only if i ∈ I. Consider the data set D = (zi� ai)
n
i=1; we claim that D

cannot be rationalized.
Suppose, toward a contradiction, that D is rationalized by a preference relation �

that satisfies the axioms. Then xi � yi for all i ∈ I and yi � xi for all i ∈ J. Let z̄ = (x̄� ȳ)

be a point in the intersection of the convex hulls of (zi)i∈I and (zi)i∈J , and let (λi)i∈I and
(λ′

j)i∈J be probability vectors such that

(∑
i∈I

λixi�
∑
i∈I

λiyi

)
= (x̄� ȳ) =

(∑
i∈J

λ′
ixi�

∑
i∈J

λ′
iyi

)
�

On the one hand, from Lemma 7 part (i), we have x̄� ȳ, since xi � yi for all i ∈ I. On the
other hand, applying Lemma 7 part (ii), we have ȳ � x̄ since yi � xi for all i ∈ J. Thus, we
arrive at a contradiction.

We next show that the VC dimension of the Choquet expected utility model is at least( |�|
�|�|/2�

)
.

Let E/2 ⊆ 2� be the set of all events with cardinality equal to �|�|/2�.

Let n = ( |�|
�|�|/2�

)
and let Ei, i = 1� � � � � n, enumerate the members of E/2. Now let

zi = (1Ei − 1/2�0)�

where 1E denotes the indicator vector for the event E (i.e., 1E(ω) = 1 if and only if ω ∈E).
Let {ai}ni=1 ∈ {0�1}n be arbitrary and consider the data set D = (zi� ai)

n
i=1. We prove

that the Choquet model can rationalize D.
Let I = {i ∈ [n] : ai = 1}. Let ν be a monotone nonadditive probability measure such

that

ν(Ei)≥ 1/2 for all i ∈ I and ν(Ei) < 1/2 for all i /∈ I�

Such a nonadditive measure can be constructed explicitly. For example, let ν(E) = 0 for
all E of cardinality strictly smaller than �|�|/2�, and let ν(E) = 1 for all E of cardinal-
ity strictly greater than �|�|/2�. For the E that have cardinality �|�|/2�, and using our
enumeration, we can set ν(Ei) = 1/2 if i ∈ I and ν(Ei)= 1/3 if i /∈ I .

Choquet expectations can now be calculated and turn out to be

Eν[1Ei − 1/2] ≥ 0 if ai = 1 and Eν[1Ei − 1/2]< 0 if ai = 0�

Hence, the Choquet expected utility preference � that corresponds to the nonadditive
measure ν rationalizes the data set D.
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5.3.3 Proofs of parts (iii) and (iv) When there are only two states of nature i.e., |�| = 2,
a max–min preference can be represented as min of expected utilities corresponding to
exactly two priors. There are two probabilities (p� p̄) ∈ [0�1] such that p ≤ p̄ and the
utility of a particular act (x1�x2) is

U(x1�x2)= min
{
px1 + (1 −p)x2� p̄x1 + (1 − p̄)x2

}
�

We show that for |�| = 2, we have VC(PMEU ) = 2. We first show that VC(PMEU ) < 3 and
then demonstrate a set of two data points that can be shattered.

Suppose, for contradiction, that there exist three data points (xi� yi)
3
i=1 that can be

shattered by PMEU . Now the point (xi� yi) is labelled ai = 1 if and only if U(xi) ≥ U(yi).
One can easily argue that this latter condition is satisfied for (p� p̄) if and only if αip +
βip̄ ≥ γi, where αi, βi, and γi depend solely on xi and yi. For example, if xi1 ≥ xi2 and
yi1 < yi2, then U(xi) = pxi1 + (1 −p)xi2 and U(yi) = p̄yi1 + (1 − p̄)yi2. Hence, we get that
for αi = xi1 −xi2, βi = yi2 − yi1, and γi = yi2 −xi2, the condition U(xi) ≥U(xi) is satisfied
if and only if αip + βip̄ ≥ γi. Finally, note that each such triple (αi�βi�γi) defines a

hyperplane αip + βip̄ = γi. Consider the triangular region T = {(p� p̄) ∈ [0�1]2 | p ≤ p̄}.
For each i, the hyperplane defined by (αi�βi�γi) splits T into two regions: one in which
αip+βip̄≥ γi and one in which αip+βip̄≤ γi. If we label ai = 1, we need to find (p� p̄)

in the first region, and if we label ai = 0, then we need to find (p� p̄) in the second region.
Thus for each labelling of the data, there must exist (p� p̄) ∈ T in the relevant region
for each of the (αi�βi�γi). However, the three hyperplanes can generate at most seven
regions of the triangle T .14 This is a contradiction, since shattering the three points
would have needed eight regions, i.e., the total number of labellings {0�1}3.

Now we show that a set of two points can be shattered. Consider the set of points
{((−1�2)� (0�0))� ((2�−1)� (0�0))}. This set admits all four labellings. For example, con-
sider the labelling (0�1). This can be generated for 1/3 <p< p̄ < 2/3.

We next prove that for |�| ≥ 3, the max–min expected utility model is not learnable.
We prove the result for the case when |�| = 3. If |�|> 3, our construction can be em-

bedded into a max–min preference in R� by simply ignoring all but three states when
comparing acts. The axioms for max–min preferences will be satisfied by our construc-
tion. Hence, it is sufficient to prove the result for the case when |�| = 3.

We prove that the VC dimension of the model is infinite. Let n ∈ N be any data size.
Let x1�x2� � � � � xn be the collection of points in R3 obtained from Lemma 9. Consider the
data points

{zi}ni=1 = {(
xi�0

)}n
i=1�

Let {ai}ni=1 ∈ {0�1}n be an arbitrary labeling of {zi}, and consider the data set D = {(zi� ai) :
i ∈ [n]}. We construct a max–min preference that rationalizes D.

Define I = {i ∈ [n] : ai = 1}. Consider the set

K = cone
({
xi

}
i∈I ∪ {

e1� e2� e3}) =
{∑

i∈I
αixi + γ1e1 + γ2e2 + γ3e3 : αi ≥ 0 and γj ≥ 0

}
�

14See, for example, Wetzel (1978) and the lazy caterer’s sequence.
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the cone generated by the vectors {xi}i∈I ∪ {e1� e2� e3}. Note that R�+ ⊆ K, as e1, e2, and
e3 are part of the generating vectors. By Lemma 8, there exists a max–min preference �
such that {

x ∈R�+ : x� 0
} =U0 =K�

Observe that, by definition of K, xi � 0 for all i ∈ I. If we prove that xj /∈ K for all
j /∈ I, then we are done. Suppose then, toward a contradiction, that xj ∈K for some j /∈ I.
This implies that there exist vectors y1� y2� � � � � ym in {xi}i∈I ∪{e1� e2� e3} and nonnegative
weights η1�η2� � � � �ηm such that

xj =
m∑
i=1

ηiyi�

By definition of xi and Lemma 9, each yi satisfies that yi1 + yi2 + yi3 = 1. Further, we have

3∑
k=1

x
j
k =

3∑
k=1

m∑
i=1

ηiyik =
m∑
i=1

ηi�

Now, since x
j
1 + x

j
2 + x

j
3 = 1, it follows that

∑m
i=1 η

i = 1. But this implies that

xj ∈ conv
({
xi

}
i∈I ∪ {

e1� e2� e3})�
contradicting Lemma 9.

5.4 Proof of Proposition 4

Let n ≤ VC(P). Let {(xi� yi)}ni=1 be points such that for each B ⊆ {1� � � � � n}, there exists a
preference �∈ P such that xi � yi if and only if i ∈ B.

We now show that n ≤ P(CP). Consider the set of pairs{({xi� yi}� {yi})}ni=1�

Suppose B ⊆ {1� � � � � n} and let B′ = Bc . Now let � be such that xi � yi if and only if i ∈ B′.
Consider the choice function c� associated with �. Note that c�({xi� yi}) 
= {yi} for all
i ∈ B′. Further, since � is complete, yi � xi for all i ∈ B. Hence, c�({xi� yi}) = {yi} for all
i ∈ B.

The above result implies that with the PAC criterion, a model of preference P would
be learnable if its corresponding class of choice functions is learnable. The next result
establishes the converse.

Let d = VC(P) and suppose, for contradiction, that P(CP)= +∞. Let n be such that

(
2enK(K − 1)

d

)d

< 2n�

Now consider any collection of pairs {
(Ai� ci)

}n
i=1�



1302 Basu and Echenique Theoretical Economics 15 (2020)

where Ai ∈ B and ci ⊆ X . We must have that ci ⊆ Ai. Now consider the set of points

I =
n⋃

i=1

n⋃
x�y∈Ai;x 
=y

{
(x� y)� (y�x)

}
�

This is a set of at least 2n and at most nK(K − 1) distinct points. Define also the set
�P(I) = {� ∩I |�∈ P}. Now, since P(CP) = +∞, it follows that for any B ⊆ {1� � � � � n},
there exists c ∈ CP such that c(Ai) = ci if and only if i ∈ B. Hence, this means that
|�P(I)| ≥ 2n. Alternatively, since d = VC(P), from Sauer’s lemma (see, for example,
Chapter 3 in Kearns et al. 1994) we have that

∣∣�P(I)
∣∣ ≤

(
2enK(K − 1)

d

)d

�

which yields a contradiction.15
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